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AN ELEMENTARY AND DIRECT COMPUTATION OF
COHOMOLOGY WITH AND WITHOUT A GROUP
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ABSTRACT. Recently, we introduced a configuration space with inter-
action structure and a uniform local cohomology on it with co-authors
in [1]. The notion is used to understand a common structure of infi-
nite product spaces appeared in the proof of Varadhan’s non-gradient
method. For this, the cohomology of the configuration space with a
group action is the main target to study, but the cohomology is easily
obtained from that of the configuration space without a group action by
applying a well-known property on the group cohomology. In fact, the
analysis of the cohomology of the configuration space without a group
action is the essential part of [1]. In this article, we give an elemen-
tary and direct proof to obtain the cohomology of a space with a group
action from that without a group action under a certain condition in-
cluding the setting of the configuration space with interaction structure.
In particular, no knowledge of group cohomology is required.

1. GROUP ACTION ON LINEAR SPACES, HOMOMORPHISM AND KERNEL

Suppose U and W are R-linear spaces and 7 : U — W is an R-linear map.
We also assume that a group G acting on U and W, namely, for each g € G,
g:U-U, ¢g:W->W
are automorphisms and (gh)(u) = g(h(u)) for any g,h € G and ue U or W.

Moreover, we assume
gom=mog
for all g € G. Let US and W& are the linear subspaces of U and W which
are invariant under the action of G:
UY:={uelU; g(u)=u,YgeG}, WY ={weW ; g(w)=w,VgeG}.

We also denote by m(U)% := 7(U) n W&, which is the intersection of the
image of U and the invariant set under the group action. Since gom = 7o g,
it is obvious that 7(U%) c 7(U)%.

Proposition 1.1. Assume that m :=dimkerm e N and G is generated by a
finite subset {q1,...,ga}. Then,

dim (V)% /7 (U®) < md.
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Moreover, dim7(U)/n(U) = md if and only if the following two condi-
tions both hold : (i) kerm c U% and (ii) (kerm)? c g(U) where g: U — U*
is the linear map (gu); = giu—u = (g; — id)u.

Proof. Since dimker = m, ¢ := dim(g(U)n(ker 7)4) < md. Let u® ... u®
be a basis of the finite dimensional linear space g(U) n (ker7)9. Then, by

definition, for each k € {1,2,..., ¢}, there exist u(¥) € U such that gu®) = u(k)
or equivalently ul(k) = giu®) —u®) for i =1,...,d. Note that since u(®) £ 0,
u®) ¢ UG and since {u®, ..., u®} is linearly independent, {u(, ... u®}
is also linearly independent. Now, suppose w € 7(U)¢. Then, w = 7(u) for
some u € U and w € W&, Hence

m((gi —id)u) = 7(giu) - 7(u) = gi(7(w)) - 7(u) = gi(w) —w =0,
and so (g; —id)u € kerm for i = 1,...,d. Hence, there exists ay,...,a, such
that gu =Yt apu®. Let @:= u—- Yt apu®. Then,

¢ ¢
(gi—id)a= (g —id)u- ), akugk) = (gu)i - (Y. azpu®); =0
k=1 k=1
fori=1,...,d and so w € US. Therefore, we have
¢ ¢
w=m(u) =Y apu® +a) = > apr(u®) + 7 (a)
k=1 k=1

where 7(u) € 7(U%) and conclude that
dim 7(U)/x(U%) <l < dm.

From the above argument, dim7(U)%/7(U%) = dm if and only if the fol-
lowing two conditions both hold :

(1) ¢=dm,

(2) i apm(u®) e m(UC) implies ay = ag = -+ = ag = 0.
It is simple to see that the condition (1) is equivalent to g(U) n (kerm)? =
(ker m)¢ and also to (ker7)? c g(U). Next, we prove that the condition (2)
is equivalent to kerm c UC. For this, first note that Yt apm(u®) e 7(UC)
is equivalent to the existence of 4 € US such that

¢
Z aku(k) —u € ker.
=1

Hence, if kerm ¢ UC, then Y%, apu® € UC and so applying § to ¥5_; azu®,

we obtain a; = as = --- = ag = 0. On the other hand, if ker 7w ¢ U%, then there
exists u* € ker  such that gu* # 0. Since gu* € g(U) n (ker7)?, there exists
ay,as, . ... ap such that gu* = Yt ayu® satisfying a; # 0 for some k. This

implies u* - Yt apu® € U = ker g and so 7(u*) - Yh_y apm(u®) e 7(US).
Since m(u*) = 0, this means Y, apm(u®) € 7(UC) and so the condition
(2) does not hold. O

From this proposition, the following useful corollary directly follows.



Corollary 1.1. Suppose that {uy,...,uy,} is a basis of kerm and G =<
91,92, - --,Ga >. Moreover, assume that

(i) kerm c UC.

(ii) There exist u;y € U such that (g; —id)u;y = 6; jux, fori,j=1,...,d and
k=1,....m

Then, for any w € m(U)%, there exists u € U and a sequence of real numbers
(@jk)j=1,..dk=1..m which does not depend on the choice of u;j but depends
on the basis {uy,...,uy,} and the generating set {g1,go,...,ga} such that

d m
=7(D0) ajpujp +u).
J=1 k=1
Proof. The second condition clearly implies that ul*) := gu;, € U?, j =
d, k=1,...,mis a basis of (kerm)? and (ker7)?c g(U). Hence, from
the last proposition and its proof, the existence of u and (a; )1, dk-1..m
follows. Next, we prove that a;j is independent from the choice of ;.
Suppose that {u;} also satisfies

(g - id)aj,k = 5ijuk>

d m d m o~ o~ ~ ~
and w = 7 (X5 Xty ajeuge +u) = 7(Xj ity ajklyp + @) for some a;p, € R
and @ € UY. Then, since (g; —id)(u;x — ;) = 0 for all 4, u;y — ) € UC for
all 7, k. Hence, for some @' € UC,
d

m
w = W(Zz%ku]k+u ZZa]kujk+u)

j=1k=1 j=1k=1

In particular, Z;l:l Yier(ajr —ajp)m(u;k) € 7(UY). Hence, a;x = ajy for all
1k by the proof of the last proposition. U

. Under the additional condition : kerm c U%. In this subsection,
we always assume that kerm ¢ UC. Let U = {u € U;n(u) € WE} and
W = WC, and G := G where G is the abelianization of G. First, we
show the following simple but important lemma.

Lemma 1.1. Suppose kerr c UC. If [g] = [h] € G®, then gu = hu for any
we U where [g],[h] € G are the representative of g,h € G respectively.

Proof. Tt is sufficient to show that ghu = hgu for any ¢,h € G and u € U.
For any u € (7', since m(u) € W&, gu —u € kerm and hu —u € kermw. Then,
since kerm ¢ U%, h(gu —u) = gu —u and g(hu —u) = hu — u and so hgu =
hu + gu —u = ghu. (]

Applying the above lemma, G acts on U and W as follows :
[9]u=gu, [glw=w
for u € U,w e W and [g] € G is the representative of g € G. Moreover,
7:U - W also defines a linear map and [g Jom = mo[g] holds. Since 7(U)¢ =
7(0)¢ = n(U)¢ and 7(UC) = n(UF) = 7(U%), we also have 7(U)C /x(US) =
7(0)¢/x(UC).
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Proposition 1.2. Assume that kerm ¢ U%, m := dimkerw € N and d :=
rank G. Then,
dim 7(U)¢/m(UY) < md.

Moreover, for a basis {u1,ua, ..., un} of ker 7 and a generating set {g, ga, . .., ga}
of the free part of G, if there exist ujy € U such that (g; —id)u; = &; jus
fori,j = dand k=1,...,m, then dim7(U)%/m(U%) = md holds. In

addition, for any w € W(U)G, there exists u € US and a sequence of real
numbers (a;x)j-1...dk=1...m Which does not depend on the choice of u;j but
depends on the basis {uy, ..., uy} and the generating set {g1, go, ..., ga} such
that

d m

:W(ZZa]ku]k+u

j=1k=1
Proof. Since w(U)¢[n(UC) = 7(U)%/x(U), we only work on U, W and
G. Let g € G be a torsion and n be its order. Then, for any u € U, since
gu—uekermcUC,

n q

—_— . nil/—’%
0=(gogo---og-id)u= Y gogo---og(gu—u)=n(gu—-u).
q=0
Hence, gu =u. Then, by letting G* be the free part of G, we have 7(U)¢ =
m(U) = n(U)¢" and 7(UY) = 7(U"). Now, we can apply Proposition 1.1
and Corollary 1.1 to U, W, 7 and G*. U

2. APPLICATION

In this section, we consider the application of the results in the last section
for some concrete settings.

The first example is one of the most typical settings where the linear
space of U and V are differential forms of a manifold.

Example 2.1. Let U and W be spaces of smooth O and 1-differential forms
on R4 U =CORY), W =CY(R?) and w: U — W be the differential operator

0
7:U->W, =(f)= Z;ag

Then, ker 7 is the set of constant functions and in particular kerm 2 R. Let
G =Z4 acting on R as

dx;.

g(x)=x+g zeRy ged.
The action of G to U and W are also naturally induced and satisfies gom =
mogq for any g € G. For this setting, it is easy to see that
kerm c UY.

Denote a constant function on R® by 1 and (€;)i1
of G=17% Then,

4 be the normal basis

.....

(e 1d)f] Z]



where f; : R® - R is the j-th coordinate function f;(x) = x;. Hence, by
Proposition 1.1, dim7(U)¢/x(U%) = d. Note that since H'(R%) = {0},
wem(U) is equivalent to dw =0, namely w e CY(RY) is exact if and only if
it is closed. Hence, we have
m(U)Y = {w e CY(T?); dw = 0}

and

m(UY) = {w e CH(T?);w = df, f € C°(T?)}.
In particular,

m(Yx(UY) = HY(RY/G) = H'(T?) 2 R%.
From Corollary 1.1, we have that if w € C1(R?) is closed (namely dw =0)

and invariant under the action of G, then there ewists ay,...,aq and f €
CO(R?) which is invariant under the actin of G such that

d
w = W(Z;aifz' +f).

In the next example, we apply the main result to the discrete geometry.
The computation is also important for the application to the configuration
space.

Example 2.2. Let X = (V,E) be a symmetric directed graph and
COX) = {f:V >R, CUX) = {w: B > Ryw(e) = -uw(@)}.
Define U =C%(X) and W =CYX) and let m:U - W be
m(f)(e) = f(te) - f(oe).

For this setting dimker 7 is equal to the number of connected components of
the graph X. Suppose X has m connected components and also a group G
acting on X, namely for each g € G, there is a graph automorphism of X,
which we also denote by g, and g(h(v)) = (gh)(v) for any g,h € G.

Proposition 2.1. Suppose G 2 Z?. Then, dim7(U)%/x(U%) < dm. More-
over, dimm(U)%/m(U%) = dm holds if and only if the action of G to the
graph X is free and closed in each connected component, namely for any
veV and ge G, v and g(v) are in a same connected component of X.

Proof. By Proposition 1.1, we have dim 7(U )% /7 (U%) < dm. Next, we study
when dim 7(U)%/7(U%) = dm holds. Denote the connected components of
X by { Xk = (Vi, Ek) }ko1,...m, namely V' = ||V}, E = || E} and for each F,
(Vk, E)) is a connected graph. Then, {1v; }5-1,.m is a basis of ker w. First,
suppose dim7(U)%/n(U%) = dm. Then, from Proposition 1.1, 1y, € U“
for all k, namely the action of G is closed in each connected component.
Moreover, there exists a set of functions f;j € C°(V') such that

(9: —id) fir = dij 1y,
where {g;};-1.. 4 is a generator of G. We prove that under this condition,
the action of G must be free. In fact, if it is not free, then there exists
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k, v eV, and g € G such that g = Zle b;g; where b; # 0 without loss of
generality and g(v) = v. Then,

d 4 /-1
Jie(g()) = fir(v) = 2, (fl,k((; bigi)(v)) - fl,k((; bigi)(v)))

I4

and
14 /-1 be—1 /-1
fl,k((; bigi)(v)) - fl,k((; bigi)(v)) = ; (9e - id)ka((; bigi +pge)(v))

be-1

1
=001 ) Ly (3 bigi + pge) (v)) = deaby
p=0 i=1

where in the last equation we use that g(v) € Vi for any g € G since 1y, € UC.
So, we conclude that

fie(g(v)) = fir(v) =b1#0

which contradicts with g(v) = v. Hence, the action of G must be free if
dim7(U)C/n(U) = dm.

Next, we prove the opposite direction. Suppose the action of G is free
and 1y, € U% for all k. Denote Vj := V/G and for each [v] € V), fix a
representative element vy € V. We also denote the set of these representative
elements by V, by an abuse of notation where V5 ¢ V. Then, for each
v € V, there exists unique vy € Vo and (by,bs,...by) € Z% such that v =
(X%, b:g:)(vg). Note that the uniqueness follows from the freeness of the
action. NOW, let fj,k(v) = bj]_vk(v) = bj]_vk(vo) for v = (Z;‘i:l blg,)(l)o) It is
easy to see that these functions satisfy

(9i —1d) fir = 0i1v; .
Hence, applying Proposition 1.1, if the action of G is free and closed in each
connected component, then dim 7 (U)¢ /7 (U%) = dm. O

From this proposition and Corollary 1.1, we conclude that if the action
of G is free and closed in each connected component, then for any w €
CUX), if w is closed and invariant under the action of G, there exists
{@ik}ior,.ak-1,. m and f e CO(X) which is invariant under the action of G
such that

d m
w=ﬂ(zzai,kfi,k+f)
i=1 k=1
where fi is the function constructed in the proof of Proposition 2.1.
For more general group G, we have the following result.

Proposition 2.2. Suppose the graph X is connected and d be the rank of
G®. Then, dim7(U)%/7(U%) < d. Moreover, dim7(U)/x(U%) = d holds
if and only if the action of G to the graph X is free.

Proof. For this case, m = 1 and the kernel of 7 is the set of constant func-

tions. Hence kerm ¢ U holds automatically and so by Proposition 1.2,
dim7(U)¢/m(UY) < d. Let {g1,9a,--.,94} be the generating set of the free



part of Gab. If dim7(U)¢/n(U%) = d, then dim7(U)¢" /x(UC") = d and so
there exists

(gi—id) fj = 0451y

where f; € U. Hence, by the same argument as the last proposition, we
conclude that the action of G must be free. The opposite direction is also
shown by a similar way. O

Finally, we give an application to the configuration space with interaction
structure, though we do not give a precise definition.

Example 2.3. Let (SX,®) be a configuration space with transition structure
associated to a triplet (X, S, ¢) where X is a locale, S is a set of states and
¢ is an interaction on S (see Section 2, [1]). Define U = C° .(SX) and W =
ZL (SX) and let m: U - W be the deferential O defined by the transition
structure (see Section 3, [1]). Then, Theorem 6 of [1] implies that under
the assumption of the theorem, 7(U) = W and dimker 7 = dim Consv®(S).
Moreover, from Theorem 3.7 of [1], the form of the kernel of m is explicitly
known, namely
kerm ={{x = Z £,;€ € Consv?(S)}.
reX

Now, we consider the case with a group action and apply our main result
to deduce Theorem 5 of [1] from Theorem 6 of [1]. First, note that for this
setting, the action of a group G on U and V' are induced from the action of
G on the locale, namely the underlying graph X. Because of this structure
and the explicit form os the kernel of 7, it is easy to see that kerm c UGS,
In fact, g€x = Ypex Egu = 2owex & Since g X — X is a bijection. Hence, we
can apply Proposition 1.2. Since the locale X is assumed to be connected, if
the action of G on X 1is free and the rank of G is d, choosing a generator
{91.92,-..,9a}, by the last example, there exists f;: X - R such that

(gi—1d) fj = dij1x
fori,j=1,2,...,d. Then, by the direct computation, for each§ € Consv?(S),
i = Zaex [i(2)& € U satisfies

(9:=id)fj = 3. fi(@)ege = 3 Fi(@)€a = 3 (f5() = fi(9:2))Egia

zreX xeX zreX

=- Z 0ij€gix = —0i€x-

zeX

Finally, since 71(U)¢ =W =C and 7(U%) = £, we obtain Theorem 5 of [1].
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