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WELL-POSEDNESS FOR THE ENERGY CRITICAL 
HARDY-SOBOLEV PARABOLIC EQUATION 

NOBORU CHIKAMI, MASAHIRO IKEDA, AND KOICHI TANIGUCHI 

1. INTRODUCTION 

This is a summary of the well-posedness results in our paper [3]. We study the 
Cauchy problem of the energy critical Hardy-Sobolev parabolic equation 

｛如—△u = |x|→|ul''hl-'u, (t, x) E (0, T) x記
u(O) = u。 (1.1) 

in spatial dimensions d 2". 3 with initial data u。inthe energy spaceか（配）， defined
by 

H国）＝｛fEL“（酎）， II!|加＝ （J只dI▽f(x)|2dx)ふく00},qe = d-d 2' 

where T > 0, 1 E [O, 2), and 2*(r) is the critical Hardy-Sobolev exponent, i.e., 

2*(r) := 
2(d-1) 
d-2. 

Here, at := a I at is the time derivative,▽ ：＝ （a;ax1,..., a;a叫 isthe vector dif-

ferential operator,△ ：＝ ~;=l的叩 is the Laplace operator on配， u=u(t,x)is 

an unknown complex-valued function on (0, T) x配， andu。=u0(x)is a prescribed 
complex-valued function on配． Thetotal energy (or simply energy) functional E勺

is defined by 

叫：＝信f|1加一
l r If (x) 12*(,) 

2*（1)JRd |x|T dx, f Eが（酎），

where the first and second terms correspond to the kinetic and potential energies, 
respectively. The energy of solution is (formally) dissipated: 

d 
面止(u(t))= -i即囮（t,x)l2 dx <::: 0. (1.2) 

Moreover, the equation (1.1), and the total energies, kinetic energies, and potential 
energies of its solutions are invariant under the scaling transformation u→ U入 for
入＞ 0,which is defined by 

叫 t,x)：＝入峠臼u（応，入x)＝汽u（店，入x).

Thus, the problem (1.1) is called energy critical, and the spaceか（配） （as well as 
Lqc（配）） isoften called a scaling critical space. We say that the problem is energy 
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subcritical (energy supercritical resp.) if the power p of the nonlinearity Ix|→|ulP-2u 
is strictly less than (strictly greater than resp.) the critical exponent 2* ('Y). The case 
'Y = 0 corresponds to a heat equation with a standard power-type nonlinearity, often 
called the Fujita equation, which has been extensively studied in various directions. 
In the case'Yi-0, the equation (1.1) i is not invariant under the translation with 
respect to space variables, owing to the existence of the space-dependent potential. 

Our interest is to study the problem on local well-posedness, i.e., existence of local 
in time solution, uniqueness, and continuous dependence on initial data, for (1.1). 
The problem has been studied in the space Lq圏） andthe space of continuous 
bounded functions on配 (see[1, 2, 8, 9]). In particular, Ben Slimene, Tayachi, and 
Weissler proved local well-posedness, except the uniqueness, for (1.1) in the scaling 
critical space L吋配） （see [l]). Recently, the unconditional uniqueness for (1.1) in 
C([O,T];Uc（配）） hasbeen proved by Tayachi [8], and local well-posedness has been 
studied in scaling critical Besov spaces by Chikami [2]. This paper is devoted to 
studying well-posedness for (1.1) and more general nonlinear heat equations in the 
energy framework. Similarly to these previous works, we can obtain the local well-
posedness in the energy spaceが（配）， buta more detailed argument is required to 
justify the energy identity (1.2). 

2. STATEMENT OF RESULTS 

Let n be a domain of配 whichcontains the origin O, and 80 denote the boundary 
of n. We consider the Dirichlet problem of more general nonlinear heat equation 

｛二三。::,~ F(x, u), (t, x) E (0, T) X !.l, 

u(O) = uo, 

(2.1) 

where T > 0 and F : 0 x <C→<C. We regard <C as the two-dimensional vector 
space配， andassume that F(x, •) Eび（記配） withF(x, 0) = 0 and 

IF(x, z1) -F(x,硲）I:'::'.Clx|→(lz1I +|硲|）2*(,)-2lz1-硲| （2.2) 

for almost everywhere x E O and any z1, z2 E <C. We write the problem (2.1) in the 
integral form 

u(t, x) = (i△nuo)(x) + 1i e(t-T)△n F(・, u(T, •))(x) dT (2.3) 

゜for any t E [O, T) and almost everywhere x E O, where { et△n h>o is the semigroup 
generated by the Dirichlet Laplacian —• n with domain 

D(—• o) ＝ ｛f E H加）：△fEL叩） inthe distribution sense}. 

The space C,『(0)is the set of all C00-functions on O having compact support in 
0, and the space HJ(O) is the completion of C,合(0)with respect to the Sobolev 
norm II・ IIH1(n). We discuss the local well-posedness, small-data global existence, and 
dissipation of global solutions for (2.1) in the scaling critical spaces L吋0),Hパふ）
皿 dが（ふ）． Here,the Dirichlet Laplacian —• n is a non-negative and self-adjoint 
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operator on L叩）， andH1（△ri) andか（△ri)are Sobolev spaces associated with 
—• ri and their norms are given by 

IIJIIH1(~n) := ll(I —• ri)½ JIIL2(fl) and IIJIIH1（△o) :=||（―△Q)］if||I;2(Q)9 

respectively, where I is the identity operator on £2(0). For these precise definitions, 
we re~er to Defini~ion 1.1 in [4]. Note thatが（ふ） ＝HJ(O), H尺△JRd)=が（配），
and H1（芸） ＝か（配） F..t<or convemence. we se t 

X = Uc(O),H1（ふ） orが（△ri).

To state our results, let us introduce some notations. 

Definition 2.1. Let T E (0, oo], q E [1, oo], and a E股． Thespace K,q,°'(T, 0) is 
defined by 

kこq,°'(T,0) := { u E ~'([O, T) x 0) ; llullK〉1心 (T',fl)< oo for any T'E (0, T)} 

endowed with 

llu||正 (T,n):= sup t叡嘉一i)＋a||u||い (rl)'
tE[O,T] 

where恢 ([O,T) x 0) is the space of distributions on [O, T) x 0. We simply write 
炉 (T,0) = J(q,0(T, 0) when a = 0, and炉呵0)= J(q,°'(oo, 0) and炉 (0)= 
炉 (oo,0) when T = oo if they do not cause a confusion. 

Hereafter, we assume that q E (1, oo) satisfies 

1 2 1 1 
<.=. < -=- if X = Lqc(O 

qc d(2*(,) -1), q, qc (）， (2.4) 

and 1 1 1 1 

qc d(2*("!) -1), q, qc 
-- < -< - ifX ＝が（ふ） orが（△n). (2.5) 

Let us give the notion of a mild solution. 

．． 
Definition 2.2. Let T E (0, oo] and u。EX. A function u : [O, T) x配→ C 
is called an X -mild solution to (2.1) with initial data u(O) = u。ifit satisfies 
u E C([O, T); X) nい(T,Q) and the integral equation (2.3) for any t E [O, T) and 
almost everywhere x €記． The time T is said to be the maximal existence time, 
which is denoted by Tmax = Tmax位0),if the solution cannot be extended beyond 
[O, T). More precisely, 

Tmax(uo) :=sup~ T > 0; 
{ There exists a unique solution u to (2.1) 

in C(［0,T]；X) n炉 (T9)withinitial data u。}. (2.6) 

We say that u is global in time if Tmax = +oo and that u blows up in finite time 
otherwise. 

Then we have the following: 

Theorem 2.3. Let d ~ 3 and O :S 1 < 2. Then the following statements hold: 
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(i) (Existence) For any u。EX, there exists a maximal existence time T max = 
Tmax位0)E (0, oo] such that there exists a unique mild solution 

u E C([O, Tmax); X) n炉 (Tmax,0) 

to (2.1) with u(O) = u0. 
(ii) (Uniqueness in炉 (T,0)) Let T > 0. If u1墨 2E炉 (T,0) satisfy the integral 

equation (2.3) with附（0)=匹(0)= u0, then附＝四 on[O,T]. 
(iii) (Continuous dependence on initial data) The map Tmax : X →(0, oo] is 

lower semicontinuous. Furthermore, for any u0, v0 E X and for any T < 
min { T max (Uo), T max (Vo)}, there exists a constant C > 0, depending on Uo, 
v0 and T, such that 

sup llu(t) -v(t)llx + llu -vii/(,q(T,n) ::; Clluo -vollx-
tE[D,T] 

(iv) (Blow-up criterion) If Tmaxく＋oo,then llull/(,q(Tmax,fi) = CX), 
(v) (Small-data global existence and dissipation) There exists p > 0 such that if 

uo E X satisfies 

llet△OUo||K叩）::;P, 

then T max = +oo and 

llulk叩）::;2p and)irn llu(t)llx = 0. 
t→00 

(vi) The following statements are equivalent: 

(a) Tm訟 =+ooand llulk叩）く 00.

(b) limt→Truax llu(t)llx = 0. 
d r 1 1 

(c) limt→Tmax tが元―illlu(t)IIL叩） ＝0. 

(vii) Let d = 3 and X = H刊知） orが（ふ）． Suppose additionally that q 

satisfies 
1 1 1 
元―~ < ~'(2.7) 

and that F satisfies 

向F(x,z)I :::::: Clx| —'Ylz12•(-y)-2 (2.8) 

for almost everywhere x E O and any z E (C. Then, for any u0 E X, there 
exists a maximal existence time Tmax = Tmax(u0) E (0, oo] such that there 
exists a unique mild solution 

u E C([O, Tmax); X) n炉 (Tmax,0) and 如 EK3'1(Tmax, 0) 

to (2.1) with u(O) = u0. Furthermore, the solution u satisfies 

如 EK2'1(Tmax, 0). 

The statements (i)-(vi) are known, but the last statement (vii) is a new ingredient, 

which is utilized to justify the energy identity in Theorem 2.6 below. The proof is 
given in Section 3. 
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Remark 2.4. The statement (vii) in Theorem 2.3 implies that the maximal exis-
tence time is written as 

There exists a unique solution u to (2.1) 

Tmax(Uo) ＝ Sup{T> 0，しnlt口［二i]二。q(T,0)and如 E豆 (T,!.l)}

Remark 2.5. It is generally impossible to obtain classical solutions for (1.1). How-
ever, mild solutions u to (1.1) given in Theorem 2.3 are continuous and bounded on 
配 foreach t E (0, Tmax), and belong to 

uEC心:;((O,Tmax) X（艮d¥{O}))nC怠；°'((O,Tmax) X Rd) 

for a E (0, 2-1) by the regularity theory for parabolic equations. Here, Cは9(Ix配）
is the space of functions that are locally Holder continuous with exponent a 2: 0 in 
t E I and exponent(32: 0 in XE配 foran interval IC (0, oo). See Remark 1.1 and 
Proposition 3.2 in [1] (see also the remark after Definition 2.1 in [9] on page 563). 

Moreover, we introduce the energy functional E-y,n : HJ(O)→股 associatedwith 
(2.1) with nonlinearity F(x, u) = Ix|―'Ylul2*C'Yl-2u as follows: 

1 
Em(¢)：=-||¢||2 

l { 1¢(x)l2*('Y) 

2 か (!1)―2*（1)Jo|x|7 dx. 

The energy identity (1.2) plays a crucial role in studying (2.1) in the energy frame-

work, and is formally obtained by multiplying the equation (1.1) by OtU and inte-
grating it over配． However,the validity of (1.2) is non trivial. We have the result 
on the validity. 

Theorem 2.6. Let u。Eか（△n)and t。E(0, Tmax). Then, the mild solution u to 
(1.1) with u(O) = u0 satisfies the energy identity 

E-y,n(u(t)) + int 1如 (T,x)l2 dxdT = E-y,n(u(t0)) (2.9) 
to JD 

for any t E [t。,Tmax). Furthermore, the energy inequality 
E-y,n(u(t)) :S E-y,n(uo) (2.10) 

holds for any t E [O, Tm訟）．

The proof is given in Section 4. 

3. PROOF OF THEOREM 2.3 

3.1. Key estimates. To prove Theorem 2.3, let us prepare some estimates for 
{ et△n h>□. We recall the linear estimates with weights in the case O =配（see
Proposition 2.1 in [l]). By combining these linear estimates with the pointwise 
estimates for the integral kernel伽 (t,x, y) of et△Q : 

〇こ伽(t,x, y) :S (4冠）―~ exp (-~), t > 0, a.e.x,y E 0 (3.1) 

(see, e.g., Ouhabaz [7]), we have smoothing and decay estimates for { et△°}t>0. 
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Lemma 3.1 (Lemma A.4 in [3]). Let d ~ 1, 0 <'Y < d and s ~ 0. Then, the 
following statements hold: 

(i) For any 1 ::; p1 ::; p2 ::; oo, there exists C > 0 such that 

||（ー△叫et△rlJIILP2(f!)::; Ct―几（古一ん）―；||JIILPl(f!)

for any t > 0 and f E £P1(rl). 
(ii) Suppose 

O< 
1 _'Y, 1 _ -<—+ -<1. 
P2 -d, Pl 

Then, there exists C > 0 such that 

||（一△叫et△n(I.|―1 f) I I £P2 (0) ::; Ct―]（古—古）ーデ II f 11£Pl (0) 

for any t > 0 and f E LP1(0). 

Based on this lemma, we have the following: 

Lemma 3.2 (Lemma A.5 in [3]). Let d ~ 3, 0さ"(<2, and T > 0. Then, the 
following statements hold: 

(i) Assume q satisfies (2.4). Then, there exists a positive constant C1 depending 
only on d,'Y and q such that 

1t e(t-T)△0{F(・, u(T)) -F(・, v(T))} dT 
0 /Cq(T,O)nL00([0,T];L叫））

ご： C1max{llull,'(ヌ(T,n),llvll/Cq(T,n)}2*(,l-2llu -vii/Cq(T,O) 

holds for any u, v E炉 (T,0).

(ii) Assume q satisfies (2.5). Then, there exists a positive constant C2 depending 
only on d, "(and q such that 

1t e(t-T)△0{F(・, u(T)) -F(・, v(T))} dT 
o 貶（［O,T];か(-知））n炉 (T,O)

さ;C2 max{llulkq(T,O), llvll,'(頂(T,n)}2*(,)-2llu-vii,'(頂(T,O)

holds for any u, v E炉 (T,0).
(iii) Assume q satisfies (2.4) and 

1 4-d 1 
<-

Qc 2d(2*("/) -2) -q' 
(3.2) 

and F satisfies the additional assumption (2.8). Then, there exists a positive 

constant C3 depending only on d, "(and q such that 

8t l 凶—T)△11F(・, u(T)) dT||炉 (T,n)n炉 (T,n)

'.S C3 (lluoll~二勾＋ llull磨訊―;~IIBtull/(,d,l(T,i1))
(3.3) 

holds for any u0 E Lqc (D) and for any u E Kq(T, D) satisfying the integral 
equation (2.3) and OtU E K,d・1(T, D). 
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Remark 3.3. Note that the statement (iii) in Lemma 3.2 holds only if d = 3, as it 
is possible to take q satisfying both (2.4) and (3.2) only if d = 3. This statement 
(iii) is a key tool in the proof of (vii) in Theorem 2.3, and (3.2) yields the additional 
assumption (2.7) of (vii) in Theorem 2.3. 

3.2. Proof of Theorem 2.3. The proofs of (i)-(vi) are obtained by combining 
Lemma 3.2 and the standard fixed-point argument (see [1] and also [3]). So, we may 

omit the proofs. We give only a sketch of proof of (vii) when X =か（ふ）． Take
p > 0 and M > 0 such that 

p + C1Mがh)-1さM and max{C心｝Mが（T）-2< 
1 

-2' (3.4) 

where C1 and C3 are the same constants as those in (i) and (iii) of Lemma 3.2, 

respectively. Let A > 0. Suppose that u。Eか（△n)and T > 0 satisfy 

lluolliI叫）::=;A and llet△0uolkq(T,n):S:: p. (3.5) 

Define the map虹。 by
t 

虹 [u](t):= i△°uo +J e(t-T)△°F(x,u(T))dT 

゜for t E [O, T]. Given B > 0, we define 

Y := { u ; llulkq(T,n)さM,||8tu||K3,1(T,0)さB},

equipped with the metric d(u,v) := llu -vlkq(T,S1)・ Then, (Y,d) is a complete 
metric space. By (i) in Lemma 3.2, (3.4) and (3.5), we have 

腫叫u]lkq(T,S1) :S:: Iii△0uolb(T,S1) + C1llull 定虚，｀~ :S:: p + C1M2*hl-1 :S:: M 

for any u E Y, and 

||《u0[u]-<凡。[v]llx刃(T,S1)さ;C1 max{llullx頂(T,n),llv||い(T,n)}2*hl-2llu-vlkq(T,n) 

さC1M2*hl-2llu-vlkq(T,n) 

< ！| 
―2 

lu -vlkq(T,n) 

for any u, v E Y. On the other hand, by (iii) in Lemma 3.2, (3.4), and (3.5), we 
estimate 

11aふ。[ullkい (T,n):S:: ll8tet△0uolka,1(r,n) + C3(lluoll~:~雷＋ llu|応虚，；~ll8tU||正(T,n))

:S:: C4(lluo||が（△n)+ lluol |2*（T)-1 
か（△o))+口||ul

:S:: C4(A + A2*hl-1)＋凸M2*('Y)-2B

B B 
<—+- ＝B - 2. 2 

|2*（T)-2 
訊 T,0)||8tu||K,d,l(T,S1) 

for any u E Y, where we take B = 2C4(A + A2*('Y)-l). S . Summarizing the estimates 
obtained so far, we see that虹。 iscontractive from Y into itself. Therefore, Ba— 

nach's fixed-point theorem allows us to prove that there exists a function u E Y 
such that u = <I》u0[u]. Finally, it follows from (ii) and (iii) in Lemma 3.2 that 
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u E C([O,T)；が（ふ）） and如 E 1(2,l(T,切． Theproof of Theorem 2.3 is fin-
ished. ロ

4. PROOF OF THEOREM 2.6 

In this section, we give a sketch of proof of Theorem 2.6. Let u0 E か（△n)
and u be a mild solution to (2.1) with u(O) = u0. To prove the validity of (2.9), 
we need to know the integrability of 8tu,△砂， andIx|→|ul2*(,l-2u. To begin 
with, we check the integrability of the nonlinear term. Let 01 := 0 n { x I < 1} 
and切：＝ 0n {lxl 2 l}. It is easily seen from the argument of proof of (i) of 
Proposition 3.2 in [1] that 

u(t) E £00(0) for any t E (0, Tmax), 

which implies that 

Ix|→|ul2*(,l-2u E L裟((0,Tmax); £<Yl (01)) (4.1) 

for any 1 :S (]"1 < dh. Since u E £00(0, T; L臼0)),Holder's inequality implies 

Ix|―'lul2*hl-2u E £00((0, T); L呵切）） （4.2) 

for anyび2> 2d/(d + 2). Let us divide the proof into two cases: 
(a) d 2 4 or d = 3 and O :S ry < 3/2; 
(b) d = 3 and 3 / 2 :S ryく 2.

Case (a): Let to E (0, Tmax). Then, we have u(to) Eが（ふ） byTheorem 2.3, and 

Ix|―ぅ'lul2*(,l-2uE Lf0c([t。,Tmax);£2(0)) (4.3) 

by (4.1) and (4.2) provided that d 2 4 or d = 3 and O :S ry < 3/2. Hence, we 
can apply the maximal regularity for parabolic equations (see Theorem 1.4 in [5]) 
to obtain 

如，△nuE Lf.。c([to,Tmax); L叩））．（4.4)

Then, (4.3) and (4.4) ensure the energy identity (2.9) for any t E [t。,Tmax)-
Case (b): It follows from (vii) in Theorem 2.3 and (4.2) that 

如，△u,Ix|→|u|2*（1)-2U E Lに((0,Tmax);び（切））．

(1.1) by Hence, multiplying the equation (1.1 如 andintegrating it over [t。,t]X切 are
justified. On the other hand, we see from (vii) in Theorem 2.3 and (4.1) that 

8tu E Lf.。c((O,Tmax); 1ン3(02))C Liし((0,Tmax); £2(02)), 

Ix|→|u|2*（1)-2U E Lf。c((O,Tmax); L~ ⑫)）． 
Then, we also have 

△u E Lf.。c((O,Tmax); L凰）），
as u satisfies the differential equation (1.1) by Remark 2.5. Hence, multiplying (1.1) 

by如 andintegrating it over [t。,t]x 02 are also justified. The above argument 
ensures the energy identity (2.9) for any t E [t。,Tmax),

Finally, it follows from (2.9) that 

E叫位(t))さE-y,n(u(t0)) (4.5) 
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for any t。E(O,Tmax), Since the energy E,,n(u(t)) is continuous int E [O,Tmax), 
we have 

E叫 (u(t))~い(uo)

by taking the limit of (4.5) as t。→ 0.Thus, we conclude Proposition 2.6. ロ

Remark 4.1. The proof of case (a) cannot be applied to the case (b) as the nonlinear 
term does not necessarily satisfy (4.3) in the case (b). For example, we consider the 
case n =配． Then,the ground state W, (i.e, the minimal energy non trivial 
solution to the corresponding stationary problem) given by 

d-2 

W,(x) := ((d -1)(d -2))2心―-~ (1 + lxl2-')―戸 (4.6)

(see [6]), which is also a mild solution to (1.1), does not satisfy (4.3), as 

△W,= Ix|―'W;°(,)-1 E L2（配） ifand only if dミ4or d = 3 and O ~'Y < 3/2. 

In contrast, we can perform the argument in the proof of case (b) only if d = 3, as 
it relies on (vii) in Theorem 2.3 (see Remark 3.3). 
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