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Overview of the parabolic positive representations of U,(gr)
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Abstract
We give a simplified overview of the construction of a new family of irreducible representations
for split real quantum groups Ug(gr) known as the parabolic positive representations by truncat-
ing the standard positive representations. This corresponds to quantizing the parabolic induction
representation.

1 Positive representations of U, (gr)

Let g be a semisimple Lie algebra over C with root index I and Cartan matrix A = (ai;)i jer. For
simplicity, we will focus on the simply-laced case, but the main results of this paper hold for all semisimple
Lie types. We first define the Drinfeld’s double of the quantum Borel subalgebra using generators and
relations as follows:

Definition 1.1. The Drinfeld’s double Dy(g) is the algebra over C(q) generated by the Chevalley gener-
ators {E;, F;, Kii,K;i}iE] such that it satisfies

K:E; = ¢"E;K;, KiF; =q¢ "F;K,,
KiE; = ¢ ""E;Kj, KiF; = ¢"/F,;K},
K, - K
[Ei, Fy] = 5ij#7 K/K; =KK;,

together with the standard quantum Serre relations for E; and F;.

Definition 1.2. The quantum group U,(g) is defined as the quotient

Uy(g) := Dy(9)/ (KK = D)ics- (L1
Both D,(g) and U, (g) have a Hopf algebra structure which will not be needed.

Definition 1.3. Let ¢ = V=1 with b € (0,1) so that |g| = 1. The split real quantum group Uy(gr) is
defined to be the real form of U,(g) induced by the star structure

E'=E, F'=F, K =K, (1.2)
where ¢* := g = ¢! acts as complex conjugate.

The theory of positive representations is initiated in [4] to study the representations of split real quan-
tum group Uy(gr) and its modular double U,z(gr) [2], such that the generators are represented by positive
self-adjoint operators on Hilbert spaces. This is a generalization of a special class of representations Py
for Uyz(s1(2,R)) discovered by Teschner et al. [19, 20] in his study of quantum Liouville theory, a certain
non-compact conformal field theory. The positive representations for arbitrary semisimple types Uyz(gr)
has been constructed in [7, 8], and recently a geometric interpretation is given in [5].

In the case of U,(sl(2,R)), it is shown in [1, 6, 20] that various properties hold in parallel to the
compact case, such as (1) closure under taking tensor product, (2) existence of a braiding structure,
and (3) Peter-Weyl type decomposition of the regular representations. However in the split real case,
the usual expressions involving direct sums of finite dimensional irreducible representations are replaced



by an appropriate direct integral of continuous slices of this class of infinite dimensional representations
Py with certain Plancherel measure. These properties are now also known to hold at least for type A,
quantum groups due to [9, 14, 23, 24], related to open Toda-Coxeter integrable systems.

Recall that we set ¢ = e™V =1 with b € (0,1) in the split real case. We define the rescaled generators
by

q—q!

Note that = (2sin7b?) "1 > 0.

-1

The following Theorem summarizes the main features of positive representations constructed in [4, 7,

8]:

Theorem 1.4. There exists a family of irreducible representations Py of Uyz(gr) parametrized by the
R>¢-span of the cone of dominant weights A € Pﬂ'{ C b, or equivalently by X == (A1, ..., \n) € RY, where
n = rank(g), such that

o The generators e;, f;, K; are represented by positive essentially self-adjoint operators acting on
L2(RN), where N = l(wq) is the length of the longest element wy € W of the Weyl group.

o ¢;,f;, K; are expressed in terms of Laurent polynomials of the Weyl algebra {e"b“,e%b”’“}ﬁ:l,

where the momentum and position operators act as self-adjoint operators on L?*(RN) satisfying

[Tk, k) = 55

e It is compatible with the modular double structure by interchanging b with b=,

e One can recover any finite dimensional irreducible representations of Uy(g) by appropriate analytic
continuation on the parameters \ € Pﬂg'.

By replacing the Weyl algebra with appropriate quantum variables, we can express the representation
explicitly over a quiver diagram. Let us first recall the notion of quantum torus algebra.

2 Embedding to quantum torus algebra

Let Q = (Q,Qo, B) be a cluster seed, where @Q is a finite set, Qo C Q is the frozen subset, and B =
(€ij)ijeq & skew-symmetric %Z—valued exchange matriz.

Definition 2.1. The quantum torus algebra XqQ is the algebra generated by {X;}icq over C[g] such that
Xin = q72€l-7Xin (21)

where X; are called the quantum cluster variables.
Alternatively, we can let Aq be a $Z-lattice with basis {e;}icq and a skew-symmetric form (e;, e;) :=

€5, then X(? is the algebra generated by {Xx}reaq over C[q%} such that
Xogp = (M XX, (2.2)
By abuse of notation, we write X; := X, and X;, ;,, ... = X€11+5i2+“'+51k‘

A cluster seed can be represented by a quiver with vertex set @, and €;; arrows between node ¢ and
j. We use dashed arrows if €;; = %, which only occurs between frozen vertices (denoted by square nodes
on the quiver diagram).

Definition 2.2. Let ¢ = ¢V~ where b € (0,1). A polarization wy of XqQ on a Hilbert space L2(RM)
is an assignment

X 2™ e (2.3)
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where L; := L;(ug, pk, A\x) is a linear combination of position and momentum operators, and real param-
eters A = (A\x) such that

€ij
[Li, L] = 27; (2.4)

and the center of X;Q acts by scalar. Each generator X; acts as a positive essentially self-adjoint operator
on H and together gives an integrable representation of XQ on H in the sense of [21], i.e. the relation
(2.1) is interpreted as a collection of relations of bounded operators by functional calculus:

Xi\/ilsXJ\v/ilt _ quust)(;/flt)(i\/fls7 VS,t cR. (25)

Note that different polarization that fixes the action of the center are unitary equivalent. Furthermore,

there exists quantum cluster mutations pj : T(? — TqQ between the field of fractions of the quantum
torus algebra which induces unitary equivalence, but we will not need the formula here.

We have the notion of amalgamation of two quantum torus algebras which glues the corresponding
quivers Q := Q * Q' along some frozen vertices, and naturally identifies the algebra

X2 cxlwoxQ. (2.6)

Finally we define the basic quiver, which was first constructed in [11, 17] for all Lie types. We briefly
describe the construction following the systematic approach by [5].

Definition 2.3. Let i,k € I. The elementary quiver Jy (i) has vertices Q = Qo = (I\ {i}) U{i;}U{i,}uU
{ke} with adjacency matrix
[
Cirg = Ciir = 0 Cisip = Cipke = Cheyiy 1= 1. (2.7)

We denote by J(i) the subquiver without the extra vertex {k.}.
Let i= (i1, ...,im) be a reduced word, and {8;}72; a list of positive roots by

5j = Sig Sigy 1 5ij+1(ai1)7 Q; € A+' (28)

The quiver H(i) has vertices Q = Qo = I with adjacency matrix

. sgn(r - 9) aé] /35 = Q5 and Br = Gy,
Cij *= { 0 otherwise. (2.9)

The basic quiver Q(i) is defined by

Q= J7(i1) # I (ig) % - -+ % I (i) * H(J), (2.10)
v TGy if By = ag,
Iy = { Jk(ij]) othzarwis;7 (2.11)

where the amalgamations glue side-by-side the right nodes of J ?&(zk) to the left nodes of J ?E (ig+1) with
the same label.
Finally the symplectic double quiver D(i) is defined by the amalgamation

D(i) = Q™) + Qi) (2.12)
where i°? is the word with opposite order.

Remark 2.4. When i = iy is the longest word, Q(ip) is naturally associated to a triangle, and D(ip) is
associated to the triangulation of a punctured disk with two marked points.

Example 2.5. For g = sly and iy = (3,2,1,3,2,3), the basic quiver coincides with the n-triangulation
of Fock-Goncharov [3].
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We can now state the other characterization of positive representations in terms of quantum group
embedding.

Theorem 2.6. [11, 22] For any longest word iy, there exists a quiver D(ig) such that we have an
embedding of the Drinfeld’s double )
Dy(g) — X

where K; K lies in the center of X(P(i"), In particular we have an embedding

Uy(g) = X0 /(KK = 1).

There exists a polarization wy of X[P(i(’) where mA(K;K}) = 1 and the other n central characters act by
e?™i € Ry, such that the composition with the embedding coincides with the expression of the positive
representations Ph.

Remark 2.7. The embedding for the lower Borel algebra (f;, K}) coincides with the Feigin’s homomor-
phism, and the explicit expression is very simple. On the other hand, the expressions for (e;, K;) is
obtained by repeatedly applying quantum cluster mutations and the expression depends on the choice of
ip and can be very complicated. However, the representations corresponding to different choice of iy are
unitarily equivalent.

Example 2.8. The symplectic double quiver Dy, (ip) of the previous example is presented as follows.
The embedding of U, (sly) can be expressed as paths on the quiver, denoting a telescopic sums (omitting
the last term). Each Cartan generator K;, K} is given by a single monomial as the product of the nodes

along the path.
@
€1
e 1
f2 E\ /® .
H o) O '
&

fi=X1+Xi20+ X123+ X234+ X12345+ X1,23456,

fy
T

7

For example,

ey = Xio + Xio6 + Xi26,17 + X12,6,17,2,

Ko = Xi126,17,2,8-
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For another example of other type, see Example 3.1.

A polarization of this quantum torus algebra recovers the positive representations. We notice that the
explicit expressions of the quantum group generators are given by polynomials in the quantum cluster
variables.

3 Parabolic Positive Representations

3.1 Main Theorem

Let J C I and W; C W be the corresponding parabolic subgroup generated by the simple reflections
{sj}jes. Let is,ip be the longest word of the longest element w; € Wy, wy € W, such that wy = w,;w
for some w € W. Then we can write the longest word as

i = (is.1) (3.1)
for some reduced word i of W. We observe that
Q(io) = Q(is) * Q(H). (32)
We can now state the new construction of a representation of Uy (gr):
Main Theorem. There is a homomorphism Dy(g) — X(P(D such that the image of the generators are
unversally Laurent polynomials (in the sense of quantum cluster mutations).

Furthermore, a polarization of XlPG) induces a family of irreducible representations 775\] of Uq(gr) and
its modular double Uyz(gr), parametrized by A € RINI as positive essentially self-adjoint operators on
L2(RI.

Example 3.1. Consider type Eg and the longest word decomposition
ip = (343 034 230432 12340321 5432103243054321)
corresponding to the chain of parabolic subgroups of the respective root index

A1CA2CA3CD4CD5CE6.
We shaded the portion of D(iy) corresponding to the parabolic subgroups below
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Correspondingly, for example, the parabolic positive representations of Uy (gr) for D5 C FEg can be realized
by modding out the shaded portion, and we obtain the following paths on the reduced quiver D(i).

3.2 Sketch of Proof

The idea of the proof of the Main Theorem is to observe that one only needs to focus on half of the
quantum group embedding to construct a homomorphic image of U, (g).

Definition 3.2. The generalized Heisenberg double ’Hiw(g) is the associative algebra generated by
(eii7 fii, Kii, K§i>i51 satisfying

+ et o
E]eiyqffl] =0, K" +wi K], E;ei’;];l] =0, K" —wyKi (3.3)
and other standard quantum group relations, where w;; € C.
Proposition 3.3. If ’H;w(g) are commuting copies, then
ei:=ef +Kje;, £ =1 +K/f,
K, = K'K;, K, =K/ "K,",

gives a homomorphic image of Uy(g).

Proof. The nontrivial part is to check the Serre relations, which follows since the decomposition has the
same algebraic relations as the coproduct A. O

The usual Heisenberg double [16] corresponds to the case when w;; = 0.

Proposition 3.4. The embedding Dy(g) — Xf(i(’) C X,?(igp) & X(?(i) decomposes as in Proposition 3.3
where (e, £, K K/) generates Hio with

Hiolo) = 1@ X0 3o (g) <5 X200 @ 1.

Therefore it suffices to study one half Q(ip) C D(ig) of the quiver.
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Definition 3.5. Let J C I. The double Dynkin involution of i € I is the unique index i** € I such that
WS = Si=Wo = S;=W W = W jS;x=W. (3.4)

Equivalently
i** = ('[Z*W)*WJ,

where *yy is the standard Dynkin involution, and i*Ws =7 if i ¢ J.

The proof of the Main Theorem now follows immediately from the following Decomposition Lemma,
which is the technical heart of the result.

Lemma 3.6. The embedding H (g) — /’\,’qQ(i”) - Xl?(i” ® /YqQG) can be decomposed into the form
ef =& + Kiel., £t =t/ + K,
K/ =K.L.K, K" =K/'K]
where e/ = £/ .= 0 and K/ = KQJ =114fi ¢ J, such that
o X7 X207 91 and X; €12 X2V for X = e, f, K, K/,
. {eiJ,fiJ,K;-],Kg‘]} ~HF(gs) in XqQ(iJ) where gj C g,
o we have o
<€i7 fi7Ki7 ;> = ,H:;w(g)
on XqQG) for some w;; € {0, 1}.

Proof. The decomposition of f;, K/ follows from explicit calculation using Feigin’s embedding. The de-
composition of e;, K; requires combinatorics of Coxeter moves, namely, if i is the reduced word of w € W
and [(s;ws;) = l(w), then there is a sequence of Coxeter moves that brings

i=(i,...) =i =(.7

where the sequence of Coxeter moves splits into 2 stages, the second of which increase in indices con-
secutively from first to last letter. Together with the explicit construction of the representation of e; by
quantum cluster mutations give the required decomposition. O

4 Applications

4.1 Minimal Positive Representations

Let us consider type A, and take the subset J = {1,2,....n — 1} C I. Then the longest word can be
decomposed as

io = (is1) (4.1)

where i = (n --- 3 2 1) has length n. Hence according to the Main Theorem, we obtain the parabolic
positive representation of Uy(sl(n + 1,R)) on the space L*(R"), which we call the minimal positive
representation, and can be explicitly realized on the quiver diagram as follows.

Theorem 4.1. [12] The polarization of the quiver D(i) fori= (n,...,3,2,1) gives a family of irreducible
representations Py of Uy(sl(n + 1,R)) acting on L*(R™) as positive essentially self-adjoint operators,
parametrized by A € R.
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o

o The non-simple generators eq, fo, a € 1 defined by Lusztig’s braid group action, are non-degenerate,
and hence the universal R operator

The representation has the following properties:

R=K H gp(eq @ £,)

acd
is well-defined. Here KC is the Cartan part and gy, is the non-compact quantum dilogarithm function.
e The Casimir elements Cy, acts by real-valued scalar, and lie outside the positive spectrum [10] of
the standard positive representations.
4.2 Evaluation Modules

Interestingly, this construction gives another model for the evaluation module of the affine L{q(sAln_,.l).
More precisely, by wrapping the quiver around and gluing the top to the bottom, we obtain naturally
a quiver D(i) that describes a positive representation of the split real form of U (sl,41).

Theorem 4.2. The positive representation of Uy (5A[n+1) defined by the polarization of ]5(\1) is unitarily
equivalent to the evaluation module [15] P§

Ug(shyg1) — Uy (i)

of the minimal positive representations 77;\7 of Uy(8n11), where the evaluation parameter p € R is given
by the action of the central element

1
€™ .= 1(Dg+ Dy).

Here Dy is the product of all cluster variables of the middle vertices, and Dy is the product of all vertices
on the right column.
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4.3 Further Discussions

The nice properties of the minimal positive representations suggest that one can investigate further the
structure of parabolic positive representations, including:

e Tensor product decomposition of 73){ ® 735\7,7 since we have seen that the R matrix is well-defined,
and one can also study the spectrum of the Casimir operators. Following the strategy in [13], one
may also ask whether the minimal positive representations admit a semiclassical limit to a tensor
product decomposition without multiplicities.

e To understand the geometric meaning of the cluster structure of D(i) in terms of the partial
configuration space Conf(A) described in [5].

o We observe that the positive representations in the parabolic case are not only universally Laurent
polynomials, but in fact they are always honest polynomials in the cluster variables in any cluster
seed. So it will be natural to give a combinatorial description of the explicit embeddings.

e Omne may also seek generalization to other modules of affine quantum groups U, (gr) by utilizing
some special form of parabolic positive representations as above, or constructing certain “building
blocks” such that one can construct a representation for any quantum Kac-Moody algebra.
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