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On the locations and transcendency of the zeros 
of weakly holomorphic modular forms. 

1 Introduction 

Seiji Kuga 

Kyushu University 

Let k 2: 4 be an even integer, lHI = {z EC I Im(z) > 0} be the complex upper 
half plane and r = SL2 (Z). The standard fundamental domain for r is given as 
follows. 

lF(l) = { z E lHI I lzl 2: 1, -1 '.S Re(z) '.SO} 

U { z E lHI I lzl > 1, 0 < Re(z) < 1}. 
The Eisenstein series of weight k for r is a function on lHI defined by 

1 ~ -k 2k ~ n 
Ek(z)=- ~ (cz+d) =1--B ~O"k-1(n)q 

2 k 
c,dEZ n=l 

(c,d)=l 

(1) 

where q = e21riz, Bk is the kth Bernoulli number, and O"k-1(n) = Ldln dk-l_ Then 
Ek is a modular form of weight k for r 

In 1970, Rankin and Swinnerton-Dyer proved that all of the zeros of Ek on lF1 

lie on the lower boundary arc[9]. Since then, the locations of the zeros of several 
types of holomorphic ( or weakly holomorphic) modular forms have been studied 
by using the method introduced in [9] (It is frequently called the RSD method). 
The RSD method is very straightforward, but it yields nontrivial results. 

In 2008, Duke and Jenkins studied weakly holomorphic modular forms for rand 
constructed an integral formula of standard basis and studied their zeros[3]. The 
integral formula allows us to investigate the zeros of certain weakly holomorphic 
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modular forms. Choi and Kim found a generalized integral formula for the Fricke 
groups of prime levels with genus zero[2]. 

In this paper, we introduce some results of the locations and transcendency of 
zeros of certain weakly holomorphic modular forms for the Fricke groups. 

2 Fundamental domain of r0(p) for p = 2, 3, 5, 7 

Let p be a prime number, I'0 (p) = { ( ~ ~) Er I c = 0 (mod p)} be the 

congruence subgroup of level p. We set the Fricke group of level p by 

For p = 2, 3, 5, 7, The standard fundamental domain of r~(p) denoted by lF*(p) are 
given as follows. 

(i) When p = 2, 3, 

lF*(p) = { z E IHI I lzl ~ ~' -i S Re(z) SO} 

U { z E IHI I lzl > ~' 0 < Re(z) < t }-

i -------
ft, " 

Figure 1: lF*(p) (p = 2, 3) 
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(ii) When p = 5, 7, 

F*(p) = { z E IHI I lzl 2 ~' lz + ~12 2~, -~ ~ Re(z) ~ 0} 

U { z E IHI I lzl > ~' lz - ~ I > 2~, 0 < Re(z) < ~} · 

Pv,1 
Pv,2 

Figure 2: lF*(p) (p = 5, 7) 

1 i 1 i Here, we put P2 = 2 + 2 , p3 = - 2 + 20 , Ps,1 1 i 
- 2 + 2\1'5, Ps,2 

_ l+i d _ 5+v'3· P1,1 - - 2 2,17, an P1,2 - -u ui. 

3 The locations of the zeros 

3.1 The Eisenstein series 

The Eisenstein series of weight k 2 4 for f 0 (p) is defined by 

EP* k(z) = - 1
-k (Ek(z) + p~Ek(pz)). 

, 1 +p2 

At first, we briefly recall the RSD method introduced in [9]. The RSD method is 
based on considering the following function 

and the valence formula for r given by 

1 1 k 
v00 (f) + 2v,(f) + 3v_1-i;y1a, (f) + L Vp(f) = 12 

pf.i, -1-i;v'ai 
pEr\lHl 

(2) 
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where f is a holomorphic modular form of weight k and vp(f) is the order off 
at p. Rankin and Swinnerton-Dyer proved that Fk is real valued function. Picking 
out the four terms of the right hand side of (1) with c2 + d2 = 1, they showed that 

(3) 

for all 0 E rn, 2;]. By using intermediate value theorem, the valence formula, 

and careful estimates of Ek at i and -l~v'3i, we can obtain the distribution of the 
zeros of Ek on IF*(l). 

Second, we shall applicate their method in the case of f 0(p) for p = 2, 3, 5, 7. 
By applying the above method, Miezaki, Nozaki, and Shigezumi constructed the 
RSD method for p = 2, 3 and proved the following theorem. 

Theorem 3.1. [8] Let p = 2, 3 and k 2:: 4 be an even integer. Then all of the zeros 
of EZ,P on IF* (p) lie on the lower boundary arc. 

In [12], Shigezumi proved similar results for p = 5, 7 under some assumptions. 
His results are incomplete because they allowed infinitely many exceptions about 
k. Our first main result is giving the solution of this problem. 

Theorem 3.2 (K). Let p = 5, 7 and k 2:: 4 be an even integer. Then all of the 
zeros of E;,,P on IF*(p) lie on the lower boundary arcs. 

The following is a short proof of Theorem 3.2 for p = 5. Let A5 be the lower 
boundary arcs of IF*(5). Then A 5 consists of two arcs of radiuses F5 and 2~ 

centered at O and -½ respectively(See Figure 2). More precisely 

A; = A;,1 U A;,2 U { ~' Ps,1, Ps,2} 

where 

A* { 1 i0 I 7f 0 7f } = -e - < < - + C.Y5 
5,1 v'5 2 2 

= -- + --e a5 < 0 < -A* { 1 1 i0 I 7f } 
5 '2 2 2y'5 2 

and a 5 is the angle such that tan a 5 = 2. 
As analogies of Fk, we define 

* (e) ik0 * ( 1 i0) 0 [ 7f 7f ] 
Fk,5,1 = e 2 Ek,5 v'5e ' E 2' 2 + C.Y5 ' 

* ( ) ik0 * ( 1 1 i0) [ 7f] Fk 5 2 0 = e 2 Ek 5 -- + ~e , 0 E a 5 , -
'' ' 2 2v5 2 
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Then we can write 

F;,5,1 (0) = ~ L { (ce1l + VSde-1!:)-k + (ce-1!: + V5de1l)-k}, 
(c,d)=l 

* 
F;,5,2 (0) = ~ L { (ce1l + VSde-1!:)-k + (ce-1!: + V5de1ltk} 

(c,d)=l 
5fc, 2lcd 

2k { i0 i0 i0 i0 } + 2 L (ce2 + VSde- 2 )-k + (ce-2 + VSde2)-k . 
(c,d)=l 
5fc, 2fcd 

(4) 

(5) 

It is obvious that (4) and (5) are invariant under the complex conjugate, and hence 
F;,5 ,j (j = 1, 2) are real valued functions. Unfortunately, Fi:, 5,j does not satisfy an 
inequality like (3) on whole interval. To resolve this problem, we consider the first 
few terms of (4) and (5). We define 

and 

J;,5,1(0) = ~ L { (ce1l + VSde-1!:)-k + (ce-1!: + V5de1l)-k} 
(c,d)=±(l,O), 

±(2,1) 

k0 i0 ie ie i0 = 2 COS 2 + (2e2 + V5e-2)-k + (2e-2 + V5e2)-k, 

J:,5,2(0) = ~ L { (ce1l + VSde-1!:)-k + (ce-1!: + V5de1l)-k} 
(c,d)=±(l,O) 

2k { i0 i0 i0 i0 } + 2 L (ce2 + VSde- 2 )-k + (ce-2 + VSde2)-k 
(c,d)=±(l,-1) 

k0 (e1!: - )5e-1!: )-k (e-1!: - J5e1!: )-k 
=2cos 2 + 2 + 2 , 

R;,5,j ( 0) = F;,5,j ( 0) - J;,5,j ( 0). 

Then Rk,5,j contributes little to the behavior of Fi:, 5,j by the following lemma. 
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Lemma 3.1. Fork 2: 4, we have 

By Lemma 3.1 and some careful estimates of fi:, 5,j around at the end points of 
interval, we can prove the following lemmas. 

Lemma 3.2. Let k 2: 40 be an even integer. Then we have 

(i) IFi:,5,1(0) - 2cos k!I < 1 (0 E rn, ~ + CY5 - ;;]), 

(ii) IFi:,5,2(0)- 2cos k!I < 1 (0 E [a5 + ;;, ~]). 
Lemma 3.3. Let k 2: 40 be an even integer. 

(i) When k = 0 (mod 4), we have 

sgn(Fi:,1 G + a 5)) = sgn(fi:,1 (~ + a 5)), 
sgn(Fi:,2 (a5)) = sgn(fi:,2 (a5)). 

Lemmas 3.2, 3.3, and the intermediate value theorem tell us that Ek,5 has at 

{
[~] (k = 0 (mod 4)) 

least f distinct zeros on the arcs. Theorem 3.2 follows 
[4]-1 (k=2(mod4)) 

from the valence formula for q(5) when k 2: 40. 
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Proposition 3.1. Let f be a holomorphic modular form for r0(5) of weight k 2: 4, 
which is not identically zero. We have 

Pfc75,P5,1,P5,2 

pEIF* (5) 

The proof of Proposition 3.1 is very similar to that of the valence formula for 
r (see [11]). When 4 ~ k ~ 38, we can check directly that Theorem 3.2 is true in 
each case. 

3.2 The natural basis 

Let p = 1, 2, 3, 5, 7. A holomorphic function f on IHI is a weakly holomorphic 
modular form of weight k E 2Z for r0 (p) if f satisfies 

1(:::!) =(cz+dlf(z)foranyzEIHI, (: ~) Er~(p). 

f has a q-expansion of the form f(z) = L a1(n)qn 
nEZ 

such that a1(n) = 0 for almost all n < 0. 

We denote the space of weakly holomorphic modular forms of weight k for r 0(p) 
by ML(ro(P)). 

{ 
12 if p = 1, 3, 7 

Put 8 = 8 if p = 2 and m' = mp,k = pi4l 8£,k + dim Srk (rt (p)). Theorem 

4 if p = 5 
2.4 of [2] says that there exists a unique weakly holomorphic modular form fk,m E 
ML (rt (p)) such that 

for each integer m 2: -m'. Then {fk,m}m::::-m' forms a natural basis for ML(ro(P)). 
We introduce some results of the locations of the zeros of f k,m without proofs. 

Theorem 3.3. [3, Theorem 1] Let {A,m}m::C:-m' be the natural basis for ML(r). If 
m 2: 1£kl - £k, then all of the zeros of !k,m in lF*(l) lie on the arc. 

Theorem 3.4. [1, Theorem 1.2] Let {A,m}m::::-m' be the natural basis for Mk(r0(2)). 
If m 2: 21£kl - £k + 8, then all of the zeros of fk,m in lF*(2) lie on the arc. 
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Theorem 3.5. [5, Theorem 1.1] Let {A,m}m?.-m' be the natural basis for ML(ro(3)). 
If m 2: 18l£kl + 23, then all of the zeros of !k,m in IF*(3) lie on the arc. 

Theorem 3.6. [7] Letp = 5, 7 and {fk,m}m?.-m' be the natural basis for ML(ro(P)). 
If m is sufficiently large, then all of the zeros of !k,m in IF'*(p) lie on the arcs. 

4 The transcendency of the zeros 

In [ 6], Kohnen proved that all of the zeros of Ek except for the points equivalent 
to i or -l~v'3i under the action of r are transcendental. The proof is based on the 
theory of complex multiplication and the result of [9]. Gun and Saha generalize his 
method and obtain many result about the transcendency of the zeros of modular 
forms for several groups[4]. For example, they proved similar results of [6] for the 
natural basis for ML(r), BZ 2 , and BZ 3 • The author considered the cases of r;j(5) 
and ro(7). Our second result is the f~llowing. 

Theorem 4.1. Let p = 5, 7, k E 2Z, f = I:n?.nt anqn E ML(fo(p)) such that 

• an E Q for any n. 

• All of the zeros off on IF'*(p) lie on the lower boundary arcs. 

If z0 E IHI is a zero of f which is not equivalent to the following points, then z0 is 
transcendental. 

(i) p = 5 

i -l+Jl9i -1+2i -3+v'lli -2+i -5+\!'5i 
Js' 10 5 10 5 10 

(ii) p= 7 

i -1 + 3y'3i -1 + v'6i -3 + v'I9i 
../7' 14 7 14 

-2 + v'3i -5 + v'3i -6 + v'6i -7 + ../?i 
7 14 14 14 

Corollary 4.1. Let p = 5, 7. The same is true for EZ,p, !k,m E ML(ro(P)) for 
sufficiently large m. 
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Sketch of proof of Theorem 4-1. 
We put 

g := II flk, E ML(p+il(r), 
,Ho(p)\r 

912 I 

h := ~k(p+l) E M0(r) 

where flk 1 (z) := (cz + d)-k !(~;!!) for 1 = ( ~ :) E SL2(IR), and 

~ = 1 ; 28 (El - El) E S12(r). 

Since the Fourier coefficients of h are rational, we have 

h = P(j) for some P E (Ql[x] 

where 

is the j-function. 
Suppose that z0 E IHI is algebraic with f (z0 ) = 0. Then 

h(zo) = P(j(zo)) = 0. 

Hence j(z0 ) is algebraic. By the Schneider's theorem[lO], z0 is imaginary quadratic. 
Therefore, z0 satisfies 

az5 + bz0 + c = 0 (a, b, c E Z, a> 0, gcd(a, b, c) = 1) 

Put D := b2 - 4ac and 

(D = 0 (mod 4)) 

(D = 1 (mod 4)) 

By the theory of complex multiplication, there exists O" E Gal((Q)/(Q)( v'D)) such 
that O"(j(z0 )) = j(zi). Therefore 

P(j(z0 )) = 0 ~ O"(P(j(z0 ))) = P(O"(j(z0 ))) = P(j(z1)) = h(z1) = 0 

~ fb(z1) = 0 for some 'YE ro(P)\r. 

By the assumption of the zeros on IF* (p), the only possibility for D is the following. 

D = {-4, -11, -16, -19, -20 (p = 5) _ 
-3, -7, -12, -19, -24, -27, -28 (p = 7) 

Therefore, we can find exceptions stated in Theorem 4.1. □ 
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