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ON ALMOST LEHMER NUMBERS 

TOMOHIRO YAMADA 

ABSTRACT. We consider composite numbers n such that rp(n) divides 
£(n - 1) for some squarefree divisor £ of n - 1. We discuss two cases, 
according to whether the number of prime factors of £ is bounded or 
not. We give a few instances and upper bounds for the number of such 
integers below a given number. 

1. INTRODUCTION 

1.1. Backgrounds. Let 

cp(n): the Euler totient of n, the number of positive integers 
d ::=; n - 1 coprime to n. 

Clearly, cp( n) = n - 1 if and only if n is prime. 

Then Lehmer Lehmer [8] conjectured that: 

Conjecture 1. There exists no composite n such that 

(1.1) cp(n) I (n - 1). 

Lehmer [8] proved that: 

If n is composite and cp(n) divides n - 1, then n must (a) 
be odd, (b) be squarefree, and ( c) have at least seven prime 
factors. 

Further results: 

• Cohen and Hagis [4]: w(n) 2 14 and n > 1020 . 

• Renze's notebook [15]: w(n) 2 15 and n > 1026 . 

• Pinch claims at his research page [13]: n > 1030 . 

Moreover, letting V(x) be the number of composites n ::=; x such that cp(n) I 
(n - 1), 
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• Pomerance [14]: V(x) = O(x112 log3/ 4 x) and n :S r2r if 2 :S: w(n) :S: r 
additionally. 

• Luca and Pomerance [9]: V(x) < x 112 log-l/2+o(l) x. 
• Burek and Zmija [2]: n :S 22r - 22r-i if 2 :S: w( n) :S: r additionally. 

Weakening the condition cp(n) I (n - 1), Grau and Oller-Marcen [6] in
troduced the k-Lehmer property: cp(n) I (n - l)k 

The first few composite 2-Lehmer numbers: 

561,1105,1729,2465, ... 

(sequence Al 73703 in OEIS). 

Following estimates are known: 

• McNew [10]: For each k, the number of k-Lehmer numbers is 
O(x1- 1/(4k-l)) and the number of integers which are k-Lehmer for 
some k is at most x exp(-(1 + o(l)) log x log log log x/ log log x). 

• McNew and Wright [11]: For each k 2: 3, there exist at least 
x1/(k-l)+o(l) integers n :S x which are k-Lehmer but not (k - 1)
Lehmer. 

1.2. Nearly and almost Lehmer numbers. Now we would like to discuss 
intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) 
property and 2-Lehmer property. 

We call an integer n to be 

(a) an almost Lehmer number if cp(n) divides £(n-1) for some squarefree 
divisor£ of n - l, and 

(b) an r-nearly Lehmer number if cp(n) divides £(n-1) for some square
free divisor£ of n - l with w(£) :S: r. 

We begin by noting that: 

• The ordinary Lehmer property is equivalent to the 0-nearly Lehmer 
property and an almost Lehmer numbers can be regarded as oo
near ly Lehmer numbers. 

• The first few almost Lehmer numbers are 

1729,12801,247105,1224721,2704801,5079361,8355841, ... , 

given in A337316. 
• There exist exactly 38 almost Lehmer numbers below 232 • 

• There exist only five 1-nearly Lehmer numbers 1729, 12801, 5079361, 
34479361, and 3069196417 below 232 (further instances are given in 
the discussion of A338998). 
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We use the following notion: 

• Ur(r = 1, 2, ... , oo ): the set of composites n for which rp(n) divides 
£(n - 1) for some squarefree divisor£ of n - 1 with w(£) '.Sr. 

• Thus, U00 denotes the set of almost Lehmer numbers. 
• S(x) = {n '.S x, n ES}. 

We note that McNew's upper bound for 2-Lehmer numbers immediately 
yields that #Ur(x) '.S #U00 (x) = O(x617 ). 

The purpose of this paper is to give stronger upper bounds for #Ur(x) 
and #U00 (x): 

Theorem 1 (Yamada [16]). Let ar be the number of partitions of the mul
tiset {1, 1, 2, 2, ... , r, r} of r integers repeated twice. Then, there exist two 
absolute constants c and c1 such that for each integer r ?: 1, 

(1.2) #Ur(x) < car(xlogx)213 (c1 loglogx) 2r+2/ 3 _ 

Moreover, we have 

(1.3) # Tr ( ) 4/5 ( (~ ( )) log x log log log x) 
u 00 x < x exp + o 1 l l , 

5 og ogx 

where o(l) ----+ 0 as x----+ oo. 

The first terms of ar 's are 

2,9,66, 712,10457,198091,4659138,132315780, ... 

given in A020555 and Bender's asymptotic formula in [1] yields that 

(1.4) ( log2 ) log ar < 2r log(2r) - log log(2r) - 1 - - 2- + o(l) 

as r grows. 

Hence, setting c and c1 as in Theorem 1, we have 

Corollary 2 (Yamada [16]). 

(1.5) 

and 

(1.6) #U,(x) < ( ( ev'2l:go;(l) )r) ,, (x log x )'13 ( c,Iog log x )"+'13, 

where or(l) tends to zero as r tends to infinity. 

Our estimates depend on numbers of multiplicative partitions of integers, 
which will be discussed in the next section. 
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This dependence, together with factorial growth of ar, prevents our method 
from showing that #U00 (x) < x2/3+o(l)_ 

On the other hand, the above instances lead us to: 

Conjecture 2. There exist infinitely many almost Lehmer composite num
bers. 

Moreover, there may be infinitely many I-nearly Lehmer composite num
bers (it may occur that #U1(x) » logx), although such integers are dis
tributed very rarely below our search limit. 

However, these also seem to be difficult to prove or disprove; it is even 
not known whether there exist infinitely many 2-Lehmer numbers or not! 

2. PRELIMINARY ESTIMATES 

Let T( s) be the number of multiplicative partitions / factorizations of 
S = S1S2 ···Sr with S1 :S S2 :S ···Sr. 

The values of T(s) for positive integers s are given in A001055. 

Example 1. If s = PiP~, then there exist nine factorizations: {PiPn, 
{PiP2,P2}, {p1p~,P1}, {pr,Pn, {Pi,P2,P2}, {p~,P1,P1}, {p1P2,P1P2}, 
{p1P2,P1,P2}, {p1,P1, P2, P2}-

We prove two lemmas. 

Lemma 3. For each integer s 2: 1, let S(s; x) denote the set of positive 
integers n :S x such that s divides cp(n). Then 

(2_1) S(s; x) :S T(s )x( C1 log log x f1(s), 

s 

where c1 is an absolute constant. 

Lemma 4. As x tends to infinity, we have 

(2.2) 
L T( s) < (1 + o(l) )e2y1ogx log114 x _ 

s 2y0r 
s::;;x 

Lemma 3 follows from 

Lemma 5 (Erdos, Granville, Pomerance, and Spiro[5]). 

~ 1 c1 log log x 
~ -<----

q s 
q::;;x,q=l (mod s) 

(2.3) 

with some absolute constant c1 , where q runs over all primes satisfying 
q :S x,q = 1 (mods). 
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Lemma 4 immediately follows from 

Lemma 6 (Oppenheim[12]). 

(2.4) 
(1 + o(l))xe2✓logx 

'°'T(s) = --~-. 
L.....t 2 1w log3/ 4 x 
s~x V 11 

Note: T( s) itself may be fairly large. 

Indeed, Canfield, Erdos, and Pomerance [3] showed that T( s) = s exp(-(1 + 
o(l))logslogloglogs/loglogs) for highly factorable integers s, which are 
given in A033833. 

So that, the above lemma cannot be used in order to bound the number 
of integers n such that cp(n) are multiples of s for an arbitrary integer s. 
Nevertheless, we can show the following upper bound for a certain sum 
involving T(s), as we have done in Lemma 4. 

3. PROOF OF THE THEOREM 

• r: a positive integer or oo, 
• x: a sufficiently large real number, 
• n: be an r-nearly Lehmer number :S x which is composite. 

Clearly, we can write (n - l)/cp(n) = k/£, where 

• k and £: coprime integers, 
• £: a squarefree divisor of n - l with w(£) :S r, 
• fo = gcd(£, cp(d)), f2 = TIPIRo,P2l'P(d) P· 

We note that n must be odd and squarefree since cp(n) and n are coprime 
and n is composite. 

Take an arbitrary divisor d of n and write n = md. Since n is squarefree, 
we have f(md - 1) = kcp(n) = kcp(m)cp(d). Thus we obtain 

(3.1) md = l ( mod 'Pt)) 
since md = l ( mod 'Pt)) but both cp( d) / fo and fo divide md - l. 

Now let L1 > x 113 and L2 = Li be real numbers which will be chosen later 
in different manners according to whether r is an integer or r = oo. We 
cannot haven= mp for a prime p > L 2 ; m = 1 (mod (p - 1)/£2) for some 

£~ I (p - 1) from the first observation, m > v'P, and n > p312 > L~12 = Lr, 
which is a contradiction. Thus, we observe that n has a divisor d in the 
range L1 :S d :S L2 if n 2: L1 . 
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For each d, the number of integers n = md::::; x satisfying (3.1) is at most 
1 + l£2x/(dcp(d))J. We note that £2 ::::; ~::::; L1 . Moreover, we have 
d/cp(d) « loglogd::::; loglogx, which follows from Theorem 328 of Hardy 
and Wright [7]. 

3.1. If r < oo, then T(£~) ::::; T(£2) ::::; ar. By Lemma 3, we have 

(3.2) 

Taking L1 = ( c1 x log x log log x) 1/ 3 , we obtain the theorem. 

3.2. Now assume that r = oo. Instead of (3.2), we obtain 

(3.3) 

observing that since£~ I cp(d), we have cp(d)/£2 2': ~ » (d/loglogd) 1/ 2 

using Theorem 328 of Hardy and Wright [7] again. 

Since £2 < L~12 , 0(£~) = 2w(£2 ) < (1 + o(l)) logL2/loglogx from Hardy 
and Wright [7, Chapter 22.10]. By Lemma 4, we have I:e2 <Li T(£~)/£~ « 
e2✓logx log114 x. Thus, (3.3) gives that 

(3.4) #U=(x) « e(Ho(l))k,gL,l<»<i<»<i<»<x/loslosx ( L, + L:12 ) . 

Now the theorem immediately follows taking L1 = x215 . This completes the 
proof. 
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