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Algebraic independence of the partial derivatives of 
certain functions with many variables 

·~~~::k~::k~lm flI~,uJf~f-4 #-=¥~:m (Haruki Ide) 
Graduate School of Science and Technology, Keio University 

1 Main results 

This article is based on a joint work with Professor Taka-aki Tanaka. We denote 
by Z20 the set of nonnegative integers, by (Ql the field of algebraic numbers, and 

by (Qlx the set of nonzero algebraic numbers. Let {Rkh20 be a linear recurrence of 
nonnegative integers satisfying 

(1) 

where n 2: 2, R 0 , ... , Rn-l are not all zero, and c1 , ... , Cn are nonnegative integers 
with Cn i- 0. Define the polynomial associated with (1) by 

<P(X) := xn - c1xn-l - · · · - Cn, 

Throughout this article, we assume the following three conditions (Rl)-(R3) on 
{Rdk20: 

(Rl) <P(±l) c/- 0. 

(R2) The ratio of any pair of distinct roots of <P(X) is not a root of unity. 

(R3) { Rk h 2o is not a geometric progression. 

We note that if { Rdk>o satisfies the conditions (Rl) and (R2), then Rk = cpk +o(pk), 
where c > 0 and p > l (cf. Tanaka [4, Remark 4]). Let a1 , ... , as be multiplicatively 
independent algebraic numbers with 0 < lail < 1 (1 :Si :S s) and y1 , ... ,Ys complex 
variables. We write y := (y1 , ... , Ys)- For each 1 :S i :S s, we define 

Gi(Yi) := IT (1 - afkyi), (2) 
k=O 



6

and for each algebraic number /3, we define 

Moreover, for each /3 = (/31 , ... ,/3s) E «J/, we denote 

M13 := {rn = (m1, ... ,ms) E z;0 I mi 2: Ni,/3; for all 1::::; i::::; s}. 

Let 
s 

G(y) := IT Gi(Yi), 0(y) := G(y)H(y). 
i=l 

For an analytic function f(y) and a vector rn = (m1 , ... , ms) E Z~0 , we denote 

ami+··+ms f 
j<=l(y) := 8 m1 8 m (y). 

Y1 • · · Ys s 

(3) 

(4) 

Main Theorem. Suppose that {Rkh:>:o satisfies the conditions (Rl)-(R3). Then 
the infinite set 

{Ei=l(/3) I /3 E rrt, rn E M,a} 

is algebraically independent. 

As a corollary to this theorem, we obtain an explicit example of an entire 
function with arbitrary number s of variables having the property that the val­
ues and the partial derivatives of any order at any distinct algebraic points are 
algebraically independent. Let Z>o be the set of positive integers. Suppose that 
{Rkh>o satisfies the conditions (Rl)-(R3). Assume in addition that {Rk}k>o is 
strictly increasing. Then Ni,/3 ::; 1 for all /3 E (Q and so Z~0 is a subs;t of 
M,a for all /3 E (Qs. Hence { e(=) (/3) I /3 E (Qs, rn E Z~0 } is an infinite subset 

of {e(=l(f3) I /3 E (Qs, rn E M,a}. Therefore the main theorem implies that the 

infinite set { e(=l(/3) I /3 E (Q8, rn E Z~0 } is algebraically independent. Letting 

ase s -aRk;+R1 

=(y) := a a (y) = G(y) L IT Rk • R , (5) 
Y1 • • • Ys k k 1 -_1 (1 - a. 'y·)(l - a. 1y·) 1 , , .. , s, ~0 , Z- Z 1, 1, 1, 

k1, ... ,ks#l 

we obtain the following 

Corollary 1. Suppose that { Rkh:>:o satisfies the the conditions (Rl )-(R3). Assume 
in addition that { Rkh:>:o is strictly increasing. Then the infinite set 

is algebraically independent. 
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Example 1. Let p1 , ... ,Ps be distinct rational primes and {Fkh>o the Fibonacci 
numbers defined by 

Fa= 0, Fi= l, Fk+2 = Fk+1 + Fk (k 2 0). 

Putting ai := p:;1 (1 :S: i :S: s) and regarding {Fk+2h:c:o as {Rkh:::,:o, we define the 
function 3(y) by (5), namely, 

Then by Corollary 1 the infinite set 

is algebraically independent. 

In the case of s = 1, the main theorem is deduced from the following previous re­
sult of the author, which extends Tanaka's previous result [6] asserting the algebraic 
independency of the infinite set 

{ c(m)(/3) I /3 E (Q( \ {a-Rkh:c:o, m 2 0}. 
Proposition 1 ( A special case of Theorem 1. 7 of Ide [1]). Suppose that { Rh} k>o 
satisfies the the conditions (Rl)-(R3). Then, ifs= 1, then the infinite set 

{ c(m)(/3) I (3 E QX, m 2 N;,} LJ { c(ml(o) Im 2 1} 

( = {-e(ml(f3) I (3 E Q, m 2 N;,} u { c(N13)((3) I (3 E Qx}) 
is algebraically independent, where N;, := N1,;, for each (3 E Q. 

For obtaining the entire main theorem, we actually show the following, which 
includes the main theorem for the case of s 2 2. 

Theorem 1. Suppose that {Rkh:c:o satisfies the conditions (Rl)-(R3). Assume in 
addition that s 2 2. Then the infinite set 

{e(=l(,a) I J3 E Q3
, m E M13} 

LJ { G~m)(/3) 11 :S: i :S: s, (3 E QX, m 2 Ni,;,} 

LJ { G~m\o) 11 :S: i :S: s, m 2 1} 
is algebraically independent. 
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Theorem 1 is deduced from the following theorem together with the lemmas and 
the theorem stated in the next section. 

Theorem 2. Suppose that {Rk}k;:,,o satisfies the conditions (Rl)-(R3). Assume in 
addition that s 2: 2. Then the infinite set 

{H(rn)(,B) I J3 E B8 , m E Z~o} 
LJ{Gi(/J) I 1 :S: i :S: s, J3 E B\ {O}} 

LJ { Ht) (JJ) 11 :S: i :S: s, JJ E B, m 2: 0} 
is algebraically independent, where 

B := Q \ LJ{ a;Rk I k 2: O} = {JJ E Q I Ni,/3 = 0 for all 1 :S: i :S: s }. 
i=l 

The proof of Theorem 2 is based on Mahler's method ( cf. [2, 3]) and consists 
of the following four steps: First, we construct an sn-dimensional algebraic point 
o: and Mahler functions h13,rn(z), gi,13(z), hi,/3,m(z) of sn variables z = (z11, ... , Zsn) 

such that H(rn)(,B) = h13,rn(o:), Gi(JJ) = gi,13(0:), Hi(m\J3) = hi,/3,m(o:), where n is 
the length of the recurrence formula (1). Secondly, using Kubota's criterion for 
the algebraic independence of the values of Mahler functions, we reduce the alge­
braic independence of the values h13,rn ( o:), gi,/3 ( o:), hi,/3,m ( o:) to that of the functions 
h13,rn(z), gi,13(z), hi,/3,m(z) themselves over the rational function field Q(z). Thirdly, 
using Kubota's criterion for the algebraic independence of Mahler functions them­
selves, we reduce the algebraic independence of the functions above to their linear 
independence and their multiplicative independence. (For these two criteria for the 
algebraic independence, see Kubota [2].) Finally, multiplexing Tanaka's result [5] 
on the rational function solutions of certain functional equations, we prove the lin­
ear independence and the multiplicative independence mentioned above. We omit 
further details of the proof of Theorem 2 in this article. 

2 Proof of Theorem 1 

For each 1 :S: i :S: s, let { aii)h;:,,o be a sequence of algebraic numbers satisfying 

00 

L laki)I < oo 
k=O 

and let 

·- IIOO ( (i) ) gi(Yi) .- 1 - ak Yi , (6) 
k=O 
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Define 

s 

g(y) := IIgi(Yi), 0(y) := g(y)h(y). (7) 
i=l 

First we show the following lemmas, which assert that the functions in (6) and 
(7) satisfy 'invertible' algebraic relations. 

Lemma 1. Let m E Z:c:o and let X 0 , ... , Xm-l and Yi, ... , Ym be variables. Then 
the fallowing equations hold. 

(i) For any m 2". 0, 

(1::;i::;s), 

where Ao := 1 and Am(Xo, ... , Xm-1) E Z[Xo, ... , Xm-1]. 

(ii) For any m 2". 0, 

h (m)( ·) = _gi Yi + B _gi Yi _gi Yi (m+l)( ) ( '( ) (m)( )) 
i Yi ( ) m ( ) , - - - , ( ) 9i Yi 9i Yi 9i Yi 

where Bo:= 0 and Bm(Yi, ... , Ym) E Z[Y1, ... , Ym]-

Proof. Since g~(Yi) = -gi(Yi)hi(Yi), we see inductively that, for any m 2". 1, 

where Ai := 0 and A~(Xo, ... , Xm-2) E Z[Xo, ... , Xm-2] (m 2". 2). Letting 

we get (8). By (10) we have 

(m+l)( ) 
h (m) ( ) gi Yi A* (h ( ) h(m-1) ( )) 

i Yi = - gi(Yi) + m+l i Yi , · · ·, i Yi 

for any m 2". 0. Therefore, defining 

inductively on m 2". 0, we obtain (9). 

(8) 

□ 
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Lemma 2. For any m = (m1 , ... , ms) E z;0 , let Xi,µ (1 :Si :S s, 0 '.S µ '.S mi -1), 
Y;,µ (1 :S i :S s, 1 :S µ '.S mi), and Zµ, (µ -= (µ1, ... , µ 8 ), 0 '.S µi '.S mi, µ =/= m) 
be variables. Set Xm := (Xi,µ)i,µ, Yrn := (Y;,µ)i,µ, and Zrn := (Zµ,)µ,- Then the 
fallowing hold. 

(i) 

e(=l(y) = g(y)h(rnl(y) + g(y)Crn(Xrn, Zrn) lxi,µ=h;")(Yi), Zµ=h(l')(y) ' (11) 

where Crn(Xrn, Zrn) E Z[Xrn, Zrn]. 

(ii) 

h(rn)( ) - e(=l(y) + D (Y. z ) I 
Y - g(y) rn rn, rn Y;,µ=-g)"\y;)/g;(y;), Zµ=0(µ) (y)/g(y) ' 

where Drn(Yrn, Zrn) E Z[Yrn, Zrn]. 

Proof. Since 0(y) = g(y)h(y), using (8), we obtain 

µ=(µ1,,.,,µ,), 
0'5cµ;'5cm; (l'5ci'5cs) 

= g(y)h(=l(y) 

(D (:::)g/"'\y;)) h(=-•l(y) 

+ g(y) I: 
µ,=(µ1,, .. ,µ,), 

0'5cµ;'5cm; (l'5ci'5cs), 
µ,-/-0 

for any m E Z~0 , which implies (11). Thereby we have 

(rn) - e(=l(y) I 
h (y) - g(y) - Crn(Xrn, Zrn) X;,µ=h;"\y;), Zµ=h(µ)(y) · 

Hence, noting (9) and defining 

Drn(Yrn, Zrn) 

:= - Crn(Xrn, z;,.) lxi,µ=Y;,µ+1+Bµ(Y;,1,.,.,Y;,µ), Z!,.=Z,.+D,.(Yµ ,Zµ) 

(12) 

inductively with respect to the lexicographical order of z;0 , where Z~ (µ = 
(µ 1 , ... , µ 8 ), 0 :S µi '.S mi, µ =/= m) are variables and z;,. -= ( Z~) µ,, we obtain 
(12). □ 



11

Next we show the existence of invertible linear relations between the values of 
the above functions and those of 'shifted' functions defined below. Let {30 := 0 and 
let /31 , ... , f3J be any nonzero distinct algebraic numbers. Similarly to the numbers 
Ni,f3i (1 S i S s, 0 S j S J) defined by (3), we define the numbers ni,j (1 S i S 
s, 0 s j s J) by 

ni,j := #{k 2 0 I aki) =/= 0, (aki))-1 = /3j} = ord gi(Yi) (1 Si S s, 0 S j S J). 
y;={3j 

For each j = (j1 , ... ,js) E {0, ... , J}S, let 

Since aki) --+ 0 as k tends to infinity for all 1 :S i :S s, there exists a sufficiently 

large integer k0 such that 1 - aii) /3j =/= 0 (1 S i :S s, 1 S j s J) for all k 2 k0 . 

Let at) := atlko (k 2 0). Let 9i(Yi), hi(Yi) (1 Si S s) and g(y), h(y), 0(y) be the 

functions given respectively by (6) and (7) with the sequences {iiki)h2'.o (1 sis s) 
in place of { aki) h2'.o ( 1 :S i :S s). Let M be any nonnegative integer and define the 
finite sets S1 and T,, (l = 1, 2, 3) of the values by 

and 

S1 := {gt+n;,i)(f3j) 11 Si S s, 1 S j S J, 0 Sm SM+ 1}, 
S2 := { g;m\o) 11 s i s s, 1 s m s M + 1} , 
S3 := { e(=+nj)(/3j) I j E {0, ... , ]} 8 , 'Tn E {0, ... , M}s}, 

T1 := { ?fr\f3j) I 1 Si S s, 1 S j S J, 0 Sm SM+ 1}, 
T2 := { ~m)(O) 11 sis s, 1 s ms M + 1}, 
T3 := {e(=)(/3j) I j E {0, ... , J}8, 'Tn E {0, ... , M} 8 } • 

Let N1 := #S1(= #Tz) (l = 1, 2, 3). We denote by .C,N the set of the N x N lower 
triangular matrices with entries in Q whose diagonal entries are nonzero. We note 
that .C,N is a subset of GLN(Q). For any finite set A, let A* be a column vector 
whose components are given by a permutation of the elements of A. The following 
theorem plays a crucial role in the proof of Theorem 1. 

Theorem 3. There exist S1 and Tz* (l = 1, 2, 3) corresponding respectively to the 
sets S1 and T,, (l = 1, 2, 3) such that the following hold, so that Q[S1 U S2 U S3] = 

Q[T1 U T2 U T3]. 
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(i) Sf= L1Tt, where L1 E £Ni· 

(ii) S2 = L2T2 (mod «;{2
), where L2 E LN2 -

(iii) S3 = L3T3 (mod (Q)[T1 U T2]N3 ), where L3 E £Na· 

Proof. First, we prove (i) of the theorem. For this purpose, we fix 1 :S i :S s and 
1 :S j :S J and represent gt+n;,J) (/3j) ( 0 :S m :S M + 1) as linear combinations of 

tm\f3j) (0 :Sm :SM+ 1). We define 

Since 
ko-1 oo 

ko-1 

II 
k=O 

aii)cffr;l 

9i(Yi) = II (1 - aii)Yi) x II (1 - aii)Yi) = P(yi)Q(yi)9i(Yi), 
k=O k=ko 

we see that, for O :Sm :S M + 1, 

where p := p(n;,J)(yi) E (Q)x. Hence we have 

where q := Q(h) E (Q)\ which implies (i) of the theorem. In the same way, we 
obtain (ii), noting that 9i(O) = 1 E (Q) (1 :Si :S s). 

In the remaining part of the proof we show (iii). Since 

and since 
ko-1 s (i) - '°' II ak h(y) = h(y) + ~ (il , 
k=O i=l 1 - ak Yi 
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we obtain a decomposition 

(13) 

where 

and 

02(Y) := (~ g at) g (1- a['/y,)) g(y). 

k'#k 

Fix j = (j1, ... ,Js) E {O, ... , J} 8 • In order to prove (iii), we represent 0fm+nj)(/3j) 
(rn E {O, ... , M} 8 ) as linear combinations of 'if(rnl(f3j) (rn E {O, ... , M} 8 ) and show 

that 0~rn+nj)(/3j) (rn E {O, ... , M} 8 ) are elements of (Q[T1 U T2]. Let 

11 := { i E {1, ... 's} I ]i =I O}, 12 := { i E {1, ... 's} I ]i = O}. 

We define 

for each i E Ii and define 

ko-l 

R;(yi) := IT (1 - a~i)Yi) E (Q[yi] 
k=O 

for each i E 12 . Then we have 

Hence, for rn = (m1 , ... , ms) E {O, ... , M}s, we have 
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We note that the coefficient of 'if(=)(/33) in the right-hand side of (14) is a nonzero 
algebraic number 

~) -x -x . 
where Pi := P;, ,,, (Yi) E Q and qi := Qi(/3jJ E Q for i E 11. 

Next, we define 

for each i E 11 and let 

Then we have 

Hence, form= (m1, ... , ms) E {O, ... , M}s, we have 

e;rn+nj\/3j) = I: 
h=(h1, ... ,hs), 

o:o;h;:o;m; (l:o;i:o;s) 

(II ( mi+ ni,j; ) ::::(h;) ((3. )) 
max{n· · - 1 O} m' - h· h· u,g, Ji 

iEJ 1 i,Ji ' 2 i 2 

(15) 

where m~ := mi + min{l, ni,jJ = mi + ni,j; - max{ni,j; - 1, O} (1 S:: i S:: s), 
,. ( 1 ') d . u(max{ni,j;-1,0})() !Tllx(. l) UT "d m .= mi, ... , ms , an ui .= i Yi E ~ i E 1 . vve cons1 er 

the lexicographical order of {O, ... , M}s and let 03 and 03 be column vectors whose 
components are given by permuting the elements of the sets {0(rn+nj)(f33) I m E 

{O, ... , M}s} and {'if(rn)(/33) I m E {O, ... , M}s} in ascending order of m, respec­
tively. Then, from (13), (14), and (15), we see that there exists an element L3 
of .C(M+1)• such that 03 = L303 (mod Q[T1 U T2j(M+1)•), which implies (iii) of the 
theorem. □ 

Remark 1. In the last part of the proof above, we can explicitly represent the 
coefficient matrix L3 E .C(M+l)' as a Kronecker product of s elements of .CM+l as 
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follows. For each i E {1, ... , s }, let L;,i = (l;;}h)m,h be the element of CM+l defined 
by 

z(i) ·-mh .-

namely, 

( m - l + n;,Ji )p;Q;m-h\!3JJ (i E 11 , 1 ::; h::; m::; M + 1), 
ni,ji m-h h-1 

(:~ :)R;m-h\O) (i E 12 , 1::; h::; m::; M + 1), 

0 (1::; m < h::; M + 1), 

* 

( l+ni,Ji)p·q· 
n·. z i 

i,Ji 
0 

Then, noting that the components of 0j and 0j are arranged in ascending lexico­
graphical order of rn E {O, ... , M}8, we see that 

where ® denotes the Kronecker product. 

Proof of Theorem 1. Let {30 := 0 and let {31 , ... , fJJ be any nonzero distinct algebraic 
numbers. For the simplicity we denote N;,J := Ni,/3J (1 ::; i ::; s, 0 ::; j ::; J). For 
any j = (jl,···,Js) E {O, ... ,J}8, let Nj := (N1,j 1 , ••• ,N8,j8 ). In order to prove 
Theorem 1, it is enough to prove that, for any sufficiently large nonnegative integer 
M, the finite set 

S := { 9(rn+Nil(f3;) I j E {O, ... , J}8, rn E {O, ... , M} 8 } 

LJ { ct+N;,J\fJJ) 11::; i::; s, 1::; j::; J, 0::; m::; M + 1} 

U { ct\o) I 1 ::; i ::; s, 1 ::; m ::; M + 1} 

is algebraically independent. Since Rk ----+ oo as k tends to infinity, there exists a 
sufficiently large integer k0 such that 1 - afk fJJ i- 0 (1 ::; i ::; s, 1 ::; j ::; J) for all 
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k 2 k0 . Let Rk := Rk+ko (k 2 0). We note that the linear recurrence {Rkh>o also 
satisfies the conditions (Rl)-(R3) stated in Section 1. Let Gi(Yi), H;(yi) (1 "5_-i "5_ s) 
and G(y), H(y), E>(y) be the functions given respectively by (2) and (4) with 

{ Rk}k~o in place of { Rk}k~O· Let 

and 

T := {e(=l(,aj) I j E {0, ... ']} 8 , m E {0, ... 'M}s} 

u { aim\h) 11 "5. i "5. s, 1 "5. j "5. J, 0 "5. m "5. M + 1} 

LJ { at\o) 11 "5. i "5. s, 1 "5. m "5. M + 1} 

U := { jjC=l(,aj) I j E {0, ... , J}8, m E {0, ... , M} 8 } 

U { ai(/'Jj) I 1 -s. i -s. s, 1 -s. i -s_ 1} 
LJ { jji(m1(i3j) 11 "5. i "5. s, 0 "5_ j "5_ J, 0 "5_ m "5_ M }-

By Theorem 3, we see that Q[S] = Q[T]. Moreover, Q(T) = Q(U) since 

Z [{ E)~l(y) m E {0, ... , M}s} LJ { atl(Yi) 1 "5_ i "5_ s, 1 "5_ m "5_ M + 1}] 
G(y) Gi(Yi) 

= Z [ { jj(=l(y) I m E {0, ... , M} 8 } LJ { iit\Yi) 11 "5. i "5. s, 0 "5. m "5. M}] 

by Lemmas 1 and 2 and since Gi(O) = 1, Gi(h) -=/- 0 (1 "5_ i "5_ s, 1 "5_ j "5_ J). Noting 
that #S = #T = #U, we see that the algebraic independency of S is equivalent 
to that of U. This concludes the proof since Theorem 2 for the linear recurrence 
{ Rk}k~O asserts that U is algebraically independent. □ 
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