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1. INTRODUCTION 

Borel's normal number theorem states that for Lebesgue almost every real number 
the limiting frequency of each digit of its decimal expansion is 1/10. On the other hand, 
there exist plenty of real numbers with other limiting frequencies. In the 1930s and 1940s, 
Besicovitch [3] and Eggleston [4] have investigated these exceptional sets of numbers in 
terms of their Hausdorff dimension. Eggleston showed that for any a = (a。,.．．，ag)E 

(0, 1)9 such that ~し。位＝ 1 the set 

E(a)={x=O.x江 2..・ E [O, 1] I ;悶良{1:::;i:::; n Iふ =k}= ltk さ゚ k::;9} 

has Hausdorff dimension 

(1.1) 
—こk=0 位 log(a砂

， 
dimHE(a) = 

log 10 

Note that the Hausdorff dimension coincides with the dimension dim(μ) of the Bernoulli 
measureμ on decimal expansions of real numbers O.x1x2... such that μ(｛ふ＝ k})=ak.
Here, dim(μ) = h(μ)/x(μ) is the quotient of the Kolmogorov-Sinai entropy h(μ) and 
the Lyapunov exponent x(μ) = J log|『|dμ of the measure-preserving transformation f : 
[O, 1]→[O, 1], f(x) = lOx mod 1 with respect toμ. 
The above formula (1.1) is a special case of a variational description of the Hausdorff 

dimension of Birkhoff spectra in terms of invariant probability measures. In this article we 
outline a generalization of this formalism for mixed Birkhoff spectra of countably many 
observables in the context of non-uniformly expanding one-dimensional Markov maps. As 
an application, we discuss the arithmetic mean spectrum and digit frequencies of backward 
continued fraction expansions of real numbers. A more detailed exposition of our results, 
together with their proofs, will appear elsewhere [11]. For related recent results we refer 
to [12], [5] and the references therein. For a general introduction to dimension theory in 
dynamical systems and multifractal analysis we refer to [16]. 

2. STATEMENT OF MAIN RESULTS 

Aひ Markovmap f:△ → ［0, 1] is given by a countable family｛△ふESof connected 
subsets of [O, 1] with pairwise disjoint interiors such that△ =UaES△a and f|△" extends 

to a C1 diffeomorphism la from瓦 ontoits image, for each a E S. Moreover, f has the 
Markov property, i.e., if a, b E Sand f△anふ hasnon-empty interior, then f△aっふ
We note that, in the case f(x) = lOx mod 1 the Markov partition is given by the first 
digit of the decimal expansion, and each branch off is full. 

Throughout, we will assume a strong transitivity assumption on f called finitely irre-
ducibility [14] which is well known for Markov maps with countably many branches. 
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A C1 Markov map f :△ → ［0, 1] is non-uniformly expanding if 11'知(x)I> 1 for all but 
finitely many (a, x) ES x [O, 1] with x E ~a-

We say that f has uniform decay of cylinders if the length of any interval nJ二tf-j△吟，
with w。..．Wn-1ES叫tendsto zero uniformly as n→oo. We assume that the maximal 
invariant set 

00 

J= n戸△
n=O 

is non-empty. Denote by M(f) the set of f-invariant Borel probability measures on J 
with x(μ) < oo. We say that f is saturated if 

di叩 J= sup{ dim(μ) : μ E M(f)}. 

The finiteness parameter of f is denoted by 

(300 = inf {(3 €政 :sup{h(µ) -(3x(μ): μ E M(f)} < oo}. 

We introduce the class F of observables q>:△ →股 admittinga mild distortion bound 
(see [11, Section 3.3] for the details). We say f has mild distortion if log lf'I E F. For 
¢ =（¢りkENE戸 anda=（位）ENE酌 wedefine 

B(cp,a) = { x E J: J三苫如）＝ak ¥/k ~ 1} 
Theorem 2.1 (Conditional variational formula for mixed Birkhoff spectra). Let f:△ → 
[O, 1] be a finitely irreducible non-uniformly expanding Markov map which has mild distor-
tion and uniform decay of cylinders. Further, assume that f is saturated. Then for every 
c/JE戸 anda E□such that B(cp, a)ナ0we have 

dimH B(cp, a)＝｝＼叫四sup{dim(μ): μ E M(f), If ¢Jdμ 一巧くげ］さ k}.

If moreover each <Pi is bounded, then dimH B(</J, a) ~(3oo• 

By a frequency vector we mean an element a E炉 suchthat ai ~ 0 holds for every i ~ 1 

and~ご1 ai ~ 1. For each frequency vector a we introduce the Besicovitch-Eggleston set 

BE(a)={xEJ:J嗅 ¾#{0 ~ j ~ n -1: f畑 E△,｝ ＝ai Vi~ 1} 
Corollary 2.2 (Dimension of Besicovitch-Eggleston sets). Under the assumptions of The-
orem 2.1 we have for each frequency vector a E酎 suchthat BE(a) #-0, 

dimHBE(a)＝昌四sup{dim(μ): μ E M(J)，悶悶 P（山—叫< €} 2 (3oo・ 

3. APPLICATION TO BACKWARD CONTINUED FRACTIONS 

Recall that each irrational number x E (0, 1) ¥ (Ql has a unique Backward Continued 
Fraction (BCF) expansion 

(3.1) x=l-

b1(x) -

1 

1 

1 
b2(x) ---=--

， 
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where each digit bj(x) is an integer greater than or equal to 2. The behavior of the 
arithmetic mean of the BCF digits is peculiar. Aaronson [1] proved that the arithmetic 
mean convergences to 3 in measure as n→oo. Aaronson and Nakada [2] proved that 

1 
liminfー区も(x)= 2 and limsup ~ f)j(x) = oo 
n→oo n n→oo n j=1 j=1 

for Lebesgue a.e. x E (0, 1) ¥ (Ql. 
The digits in this expansion are generated by iterating the Renyi map [17] 

R: x E [O, 1)→ 1 -l l j E[0, 1)． 
l-x 11-x 

This means that for all x E (0, 1) ¥ (Ql, 

叫＝し＿；J-1xj +1 Vj 21. 

The graph of the Renyi map can be obtained from that of the Gauss map by reflecting 
the latter in the line x = 1/2. For this reason, (3.1) is called the Backward Continued 
Fraction expansion of the irrational number x. It is not difficult to verify that the Renyi 
map is a fully branched non-uniformly expanding Markov map having x = 0 as a unique 
parabolic fixed point. 

To prove that R;_ is saturated, we consider the induced C1 Markov map R: (1/2, 1)→ 
(1/2, 1) given by R(x) = Rn(xl(x), where n(x) = inf{n 2: 1 I J初(x)E (1/2, 1)} denotes (1/2, 1)} 
the first return time to (1/2, 1). One then verifies that R is uniformly expanding, that is, 

inf戊’|＞1 and that R satisfies Renyi's condition. It is then standard to verify that R is 
saturated. Finally, invoking the Kac-formula, we obtain that R is saturated. 

Combining Theorem 2.1 with direct computations, we are able to establish the following. 

Proposition 3.1 (Completely flat arithmetic mean spectrum of BCF expansion). For 
any a E [2, oo] we have 

dimH {X E(O,1) ＼Q: lim ] 
n→oon 

(b1(x)+・・・ 十似(x))=a}=l.

We conjecture the following dichotomy for the complete flatness of the spectrum. 

Conjecture. Let心： ｛2,3,...}→罠． Thenwe have 

dimH {X E(O,1) ¥Q: hm -
. 1 

n→oon 
（心(b1(x))＋・・・＋鴫(x)))=a}= 1 

for all a E［ゆ（2),oo] if and only if lim supn→00ゆ(n)/log(n)= oo. 

We also discuss the Besicovitch-Eggleston sets for the BCF expansions. For the Renyi 
map we have for any frequency vector a of酌，

BE(a)={xE(0,1)\Q:;児 ~#{1 ::; jさn も(x)= i} = ai-1 Vi~ 2} 

Note that, for the Renyi map as well as the Gauss map, the finiteness parameter/300 is 
equal to 1/2. The following theorem is then a consequence of Corollary 2.2. 
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Proposition 3.2 (Dimension of Besicovitch-Eggleston sets). For every frequency vector 
a we have 

di叩 BE(a)＝ limlimmax{sup{dim(μ)： μ E M(R)，max 1 
K→oo c→0 1<i<k 

Iμは）ー叫<€}, 5}. 
4. DISCUSSION OF MAIN THEOREM AND RELATED RESULTS 

Recently, conditional variational formulas have been presented in [5] for mixed Birkhoff 
spectra assuming that the Markov map is uniformly expanding and full-branched. For 
finitely generated parabolic iterated function systems, similar formulas have been estab-
lished in [12]. Our framework of non-uniformly expanding Markov maps contains both 
these settings, and moreover, allows us to deal with infinitely branched Markov maps with 
parabolic fixed points. Such an example is given by the Renyi map. 

Let us point out that infinitely branched Markov maps with parabolic fixed points may 
behave rather different from finitely branched ones. Namely, the set of points with zero 
Lyapunov exponent 

1 
L(O) := { X E J I li肛悶冒log|『＇（x)I= o} 

may intersect many level sets of the Birkhofflevel sets B(cp,a). In fact, Proposition 3.1 
may be strengthened as follows: For every a：：：：： 2 we h蜘

dimH (L(O) n {XE (0, 1) ¥ Q: 1~ 1 :J哭；仇(x)+.・・十似(x))=a})=l.

This indicates that a careful analysis of the set L(O) is necessary. 
On the other hand, for finitely branched Markov maps with one parabolic fixed point, 

the set L(O) has non-empty intersection with only one of the Birkhoff level sets. 
Let us finally comment on the two limits E→0 and k→oo in Theorem 2.1. It is shown 

in [5] (see also [6]) that, for uniformly expanding Markov maps, if the potentials屯 are
bounded, Theorem 2.1 can be stated as follows: 

(4.1) dimH B(cp, a)= max { sup {dim(μ):μ E M(f), J cpidμ = °'i Vj}心｝．
We remark that, in contrast to the uniformly expanding setting, the formula in (4.1) may 
fail for non-uniformly expanding Markov maps, even if the number of branches is finite. 
An example is given by the Lyapunov spectrum of a finitely generated non-elementary, 
free Fuchsian group with parabolic elements. 
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