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Observability Estimates for Schrodinger 
Operators on Eucleadian space minus tube 
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Abstract 

Observability estimates on Euclidean space are considered. We 
prove the observability estimate for Schrodinger operators on the Eu­
cleadian set minus tube. Our proof is stable under perturbation by 
bounded and smooth real-valued potential. Our assumption on the 
operator are saisfied by some non-elliptic operators and differential 
operators with unbounded coefficients. Results in this article are col­
laboration work by the author with Fabricio Macia and Shu Nakamura. 

1 Introduction 

In this article, we introduce our collaboration work by the author with Fabri­
cio Macia and Shu Nakamura on the observability estimates for Schrodinger 
operators on Euclidean space minus tube. 

1.1 Statement of the main result 

Let D c JRd be such that D = JRk x w with 1 < k < d and w c JRd-k_ We 
assume JRd-k \ w is compact. 

Let Pi and A be diffrential operators on JRk and JRd-k respectively. We 
define diffrential operator P on JRd by P = Pi + P2 + V ( x). 

*Interdisciplinary Theoretical and Mathematical Sciences Program, Riken, 2-1 Hiro­
sawa, Wako, Saitama 351-0198, Japan, keita.mikami@riken.jp 



41

Assumption A. A, P2 and V satisfy followings: 

l. p is essentially selfadjoint on Co(IRd). 

2. A is a differential operator with smooth real valued coefficient and 
essentially selfadjoint on Co(IRk). 

4. VE L00 (1Rd: IR) and sup 18~2 V(x)I < oo for any a E Nd with lal :S 1. 
xEJRd 

Example. l. If k = 1, A = - .6JR +x1 and V = 0, then P is Stark 
Hamiltonian and Assumption A is satisfied. 

2. If k = 1, A = .6JR and V = 0, then P is d'Alembert operator and 
Assumption A is satisfied. 

Theorem 1.1. ( Observability estimates) 
Suppose Assumtion A is satisfied. For any T > 0, there exists Cn,T > 0 such 
that 

llulli2(JRd) :S Cn,T 1T 1 le-itPu(x)l 2dxdt, 

for any u E L2 (!Rd). 

In [9], Lions proved that observability estimate holds if and only if corre­
sponding exact control problem has a solution. In our setting, exact control 
problem is a following problem: for given T > 0 and u0 , Ut E L2 (1Rd), can we 
find f E L2 (1Rt x IR~) such that 

{ 
i8tu(t,x)- Pu(t,x) = ]n(x)f(t,x), (t,x) E lR x !Rd, 

(1.1) 
ult=O = uo E L2 (1Rd). 

has a solution u E L2 (1R x !Rd)? 
Also, Miller showed that this this exact control problem is equivalent to 

the following spectral inequality: 

Theorem 1.2 (Miller [13, Corollary 2.17]). Let A be a selfadjoint operator 
on L2 (1Rd), which is the infinitesimal generator of a strongly continuous group 
( eitA )tEJR on L2 (!Rd). If the evolution equation ( 1.1) with P replace by A is 
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exactly observable from a measurable subset n c ffi.d at some time T > 0 then 
there exist some positive constants k > 0 and D > 0 such that 

Conversely, when the spectral estimates (1.2) hold for some k > 0 and D > 0, 
then the system ( 1.1) is exactly observable from n at any time 

T>n {1+k VIJ· 
It is known that on compact manifolds, observability estimates are related 

to the property of the geodesic. We say n c M satisfies the geometric control 
condition (GCC) if any geodesic with length L intersects with n. Lebeau 
proved in [7] that for a compact Riemannian manifold ( M, g), if n C M 
satisfies GCC, the observability estimate for Laplace-Beltrami operator on n 
holds. 

There are two main difficulties in our setting: n does not satisfy the 
geometric control conditions, and ffi.d is not compact. The first difficulty is 
relaxed by assuming that n is a product of Euclidean space and Euclidean 
space minus compact set. 

The second difficulty is much more severe since the proof of observability 
estimate in [7] uses compactness of the space. In the [7], the observability 
estimate in high energy regime is shown in then it is shown that low energy 
regime can be regarded as a minor error. In the second part, compactness 
plays a critical role. We use Logvinenko-Sereda theorem to avoid this diffi­
culty. See section 3.2 for the detail. 

1.2 Thick set and Logvinenko-Sereda theorem 

Definition 1.1. A measureble subset S C ffi.d is thick if there exists a cube 
K c ffi.d with sides parallel to coordinate axes and a positive constant O < 
1 ~ 1 such that 

where IAI denotes the Lebesgue measure of the measurable set A. 

Theorem 1.3 (Logvinenko-Sereda [8]). Let S, ~ c ffi.d be measurable sets 
with ~ compact. The following assertions are equivalent: 
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- The subset S is thick. 

- There exists a positive constant C = C(S, 1::) > 0 such that for all 
f E £2(JR.d), 

r lf(x)l 2dx::; c( r lf(x)l 2dx + r 1!(~)12d~). J~d ls J~d\E 

Logvinenko-Sereda Theorem states any function f in L2(JR.d) never con­
centrates in a thick subset if its energy is concentrated in a compact set. In 
this sense, Logvinenko-Sereda theorem can be regarded as a sort of uncer­
tainty principle for a thick set. 

Kovrjikine obtained some exact constant in Logvinenko-Sereda theorem. 

Theorem 1.4. Let Sc JR.d be measurable set. We say S is (r, L)-thick set 
if 

Vx E IR.d, l([0, L]d + x) n SI 2: "fLd, 

with "I E (0, 1). There exists a constant C > 0 such that for any f E L2(JR.d) 
with suppj C J where J is a cube with sides of length b parallel to coordinate 
axis, 

( 
d)Cd(Lb+l) 

with c(r, d, L, b) = ~ . 

Remark. As b ➔ oo, c(r, d, L, b) ➔ oo. Thus it is impossible to obtain 
observability estimates directly from Logvinenko-Sereda theorem. 

Thickness may be considered as a higher dimensional analogue of the 
geometric control condition. We define the ii-dimensional geometric control 
condition as follows: 

Definition 1.2. Fix ii E {1, ... , d}. For £ > 0 and 'Y > 0, a set E C JR.d 
satisfies the ii-dimensional ( £, 'Y )-GCC if for any ii-dimensional cube Q C IR.n 
of side-length £, 

where I · I,_ denotes the ii-dimensional Hausdorff measure. We say that E 
satisfies the ii-GCC if it satisfies the ii-dimensional ( £, 'Y )-GCC for some £ > 0 
and 'Y· 
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With this notion of the K-dimensional GCC, a thick set is a set that 
satisfies the d-dimensional GCC. On the other hand, on a compact manifold, 
the 1-dimengional GCC and the GCC used in [7] are equivalent. However, we 
have to assume uniformness, in general, to obtain to obtain the 1-dimengional 
GCC from the usual GCC. Assume SC ]Rd satisfies the K-dimensional GCC. 

From Fubini theorem, S must satisfy the K'-dimensional GCC for K 1 > K. 

Let Q = ITi=1(ak, ak + L) c JRd and Q = ITi=k+l(ak, ak + L). We see 

ISnQI 

= h lis(x)dx 

= ( 1ak+L .. • 1ai+L lis(x1 , · · · , Xk, x')dx1 · · · dxkdx' 
}Q ak a1 

= /41sn{(x1,x') I a£< X1 < a£+L,£= l·••k}lkdx' 

> ,L /4 dx' 

= ,La. 

Consider Ps = (-~)s for s > 0. In [12], Martin and Pravda-Starov 
showed that if S C ]Rd satisfies observability estimates for Ps, S must be a 
thick set. Further, when s > ½, it is proved that there exists T0 > 0 such 
that observability estimates on S with time T > 0 holds if T > T0 • Huang, 
Wang and Wang showed the same results when s = 1 and d = l in [5] 
independently. 

Also, Martin and Pravda-Starov showed that if S satisfies the K-GCC for 
K E {1, • • • d - l }, <5 neighbourhood of D satisfies observability estimates for 
Ps and sufficiently large T > 0. 

Assume D satisfies Assumption A. Then one can easily see w is a thick 
set and D is also a thick set. However, D does not satisfy GCC. Therefore 
Theorem 1.1 gives an example of D that is thick and satisfies observability 
estimates for P and any T > 0 but does not satisfy the K-GCC for K E 
{1,··•d-1}. 

Theorem 1.1 also shows that the observability estimate is stable under 
perturbation by bounded and smooth potential. Furthermore, Theorem 1.1 
covers some non-elliptic operators and operators with unbounded potentials 
(See examples after Theorem 1.1 for the detail). 
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2 Preliminary 

2.1 Pseudodifferential operators and semiclassical de-
fect measures 

As we stated before, in [7], Lebeau first proves the semiclassical observability 
estimates to obtain the observability estimates. In his proof of the observ­
ability estimates, Lebeau used semiclassical defect measure. 

This subsection aims to provide some basic notions of semiclassical anal­
ysis needed later. This subsection also aims to provide some concepts of 
semiclassical measure. You can find all the proof of the theorem in this 
subsection in [16]. 

Let a E C0 (T*JRd). We define Weyl quantization of a by 

for u E S(JRd). Then aw(x, hDx) is extended to a bounded linear operator on 
L2 (JRd). Further we obtain following theorem on the properties of aw(x, hDx) 
as a bounded operator on L2 (JRd). 

Theorem 2.1. (Calderon- Vaillancourt Theorem) 
For a E C0 (T*JRd), there exists C > 0 such that 

llaw(hX, Dx) IIL(L2(JRd)) ~ C SUP(xl)EJR2d la(x, ~) I + <:J(h½) as h-+ 0. 

Theorem 2.2. (Sharp Garding inequality) 
Suppose a E C0 (T*JRd) is positive. Then there exist C > 0 and h0 > 0 such 
that 

(u, aw(hX, Dx)u)L2(JRd) ~ -Chllulli2(JRd) 

for u E L2 (1Rn) and O < h < ho. 

From the Riesz-Markov-Kakutani theorem and Theorems 2.1 and 2.2, we 
obtain following theorem. 

Theorem 2.3. (Existence of semiclassical defect measure) 
Let uh E L2 (JRd) be a bounded sequence in h. There exists a sequence of 
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positive numbers hm and a positive finite Radon measure µ on T*~d such 
that hm ➔ 0 as m ➔ oo and 

(uhm, aw(x, hDx)uhmh2(JE.d) ➔ r adµ as ffi ➔ oo, 
lr•JE.d 

We call this µ semiclassical defect measure of uh. We remark that this µ 
depends on the choice of hm. 

Wigner first introduced the notion of the semiclassical measure in [14]. 
The study of the partial differential equation using defect measure appeared 
in [10], and Patrick Gerard refined it in [4]. You can find several proofs of the 
existence of semiclassical measures in [2, 3, 11, 15]. You can find a survey of 
this subject in [1]. 

2.2 Estimates on propagators 

This subsection aims to provide s~me estimates on propagators P, which we 
will use in the next section. Let P = Pi + P2 

Lemma 2.4. For any c > 0, lle-ict.P - e-ictPll'B(L2(JRd)) :S ctllVIIL=(JRd)· 

Proof. 

II -ict.P -ictPII e - e 'B(L2(JRd)) 

= 11 fot e-ics.P cv e-ic(t-s)P dsll'B(L2(JRd)) 

'.S 1t lle-ics.P cVe-ic(t-s)Pll'B(L2(JRd))ds 

:S ctllVIIL00 (JRd)· 

Lemma 2.5. Let x E C0 (~) and h > 0. II [x(h2 P2), e-ihtP] ll'B(L2(JRd) 

tfJ(h2) as h ➔ 0. 

□ 
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Proof. From Hellfer-Sjostrand formula, 

[x(h2 A), e-ihtP] 

= 2:i j 8x(A.A)(z)[(h2 P2 - zt1, e-ihtP]dzdz 

= 2:i J ax(A.A)(z) 1t eihsP[(h2 P2 - z)-1' hP]e-ih(t-s)P dsdzdz, 

where x(A.A) is almost analytic extension of X· 

[(h2 A - z)-1 , hP] 

= (h2 P2 - z)-1[h2 P 2, hP](h2 P 2 - z)-1 

= (h2 P 2 - z)-1[h2 P 2, hV](h2 P 2 - z)-1 

= h2(h2 P2 - z)-lcw(x, hDx)(h2 A - z)-1, 

where c(x, t) = t · Ox V. 
Then there exists C > 0 and h0 > 0 such that for for any h E (0, h0 ) 

II (h2 P2 - z)- 1cw(x, hDx)(h2 P2 - z)-1 ll'.B(L2(JRd)) S CIImzl-2 for some C > 0. 
Since x(A.A) is almost analytic extension of x E C0 (JRd), I 8x(A.A) ( z) 11 Imz 1-2 

is integrable on C, which concludes the proof. □ 

3 Proof of the main theorem 

By modifying the arguement in [7], one can prove observebility estimate from 
following two energy localized estimates: 

Theorem 3.1. Let X E CCXl(JRd; [O, 1]) be such that linx = lin, If Assumption 
(A) is satisfied, for any T > 0, there exists Cw,T, h0 > 0 such that 

llx(h2 A)ull£2(JRd) 

s Cw,T (1T llx(h2 A)xe-itP u(x) lli2(JRd)dxdt + h2 llulli2(JRd)) ' 

for any u E L2(JRd) and O < h < h0 . 

Theorem 3.2. (Observability for low energy) 
Let X E C0 (IR). Then there exists Cw,x > 0 such that for any T > 0, 

llx(P2)ulli2(JRd) 

S 0;x 1T 1 le-itPu(x)l 2dxdt + Cw,xT2IIVIIL=(JRd)llull;,2(JRd) 
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3.1 Semiclassical observability estimates 

This subsection is devoted to proving semiclassical observability estimates. 
We follow the argument in [7]. However, we have to change the discussion a 
bit due to non-compactness. 

Theorem 3.3. (semiclassical observability estimates) 
Let X E C0 (IR) be such that 0 (/:. suppx. For any T > 0, there exists Cw,T > 0 
and h0 > 0 such that 

llx(h2 A)ullf2(JRd-k) 

:S:: Cw,T (1T 1 le-ithP2 x(h2 P2)u(x)l 2dxdt + h2llullf2(JRd-k)) 

for any u E L2(JRd-k) and O < h < h0. 

We prove this theorem by contradiction. Assume the assertion does not 
hold. Then there exists uc E L2(JRd-k) and he > 0 such that 

1. he --+ 0 as £ --+ oo. 

2. llx(hiP2)ucll£2(JRn) = 1. 

3. for lle-ith£P2x(hiP2)uclli2(w)dt--+ 0 as£--+ oo. 

From second and third condition, we obtain vc(t) = IIe-itoh£P2 x(hiP2 )uc 
satisfies lime-too llv(t)IIL2(JRn) = 1 for any t E (0, T). We then apply the 
semiclassical defect measure argument in [7] as uh£ is supported in a compact 
set in a semiclassical sense. 

Since L2(JRd) = L2(JRk) ® L2(JRd-k), one can extend Theorem 3.1 to semi­
classical estimate for A+ P2 on ]Rd_ From Lemma 2.1, we obtain following 
proposition. 

Proposition 3.4. {semiclassical observability estimates on JRd) 
Let X E C0 (IR) be such that 0 (/:. suppx. For any T > 0, there exists Cw,T > 0 
and h0 > 0 such that 

llx(h2 P2)ullf2(JRd) 

:S:: Cw,T (1T L lx(h2 P2)e-ithpu(x)l 2dxdt + h2llullf2(JRd)) 
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for any u E L2(~d) and O < h < h0 . 

From lemma 2.3 and the arguement in [7], one can replace e-iikP by e-itP 

to obtain Theorem 3.1. 

3.2 Low energy observability estimates 

From Logvinenko-Sereda theorem in [8], there exists a C > 0 

llx(A)ulli2(IB_d-k) ~ c11e-itP2x(P2)ulli2(w) 

for any u E L2(~d-k) since D is a thick set. By replacing u by e-itP2 u and 
integrate above inequality on (0, T) to obtain following lemma: 

Lemma 3.5. Let X E C0 (~)- Then there exists Cw,x > 0 such that for any 
T> 0, 

llx(P2)ulli2(JRd-k) ~ 0;x 1T 1 le-itP2u(x)l2dxdt (3.1) 

for any u E L2(~d-k). 

Similarly to the semiclassical case, we can extend this estimate to the 
estimates on D to obtain Theorem 3.2. 
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