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PARABOLIC TRANSMISSION EIGENVALUES-FREE REGIONS FOR
MAXWELL EQUATIONS

VESSELIN PETKOV

1. INTRODUCTION

Let B, E,H,H € HY(2 : C?) be vector-valued functions in open bounded domain 2 C R3
with C* boundary I' satisfying the system

curl E = i)\{LH, curlb? = i)\‘fﬂ%l req, (1)
curl H = —i\yE, curl H = —iA\yE,
with boundary conditions
VAE=vANE vAH=vAH zel. (1.2)

Here v(z) is the exterior unit normal vector of I" at x € I, and (), ¥(x), u(z), ii(x) are pos-
itive smooth functions. The values A € C\ {0} for which (1.1)-(1.2) has a non-trivial solution
(E,E,H,H) # 0 are called interior transmission cigenvalues (ITE). These eigenvalues play
a crucial role in the linear sampling and factorization methods in inverse scattering. We refer
to [2] for the results of these topics and related references.

The (ITE) for the wave equation are studied very intensively in the last 20 years in many
works. The main problems were the discreteness of the (ITE) in C and their location in the
complex plan. A more difficult problem is the existence of (ITE) and the Weyl asymptotic
of the counting function N(r) = 4{)\; € C: |\;| <r} as r — oo (see [8]). For the location of
the transmission eigenvalues the reader may see [10], [11], [12] and the reference cited there.
The analysis of the (ITE) for Maxwell equations attired the attention of many researchers.
Under different assumptions the discreteness of the (ITE) has been established in [4], [1], [7],
[3]. The location of the (ITE) has been examined in [3] and under the hypothesis

d(z) = ~y(@)i(x) = y(@)p(x) # 0, y(x) # A(x), p(x) # jlx), Vo € T,
the authors prove that for any ¢ > 0 there are no (ITE) in the domain
{AeC: |[ImA| > ¢/Re)|, |[ReA| > C. > 0}.

As ¢ \ 0, one could have C, / oo and the region, where | Re A| is bounded, is not covered
in [3]. As in the case of wave equation [10], we expect that if (ju(x) — fi(x))d(x) < 0, x € T,
then there exist an infinite number of (ITE) with |ReA| < 1 converging to the imaginary
axis. On the other hand, in the case studied in [3] the celebrated complementing condition
of Agmon, Douglas and Nirenberg is satisfied.
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Here we discuss transmission eigenvalues-free regions in C in the isotropic case with
analogy with the results in [10]. Notice that in this case the complementing condition men-
tioned above is not satisfied. In a recent paper under the condition

p(x) = jx), y(z) # (), Ve €T (1.3)
G. Vodev proved in [13] that there are no transmission eigenvalues in the region
{AeC: [ImA > Ci(1+|ReX)™7}, C1 >0 (1.4)

with a constant C; > 0 independent of . Under stronger assumptions we improve [9] the
above result in the following

Theorem 1. Assume the conditions:
wx) = i(x), dyp(z) = doi(z), v(z) # H(x), Vo €T, (1.5)
grad (logv)(z) = grad (log¥)(z), Vz € T. (1.6)

Then there ezists a constant Cy; > 0 independent of A such that there are no transmission
eigenvalues in the region

A={NeC: [Im)| > Ci(1+|ReA)**}. (1.7)

The condition (1.6) is related to our argument and it is not clear if it is possible to obtain
the eigenvalues-free region (1.7) without it. On the other hand, it is natural to conjecture
that under the assumption (1.5) one has an eigenvalues-free region {\ € C : |[Im \| > Cjy > 0}
with a suitable constant Cy > 0 (see [11] for the results concerning the wave equation).

2. PRELIMINARIES

From (1.1) one deduces

curlcurl B = A2yuE + A curl .

grad (p)
1z

On the other hand, div (vE) = div (§E) = 0 and

grad (7) grad )
v

div E + JE)Y =0, div E + ( B =

Therefore, E satisfies the system

L(E) = —AE — N*yuE — grad (grad (log y), E) — grad (log j1) A curl E = 0,
while E satisfies the system

L(E) = —AFE — N234E — grad (grad (log 4), E) — grad (log i) A curl E = 0.
For E = (E\, Es, E3) consider the operator

grad (grad (log 7). B)) = arad (30, (log ) B ) = (3 01, (0g7)0, Bv)
k k

(Z TiTk (log ) Ek) =123

=123
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and set

ml,j,k(l'>aw; 7) = auc (logﬂ/)az‘w Ml(x>aac; ’Y) = {ml,j,k(xv 817 ’\/)}

jk=1,2,3"

mo(w,0:57) = 02,1, (l0g ), Mo(wi7) = {moele,0.57) }

In the same way we get

k=123

grad (log ) A curl E = My (x, 0,3 p) E.
We can write the equation for E close to the boundary as
—AE — (My(2,0:;7) + My(,05; ) E + Mo(z;7) E — Nyl = 0
and similarly, one has
—AE — (My(2,0434) + Mu(,05; ) E + Mo(w;9) E = NAAE = 0.

Here My (x,0,;7), Mi(x,0y; 1) are first order matrix-valued differential operators, while
Mo (z;7) is a smooth matrix. We use similar notations for the equation for E.
Introduce the sets
Zy = {z€C:Rez=1, 0<|lmz| <1},
Zy = {z€C:Rez=—-1, 0<|Imz| <1},
Zs = {z€C:|Rez| <1, |Imz|=1}.

Set A2 = 73, 2 € Z1 U ZyU Z3, 0 < h < 1. Then we obtain the system

{—hQAE — h(My (2, hdy;7) + My, hdy; 1)) E + W2 Mo(a;7)E — 2yuls = 0,

A - A A S
CR2AE — h( M (2, hdy: 3) + M (@, hde; D) E + B2Mo(:3)E — z3pE =0, © =
(2.1)
with boundary conditions
. 1 1 - 5
Eltan = Eltan, VA (;curl E) =VvA (EcurlE), zel. (2.2)

Here w C Qs a small neighborhood of the boundary I'. Let D, = —id,,,j = 1,2,3, grad f =
{D., f}j=123. Consider the geodesic normal coordinates (y1,y’) € R3 on a neighborhood of
a point zo € I' determined as follows. For a point = € w, ¢/(x) is the closest point in I" and
y1 = dist (x,T). Let v(x) be the unit normal in the direction of increasing y; to the surface
y1 = constant through z. Thus v(x) is an extension of the unit normal vector to a unit vector
field. The boundary I' becomes y; = 0 and

z = ayny) = BW) + yiv(y).

Therefore, setting D, = —id,,, one has

1 1 1 1
N — IE = - DVE an ) |tan d _Enor an — i _E an /) |tan,
v i'ucur |tan l/«( tan)|tan + (gra (/1» ) lgo(ﬂ |tan)
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where E,o := (E, V), Eng = (E,v). From (2.2) we get for z € I’ the boundary conditions
Etan — Eta7L =0,
%(DVEtan)han - l(grad Eror)|tan — %(DVEtan”tan + %(grad Enor)'tan
= i1 - )(Em,a y>|,an, (2.3)
div £ + {(grad (log ), E) =

div E 4 (grad (log %), E) =

Next for a vector-valued function u = (u17 ug,uz) € C* we have the equality

divu = gdivulayn, o) = (Dl 1), 1(0)

+ZZ%Dyﬂk( (y1,9)) (2.4)

where (u(a(y1,y)), v(y)) = U’nor(yl:y )-

Below we introduce some notations for h-pseudo-differential operators (see [6] for more
details). Let X be a C*° smooth compact manifold without boundary with dimension d > 2.
Let (z,€) be the coordinates in T*(X) and let a(z,&, h) € C°°(T*(X)). Given £ € R, > 0
and a function, one denotes by S% the set of symbols so that

0202a(x, &, h)| < Copht 1) o VB, (2,€) € T(X).
The h—pscudo-differential operator with symbol a(z, &, h) is defined by
On(@f)(e)i= (2rh) ¢ [ e (o, ¢ ) (w)dyde.
T+ X
Also, as in [10], we introduce for k € R, 0 < § < 1/2, the class of symbols S¥ such that
10a0sa(w, )| < Cagh™ 1" ()", Va, V5.
We will recall some results for the Dirichlet-to-Neumann map (see [10], [5]). Setting

n =~ > 0, consider the operator

P(My, Mo; h)F = (=h*A, — hMy (2, hd,) + h* Mo (z))F.

In the geodesic normal coordinates (y1,) close the boundary it has the form
P(My, Mosh) = h*Dj +1(y. hDy) + hlai(y), hDy) — ihMy(y, hD,) + h* Mo(y)
with 7(y, ') = (R(y)n/, 1), q1(y) € C>. Here

{Z Zyxrz gii }mJ 2 {<ag—:;n %>}ix,j:2

is a symmetric (2x2) matrix and r(0,y’, 1) = ro(v/, 1), where ro(y/, 1/’) is the principal symbol
of the Laplace-Beltrami operator —h?Ar on I' equipped with the Riemannian metric induced
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by the Euclidean one in R?. We use the notation P(M;, Mg; h) to precise the dependence
on the matrix-valued operators M (y, hD,), My(y). Clearly, if v,%, p, it are constants, we
have M; = M, = 0 and one obtains the vector-valued Laplacian —h?A. For z € Z;U Z,U Z4
introduce p, (v, 1, z) = \/unz — ro(y', ') € C=(T*T) as the root of the equation

P>+ 1oy, ) — pnz =0
with Tm p,(v/, 1, 2) > 0. For z € Z; U Z3 we have (see [10])

Im 2
gy ',2) = 2> 0y (25)

while for 79 > 2un we have C1y/ro +1 > 2Im p, > |pa| = Co/1o + 1. For z € Z; the last
inequalities hold if o > 0. Similarly, let pa (3,7, 2) be the root of the equation p?+7o(y, 1') —
fanz =0 with 2 =4, Im ps(¢/, 7', 2) > 0. Let u € C? be the solution of the Dirichlet problem

(P(My, Mo; h) — pryz)u = (—h*A, — hMy(x, hd,) + B*Mo(z) — py2)u =0, in Q,  (2.6)

u=gonl.

Consider the semi-classical Sobolev spaces Hf(I') with norm [|(1 — h?A)*/2ul|2r) and
introduce the semi-classical Dirichlet-to-Neumann map

N(nz,h): Hi(T') 2 g — hD,u|r € Hi (D).

G. Vodev [10], [12] established for bounded domains Q C R?, d > 2, with C* boundary
and scalar solutions u of the problem (—h?A—pnz)u = 0, u|pr = g the following approximation
of the Dirichlet-to-Neumann map.

Theorem 2 ([12]). For every 0 < ¢ < 1 there exists 0 < ho(e) < 1 such that for z €
Z1(1)2 =€) :={z € Zy, |Imz| > h2=} and 0 < h < ho(c) we have

Ch
1RDyulr — Opr(pn + hb)g ) < S T2 191l z2(r), (2.7)

where b € SQ(T') does not depend on (un)|r. Moreover, (2.7) holds for z € Zy\U Zs with |Im z|
replaced by 1.

The result of Theorem 2 holds for vector-valued solutions G of the equation (—h?A —
unz)G = 0 (see [5]). For a more general operator P(M;, Mg; h) with matrix-valued lower or-
der terms given above some modifications in the construction of the parametrix are necessary
(see [9]). For the problem (2.6) with ¢ = FEy = E|r, Enorlr = (Fo,v), with a matrix-valued
symbol b € S§(T') which depends on p,n we obtain an analog of (2.7)

Ch

B(D,E)lr = Opa(pn + hb) Ey| Byl 2.

[HD B~ Omon + MD)E| < s Bl (28)
. Ch

[0, )15~ Omon + ) B < WIIEoHLQ

Witl} the same improvement for z € Zy U Z3. For E one has the same result with symbols
pa, b which depend on fi,4. The important point is that exploiting the assumptions (1.5),
(1.6), we show that b = b.

21
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Obviously, (D,G.,v)|r = D,((G,v))|r so we have an approximation for the derivative
D,({(G,v))|r. Notice that for z € Z;(1/2 — €) we have p, € 811/2_6, while for z € Z, U Z3

one has p, € S. More precisely, the following properties have been proved in [10]. Let
¢ € C§°(R) be such that ¢(t) =1 for |t| < 1, ¢(t) =0 for |t| > 2. Set

n(z', &) = ¢(doro(a’, &), My := Zy1 o x suppn,

My = (Z1 x supp (1 — n)) U (Z2 X T*(F)) U (23 X T*(F)),
where 0 < 20y < pn. Then (see [10])

\6;‘,83,0"| < Cy | Tm 2|27 1B for (2,27 ') € My, |al + 8] > 1, (2.9)

10200 pn| < Caplpl' ™! for (z,27.¢') € Ms. (2.10)
The commutator [Opy,(p,), v(z)] is a pseudo-differential operator with symbol in S9. Clearly,
<Oph(pn + hb)EOa V> = <Oph(pn + hb)(Etrm|F + Enor|FV)7 V>-

To simplify the terms involving b, let b have the form b = {b;}} ;_;. Then

3 3
<Oph(b)E7wr|FV7 V) = Z Vk[Oph(bk,j)7 Vj](Enm"F) + Z kajoph(bk,j)Enor|F
k.j=1 k,j=1

= Oph(b)Enor‘F + Oph(b—l)Enor|F7

where b,b_; are scalar symbols in 8§, S, ! respectively, and we deduce
1D (Euor) I = Opn(on + B) By ) = (108120, Wltans Eranlr) (2.11)

~1(Opn(b) Eian, )| | Bollzzqw)

< R —
g~ |[Im z[3/2

The same result holds for DVE,L0T|F with p,, replaced by of p;. For the components Ej,,,, Eon
we obtain

B(D, B tan = 2Dy Eran)an = ((Opn(p2) = Opu6a)) Branlr ) .,
+(1081(p0) Y Brarlr ) | = (1008 (00): VN Brerlr )|y (212)
+h((OP(B) (Bner = EuorVIr ) ,,,, — T

with

h

W< Omrrourr
||T1HH}1L(I) = C|Imz\3/2

(1 Bollzay + 1 Bolzzaey))- (213)
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3. PSEUDO-DIFFERENTIAL SYSTEM ON THE BOUNDARY

We return to the system (2.3) and we suppose the conditions (1.5), (1.6) fulfilled. Set
X = Etan|l"7 Y = Enor|T‘7 Y = Enor|r7 Z=Y — ?7 X = (X17X27X3)7 R= Pn — Ph-

According to (1.6), the matrix-valued operators My (z, d.;7), Mi(x, Ox; ) coincide for x € T.

On the other hand, the condition (1.5) implies that for x € T' we have M(z, 0y 1) =
M(x,0x; 1), Vo € T'. Since the matrix-valued symbols b, b involved in the approximation of
hD,E|; and hD,E || coincide, we have

B (0P (D) Euort It | — B (OB (D) EnrIr )|, = H{OPA(91) Z i 2

‘tan
with scalar symbols g, € 8. For z € T’ we write

dlog(7)

o
In the system (2.3) some terms cancel and the system modulo terms whose Hj (I') norms are
estimated by

(grad (log ), E) = (grad (log ¥)l|tans Eltan) + Yo Lrors Y =

Ch

W(HEOHLZ(F) + ||E0HL2<F>) (3.1)

becomes

Opu(R) X = (b = hfuk = hgi) 2 = By = hOpu(fus = far)V = By, k=1,2.3,

23:1 Opi(b; + hfn ;) X; + h{Opy(b) X, v) + h(grad (li)g Mltans X)

+O0pp(pn + hb — ihdiv v)Z + Opy(pn + hb — ihdiv )Y + by, Y = Dy, (3.2)
5201 Opn(by + 1) X; + h{(Op(b) X, v) + h{grad (1og 7)]san, X)

+Opy(pn + ho — ihdiv )Y + by, Y = Ds.

Here

y; . .
by, = Z 8_:U2Dy]’ fn,k =1 Z D{;(pn)ijVIm fﬁ,k =1 Z foj(pﬁ)DzJVk: k=123,

j=2,3 j=2,3 =23

o= far =1 Der(pn — pa) Dayvi k = 1,2,3,
j=2,3
and HB’kHH}{(F), 1Djllmpry: kB = 1,2,3, j = 1,2, are estimated by (3.1). In fact the terms
hl|Opn(fok — fas) Xjllarary, k= 1,2,3 can be estimated since

(Y =9) _ o

fTLJC — fﬁ’]' =1 Z Dg; (pn - pﬂ)Dx] Vg, R = Pn — Pa = Pn + pa 1/2—c¢

7=2,3

and |0/ (pn = pa)| < ClIm 2[72(1 + [¢/]) 2.
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In the following we denote by C' some positive constants which may change from line to
line. Taking the difference of the last two equations in (3.2), one obtains the system
Opn(R) Xy — (b — hifui — hge)Z = Bi, k=1,2,3,
Opi(pn + h(b+7,) — ihdivv)Z + Op,(R)Y
=Dy — D, — hzzzl Oph(fn,k - fnk)Xk = Dh
S Opn(by + hfar) Xk + Opi(pn + h(b +7,) — ihdivy)Y = Dy,

(3.3)

Notice that the norm || Dy || m}(ry has also an estimate by (3.1). The determinant of the symbol
@ on the left hand side of (3.3) becomes

det Q) =
R 0 0 —(bl - hfn,l - }Lgl) 0
0 R 0 *(bg — hfn’z — hgg) 0
det 0 0 R —(bs — hfnz — hgs) 0
0 0 0 pu + h(b+ ) — ihdiv v R
bi+hfii ba+hfaz by+hfas 0 pa+ h(b+7,) — ihdivy

Set b= b+ 7,. A simple calculus yields

w

det Q = R*(p, + hb — ihdivv)(ps + hb — ihdivy) — B*> (b — hfux — hge) (be + hfar)
k=1
3 ~ ~
= R*(Rpnpn — RZ b2) + hR*(b — idivv)pz(y — 4) + h*R3(b — idiv v)?
j=1
3
+hR? Z b((fur — fak) + gr) + h*RPgs,

k=1
where ¢ = pz(y — 4)(b—idivy), ¢ = (b — idivv)? € 89 are zero order symbols and

3
Z bk (fae — fag), a3 € S?/ny

On the other hand, ng:

b =ro(y',n'), since

and
(bn = pa)pnpi = pa(yiz — o) — pu(Fitz — 1o)
= u(vpa — Ypn)z + Rro.
According to the above calculus, one has

3
det Q = R*|pz(vps — Apn) + h(Ql + RZ b ((frge — far) + 9k)>

k=1
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FR2R(gs + qg)} — R2%(2, €' h).
Here
q(2',&;h) :== Ry + h(ay + hRas), Ry == p1z(yps — 5pn)
with zero order symbols aq, as. Concerning Ry, we obtain

PR = VP _ W’YZ(WLZ —10) — ¥*(yuz — 10)

Ry = / = z <
VP + VPn VP + Y Pn
\YIRE — (v + 7)o
= pz(y — v)#-
VP + VPn

Consequently, since v # 7, for z € Z; U Zy U Z3 the symbol
p(@',€52) = z(y = ) (Vinz = (7 + o)
is not vanishing. Moreover,
|Ro(2!, &5 2)] > Co(E) for |€'] > A > 1.
Since ﬁ < hY? for z € Z1(1/2 — ¢) and 7 # 4, one deduces that for small h we have
lg(2’, € h)| = ol Im 2|, 3 > Ofor [(] < A, 2 € Z1(1/2 - ),

while [g(2,&';h)| > co > 0 for |¢'| < A, z € Zy U Zs.
Set p11 = py¥y. As in [10], we conclude that for (z,2/,&') € My, |pn Rez — (v +9)ro| < 0,
small h and Im z # 0 we have

105:0gq (', € )| < Copl I 2|1 o] 4 18] > 1, (3-4)
while for (z,2/,¢') € My, |1 Rez — (v + A)ro| > &', small h and Im 2 # 0 we have
0500 (@', €' )| < Clap T 2| 72717V, o] 4 1] > 1, (3.5)
For z € Z, U Z5 these estimates hold with |Im z| replaced by 1. Moreover,
0500~ (@, &3 )] < Cap(e) (3:6)

for |¢'] > 1.
Now we pass to the analysis of the inverse matrix @', Let

Q = {ai,j}?,j:p (COQ)” = {Bi,j}i]‘:h Q71 = {di,j}?,jzl

=D A straightforward calculus yields

= R,

with di,j

Bij = R*bb;j + R*(hL;j + h*M,;), i,j = 1,2,3, i # j,
Bii = R*(pnps — 1o + b7) + R*(hLi; + h*M;;), i = 1,2,3,
Bia = R?pab; + R2(hL¢,4 =+ h2Mi,4)7 Bui = RS(b@' +hfai),i=1,2,3,
Baa = RB(Pﬁ + hMyy), Bas = -R',
Bis =—R*(bi — hfni), Bsi = —R*(pabi + hLs; + B*Ms;), i = 1,2,3,
Bs4 = RQ(TO +hLs,+ h2M5,4)7 Bss = Rg(/?n + hMs5).
Here L; ; are symbols of first order operators, while M, ; are symbols of zero order opera-

IB{Q{Z and d; ; become symbols of pseudo-differential

tors. Therefore, we may cancel R in d; ; =



26

V.PETKOV

operators of order £ < 1. In particular, d;5,7 = 1,...,5, contain the factor R and they are
symbols of operators of order -1. For the analysis in the next section it is important to
estimate the derivatives 8?,8?,%]-. To do this, taking into account the form of ¢, we write

i (YPi + Apn) 2 —1y-1
= = - 1+ (hay + h*Ras)R ,
pz(y =N (vnz = (v + ”/)7“0)( (hax )

where v, ; = 8;;R~2. Therefore by using the estimates (2.5), (2.6), (3.4)-(3.6) , one gets
020 j| < Cij 5] Tm 2 11 ) ™1, ar, v (37)

with m=0orm=1.

d;

4. LOCATION OF TRANSMISSION EIGENVALUES

We use the notation of the previous section and we assume the conditions on u, i, v, ¥
introduced in the beginning of the previous section fulfilled. Set

V = (X1>X27X3az7 }})ﬂW = (BhB%B‘%DhDZ)‘

As we have mentioned in the previous section, we have the system Op,(Q)V = W. We have
for z € Z1(1/2 — ¢)

_ _ h
|Opn(Q 1)W||L2(F) < ClIm 2| IHWHH}L(F) < CW”VHH’(F% (4.1)

where for z € Z,UZ3 the factor | Im z| must be replaced by 1. Here we have used the estimate
by (3.1) of the H}(I') norms of the components of W. Also dealing with d; ;, the factor ¢~*
has been estimated by ¢ Im 2|7 for 2z € Z; . and by ¢y for z € Zy U Z3. Next

V = (1d - Op(@YOP(Q)V + Opi (@)W
The principal symbol of the product Op,(Q~1)Op,(Q) is Id and we must study the symbol

Nl (ih)-7 N-1 .
¢= Z Z j! Dg(Q™)D3Q + Ry = Z(ih)fgj + Ry.
J=1 lal=j ' j=1

It is important to examine the term ¢; since ¢;, 7 > 2, are symbols of lower order operators.
Our purpose is to bound [|Opp(¢1)V |2y by [[V||r2ry multiplied by a small factor. The
difficulty here is caused by the symbols 9,, @), since some components d,, a; ; of the matrix
0., Q are symbols of first order operators. More precisely, these terms are

Do (@s), 5 =1,2,3,5, Oy (via), i = 1,2,3,4.
The other components in d,, @) are equal to d,, R or to 0. Recall that we have
0300 R| < CaglTm 2] /219119, o] 48] 2 1 (12)
for (z,2/,¢') € My and
0506 R| < Cop(e) ™V (4.3)
for (z,2',¢") € My. Thus we obtain

hHoph (Dsk (dij)Dg, (O‘J‘vm)) V‘ :

< Ciim—=|V
2y 1’]’m|hnz|5/2H lz2r)
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for the components of d¢, (Q~")d,,Q containing d,, R.
Now consider the symbols

ey = O (di5) 0, (05,)-
k

As we have mentioned above, d; 5 are of order -1. Then applying the estimates (3.4)-(3.6),
(4.2), (4.3), we deduce

1050515 < Cijap| T 2| 72/27 17
for (z,2',¢') € My and
| f:/af/ez-,jl < Chpap() 7
for (z,2',¢') € My. For j =1,2,3 we have a better estimate since a;; = b; + hf; ;. Con-

sequently, by using once more (2.2), these operators will produce again terms having the
estimate (4.4).

It remains to handle the terms

4
Dia = Z Z aﬁk (diﬂrl)axk (am,4)7 1= 17 5

k m=1
for which no simplifications are possible, hence these symbols are related to first order opera-
tors. Here av,, 4, m = 1,2, 3, have classical principal symbols and this simplifies the expression
of their derivatives. The same is true for the principal part of the symbols d; 4. Thus for
(@', €&, z) € My we deduce the estimates

0800 pial < Ciap Tmz| 2121 (4.5)
while for (2/,¢',z) € My we have
10502 pial < Capl€).
The problem is reduced to obtain a bound

h h? _
5/2 + \Imz|4> HV||L2(F)7 1= 1, 75

| Opn(pia) Z | L2y < C(

[Im 2z

We prove the above estimate exploiting the system (3.3). Combining the estimates obtained
above, we conclude that for z € Z;(1/2 — ¢) we have

h n?
IVilze < C(| Tm 22 \1mz|4)”V”L2<F>‘

For z € Zy U Z3 one obtains the same estimate with | Im z| replaced by 1. Consequently, for
[Tm z| > C1h?/° > C hY/?*¢ with a large constant C} > 0 as well as for z € Z, U Z3 with
0 < h < 4y and dy > 0 small enough one deduces ||V 2y = 0. This implies Ej. = E,=0
which leads to E = E = H = H = 0 and this completes the proof of Theorem 1.
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