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Continuum limits of discrete Schrodinger operators on 
square lattices 

Yukihide Tadano 

ABSTRACT. We consider two different approaches of continuum limit problems 
of Schrodinger operators H = -ll. + V on ffi.d. The first part of this proceedings 
deals with asymptotic behavors of discrete Schrodinger operators Hh = -ll.h + 
Vlhzd on square lattice hZd with mesh size h, and we study conditions of the 
potential V and the projection from L 2 (ffi.d) onto £2 (hZd) where Hh converges 
to the corresponding contiuum operator H the generalized resolvent sense. 
The sencond one involves Schrodinger operators defined on the edges of hZd, 
then we prove that a similar continuum limit problem holds under weaker 
assumption of V. 

1. Introduction 

The aim of this report is to develop continuum limit problems of Schrodinger 
operators 

H =Ho+ V(x), Ho= -6, x E Rd. 

on 1{ = L2 (JR.d), where d 2". 1, with considering the two corresponding discretizations 
described below. 

The first one is onto the vertices of square lattices: Let h > 0 be the mesh size, 
then we set 

1{h = £2 (hzd), h'll.,d = { (hz1, ... , hzd) I Z E zd}, 

equipped with the norm 
1 

llvllh = ( hd L lv(z)l2) 2 

zEhZd 

for v E 1-ih- We denote the standard basis of:JR.d by ej = (t5ik)%=1 E JR.d, j = 1, ... , d. 
The corresponding discrete Schrodinger operator is defined by 

Hh = Ho,h + V(z), z E hZd, 
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d 

Ho,hv(z) = h-2 z)2v(z) - v(z + hej) - v(z - hej)), v E 1fa. 
j=l 

The second one is onto the edges of square lattices: Let 

.C = {.Cjn = [j,n] I j,n E h'll,d, IJ-nl = h}, 

where [j, n] is the line segment connecting j and n, and 

with the norm 

1-{~ = L2(.C) = EB L2(Ljn) 
lj-nl=h 

for rp = ( i-f)jn) E 7-l~. We also set 

H 1 (.C) = { ( i-f)jn) E 7-l~ I i-f)jn E H 1 ([j, n]), i-f)jn(j) = i-f)jm(j) for 

j E h'll,d and n, m : neiborhood of j} 

Suppose that V : ~d ---+ ~ is bounded from below, and denote ½ 
j E h'll,d_ For rp, 'If; E 7-l~, we define the quadratic form by 

q(rp,'lj;) = (rp','l//) + L hVJrpj'lj;j, 
jEhZd 

V(j) for 

where (rp')jn(t) = ftVJjn(t), V)j = i-f)jn(j) and (·, ·) denotes the innner product of 
1-l~. Let H~ be the selfadjoint operator associated to q(·, ·), and we call H~ the 
Schri.idinger operator on the quantum graph .C. Note that the boundedness of V 
from below implies 

V(H~) C {'lj; = ('lj;jn) E ffiH2(.Cjn) I L 'lj;jn(j) = hVJ'lf;j}, 
lj-nl=h 

(H~'lj;)jn(t) = -'lf;'Jn(t), IJ - nl = h. 

In this report we develop continuum limit problems of Schri.idinger operators 
H in the above two different settings. It is clear that the first discretized operator 
Hh formally converges to H, e.g. for any u E S(~d) 

sup IHh (ulhzd) (z) - Hu(z)I---+ 0, h---+ 0. 
zEhZd 

In order to treat the problems strictly in the terminology of operator theory, we 
easily find the following obstructions: 

• Since H, H~, and possibly Hh, are not bounded, it is not allowed to 
formally write Hh ---+ H or H~ ---+ H. 

• Continuum and discretized operators are defined on different functional 
spaces with each other. 

The first obstruction is easy to avoid, since we only have to consider their resolvents 
(H - µ)-1 , (Hh - µ)-1 and (H~ -µ)- 1 . In order to get over the second one, we need 
to give appropriate identifications between continuum and discretized functional 
spaces. 
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The first half of this report, Sections 2 and 3, conserns a continuum limit from 
Hh to H, and we consider generalized strong/norm resolvent convergences. More 
precisely, we determine conditions of the potential V and identification operator 

to satisfy the convergence 

(1) 

in the strong/ operator norm sense. 
The second half is devoted to comparison between asymptotic behavors of Hh 

and H~. In this case we set concrete identifications between 1-lh and 1-l~, and then 
we prove the generalized norm resolvent convergence for the pair of Hh and H~. 

Similar convergence problems in the norm resolvent sense are studied by, e.g., 
[3], [7] and [11]. Note that [13] considers a continuum limit of scattering states 
of discrete Schrodinger operators, and that [7] is a generalization to fractional 
Laplacians. For studies of continuum limits of NLS equations, see [2], [12] and 
references therein. 

2. Continuum limit of Hh in generalized strong resolvent sense 

In this section, we first consider what the identification Ph : 1l -+ 1-lh should 
satisfy, and we introduce the definition of Ph in our case. Then we study the 
characterization of the condition that the generalized strong resolvent convergence 
(1) holds when V is absent. 

If we assume the translation and scaling invariance, Ph should be of the form 

(2) 

where <p: JR.d-+ (C and 

'Ph,z(x) = cp(h- 1 (x - z)), x E ]Rd_ 

Note that, if <p E L 1 (JRd) n L2(JRd) then (2) is bounded uniformly in h, and that 

Pi:,v(x) = L 'Ph,z(x)v(z), h > 0, v E 1-lh. 
zEh'lld 

In addition, it is natural to expect that 1-lh is regarded as a subspace of 1l 
via Pi:,, that is, Pi:, is an isometry. It is easy to observe that Pi:, is an isometry 
and hence Ph is a partial isometry, if and only if { <pi,z I z E zd} is an orthonormal 
system. This condition is also equivalent to the condition: 

(3) L 10(~ + n)l 2 = 1 for~ E IRd, 
nE'lld 

where cp is the Fourier transform 
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In the following, we assume <p E L 1(JRd) n L2(JRd) and (3). Then, for u E 1-l, 

ll(PJ:(Hh - µ)- 1 Ph - (H - µ)-1)ull 2 

=ll(PJ:(Hh - µ)-1 Ph - (Pt,Ph + (1- Pt,Ph))(H - µ)-1)ull 2 

=IIPJ:((Hh - µ)-1 Ph - Ph(H - µ)-1 )u - (1 - PJ:Ph)(H - µ)-1ull 2 

=IIPJ:((Hh - µ)-1 Ph - Ph(H - µ)-1 )ull 2 + 11(1 - PJ:Ph)(H - µ)-1ull 2. 

Thus, if we set 

R1(h) :=PJ:(Hh - µ)- 1Ph - PJ:Ph(H - µ)-1, 

R2(h) :=(1- PJ:Ph)(H - µ)- 1 , 

we learn 

max(IIR1(h)II, IIR2(h)II)::::; IIPt,(Hh - µ)- 1Ph - (H - µ)-111 
1 

::::; (IIR1(h)ll 2 + IIR2(h)ll 2) 2 • 

Hence we have 

LEMMA 2.1. Assume <p E L1 (JRd) n L 2 (JRd) and (3). Then 
(i) (1) holds in the strong sense if and only if 

R 1(h), R 2(h)-+ 0 strongly ash-+ 0. 

(ii) (1) holds in the operator norm sense if and only if 

IIR1(h)II, IIR2(h)II-+ 0 ash-+ 0. 

The aim of this section is to prove the following proposition. 

PROPOSITION 2.2. Assume <p E L1(JRd) n L2(JRd), (3) and V = 0. Then (1) 
holds in the strong sense if and only if 

(4) lcp(O) I = 1. 

Before the proof, we introduce the discrete Fourier transform 
' 2 1 d Fh : 1-lh-+ 1-lh = L (h- 11' ), 11' = JR/Z, 

by 

(5) 
zEh'lld 

Fh is unitary, and its adjoint is given by 

FJ:g(z) = { e21riz·(g(()d(, 
lh-l'[d 

d A 

z E hZ , g E 1-lh· 

If we set 
Ho(~)= 121r~l2, 

it is well-known that H0 = F* Ho(·)F on 1-l. Similarly, if we set 

d 

Ho,h(() = 2h-2 l)l - cos(21rh(j)), ( E h-11I'd, 

j=l 

then Ho,h = FJ:Ho,h(·)Fh. We denote 
A 2 d A 

Qh := FhPh:F* : 1-l = L (JR ) -+ 1-lh. 

Then we have 
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LEMMA 2.3. For f E S(JRd), 

(6) Qhf(() = L ip(h( + n)f(( + h-1n), ( E h-11r. 
nEZd 

For g E Hh, 
(7) 

where g is the periodic extension of g on ]Rd. 

PROOF OF PROPOSITION 2.2. Let 

(8) 

A direct computation implies 

R2(h)f(~) =(1- Q,,Qh) ((Ho(~) - µ)- 1 f(~)) 

=(1 - l$(h~)l 2)g(~) - ip(h~) L ip(h~ + n)g(~ + h-1n), 
n#O 

where 

g(~) := (Ho(~) - µ)- 1 f (~)-

We fix R > 0 and let f E C';:°((-R,R)d). Then we have for h > 0 small enough 

IIR2(h)f(~)ll 2 = { l(l - l$(h~)l 2)g(~)l 2d~ 
l[-R,R]d 

+ L 1 l$(h~ - n)ip(h~)g(~)l 2dr 
n#O [-R,R]d 

Since the first term tends to 

11 -1$(0)121 2 { lg(~)l2d~ 
l[-R,R]d 

ash---+ 0, the condition 1$(0)1 = 1 is necessary. Note that, 1$(0)1 = 1 and (3) imply 
the convergence of the other terms: 

L { l$(h~ - n)ip(h~)g(~)l 2d~ 
nc;,eol[-R,R]d 

= { L l$(h~ - n)l21$(h~)g(~)l2d~ 
l[-R,R]d n#O 

= { (1- l$(h~)l2)1$(h~)l2lg(~)l2d~ 
l[-R,R]d 

---+(1-1$(0)12)1$(0)1 2 { lg(~)l2d~ = 0, h---+ 0. 
l[-R,R]d 

We omit the proofof suflicienty since we will show that (4) implies IIR2(h) II ---+ 0 
as h ---+ 0 in Proposition 3.1. 

□ 
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3. Continuum limit of Hh in generalized norm resolvent sense 

In this section, we consider sufficient conditions where (1) holds in the norm 
sense. We first show 

PROPOSITION 3.1. Assume r.p E L 1(JR.d) n L2 (JR.d), (3) and V = 0. Then (1) 
holds in the operator norm sense if and only if (4) holds. 

Combining Propositions 2.2 and 3.1, we see that the generalized strong/norm 
resolvent convergence Ho,h---+ Ho is characterized by lc,a(0)I = 1. 

PROOF. A direct computation implies 

R1(h)f(~) = L cp(h~)cp(h~ + n)Bh(~ + h-1n)f(~ + h-1n), 
nEZd 

where 

Bh(~) := (Ho,h(~) - µ)- 1 - (Ho(~) - µ)- 1 . 

We see that lc,a(h~)IBh(~)---+ 0 in L 00 (JR.d), which implies then= 0 term tends to 
zero. For the other terms, it follows from (3) that 

2 

r lc,a(h~)l2 L cp(h~ + n)Bh(~ + h-1n)f(~ + h-1n) d~ 
J[td n#O 

::::; 1 lcp(h~)l 2 L lc,a(h~ + n)l 2 L IBh(~ + h-1n)f(~ + h- 1n)l 2 d~ 
[td n#O n#O 

= { lc,a(h~)l2(1- lcp(h~)l2) L IBh(~ + h-1n)f(~ + h-1n)l2 d~ 
J[td n#O 

= r L(lcp(h~ - n)l2 - lcp(h~ - n)l 4 )1Bh(~)f(~)l 2 d~ 
J[td n#O 

= r (1- lc,a(h~)l 2 - L lc,a(h~ - n)l 4 )1Bh(0f(~)l 2 d~. 
J[td n#O 

Note that using the properties (3) and (4) we have 

cp(n) = 0, n E zd \ {0}, 

which implies the function 

(1- lc,a(h~)l2 - L lc,a(h~ - n)l 4 )1Bh(~)l 2 

n#O 

converges to zero in L 00 (JR.d) and hence the reminding terms tend to zero. 
We recall that for f E S(JR.d) 

R2(h)f(~) =(1- lc,a(h~)l 2)g(~) - cp(h~) L cp(h~ + n)g(~ + h-1n), 
n#O 

where g(O = (Ho(~) - µ)- 1 f(~). The first term tends to zero in norm since 
(1- lc,a(h~)l 2)(H(~) - µ)-1 converges to zero in L 00 (JR.d). For the remaining terms, 
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we learn 

J lcp(h() L cp(h( + n)g(( + h-1n)l 2d( 
n#O 

:=; J lcp(h()l 2 L lcp(h( + n)l2 L lg((+ h- 1n)l2d( 
n#O n#O 

= J lcp(h()l2(1- lcp(h()l2) L lg((+ h- 1n)l2d( 
n#O 

= J L lcp(h( - n)l2(1- lcp(h( - n)l2)lg(()l2d( 
n#O 

= J (l - lcp(h()l 2 - L lcp(h( - n)l 4 )lg(()l 2d(. 
n#O 

The similar computation as in R1 (h) implies that the function 

(1- lcp(h()l 2 - L lcp(h( - n)l4 )IH(() - µl- 2 

n#O 

tends to zero with respect to the L 00 norm. Thus the remaining terms converge to 
zero as h ➔ 0. □ 

The rest of this section is devoted to the case V =/- 0. We assume 

ASSUMPTION A. V is a real-valued continuous function on ~d, and bounded 
from below. (V(x) + M)-1 is uniformly continuous with some M > 0, and there is 
c1 > 0 such that 

(9) c11(V(x) + M) :=; V(y) + M :=; c1(V(x) + M), if Ix - YI::; 1. 

The above assumption implies V is slowly varying in some sense, and uniformly 
continuous relative to the size of V(x). Note that (9) is essentially equivalent to 

1a~v(x)I::; Cc,V(x), x E ~d-

The assumption is satisfied ifV is bounded and uniformly continuous. V(x) = a(x)M 
with a,µ > 0, also satisfies the assumption. 

The following theorem and corollaries are due to [17], while the assumption of 
cp is relaxed silightly. 

THEOREM 3.2. Suppose Assumptions A and cp E L 1(~d) n L2(~d) satisfies (3), 
(4) and ~nEV cp(· + n) E L 00 (~d). Then, for anyµ EC\~, 

IIP;;:(Hh - µ)- 1 Ph - (H - µ)- 1 IIB(1i) ➔ 0 ash ➔ 0, 

where B(1-l) denotes the Banach space of the operators on 1-l 

(H-µ)-1 

Combining this with the argument of Theorem VIIl.23 (b) in [21], we obtain 
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COROLLARY 3.3. Under the same assumption as Theorem 3.2, let a, b E ~, 

a< b, be not in CJ(H). Then a, b ~ Cl(Hh) for sufficiently small h > 0 and 

IIPhEHh((a, b))Ph - EH((a, b))IIB(H)-+ 0 ash-+ 0, 

where Cl(A) denotes the spectrum of a self-adjoint operator A, and EA(O) denotes 
the spectral projection for O c R 

COROLLARY 3.4. Suppose Assumptions A. Then for M > - inf CJ(H), 

dH (Cl((Hh + M)- 1 ),CJ((H + M)- 1))-+ 0 ash-+ 0, 

where 

dH(X, Y) = max{ sup d(x, Y), sup d(y, x)} 
xEX yEY 

is the Hausdorff distance between sets X, Y c C. 

For the proof of Theorem 3.2, we need in addition to the argument in Propo
sition 3.1 the norm convergence of potentials 

and relative boundedness 

Ho(H - µ)- 1 , V(H - µ)- 1 E B(1i), 

sup IIHo,h(Hh - µ)- 1 IIB(1ih) < oo, 
hE(0,1] 

sup IIV(Hh - µ)- 1 11B(1ih) < oo. 
hE(0,1] 

4. Continuum limit of H~ and comparison to Hh 

The last section aims to connect discrete Schri.idinger operators Hh on h'll,d and 
quantum graph Hamiltonians H~ through the continuum limit. First we introduce 
a set of operators 1ih -+ 1i~ and 1i~ -+ 1ih. Then we prove the norm resolvent 
convergence for the pair of H h and H~. 

Let I: 1ih-+ 1i~, cp = (cpj) r-+ Icp = ('Pjn), be the linear interpolation, i.e. 

Cf)jn(x(t)) = (1 - t)cpj + tcpn, t E [0, 1], 

where x(t) = (1 - t)j + tn. Since 3½ ll'PIIHh ::=:: IIIcpllH~ ::=:: ll'PIIHh, 

Ran I c 1i~ 

is a closed subspace and there is a bounded inverse of I: 

J = 1-1 : Ran I -+ 1ih, 

Let P : 1i~ -+ Ran I be the orthogonal projection. Then, we use the operators 

I: 1ih -+ 1i~, 

JP: 1i~-+ 1ih 

to identify 1i~ with 1ih· The following is the main result of this section. 
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THEOREM 4.1 (Exner-Nakamura-T., in prepararion). Assume that 
(1) V is bounded from below. 
(2) V is slowly varying, i.e. 

V(x)- M 
sup -~-- < oo 

lx-yl<l V(y) - M ' 

where M := infxEffi.d V(x) - 1. Then, for anyµ E CC\~, 

1 
ll(dHh - µ)- 1 - JP(H~ - µ)- 1 Ills(Hh) --t 0, 

1 
ll(H~ - µ)- 1 - I(dHh - µ)- 1JPllscH~) --t 0. 

(H~ -µ)-1 

REMARK 4.1. (1) The coefficient ~ comes from the degree 2d of each 
vertex, the number of edges incident to the vertex. 

(2) Compared to Theorem 3.2, the continuity condition of (V(x) - M)-1 is 
removed, since we need only Hh-boundedness of Ho,h with uniform bound 
in h. 

(3) We also obtain the asymptotics of spectral projection and spectra, i.e. 

IIEHh((a,b))- JPEH~((a,b))Ills(H) --t 0, 

dH (a((Hh - M)-1),a((H~ - M)-1)) --t 0, 

if a, b ~ a(Hh) U a(H~) for sufficiently small h. 

Combining the above theorem with Theorem 3.2, we obtain the following con
tinuum limit. 

1-l~ 
(dH~-µ)- 1 

1-l~ 

11 lJP 

1-{h 
(Hh-µ)- 1 

1-{h 

ph r lph 

1-l 1-l 
(H-µ)-1 

The idea of proof is analogous to [10], which uses the boundiary condition of 
quantum graph Hamiltonians. 

We set the trace operator K : H 1 (.C) --t 1-lh by 

K: <p = ('Pjn) f--+ (K<p)j = 'Pjn(j) 

We will show the explicit formula for K(H~ - k2)-1 I. 
For <p = ( <()j) E 1-lh, we consider the equation 

(H~ - k2 )1j; = I<p, 1/J E V(H~). 
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Then for each jn 

where 
X X X 

'Pjn(x) = (1- h)'Pj + h'Pn = 'Pj + h('Pn - 'Pj), X E [O, h] ~ .Cjn· 

Adding the boundary condition 'l/;1n(O) = 1/;1 and 'l/;1n(h) = 1Pn, we solve the equa
tion and we have 

'I/;· (x) = sin(kx) 1/; + sin(k(h - x)) 'I/;· 
Jn sin(kh) n sin(kh) 1 

1 sin(kx) x l sin(k(h - x)) x 
+ k2 (sin(kh) - h)'Pn + k2 ( sin(kh) - l + h)'Pj· 

In particular, 

1Pjn (j) ='1/;jn (0) 
k k(l - cos(kh))) 

= sin(kh/1Pn -1/;j) + sin(kh) 1/;j 

l k l 1-cos(kh) 
+ k2 (sin(kh) - h)('Pn - 'Pj) + ksin(kh) 'Pj· 

Substituting this to the boundary condition 

L 1Pjn(j) = hYj'l/;j, 
11-nl=h 

we have for any j, 

Let 

1 " (· 1• _.!,.) sin(kh)v,..i .. _k2dl-cos(kh). 1,_ 
h2 L o/n o/J + kh 1 o/J (kh) 2 /2 o/J 

ln-jl=h 

sin(kh) - kh " l - cos(kh) 
=- (kh) 3 L ('Pn-'Pj)+d (kh)2/2 'Pj· 

ln-Jl=h 

(M nl,) _ = d-l(sin(kh) - l)V,.nl,. _ k2(l - cos(kh) - l)nl,. 
lo/ 1 kh Jo/J (kh)2 /2 o/J, 

_ 1 sin(kh)-kh " 1-cos(kh) 
(M2'P)1 = -d (kh)3 L ('Pn - 'P1) + ( (kh)2 /2 - l)'P1· 

ln-Jl=h 

Then we have 
(Hh - k2 + M1)K'lj; = (1 + M2)cp. 

T k. · h T 1 · · f sin(kh) 1-cos(kh) d sin(kh)-kh a mgmtoaccountt e ayorsenesexpans10no ~' (kh)2;2 an (kh)a 
(all of them are 1 + O(h2)), we see that 

(Hh - k2)-1 Mm = O(h2), m = 1, 2. 

Thus we have 

which implies 
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Using the fact that IIK - JPIIB(H'(.C),1ih) ::; Ch, we obtain 

JP(H~ - k2)-1J - (Hh - k2)- 1 = O(h) 
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