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Abstract 

We consider the sets of zeros of some families of power series. We prove that the 
sets of zeros in the unit disk are connected. Furthermore, we apply this result to the 
study of the connectedness locus Mn for fractal n-gons. We prove that for each n, 
Mn is connected. 

1 Introduction 

1.1 Background 

In 1985, Barnsley and Harrington ([3]) introduced a parameter set的 forthe iterated 

function systems｛入z+l，入z-1} on C, where O <|入|＜1, as an analog of the Mandelbrot 

set for quadratic maps. The parameter set M2 is defined as the connectedness locus for 

a pair of linear maps, that is, 

M2=｛入 Ell))x I A2（入） isconnected}, 

where ll))x :=｛入 ECIO<|入|＜ 1} and the set A2（入） isthe attractor of the iterated 
function system｛入z+1,入z-l}. For the general theory of the iterated function system, 

see [8]. M2 looks like a "ring" around the set of parameters入forwhich A2（入） isa Cantor 

set and has "whiskers" (see Figure 1). In fact, Barnsley and Harrington ([3]) proved that 
there is a neighborhood of the set {0.5, -0.5} in which M2 is contained in股． Furthermore,

they conjectured that there is a non-trivial hole in M2. 

Bousch ([4], [5]) proved that M2 is connected and locally connected. This is interesting 

since for the case of quadratic maps, the local connectedness of the Mandelbrot set is still 

an open problem. In [4] and [5], Bousch showed that M2 is equal to the set of zeros of 

power series with coefficients 0, 1, and -1. He also studied the set of zeros of power series 

with coefficients 1 and -1, which is a subset of M2. At the same time, Odlyzko and 

Poonen ([12]) studied the set of zeros of power series with coefficients 1 and 0, and they 

proved the set of zeros is path-connected. 

In 2002, Bandt ([1]) gave an algorithm to study geometric structure of M2, and man-

aged to prove the existence of a non-trivial hole in M2 rigorously. Thus he positively 

answered the conjecture of Barnsley and Harrington ([3]). He also conjectured that the 

interior of M2 is dense away from M2 n恥 thatis, cl(int(Mり）u(M2n股） ＝M2. Here, 
for a set A C C, we denote by cl(A) and int(A) the closure of A and the interior of A 
with respect to the Euclidean topology on C respectively. Several authors made partial 

progress on Bandt's conjecture (see [13], [14] and [15]). 
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ロ
Figure 1. M2 Figure 2. M4 

In 2008, Bandt and Hung ([2]) introduced self-similar sets parametrized by入Ell])X 

which are called "fractal n-gons", where ll])x :=｛入 ECCIO<|入|<1} and n E N22. We 
give the rigorous definition of "fractal n-gons" in the next sub-section (see Definition 1.1). 

They studied the connectedness locus for "fractal n-gond', that is, 

Mn=｛入 Ell])x I An（入） isconnected}, 

where An（入） isthe "fractal n-gon" corresponding to the parameter入(seeFigure 2). Note 
that "fractal 2-gons" are attractors of the iterated function systems｛入z+1,入z-1} and 
M2 is the connectedness locus for "fractal 2-gons". Bandt and Hung ([2]) discovered many 

remarkable properties about Mn, including the following result. For each n = 3 or ~ 5, 

叫 isregular-closed, that is, cl(int(Mn))= Mn-
In 2016, Calegari, Koch and Walker ([7]) introduced new methods for constructing 
interior points and positively answered Bandt's conjecture, that is, cl(int(M2)) u(M2 n 
股）＝ M2.Himeki and Ishii [10] proved M4 is regular-closed. Thus the problems about 
the regular-closedness of Mn have been completely solved. Furthermore, Calegari and 

Walker ([6]) characterized the extreme points in "fractal n-gons" and gave an alternative 

proof of [10, Proposition 2.1], which we need to prove the regular-closedness of M4. 
Many authors have investigated Mn and discovered many remarkable properties about 

Mn-However, many problems about Mn still remain unsolved. One of the problems is 

the connectedness of Mn-Himeki [9] proved that M3 is connected by using the methods 
of Bousch ([4]). In this paper, we study the connectedness of the sets of zeros of some 
families of power series by extending the methods of Bousch ([4]) and by giving a new 
framework (see Definition 1.2, Definition 1.3, and Main result B). Furthermore, we apply 

this result to the study of the connectedness of Mn (see Main result A). 

1.2 Main results 

Below we fix n E応2-We give the rigorous definition of "fractal n-gons" as the following. 

Definition 1.1 (Fractal n-gons). Let ll])x :=｛入 EC | 0 < |入|<l}. Let入ElI])又

We set品＝ exp(21rv汀／n).For each i E {O, 1,…，n -1}, we define ¢戸： C → C by 
¢戸(z)=入z＋邸． Thenthere uniquely exists a non-empty compact subset An（入） such
that 

n-1 

u ¢戸(An（入））＝ん（入）
i=O 

(See [8], [11]). We call An（入） afractal n-gon corresponding to the parameter入．
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For each n, we define the connectedness locus Mn  for fractal n-gons as the following. 

Mn=｛入 E]]))XI An（入） isconnected}. 

We give one of the main results in this paper as the following. 

Main result A. For each n, Mn  is connected. 

In [4], Bousch showed that M2 is equal to the set of zeros of power series with coef-

ficients 0, 1, and -1. Similarly, we can identify Mn  with the set of zeros of some power 

series (see [2, Remark 3]). However, in the proof of the connectedness of Mn  for general 
nE応2,since the set叫 ofcoefficients of the power series, which corresponds to Mn, is 
complicated for general n E N~2 (see Definition 4.3) in contrast to M2, we cannot use 
the methods to prove the connectedness of M2 and M3 which are given in [4] and [9]. 

Hence we study the connectedness of the sets of zeros of some power series by extending 

the methods of Bousch ([4]) and by using some new ideas and techniques. We need the 

following setting to prove Main result A, which is one of the new ideas in this paper. 

Definition 1.2. Let G be a subset of C. We say that G satisfies the condition (*) if G 
satisfies all of the following conditions (i), (ii), and (iii). 

(i) 1 E G. 

(ii) For all a, b E G with aヂb,there exist b1, b2,…,bm E G with b1 = a and bm = b such 
that for all c E G, there exist d1, d2,…，dm-1 E G such that 

(b2 -b1)c + d1 E G, (b3 -b2)c + d2 E G,…，（bm -bm-1)c + dm-1 E G. 

(iii) G is compact. 

Definition 1.3. Let G be a subset of (C such that G satisfies the condition (*). Let 
NE応2-Let[))be the unit disk. We set 

oo 

炉＝｛1＋〉佑z'Ia; E G}, 
i=l 

炉＝｛zE]]))|there exists f E pG such that J(z) = O}, 
N-1 

噂＝｛1+こ佑ziI a; E G}, 
i=l 

埒＝｛zE C I there exists f E Q岱suchthat f(z) = O}, 

砂＝ LJYfj. 
N>2 

Then the following theorem holds, which we need to prove Main result A. 

Main result B (Theorem 3.3). Let G be a subset of C such that G satisfies the condition 
(*)-Suppose that there exists a real number R with O < R < 1 such that {z EC  I R < 
lzl < 1} c x0. Then炉 isconnected. 
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1.3 Strategy for the proof of Main result A 

We briefly describe our strategy for the proof of Main result A. In Sections 2 and 3, we 

prove Main result B by extending the methods of Bousch ([4]) and by using some new 

ideas. We set I:= {O, 1,..., n -1} and On:= {((nj -(nk)/(1-品)|j, k E I}. Then we 
have that Mn= xnn and {z EC I 1/fo < lzl < 1} C Mn  (see [2, Remark 3] and [2, 
Proposition 3]). It is highly non-trivial that On satisfies the condition (*) and in order 
to prove that, we need Lemmas 4.1 and 4.2, which are the key lemmas in the paper. In 

Section 4, by using Lemmas 4.1 and 4.2, we prove that On satisfies the condition(*), and 

hence we get Main result A as a corollary of Main result B. 
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2 Preliminaries 

In this paper, for a set A C <C, we denote by cl(A) the closure of A with respect to the 
Euclidean topology on <C. We denote by 8A the topological boundary of A with respect 
to the Euclidean topology on <C. For a E <C, we denote by lal the Euclidean norm of a. 

For x E <C and r > 0, we set B(x, r) := { z E <C I Ix -zl < r }. 

Lemma 2.1. Let G be a subset of <C such that G satisfies the condition (*). Then 

炉＝ cl(YりnlDl. 
Proof. (C) Take zo E x0. Then there exists { aぷご1C G such that 1 + ~~1 a渇＝ 0.
Fix E > 0 with B(zo, E) C lDl. Then there exist N E N and z'E B(zo, E) such that 
1+区仰aiz'=0 by theorem of Rouche. Hence zo E cl（匹）nlDl. 
（つ）SincepG is a normal family on lDl, x0 is relatively closed in lDl. Hence it suffices to 

N-1 prove that XeっyenlDl. Take zo E yen lDl. Then there exists｛叫 cG such that 
i=l 

1 + ~~11 aizb = 0. We set ](z) := f(z) x ~fa=。 zJN E pe_ Then ](zo) = 0. 
Thus we have proved our lemma. ロ

Below we fix a set G C <C which satisfies the condition (*). 

Definition 2.2. Let N E応2-We set L := sup{lal, labl, l(a -b)cl I a, b, c E G}(<(X)）． 
Then we define the sets of functions we and WJJ邸 thefollowing. 

00 

炉：＝ ｛1＋と亨 Ilail :=::; L}, 
i=l 

N-l 

峠：＝ ｛1＋L aiz'I lail :=::; L}. 
i=l 

Remark 2.3. Q賃CWf.J C we  and pe C we. 

Let N E N22. We identify (1, a1, a2,…)with the power series 1＋区ご1伍z'. We 
identify (1, a1,…,aN-1) or (1, a1,..., aN-l, 0, 0,...) with the polynomial 1＋こ似1佑zi.Let 
f = (l, a1, a2,...) and g = (l, b1, b2,…）． We set Val(f,g) := inf{i EN  I ai -bi cJ O}. If 
f = g, we set Val(!, g) = oo. Let NE  N22. We define the map CN : we→Wf.J by 

CN((l,a1,a2,…）） ：＝ （1, a1,…,aN-1). 

We use the following lemma. 
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Lemma 2.4. [4, Lemme 2] Let R > 0 and E > 0 with R + E < 1. Then there exists 
NR,e E N:c:2 such that for all (f,s) E F := {(f,s) E w0 x cl(B(O,R)) I f(s) = O} and for 
all g E w0 with Val(!, g) ~ NR,e, there exists s'E B(s, E) such that g(s') = 0. 

Definition 2.5. Let N E N:c:2. Let A, B E Q貸withA cJ B. 
Let R := { Po,qo,p⑪ 1,…，Pm-1, qm-1, Pm} be a sequence of functions on]D)．We say 
that R is a sequence of functions which joins A to B if R satisfies the following: 

(1) for each i, Pi E Q岱；

(2) for each i, qi E W生

(3) for each i, there exists a holomorphic function Ji on]D)such that qi(z) = f(z) ・ Pi(z) 
for all z E]D); 

(4) for each i, CN(qi) = Pi+l; 

(5) Po= A,Pm = B. 

We prove the following lemma by extending [4, Lemme 3]. 

Lemma 2.6. Let N E凡2.Let A, B E Q% with A cJ B. Then there exists a sequence of 
functions Po, qo, Pl, q1,…，Pm-1,qm-1,Pm which joins A to B. 

Proof. This is done by induction with respect to Val(A, B) E {1,…,N -1}. We prove that 
the statement holds in the case Val(A, B) = N -1. We set 

where a cJ b. We set 

A:= (1, a1,…,aN-2, a), 

B := (1, a1,..., aN-2, b), 

叫：＝｛1+ (b -a)zN-l }A 

=(1, a1,..., aN-2, a)+ 

(0, 0,……,0, (b -a), (b -a)a1,…, （b -a)aN-2, (b -a)a) 
｀マ、
N-1 

=(1, a1,…,aN-2, b, (b -a)a1,…,(b -a)aN-2, (b -a)a) E W豆
対：＝C刈叫）

=(1, a1,…,aN-2,b) =BE Q怠

Hence we find a sequence { A, qg, B} of functions which joins A to B. 

Fix j E {1,..., N -2}. Suppose that the statement holds in the case Val(A, B) > j. We 
prove that the statement holds in the case Val(A, B) = j. We set 

A:= (l,a1,…,a1-1,a,＊・・・＊），

B := (l,a1,…，aた1,b, * ・・・＊），

where a cJ b. Since G satisfies the condition (*), there exist (a =)b1, b2,…，b叫＝ b)E G 
which satisfies Definition 1.2 (ii). Let k, l be natural numbers such that N -1 = jk + l 
and O::;: l ::; j -1. By the assumption of G, for each i E {1, 2,…,j} and m E {1,…,k-1}, 
there exists c『EG such that 

(b2 -b1)ai＋叶 EG,

(b2 -b1)a + c} E G, 

(b2 -b1)ci + c7'+1 E G, 
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where c} depends on b1,b2,ai, and c} depends on b1(= a),b2, and cf+1 depends on 

b1,b2,c『.Weset 

A1 := (l,a1,...,aj-1,a,cL...,c},ci,・・・,cJ,・・・,ct...,c?) E Q怠

Since Val(A, A1) > j, by induction hypothesis, there exists a sequence R1 of functions 
which joins A to A1. We set 

q1 :={1 + (b2 -b国｝A1
1 1 2 2 k k =(1, a1'..., aj-1, a, ct,..., cj'cf'..., cj'...,er'..., c7)+ 

(9, 0,......, ~'(b2 -b1), (b2 -b1)a1,..., (b2 -b1)a, (b2 -b1)cL..., (b2 -b1)c},...) 
` v’  

=(1, a1,…,aj-1, b2, (b2 -b1)a1 + cL…,(b2 -b1)c7―1 + c?, (b2 -b1)c7_;/,..., (b2 -b1)c?) 

EWG. 

Here, recall that b1 = a. We set 

P2: = CN(q1) 

= (1, a1,..., aj-1, b2, (b2 -b1)a1 + Ci,…，（b2 -b1)c7―1 + c?) E Q怠
By the assumption of G, for each i E {1, 2,..., j} and m E {1,..., k-1}, there exists d;f' 
such that 

伽ー的）ai+ d} E G, 

(b3 -bふ＋d]E G, 

伽ー的）df'+df+l E G, 

EG 

where d} depends on b2, b3, ai, and d} depends on b2, b3, and四叶1depends on b2, b3, d四
We set 

A2 := (l,a1,...,aj-1,b2,di,...,d3,di,…,dJ,...,d↑,．．．，d?) E Q怠．

Since Val(p2, A2) > j, by induction hypothesis, there exists a sequence恥 offunctions 
which joins P2 to A2. We set 

q2 := {1 + (b3 -b2)召｝A2E W0, 

p3:＝仰(q2)E Q賃．

If we continue this process, we find sequences R1, R2,…，凡n-1of functions, functions 
q汀 2,...,qm-1 E WG and a function Pm E Q岱， whereR1 joins A to Aぃ凡 joinsPi to Ai 
for each i E {2,…,m -l}. Here, 

R1 := {A,qい，Pi,qi,..., A汁，

R2 := {p2, q加，Pi,qi,…，A2}, 

凡n-1:= {Pm-1, q[{1―1,p『―1,q『―1,…,Am-l}． 

Then we find a sequence { A, q5, Pi, qf,…，A1, q1,P2, q5,Pi, qi,…，A2,…,Pm-1, q閤―1,p↑―19
qf―1,…,Am-1, qm-1,Pm} of functions which joins A to Pm, where Pm has the following 
form. 

Pm= (1, a1,..., aj-1, b, * ・・・＊）．
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Since Val(Pm, B) > j, by induction hypothesis, there exists a sequence of functions Rm= 
{Pm耀，p閃qi_",…，B}which joins Pm to B. Hence we find a sequence {A, q5,PL qL…,A1, 
2 2 2 A m-l m-l m-1 q1,P2,q。,PI,qじ…， 2,…,Pm-1,q。,p1,q1 A m m m ,…,m-1, qm-1,Pm, q。,p1, q1,…，B} of 

functions which joins A to B. Thus we have proved our lemma. 

ロ

3 Proof of Main result B 

Definition 3.1 (E-connected). Let Ac(['._ Let E > 0. Let x,y EA  and {e0,…，繹｝ cA.
We say that { ea,…，繹｝ isE-chain for (x, y) if x = ea, y = ek and for each i E {O,…，k-
1}, lei -ei+1I:::; E. 
We say that A is E-connected if for all x, y EA, there exists an E-chain for (x, y). 

Remark 3.2. If A c (['. is compact, A is connected if and only if for any arbitrary small 

E > 0, A is E-connected. 

The following theorem is Main result B. 

Theorem 3.3. Let G be a subset of(['.such that G satisfies the condition (*). Suppose 
that there exists a real number R with O < R < l such that {z E (['.IR< lzl < 1} C x0. 
Then x0 is connected. 

Proof. We set MR:= {z E (['. I R < lzl < 1}. Since MR C X豆itsuffices to prove that 
x幻 0]]))isconnected. By Lemma 2.1, X幻 8]]))iscompact. Hence we prove that X幻 8]]))
is E-connected for an arbitrary small E > 0. 
Fix E > 0 with R + E < 1. Take s E x0. We prove that there exist s'E MR and 
an E-chain for (s, s'). Since s E X豆thereexists f E pG such that f(z) = 0. Let NR,c 
be a natural number defined by Lemma 2.4. We set A := C粋，,(f) E Qin,,. Since 

Val(!, A) 2'. NR,e, there exists so E B(s, E) such that A(so) = 0. If so E MR, our theorem 
holds. If so(/: MR, that is, so E cl(B(O,R)), we set 

B(z):=l+z+z2+ ・・・十 z昂，€ー1=
1-zNR,, 

l-z EQ似・

By Lemma 2.6, there exists a sequence of functions Po, qo,P1, q1,…,Pm-1, qm-1, Pm which 
joins A to B. Since qo(so) = 0 and Val(qo,P1) 2: NR,c, there exists s1 E B(so, E) such 
that p1(s1) = 0 by Lemma 2.4. If s1 E MR, our theorem holds. If s1 E cl(B(O, R)), since 

小(s1)= 0 and Val(q1,P2) 2: NR,e, there exists s2 E B(s口） suchthat P2(s2) = 0 by 
Lemma 2.4. If we continue this process, there exists i E {1,…，m} such that Si E MR and 
Pi(si) = 0. 
If this is not true, there exists Sm E]]))such that p叫％） ＝ B(sm) = 0. But this 
contradicts that B does not have any roots in]]))． 
Since A,pj E Qin,, for each j E {1,…，i}, we have that so, Sj E x0 by Lemma 2.1. 
We sets':= Si-Then {s,so,s1,…，si(= s')} is E-chain for (s,s'). 
Hence we have proved our theorem. ロ

4 Application (proof of Main result A) 

We use the following lemmas, which are key lemmas in this paper. 
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Lemma 4.1. Let n be an odd number. Let q,r be integers such that 2 <:::: q <:::: (n -1)/2 

andO<::::r<::::(n-1)/2. We set 

j = {q+ r -1 (1さq+r -1 < （n -1)／2) 
n -(q + r -1) ((n + 1)/2 <:::: q + r -1 <:::: n -2) 

and 

k=r-q+l. 

Then 

(sin'I!;--sin ~) sin :;-(sin i:;) (sin ~知． Tsin ~ -sin ~) sin ~-(sin ~) (sin ::)-(sin ~) (sin ::) = 0. 
n n n n n n n 

Proof. (Case 1: j = q + r -1 and k = r -q + 1) 

(sin i;) (sin ;) + (sin ~) (sin ;) = -~ (cos ~ -cos ~ sin ~) (sin =:-) + (sin ~) (sin =:-) = -~ (cos ~ -cos 
n n n n 2 n n ） 

1 (K+ 1)T (K -1)T 
-~ (cos ~ -cos 
2'n  n ） 

11 ___ (q+r)11 _(q+r-2)11 
= -~ (cos ~ -cos 
2'n  n 
11 _ _ (r -q + 2)11 _ _ (r -q)11 
-~ (cos ~ -cos 
2'n  n 
1 (q +r)T (q+ r -2)T 

=-~(cos~ -cos 
2 n n 

1 (q -r -2)T (q -r)T 
-~ (cos ~ -cos 
2'n  n 
11 ___ (q+r)11 __ (q-r)11 

=-~(cos~ -cos 
2'n  n ） 

） 

） 

） 

） 

11 ___ (q+r-2)11 ___ (q-r-2)11 
＋ー(cos~ -cos 
2'n  n 

(sin'J!!--sin ~)sin";-= (sin ~ -sin ~) sin ~ 
n n n 

(Case 2: j = n -(q + r -1) and k = r -q + 1) 

(sin i;-) (sin 四)+（ sin 竺）（ sin 匹）＝（sin~)(sin匹）
n n n n n n 

+ (sin ~) (sin竺
n ） （ n ） 

. (q + r -1)1r ¥ 1. 1r 
= (sin~) (sin::) 

n n 

+(sin 
(r-q+l)1r¥1. 1r 

)(sin::) 
n n 

By Case 1, 

） 

(sin~) (sin~)+ (sin~) (sin~)= (sin r;;--sin~)sin::;. sin ~) (sin ::-) + (sin ~) (sin ::-) = (sin ~ -sin ~) sin ~ n,  ・ n, ・ n,  ・ n, ・ n n,  n 

口
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Lemma 4.2. Let n be an even number. Let q, r be integers such that 2 ::; q ::; n/2 and 

〇::;rさn/2.We set 

j = ｛q+r-1 (1 s q+r -1こn/2-1) 
n -(q + r -1) (n/2 ::; q + r -1 ::; n -l) 

and 

k=r-q+l. 

Then 

(sin'J!!---sin~ 
. T'lr I. j 7r ¥ /. 7r ¥ /. k1r ¥ I. 7r 

sin ~ -sin ~) sin ~-(sin ~) (sin :=)-(sin ~) (sin :=) = 0. 
n n n n n n n 

Proof. We can prove Lemma 4.2 as in the proof of Lemma 4.1. 

We define the set of coefficients凡 whichcorresponds to Mn as the following. 

Definition 4.3. We set In:= {O, 1,..., n -1}. We define 

糾：＝ ｛（釘—釘）/(1- 品) |j,k E In}-

Here, recall that品＝exp(21r,／可／n).

Remark 4.4. For each a E叫 wehave that -a E瓜

The following two lemmas can be found in [2]. 

Lemma 4.5. [2, Remark 3] 

Mn=X叫

Lemma 4.6. [2, Proposition 3] 

1 
{ z EC I ~ < lzl < 1 }c Mn. 
《

口

By using Lemmas 4.1 and 4.2, On satisfies the condition (*). By Theorem 3.3, Lemmas 
4.5 and 4.6, Mn is connected (Main result A holds). 
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