
1

SPECTRAL SHIFT FUNCTION AND RESONANCES FOR THE 
SCHRODINGER OPERATOR WITH NON-DECAYING POTENTIALS 

MOUEZ DIMASSI 

1. INTRODUCTION 

This is a survey of some old and new results of the author. Some of them will be published 
elswhere. Consider the Schrodinger operators in £ 2 (ffi.n) 

(1.1) Hj(h) = -h2 ,6,. + Vj(x), j = 1, 2, 

where his a small parameter and Vi, Vi are real-valued bounded smooth potentials with differ
ence Vi(x) - Vi(x) of order O(lxl-P) as lxl---+ oo for some p > n. The spectral shift function 
(SSF for short) corresponting to the operators (H2(h), H1(h)) is defined as a distribution, 
,(>., h), on ffi.). by the relation 

(1.2) (e'(·, h), f) := -tr (f(H2(h)) - f(H1(h))), \:ff E C0 (ffi.; ffi.), 

with a normalization condition , ( >., h) = 0 for >. < inf ( a-( H1 ( h)) U a-( H2 ( h))) . The SSF plays 

an important role in perturbation theory for self-adjoint operators. When f(H1(h)) = 0, it 
coincides with the eigenvalue counting function of H2 for >. E supp f. It was introduced in a 
special case by I. Lifshitz [22] and generalized by M. Krein in [20]. The background of the 
SSF theory can be found in [34]. 

In the last thirty years, the asymptotic behavior of the SSF of the Schrodinger operator 
with a long-range or short-range potential has intensively been studied in different aspects. In 
the semi-classical regime, h \,i 0, the Weyl type asymptotics of,(-, h) with sharp remainder 
estimate has been obtained (see [7, 8, 30] and the references given therein). On the other hand, 
a complete asymptotic expansion in powers of h of,(-, h) has been obtained for non-trapping 
energies>. (see [4, 5, 6, 30, 32]) i.e. for energies at which any hamiltonian flow of the underlying 
classical mechanics tends to oo as time tends to ±oo. Similar results are well-known for the 
SSF in the high energy regime, h = l and >.---+ oo (see [7, 8, 25, 28 , 30, 31 , 32]). In [31 , 32], 
it was established that the leading terms of the asymptotic behavior of,(>., 1) as >. ---+ +oo 
only depends on the average value of Vi - Vi. The proof of all the above results follows from 
a beautiful local trace formula in the configuration space due to D. Robert (see Theorem 1.10 
in [32]). However, the proof of this local trace formula, based on the construction of a long 
time parametrix for time-dependent Schrodinger equation, involves the decay assumptions for 
both potentials Vi and Vi-

The relation between the asymptotics of the SSF and resonances was first investigated by R. 
Melrose [24], and then by many authors with successive extensions (see [26] and the references 
given therein). All these works use the scattering theory. In [33], J. Sjostrand proposed a new 

2000 Mathematics Subject Classification. 81Q10 (35P20 47A55 47N50 81Q15). 
Key words and phrases. Stark Schri:idinger operator, spectral shift function, asymptotic expansions, 



2

M. DIMASSI 

approach based on the complex scaling of operators. The scattering determinant is replaced 
by D(z, h) = det(J + K(z, h)), where K(z, h) is a trace class operator whose zeros are the 
resonances (see section 4). Applying this approach, V. Bruneau and V. Petkov established 
in [4] a representation of the derivative of SSF as a sum of harmonic measures related to 
resonances. 

There are only few works treating the SSF of the Schri:idinger operator with non-decaying 
potentials, such as those homogeneous of degree zero, periodic or even of logarithmic decay. 

In [9], the first author established a trace formula relating the SSF and the resonances of 
the periodic Schri:idinger operator with slowly varying perturbation W(hx). Using the Peierls 
substitution method, he reduced the spectral study of the perturbed operator to the study of 
the semiclassical operator E(hDx) + W(x) for a band function E(k) describing the Floquet 
spectrum of the non-perturbed operator. Unfortunately, this method fails at high energy, 
since the band functions are not smooth due to the degeneracy of the Floquet eigenvalues. 

The spectral and scattering theory for Schri:idinger operator with a homogeneous potential 
of degree zero was investigated in [14] (see also [15] and the references there). The asymp
totics of the number of eigenvalues for a perturbation of such an operator below the essectial 
spectrum was studied in [29]. To our best knowledge, the SSF has not been treated. 

The aim of this paper is to fill this gap. We consider Schri:idinger operators with non 
decaying potentials including in particular homogeneous ones of degree zero. 

In the first sections, we study the high energy asymptotics of the SSF. In section 2, we 
compute the trace formulas (Theorem 2.1 ) and the explicit coefficients of all order of the 
weak asymptotic expansion in powers of .\-1 oft(.\, 1) as A --+ oo (Corollary 2.2). The 
k-th coefficient is given by the integral of the difference of a polynomial of degree k with 
respect to the potential and its derivatives as suggested in [31 , 32]. For this we only use a 
standard pseudodifferential calculus combined with some commutator formulas for Ho=-~ 
(see section 6 for the proof, and also [23, 27]). 

In section 3, we give a strong sense to this expansion for potentials homogeneous of degree 
zero, or those analytic and bounded in a complex sector at infinity (Corollary 3.3). For such 
a potential V, say for homogeneous one, the operator H = -~ + V(x) is unitarily equivalent 
to Ho := U0HU_0 = -e-20 ~ + V(x), where U(0)f(x) = en°!2 f(e8x) is a dilation operator 
in L2 (JRn) for real 0. The operator -e-20 ~ + V(x) is analytic for 0 E C. The uniqueness 
of analytic continuation implies the invariance of the SSF under complex dilation. Since 
the resolvent is continued analytically to the lower half plane after a complex dilation with 
C:S0 > 0, a representation formula of(' in terms of the resolvent (Lemma 3.4) enables us to 
show the analyticity and a polynomial estimate oft as well as its derivatives (Theorem 3.2). 
It is now classical to deduce the strong full asymptotic expansion from the weak one using 
these estimates and Lemma 3.5 . 

Next we study the semiclassical asymptotics. We will restrict our attention to potentials 
V homogeneous of degree zero at infinity (i.e., there exists W independent of lxl such that 
IV(x) - W(x)I --+ 0 as lxl --+ oo). The essential spectrum of U0H(h)U_0 is the union of the 
semi-axis t+ e-20lR+ overt in the range W(sn-l ), a band in the lower half plane intersecting 
with lR on W(sn-l) when C:S0 > 0. In section 4, we consider the SSF for A above the range 
W(sn-l ), and generalize the result of V. Bruneau and V. Petkov [5] proving a representation 
of t(.\, h) in terms of the resonances (Theorem 4.1 ). We apply this result to establish a 
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Weyl-type formula for the SSF with optimal remainder estimate O(h1-n). Moreover, under 
resonance free domain condition, we give a complete asymptotic expansion of<;'(>., h). 

Finally, in section 5, we consider>. in the range W(sn-l) and prove a semi-classical Mourre 
estimate away from critical values of Wisn-1. This is a semiclassical version of S. Agmon, 
J. C.-Sampedro and I. Herbst [1] (Appendix C). The proof is based on a construction of an 
escape function for Schrodinger operators adapted to a homogeneous potential. 

Notations: Throughout this paper, his an asymptotic positive parameter going to zero. 
We use fh = O(hN) to denote an h-dependent function that is bounded in magnitude by an 
expression CNhN, where the implied constant CN is independent of h but may depend on 
parameters independent of h. Similarly, we use fh = O(h00 ) or fh = 0 to denote the estimate 
lfl ~ CNhN for every N. For any quantity aj defined for each j = 1, 2 concerning Hj, we 
sometimes denote their difference a2 - a1 by [a.Ji. 

2. WEAK ASYMPTOTICS 

In this and the next sections, we study the high-energy asymptotics of~(>.) = ~(>., 1). Let 
H1, H2 denote the operators (1.1) with h = 1 with potentials satisfying 

(Al) 'Vj are real-valued smooth functions and there exists p > n such that for all a E Nn 

(2.1) 8~'Vj(x) = 0(1), j = 1, 2, 8~(Vi(x) - V1(x)) = O(lxl-P) as lxl--+ oo. 

The following result follows from the standard h-pseudodifferential operators calculus (see 
chapters 7-8 in [11]). 

Theorem 2.1. Assume (Al) . Then the following full asymptotic expansion holds ash",, 0: 
00 

(2.2) tr [f(h2H.)]~ ~ :~:>k(f) h2k-n, 
k=l 

Here r;,o is the measure of the unit ball in lll'.n, and 

Pi(x) = [V]i := Vi - Vi, Pk(x) = [A({D"'V}1a1:,;2k-4)]~ fork 2 2, 

where Pj is a universal polynomial of degree j. In particular, 

(2.4) P2=V2, P3=V3 -~V~V, 

(2.5) P4 = V 4 + ~V~2(V) + ~V2(~V) - ~V~(V2) + ~v1vv1 2 . 

For fin Co"(]O, +oo[), a change of variable and integration by parts yield 

(2.6) roo f(kl(r2)rn-ldr = (-l)k ~G) Joo f(>.)>.'!f-k-ld>., 
lo 2 r( 2 - k) -oo 

with the convention that r(-m)-1 = 0 form EN:= {O, 1, .. . }, and hence 

(2.7) ck(f) = -ak(>.'!f-k-l, f), 



4

M. DIMASSI 

where 

(2.8) 

On the other hand, from (1.2) we have 

As a consequence of Theorem 2.1 and (2.7), we have the weak asymptotics oft(>-) as A-+ +oo. 

Corollary 2.2. For A large enough, the asymptotic expansion 

CX) 

(2.9) ((>-) ~ I>k >,%-k-l 

k=l 

holds in the sense of distribution, where ak are given by (2.8). In particular, modulo 0(.>--00 ), 

t ( >-) is a polynomial of degree ~ - 2 when n ::,. 4 is even. 

3. HIGH ENERGY ASYMPTOTICS 

In this section, we suppose the following analyticity condition in addition to (Al) that 

(A2) There exist c > 0 such that the functions : (0, x) 3] - c, c[ xlRn -+ Yj(e9x), j = 1, 2 
have an analytic extention on 0 to a complex disk D(c) := {0 EC, 101 :s; c}, and the 
estimate (2.1 ) holds for x 1---t ½(e0x) uniformly for all 0 E D(c). 

Remark 3.1. The above condition can be relaxed. In fact, it suffices to assume that : 0 -+ 
½(e0x), has an analytic extension on 0 E D(c) uniformly for lxl > C. In that case we have 
to use in the proof of the below results the distortion analytic method. Here, the condition 
(A2) allows us to use the dilation analytic method which is more simpler for the exposition. 

Our main results of this section are the followings : 

Theorem 3.2. Under (Al) and (A2) , there exists >-o such that~(>-) is an analytic function 
in ]>-o, +oo[ and for every NE N there exists CN such that form> n/2 we have 

(3.1) 

uniformly for A E [>-o, +oo[. 

Corollary 3.3. Under (Al) and (A2) , we have for every integer N 

(3.2) 

where the coefficients ak are given by (2.8). 
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3.1. Proof of Theorem 3.2. Let Hj, j = 1, 2 be two operators satisfying (A2). Fix an 

integer m > n/2 so that the operator G(z) := [ (z - Hj)-1(Hj - zo)-m]: is of trace class (we 

recall the notation [aj]r = a2 - a1). To see this, we write 

(3.3) G(z) = ( (z - H2)-1 - (z - Hi)-1) (H2 - zo)-m + (z - Hi)-1 [ (Hj - zo)-m]: =I+ II. 

The condition (2.1 ) implies that (½-V1)(H2-zo)-m is of trace class form> n/2. Therefore, 
I= (z-H1)-1 (½ - Vi) (H2-zo)-m(z-H2)-1 is of trace class. Now, the m-1-th derivatives 
of the resolvent identity implies that (zo - H1)-m - (zo - H2)-m is a linear combination of 
terms of the form (zo - H1)-i(½ - Vi)(zo - H2)-(m+l-j) with 1 S j Sm. This shows that 
II is also of trace class. 

Let zo be in p(H1) n p(H2) n lR and introduce the function 

(3.4) 

First, we give a representation formula of l;'(.\) in terms of a-+· 

Lemma 3.4. In the sense of distribution, we have 

l;'(>.) = ~'sa-+(>-+ iO). 
7r 

More precisely, for all f E Co"(lR), we have 

(l;', /) = lim ~ J f(.\)'sa-+(>- + iE)d>., 
E \,,0 7r 

where the limit is taken in the sense of distribution. 

Proof. Let f E Co"(lR) and let / E Co"(C) be an almost analytic extension off. According 
to the formula (??), we have 

(3.5) tr[f(H.{ = -~ J Bzf(z)(z- zor x tr[(H. - zo)-m(z - H.)-1J>(dz). 
Since we have a-±(z) = O(l'szl-1 ) and Bzf = O(l'szl 00 ), we may write the right hand side of 
the above identity as 

(l;',!) = -tr[f(H.)] 2 = lim ~( { Bzf(z)a-+(z+iE)L(dz) + { 8z/(z)a--(z-iE)L(dz)). 
1 e\,,O 7r }'Zsz>O J'Zsz<O 

The function a-+(z + iE) (resp. a-_(z - iE)) is holomorphic on the complex domain {z E (C : 

'sz > O} (resp. {z E (C: 'sz < O} ). Thus applying the Green's formula we obtain 

(l;', /) = lim ~ 1 f(>-) (a-+(>-+ iE) - a-_(,\ - iE)) d.\. 
t\,,O 21ri 

Using the above formula and the fact that a-_(,\ - iE) =a-+(>-+ iE) we get the lemma. D 

Now we prove Theorem 3.2. For 0 E lR set for j = 1, 2, 

Hj,0 = -e-20 ~ + ½(e0x). 
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The operator (z - Hj)-1(Hj - zo)-m is unitarily equivalent to (z - Hj,e)-1(Hj,0 - zo)-m for 
real 0. Consequently, the cyclicity of the trace yields 

(3.6) 

for all z E <C+ = {z E <C;'sz > O} and 0 E D(c) n:IE.. 

Fix O > 0, and let z E <C0 = {z E <C; 'sz 2: <5}. Since Hj,0 extends to an analytic type 
A family of operators on D(c) and z E <C0 , the right hand side of (3.6) extends by analytic 
continuation in 0 to the disc D(c') for small enough c' > 0. For 0 E D(d) with 's0 < 0, both 
terms of (3.6) are analytic on <C+ and consequently (3.6) remains true for all z in <C+. 

From now on, we fix 0 = -iTJ, T/ > 0 in D(d). Set Aa,A := {z E <C; Rz > A, 'sz > -a} for 
positive numbers a and A. The following estimate holds uniformly on Aa,l for some positive 
constant a: 

11(-e-20 ~ - z)-1 11 ~ sup (le-20 1.;1 2 - z1-1) ~ CTJ-1(Rz)-1. 
~EJRn 

Using (A2) and the above estimate, we see that 

Hj,0 -z = (-e-20~ -z)(I + (-e-20~ -z)-1V"j(e0x)), 

is invertible for z E Aa,A with sufficiently large A. Moreover, uniformly on z E Aa,A, 

(3.7) Aa,A 3 z--+ (Hj,0 - z)-1is holomorphic, and ll(Hj,0 - z)-1 11 = O((Rz)-1), 

On the other hand, a classical result on trace class operators (see for instance [11]) shows that 

(3.8) 

and hence, again by taking the derivatives of the resolvent identity, we have 

(3.9) 

Next, we write a+(z) = at(z) + a!(z), where 

O"t(z) = tr((z- zor(z - H1,0)-l [(H.,0 - zo)-m]:), 

a!(z) = tr((z - zor [(z - H.,0)-1]: (H2,0 - zo)-m) 

= tr [(z - zor(z - H1,0)-1[V,0]i(H2,0 - zo)-m(z - H2,0)-1]. 

From (3.7), (3.8) and (3.9) we deduce that the RHS are holomorphic in Aa,A which implies 
that.;'(>..)= ¾<s(at(>.. + iO) +a!(>..+ iO)) is analytic in ]>..o, +oo[ for a large constant >..o. 

On the other hand, the estimates (3.7), (3.8), (3.9) and the fact that I>.. - zol = O(>..m) 
imply that lat(>..+ic:)I, la!(>..+ic:)I = O(>..m-1), uniformly for >.. > >..o » 1 and c E [O,c:o[ for 
some co sufficiently small. Consequently, 

c;' (>..) = .!_'sa+(>.. + iO) = .!_'s(at(>.. + iO) +a!(>..+ iO)) = O(>..m-l ). 
n: n: 

This ends the proof of Theorem 3.2 for N = 0. For N 2: 1 we take derivatives of a+(z) 
with respect to z and repeat the same arguments as above. 
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3.2. Proof of Corollary 3.3. The proof of Corollary 3.3 is a simple consequence of Theorem 
3.2 and the following lemma. Let Fh'l/J be the semiclassical Fourier transform: 

Fh'lj;(x) = _l_ { eitx/h'lj;(t)dt. 
21rh }ffi. 

Lemma 3.5. Let 'lj; E C0 (JR), and let fh be a C 00 function in lR, depending on a parameter 
h E (0, 1]. We suppose that, there exist m E lR and o E [0, 1[ such that for all k EN, 

a 
(3.10) ( 8xl fh(x) = O(h-m-ko) asµ--+ +oo uniformly for x E JR. 

Then for all NE N, there exists hN > 0 such that : 

(3.11) h'l/J * fh(x) = t (-1~t 'lj;(kl(o)(:xlfh(x) + O(hN(l-o)+m), 
k=O 

uniformly for x E lR and h E (0, hN]- In particular, if 'lj; = 1 near zero, then 

(3.12) 

Proof. By a change of variable, we have 

(3.13) Fh'l/J * fh(x) = L F1'lj;(t)fh(x - ht)dt. 

Applying Taylor's formula to the function t f------t fh(x - ht) at t = 0, and using (3.10), we get 

N-1 ( )k 
(3.14) fh(x - ht) = L ft\x) -!~ + O(hN(l-o)-mtN). 

k=O 

Inserting the above equality in (3.13) and using the fact that L (-itlF1'lj;(t)dt = 'lj;(k)(o) we 

obtain (3.11). □ 

Now we pass to the prove of Corollary 3.3. Let g E C0 (]½,~[)be equal to 1 near one. For 
h > 0, we set fh(x) := g(x)f;'(/i'I). Using Lemma 3.2, we see that the function fh satisfies all 
the assumptions in Lemma 3.5 with O = 0. Let 'lj; E C0 (JR) be as in Lemma 3.5 with 'lj; = 1 
near zero. According to Lemma 3.5, we have 

(3.15) 

On the other hand, a simple calculation shows that 

h-2 Fh'l/J * fh(x) = h-2 L Fh'l/J(x - t)g(t)((t/h2 )dt = L Fh'l/Jh (x - th2) g(h2t)((t)dt 

= ((,Fh'l/J (x - .h2) g(h2 .)) 

(3.16) = tr [Fh'l/J (x - h2 H2) g(h2 H2) - Fh'l/J (x - h2 H1) g(h2 H1)]. 

For 0 < h < < l, h2 H. is an h-pseudodifferential operator. According to [31 , 32] (see also 
chapters 11-12 in [11]), the right hand side of the last equality has a complete asymptotic 
expansion in powers of h2 . Combining this with (3.12), we get 

00 

h-2 Fh'l/J * fh(x) = h-2 fh(x) + O(h00 ) = h-n L aj(x)h2j + O(h00 ). 

j=l 
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Taking x = 1 and >. = µ 2 we obtain 

00 

,;'(>.) = ).~ L aj(l)>.-j-1 + O(>.-oo). 
j=l 

We recall that fh(x) = g(x)t(x/h2) and g(l) = 1. This ends the proof of Theorem 3.3. The 
explicit formula of aj is given by (2.8) in Theorem 2.1. 

Remark 3.6. Theorem 3.2 remains true if Vi is an homogeneous potential of degree zero and 
smooth on ]Rn\ {0}(i.e. a pur homogeneous potential of degree zero). In fact, according to the 
the proof of Theorem 3.2, one need only that the operator L2 (JRn) 3 u--+ Vi,e(x)u(x) E L2 (JRn) 
is analytic with respect to 0 E D ( c) and uniformly bounded. 

4. SEMICLASSICAL ASYMPTOTICS 

In this section we consider the semiclassical Schrodinger operators H1 (h) and H2(h) given in 
(1.1). To simplify the presentation, let us assume, throughout this section, that the potentials 
arc homogeneous of degree zccro at infinity. More precisely, in addition to the conditions 
(Al) , (A2) we suppose 

( A3) There exists a homogeneous function W of degree zero such that 

(4.1) lim (v1 (x) - W(x)) = 0. 
lxl➔oo 

The essential spectrums of the operators H1 (h) and H2(h) coincide with the semi-axis 
[minwEsn-1W(w),+oo). For ':s0 =/= 0, we have 

(4.2) O"ess(H1,0(h)) = O"ess(H2,e(h)) =Se:= {e- 20 s + t; s 2". 0 and t E W(sn-1)}. 

In fact, we easily see O"ess(-e-2eh2~ + W(x)) = Se by Weyl's criterion, and (4.2) follows from 
(4.1 ) and Theorem 5.35 in [21] 1 . Consequently, W(sn-l) = O"ess(H1,e(h)) nlR is included in 
the essential spectrum of the distorted hamiltonian Hj,e(h). For this reason, we will exclude 
the energies in W ( sn- l) in this section. 

Fix an interval J C lR with inf J > maXwEsn-1 W(w). Let ResHj(h) denote the set of 
resonances, i.e. the eigenvalues of the Hj,e(h) in the lower half complex plane near I. 

Theorem 4.1. Under (Al) -(A3) , there exist an h-independent open complex neighborhood 
n of J and a holomorphic function r(z, h) inn satisfying 

(4.3) lr(z,h)I:::; ch-n 

such that for h small enough and >. E J, it holds that 

(4.4) <;'(>., h) = C::Sr(>., h) + [ L l>---r:s:12 + L 8(>. - w)] 2 
wEResH.(h)nr! WEO"pp(H.(h))nr! l 

1Theorem 5.35 [21] : Let T be a closed operator on a Hilbert space H. and let A be a relatively T-compact 
operator. Then O"ess(T) = O"ess(T + A). 
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As stated in the introduction, for the Schrodinger operator with long-range perturbations 
decaying at infinity (i.e., Vi = 0), the proof of the above theorem is due to V. Bruneau and 
V. Petkov [4]. The main ingredient in the proof of Theorem 4.1 is Proposition 4.2 . 

By Lemma 3.4, we have 

where 

For 0 E Ill, we introduce 

Hj,0(h) = -h2e-20 ~ + ½(e0x). 

As in the proof of (3.6), analytic continuation argument shows that, there exists 0o small 
enough such that for any 0 E D(0, 0o) we have 

(4.5) a+(z, h) = (z - zortr[(z - H.,0(h))- 1 (H.,0(h) - zo)-mJ:, ~z > 0. 

From now on, we fix 0 = i77 with 77 > 0, and we let n be a bounded complex neighborhood 
of J with TI c n0 := {z EC; Rz > a, ~z > -77}. Now, as in the proof of Theorem 1.5 of [4] 
(see also), we will reduce the study of the r.h.s. of ( 4.5) to the study of a finite rank operator. 

Proposition 4.2. There exist finite rank operators Kj = Kj(z, h), j = 1, 2, in L2 (llln) such 
that rankKj = O(h-n), IIKill = 0(1) and 

(4.6) a+(z, h) = [tr ((Id+ K.)-18zK.)]~ + k, 

where k = k(z, h) is a holomorphic function inn satisfying the estimate lk(z, h)I = O(h-n). 

Proof. Let M, R be two large constants, X, x E C0 (]-2R, 2R[; [0, 1])) equal to one on [-R, R] 
with x = 1 near suppx and f E C0 (] - 3R, 3R[; [0, 1]) equal to 1 on [-2R, 2R]. We define 

K(h) := iM f (-h2 ~ + lxl 2 ) x(-h2 ~)x(lxl 2)x(-h2 ~)f (-h2 ~ + lxl 2 ) , 

Clearly, K(h) is a finite rank operator and 

(4.7) rankK(h) ~ rankf(-h2~ + lxl 2) = O(h-n). 

From the functional calculus for h-pseudodifferential operators, we know that the Wey! symbol 
of the operator f (-h2 ~ + lxl 2 ) has an asymptotic expansion of the form: 

N 

L hk flkl(1~1 2 + lxl 2)ak(x, ~) + O(hN ((x, rn-=), \:JN, 
k=O 

with symbols ak(x, ~) depending on x'", ~a with lal ~ 2k (see the proof of Theorem 8.7 in 
[11]). Combining this with the fact that jCkl(l~l 2 + lxl 2)x(l~l 2 )x(lxl 2 ) = 0 fork~ 1 as well 
as the fact that ill(l~l 2)x(m)(lxl 2 ) = 0 for l,m ~ 1, we deduce from the composition formula 
of h-pseudodifferential operators that 

(4.8) K(h) = iMOph (!(1~1 2 + lxl 2 )2x(l~l 2 )2x(lxl 2 )) + Op,:i(h=((x,rn-=). 

Set, for j = 1, 2, 

(4.9) 
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Then, modulo O(h00 ((x,rn-00 ), the symbol of Hj,R(h) is given by 

Hj,R(x,E) = e-20 1E1 2 + Vj,0(x) - iMJ(IEl 2 + lxl 2 )2x(IEl 2 )2x(lxl 2 ), 

and for z E n, IHj,R(x, E) - zl 2 = R1 + R2 with 

R1 = [IEl 2 cos(20)R(½,0 - z)] 2 , 

R2 = [IEl 2 sin(20) + Mf (IEl 2 lxl 2) x 2 (IEl 2)x(lxl 2 ) + 's(z - ½,0)] 2 . 

Choose R large enough so that R > 2supxEJRn,zE!1IR(½,0(x) - z)I. It follows that 

(4.10) R1 2 C(l + IEl 2)2 for IEl 2 2 R, X E ]Rn, z En. 

Next, we choose M large enough so that M > supxEffi.n,zE!1l's(z - ½,0(x))I- Then 

(4.11) R2 2 (M + 'sz - 'sv'.f,0(x))2 2 c > 0 for IEl 2 :SR, lxl 2 :SR, z En. 

It remains to esgtimate IHjR(x, E) - zl for IEl 2 :S R and lxl 2 2 R. From (2.1) and the 
assumptions (A2) , (A3) , we have for j = 1,2, 

Rv'.f,0(x) = W (i:
1

) + oR(l), 'sv'.f,0(x) = oR(l), 

Since a:= in£zEnRz > supxESn-1 W(x) =: (3, it follows that for 0 small enough 

( 4.12) R1 2 (Rz - W ( lxxl) + oR(l) - cos(20)IEl 2 ) 
2 

2 c > 0 for IEl 2 < a - (3 - 2cos(20) 

On the other hand, for IEl 2 2 2 c~~(2o) and lxl 2 2 R, we have 

(4.13) R2 2 (sin(20)IEl 2 + Mf (IEl 2 + lxl 2 ) x 2 (IEl 2 )x(lxl 2 ) + 'sz + OR(l)) 2 2 c' > 0, 

uniformly for z E !1 provided that !1 c {z EC, 'sz 2 -77} with O < 7/ « 1. 

From (4.10), (4.11), (4.12) and (4.13) we deduce that, uniformly for (x,E) E JR2n and z En, 

(4.14) IHj,R(x, E) - zl 2 C(l + IEl 2), 

modulo O(h00 (x,E)-00 ). Hence, for h small enough, the operator Hj,R(h) - z is elliptic for 

z E n. Therefore, z - HjR(h) is invertible for h small enough, and 

(4.15) 

uniformly for z En. Moreover, for h small enough and z En, (z-Hj,R(h))- 1 is an h-pseudo
differential operator. By construction, we have 

which yields 

(4.16) (z - Hj,0(h))- 1 = (z - Hj,R(h))- 1 (1d - K(h)(z - Hj,R(h))- 1)-l, 

uniformly for z E n and h small enough. 
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We can now decompose the right hand side of (4.5) as a-+(z, h) =Ii+ I2 + I, where 

Ij = (-l)j(z - zortr[ ((z - Hj,0(h))- 1 - (z - Hj,R(h))-1) (Hj,0(h) - zo)-m] 

= (-l)j(z - zortr [ (z - Hj,R(h))- 1 K(h)(z - Hj,0(h))- 1(Hj,0(h) - zo)-m], 

J = (z - zortr[(z - H. R(h))-1(zo - H. 0(h))-m] 2
. , , 1 

Clearly , I is analytic on n. On the other hand, the h-pseudo-differential calculus shows that 
I= CJ(h-n). Now we treat Ij. From the resolvent equation we have 

m-1 

(z - zor(z - Hj,0(h))- 1(zo - Hj,0(h))-m = (z - Hj,0(h))- 1 - L (zo - zl(zo - Hj,0(h))-k-l _ 
k=O 

Using the above equality and the cyclicity of the trace we deduce that 

. ( 1 ~ 1) Ij = (-1)1 tr (z - Hj,0(h))- K(h)(z - Hj,R(h))- + gj(z, h), 

wher z-+ gj(z, h) is analytic on n and lgJ(z, h)I = CJ(h-n) uniformly for z En. Inserting the 
right hand side of ( 4.16) in the above equality and using the cyclicity of the trace, we obtain 

Ij = (-l)jtr ( (Id- K(h)(z - Hj,R(h))-1)-
1 K(h)(z - Hj,R(h))-2) + gj(z,h) 

= (-l)Jtr(ld+KJ(z,h))-18zKj(z,h)) +gJ(z,h), 
where 

( 4.17) 

It follows from (4.9) and (4.15) that 

(4.18) rankKj(z, h) = CJ(h-n). 

This concludes the proof of Proposition 4.2 . □ 

Proof. of Theorem 4.1 . This follows from a routine application of Proposition 4.2 . For the 
reader's convenience we give the main steps of the proof. Set 

Dj(z, h) = det (Id+ Kj(z, h)). 

Notice that 

( 4.19) 

and recall that the resonances of Hj(h) inn lie in the lower half plane, and are the eigenvalues 
of Hj,0(h). Combining this with (4.16) and (4.18) we deduce that the zeros of Dj(z, h) in S1 
are the resonances of Hj(h) in !1, and that the multiplicity agree. Hence, one has 

(4.20) Dj(z, h) = Gj(z, h)IlwERes(H1(h)),\J'w:c;o (z - w), 

where Gj(z, h) are non-vanishing holomorphic functions in !1. On the other hand, using (4.16) 
and (4.20) we deduce by a standard arguments of complex analysis that Gj(z, h) = CJ (eO(l)hn) 
and IGj(Z, h)I ::0, C1e-C1 h-n on f2 and f2 n {l'szl ::0, E} respectively. Combining this with the 
Harnack inequality we get 

IBz ln (Gj(Z, h)) I= CJ(h-n), 
which together with (4.20) yields Theorem 4.1. □ 
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Remark 4.3. The above arguments also show that the number of resonances of Hj(h) inn 
is O(h-n). For the details we refer to [4]. 

As in [4] (Theorem 2) and [9] (Theorem 2-3), the following result is a consequence of 
Theorem 4.1. 

Theorem 4.4. Assume {Al) -{A3) and that v'xv'.f(x)-/- 0 if v'.f(x) E J for j = 1,2. Then 
we have 

( 4.21) 

uniformly for>. E J, where 

co(>.)= i.o j [ ( >. - V(x)) ![ dx. 

Moreover, if there exists o > 0 such that 

(4.22) Res(Hj(h)) n (1 - i[0, h0J) = 0, j = 1, 2, 

then~'(>., h) has a complete asymptotic expansion with smooth coefficients 

(4.23) 
k=O 

as h \, 0 uniformly for>. E J. In particular (21rtbo(>.) = c~(>.). 

Proof. Let g and W be smooth functions with supports in small neighborhoods of J and zero 
respectively, with W = 1 near zero. According to Theorem 12.2 in [11] (see also [13, 18, 19, 
30, 32]), the following full asymptotic expansion holds uniformly for >. E J as h \, 0: 

00 

(4.24) 
k=O 

When ~ were a monotone function as in the case of eigenvalue counting function, the Weyl 
asymptotis (4.21) would follow simply from this formula by a Tauberian argument. However, 
it is not the case for the SSF. To overcome this difficulty, we use ( 4.4). 

In fact, let ~.i be the sum over resonances and eigenvalues of Hj in the RHS of (4.4). Then 
they are positive in the sense of distribution, and Tauberian arguments work for fa and 6-
To treat the term involving 'sr(>., h), notice that, by Cauchy's inequalities and (4.3), we have 
l8}r(z, h)I ~ Ckh-n, which together with Lemma 3.5 yields 

(4.25) Fh W * (g'sr)(>., h) = g(>.)'sr(>., h) + O(h00). 

This completes the proof of (4.21). For more details we refer to Theorem 2 in [4]. 

Let us now sketch the proof of (4.23). By hypothesis (4.22), the RHD of (4.4) equals 

(4.26) ((>., h) = 'sr(>., h) + [ L i>.--'s:12 ] 2 
wEResH. (h)nr1 1 

For fixed w with 'sw ~ -h0 , we apply Lemma 3.5 to fh(>.) = 1~'.'.'!\;l to get 

-'swg(>.) oo 
Fh W * fh(>., h) = I>._ wl 2 + O(h ). 
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Combining this with Remark 4.3 , (4.25) and (4.26), we obtain 

h \JI* (g()(>.., h) = g(>..)f (>.., h) + O(h00 ). 

Therefore, (4.23) follows from the weak asymptotics (4.24). □ 

Remark 4.5. Notice that if Vi = W is a pure homogeneous potential of degree zero then 
the operator H 1(h) = -h2 ,6,. + W(x) has no eigenvalues (see [14]). On the other hand, the 
arguments in the proof of Theorem 3.2 and Proposition 4-2 show that H1(h) = -h2 ,6,. + W(x) 
has no resonances near>.. for>..> supW. In this case we may write (4.4) as follows 

-8'w 
f (>.., h) = 8'r(>.., h) + L I>.. 12 + L o(>.. - w). 

wEResH2(h)n!1 - W WE<Tpp(H2(h))n!1 

In general one cannot exclude the existence of embedded eigenvalue of a perturbation of pure 
homogeneous potential (see [1, 15]). Nevertheless, as will be shown in the next section the 
only possible threshhold energies of H1(h) are the critical eigenvalue of W. 

5. SEMI-CLASSICAL MOURRE ESTIMATE 

In this section, we prove a semi-classical Mourre estimate away from critical values in 
W ( sn-l). This shows that the only possible threshhold energies of H1 ( h) are those in 

Ccr = {>.. E JR; :lw E sn-l such that W(w) =>..and VW(w) = O}. 

From now on, we denote V = Vi and H = -h2 ,6,. + V(x). We assume 

(A4) 

(5.1) 

V E C 00 (1Rn; JR), and there exists a homogeneous function W E C 4(1Rn; JR) of degree 
zero such that 

lim (xaa:v(x) - xaa:w(x)) = 0 for all lal + l,BI S 4. 
lxl-+co 

We introduce a function F(x) with a positive parameter ,B and a differential operator Ap by 

1 
(5.2) F(x) = 2(1- 2,BV1(x))lxl 2 , 2Ap =VF· hDx + hDx · VF. 

Theorem 5.1. For>..(/:. Ccr, there exist small positive constants E, ho and compact operators 
K1, j = 1, 2, such that, for ,B > 0 small enough and f E C0 (]>.. - E, >.. + E[; JR) we have 

(5.3) f(H)[H, Ap]f(H) ?. Chf(H)2 + K, 

uniformly for h E]O, ho]. 

Proof. A straightforward calculation shows that 

i[H, Ap] = 2h(hD, (V ® V F)hD) + ,Bhlxl 2 IVVl 2 + r(x, h) 

where V ®VF= Id - ,BV ® V (lxl 2V(x)) is the Hessian matrix and 

h3 
(5.4) r(x, h) = - 2 ,6,.2 F(x) - h(l - 2,BV(x))x · VV(x). 

It follows from the assumption (5.1) that V ® V (lxl 2V(x)) is a bounded symmetric matrix. 
Hence, for ,B small enough, we have 

2h(hD, (V ® V F)hD)?. -h2 ,6,.. 
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The condition (5.1) also implies that r(x, h) is a continuous function decaying at infinity. By 
Rellich's theorem, r(x, h)(H +i)-1 is compact, and r(x, h)f(H) = r(x, h)(H +i)-1(H +i)f(H) 
is also compact for all f E C0 (IR.), since (H + i)f(H) is bounded. Therefore, there exits a 
compact operator K1 such that for fJ small enough, we have 

(5.5) f(H)i[H,Ap]f(H) 2 hf(H)H13f(H) + K1, H13 := -h2~ + fJlxl 2IVVl2. 

Now we fix>. r/. Cr. Then there exist E, K > 0 such that 

(5.6) IVW(w)I 2 K, for all w E sn-l with W(w) E]>. - 3E, >. + 3E[. 

We divide the unit sphere sn-l into three open subsets sn-l = 0 1 U 0 2 U 0 3, where 

01 = {>.- 3E < W(w) < >. + 3E}, 02 = {W(w) < >. - 2E}, 03 = {>. + 2E < W(w)}. 

Let {xo, Xl, X2, X3} be a smooth partition of unity of IR.n, I:f=l Xk(x) = 1, satisfying 

suppxo C {x E IR.n; lxl :s; R}, and xo(x) = 1 for lxl < R/2, 
X 

SUPPXk C {x E IR.n; lxl > R/2, r;f E Ok}, and x · v'Xk(x) = 0 for lxl > 3R/4. 

We choose R large enough such that for lxl > ~ one has 

(5.7) llxl2IVV(x)l2 - lxl2IVW(x)l21 :s; i, IV(x) - W(x)I S ~-

By the so-called IMS localization formula, i.e., 

3 3 

H13 = LXkHf3Xk - h2 L(Vxk)2, 
k=O k=O 

it follows from (5.5) that 

3 

(5.8) J(H)i[H, Ap]f(H1) 2 h L lk + K2, lk = J(H)xkHf3Xkf(H), 

where 

k=O 

3 

K2 = K1 + f(H)xoH13xof(H) - h2 L f(H)(Vxk) 2 f(H) 
k=O 

is a compact operator for the same reason as K1, since xo has a compact support and 
I:f=0 (v'Xk)2 tends to zero as lxl --+ oo by the homogeneity of Xk· 

First, we prove (5.3) for j = l. Let us investigate Ii, 12 and h- We begin with fi. On the 
support of x1, we have by the homogeneity of W, 

lxl 2 IVW(x)l2 2 K. 

Combining this with (5.7), we obtain x1H13x1 2 ¥xi and hence 

(5.9) Ii 2 h;f} f(H)xif(H). 

Next, we study 12. From now on we restrict the support off to]>. - E, >. + E[. This implies 
f(t)(t - >.) 2 -1cf(t), and hence, by the spectral theorem, 

(5.10) f(H)(H - >.) 2 -Ej(H). 
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On the support of x2, we have 

12 2 hf(H)x2(-h2 !:i)xd(H) = h(h,1 + 12,2), 

h,1 = f(H)x2(H - >.)x2f(H), 12,2 = f(H)x2(>. - V)x2f(H). 

Since h,1 = f(H)(H->.)x§f(H)+h2 f(H)(!':ix2)x2f(H)+2hf(H)Vx2·hV f(H), the estimate 
(5.10) and the fact that f(H)!':ix2, f(H)Vx2 are compact operators as well as that hV f(H) 
is bounded lead us to the estimate 

h,1 2: -Ef (H)x§f (H) + K3, 

where K3 is a compact operator. 

On the other hand, on the support of x2 we have >. - V 2: ~E. Therefore 

h,2 2: ~cf(H)x~J(H). 

Summing these estimates about h,1 and h,2, we get 

1 2 
(5.11) h 2: 2cJ(H)x2f(H) + K3. 

Finally, we show that his a compact operator. On the support of X3, one has V(x) 2: >.+-¥
Thus, the support of X3 is contained in the classically forbidden region of the operator f(H). 
In particular, by the semiclassical Weyl calculus, one has f(H)X3 = ('.) (h00 (t)-00 (x)-00 ) on 
the symbolic level. Therefore f(H)X3, and hence h, are compact operators. 

Combining this with (5.8), (5.9), (5.11) and using the fact that f(H)x5f(H) is also a 
compact operator, we get, with another compact operator K4, 

(5.12) f(H)i[H, Ap]f(H) 2: ~ min (K/3, c) f(H) 2 + K4 

This ends the proof of the theorem. □ 
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