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ABSTRACT. For every non-integral a > 1, the sequence of the integer parts of n"' (n = 
1, 2, ... ) is called the Piatetski-Shapiro sequence with exponent a. Let PS(a) be the 
set of all those terms. In a previous study, Matsusaka and the author studied the set 
of a E I such that PS(a) contains infinitely many arithmetic progressions of length 3, 
where I is a closed interval of [2, oo). As a corollary of their main result , they showed 
that the set is uncountable and dense in I. The aim of this article is to provide a direct 
proof of this result. 

1. INTRODUCTION 

We let l x J denote the integer part of x E R For every non-integral a > 1, the sequence 
(lnnj)~=l is called the Piatetski-Shapiro sequence with exponent a, and we let PS(a) be 
the set of all those terms. Let us fix a, b, c E N. In a previous study, Matsusaka and the 
author studied the set of all a E [s, t] such that ax + by = cz holds for infinitely many 
(x,y,z) E PS(a) 3 with #{x,y,z} = 3 [MS20]. They found explicit lower bounds of the 
Hausdorff dimension of the set [MS20, Theorem 1. 1]. As a corollary of this result, they 
proved 

Theorem 1.1 ([MS20, Corollary 1.3]). For any closed set Ii:;;; [2, oo), the set of a E I 
such that PS( a) contains infinitely many three-term arithmetic progressions is uncountable 
and dense in I. 

The aim of this article is to provide a direct proof of Theorem 1. 1. For this purpose, spe­
cific knowledge of fractal geometry is not required. Instead, we apply the Baire category 
theorem which will be covered in Section 2. 

Notation 1.2. Let N be the set of all positive integers, Z be the set of all integers, Q be 
the set of all rational numbers, and JR. be the set of all real numbers. For x E JR., let { x} 
denote the fractional part of x. Let A denote the imaginary unit, and define e(x) by 
e2-rryl=Ix for all x E R 

2. PROOF OF THEOREM 1.1 

Let X be a topological space. A set U ,:;;; X is called a Gli set if U = n;,1 Uj for 
some countable open sets Uj i:;;; X (j = 1, 2, ... ). In this section, we prove Theorem 1.1 
assuming the following: 

Theorem 2.1. There exists a G/i set U i:;;; (1, oo) which is a subset of 

{a E (1, oo): PS(a) contains infinitely many three-term arithmetic progressions}, 

and U is dense in (1, oo). 
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We prove Theorem 2.1 in Section 5. 

Theorem 2.2 (the Baire category theorem). Let X be a complete metric space. If sets 
uj <;;; X (j = 1, 2, ... ) are open and dense in X, then n~l uj is dense in X. 

A proof of this theorem can be found in many textbooks on functional analysis. For 
example, see the book written by Rudin [Rud91]. We will apply the Baire category 
theorem to the proofs of Theorem 1.1 and Theorem 2.1. 

Proof of Theorem 1.1 assuming Theorem 2.1. Let us fix any closed interval I C [2, oo). 
We define 

£={a EI: PS(a) contains infinitely many three-term arithmetic progressions}. 

Let us introduce the Euclidean topology to I. We now consider that I is a complete 
metric space. Then from Theorem 2.1, there exists a Gii set U <;;; I such that U <;;; £ and 
U is dense in I. Thus if U is uncountable, we reach the conclusion of Theorem 1.1. 

Let us verify that U is uncountable. By the definition, there exist open sets Uj <;;; I 
(j = 1, 2, ... ) which are dense in I such that U = n~l Uj. Then we take any sequence 
(bj)~1 composed of bj E I for all j E N. Let B = {bj: j = 1, 2, · · · }. For all j E N, let 
½ = Uj \ {bj}- It is clear that½ is open and dense in I. Since I is a complete metric 
space, by Theorem 2.2 the following set is dense in I: 

j=l j=l j=l 

Therefore U \ B =/= 0 which means that U =/= B. Hence U is uncountable since U is not 
coincident with an arbitrary countable subset of I. □ 

The rest of the article focuses on proving Theorem 2.1. In Section 3, we define the 
uniform distribution modulo 1 of the sequences, and describe some salient prior results. In 
Section 4, we obtain key lemmas. Finally, in Section 5, we provide a proof of Theorem 2.1. 

3. PREPARATIONS 

For all x = (x 1 ,x2 , ... ,xd) E ~d, define {x} = ({x1},{x2}, ... ,{xd}). A sequence 
(xn)nEN composed of Xn E ~d for all n E N is called uniformly distributed modulo 1 if for 
every 0 :Sa;< b; :s; 1 (i = 1, 2, ... , d), we have 

(3.1) J~
00 
!# { n EN n [1, N]: {xn} E g[a;, b;)} = g (b; - a;). 

The sequence (xn)nEN is uniformly distributed modulo 1 if and only if 

1 N 

lim - '°' e( (h, Xn)) = 0 N--+oo N ~ 
n=l 

for all h = (h1 , ... ,hd) E zd \ {(0, ... ,0)} where let(·,·) denote the standard inner 
product. This equivalence is called Weyl's criterion. A proof of that can be found in the 
book written by Kuipers and Niederreiter [KN74]. 

Lemma 3.1. Let k be a positive integer, and f(x) be a function defined for x ~ 1, which 
is k times differentiable for x ~ x 0 . If f(k)(x) tends monotonically to O as x---+ oo and if 
limx--+ooxlf(k)(x)I = oo, then the sequence (f(n))nEN is uniformly distributed modulo 1. 
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Proof. See [KN74, Theorem 3.5]. □ 

By Lemma 3.1, we immediately obtain 

Lemma 3.2. For all A E ~ \ {O} and non-integral a > 1, the sequence (Ana)~=l is 
uniformly distributed modulo l. 

4. LEMMAS 

Lemma 4.1. For all l < j3 < 1 , there exists a E (/3, 1 ) such that the equation xa+ 1 = 2za 
has a solution of a pairwise distinct pair (x, z) EN. 

Proof. Let us fix any 1 < /3 < 1 , and let us define 

(( l+x-f3) 1/f3 (1) 1h) J(x) = 2 x, 2 x n N 

for all x E N. We can find a large enough x E N so that J(x) is non-empty. Let us fix 
such x and z E J(x). Let f(a) = xa + l - 2za for all a E R Then f is continuous. In 
addition, f(/3) < 0 and fb) > 0. Therefore by the intermediate value theorem, there 
exists a E (/3, 1) such that f(a) = 0. □ 

Lemma 4.2. Let a > 1 be non-integral, and let x, z be positive integers. Suppose that 
1 + x" = 2z". Then lna J + l(nx)" J = 2l(nz)°' J for infinitely many n EN, 

Proof. Let us fix x, z, a given in the condition of Lemma 4.2. For all n E N, 

lnaj + l(nxtJ-2l(nztJ =na(l+xa-2za)-({na}+{(nxt}-2{(nzt}) 

= -({na} + {(nxt} - 2{(nzr}). 

Let i5(n) be the most right-hand side of the above. Let 

B = {n EN: {na/2} < 1/8, {(nxr/2} < 1/8}. 

Then for all n E A, we obtain 

li5(n)I :S {na} + {(nx)a} + 2{(na(l + x°')/2)} 

:S 2{na/2}+2{(nxr/2}+2{na/2}+2{(nx)a/2} < 1. 

Therefore if B is infinite, we arrive at the conclusion of Lemma 4.2. Let us show the 
infinitude of B. 

Where x°' E ~\IQ, the sequence (na/2, (nx)°'/2) is uniformly distributed modulo 1 
from Weyl's criterion and Lemma 3.2. Hence Bis infinite by the definition of the uniform 
distribution modulo 1. 

Where xa E IQ, there exist u, v EN such that xa = u/v. Then let 

C = {n EN: {na/(2v)} < l/(8uv)}. 

For all n E C, we have 

{n°'/2} = {vna/(2v)} :S v{na/(2v)} < 1/8, 

{(nxr/2} = {una/(2v)} :S u{na/(2v)} < 1/8. 

Therefore C ~ B. By Lemma 3.2, the sequence (na /(2v))nEN is uniformly distributed 
modulo 1. Hence C is infinite by the definition of the uniform distribution modulo 1. 
This yields that B is infinite. □ 
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5. PROOF OF THEOREM 2.1 

Let A= { o: E (1, oo): there exists a distinct pair (x, z) E N2 such that xa + 1 = 2za}. 
By Lemma 4.1, A is dense in (1, oo). Further, by Lemma 4.2, for all o: EA, there exist 
distinct Xa, Za E N and there exist positive integers n 1,a < n 2,a < · · · such that 

l nj,aJ + l ( nj,aXat J = 2 l ( nj,aZa)a J 

for all j EN. Let us take such Xa, Ya, nj,a• Then for all j EN and o: EA, we define 

_ . {log(l(nj,awtJ+l) . _ } 
Rj,a - mm l ( _ ) - a. w - 1, Xa, Za . 

og n1,aw 

Then ln},aJ + l(nj,aXa)lJ = 2l(nj,aZa)lJ for all t E (o:,a+R1,a), For all j EN, let 

Ui = LJ (a, a+ £1,a)-
aEA 

Then uj is open and dense in (1, oo). By Theorem 2.2, U := n~l uj is dense in (1, oo). 
In addition, let us take any t E U. Then for all j E N, there exists O!j E A such that 
l n;,"'i J + l ( nJ,aj Xaj )l J = 2 l ( nJ,aj Zaj )l J . Therefore PS ( t) contains infinitely many three­
term arithmetic progressions since nj,aj 2'. j ---+ oo as j ---+ oo. 
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