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Optimal control of the SIR epidemic model 
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Graduate School of Informatics, Kyoto University 

1 Introduction 

We consider the three-dimensional dynamical system 

S = -rSl, j = rSl -al, R = al, (1.1) 

where the variables S, I, R are nonnegative, and r, a > 0 are constants. Equation (1.1) 
is well-known as a basic model for spread of epidemic diseases and often called the SIR 

model. Here the state variables S, I and R represent the numbers of susceptible, infected 
and removed individuals, respectively, while a and r represent the infection and removal 

rate, respectively. We easily see that N := S +I+ R is constant. See, e.g., Section 10.2 
of [5] for more details on the model (1.1). The dynamics of (1.1) are essentially described 
by the two-dimensional system 

S = -rSI, j = rSI -al, (1.2) 

which is also referred to as the SIR model. We easily see that for any c ~ 0, (S, I)= (c, 0) 
is an equilibrium in (1.2) and it is stable (but not asymptotically stable) or unstable, 
depending on whether c < a/r or c > a/r. So we may expect that certain control 
techniques enable trajectories in (1.2) to converge to such an equilibrium as c > a/r, i.e., 
the number of infected individuals to decrease quickly before a critical situation occurs. 

In this article, we apply optimal control [4, 6] to (1.2) as 

S = -(r一附(t))SI, j = (r一附(t))SI-alー匹(t), (1.3) 

such that limt→00 S(t) = c with c > a/r at least and the cost functional 

J = J00 (K山 (t)2+ k叩 (t)2)dt (1.4) 

゜is minimized, where kj > 0, j = 1, 2, are constants. Here the control inputs uぃ匹 work
so that the effective infection rate is decreased and infected individuals are removed. In 

a real issue of epidemic spread, for instance, the former can be done by decreasing the 

individuals'contact and the latter by finding infected individuals and isolating them im-

mediately. The minimization of the cost functional (1.4) implies that social and economic 
burdens are reduced as much as possible. We choose such a special form of control inputs 
but our approach is generally valid for the other forms of control inputs, and probably 

even for different epidemic models. To obtain the optimal control inputs u1(t) and u2(t), 

we use the invariant manifold theory from dynamical systems theory. We demonstrate 
the usefulness of our approach for the optimal control in the SIR model (1.1) or (1.2) in 
numerical computations. Our study suggests how we can decrease the number of infected 

individuals quickly before a critical situation occurs while keeping social and economic 

burdens small. See [8] for more details on the results. 

This work was partially supported by the JSPS KAKENHI Grant Number JPl 7H02859. 
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2 Optimal Control Based on Dynamical Systems Theory 

We consider the general optimal control problem for systems of the form 

允＝ f(x)+ g(x)u(t), (x, u) E酎 x股m, (2.1) 

where x and u, respectively, represent the state and control input vectors, f :町→町
and g:町→恥nxmare er (r ~ 2) and f（叩） ＝0, i.e. •「b ・X=四 isan equilibrium in (2.1) 
with u = 0. Here we take the equilibrium x = xd as the target and determine the control 

input u such that the cost functional 
00 

J(x0, u) = 1=  (q(x(t)) +〈u(t),K(x)u(t)〉）dt (2.2) 

゜is minimized when x(O) = x0 and limt→00 x(t) ＝叩， where 〈•, ・〉 representsthe inner 
product in艮m(or町 below);q:民→股 andK:町→町mxmare cr+1; q(x) ~ 0 with 
q(xd) = O; and K(x) is positive definite and symmetric in股匹 Notethat Dq(xd) = 0. 

We suppose that such a minimum exists and set 

V(xo) = min{ J(xo, u) I u E C((O, oo) ，町門， li~x(t) = xd}, 
t→OO ｝ 

which is called the value function. From the standard theory of optimal control [4, 6] we 

see that V(x) satisfies the Hamilton-Jacobi-Bellman (HJB) equation 

H(x, DV(x)) =〈DV(x),f(x)〉一ら〈DV(x),G(x)DV(x)〉＋q(x)=O (2.3) 

and the optimal control input is given by 

U=吋K(x)-1g(x汀DV(x),

where G(x) = ½g(x)K(x)-1g(x)T. In particular, V(xd) = 0 and g(xd)DV(xd) = 0. 
We now consider the Hamiltonian system 

出＝f（叫ー G(x)p,

p = -(Df(x)lP +ら（Dx(p,G(x)p〉)T-Dq(x? 
with the Hamiltonian 

H(x,p) =〈p,f(x)〉一ら〈p,G(x)p〉+q(x)

(2.4) 

(2.5) 

(2.6) 

(cf. Eq. (2.3)). Using the Hamilton-Jacobi theory (e.g., Section 46D of [1]), we show that 
any solution (x(t),p(t)) to (2.5) with limt→00(x(t),p(t)) = (xct, 0) satisfies p(t) = DV(x(t)). 
Equation (2.5) has an equilibrium at (x,p) = (xct, 0), at which the Jacobian matrix 
becomes 

A=（町（四）ーG（立））
0 -DJ（叩）T ．

Noting that H(x<l, 0) = 0 by q（口＝ 0,we see that if a trajectory (x(t),p(t)) converges 
to（叩，0)as t→oo, then by (2.4) the optimal control input u(t) is given by 

u(t)＝サK(x)―1g(x?p(t). (2.7) 

If DJ（叩） hasan eigenvalue with a positive real part, then A has an eigenvalue with a 
negative real part, so that the equilibrium (x,p) =（四，0)in (2.5) has a stable manifold 
[3, 7]. So we compute such a trajectory (x(t),p(t)) as it converges to (x<l, 0) as t→ OO 
and obtain the optimal control input u(t) from (2.7). 
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3 Application to the controlled SIR model (1.3) 

We apply the theory of Section 2 to the controlled SIR model (1.3). The Hamiltonian 
(2.6) becomes 

s勺2 2 p2 
H(S, I,p) = -rSI防＋ （rS -a)Ip2 -=.i-(P1 -P2)~ -+f-. (3.1) 

4k1 4k2. 

So we consider the Hamiltonian system 

空J2
S = -rSI - -

2k1 
(P1 -P2), 

炉J2 炉J2 1 
j = (rS -a)I + ~P1 -(~十函）加，

SI2 
P1 = rlp1 -rI四＋ （Pl -P2)叫

2k1 
S勺

2k1 
（ か＝rSp1-(rS -a)p2 + ~(P1 -P2)~, 

which corresponds to (2.5). 
We easily see that for any c ~ 0 

(S,I,p1，四） ＝ （c,0,0,0) 

(3.2) 

(3.3) 

is an equilibrium in (3.2). The Jacobian matrix of the right-hand-side of (3.2) at the 
equilibrium (3.3) is given by 

A = ([>:Ca]C ，
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）
 
a
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c
 

0
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0

 

1

r

 ＇ー、

(3.4) 

for which入＝土(re-a) are simple eigenvalues and入＝ 0is a double eigenvalue. Hence, 
the equilibrium (3.3) has a two-dimensional center manifold we and one-dimensional 
stable and unstable manifolds, W" and W叫ifCヂa/r.
These equilibria construct a one-dimensional invariant manifold 

{(S,J,p1,P2) = (c,0,0,0) I c > a/r} (3.5) 

in the four-dimensional phase space. Especially, the invariant manifold has two-dimensional 
stable, unstable and center manifolds. Using the computer software AUTO [2], we compute 
the stable manifold to apply the approach of Section 2. From (2. 7) we obtain the optimal 
control input as 

S(t)I(t) 
附 (t)= ~(P2(t) -P1(t)），四(t)= 

四(t)

2k1 2k2 9 
(3.6) 

where (S(t), I(t),p1(t),p2(t)) is a trajectory on the computed two-dimensional stable man-
ifold of the invariant manifold (3.5). For a wide range of an initial condition (S。,I0)of 
(S, I), the control input (3.6) can make the corresponding trajectory in (1.3) converge to 
an equilibrium (S, I) = (c, 0) for some c > a/r although the value of c depends on the 
initial condition. 
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Figure 1. Projection of the stable manifold W8 onto the (S, /)-plane in case (i) for 
(a, r) = (0.4, 1). The stable manifold is plotted as the blue and red lines for c = 0.8 and 
0.95, respectively, and the corresponding stable subspace is plotted as the dashed lines with the 
same colors. The bullets'•'represent the loci of equilibria, and the black dashed lines represent 
the relations S +I= I, S = 0.9 and S = 0.98. 
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Figure 2. Controlled trajectory with S。=0.9converging to (S, I) = (0.8, 0) in (1.3) for 
(a,r) = (0.4,1): (a) S; (b) I; (c) k1u1; (d) u2. These components are plotted as black, red 
and blue lines for cases (i), (ii) and (iii), respectively. The value of J,。isapproximately 0.0482 
but slightly different in the three cases. 

4
 
Numerical Examples 

We set N = 1, a = 0.4 and r = 1. Especially, S + I ::; 1. Without control, the equilibrium 
point (S, I) = (c, 0) is stable if c < 0.4 and it is unstable if c > 0.4 in (1.2). Moreover, the 
variable J increases at least till the variable S decreases to 0.4. We consider the following 

three cases for the parameters k1, k2 in the cost functional (1.4): 

(i) (k1, k2) = (1, 1); (ii) (0.1, l); (iii) (1, 0.1). 
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Figure 3. Controlled trajectory with S。=0.98converging to (S, I) = (0.95, 0) in (1.3) for 
(a, r) = (0.4, 1): (a) S; (b) I; (c) k1u1; (d) u2. These components are plotted as black, red and 
blue lines for cases (i), (ii) and (iii), respectively. The value of J,。isapproximately 0.0171 but 
slightly different in the three cases. 
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Figure 4. Uncontrolled and controlled trajectories with the same initial point (So, Io) 
in (1.2) and (1.3) for (a, r) = (0.4, 1) in case (i): (a) (S。,Io)= (0.9,0.04720...); (b) 
(So,lo) = (0.98, 0.017268...). Uncontrolled and controlled ones are plotted as red and black 
lines, respectively. The circle'o'represents the initial point. 

When we consider an issue of suppressing epidemic spread, an attempt to find infected 

individuals and isolate them immediately (resp. to decrease contacts between infected 

ans susceptible individuals) is made more actively in case (iii) (resp. in case (ii)). Case (i) 

is moderate. 

Figure 1 shows a projection of the stable manifold W" onto the (S, /)-plane for c = 0.8 
and 0.95 in case (i). We see that it almost coincides with the corresponding stable subspace 

but find a small difference between them for c = 0.8. For the other cases similar results 
were obtained. 

Controlled trajectories converging to (S, I) = (0.8, 0) and (0.95, 0) in (1.3) along with 
the control inputs u1, u2 are displayed in Figs. 2 and 3, respectively, for the three cases. 
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Figure 5. Target equilibrium (c, 0) to which the controlled trajectory starting at (S。,Io)con-
verges in (1.3) for a= 0.4 and r = 1: (a) S。=0.9;(b) S,。=0.98.It is plotted as black, red and 
blue lines for cases (i), (ii) and (iii), respectively. 

The results for case (i) in Figs. 2 and 3, respectively, correspond to the points (S,。,Io)=
(0.9, 0.0482...) and (0.98, 0.0171...) on W" in Fig. 1. We see that the S, I and四 vary

along almost the same curves in the three cases except that the control input u1 is very 
different: It is approximately a hundred times bigger in case (ii) with k1 = 0.1 than in 
case (iii) with柘＝ 1for the displayed range, where it should be noticed that "k1u1" is 

used as the ordinates in Figs. 2(c) and 3(c). This means that finding infected individuals 

and isolating them immediately is more effective than decreasing their contacts from a 

viewpoint of suppressing epidemic spreading. One of the reason for this observation is that 
the dynamics of (3.2) are well approximated by its linearized system, which is independent 

of k1, since (S(t), I(t)) is very close to the target. 
Figure 4 shows a comparison between the uncontrolled and controlled trajectories for 

the same initial point (S。,/0)in (1.2) and (1.3) for case (i). We see that the optimal 
control succeeds in decreasing the final total number of infected individuals drastically 

and preventing a critical situation. 

As stated at the end of Section 3, the target equilibrium叩＝ （c, 0) to which the 
controlled trajectory (S(t), I(t)) converges depends on its initial point (S。,10)in (1.3). 
Figure 5 shows how the target equilibrium (c, 0) depends on I,。forS。=0.9and 0.98 
in the three cases. We find almost no difference between the three cases in Fig. 5. In 

Fig. 5(a) we see that two or more (resp. no) values of c correspond to one value of 
/0 E (0.082, 0.089) (resp. of I,。>0.089)approximately. Thus, for S,。=0.9,the controlled 
trajectory converges to one of two or more equilibria with c > a/r = 0.4, depending on 

which optimal control inputs are chosen, for I,。E(0.082, 0.089) approximately, and only 
converge to equilibria with c < a/r = 0.4 for I,。>0.089approximately. 
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