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Abstract

We consider the sets of zeros of some families of power series. We prove that the
sets of zeros in the unit disk are connected. Furthermore, we apply this result to the
study of the connectedness locus M,, for fractal n-gons. We prove that for each n,
M,, is connected.

1 Introduction

1.1 Background

In 1985, Barnsley and Harrington ([3]) introduced a parameter set My for the iterated
function systems {A\z+1, Az —1} on C, where 0 < |A\| < 1, as an analog of the Mandelbrot
set for quadratic maps. The parameter set My is defined as the connectedness locus for
a pair of linear maps, that is,

My ={X € D* | Ay()) is connected},

where D* := {A € C | 0 < |A\| < 1} and the set As(A) is the attractor of the iterated
function system {Az + 1, Az — 1}. For the general theory of the iterated function system,
see [8]. My looks like a “ring” around the set of parameters A for which As()) is a Cantor
set and has “whiskers” (see Figure 1). In fact, Barnsley and Harrington ([3]) proved that
there is a neighborhood of the set {0.5, —0.5} in which M is contained in R. Furthermore,
they conjectured that there is a non-trivial hole in Mo.

Bousch ([4], [5]) proved that My is connected and locally connected. This is interesting
since for the case of quadratic maps, the local connectedness of the Mandelbrot set is still
an open problem. In [4] and [5], Bousch showed that Ms is equal to the set of zeros of
power series with coefficients 0, 1, and —1. He also studied the set of zeros of power series
with coefficients 1 and —1, which is a subset of Ms. At the same time, Odlyzko and
Poonen ([12]) studied the set of zeros of power series with coefficients 1 and 0, and they
proved the set of zeros is path-connected.

In 2002, Bandt ([1]) gave an algorithm to study geometric structure of My, and man-
aged to prove the existence of a non-trivial hole in My rigorously. Thus he positively
answered the conjecture of Barnsley and Harrington ([3]). He also conjectured that the
interior of My is dense away from My N R, that is, cl(int(Mg))U(Mg NR) = Ms. Here,
for a set A C C, we denote by cl(A) and int(A) the closure of A and the interior of A
with respect to the Euclidean topology on C respectively. Several authors made partial
progress on Bandt’s conjecture (see [13], [14] and [15]).
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Figure 1. My Figure 2. My

In 2008, Bandt and Hung ([2]) introduced self-similar sets parametrized by A\ € D*
which are called “fractal n-gons’, where D* := {A € C | 0 < |\| < 1} and n € N>9. We
give the rigorous definition of “fractal n-gons” in the next sub-section (see Definition 1.1).
They studied the connectedness locus for “fractal n-gons”, that is,

M, ={X e D* | An()\) is connected},

where A, () is the “fractal n-gon” corresponding to the parameter A (see Figure 2). Note
that “fractal 2-gons” are attractors of the iterated function systems {Az + 1, Az — 1} and
M3 is the connectedness locus for “fractal 2-gons”. Bandt and Hung ([2]) discovered many
remarkable properties about M,,, including the following result. For each n = 3 or > 5,
M,, is regular-closed, that is, cl(int(./\/ln)): M,,.

In 2016, Calegari, Koch and Walker ([7]) introduced new methods for constructing
interior points and positively answered Bandt’s conjecture, that is, cl(int(Ma))U(Maz N
R) = Mj. Himeki and Ishii [10] proved My is regular-closed. Thus the problems about
the regular-closedness of M, have been completely solved. Furthermore, Calegari and
Walker ([6]) characterized the extreme points in “fractal n-gons” and gave an alternative
proof of [10, Proposition 2.1], which we need to prove the regular-closedness of M.

Many authors have investigated M,, and discovered many remarkable properties about
M,,. However, many problems about M,, still remain unsolved. One of the problems is
the connectedness of M,,. Himeki [9] proved that M3 is connected by using the methods
of Bousch ([4]). In this paper, we study the connectedness of the sets of zeros of some
families of power series by extending the methods of Bousch ([4]) and by giving a new
framework (see Definition 1.2, Definition 1.3, and Main result B). Furthermore, we apply
this result to the study of the connectedness of M,, (see Main result A).

1.2 Main results

Below we fix n € N>3. We give the rigorous definition of “fractal n-gons” as the following.

Definition 1.1 (Fractal n-gons). Let D* := {A € C | 0 < |\ < 1}. Let A € D*.
We set &, = exp(2myv/—1/n). For each i € {0,1,....,n — 1}, we define (ﬁ;L’)\ :C — C by
¢! (2) = Az + &,'. Then there uniquely exists a non-empty compact subset A, ()) such
that

n—1

U o (Aa(N) = An(N)
1=0

(See [8], [11]). We call A,,(\) a fractal n-gon corresponding to the parameter \.



For each n, we define the connectedness locus M,, for fractal n-gons as the following.
M, ={A€D* | A,()) is connected}.
We give one of the main results in this paper as the following.
Main result A. For each n, M, is connected.

In [4], Bousch showed that My is equal to the set of zeros of power series with coef-
ficients 0,1, and —1. Similarly, we can identify M,, with the set of zeros of some power
series (see [2, Remark 3]). However, in the proof of the connectedness of M,, for general
n € N>, since the set (), of coeflicients of the power series, which corresponds to M, is
complicated for general n € N>y (see Definition 4.3) in contrast to My , we cannot use
the methods to prove the connectedness of My and M3 which are given in [4] and [9].
Hence we study the connectedness of the sets of zeros of some power series by extending
the methods of Bousch ([4]) and by using some new ideas and techniques. We need the
following setting to prove Main result A, which is one of the new ideas in this paper.

Definition 1.2. Let G be a subset of C. We say that G satisfies the condition (x) if G
satisfies all of the following conditions (i), (ii), and (iii).

(i) 1eG.

(ii) For all a,b € G with a # b, there exist by, ba, ..., by, € G with by = a and b,,, = b such
that for all ¢ € G, there exist di,ds, ..., dn 1 € G such that

(b2 - bl)c +d; € G, (bg — bg)c +ds € G, ..., (bm - bmfl)c +dn_1 € G.

(iii) G is compact.

Definition 1.3. Let G be a subset of C such that G satisfies the condition (x). Let
N € N>j. Let D be the unit disk. We set

PG:{l—i—Zaizi | a; € G},

i=1
X% ={z € D | there exists f € P such that f(z) = 0},
N-1
Qﬁ:{l—&—Zaizl | a; € G},
i=1
Y = {z € C | there exists f € QF such that f(z) = 0},
ve=J vy
N>2

Then the following theorem holds, which we need to prove Main result A.

Main result B (Theorem 3.3). Let G be a subset of C such that G satisfies the condition
(*). Suppose that there exists a real number R with 0 < R < 1 such that {z € C | R <
|z| < 1} € XY. Then X© is connected.
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1.3 Strategy for the proof of Main result A

We briefly describe our strategy for the proof of Main result A. In Sections 2 and 3, we
prove Main result B by extending the methods of Bousch ([4]) and by using some new
ideas. We set I := {0,1,....,n — 1} and Q, := {(&7 — &5)/(1 — &) | j,k € I}. Then we
have that M,, = X% and {z € C | 1/y/n < |2| < 1} € M,, (see [2, Remark 3] and [2,
Proposition 3]). It is highly non-trivial that €, satisfies the condition (%) and in order
to prove that, we need Lemmas 4.1 and 4.2, which are the key lemmas in the paper. In
Section 4, by using Lemmas 4.1 and 4.2, we prove that 2, satisfies the condition (x), and
hence we get Main result A as a corollary of Main result B.
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2 Preliminaries

In this paper, for a set A C C, we denote by cl(A) the closure of A with respect to the
Euclidean topology on C. We denote by 0A the topological boundary of A with respect
to the Euclidean topology on C. For a € C, we denote by |a| the Euclidean norm of a.
For z € C and r > 0, we set B(z,r) :={z2 € C | |x — 2| <r}.

Lemma 2.1. Let G be a subset of C such that G satisfies the condition (). Then
X% =cl(YY) ND.

Proof. (C)Take zgp € XY. Then there exists {a;}32, C G such that 1 + > 2% a;2 = 0.
Fix € > 0 with B(zo,e) C D. Then there exist N € N and 2’ € B(zp,€) such that
1+ Zfi_ll a;?' = 0 by theorem of Rouché. Hence z € cl(YE) N D.

(D)Since P is a normal family on D, X¢ is relatively closed in . Hence it suffices to
prove that X% > Y¥ N D. Take zy € Y¢ ND. Then there exists {ai}ijizl C G such that
1+ Zfi}l a;izh = 0. We set f(2) := f(z) x PRy 2N € PG, Then f(z) = 0.

Thus we have proved our lemma. O

Below we fix a set G C C which satisfies the condition (x).

Definition 2.2. Let N € N>y, We set L := sup{|al, |abl, |(a — b)c| | a,b,c € G}(< o0).
Then we define the sets of functions W and W§ as the following.

o0
w¢ .= {1 —|—Zaizi | la;| < L},
i=1
N-1
W= {1+ a2’ | ai| < L},
i=1
Remark 2.3. Q§ ¢ W{ c W% and PY c W€,

Let N € Nxy. We identify (1,a1,as,...) with the power series 1 + >.2° a;z. We
identify (1,aq,...,an—1) or (1,a1,...,an—1,0,0,...) with the polynomial 1+Zf\i_11 a;z". Let
f=(1,a1,a2,...) and g = (1,b1,bo,...). We set Val(f,g) := inf{i € N | a; — b; # 0}. If
f =g, we set Val(f, g) = oo. Let N € N>y, We define the map Ciy : W& — W§ by

CN((l,al,ag, )): (17(11, ceey aNfl).

We use the following lemma.
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Lemma 2.4. [4, Lemme 2] Let R > 0 and € > 0 with R + ¢ < 1. Then there exists
Np,. € N>y such that for all (f,s) € F := {(f,s) € W& x cl(B(0,R)) | f(s) = 0} and for
all g € WY with Val(f, g) > Ng.,, there exists s’ € B(s, ¢) such that g(s') = 0.

Definition 2.5. Let N € N>y Let A, B € Q with A # B.
Let R := {po,qo,P1,q1, s Pm—1,qm—1,Pm} be a sequence of functions on D. We say
that R is a sequence of functions which joins A to B if R satisfies the following:

(1) for each i, p; € Q%;
(2) for each i, ¢; € WC;

(3) for each i, there exists a holomorphic function f; on D such that ¢;(z) = f(z) - pi(2)
for all z € Dy

(4) for each i, Cn(q;) = pis1;
(5) po = A, pm = B.

We prove the following lemma by extending [4, Lemme 3].

Lemma 2.6. Let N € N>o. Let A, B € QJC\;, with A # B. Then there exists a sequence of
functions pg, qo, P1, q1, ---» Pm—1, Gm—1, Pm Which joins A to B.

Proof. This is done by induction with respect to Val(4, B) € {1,..., N —1}. We prove that
the statement holds in the case Val(A4, B) = N — 1. We set
A:=1,a1,...,an-2,a),
B:=(1,a1,...,an—_2,b),
where a # b. We set
@& ={1+ (b—a)z¥1}A
=(1,a1,...,any—2,a)+
(0,0,...... ,0,(b—a),(b—a)ay,...,(b—a)any_2,(b—a)a)
——
N-1
=(1,a1,...,an—2,b, (b — a)ai,...,(b—a)ay—_2,(b—a)a) € we,
p =Cn(q0)
:(1, A1y .oy AN—2, b) =B¢c Q%
Hence we find a sequence {A, ¢, B} of functions which joins A to B.
Fix j € {1,..., N — 2}. Suppose that the statement holds in the case Val(A, B) > j. We
prove that the statement holds in the case Val(A, B) = j. We set
A= (1,a1,....,aj—1,a,%- %),
B := (1, ALy enes aj_l,b, Koo *)7
where a # b. Since G satisfies the condition (x), there exist (a =)by,bs,...,bn(=b) € G
which satisfies Definition 1.2 (ii). Let k,l be natural numbers such that N —1 = jk + 1
and 0 <[ < j— 1. By the assumption of G, for each i € {1,2,...,j} and m € {1,..., k — 1},
there exists ¢]* € G such that
(b2 — bl)ai + CZ1 € G,
(bg —by)a+ cyl» eaq,
(b2 — bl)c;{n + C;n+1 (S G,
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where ¢! depends on by, by, a;, and cjl depends on bi(= a),by, and c;-”“ depends on
b1, b2, c". We set
_7 1 102 2 k k G
Ar = (1,01, 00, @1, 05 €y oty €5 €T 20y €y w0y Cf 5 oy ) € QR

Since Val(A4, A1) > j, by induction hypothesis, there exists a sequence R; of functions
which joins A to A;. We set

q1 :I{l + (bz — bl)Zj}Al

_ 1 12 2 k k
=(1,a1, 0y A1, @y €y ey €5y €Ty ooy €y ooy €y oy O )F

77 77
(0,07 ...... ,0, (bg — bl), (bg — bl)al, ceny (bg — bl)a, (bz — bl)c%, ceey (bg — bl)C]l, )
J
:(17(117 ey A1, bs, (b2 — bl)(h + C%, ey (bg — bl)cf_l + Cf, (b2 — bl)C?_Ill, e (bg — bl)Cf)
e w¢.

Here, recall that by = a. We set

p2:=Cn(q)
= (1,CL17 ey A1, ba, (bg - bl)a1 + C%, ey (bg - bl)CéC_l + Cf) € Q%
By the assumption of G, for each i € {1,2, ..., j} and m € {1,..., k—1}, there exists d" € G
such that
(bg — bg)ai + dll € G,
(b — ba)ba + dj € G,
(b3 — bo)d™ + d"* € G,

where d} depends on b9, b3, a;, and d} depends on bo, b3, and dg"“ depends on bo, b3, di".
We set

1 1 ;2 2 k k G
AQ = (1,@1,...7aj_1,b2,d1, "’7dj7d17"'7dj7"'7d17"'7dl) S QN‘

Since Val(pa, A2) > j, by induction hypothesis, there exists a sequence Rs of functions
which joins ps to As. We set
qo 1= {1 + (b3 — bQ)Zj}AQ € I/VG7
p3 = Cn(g) € QR
If we continue this process, we find sequences Ry, Ra, ..., R,,—1 of functions, functions
q1,G2s s gm—1 € W and a function p,, € Q%, where R; joins A to Ay, R; joins p; to A;
for each i € {2,...,m — 1}. Here,
Rl = {A7 qévpi q%a seey A1}7
R2 = {p?, qg7p%7 q% ceey AQ}a
Rm7] = {pmfly Q(T)nilap;nia QT717 ceey Am71}~

Then we find a sequence {Avq(%vp%7Q%, ~-~7A17QI7P27Q(2)7P%7Q%7 "'7A27 -~-7pm—17Q(T)n_17p71n_17
q{”_l, ooy An—1,Gm—1,Pm } of functions which joins A to p,,, where p,, has the following

form.

Pm = (1,&17 ...,aj_l’b,*.. *)



Since Val(py,, B) > j, by induction hypothesis, there exists a sequence of functions R,,, =
{Pm,a, P, ¢, ..., B} which joins p,, to B. Hence we find a sequence {4, ¢}, p}, a1, ..., A1,
q17p27 q(%vp%a Q%y sy A27 "'7p77l—17 q(7)n717p;n717 q{TL*l’ sy Aﬂl—lv Qm—lvpm: levp’inv q'{nv sy B} Of
functions which joins A to B. Thus we have proved our lemma.

O

3 Proof of Main result B

Definition 3.1 (e-connected). Let A C C. Let € > 0. Let 2,y € A and {eo,...,ex} C A.
We say that {eg,..., e} is e-chain for (z,y) if © = eg,y = ej and for each i € {0,...,k —
1}, lei — ei1] < e

We say that A is e-connected if for all z,y € A, there exists an e-chain for (z,y).

Remark 3.2. If A C C is compact, A is connected if and only if for any arbitrary small
e >0, A is e-connected.

The following theorem is Main result B.

Theorem 3.3. Let G be a subset of C such that G satisfies the condition (x). Suppose
that there exists a real number R with 0 < R < 1 such that {z € C | R < |z] < 1} € X©.
Then X is connected.

Proof. We set Mp := {z € C | R < |z| < 1}. Since Mp C X, it suffices to prove that
XY UdD is connected. By Lemma 2.1, X“UJD is compact. Hence we prove that X UoD
is e-connected for an arbitrary small € > 0.

Fix € > 0 with R+ € < 1. Take s € X©. We prove that there exist s € My and
an e-chain for (s, s'). Since s € X, there exists f € PY such that f(z) = 0. Let Np,
be a natural number defined by Lemma 2.4. We set A := Cn, (f) € Q%R_E. Since
Val(f, A) > Ng,, there exists sy € B(s,¢) such that A(sg) = 0. If s € Mg, our theorem
holds. If so ¢ Mg, that is, so € cl(B(0, R)), we set

_ ,Ng.
N1 _ 1—2z

B(z) =1 2.
(2) +z+27 4+ T

€ Q%R&.
By Lemma 2.6, there exists a sequence of functions po, o, P1,41s s Pm—1, Gm—1, Pm Which
joins A to B. Since go(so) = 0 and Val(go,p1) > Ng,, there exists sy € B(sg,€) such
that p1(s1) = 0 by Lemma 2.4. If s; € Mg, our theorem holds. If s; € cl(B(0, R)), since
q1(s1) = 0 and Val(qi,p2) > Ng,, there exists sy € B(s1,¢) such that py(s2) = 0 by
Lemma 2.4. If we continue this process, there exists ¢ € {1,...,m} such that s; € My and

If this is not true, there exists s, € D such that p,(sm) = B(sm) = 0. But this
contradicts that B does not have any roots in .

Since A,p; € Q%Re for each j € {1,...,i}, we have that sg,s; € X“ by Lemma 2.1.
We set s’ := s;. Then i{s,so,sl, oty $i(= 8')} is e-chain for (s, ).

Hence we have proved our theorem. a

4 Application (proof of Main result A)

We use the following lemmas, which are key lemmas in this paper.
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Lemma 4.1. Let n be an odd number. Let ¢, be integers such that 2 < ¢ < (n —1)/2
and 0 <r < (n—1)/2. We set

._{q+r—1 1<g+r—-1<(n—-1)/2)
n—(q+r—1) (n+1)/2<q+r—1<n-2)
and

k=r—q+1.
Then

cgr o (g=my orm gy owy o kmy o om
(Sln n Sin n )Sln n (Sln n)(SIIln) (Sln n)(ﬁlnn)—o

Proof. (Case 1: j=q+r—landk=r—q+1)

(Sin%)(smg)‘f'(smk%)(sin%):_%(COS (J'J;ll)ﬂ_cos G-V

_%(COS(ktzl)ﬂ_ (k—l)w)

=— %(Cos (g t:)” L+ rn— 2)7r)
VPR R B )L

:_%(COs(qtlr)ﬂ— S(quTan)ﬂ)
*%(cos(qfrn’Q)”,COS(q* L

:*%(cos(q_;r)ﬂ- Cs(q—r)w)
+%(cos (‘1+7"n— 2 (q—rn— 2)7r)

:(Sin%—sin (q’Q)”)Smﬂ

(Case 2: j=n—(¢+r—1)andk=r—q+1)

(sin ) (sin )+ (sin 27) (sin T ) = (sim L= @HTZ Ty (5, T
#(sin CET) (6, T
= (sin 2T (i T
o (s (rfanr 1)W)(Sm%)
By Case 1,
(sin LTI i T s U DT (i T i 7 i €T3 1

O



Lemma 4.2. Let n be an even number. Let ¢, be integers such that 2 < ¢ < n/2 and
0<r<n/2. We set

. Jg+r—1 (1<g+r—-1<n/2-1)
Cln—(g+r—1) (n/2<q+r—1<n-1)
and
k=r—q+1.
Then
Cqr . (q=2)my . rm . gmy, . T Ckny, . ow
v 2 i M TN L (i L B T P sin — )= 0.
(smn sin )smn (smn)(smn) (slnn)(smn)
Proof. We can prove Lemma 4.2 as in the proof of Lemma 4.1. O

We define the set of coefficients €2, which corresponds to M,, as the following.

Definition 4.3. We set I, := {0,1,...,n — 1}. We define
Q= {(&’ —&"/(1 = &) | 4.k € I},

Here, recall that &, = exp(2nv/—1/n).
Remark 4.4. For each a € €, we have that —a € Q.

The following two lemmas can be found in [2].
Lemma 4.5. [2, Remark 3]

M, = X

Lemma 4.6. [2, Proposition 3]

1
{ze(C|ﬁ<|z|<1}CMn.

By using Lemmas 4.1 and 4.2, €, satisfies the condition (*). By Theorem 3.3, Lemmas
4.5 and 4.6, M,, is connected (Main result A holds).
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