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Abstract 

We study various classes of strongly continuous one-parameter semigroups which 
are generated by abstract versions of linear Calogero-Moser-Sutherland Hamiltonians 
for arbitrary root systems. These Hamiltonians contain modifications by exchange 
terms and can be written in terms of Dunk! operators. The semigroups under con­
sideration include the generalized heat semigroup and the Schrodinger semigroup 
related with the free abstract Calogero Hamiltonian, as well as the semigroup gen­
erated by the Calogero Hamiltonian with harmonic confinement. The latter one is 
closely related with a Dunkl-type generalization of the classical Ornstein-Uhlenbeck 
semigroup. 

1 Introduction 

In recent years, quantum many particle models of Calogero-Moser-Sutherland (CMS) 
type have gained considerable interest in theoretical physics. These models describe sys­
tems of identical particles on a circle or line which interact pairwise through long range 
potentials of inverse square type. They are exactly solvable and are therefore of great 
interest for the understanding of quantum many body physics. CMS models have in 
particular attracted some attention in conformal field theory, and they are being used 
to test the ideas of fractional statistics ([Ha], [Hal)). While explicit spectral resolutions 
of such models were already obtained by Calogero and Sutherland ([Ca], [Su)), a new 
aspect in the understanding of their algebraic structure and quantum integrability was 
only recently initiated by [Po) and [He). The Hamiltonian under consideration is hereby 
modified by certain exchange operators, which allow to write it in a decoupled form. 
These exchange modifications can be expressed in terms of Dunkl operators of type 
AN-I• Dunkl operators, as introduced and first studied by C.F. Dunk! ((D1), [D2)), are 
parametrized differential-reflection operators associated with root systems. They extend 
the usual partial derivatives by additional reflection terms. Besides their important role 
in the context of quantum integrable many particle systems, Dunkl operators provide a 
key tool in the analysis of special functions related with root systems. In the present 
paper, we study several classes of one-parameter semigroups which are generated by sec­
ond order Dunkl operators. These operators can be seen as abstract versions of linear 
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CMS operators which are associated with arbitrary root systems and are modified by 
exchange terms in the sense of [Po]. After a brief survey on Dunk! operators in Sec­
tion 2, the connection of these operators with quantum Calogero models is described in 
Section 3. We then turn to the basic one-parameter semigroup in the Dunk! setting, 
namely the generalized heat semigroup introduced in [Rl ]; it is discussed in Section 4 on 
various function spaces besides ( Co (!RN), 11-11 00 ). When considered for imaginary times, 
the Dunkl-type heat semigroup in a suitably weighted L2-space leads to the solution of 
the time-dependent Schriidinger equation for the free quantum Calogero model. This is 
contained in Section 5. Finally, the last section is devoted to the semigroup generated 
by the Calogero Hamiltonian with harmonic confinement. It can be interpreted as the 
Dunkl-type version of the classical oscillator semigroup, and is closely related with the 
Ornstein-Uhlenbeck semigroup studied in [R-VJ. 

2 Some basic facts from the theory of Dunkl operators 

Let R be a (reduced, not necessarily crystallographic) root system in JRN, i.e. a finite 
subset ofJRN \ {O} with RnlR-o = {±a} and u0 (R) = R for all a ER. Here o-0 denotes 
the reflection in the hyperplane orthogonal to a, which is given by 0-0 (:z:) = x- (o,:z:} ·o, 
with (., .} denoting the standard Euclidean scalar product. We hereby assume that the 
root system R is normalized, i.e. Jaj2 = 2 for all a E R, where 1-1 is the Euclidean norm. 
We further denote by G the finite reflection group generated by {0-0 , a ER}. A function 
k : R • C is called a multiplicity function on the root system R, if it invariant under the 
natural action of G on R. We fix some multiplicity-function k on R, which is throughout 
this paper assumed to be non-negative, i.e. k(o) ? 0 for all a ER. The Dunk! operators 
on JRN associated with G and k are defined by 

'°' J(x) - J(u0 x) 
T;f(x) := 8;J(x) + L.., k(a)a; ( } , 

<>ER+ a,x 

where R+ is an (arbitrary) positive subsystem of R, i.e. (a, /3) > 0 for some /3 E JRN and 
all a E R+- The operators T; can be considered as a perturbation of the usual partial 
derivatives in the parameter k, and many properties of the usual partial derivatives carry 
over to them ([Dl], [D2], [dJ]}; here we mention only the following ones: 

(i) The set {T; , i = 1, ... , N} generates a commutative algebra of differential-reflection 
operators on JRN • 

(ii) The operators T; are homogeneous of degree -1 on the space rrN := C[IRN] of 
polynomial functions in N variables, i.e. if p E rrN has total degree k, then T; p 

has total degree k - 1. 

(iii) If f E Ck(JRN) with k ? 1, then T;f E ck-1(1RN); moreover, if f belongs to the 
Schwartz space .9'(JRN) of rapidly decreasing functions on ]RN, then also T;f E 
.9'(JRN). 
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Of particular importance in our context is the generalized Laplacian, which is defined by 
D.k := E{':,1 T[- It is given explicitly by 

D.k = D. + L k(a)o0 (2.1) 
e>ER 

with 
0 J(x) _ ('v J(x), a) _ J(x) - aaf(x). 
" - (a,x) (a,x)2 ' 

here D. and 'v denote the usual Laplacian and gradient respectively. 

2.1 Example. {Dunkl operators of type AN-1). These belong to the symmetric group 
G = SN, which acts in a canonical way on ]RN by permuting the standard basis vec­
tors e1, ... , eN. Each transposition (ij) acts as a reflection a;;, sending e; - ej to 
its negative. On C1(JRN), a;; acts by transposing the coordinates x; and x; with re­
spect to the standard basis. The attached root system, of type AN-I, is given by 
R = {e; - e;, 1 ~ i,j ~ N, i f. j}. Since all transpositions are conjugate in SN, 
the vector space of multiplicity functions on R is one-dimensional. The Dunk! operators 
associated with the multiplicity parameter k E IC are given by 

mS !l k "'"'1-a;; 
~i = v; + . L.,---

#i Xi -Xj 

and the generalized Laplacian is 

(i=l, ... ,N), 

1 [ 1 - cr·· 1 t.i = t.+2k I: -- (ai -a;)---'' . 
l$i<j~N Xi - Xj Xi - Xj 

The Dunk! theory provides also a counterpart to the usual exponential function, called 
the Dunk! kernel Ek(x, y). For each fixed y E ]RN, the function x o-+ Ek(x, y) can 
be characterized as the unique solution of the system T;f = y;f ( i = 1, ... , N) with 
f(O) = 1; see [O]. The kernel Ek(x, y) is symmetric in its arguments and has a unique 
holomorphicextension to cN xcN. It satisfies Ek(z,O) = 1 and Ek(>.z,w) = Ek(z,>.w) 
for all z, w E cN and all >. EC. Moreover, Ek has a Bochner-type representation of the 
form 

Ek(x,z) = { e<{,z)dµ~(t), for all z E cN, laN 
where µ~ is a compactly supported probability measure on ]RN with suppµ~ being con­
tained in the convex hull of the orbit {gx, g E G}, see [R2]. It follows that IEk(x, iy)I ~ 1 
for all x, y E ]RN , and that 

mine(gx,y) ~ Ek(x, y) ~ maxe<9x,y). 
gEG gEG 

(2.2) 

In particular, Ek(x, y) > 0 for all x, y E !RN. We mention that this positivity result was 
first deduced in [Rl] from the positivity of the associated heat semigroup. The Dunk! 
kernel gives rise to a corresponding integral transform on ]RN with respect to the weight 
function 

wk(x) = IT l(a,x)l2k(a). 

aER+ 
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Notice that Wk is G-invariant and homogeneous of degree 21 , with the index 

1 := ,(k) = :E k(a). 
<>ER+ 

The Dunk! transform on L1 (!RN, wk) is defined by 

where Ck is the Mehta-type constant 

Ck:= r e-lxl'f2wk(x)dx. 
}RN 

This integral transform has many properties which are completely analogous to those 
of the classical Fourier transform. A thorough investigation is given in [dJ]. We re­
call from there that the Dunk! transform is a homeomorphism of .9'(JRN ), satisfying 
(T1J)"k(e) = ie1Jk(e). Moreover, it has a unique Plancherel-type extension to an iso­
metric isomorphism of L2(JRN, wk), which is also denoted by f >-+ fk. The inverse 
transform is given by rk(x) = Jk(-x). 

3 Quantum Calogero models 

We continue with a short explanation of linear Calogero-Moser-Sutherland models and 
the relevance of Dunk! operators in their algebraic description. The Hamiltonian of the 
so-called quantum Calogero model with harmonic confinement in L2(JRN) is given by 

(3.1) 

here w > 0 is a frequency parameter and k ~ 0 is a coupling constant. In case w = 0, 
(3.1) describes the free Calogero model. The study of this Hamiltonian was initiated by 
Calogero ([Cal); he computed its spectrum and determined the structure of the eigen­
functions and scattering states in the confined and free case, respectively. Perelomov 
[Pe] observed that (3.1) is completely quantum integrable, i.e. there exist N commut­
ing, algebraically independent symmetric linear operators in L2(!RN) including 1-lc. We 
mention that the complete integrability of the classical Hamiltonian systems associated 
with (3.1) goes back to Moser [Mo]. There exist generalizations of the classical Calogero­
Moser-Sutherland models in the context of abstract root systems, see e.g. [0-Pl], [O-P2]. 
In particular, if R is an arbitrary root system on ]RN and k is a nonnegative multiplic­
ity function on it, then the corresponding abstract Calogero Hamiltonian with harmonic 
confinement is given by 

with the formal expression 

- ~ 1 
:Fk = D. - 2 L.., k(a)(k(a) -1) (a x) 2 . 

oER+ ' 
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If R is of type AN-I, then ii,k just coincides with 1lc, For both the classical and the 
quantum case, partial results on the integrability of this model are due to Olshanetsky 
and Perelomov [0-Pl], [O-P2]. A new aspect in the understanding of the algebraic struc­
ture and the quantum integrability of CMS systems was later initiated by Polychronakos 
[Po] and Heckman [He]. The underlying idea is to construct quantum integrals for CMS 
models from differential-reflection operators. Polychronakos introduced them in terms 
of an "exchange-operator formalism" for (3.1). He thus obtained a complete set of com­
muting observables for (3.1) in an elegant way. In [He] it was observed in general that 
the complete algebra of quantum integrals for free, abstract Calogero models is inti­
mately connected with the corresponding algebra of Dunk! operators. Since then, there 
has been an extensive and ongoing study of CMS models and explicit operator solutions 
for them via differential-reflection operator formalisms; among the broad literature, we 
refer to [L-V], [K], [BHKV], [BF], and [U-W]. Let us briefly describe the connection of 
abstract Calogero models with Dunk! operators: Consider the following modification of 
Jk, involving reflection terms: 

~ k(a) 
:Fk = 6- - 2 L.J -( )2 (k(a) - O'a). 

oER+ a,:x 
(3.2) 

In order to avoid singularities in the reflecting hyperplanes, it is suitable to carry out a 
gauge transform by Fk· One obtains (c.f. Lemma 3.1. of [R3)) that :Fk is essentially self­

adjoint when considered as a linear operator in L2 (1RN) with domain 'D(:Fk) := {w!12 f: 
f E Y(IRN)}. Moreover, 

:Fk = w!12 6-k w-;;112 , 

where 6-k is the Dunk! Laplacian in L2(1RN ,wk) with domain Y(IRN). Consider now the 
algebra of G-invariant polynomials on !RN: 

(ITN)G = {p E IIN : g · p = p for all g E G}. 

It follows easily from equivariance properties of the Dunk! operators ( c.f. [dJ)) that for 
every p E (IIN)G, the Dunk! operator p(T) leaves (ITN)G invariant. For suchp we denote 
the restriction of p(T) to (IIN)G by Res (p(T)). Then, as observed in [He], the family 

is a commutative algebra of differential operators, containing the operator 

Res(6.1<) = w-;;112Awt. 
This implies the integrability of the free Calogero Hamiltonian jk· Polychronakos [Po] 
also succeeded to determine a complete set of quantum integrals for the classical, i.e. 
SN-type Calogero Hamiltonian with harmonic confinement - at least in the physically 
relevant bosonic and fermionic subspaces of L2(IRN). He constructed the integrals by 
a Lax formalism involving suitable lowering and raising operators. For the abstract 
Calogero operator ii,k with harmonic confinement, the general question of how to obtain 
an algebra of quantum integrals is, to the author's knowledge, still open. It is, however, 
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easy to achieve a complete spectral analysis of ii.k, We again work with the gauge­
transformed version with reflection terms, 

11.k:= w-;; 112 (-:Fk+w2lxl2)w!12 = -t.k+w2jxj2. 

This operator is symmetric and densely defined in L2(1RN, wk) with domain 'D(tl.k) := 

Y(IRN). Notice that in case k = 0, 11.k is just the Hamiltonian of the N-dimensional 
isotropic harmonic oscillator. We further consider the Hilbert space L2{IRN, mf ), where 
mf is the probability measure 

Moreover, we introduce the operator 

N 

:h := -t.k + 2w Z:x;B; 
i=l 

in L2(1RN, mf ), with the dense domain 'D(jk) := rrN (the polynomials in N variables). 
The following connection between 11.k and Jk is established in the same way as part (2) 
of Theorem 3.4.(2) in [Rl]. 

3.1 Lemma. On 'D(jk) = rrN, 

Jk = ewl:z:1 2/2 (11.k _ (2-y + N)w) e-wl:z:12/2, 

In particular, Jk is symmetric in L2(1RN, mf). 

We conclude with a complete description of the spectral properties of 11.k and Jk; these 
results generalize well-known facts for the corresponding classical operators. In the fol­
lowing, Pf; denotes the space of polynomials from IIN which are homogeneous of degree 
n. Notice also that by the homogeneity of t.k, the operator e0~• is well defined on 
polynomials and preserves the total degree. 

3.2 Theorem. For w > 0 and n E Z+ define 

V,;" := {e-~•/4wp :p E P:} C ITN and W~ := {e-wl:z:l212q(x), q EV,;"} C .9'(!RN). 

Then the following assertions hold: 

(1) The spaces L2(1RN, mf) and L2 (IRN, wk) admit the orthogonal Hilbert space decom­
positions 

L2(1RN 'mf) = EB V,;" 
nEZ+ 

and L2(IRN,wk) = EB W~; 
neZ+ 

here V,;" is the eigenspace of Jk corresponding to the eigenvalue 2nw, and W~ is 
the eigenspace of 11.k corresponding to the eigenvalue (2n + 2-y + N)w. 

(2) The operators 11.k and Jk are essentially self-adjoint; the spectra of their closures 
are discrete and given by cr(tl.k) = {{2n + 2-y + N)w, n E Z+} and cr(jk) = 
{ 2nw, n E Z+} respectively. 

295 



Proof. (1) It was shown in Theorem 3.4.(1) of [Rl] that in case w = l, each function 
from Vt is an eigenfunction of Jk corresponding to the eigenvalue 2nw. For arbitrary w, 
the corresponding result is obtained by rescaling. Moreover, Vt .l V,\;' for n cf m by the 
symmetry of Jk• This proves the statements for Jk, because rrN = EB Vt is dense in 
L2(1RN, m';:), The statements for 1ik are then immediate by the previous Lemma. 
(2) follows from (1) by a well-known criterion for self-adjointness of symmetric operators 
on a Hilbert space which have a complete set of orthogonal eigenfunctions within their 
domain (Lemma 1.2.2 of [Da3]). D 

By the G-equivariance of t,.k, the spectral resolution of the Calogero Hamiltonian ii.k in 
the bosonic subspace L2 (RN)G is now an easy consequence of Theorem 3.2. 

3.3 Corollary. For n E Z+, put W,';'•G = {e-wlxl 212e-ll.•/4wp: p E P{; n (IIN)° }. 
Then 

L2(RN)° = EB W,';',G' 
nEZ+ 

and W,';'•0 is the eigenspace ofii.k in L 2(JRN)G corresponding to the eigenvalue (2n+2-y+ 
N)w. 

4 Heat semigroups associated with finite reflection groups 

This section deals with the Dunkl-type analogues of the classical heat semigroup on 
several Banach spaces. These semigroups are generated by the Dunk! Laplacian, and 
they are governed by a generalized heat kernel which was introduced in [Rl] and replaces 
the usual Gaussian kernel in the Dunkl setting. 

4.1 Definition. The generalized heat kernel rk associated with the reflection group G 
and the multiplicity function k is defined by 

rk(t X y) := .....!!!.!:._ e-(lxl2+IYl 2l/4t Ek(~ ....1L) ]RN t 0 ' ' t"l+N/2 ,/2t' J2t ' x,y E ' > 

with Mk= (v+N/Zck)- 1. 

The strict positivity of Ek for real arguments implies that r k is strictly positive as well. 
In the following, we collect some further important properties of this kernel. 

4.2 Lemma. (1) .....!!!.!:._ mine-l9:i:-yl2/ 4t < rk(t x y) :5 -3!!_ maxe-l9x-yl'/4t 
t"l+N/2 gEG - ' , t"l+N/2 gEG . 

(2) ( rk(t,x, y) wk(y)dy = l. }RN 
(3) For fixed t and x, the function y M rk(t,x,y) belongs to .9'(RN), with 

rk(t, x, .)"'k(t) = c;;1e-1lel2 Ek(-ix, {). 

(4) fk(t + s, x, y) = ( fk(t, x, z) fk(s, y, z) Wk(z)dz. }ri!,N 
(5) For fixed y E RN, the function u(t, x) := rk(t, x, y) solves the generalized heat 

equation l:,.ku = 81-u on (0, oo) x JRN. 
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Proof. The estimates (1) are immediate from the bounds (2.2) on Ek- Properties (2) and 
(5) have been shown in [Rl]. The first part of (3) is easily deduced from (1), while the 
second statement follows from the reproducing identity for Ek (c.f. [D3]}, 

r Ek(x, z) E,1;(x, w) e-lxl2!2wk(x)dx = Ck e((z,z)+(w,w))/2 E,1;(z, w) (z, w E cN). (4.1) 
}RN 

For the proof of (4), we use (3) and the Plancherel theorem for the Dunk! transform to 
obtain 

f f,1;(t, x, z) f,1;(s, y, z) w,1;(z)dz = c;;- 1 f e-tl{I' Ek(ix, e)rk(s, y, .)"k(()w,1;(e)~ }RN }RN 
= c;;-2 f e-(s+t)l{l2 Ek(ix, e) E,1;(-iy, e)wk(e)~ = f,1;(t + s, x, y). 

}RN 

We next introduce the generalized heat operators associated with the kernel rk. 
4.3 Definition. For f E V'(JRN, w,1;) (1 $ p $ oo) and t 2: 0 define 

{ f f,1;(t, x, y)f(y) w,1;(y)dy if t > 0, 
H,1;(t)f(x) := }RN 

f(x) if t = 0 

• 

Notice that the decay properties of f,1; assure that the integral defining H,1;(t)f(x) con­
verges for all t > 0, x E JRN. We recall the following properties of the operators H,1;(t) 
on the Schwartz space S"(JRN) from[Rl]: 

4.4 Theorem. Let f E S"(JRN). Then u(t,x) := H,1;(t)f(x) belongs to Cb([0,oo) x 
JRN) n C2((0, oo) x JRN) and solves the Cauchy problem 

{
(-6.,1; - 81)u = 0 on (0,oo} x !RN, 

u(0, .) = f. 
Moreover, H,1;(t)f has the following properties: 

(1) H,1;(t)f E S"(IRN} for all t > 0. 
(2) H,1;(t + s) f = H,1;(t)H,1;(s)f for alls, t 2: 0. 
(3) l!Hk(t)f - /11 00 • 0 with t • 0. 

4.5 Lemma. For every t > 0, H,1;(t) defines a continuous linear operator on each of 
the Banach spaces V'(IRN, w,1;) (1 $ p $ oo), (Cb(IRN), 11-11 00 ) and (Co(IRN), 11-11 00 ), with 
norm IIH,1;(t)II $ 1. 

Proof. The estimates for the kernel rk in Lemma 4.2(3) and its normalization ensure 
that for every f E L00 (JRN, w,1;), we have H(t)f E Cb(IRN) with IIH,1;(t)flloo $ llflloo. 
Moreover, if f E V'(JRN, wk), then Jensen's inequality implies that 

IH,1;(t)f(x)IP $ r f,1;(t,x, y) lf(y)IP w,1;(y)dy, 
}RN 

and therefore IIH,1;(t)fl!P,"'• $ llfllP,"'•. Finally, the invariance of Co(JRN) under H,1;(t) 
follows from part (1) of the previous theorem, together with the density of S"(JRN) in 
Co(IRN). • 
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In the following, Xis one of the Banach spaces LP(IRN, wk)(I ~ p < oo) or (Co(IRN), 1\.1\ 00 ). 

We consider the Dunk! Laplacian Ilk as a linear operator in X with dense domain 
V(b..k) := .9'(!RN). 

4.6 Theorem. (1) (Hk(t))t;::o is a strongly continuous, positivity-preserving contrac­
tion semigroup on X. 

(2) Ilk is closable, and its closure Kk is the generator of the semigroup (Hk(t))1;::o on 
X. 

In view of this result, we call (Hk(t))t;::o the generalized Gaussian or heat semigroup on 
X. 

Proof. (1) Theorem 4.4(2), together with Lemma 4.5 and the density of .9'(IRN) in X, 
ensures that (Hk(t))t>O forms a semigroup of continuous linear operators on X. Its 
positivity is clear by the positivity of rk. Moreover, in case X = (Co(IRN), I\. 1\ 00 ), 

its strong continuity follows from part (3) of Theorem 4.4. It remains to check strong 
continuity in the case X = LP(IRN, Wk), 1 ~ p < oo. In view of Lemma 4.5, and as 
Cc(IRN) is dense in LP(IRN, wk), it suffices to show that lim1io I\H(t)f - fl\p,w• = 0 for 
all f E Cc(IRN); hereby we may further assume that f;:,: 0. We then obtain 

As lim40 I\Hk(t)f - flloo = 0, a well-known convergence criterion (see for instance 
Theorem (13.47) of [H-St)) implies that lim40 I\Hk(t)f - fl\1,w• = 0. The estimation 

then entails that lim40 I\Hk(t)f - fllp,w, = 0 as well. 
(2) Let A be the generator of the semigroup (Hk(t))t>O on X. As A is closed, it suffices 
to prove that AIY(RN) = l:!.k, and that A = AIY(RN~, i.e . .9'(IRN) is a core of A. The 
proof of these statements is similar to the classical case. To begin with, let f E .9' (IRN). 
Then by Theorem 4.4(1), Hk(t)f E .9'(IRN) for all t > 0, and application of the Dunk! 
transform yields 

[!(Hk(t) -id} f]"k(f.) = !(e-ti{I' - l}fk(f.). 
t t 

It is easily checked that with t + 0, this tends to -lf.12 [k((.) in the topology of .9'(IRN). 
The Dunk! transform being a homeomorphism of .9'(IRN), we therefore obtain 

Jim !(Hk(t)-id)f = (-lf.1 2fktk = 6.kf 
40 t 

in the topology of .9'{IRN), and therefore in 1\- llp,w• as well. It follows that f belongs to 
the domain V(A) of A. Thus .9'(1RN) c V(A), and AIY(RN) = Ilk, Moreover, .9'(IRN) 
is dense in X and invariant under {Hk(t))t;::o, A well-known characterization of cores 
for the generators of strongly continuous semigroups (see, for instance, Theorem 1.9 of 
[Dal)) now implies that .9' (IRN) is a core of A. • 
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The above theorem says in particular that (Hk(t))t>o is a symmetric Markov semigroup 
on L2(JR.N, wk) in the following sense: -

4.7 Definition. ([Da2]) Letµ E M+(JR.N) be a positive Radon measure on JR.N_ A 
strongly continuous contraction semigroup (T(t))i::::o on L2 (JR.N ,µ) is called a symmetric 
Markov semigroup, if it satisfies the following conditions: 

(1) The generator A of (T(t))i::::o is self-adjoint and non-positive, i.e. (Af, f) s; 0 for 
all f E 'D(A); 

(2) (T(t))i::::o is positivity-preserving for all t ~ 0, i.e. T(t)f ~ 0 for f ~ 0; 

(3) If f E L00 (JR.N, µ) n L2(JR.N, µ), then IIT(t)flloo,µ s; ll!lloo,µ for all t ~ 0. 

Theorem 1.4.2 of [Da2] implies the following 

4.8 Corollary. For l < p < oo, the semigroup (Hk(t))i::::o on .LP(IR.N, wk) is a bounded 
holomorphic semigroup (in the sense of [Dal}) in the sector 

{zEC: iarg(z)I < ,r-minG,tn, 

where q is the conjugate index defined by ¼ + ¼ = 1. 

Remarks. 1. For X = (Co(IR.N), 11- lloo), Theorem 4.6 just says that the generalized heat 
semigroup is a Feller-Markov semigroup, i.e. a (strongly continuous) positive contraction 
semigroup on Co(IR.N). This observation was the starting point in [R-V] for the construc­
tion of an associated semigroup of Markov kernels on JR.N. It leads to a Markov process 
in JR.N which admits a cadlag version (i.e., there exists an equivalent process whose paths 
are right-continuous and have limits from the left), and which obeys a modified notion 
of translation-invariance. For a detailed study of this Dunkl-type Brownian motion we 
refer to [R-VJ. 
2. It is a basic fact from semigroup theory that for given initial data f E 'D(Kk) c X, 
the function u(t) := Hk(t)f provides the unique classical solution of the abstract Cauchy 
problem 

{
d -dt u(t) = Liku(t) for t > 0, 

u(0) = f; 

here "classical" means u E C1([0,oo),X) with u(t) E 'D(Ek) for all t ~ 0. We refer to 
[Rl] for the solution of the classical initial-boundary value problem for the Dunkl-type 
heat equation, with initial data taken from Cb (JR.N). 

5 The free, time-dependent Schrodinger equation 

Consider again the self-adjoint Dunk! Laplacian Kk in L2 (JR.N, wk)- By Stone's Theo­
rem, the skew-adjoint operator i:iS"k generates a strongly continuous unitary semigroup 
(eitX• )t>O on L2(JR.N, wk)- The explicit determination of this semigroup can be achieved 
by standard arguments, see for instance Chapter IX. 1.8 of [Kat] for the classical case. 
First, notice that the heat kernel rk extends naturally to complex "time" arguments, by 

rk(z X y) = __!!!!:._ e-(l:rl2+IYl2)/4 : Ek(-=- y) , , z-r+N/2 2z , 
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for x, y E !RN and z EI[;_ := C\ {w E IR: w ~ 0}; here z'Y+N/2 is the holomorphic branch 
in I[;_ with p+N/2 = 1. We next determine the Schriidinger semigroup on a sufficiently 
large subset of .9'(IRN). 

5.1 Lemma. If J(x) = e-bl:z:12 with a parameter b > 0, then 

eitiS..k J = f rk(it, ., y) J(y) Wk(y)dy for all t > 0. 
}RN 

Proof. Consider the function 

u(t,x) := 1 N/2 e-bl:z:l>/(1+4ibt) (t > 0, x E !RN). 
(1 +4ibt)'Y+ -

(5.1) 

The same calculation as in Lemma 4.3. of [Rl] shows that u satisfies the generalized 
Schriidinger equation 

811.t = iAkU on (0, 00) X !RN, 

with u(0,x) = e-bl:rl2. It is also easily verified that the function t t-t u(t, .) belongs 
to C1([0, oo), L2(1RN, wk)). This shows that eiti5..h J = u(t, . ) for t ~ 0. Finally, the 
reproducing identity (4.1) for Ek implies that fort~ 0, 

1 e-bl:z:12/(1+4bt) = r r (t X y) e-blyl2 w (y)dy. 
(1 + 4bt)'Y+N/2 }RN k , , k 

By analytic continuation, this identity remains true if t is replaced by it. This completes 
the proof. • 
In the following, we shall need the notion of a generalized translation on the Schwartz 
space .9'(JRN), c.f. [Rl]. Its definition is natural: 

Notice that that fork= 0, we just have LKJ(x) = J(x + y). Important properties of the 
usal group translation on JRN carry over to the generalized translation for arbitrary k. 
It is, for example, easily checked that Lt/ belongs to .9'(IRN) again with (Lt J)"k(e) = 
Ek(iy, e) fi'(e). Moreover, LV(x) = L%f (y) for all x, y E ]RN, and the operators Lt 
commute with the corresponding Dunk! operators T; on .9'(1RN ). The following statement 
is obtained exactly as its classical analogue in [Kat], by using the Plancherel formula and 
the injectivity of the Dunk! transform. 

5.2 Lemma. The C-linear hull (M) of the set 

M := {x t-t Lie-bl:rl2, a E !RN, b > 0} 

is dense in L2(1RN, wk). 

We thus have shown that on the dense subspace ( M) of L2(1RN, wk), the linear operators 

Sk(t)j := f rk(it, . , y)f(y) Wk(y)dy, t > 0, 
}RN 
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coincide with the unitary operators e itiS:, . They can therefore be extended uniquely to 
unitary operators on L2(JRM,wk), which are written in the same way, the integral now 
being understood in the L2-sense. In this sense, we have for all f E L2(IR.N, wk), 

eitiS:, f = {lN rk(it, . , y)f(y) Wk(y)dy if t > 0, 

f ~t=~ 
(5.3) 

6 The semigroup of the Calogero Hamiltonian with har­
monic confinement 

For a fixed parameter w > 0, consider the Hamiltonian 

N 

:Tk = -f:;.k + 2w I:x181 
j=l 

with domain V(:Tk) := rrN in the weighted Hilbert space L2(IR.N, mk) (c.f. Section 3). 
Notice that :Tk can be interpreted as the Dunkl-type generalization of the classical oscil­
lator Hamiltonian in L2(IR.N). In the following, we shall work with generalized Hermite 
polynomials with respect to the measure mk. Generalized Hermite polynomials were in­
troduced in [Rl] (for w = 1) by means of homogeneous orthogonal systems with respect 
to a certain bilinear form on polynomials. We give an equivalent definition, which is 
more convenient on the basis of Theorem 3.2: 

6.1 Definition. A family {Hv = Hv(w, . ), v E Z~} C rrN of real-valued polynomials is 
called a system of generalized Hermite polynomials (associated with the reflection group 
G, the multiplicity parameter k and the frequency parameter w), if the following are 
satisfied: 

(i) {Hv, lvl = n} is a Cbasis of V;' for every n E Z+· 

(ii) The Hv, v E Z~ are orthogonal with respect to the probability measure mt on 
1R_N. 

We now consider a fixed system {Hv, v E Z~} of generalized Hermite polynomials 
associated with G and k. We assume in addition that the Hv are even orthonormal with 
respect to mt By definition, they form a basis of eigenfunctions of :Tk in L2(IR.N, mk) 
with 

(6.1) 

We shall need the following Mehler formula, which was shown in [Rl] for w = 1 and is 
obtained for general w by rescaling: 

6.2 Lemma. (Mehler-formula for the generalized Hermite polynomials.) The polynomi­
als Hv = Hv(w; . ) satisfy 

L Hv(x)Hv(y)rlvl = Mk(r,x,y) 

vEZ~ 
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with the generalized Mehler kernel 

1 { wr2(lxl2 + IYl2)} ( 2wrx ) 
Mk(r,x,y) = (1-r2)'l'+N/2 exp - 1-r2 Ek 1-r2' y . 

The sum on the left hand side of (6.2) converges absolutely for all x, y E !RN and 0 < 
r < 1. 

According to Theorem 3.2, .:lk is essentially self-adjoint in L2(1R.N, mt). Let (.,.) denote 
the scalar product in L2(JR.N, mt). Then the closure of .:lk is given by 

with domain 

.:lk(f) = L 2lvlw (/, H,,) f, 
vezi 

V(.:lk) = {fEL2(1R.N,mt): L lvl21(!,H,,)l2 < oo}. 
veZt' 

The spectral resolution of .:lk directly implies that -.:lk generates a strongly continuous 
contraction semigroup on L2(JR.N,mt), namely 

e-tT. f = L e-2lvlwt (!, H,, )H,, for all t ~ 0. 

vezi 

According to (6.2), we have 

L e-2lvlwtH,,(x)H,,(y) = M1;(e-2t,x,y) 
vezi 

for all t > 0. It is easily seen from the absolute convergence of the sum on the left, 
together with the orthogonality of the generalized Hermite polynomials, that the function 
y t-t Mk(e-21 ,x,y) belongs to L2(1R.N,mt) for each fixed x E JR.N. This shows that for 
t > 0, 

e-tT. f(x) = f Mk(e-2t,x,y)f(y) mt(y) a.e. 
laN 

6.3 Proposition. (e-t:14 )t>O is a symmetric Markov semigroup on L2(1R.N ,mt) in the 
sense of Definition 4- 7. -

Proof. :J k is self-adjoint and non-negative, and the semigroup ( e -t T.) t>o is positivity­
preserving on L2(JR.N, mt), because the kernel Mk is strictly positive. The {H,,, v E Z~} 
being orthonormal with Ho = 1, we further have 

f Mk(e-2t,x,y)dmt(y) = 1 for all t > 0, x E IR.N. 
111.N 

(6.3) 

This implies that the operators e-t:h , t ~ 0 are also contractive with respect to 11- lloo­
O 
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As a consequence, the generalized oscillator semigroup ( e -t Y.\>o also allows an 
extension to a strongly continuous contraction semigroup on each of the Banach spaces 
V'(JRN, mk). We introduce the following notation: 

6.4 Definition. For f E £ 1 (JRN, mk) and t :::: 0 set 

if t > o, 

if t = 0 
(6.4) 

6.5 Corollary. (Ok(t))t>o is a strongly continuous, positivity-preserving contraction 
semigroup on each of the- Banach spaces V'(JRN, mn, 1 :5 p < oo. For p > 1 it is a 
bounded holomorphic semigroup in the sector 

{zEIC: larg(z)I < 1r·min(i,i)}, 

where ~ + ¼ = 1. 

Proof. This follows from Proposition 6.3 together with Theorems 1.4.1 and 1.4.2 of [Da2]. 
D 

Direct inspection shows that the Mehler kernel is related to the Gaussian kernel r k via 

The operators Ok(t) can be expressed in terms of the heat operators Hk(t): 

1 -4wt 
Ok(t)f(x) = Hk( -~ )f(e-2w1x) (6.6) 

for all f E Co(IRN) and all t > 0. This implies that (Ok(t))t>O leaves both Co(IRN) 
and .9'(JRN) invariant. It provides in fact a Feller-Markov semigr~up on (Co(lRN), 11-lloo), 
which is a generalization of the classical Ornstein-Uhlenbeck semigroup to the Dunk! 
setting. The essential parts of the following result are contained in Section 10 of [R-V]: 

6.6 Proposition. (Ok(t))t>O defines a strongly continuous, positivity-preserving contrac­
tion semigroup on (Co(JRN)~II, IJ 00 ). The Schwartz space .9'(JRN) is a core of its generator 
A, and AIY(RN) = l:J.k - 2w Ef=,1 Xj8j. 

Proof. The first part of the statement has been shown in [R-V]. The proof given there 
implies also that .9'(IRN) is contained in the domain of A, and that AIY(R"') = l:J.k -
2w Ef=,1 Xj8j, Since .9'(JRN) is invariant under (Ok(t))t~o, it is in fact a core of A. • 
Remark. It is also shown in [R-V] that for each f E Cb(JRN), the function u(t,x) := 

Ok(t)f(x) belongs to Cb([O, oo) x JRN) n C2((0, oo) x !RN) and solves the initial value 
problem 

{ Btu = ~l:J.k - 2w Ef=l Xj8j) u on (0, oo) x JP..N, 

u(O, .) - j. 
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