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Operators on Eucleadian space minus tube 
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Abstract 

Observability estimates on Euclidean space are considered. We 
prove the observability estimate for Schrodinger operators on the Eu
cleadian set minus tube. Our proof is stable under perturbation by 
bounded and smooth real-valued potential. Our assumption on the 
operator are saisfied by some non-elliptic operators and differential 
operators with unbounded coefficients. Results in this article are col
laboration work by the author with Fabricio Macia and Shu Nakamura. 

1 Introduction 

In this article, we introduce our collaboration work by the author with Fabri
cio Macia and Shu Nakamura on the observability estimates for Schrodinger 
operators on Euclidean space minus tube. 

1.1 Statement of the main result 

Let D c JRd be such that D = JRk x w with 1 < k < d and w c JRd-k_ We 
assume JRd-k \ w is compact. 

Let Pi and A be diffrential operators on JRk and JRd-k respectively. We 
define diffrential operator P on JRd by P = Pi + P2 + V ( x). 
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Assumption A. A, P2 and V satisfy followings: 

l. p is essentially selfadjoint on Co(IRd). 

2. A is a differential operator with smooth real valued coefficient and 
essentially selfadjoint on Co(IRk). 

4. VE L00 (1Rd: IR) and sup 18~2 V(x)I < oo for any a E Nd with lal :S 1. 
xEJRd 

Example. l. If k = 1, A = - .6JR +x1 and V = 0, then P is Stark 
Hamiltonian and Assumption A is satisfied. 

2. If k = 1, A = .6JR and V = 0, then P is d'Alembert operator and 
Assumption A is satisfied. 

Theorem 1.1. ( Observability estimates) 
Suppose Assumtion A is satisfied. For any T > 0, there exists Cn,T > 0 such 
that 

llulli2(JRd) :S Cn,T 1T 1 le-itPu(x)l 2dxdt, 

for any u E L2 (!Rd). 

In [9], Lions proved that observability estimate holds if and only if corre
sponding exact control problem has a solution. In our setting, exact control 
problem is a following problem: for given T > 0 and u0 , Ut E L2 (1Rd), can we 
find f E L2 (1Rt x IR~) such that 

{ 
i8tu(t,x)- Pu(t,x) = ]n(x)f(t,x), (t,x) E lR x !Rd, 

(1.1) 
ult=O = uo E L2 (1Rd). 

has a solution u E L2 (1R x !Rd)? 
Also, Miller showed that this this exact control problem is equivalent to 

the following spectral inequality: 

Theorem 1.2 (Miller [13, Corollary 2.17]). Let A be a selfadjoint operator 
on L2 (1Rd), which is the infinitesimal generator of a strongly continuous group 
( eitA )tEJR on L2 (!Rd). If the evolution equation ( 1.1) with P replace by A is 
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exactly observable from a measurable subset n c ffi.d at some time T > 0 then 
there exist some positive constants k > 0 and D > 0 such that 

Conversely, when the spectral estimates (1.2) hold for some k > 0 and D > 0, 
then the system ( 1.1) is exactly observable from n at any time 

T>n {1+k VIJ· 
It is known that on compact manifolds, observability estimates are related 

to the property of the geodesic. We say n c M satisfies the geometric control 
condition (GCC) if any geodesic with length L intersects with n. Lebeau 
proved in [7] that for a compact Riemannian manifold ( M, g), if n C M 
satisfies GCC, the observability estimate for Laplace-Beltrami operator on n 
holds. 

There are two main difficulties in our setting: n does not satisfy the 
geometric control conditions, and ffi.d is not compact. The first difficulty is 
relaxed by assuming that n is a product of Euclidean space and Euclidean 
space minus compact set. 

The second difficulty is much more severe since the proof of observability 
estimate in [7] uses compactness of the space. In the [7], the observability 
estimate in high energy regime is shown in then it is shown that low energy 
regime can be regarded as a minor error. In the second part, compactness 
plays a critical role. We use Logvinenko-Sereda theorem to avoid this diffi
culty. See section 3.2 for the detail. 

1.2 Thick set and Logvinenko-Sereda theorem 

Definition 1.1. A measureble subset S C ffi.d is thick if there exists a cube 
K c ffi.d with sides parallel to coordinate axes and a positive constant O < 
1 ~ 1 such that 

where IAI denotes the Lebesgue measure of the measurable set A. 

Theorem 1.3 (Logvinenko-Sereda [8]). Let S, ~ c ffi.d be measurable sets 
with ~ compact. The following assertions are equivalent: 
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- The subset S is thick. 

- There exists a positive constant C = C(S, 1::) > 0 such that for all 
f E £2(JR.d), 

r lf(x)l 2dx::; c( r lf(x)l 2dx + r 1!(~)12d~). J~d ls J~d\E 

Logvinenko-Sereda Theorem states any function f in L2(JR.d) never con
centrates in a thick subset if its energy is concentrated in a compact set. In 
this sense, Logvinenko-Sereda theorem can be regarded as a sort of uncer
tainty principle for a thick set. 

Kovrjikine obtained some exact constant in Logvinenko-Sereda theorem. 

Theorem 1.4. Let Sc JR.d be measurable set. We say S is (r, L)-thick set 
if 

Vx E IR.d, l([0, L]d + x) n SI 2: "fLd, 

with "I E (0, 1). There exists a constant C > 0 such that for any f E L2(JR.d) 
with suppj C J where J is a cube with sides of length b parallel to coordinate 
axis, 

( 
d)Cd(Lb+l) 

with c(r, d, L, b) = ~ . 

Remark. As b ➔ oo, c(r, d, L, b) ➔ oo. Thus it is impossible to obtain 
observability estimates directly from Logvinenko-Sereda theorem. 

Thickness may be considered as a higher dimensional analogue of the 
geometric control condition. We define the ii-dimensional geometric control 
condition as follows: 

Definition 1.2. Fix ii E {1, ... , d}. For £ > 0 and 'Y > 0, a set E C JR.d 
satisfies the ii-dimensional ( £, 'Y )-GCC if for any ii-dimensional cube Q C IR.n 
of side-length £, 

where I · I,_ denotes the ii-dimensional Hausdorff measure. We say that E 
satisfies the ii-GCC if it satisfies the ii-dimensional ( £, 'Y )-GCC for some £ > 0 
and 'Y· 
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With this notion of the K-dimensional GCC, a thick set is a set that 
satisfies the d-dimensional GCC. On the other hand, on a compact manifold, 
the 1-dimengional GCC and the GCC used in [7] are equivalent. However, we 
have to assume uniformness, in general, to obtain to obtain the 1-dimengional 
GCC from the usual GCC. Assume SC ]Rd satisfies the K-dimensional GCC. 

From Fubini theorem, S must satisfy the K'-dimensional GCC for K 1 > K. 

Let Q = ITi=1(ak, ak + L) c JRd and Q = ITi=k+l(ak, ak + L). We see 

ISnQI 

= h lis(x)dx 

= ( 1ak+L .. • 1ai+L lis(x1 , · · · , Xk, x')dx1 · · · dxkdx' 
}Q ak a1 

= /41sn{(x1,x') I a£< X1 < a£+L,£= l·••k}lkdx' 

> ,L /4 dx' 

= ,La. 

Consider Ps = (-~)s for s > 0. In [12], Martin and Pravda-Starov 
showed that if S C ]Rd satisfies observability estimates for Ps, S must be a 
thick set. Further, when s > ½, it is proved that there exists T0 > 0 such 
that observability estimates on S with time T > 0 holds if T > T0 • Huang, 
Wang and Wang showed the same results when s = 1 and d = l in [5] 
independently. 

Also, Martin and Pravda-Starov showed that if S satisfies the K-GCC for 
K E {1, • • • d - l }, <5 neighbourhood of D satisfies observability estimates for 
Ps and sufficiently large T > 0. 

Assume D satisfies Assumption A. Then one can easily see w is a thick 
set and D is also a thick set. However, D does not satisfy GCC. Therefore 
Theorem 1.1 gives an example of D that is thick and satisfies observability 
estimates for P and any T > 0 but does not satisfy the K-GCC for K E 
{1,··•d-1}. 

Theorem 1.1 also shows that the observability estimate is stable under 
perturbation by bounded and smooth potential. Furthermore, Theorem 1.1 
covers some non-elliptic operators and operators with unbounded potentials 
(See examples after Theorem 1.1 for the detail). 
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2 Preliminary 

2.1 Pseudodifferential operators and semiclassical de-
fect measures 

As we stated before, in [7], Lebeau first proves the semiclassical observability 
estimates to obtain the observability estimates. In his proof of the observ
ability estimates, Lebeau used semiclassical defect measure. 

This subsection aims to provide some basic notions of semiclassical anal
ysis needed later. This subsection also aims to provide some concepts of 
semiclassical measure. You can find all the proof of the theorem in this 
subsection in [16]. 

Let a E C0 (T*JRd). We define Weyl quantization of a by 

for u E S(JRd). Then aw(x, hDx) is extended to a bounded linear operator on 
L2 (JRd). Further we obtain following theorem on the properties of aw(x, hDx) 
as a bounded operator on L2 (JRd). 

Theorem 2.1. (Calderon- Vaillancourt Theorem) 
For a E C0 (T*JRd), there exists C > 0 such that 

llaw(hX, Dx) IIL(L2(JRd)) ~ C SUP(xl)EJR2d la(x, ~) I + <:J(h½) as h-+ 0. 

Theorem 2.2. (Sharp Garding inequality) 
Suppose a E C0 (T*JRd) is positive. Then there exist C > 0 and h0 > 0 such 
that 

(u, aw(hX, Dx)u)L2(JRd) ~ -Chllulli2(JRd) 

for u E L2 (1Rn) and O < h < ho. 

From the Riesz-Markov-Kakutani theorem and Theorems 2.1 and 2.2, we 
obtain following theorem. 

Theorem 2.3. (Existence of semiclassical defect measure) 
Let uh E L2 (JRd) be a bounded sequence in h. There exists a sequence of 
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positive numbers hm and a positive finite Radon measure µ on T*~d such 
that hm ➔ 0 as m ➔ oo and 

(uhm, aw(x, hDx)uhmh2(JE.d) ➔ r adµ as ffi ➔ oo, 
lr•JE.d 

We call this µ semiclassical defect measure of uh. We remark that this µ 
depends on the choice of hm. 

Wigner first introduced the notion of the semiclassical measure in [14]. 
The study of the partial differential equation using defect measure appeared 
in [10], and Patrick Gerard refined it in [4]. You can find several proofs of the 
existence of semiclassical measures in [2, 3, 11, 15]. You can find a survey of 
this subject in [1]. 

2.2 Estimates on propagators 

This subsection aims to provide s~me estimates on propagators P, which we 
will use in the next section. Let P = Pi + P2 

Lemma 2.4. For any c > 0, lle-ict.P - e-ictPll'B(L2(JRd)) :S ctllVIIL=(JRd)· 

Proof. 

II -ict.P -ictPII e - e 'B(L2(JRd)) 

= 11 fot e-ics.P cv e-ic(t-s)P dsll'B(L2(JRd)) 

'.S 1t lle-ics.P cVe-ic(t-s)Pll'B(L2(JRd))ds 

:S ctllVIIL00 (JRd)· 

Lemma 2.5. Let x E C0 (~) and h > 0. II [x(h2 P2), e-ihtP] ll'B(L2(JRd) 

tfJ(h2) as h ➔ 0. 

□ 
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Proof. From Hellfer-Sjostrand formula, 

[x(h2 A), e-ihtP] 

= 2:i j 8x(A.A)(z)[(h2 P2 - zt1, e-ihtP]dzdz 

= 2:i J ax(A.A)(z) 1t eihsP[(h2 P2 - z)-1' hP]e-ih(t-s)P dsdzdz, 

where x(A.A) is almost analytic extension of X· 

[(h2 A - z)-1 , hP] 

= (h2 P2 - z)-1[h2 P 2, hP](h2 P 2 - z)-1 

= (h2 P 2 - z)-1[h2 P 2, hV](h2 P 2 - z)-1 

= h2(h2 P2 - z)-lcw(x, hDx)(h2 A - z)-1, 

where c(x, t) = t · Ox V. 
Then there exists C > 0 and h0 > 0 such that for for any h E (0, h0 ) 

II (h2 P2 - z)- 1cw(x, hDx)(h2 P2 - z)-1 ll'.B(L2(JRd)) S CIImzl-2 for some C > 0. 
Since x(A.A) is almost analytic extension of x E C0 (JRd), I 8x(A.A) ( z) 11 Imz 1-2 

is integrable on C, which concludes the proof. □ 

3 Proof of the main theorem 

By modifying the arguement in [7], one can prove observebility estimate from 
following two energy localized estimates: 

Theorem 3.1. Let X E CCXl(JRd; [O, 1]) be such that linx = lin, If Assumption 
(A) is satisfied, for any T > 0, there exists Cw,T, h0 > 0 such that 

llx(h2 A)ull£2(JRd) 

s Cw,T (1T llx(h2 A)xe-itP u(x) lli2(JRd)dxdt + h2 llulli2(JRd)) ' 

for any u E L2(JRd) and O < h < h0 . 

Theorem 3.2. (Observability for low energy) 
Let X E C0 (IR). Then there exists Cw,x > 0 such that for any T > 0, 

llx(P2)ulli2(JRd) 

S 0;x 1T 1 le-itPu(x)l 2dxdt + Cw,xT2IIVIIL=(JRd)llull;,2(JRd) 
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3.1 Semiclassical observability estimates 

This subsection is devoted to proving semiclassical observability estimates. 
We follow the argument in [7]. However, we have to change the discussion a 
bit due to non-compactness. 

Theorem 3.3. (semiclassical observability estimates) 
Let X E C0 (IR) be such that 0 (/:. suppx. For any T > 0, there exists Cw,T > 0 
and h0 > 0 such that 

llx(h2 A)ullf2(JRd-k) 

:S:: Cw,T (1T 1 le-ithP2 x(h2 P2)u(x)l 2dxdt + h2llullf2(JRd-k)) 

for any u E L2(JRd-k) and O < h < h0. 

We prove this theorem by contradiction. Assume the assertion does not 
hold. Then there exists uc E L2(JRd-k) and he > 0 such that 

1. he --+ 0 as £ --+ oo. 

2. llx(hiP2)ucll£2(JRn) = 1. 

3. for lle-ith£P2x(hiP2)uclli2(w)dt--+ 0 as£--+ oo. 

From second and third condition, we obtain vc(t) = IIe-itoh£P2 x(hiP2 )uc 
satisfies lime-too llv(t)IIL2(JRn) = 1 for any t E (0, T). We then apply the 
semiclassical defect measure argument in [7] as uh£ is supported in a compact 
set in a semiclassical sense. 

Since L2(JRd) = L2(JRk) ® L2(JRd-k), one can extend Theorem 3.1 to semi
classical estimate for A+ P2 on ]Rd_ From Lemma 2.1, we obtain following 
proposition. 

Proposition 3.4. {semiclassical observability estimates on JRd) 
Let X E C0 (IR) be such that 0 (/:. suppx. For any T > 0, there exists Cw,T > 0 
and h0 > 0 such that 

llx(h2 P2)ullf2(JRd) 

:S:: Cw,T (1T L lx(h2 P2)e-ithpu(x)l 2dxdt + h2llullf2(JRd)) 
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for any u E L2(~d) and O < h < h0 . 

From lemma 2.3 and the arguement in [7], one can replace e-iikP by e-itP 

to obtain Theorem 3.1. 

3.2 Low energy observability estimates 

From Logvinenko-Sereda theorem in [8], there exists a C > 0 

llx(A)ulli2(IB_d-k) ~ c11e-itP2x(P2)ulli2(w) 

for any u E L2(~d-k) since D is a thick set. By replacing u by e-itP2 u and 
integrate above inequality on (0, T) to obtain following lemma: 

Lemma 3.5. Let X E C0 (~)- Then there exists Cw,x > 0 such that for any 
T> 0, 

llx(P2)ulli2(JRd-k) ~ 0;x 1T 1 le-itP2u(x)l2dxdt (3.1) 

for any u E L2(~d-k). 

Similarly to the semiclassical case, we can extend this estimate to the 
estimates on D to obtain Theorem 3.2. 
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