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ON VALUES OF LOGARITHMIC DERIVATIVES OF £-FUNCTIONS 

BIPLABPAUL 

ABSTRACT. This article is an extended version of a talk delivered at RJMS conference on "Prob

lems and Prospects in Analytic Number Theory" held in November, 2020. In this note, we give a 

brief overview of the theme 'values of logarithmic derivatives of £-functions and zeta functions 

and its related topics'. We end by providing an outline of a recent work on values of logarithmic 

derivatives of £-functions attached to cuspidal elliptic Hecke eigenforms of integral weight. 

1. INTRODUCTION 

In this article, we would like to describe some recent progress towards the theme 'values of 

logarithmic derivatives of £-functions and zeta functions'. The purpose of next four sections 

is to draw an analogy and give motivation to the current investigations of the main topics 

discussed in Section 6. Therefore these sections are very short in nature and for most of the 

results in these sections we give reference to the original articles or survey articles. The next 

section is on an classical object 'the Euler constant'. To the best of author's knowledge, there 

are more than 300 articles in the literature on Euler constant and it's connection to other topics 

which is an area of current research as well. Hence we refer the interested reader to a survey 

article as well as some original research articles. In the Section 3, we describe another constant 

known as the Euler-Kronecker constant which is a generalization of Euler constant and it is 

also an active current research topic for it's connections to various other arithmetic problems. 

Sections 4, 5 are on the values of logarithmic derivatives of Dirichlet £-functions and the Artin 

£-functions respectively. In the last section, we describe briefly the distribution of logarithmic 

derivatives of £-functions attached to holomorphic cusp forms. Yet another motivation for this 

investigation is given in the beginning of the last section and we end the article by providing a 

brief sketch of the proof of the main results. 

2. RIEMANN ZETA FUNCTION AND EULER CONSTANT 

For 3'?( s) > 1, the Riemann zeta function ( ( s) is defined by the Dirichlet series 

= 1 
((s) := '°' -. Lns 

n=l 
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By work of Riemann, one knows that the function ((s) can be extended as a meromorphic 

function to whole complex plane with only a simple pole at s = l with residue 1. Therefore, at 

s = 1, the function ( ( s) has the following Laurent series expansion 

1 
((s)= s-l +1+(s-l)h(s), 

where h(s) is a holomorphic function in a neighbourhood of s = l. The constant r' is known 

as Euler constant (often known as Euler-Mascheroni constant). The Euler constant appears in 

various context in mathematics and even after three centuries of investigations, it remains mys

terious in nature. For example, one of the famous unsolved problems about r' is: 

Conjecture 1. The Euler constant r' is irrational. 

The constant r' has various interpretations. The interpretation, we are interested in this 

article, is the following 

(' 1 
-(s) = -- +1+ O(s-1). 
( s-1 

(1) 

The Euler constant r' is known to be directly related to number of topics and/ or problems 

in number theory. For example, it is known to be related to gamma function, distribution of prime 

numbers and the Riemann hypothesis, Kontsevich-Zagier period, cycle structures of random permuta

tions in the symmetric group SN, Dirichlet divisor problem, extreme value problem of ((1 + it), etc. 

Moreover, some generalized Euler constants are known to be directly related to the Riemann 

hypothesis as well as transcendence problems. For more details on the Euler constant see the 

beautiful article of Lagarious [14] and references there. For some of the more recent works on 

generalized Euler constants see [6, 7, 8]. 

3. DEDEKIND ZETA FUNCTIONS AND EULER-KRONECKER INVARIANTS 

The main aim of this section is to discuss one of the generalizations of the Euler constant 

known as Euler-Kronecker constant. To introduce this constant, we need more notations. Let K 

be a number field and OK be the ring of integers in K. For R(s) > 1, we define the Dedekind 

zeta function by: 
1 

(K(s) := L (Na)•' 
a#O 

where a runs over all non-zero integral ideals of K. As in the case of the Riemann zeta function 

((s), the Dedekind zeta function (K(s) admits analytic continuation to whole complex plane as 

a meromorphic function and having a simple pole at s = l. Therefore we have 

(2) (~ (s) = --1- + r'K + O(s - 1). 
(K s- l 
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The constant 'YK is known as the Euler-Kronecker constant (or invariant) of K. Note that in the 

case when K = IQ!, the function (K(s) is nothing but the Riemann zeta function ((s), that is, 

(Q(s) = ((s) and 'YK = 'Y· 

As in the case of Euler constant 'Y, this constant 'YK also appears in literature frequently but 

its systematic study has been initiated only recently by !hara [9]. Since then the distribution of 

'YK and its relationship with other objects in mathematics have been studied by several mathe

maticians. Till date, it is known to be related to the 'Kronecker limit formula' [9, Section 2.2], the 

generalized Brauer-Siegel conjecture [4] and the Hardy-Littlewood conjecture about counts of 

prime k-tuples [5] among others. This is an area of current research. 

4. DIRICHLET £-FUNCTIONS 

Let us now move to another set of constants which are closely related to the previous ones, 

namely, the constants coming from Dirichlet £-functions. Let N 2: 1 be a positive integer and 

x mod N be a Dirichlet character. For R( s) > 1, define the Dirichlet £-function L( s, x) by 

L(s, x) := ~ x(m). 
~ m• 
m=l 

The study of this function seems to go back to Dirichlet in 1830's when he investigated the 

distribution of primes in arithmetic progressions. We know that the function L(s, x) can be 

extended analytically to the whole complex plane as an entire function and it does not vanish 

in the region R(s) 2: 1. In particular, L(l, x) =I= 0. Therefore, the value f (1, x) is well-defined. 

In this section, we mention few properties of this constant and it's connection to other topics or 

questions. 

Let K = Q(µp) be the cyclotomic field, where µP is a primitive p-th root of unity. Then one 

has 
L' 

'YK = 'Y + L L(l, x). 
x#xo 

Motivated by this connection, Y. !hara, V. Kumar Murty and M. Shimura [10] studied the dis

tribution off (1, x). Assuming the Generalized Riemann Hypothesis (GRH), they proved that: 

(3) I~ (1, x)I :S: 2loglog ldxl + 0(1), 

where dx is the conductor of X· Note that their result is more general (please see [10] for more 

details). They also studied moments of f (1, x). On the other hand, Mourtada-Murty [18] 

showed the following omega result. 

Theorem 1 (Mourtada-Murty). There are infinitely many fundamental discriminants D such that 

L' 
L(l,xv) 2: logloglDl+O(l). 
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Moreover, for large enough x, there are 2: xfo fundamental discriminants O < D :S x such that 

L' 
y(l,xv) :S -logloglDl+O(l). 

where xv is the quadratic Dirichlet character of conductor D. 

For further details see [18, 15]. 

5. ARTIN £-FUNCTIONS 

Let K be a number field such that the degree of the extension K/Q be n and dK be its dis

criminant. Also let R be the Galois closure of K /Q. Then we have the following decomposition 

of the Dedekind zeta function 

(K(s) = ((s)L(s,p), 

where p is a (n-1)-dimensional complex representation of the Galois group Gal(K /Q). Hence 

L' 
1K = 1 + y(l, p). 

Motivated by this connection, Cho and Kim [2] studied the distribution of the values f (1, p) 

in terms of degree n and discriminant dK under the Artin conjecture, the generalized Riemann 

hypothesis and a certain zero-density hypothesis. Further, they showed that their conditional 

bounds are optimal, that is, there exist infinitely many (Galois) number fields such that for 

those fields the constants f (1, p) take maximal values. The last result is unconditional. For 

more details we refer the reader to [2]. 

6. £-FUNCTIONS ATTACHED TO CUSP FORMS 

The purpose of this section is to introduce one more set of constants and describe their 

distribution what had been studied recently by the author. We need some more notions and 

notations! Let k 2: 2 be an even integer, N 2: 1 be an integer and Sk(N) be the space of elliptic 

cusp forms of weight k for the group r O ( N). Also assume that S'f:ew ( N) denotes the subspace 

of newforms of Sk(N). Let 
00 

n=l 

be a normalized Hecke eigenform which is an eigenfunction of Fricke involution (cf. [3, p. 

2041). We shall denote the set of such eigenforms by Hk(N). For f E Hk(N), R(s) > 1 and 

primitive character x mod M, one defines 

L( f ) ·= Loo .x.1(n)x(n) 
s, ,X . . ns 

n=l 

As in the case of Dirichlet £-function, it is well-known (cf. [21, Theorem 3.66]) that, when 

(M, N) = 1, the function L(s, f, x) admits analytic continuation to whole complex plane as an 
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entire function. One also knows that L(l, f, x) i= 0 when x primitive. Therefore, the value 

f (1, f, x) is well defined and, in this section, we are interested in the distribution off (1, f, x). 
The main motivation of this study comes from two different sources. One source of motiva

tion is the analogy with the above mentioned Euler constant, the Euler-Kronecker constants, 

and the values of logarithmic derivatives of Dirichlet L-functions and Artin L-functions with 

respect to their connection with the Euler-Kronecker constants. Another source of motivation 

is the values of L-functions associated to primitive cusp forms. It is known that these values 

encode deep arithmetic information of cusp forms. For example, by a work of Luo and Ra

makrishnan [12, Theorem B], the twisted central values L(l/2, f, x), where x runs over the set 

of all quadratic characters, determine primitive cusp form f uniquely. The analogous result 

can also be derived from the values of L-functions at s = 1 (see Luo [13] for more details). 

In a recent work [19], we established the following conditional estimate. 

Theorem 2 (Paul, [19]). We keep the above notations. Let f E Hk(N) and xmodM be a primitive 

Dirichlet character. Assume (M, N) = 1 and the Riemann hypothesis holds for L(s, f, x) and ((s). 
Then there is an absolute constant C such that 

( ( )2) L' loglog(M-/ivk) 

1
-L (1,f,x)I ~ 4loglog(MvNk) + C + O JN . 

log(M Nk) 

A natural question is to ask: Is the above bound optimal, i.e. does there any Omega result? 

Our next result answers this question positively. 

Theorem 3 (Paul, [19]). Let f E Sk(SL2 (Z)) be a normalized Hecke eigenform. Then there are infin

itely many fundamental discriminant D and quadratic Dirichlet character x mod D such that 

L' 1 
-y;(l, f, x) 2: S loglog(Dk) + 0(1). 

Further, there are infinitely many fundamental discriminant D and quadratic Dirichlet character x mod D 

such that 
L' 1 
-y;(l,f,x) ~ - 8 loglog(Dk)+0(1). 

The rest of the article is devoted to a sketch of the proofs of the above two results. 

6.1. Preliminaries and preparatory results. As in [10], our main tool is the following explicit 

formula. For any x > 1, let us define 

Note that 

if>(f,x,x) := - 1- '°' (::_ - 1) x(n)A1(n). x-lL.., n 
n~x 

if>(f, X, x) 1 [ (1) l x-1 x'I/Jo (f,x,x) - 1/Jo(f,x,x) ' 
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where 

7f;o(f, X, x) := I:' x(n)A1(n) and 7f;61) (J, X, x) := I:' x(n)~1(n). 
n~x n~x 

Here "£' means if x is a prime power then the term corresponding to n = x will have weight 

1/2 and A1(n) is defined as follows: 

A1(n) := {o(a;1 + /3;1) logp if n = pm 
otherwise. 

Recall that ap, ,BP are defined in terms of the Euler product L(s, f, x) in the region ~(s) > 1: 

(4) L(s,f,x) = II (1- >...1(P)x(p) + </>o(P)x(p)2)-\= II (1- °'PX(P))-1(1- ,Bpx(p))-1 
pS p2S pS pS 

p p 

where <Po is the trivial character mod N and when (p, N) = 1, 

>...1(p) = ap + ,BP and ap,Bp = 1. 

With these notations one can derive the following proposition. 

Proposition 4. Let f E Hk(N), x mod M be a primitive character, (M, N) = 1 and x > 2 be a real 

number. Then 

<P(f, X, x) 
1 xP x L' 1 L' 

x-lLp(l-p) - x-lL(l,f,x) - x-lL(l,f,x) 
p 

2log(M,/Nk/41r) l ( ✓x -1) L x-n/2 O ( 1 ) -------+2og -- -2 --+ -- . 
x - 1 ..fi - 1 n k..jx 

l~n~k, 
nodd 

If we restrict ourselves to the case of real primitive characters x mod M then we have the 

following. 

Corollary 5. Let f E Hk(N), x mod M be a real primitive character, (M, N) = 1 and x > 2 be a real 

number. Then 

<P(f, X, x) _1_ '°' xP _ x + 1 L' (1 f x) _ 2log(M,/Nk/41r) 
x - l L p(l - p) x - 1 L ' ' x - 1 

p 

( vx=-r) x-n/2 ( 1 ) + 2log -- - 2 L -- + 0 - . 
..jx-1 n k..jx 

l<n<k, 
~odd 

We need another formula for f (1, f, x) whose proof will also be omitted. 

Lemma 6. Let f E Hk(N), x mod M be a primitive Dirichlet character and (M, N) = 1. Then 

L' L' _ '°' 1 (M,/N) _ 2r 1 (k + 1) (5) L(l,f,x)+L(I,f,x) = 7p(l-p) - 2log ~ r 2 ' 

where the summation L,p runs over all non-trivial zeros of L(s, f, x). 



108

VALUES OF LOGARITHMIC DERIVATIVE 

6.2. Sketch of proof of Theorem 2. First use the Riemann hypothesis for L(s, f, x) to get 

'°' I xP I < VX '°' 1 = VX '°' _1. 
L p(l - p) - L p(l - p) L IPl2 

p p p 

Next use the Riemann hypothesis for ((s) to derive (see, [17, p. 419]) 

L A(n) = x + O(y'x(logx)2), 
n'S:x 

where A( n) is the von Mangoldt Lambda function. Now above two estimates along with Propo

sition 4 and Lemma 6 yield 

IL' I -Jx+l IL' -1 (log(Mv'Jh) (logx)2 ) (6) -y;(l,f,x) ~ 2logx + -Jx(-Jx- l) -y;(l,f,x) + c1 + 0 VX + -Jx . 

Similarly, working with L(s, f, x) one can derive 

I L' -1 VX + 1 I L' I (log(M v'lh) (log x)2 ) 
(7) -y;(l,f,x) ~ 2logx + -Jx(-Jx- l) -y;(l,f,x) + c1 + 0 VX + -Jx . 

Thus from (6) and (7) we have 

I 
L' I (log(Mv11Vk) (logx) 2 ) -y;(l,f,x) ~ 2logx + ci + 0 VX + -Jx . 

Choose x = [log(M v11Vk)] 2 to complete the proof. 

6.3. Sketch of proof of Theorem 3. To prove Theorem 3, we shall make use of Corollary 5. Re

call from Corollary 5 that for any normalized Hecke eigenform f E Sk(SL2(Z)), real primitive 

character x mod D and for y > 2 we have 

(8) L' 1 '°' yP y- 1 (log(Dk)) 
-y;(l, f, x) = y + l L-;- p(l _ p) - y + l <l>(f, X, y) + 0 0) . 

Let us start by choosing the real primitive characters carefully. Let X be sufficiently large 

positive real number, T/ > 0 be a suitably small real number and 

g ·= [T/ logX ] 
. loglogX . 

By Pi, we denote the i-th odd prime with Pl = 3. Also assume that 
g 

a := ITPi 
i=l 

then a « X 2". Now by Chinese remainder theorem, we can choose 1 < b < 8a such that 

b = lmod8 and 

(!!_) = {-1 for all 1 ~ i ~ g with >..1(Pi) 2: O; 
Pi 1 for all 1 ~ i ~ g with >..1(Pi) < 0. 
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For square-free integers D := San + b, we define 

Xn(m) := (sa::+b) 

which is a real primitive character mod D. Here ( - ) denotes the Jacobi symbol. These are the 

real characters what we use in this subsection. Note that for odd m by the reciprocity law for 

Jacobi symbols we have 

Xn(m) = (Sa:+b)· 

We now estimate the size of the term <P(f, X, y) for which we use the following lemma. 

Lemma 7. Let <P(f, x, y) be as above. Then we have 

<P(f, X, y) = L >-1(P)x(p) logp + O(l). 
p~y p 

Divide the sum (in the above lemma) over primes into two parts p S Pg and Pg < p S y. 

In the sum over p s pg, we use our choice of real characters and prime number theorem (d. 

[20, Theorem 2], also see [16, p.194-196]) and in the sum over Pg < p s y, we apply P6lya

Vinogradov inequality. Putting all together we have the following lemma. 

Lemma 8. Keeping the notations as above and taking y > Pg we have 

L <P(f,Xn,Y) S -: logpg + O(N) + 0 (a.jxylog2 (Xy)), 
X<n<2X 

Ban+b sqitare-free 

where N := #{X < n s 2X I San+ bis square-free}. Note that N ::cc:: X, by [1, Lemma 3]. 

Next we estimate the terms involving the sum over non-trivial zeros of L(s, f, x). Here, 

one of the main ingredients is the following zero-density estimate for L(s, f, x). For a proof of 

Theorem 9 we refer to [19]. 

Theorem 9 (Paul, [19]). Let f E Sk(SL2(Z)) be a normalized Hecke eigenform and XD modD be a 

real primitive Dirichlet character. For 1/2 S a S 1 and T 2'. 1, let 

N(a, T, f, XD) := #{p E IC I L(p, f, XD) = 0, a S R(p) S 1, l':s(p)I ST}. 

Then for 3/4 Sa S 1, T 2'. 1, X > 3 and E > 0 we have 

L N(a,T,f,XD) «< (XkT) 9
- 28"+<. 

IDl~X 

Theorem 9 is analogous to a result of Jutila [11]. Note that when a is near to 1, we have saving 

in the power of (XkT), in particular, in the power of X which is crucial in our application. We 

apply Theorem 9 in the range 8/9 S R(s) S 1 and in the range 1/2 S R(s) S 8/9, we bound 

the sum 'trivially' to derive the following lemma. 
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Lemma 10. Let the notations be as above. Then we have 

L _1_ L ( yP ) « (aXk)H+c log2(aXk) + Nlog(a;k). 
X<n<2X y + l p p l - p yri 

8an+b square-free 

Put all these results together and choose the parameters carefully, we find that there is n 

with X < n < 2X such that 
L' 1 L (1, f, Xn) ?: 4 logp9 + 0(1). 

Finally, choose D := 8an +band log(Dk) :S: (log X)2 to conclude the first part of Theorem 3. 

For the second part repeat the above proof with the following choice of real characters. Let 

X, 'f/, g, a be as above. Choose b E N with 1 < b < 8a such a way that b = 1 mod 8 and 

for all 1 :S: i :S: g with >-.J(P;) ?: O; 

for all 1 :S: i :S: g with >-.J(P;) < 0. 

Then, for square-free D := 8an + b, define primitive real character mod D as 

Xn(m) := ( 8a:+ b) . 
These will be the real character what will be used in this case. Then, as in Lemma 8, derive 

L <P(f,Xn,Y) ?: ; logp9 + O(N) + 0 (afiylog2(Xy)) 
X<n<2X 

Ban+b sq~are-free 

for y > p9 • Here as above N := #{X < n :S: 2X I San+ bis square-free} and N ~ X. For the 

rest of the proof follow the first part of the proof. 
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