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CAMPANA POINTS, HEIGHT ZETA FUNCTIONS, 
AND LOG MANIN'S CONJECTURE 

SHO TANIMOTO 

ABSTRACT. This is a report of the author's talk at RIMS workshop 2020 Problems and 
Prospects in Analytic Number Theory held online on Zoom. We discuss a recent formulation 
of log Manin's conjecture for kit Campana points and an approach to this conjecture using 
the height zeta function method. 

1. INTRODUCTION 

One of fundamental tools in diophantine geometry is the notion of height functions and 
this height function measures the geometric and arithmetic complexities of rational points on 
an algebraic variety. These are crucial to various finiteness results in diophantine geometry 
such as Mordell-Weil theorem, Siegel's theorem, Mordell-Faltings' theorem, and so on. One 
of basic properties of height functions is the Northcott property which claims that for a 
height function associated to an ample divisor, the set of rational points whose height is less 
than T is finite. Thus one may consider the counting function of rational points of bounded 
height, and one natural question is the asymptotic formula for such a counting function when 
T goes to infinity. 

Around the late 1980's, Yuri Manin and his collaborators proposed a general framework 
to understand this asymptotic formula in terms of geometric and arithmetic invariants of 
the underlying projective variety, and this leads to Manin's conjecture whose formulation 
is developed in a series of papers [FMT89], [BM90], [Pey95], [BT98a], [Pey03], [Peyl 7], 
and [LST18]. One of fertile testing grounds for this conjecture is a class of equivariant 
compactifications of homogeneous spaces, and there are mainly two methods available, i.e., 
the method of mixing and the height zeta function method. 

Mixing is a concept from ergodic theory, and this idea has been successfully used to 
prove equidistribution of rational points on homogeneous spaces acted by semi-simple groups 
([GMO0S] and [GOll]). The height zeta function method can be applied to a variety of equi
variant compactifications of connected algebraic groups including, but not limited to, gener
alized flag varieties ([FMT89]), toric varieties ([BT96] and [BT98a]), equivariant compact
ifications of vector groups ([CLT02]), wonderful compactifications of semi-simple groups of 
adjoint type ([STBT07]), and biequivariant compactifications of unipotent groups ([ST16]). 

The height zeta function method also has its advantage to studying the counting problem 
of integral points associated to a reduced boundary divisor, and this has been implemented 
for equivariant compactifications of vector groups ([CLT12]), toric varieties ([CLTlOb]), won
derful compactifications of semi-simple groups of adjoint type ([TBT13] and [Cho19]), and 
biequivariant compactificaitons of the Heisenberg group ([Xia20]). These results suggest 
that there should be an analogous formulation of log Manin's conjecture for integral points, 
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however certain subtleties of geometric and arithmetic nature prevent a general formulation 
of such a conjecture. 

Campana and subsequently Abramovich proposed the notion of Campana points in [Cam05] 
and [Abr09] and this notion interpolates between rational points and integral points. The 
counting problem of Campana points has been originally featured in [VVll], [BVV12], and 
[VV12]. Recently many mathematicians started to look at this problem and develop a se
ries ofresults, attested by [BY20], [PSTVA20], [PS20], [Xia20], and [Str20]. In [PSTVA20], 
Pieropan, Smeets, V arilly-Alvarado, and the author initiated a systematic study of the count
ing problem for Campana points, and formulated a log Manin's conjecture for klt Campana 
points. Then we confirmed this conjecture for equivariant compactifications of vector groups 
using the height zeta function method for vector groups which is developed by Chambert-Loir 
and Tschinkel in [CLT02] and [CLT12]. 

In this survey paper, we discuss the formulation of log Manin's conjecture for klt Campana 
points and applications of the height zeta function method to study this problem for various 
equivariant compactifications of connected algebraic groups. 

Here is a plan of this paper: In Section 2, we review the notion of height functions. In 
Section 3, we introduce two definitions of (weak) Campana points. In Section 4, we discuss 
a formulation of log Manin's conjecture for klt Campana points. Finally in Section 5, we 
discuss the height zeta function method and its applications to equivariant compactifications 
of algebraic groups. 
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2. HEIGHT FUNCTIONS 

In this section we review the notion of height functions and their basic properties. The 
main references are [HS00] and [CLTlOa], and they include different treatments of height 
functions. In [HS00] height functions are introduced using the machinery of Weil height 
machine and some basic properties of height functions such as the Northcott property are 
proved. In [CLTlOa], adelic metrizations are used to define height functions, and this defi
nition is frequently used in the literature in Manin's conjecture. It is well-known that two 
definitions are essentially equivalent. See [HS00] for more details. In this paper, we employ 
the definition of height functions using adelic metrizations described in [CLTlOa]. 

Let us fix our notation: let F be any number field and OF be its ring of integers. We 
denote the set of places of F by fh, the set of archimedean places by rt;, and the set of 
non-archimedean places by Df00 • For any finite set S C DF containing DF, OF,s denotes 
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the ring of S-integers. For each v E nF, we denote the completion of F with respect to v by 
Fv. When v is non-archimedean, we denote the ring of integers for Fv by Ov with maximal 
ideal mv and residue field kv of size qv. We denote the adele ring of F by &p. 

For each v E nF, Fv is a locally compact subgroup and it comes with a self-Haar measure 
dxv = µv which is normalized in a way Tate did in [Tat67]. We define the absolute value 
I · Iv on Fv by requiring 

µv(xB) = lxlv · µv(B). 

This normalization satisfies the product formula, i.e., for any x E px, we have 

See [CLTlOa] for more details. 

Let F be a number field and v E OF be a place of F. Let U be an open set of F;: in 
the analytic topology. A complex valued function on U is smooth if it is C 00 when v is 
archimedean and it is locally constant when v is non-archimedean. This notion is local and 
extends to any v-adic analytic manifold. 

Let X be a smooth variety defined over Fv and L be a line bundle on X. For each local 
point x E X(Fv), we denote the fiber of Lat x by Lx. 

Definition 2.1. A smooth metric on Lis a collection of metrics II· II : Lx(Fv) --+ ~::>o for all 
x E X(Fv) such that 

• for£ E Lx(Fv) \ {O}, 11£11 > 0; 
• for any a E Fv, x E X(Fv), and£ E Lx(Fv), lla£11 = lalvll£11, and; 
• for any open subset U c X(Fv) and any non-vanishing section f E r(U, L), the 

function x c-+ I If ( x) 11 is smooth. 

An integral model of a projective variety can be used to define a metric on it: 

Example 2.2. Let X be a smooth projective variety defined over Fv and L be a line bundle 
on X where v is non-archimedean. Suppose that we have a flat projective Ov-scheme X 
and a line bundle.Con X extending X and L. Let x E X(Fv) = X(Ov)- Then we define a 
smooth metric on L by insisting that for any£ E Lx(Fv) 

11£11 s 1 ~ £ E Lx(Ov)-

This metric is called as the induced metric by an integral model (X, £). 

Next we define adelic metrizations on a smooth projective variety defined over a number 
field F. 

Definition 2.3. Let X be a smooth projective variety defined over a number field F and L 
be a line bundle on X. An adelic metrization on L is a collection of v-adic smooth metrics 
{II· llv}vEr!F on X such that there exist a finite set S of places including D'p, a flat Op,s
projective model X, and a line bundle.Con X extending X and L such that for any v t/. S, 
the metric II· llv is induced by (X, £). Note that two integral models are isomorphic outside 
of finitely many places so that two adelic metrizations differ only at finitely many places. 

Finally we define the notion of height functions: 
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Definition 2.4. Let X be a smooth projective variety defined over a number field F and 
£ = (L, { II · llv}) be an adelically metrized line bundle on X. For each rational point 
x E X(F), choose£ E Lx(F) and we define the height function H.c : X(F) ---+ IR.20 by 

H.c(x) = IT 11£11;;-1 . 

vErlp 

This is well-defined due to the product formula mentioned above. 

Here is an example of height functions for the projective space: 

Example 2.5. Let X = lP'n and L = Ox(l). We consider the standard integral model 
X = lP'ap· For each non-archimedean place V E DF, we let II . llv be the metric at V induced 
by X. For any archimedean place v, we define a smooth metric at v by insisting 

11£(x) llv = l£~x) Iv 2 , 

JI:i=O lxilv 

where x = (x0 : • • • : xn) E X(F) and£ E H0 (X, Ox(l)). Then it is an easy exercise to 
prove that the height function associated to L with this adelic metrization is given by 

When F = (Ql, we may assume that x;'s are integers and gcd(x0 , · · · , Xn) 
situation, the above formula reduces to 

Let us mention a few basic properties of height functions: 

1. In this 

Proposition 2.6. Let X be a smooth projective variety defined over a number field F and 
£ = (L, {II· llv}) be an adelically metrized line bundle on X. Then the following statements 
are true: 

• Let £' be another adelically metrized line bundle associated to L. Then there exist 
positive constants C1 -::::: C2 such that for any x E X(F), we have 

C1 H_c,(x) -S: H.c(x) -S: C2 H_c,(x); 

• Let B be the base locus of the complete linear series ILi. Then there exists a positive 
constant C > 0 such that for any x E (X \ B)(F), we have 

H.c(x) 2 C; 

• When L is ample, for any real number T > 0 the set 

{x E X(F) I H.c(x) -::::: T} 

is a finite set. 

The last property is called as the Northcott property which is fundamental in diophantine 
geometry and it is also foudational for Manin's conjecture. For more details, see [HS00]. 
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3. CAMPANA POINTS 

In this section, we review the notion of Campana points. Campana points were originally 
considered by Campana for curves in [Cam05], and its higher dimensional analogue was 
explored by Abramovich in [Abr09]. One may consider Campana points as integral points 
on Campana orbifolds developed by again Campana himself: 

Definition 3.1. Let F be an arbitrary field and X be a smooth projective variety defined 
over F. Let DE = Lo:EA EaDa be an effective Q-divisor on X with Da's irreducible and 
distinct. We say (X, DE) is a Campana orbifold if the following statements are true: 

• For any o: EA, a non-negative rational number Ea takes the form of 

1 
1--, 

ma 

where ma is a positive integer or +oo; 
• the reduced divisor D = Lo:EA Da is a strict normal crossings divisor. 

We say a Campana orbifold (X, De) is Farro if -(Kx + De) is ample. 

Let (X, D,) be a Campana orbifold. Then (X, D,) is a divisorial log terminal ( dlt for short) 
pair in the sense of birational geometry. When Ea < 1 for any o:, (X, D,) is a kawamata log 
terminal (klt for short) pair. See [KM98] for the definitions and their basic properties. We 
say a Campana orbifold (X, DE) is klt if Ea < 1 for every o: E A. 

To define the notion of Campana points, one needs to fix an integral model of a Campana 
orbifold. Let (X, De) be a Campana orbifold defined over a number field F with De = 
Lo:EA EaDa. Let S be a finite set of places including all archimedean places. A good integral 
model of (X, DE) away from S is a flat projective OF,s-scheme X such that X is extending 
X and X is regular. Let Da be the Zariski closure of Da in X and let DE= Lo:EA EaDa. 

Let us fix a good integral model of a Campana orbifold (X, D,) as above. Let A, = { o: E 
A I Ea -/- O}. We set X 0 = X \ UaEA,Da. Let P E X 0 (F) be a rational point and v (/ S 
be a non-archimedean place of F. Then we may consider Pas an Ov-point Pv E X(Ov) by 
valuative criterion for properness. Since Pv (/_ Da for any o: E A,, the pullback of Da via 
Pv defines an ideal in Ov. We denote its colength by nv(Da, P). When P E Do: for some 
o: EA,, we formally set nv(Da, P) = +oo. The total intersection number is given by 

nv(De, P) = L Eanv(Da, P). 
o:EA, 

Now we are ready to define two notions of Campana points: 

Definition 3.2. We say PE X(F) is a weak Campana Op,s-point on (X, D,) if the following 
statements are true: 

• we have PE (X \ U,a=lDa)(OF,s), and; 
• for v (/ S, if nv(D,, P) > 0, then 

nv(D,, P) :=:; ( L nv(Da, P)) - 1. 
o:EA, 

We denote the set of weak Campana Op,s-points by (X, De)w(OF,s). 
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Definition 3.3. We say P E X(F) is a Campana OF,s-point on (X, Ve) if the following 
statements are true: 

• we have PE (X \ Uc.,=lVa)(OF,s), and; 
• for v r/. S and for all a E A with Ea < 1 and nv(Va, P) > 0, we have 

nv(Va, P) 2:: ma, 

where Ea= 1 - _l__ 
m., 

A Campana OF,8 -point is klt when the underlying Campana orbifold is a klt pair. 

We denote the set of Campana OF,s-points by (X, Vc)(OF,s)- Then we have the following 
inclusions: 

X 0 (0F,s) C (X, Vc)(OF,s) C (X, Vc)w(OF,s) C X(F), 

where X 0 = X \ (UaEA,Va)- When Ea = 0 for all a E A, the rightmost two inclusions are 
equalities. When Ea = 1 for all a E A, the leftmost two inclusions are equalities. 

Here is an example of klt Campana points: 

Example 3.4. For simplicity, let us assume that F = (Q and S = { oo }. Let X = lP'n and 
H = V(x 0 ) be a hyperplane. Let m be a positive integer and E = 1 - 1/m. We define 

We consider the standard integral model of X. Then a rational point x = (x0 : · • • : xn) E 
X((Q) with X; E Z and gcd(x0 , · · · , Xn) = 1 is a Campana Z-point if x0 = 0 or x0 =/= 0 and 
the following statement is true: for any prime number p we have 

P I Xo ===} Pm I Xo. 

Any non-zero integer with this property is said to be m-full. When m = 2, it is said to be 
squarefull. 

4. LOG MANIN'S CONJECTURE 

Let X be a smooth projective variety defined over a number field F and ,C = (L, {II· llv}) 
be an adelically metrized line bundle on X. We consider the associated height function 

H£: X(F)-+ lR>□· 

When Lis ample, this height function satisfies the Northcott property so that for any subset 
Q C X ( F) and any positive real number T > 0 one may define the counting function 

N(Q, £, T) =#{PE QI H£(P) :ST}. 

Manin's conjecture predicts the asymptotic formula of the above function for an appropriate 
Q, and a natural question is to extend this conjecture to integral points and Campana 
points. In [PSTVA20], Pieropan, Smeets, Varilly-Alvarado and the author formulated this 
log version of Manin's conjecture when the underlying Campana orbifold is a klt log Farro 
pair. In this section, we review a general formulation of this log Manin's conjecture. 
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4.1. Two birational invariants. Let X be a smooth projective variety defined over a field 
F. Let D 1, D2 are (Qi-divisors on X. We say D1 and D2 are numerically equivalent if for any 
curve CCX, we have D 1 .C = D 2 .C. In this case we write D1 = D2 . We define the space 
of (Qi-divisors up to numerical equivalence as 

N1(X)Q = {D: (Qi-divisors}/=. 

We set N 1(X) := N 1(X)rQ 0rQ R Then we define the cone of pseudo-effective divisors by 

Eff1 (X) := the cone of effective (Qi-divisors C N1(X). 

Now we are ready to introduce two birational invariants which play central roles in Manin's 
conjecture: 

Definition 4.1. Let (X, D,) be a klt Campana orbifold defined over a field F and L be an 
ample (Qi-divisor on X. We define the Fujita invariant or a-invariant by 

-1 
a(X, D" L) := inf{t E lR I tL + Kx + D, E Eff (X)}. 

Next assume that a(X, D" L) > 0. Then we define the b--invariant by 

b(F, X, De, L) := codimension of the minimal face of Eff\X) 

containing a(X, De, L)L + Kx + D,. 

It is explained in [PSTVA20, Section 3.6.2] that these invariants are birational invariants. 

Example 4.2. Let (X, D,) be a klt Farro orbifold defined over a field F and L = -(Kx+D,). 
Then we have 

a(X,De,L) = 1, b(F,X,De,L) = p(X) = dimN1 (X). 

4.2. Thin exceptional sets. The notion of thin sets has been explored by Serre to study 
Galois inverse problem, and it is also fundamental to Manin's conjecture. Let us give the 
definition of thin sets for Campana points: 

Definition 4.3. Let (X, D,) be a klt Campana orbifold defined over a number field F. Let 
S be a finite set of places of F including nc; and we fix a good integral model away from S 
X-+ SpecOF,S· 

A type I thin set is a set of the form 

V(F) n (X, V,)(OF,s), 

where V C X is a proper closed subset of X. 
A type II thin set is a set of the form 

J(Y(F)) n (X, V,)(OF,s), 

where f : Y -+ X is a dominant generically finite morphism of degree 2: 2 defined over F 
with Y integral. 

A thin set is any subset of a finite union of type I and type II thin sets. 

Here is an example of thin sets: 

Example 4.4. Let X = lP'1 with D, = 0 defined over a number field F. We consider the 
morphism 

f : lP'1 -+ lP'1, (x0 : x1) c-+ (xg : xf) 
with d 2'. 2. Then f(X(F)) c X(F) is a thin set. 
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4.3. Log Manin's conjecture for klt Campana points. Finally we state log Manin's 
conjecture for klt Campana points: 

Conjecture 4.5 (Log Manin's conjecture for klt Campana points). Let (X, De) be a klt 
Farro orbifold defined over a number field F and ,C = (L, { II · llv}) be an adelically metrized 
ample line bundle. Assume that (X, Ve)(OF,s) is not thin. Then there exists a thin set 
Z C (X, Ve)(OF,s) such that 

N((X, Ve)(OF,s) \ Z, £, T) ~ c(F, X, Ve,£, Z)Ta(X,D,,L)(logTl(F,X,D,,L)-1, 

as T -+ oo. Here the leading constant c(F, X, Ve,£, Z) is analogous to Peyre's constant 
developed in [Pey95] and [BT98a] and its definition is given in [PSTVA20, Section 3.3]. 

Remark 4.6. For a smooth geometrically rationally connected projective variety X defined 
over a number field F, it is expected that X(F) is not thin as soon as there is a rational 
point. Indeed, Colliot-Thetlene's conjecture predicts that the set of rational points is dense 
in the Brauer-Manin set, and this implies that X satisfies weak weak approximation. It is 
known that weak weak approximation property implies non-thinness of the set of rational 
points. The corresponding statement for klt Campana points, i.e., weak weak approximation 
for klt Campana sets implies non-thiness of the set of klt Campana points is established in 
[NS20]. So it is natural to expect that the assumption of Conjecture 4.5 is true as long as 
there is a klt Campana point. 

Remark 4.7. It is well-documented in the case of rational points that in Conjecture 4.5 it 
is important to remove the contribution of a thin set Z from the counting function. There 
is a series of papers ([LTl 7], [Sen21], and [LST18]) studying birational geometry of thin 
exceptional subsets for rational points. In [LST18], Lehmann, Sengupta, and the author 
proposed a conjectural description of thin exceptional subsets and proved that it is indeed a 
thin set using the minimal model program and the boundedness of singular Farro varieties. 
It would be interesting to perform a similar study for klt Campana points. 

Conjecture 4.5 is known in the following cases: 

• projective space with a boundary being the union of hyperplanes ([VVll], [VV12], 
[BVV12], and [BY20]); 

• equivariant compactifications of vector groups ([PSTVA20]); 
• toric varieties defined over (Q ([PS20]) and; 
• biequivaraint compactifications of the Heisenberg group ([Xia20]). 

One can also consider a similar counting problem for weak Campana points, however this 
problem is much harder than Conjecture 4.5. At the moment of writing this paper, we do 
not know how one should formulate a log Manin's conjecture for weak Campana points, but 
[Str20] takes the first step towards to this problem. 

5. HEIGHT ZETA FUNCTIONS 

Let F be a number field and G be a connected linear algebraic group defined over F. Let 
X be a smooth projective equivariant compacitification of G, i.e., X contains G as a Zariski 
open subset, and the right action of G extends to X. In this situation, the boundary 

D=X\G= LJ Da 
aEA 
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is a divisor where each Da. is an irreducible component. After applying an equivariant 
resolution, we may assume that D = I:a.EA Da. is a divisor with strict normal crossings. We 
also fix an adelic metriazation for O(D0J for every a E A. 

For each a E A, we choose ma. which is a positive integer or +oo, and set Ea. = 1 - _L_ 
mo, 

We consider 

De= LEa.Da., 
a.EA 

and (X, De) is a Campana orbifold. Let us fix a finite set S of places including fl'; and a 
good integral model X away from S extending X. When -(Kx + De) is ample (or more 
generally big), it is natural to consider the counting problem of Op,8 -Campana points on 
(X, 'De)- There is a general approach to this problem which is called as the height zeta 
function method. 

Let Pic(X)0 be the Picard group of G-linearlized line bundles on X up to isomorphisms. 
(If the reader is not familiar with G-linearlizations, she/he may ignore this term for now.) 
After tensoring by Q, boundary components Da. form a basis for Pic(X)g. We choose a 
section 

fa. E H 0 (X,O(Da.)), 

corresponding to Da.. Then we define a local height pairing: for any place v E rlp, 

Hv : G(Fv) X Pic(x)g-+ ex' (gv, L sa.Da.) f-t IT llfa.(9v) 11;;-sa. 
a.EA a.EA 

Using this local height pairing, we define the global height pairing as the Euler product: 

H := IT Hv : G(AF) X Pic(x)g -+ ex. 
vE!1p 

Applying the definition of Campana points to local points, for each v (/. S, one can define 
the Campana set 

We set 

G(Fv)c = G(Fv) n (X, 'Dc)(Ov), 

and let Oc,v(9v) be the characteristic function of G(Fv)c on G(Fv)- When v E S, we set 
Oc,v = l and define Oc as the Euler product: 

Oc = IT Oc,v : G(Ap) -+ ~::>O• 

vE!1p 

For g E G(AF) and s E Pic(X)g, we define the height zeta function by 

Z(g, s) := L H(,g, s)-10E(,g) 
-yEG(F) 

When ~(s) is sufficiently large, this function converges to a continuous function in g E 
G(F)\G(AF) and a holomorphic function ins E Pic(X)f 

A relation of this height zeta function to log Manin's conjecture is given by Tauberian 
theorem. Indeed, if one can prove that for an ample (or big) line bundle L, Z(id, sL) admits 
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a meromorphic continuation to a half plane ~( s) 2 a with a unique pole at s = a of order b 
with a> 0 a positive real number, then one can conclude 

N(G(F),,£,T) ~ cTa(logTt-1 , 

where c is a positive constant related to the leading constant of Z(id, sL) at s = a. Thus our 
goal is reduced to obtain a meromorphic continuation of Z(id, s ). 

To this end, for s » 0, one can prove that 

Z(g, s) E L2 (G(F)\G(AF)), 

thus one may apply spectral decomposition of this Hilbert space to Z(g, s) and use this 
spectral decomposition to obtain a meromorphic continuation. 

This program has been pioneered mainly by Tschinkel and his collaborators, and has been 
carried out in the following cases: 

• rational points on toric varieties ([BT96], [BT98b]); 
• rational points on equivariant compacitifications of vector groups ([CLT02]); 
• rational points on wonderful compactifications of semi-simple groups of adjoint type 

([STBT07]); 
• rational points on biequivariant compactifications of unipotent groups ([ST16]); 
• integral points on equivariant compacitificaitons of vector groups ([CLT12]); 
• integral points on toric varieties ([CLTlOb]); 
• integral points on wonderful compactificaitons of semi-simple groups of adjoint type 

([TBT13] and [Cho19]); 
• Campana points on equivariant compacitifications of vector groups ([PSTVA20]); 
• Campana points on biequivariant compacitifications of the Heisenberg group ([Xia20]), 

and; 
• weak Campana points on certain toric varieties ([Str20]). 

It would be interesting to explore Campana points on other algebraic groups. In particular, 
the treatment of integral points on toric varieties ([CLTlOb]) is known to be incomplete, and 
there is some technical issue on this paper. It would be interesting to apply the height zeta 
function method to kit Campana points on toric varieties and see whether we have a similar 
issue. 

Finally for the readers who are interested in working examples of this program, we rec
ommend them to consult [PSTVA20, Interlude I]. 
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