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Abstract

The resonant-tunneling-diode (RTD) oscillator is an electronic autonomous oscilla-
tor based on the RTD, which is a semiconductor quantum well. In recent years,
its oscillation frequency increased up to 1.98 THz. It obtains the gain from the
resonant tunnel effect, which occurs when the electron tunnels the quantum well. It
is expected that a quantum effect unique to the resonant tunneling systems would
cause non-trivial oscillator dynamics in the RTD terahertz oscillator. For instance,
photon-assisted tunneling is an effect that a strong optical field modifies the tun-
neling property of the quantum well. In the terahertz frequency range, the non-
negligible photon energy compared to the oscillation voltage amplitude may lead
to a significant photon-assisted tunneling effect. The charging and discharging of
the quantum well results in a nonlinear capacitance that is often called as quantum
capacitance. Since the RTD oscillator has a simple structure consisting of an RTD
and an LCR resonator, it would be a good test system to investigate the impact of
such quantum effects on the nonlinear dynamics of the oscillator.

Until today, many studies were focused on the oscillation properties such as a
frequency and power in the free-running state. However, in many cases, the unique
characteristics of a specific autonomous oscillator appears in the nonlinear response
to the driving forces such as periodic force, time-delayed feedback, and noise. For
example, the semiconductor laser shows a unique injection-locking property. The
locking range, the range of the injection frequency where the injection locking takes
place, is symmetric about the free-running frequency in a typical oscillator. However,
it is asymmetric in the semiconductor lasers, reflecting the intrinsic dynamics of the
gain. In this thesis, we investigated the nonlinear response of the RTD terahertz
oscillator, especially focusing on the injection locking and the response to optical
feedback.

In Chapter 1, we introduce the RTD oscillator, the quantum effects in the RTD,
and the nonlinear dynamics of the autonomous oscillators. We also describe the pur-
pose of the thesis. In Chapter 2, we show the characterization of the RTD terahertz
oscillator used in this study. In Chapter 3, we introduce the heterodyne measure-
ment system to measure the emission terahertz signal from the RTD oscillator. In
Chapter 4, we show the injection locking properties of the RTD terahertz oscilla-
tor. We found that the locking range can be approximately described by a famous
Adler’s model, as shown in Figure 1a. However, when the RTD oscillator is biased
at certain voltage, the locking range showed asymmetry, as shown in Figure 1b. We
performed a circuit simulation and showed that the asymmetry, which cannot be ex-
plained with Adler’s model, can be attributed to the nonlinear capacitance of RTD.
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In Chapter 5, we show the response of the RTD oscillator to the optical feedback.
We found that multiple optical modes are generated by optical feedback, and they
can be mode-locked simply by controlling the feedback conditions. As shown in Fig-
ure 2, a frequency-comb spectrum is generated by the mode-locking. To investigate
the mechanism, we performed a circuit simulation including the nonlinear capaci-
tance of RTD. It showed that the nonlinear capacitance and optical feedback from
multiple surfaces are necessary for the mode-locking. In Chapter 6, we review the
models used in Chapter 4 and Chapter 5, and discuss why the nonlinear capacitance
causes nontrivial dynamics. In Chapter 7, we summarize the thesis and state the
future prospect.

Figure 1: (a) Locking range experimentally measured (red filled area) and expected
from Adler’s model (dashed lines). (b) The free-running frequency (trace) and the
locking range at several bias voltage (vertical bars). The locking range showed large
asymmetry at 517 mV, 554 mV, and 570 mV.
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Figure 2: Frequency-comb spectrum from the mode-locked RTD terahertz oscillator.



概要

共鳴トンネルダイオード (RTD)発振器は, 半導体量子井戸であるRTDに基づいた電
気的な自律発振器である. 近年その発振周波数は向上し, 1.98 THzにまで達している.
発振器のゲインは, 電子が量子井戸を透過する際に生じる共鳴トンネル効果により生
じている. RTDテラヘルツ発振器においては, 共鳴トンネル系に特有の量子効果が非
自明なダイナミクスを引き起こすと予想される. 例えば光アシストトンネリングは, 強
い光電場によって量子井戸の共鳴トンネル特性を変化する現象である. THz周波数帯
においては, 発振電圧振幅に比べて光子エネルギーが無視できなくなり, 大きな光ア
シストトンネリング効果を生じる可能性がある. 量子井戸の電荷密度の変化は, 量子
キャパシタンスと呼ばれる非線形なキャパシタンスを生じる. RTD発振器はRTDと
LCR共振器からなる単純な構造であるため, このような量子効果が発振器のダイナミ
クスに与える影響を調べるのに適している.

これまで, RTD発振器の研究においては主にフリーラン状態の発振周波数とパワー
が注目されてきた. しかし, 自律振動子の個別の性質は, 周期駆動力や時間遅れフィー
ドバック, ノイズといった駆動力に対する応答として現れることが多い. 例えば, 半導
体レーザーは, 注入信号に対する位相同期である注入同期において独特の挙動を見せ
る. 同期が生じる注入周波数の範囲であるロッキングレンジは, 典型的にはフリーラ
ン周波数に関して対称的になる. しかし半導体レーザーにおいては, 半導体レーザー
固有のゲインと電場のダイナミクスを反映した非対称なロッキングレンジが見られる.
本論文では, 特に注入同期と光フィードバックに対する応答に注目して, RTDテラヘ
ルツ発振器の非線形応答特性を調べた.

第 1章では, RTD発振器, RTDにおける量子効果, また自律発振器の非線形ダイナ
ミクスについて述べ, 本論文の目的について述べる. 第 2章では, 本研究で使ったRTD
発振器の特性評価について述べる. 第 3章では, RTD発振器からの出力テラヘルツ信
号を計測するためのヘテロダイン計測システムについて述べる. 第 4章では, RTDテ
ラヘルツ発振器の注入同期特性について述べる. 本研究では, 図 1aに示すように, ロッ
キングレンジが有名なAdlerモデルで近似的に説明できることを明らかにした. しか
し図 1bに示すように, RTD発振器のバイアス電圧によっては, Adlerモデルでは説明
できない非対称なロッキングレンジが見られた. 我々は回路シミュレーションにより,
RTDの非線形キャパシタンスが非対称なロッキングレンジの原因となりうることを
示した. 第 5章では, RTDテラヘルツ発振器の光フィードバックに対する応答を示す.
我々は, 光フィードバックによって複数の光学モードが生じ, それらがフィードバッ
ク条件を制御するだけでモード同期することを発見した. モード同期状態においては,
図 2に示すコム状のスペクトルが得られた. また, メカニズムの検討のためにRTDの
非線形キャパシタンスを含む回路シミュレーションを行った. その結果, 非線形キャ
パシタンスおよび複数の反射面からの光フィードバックがモード同期に必要であるこ
とを明らかにした. 第 6章では, 第 4章と第 5章で用いたモデルについてまとめ, 非線
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形キャパシタンスが非自明なダイナミクスを生じる原因について議論する. 第 7章で
は, 本論文のまとめと将来の展望について述べる.

Figure 3: a, 実験で測定したロッキングレンジ (赤で塗りつぶした範囲)およびAdler
モデルから予想されるロッキングレンジ (破線). b, 自由発振周波数 (実線)および複
数のバイアス電圧におけるロッキングレンジ（垂直方向のバー）. 517 mV, 554 mV,
570 mVにおいてロッキングレンジは非対称であった.
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Figure 4: モード同期したRTDテラヘルツ発振器より生じた周波数コムスペクトル
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Chapter 1

Introduction

The resonant-tunneling-diode (RTD) terahertz oscillator is an electronic oscillator
based on the resonant-tunneling effect. It is expected that several quantum effects
unique to the resonant tunneling system would cause nontrivial dynamics in the
oscillator. The purpose of this study is clarifying the nonlinear dynamics of the
RTD terahertz oscillator and the role of the quantum effects.

In this chapter, we introduce the RTD terahertz oscillator and the quantum
effects that are expected to affect the nonlinear dynamics. Next, we introduce the
nonlinear response of the oscillator focused in this study.

1.1 Resonant-Tunneling-Diode Terahertz Oscillator

1.1.1 Terahertz Light Sources

The terahertz frequency range is the frequency range of 0.1 to 10 THz. In laboratory
experiments, the terahertz-wave generation has been dependent on bulky, expensive,
and energy-consuming laser systems, such as femtosecond lasers. However, recently
the applications of the terahertz wave are emerging in the industrial fields, and
there are large needs for terahertz light sources based on a compact, low-cost and
efficient semiconductor device. Since there are many absorption lines of various
molecules, including gas, explosives, illicit drugs, and biomolecules in the terahertz
frequency range, terahertz waves can be used to sense such materials [1]. The
terahertz wave transmits the materials such as paper, cloth, and plastics and can be
used for inspection [1]. The high carrier frequency and large available bandwidth in
the terahertz range can be used for high-speed communications [2].

Since the terahertz frequency range is located at the middle of the light and
radio waves, there are both lasers and electronic oscillators as the terahertz light
sources. Figure 1.1 shows the output power and oscillation frequency of the semi-
conductor on-chip terahertz sources in January 2021 [3]. In the laser light sources
developed from the high-frequency side, there are terahertz quantum cascade lasers
(QCL), differential-frequency-generation (DFG) QCL, and p-Ge lasers. The other
light sources are electronic oscillators developing from the low-frequency side. The
RTD oscillator has the highest oscillation frequency among the electronic oscillators.
Oscillation from the sub-terahertz to 1.98 THz range has been achieved [4–8], and
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2 CHAPTER 1. INTRODUCTION

oscillation up to 2.77 THz is expected [9]. Another strength of the RTD oscillator
is that it can oscillate at room temperature. A single oscillator can be fabricated
on a millimeter-sized chip [10]. The emission power reached 0.4 mW for a single
oscillator at 530-590 GHz [11] and 0.73 mW for a large-scale array at 1 THz [12].
The DC-to-RF conversion efficiency in the terahertz region is about 1 % [11].

Figure 1.1: Output power and oscillation frequency of the semiconductor on-chip
terahertz sources. Reprinted from Ref. [3] ©2021 Asada and Suzuki.

1.1.2 Operation Mechanism of the RTD Oscillator

The RTD oscillator consists of an LCR resonator and an RTD that works as a gain
element, as shown in Figure 1.2a. An antenna for terahertz wave is used as the LCR
resonator. The RTD is the semiconductor quantum well. The gain is originated
from the resonant tunneling effect that takes place when the electron tunnels the
double-barrier quantum well. Figure 1.2b is the schematic of the resonant tunneling
effect: (i) When a small DC bias voltage is applied on the quantum well, a small
overlap of the energy levels takes place between the continuous band in the emitter
and the discrete level in the well, resulting in a current of small amplitude. (ii) The
overlap becomes the largest at the bias voltage where the energy levels are resonant.
It results in a current of the largest amplitude. (iii) When the bias voltage is further
increased, the overlap becomes smaller, resulting in a smaller current. As a result of
the resonant tunneling effect, the current-voltage curve of the RTD has a negative
slope called a negative differential conductance (NDC), as shown in Figure 1.2c. In
the NDC region, an increase in the voltage leads to a decrease in the current. Hence,
it works as a gain in the oscillator when the bias voltage is set in the NDC region.

Van Der Pol Model

In the simplest description, the RTD oscillator is modeled as a van der Pol oscillator.
The corresponding circuit geometry and current-voltage characteristics are shown
in Figure 1.3. In this model, the current-voltage curve of the RTD is approximated
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Figure 1.2: Operation Mechanism of the RTD oscillator. a, Oscillator circuit. b,
Resonant tunneling effect. c, Current-voltage curve of an RTD with a negative-
differential conductance (NDC)

by a third-order polynomial as follows:

IRTD(V ) = −aV + bV 3. (1.1)

Here, the origin of the voltage and current is at the bias point. The differential
conductance of RTD is

gRTD(V ) =
dIRTD

dV
= −a+ 3bV 2; a, b > 0. (1.2)

The circuit equation is derived from the Kirchhoff’s law:

CV̇ + {−(a−Gload) + bV 2}V +
1

L

∫
V dt = 0. (1.3)

Here, dot means the time derivative. By taking the time derivative of equation (1.3),
we obtain a van der Pol equation:

CV̈ + {−(a−Gload) + 3bV 2}V̇ +
V

L
= 0. (1.4)

Here, a − Gload > 0 is necessary for the oscillation. We can normalize the van der
Pol equation (1.4) as

ẍ+ ϵ(x2 − 1)ẋ+ x = 0. (1.5)

For the normalization, parameters were rewritten as ω0 = 1/
√
LC, K = {3b/(a −

Gload)}1/2, and ϵ = (a − Gload)/Cω0. The time and the voltage were rescaled as
τ = ω0t and x(τ) = KV (τ/ω0) = KV (t).

The (normalized) van der Pol equation (1.5) is the simplest and the most famous
model of the nonlinear autonomous oscillators [13]. It has a nonlinear dumping term
of ϵ(x2 − 1)ẋ, which gives a gain for a small oscillation amplitude |x| but a loss for
a large oscillation amplitude. When ϵ is defined, it has a single limit-cycle orbit to
which all the phase points except for the origin (x, ẋ) = (0, 0) is attracted, as shown
in Figure 1.4a. Figure 1.4b shows the limit cycles for various values of ϵ. Figure1.4c
shows the temporal waveform for various values of ϵ. For a small ϵ(≪ 1), it shows
an almost sinusoidal waveform with an angular frequency of unity (ω0 = 1/

√
LC



4 CHAPTER 1. INTRODUCTION

before rescaling). For a large ϵ, the waveform is no more sinusoidal and has periods
of fast motion and periods of slow motion in a single cycle. Such type of oscillation
is called relaxation oscillation.

It has been applied to many systems such as the electronic oscillator [14], laser
[15,16], heart beat [17], etc. Figure 1.4a shows the solutions of equation (1.5) in the
phase space. In the previous studies of the RTD oscillator, the van der Pol model was
used to describe the spectral linewidth [18], the harmonic frequency component [19],
and mutual injection locking [20]. We note that the van der Pol model omits many
details of the oscillators, and a more detailed model is often required to describe
the nonlinear behavior unique to a specific oscillator, as described in Section 1.2. In
the RTD oscillator, there are several quantum effects that would affect the oscillator
dynamics, as discussed in Section 1.1.3.

𝐶 𝐺#$%(𝑉)𝐺)*+,𝑉(𝑡) 𝐿

a

b c

NDC

𝑉

𝐼#$% −𝑎𝑉 + 𝑏𝑉4

NDC

𝑉

𝑔#$% −𝑎 +3𝑏𝑉7

Figure 1.3: RTD oscillator modeled as a van der Pol oscillator of equation (1.4).
a, Circuit diagram. b, Current-voltage curve of RTD approximated by third-order
polynomial. c, Differential conductance of RTD in the van der Pol model.

Actual Device Structure

Figure 1.5 shows one of the actual device structures. The oscillator circuit is com-
posed of a dipole antenna of the terahertz wave, an RTD placed at the gap of the
antenna, inductor LFeed, and capacitor CMIM. The antenna, LFeed, and CMIM work
as the resonator. The RTD is made of heterostructures of ultrathin semiconductor
layers. Figure 1.6 shows a typical structure of the ultrathin semiconductor layers.
The RTD, double-barrier quantum well is formed by AlAs double barrier and a
GaInAs well, utilizing the difference of the conduction band edge. It has undoped
spacer layers around the RTD. It contacts the electrodes through the high-doped
emitter and collector layers.
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Figure 1.4: Solution of equation (1.5). a, Phase points with different initial condi-
tions attracted to the limit cycle (ϵ = 0.3). b, Limit cycles for various ϵ. c, Temporal
waveform for various ϵ

Figure 1.5: Example of the actual structure of the RTD oscillator. It has a dipole
antenna of terahertz wave with a length of l. The RTD is placed at the gap of
the antenna. A DC bias voltage is supplied via the cathode and anode electrodes.
The MIM capacitor CMIM works as a high-pass filter of the current in the terahertz
frequency and separates the high-frequency circuit including the RTD and antenna
from the bias circuit including the electrodes. The shunt resistor RP is used to
prevent a parasitic oscillation in the bias circuit. Reprinted from Ref. [10] ©2020
IEEE.
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Figure 1.6: Typical structure of the semiconductor layers. The main part is an RTD,
quantum well structure made of AlAs double barrier and a GaInAs well. There
are spacer layers around RTD. High-doped emitter and collector layers contact the
electrodes. Reprinted with permission from Ref. [6] ©2016 Springer Nature)
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1.1.3 Quantum Effects in RTD

In the RTD, several quantum effects unique to the resonant tunneling system take
place. They are omitted in the van der Pol model but may have non-trivial impacts
on the nonlinear dynamics of the RTD oscillator.

Photon-Assisted Tunneling

A significant quantum effect expected in the RTD terahertz oscillator is photon-
assisted tunneling. It takes place when an AC electric field is applied on a resonant
tunneling system such as the superconducting diodes [21], quantum dots [22], QCLs
[23], RTDs [24], etc. In the presence of the AC electric field, a new pathway of
the resonant tunneling appears: there, the electron absorbs or emits the n photons
with energy ℏω during the resonant tunneling, and it can tunnel from the energy
level of Ei to Ei ± nℏω. Figure 1.7 shows a schematic of photon-assisted tunneling
in which one photon is absorbed. Let us consider an RTD oscillator that has a
current-voltage curve IDC(V ) in the absence of the AC field. When an AC voltage
VAC cosωt is applied between the emitter layer and the quantum well, the resultant
time-averaged current-voltage curve is

IAC(V ) = Σ∞
n=−∞J

2
n(
lVAC

ℏω
)IDC(V +

nℏω
l

), (1.6)

where Jn(x) are the Bessel functions of the first kind, and n is the number of the
photons involved in the tunneling process. l is a parameter called lever arm, a factor
representing the energy shift between the emitter layer and the quantum well caused
by VAC [24,25]. The resultant current-voltage curve is a superposition of the shifted
current-voltage curves in the voltage by nℏω/l with the weight of J2

n(
eVAC
ℏω ).

It is expected that photon-assisted tunneling has non-negligible effect in the RTD
terahertz oscillator. As a typical oscillator, let us consider an RTD oscillator with an
oscillation frequency of 300 GHz and the oscillation voltage between the electrodes
VAC of 100 mV. We assume that the structure of the RTD is same as that shown
in Figure 1.6. First, the voltage shift nℏω/l becomes comparable to the oscillation
voltage in the terahertz frequency range. The lever arm is given by l ≈ eL1/L2,
where e is the elementary charge, L1 is the separation of the center of quantum well
from the spacer layer, and L2 is the separation between the emitter and collector
layer. From Figure 1.6, it is derived that l ≈ 0.13e. A photon of 300 GHz has an
energy of ℏω ≈ 1.2 meV. Hence, ℏω/l ≈ 10 mV. It is not so small compared to VAC

of ≈ 100 mV. Second, the weight of the shifted current-voltage curve, lVAC/ℏω ≈ 1.3
is not so small.

The change of the current-voltage curve leads to the change of the differential
conductance, i.e., gain in the oscillator. Hence, in the RTD oscillator, the changes
of the oscillation amplitude and frequency may lead to the change of the gain of the
oscillator itself. It may cause non-trivial oscillator dynamics.

Shot-Noise Suppression and Enhancement

Another important quantum effect in the resonant tunneling system is shot-noise
suppression and enhancement. Shot noise is a current noise due to the Poisson
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ħω

Figure 1.7: Schematic of photon-assisted tunneling. An electron is tunneling from
the emitter layer to the quantum well absorbing a photon of ℏω.

statistics of the electrons. It is a white noise that does not have a frequency depen-
dence. The power spectral density P of the shot noise is usually given by

P = 2eIR, (1.7)

where e, I, and R are the elementary charge, current, and resistance, respectively.
However, in the quantum-confined systems such as quantum well and quantum dot,
the strong electron-electron interaction changes the statistics, and the shot noise
does not obey equation (1.7). In the RTD, the level of shot noise depends on the
bias voltage [26,27]. It was experimentally shown that the shot noise is enhanced by
a factor of 6.6 in the negative differential conductance region, whereas it is slightly
suppressed in the other voltage range [26]. Such suppression and enhancement of
the shot noise may affect the oscillator dynamics related to the noise.

Nonlinear Capacitance of RTD

It is known that the RTD has a strongly nonlinear (voltage-dependent) capacitance.
Generally, the nonlinear capacitance can be expressed as C = dQ/dV , where Q is
the charge accumulated in the system. The RTD can be described as a parallel
connection of the nonlinear capacitance and the conductance [28–32].

Figure 1.8 and Figure 1.9 shows the total capacitance and differential conduc-
tance of an RTD measured in a previous study [32]. The capacitance of RTD has
the following characteristics: (i) The total capacitance is expressed as Cp(V ) =
CG + CQ(V ). Here, the constant term CG and nonlinear term CQ(V ) are often
called as geometrical and quantum capacitance, respectively. (ii) The geometrical
capacitance CG is originated from the device geometry in which the undoped layers
are sandwiched with the heavily doped layers. (iii) The quantum capacitance CQ(V )
is proportional to the differential conductance and has a peak in the NDC region of
the current-voltage curve [30,32,33]. The origin of the quantum capacitance is often
considered as the change of the charge density in the quantum well [28–32].

In this thesis, the term nonlinear capacitance of RTD is used to express the to-
tal nonlinear capacitance Cp(V ) that has the properties unique to the RTD shown
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above. The term quantum capacitance refers to CQ(V ). The term nonlinear ca-
pacitance is used to express general nonlinear capacitance, which may not have the
properties unique to the RTD.

Figure 1.8: Total capacitance of an RTD Cp versus bias voltage showing agree-
ment between measurement (circles) and calculation (line). Reprinted from Ref. [32]
©2004 IEEE)

Figure 1.9: Differential conductance of the RTD extracted from a dc I-V measure-
ment (line) and S-parameter measurement (circles). Reprinted from Ref. [32] ©2004
IEEE)

The inclusion of the nonlinear capacitance should increase the complexity of the
oscillator dynamics. With a nonlinear capacitance, equation (1.3) is modified as

C(V )V̇ + {−(a−Gload) + bV 2}V +
1

L

∫
V dt = 0. (1.8)

In equation (1.8), the quantity 1/LC is no more constant. This situation is similar
to the Duffing oscillator [13,34], a damped oscillator with a nonlinear restoring force:

ẍ+ αẋ+ (1 + βx2)x = 0;α > 0. (1.9)

The oscillation frequency of Equation (1.9) depends on the oscillation amplitude
due to the nonlinear restoring force. The nonlinear restoring force causes a non-
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trivial behavior called nonlinear resonance: When a Duffing oscillator is driven by
a periodic force F cos(Ωt), the oscillation amplitude and the oscillation frequency
shows a relationship schematically shown in Figure 1.10. Under a strong driving
force, the amplitude becomes a three-valued function of the driving frequency, and
shows a hysteresis to the driving frequency. In addition, a Duffing oscillator shows
a transition to chaos by increasing the driving amplitude F [35]. Another simi-
lar example is the Duffing-van der Pol oscillator, an autonomous oscillator with a
nonlinear restoring force:

ẍ+ (γx2 − α)ẋ+ (1 + βx2)x = 0;α > 0. (1.10)

Under a periodic force, It also shows nontrivial dynamics caused by the nonlinear
restoring force [36]. It is expected that nonlinear C(V ) in equation (1.8) causes
nonlinear restoring force, and makes the dynamics much complex.

Figure 1.10: Schematic of nonlinear resonance in a Duffing oscillator, shown as a
relation of the amplitude to the detuning between the driving frequency and center
frequency of the oscillator. a, Response to a weak force. b, Response to a strong
force. It shows hysteresis to the sweep of the driving force at the three-valued part
of the curve. The dotted line shows an unstable oscillatory state which cannot be
realized in a realistic situation.
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1.2 Nonlinear Responses of Autonomous Oscillator

1.2.1 Autonomous Oscillator

This section describes the fundamental knowledge about nonlinear responses of the
autonomous oscillator to the driving forces. The autonomous oscillator is a term
describing the oscillator with the following characters: (i) It is an active oscillator
that includes the energy source that compensates the dissipation. (ii) The type of
motion in the steady state is defined by the system parameters and independent
of the initial condition. (iii) The oscillation is stable against the small perturba-
tion. It is distinct from the oscillators in the conservative systems such as a free
pendulum that has infinite type of motion depending on the initial conditions. The
autonomous oscillator includes the electronic oscillators, lasers, oscillatory chemi-
cal reactions such as Belousov-Zhabotinsky (BZ) reaction, and many natural and
artificial oscillators [37].

Due to its nonlinearity, the autonomous oscillator shows various nonlinear re-
sponses to the driving forces, such as the periodic force, time-delayed feedback, and
noise. Such a response cannot be expected from the observation of the free-running
state and often reflects the internal dynamics of the oscillator.

1.2.2 Limit Cycle and Phase Reduction

Here, we introduce the phase reduction, which is a powerful method to describe the
nonlinear response of limit-cycle oscillator. Let us consider an autonomous oscillator
with a dimension of M(M ≤ 2), which can be described as

dX

dt
= F (X). (1.11)

When the system has a periodic solution with a period T , the solution in the phase
space is called limit cycle. It is a solitary, stable, and closed orbit: A phase point
close to the limit cycle is attracted by the limit cycle, and the type of motion does
not depend on the initial conditions. In many cases, the state of the autonomous
oscillator can be described by two variables X = (x, y), position x and velocity
y = ẋ of the oscillator. For instance, the van der Pol equation (1.5) can be described
as

dx

dt
= y (1.12)

dy

dt
= ϵ(x2 − 1)y + x. (1.13)

An important property of the limit-cycle oscillator is that when the oscillator is
perturbed, the perturbation in amplitude decays in time, but the phase shift caused
by the perturbation does not decay because there is no preferred phase in the limit
cycle [37].

To analyze the response of the limit-cycle oscillator to the external perturbation,
phase reduction simplifies the complex nonlinear equation to a phase equation that
can be treated analytically. It can be applied to all the limit-cycle oscillators, as
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long as the perturbation is not too large. Let us consider an oscillator affected by
weak perturbation p(t)

dX

dt
= F (X) + p(t). (1.14)

When the perturbation is small, the dynamics can be represented as a linear response
of the phase. The time evolution of the phase can be described by the following
fundamental equation of phase reduction:

dϕ

dt
= ω +Z(ϕ) · p(t). (1.15)

Here, ω is the free-running frequency and p(t) is a time-dependent weak perturba-
tion. Z(ϕ) is the phase sensitivity function, that shows the phase dependence of the
response; For example, let us consider the case where an impulsive perturbation in
one direction p(t) = ϵδ(t) is applied, and Z(ϕ) ·p(t) can be written as Z(ϕ)p(t). The
perturbation causes a phase shift of ϵZ(ϕ), the phase shift dependent on the initial
phase ϕ. By the phase reduction, properties of an individual oscillator is reduced
only in the two quantities of ω and Z(ϕ).

We note that the application of the phase-reduction method is not limited to
the problem of the response of single oscillator. Especially, it is a powerful tool to
analyze the behavior of the large group of oscillators [38].

1.2.3 Response to Periodic Force

A typical nonlinear response of the autonomous oscillator to the periodic force is
the forced synchronization. In the field of electronics and lasers, it is also called
injection locking. The external force is called an injection signal. By injection
locking, the phase and frequency of the oscillator are locked to that of the injection
signal. It takes place within a certain range of the detuning between the free-running
frequency and injection frequency of the oscillator, called the locking range. When
the injection signal has small phase noise, the phase noise of the injection-locked
oscillator decreases.

Let us consider the injection locking with the phase equation (1.15). Here, we
describe the perturbation as a periodic force p(t) = q(ωinjt). With a phase difference
between the oscillator and the injection signal, ψ = ϕ − ωinjt, the phase equation
(1.15) can be rewritten as

dψ

dt
= ∆ω +Z(ωinjt+ ψ) · q(ωinjt). (1.16)

Here, ∆ω = ω−ωinj is the detuning between the free-running and injection frequency.
When ∆ω and |Z(ωinjt+ψ)·q(ωinjt)| are small, the right-hand side of equation (1.16)
is small, and ψ varies only a little in a single cycle of the injection signal. Then, we
can average the equation over one cycle of the injection signal to obatin

dψ

dt
= ∆ω + Γ(ψ). (1.17)

Here, Γ(ψ) is a 2π periodic function given by

Γ(ψ) =
1

2π

∫ 2π

0
Z(θ + ψ) · q(θ)dθ. (1.18)
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It represents the averaged force. Figure 1.11 shows a schematic figure of dψ/dt as a
function of ψ. The injection locking is achieved at the zero of dψ/dt. The locking is
stable if the slope at the zero is negative, and unstable if the slope is positive. The
unstable solution cannot be held against a very small perturbation, and only the
stable solution is realized in a realistic condition. The injection locking takes place
only in a finite range of the detuning, ∆ωmin < ∆ω < ∆ωmax [38].

𝑑𝜓
𝑑𝑡 b
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c
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Figure 1.11: Schematic figure of dψ/dt in equation (1.17) as a function of ψ. Curve
a represents the case of ∆ω = 0 and dψ/dt = Γ(ψ). The filled and open circles show
the zeros of dψ/dt, corresponds to the injection-locked state. The arrows around
the circles indicate the direction to which the phase ψ moves when it is deviated
from the zeros of ψ/dt. The filled circle is the stable injection-locked state. The
open circle is an unstable injection-locked state. Curves b and c shows the case of
∆ω = ∆ωmin and ∆ωmax, respectively.

The injection locking of various oscillators is described by a single analytical
model called Adler’s model, named after Adler who found it in the study of the
vacuum tube oscillator [39]. It can be applied to all the weakly nonlinear oscillators
driven by a small and sinusoidal injection signal. When the nonlinearity of the
limit-cycle oscillator is small, the phase sensitivity function can be regarded as a
sinusoidal function. As a result, the averaged force Γ(ψ) in equation (1.18) is also
regarded as a sinusoidal function. Then, equation (1.17) can be reduced to Adler’s
model:

dψ

dt
= ∆ω + κ sinψ. (1.19)

Here, κ is the amplitude of the averaged force. From equation (1.19), the locking
range is derived as

−κ < ∆ω < κ. (1.20)

In this case, the locking range is proportional to the injection amplitude and sym-
metric about the free-running frequency.

We note that we cannot apply Adler’s model for the oscillator with a large
nonlinearity. For instance, it does not apply to semiconductor lasers because of a
large frequency-amplitude coupling. In such a case, we have to solve the equation
of motion specific to the oscillator. For the semiconductor lasers, a rate equations
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for the electric field and carrier density yields a warped locking range as shown
in Figure 1.12 [40–42]. There are rich varieties of dynamics in the unlocked region,
such as pulsation, four-wave mixing, and bifurcation to chaos. Hence, in the strongly
nonlinear oscillators, the injection-locking and unlocking dynamics are nontrivial and
reflect the intrinsic dynamics of the oscillator.

The dynamics become complex also when the amplitude of the injection signal
is larger than the oscillation amplitude. It is because the strong injection signal
affects not only the phase but also the amplitude. Simple analytical models such as
Adler’s model [39,40,43,44] cannot be applied in the large-signal regime, even if the
nonlinearity of the oscillator is small. There, complex dynamics such as bifurcations
to chaos [45] and suppression of the oscillation [46] are observed.

Figure 1.12: Calculated locking characteristics of a semiconductor laser. The hor-
izontal axis represents the injection power level relative to output power. The
linewidth enhancement factor, a factor represents the strength of the frequency-
amplitude coupling is α = 3. The hatched area is the dynamically unstable. (a)
Locking range. For the detuning between the solid lines, locking may occur, but in
the hatched area the locking is unstable and the laser shows pulsations. (b) Locked
phase between the injection signal and the locked laser on the boundaries of the
locking range in Fig. 1.12(a). The locked phase takes on a constant value at the
limits of the full locking range, but the phase interval corresponding to a stable
locked state is strongly reduced by the hatched pulsation region. Reprinted from
Ref. [41]. ©1985 IEEE.
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1.2.4 Response to Noise

In a realistic situation, the oscillator is always affected by random noise. Let us
consider the case that the perturbation in the phase equation (1.15), p(t) is a random
force, and it can be represented as a one-dimensional vector (ζ(t), 0, ..., 0). Here, ζ(t)
is a random force with some statistical properties. Then, the phase equation is

dϕ

dt
= ω + Z(ϕ)ζ(t). (1.21)

The time evolution of the phase is given by integration of equation (1.21). Hence,
the random force causes the phase deviation from the unperturbed phase ωt that
growth in time. It is called phase diffusion [37, 47], in analogous to the diffusion
of Brown particles under a random force. The phase diffusion results in a finite
linewidth of the signal. For instance, if ζ(t) is white noise, it causes a Lorenztian
lineshape [47].

In addition, there are several oscillatory dynamics caused by noise. Stochas-
tic resonance is an effect that the sensitivity of the oscillator response to a coherent
signal is enhanced by a noise [48]. Coherence resonance is an effect that a regular mo-
tion is caused by noise in a nonlinear system without a coherent input signal [49,50].
The regularity of coherence resonance can be enhanced with a time-delayed feed-
back [51, 52]. These noise-induced oscillations can be observed in various systems,
including electronic oscillators, lasers, neurons, etc.

1.2.5 Response to Time-Delayed Feedback

When the previous state of the oscillator is fed back to the oscillator with a constant
time delay td, it is called time-delayed feedback. It is not common to discuss the
problem of time-delayed feedback with phase-reduction method, even though there
are some recent studies [53]. When the free-running equation of motion is described
as

f(x, ẋ, ẍ) = 0, (1.22)

the time-delayed feedback is represented as a function of x(t− td) or ẋ(t− td):

f(x, ẋ, ẍ) = h(x(t− td), ẋ(t− td)), (1.23)

The time-delayed feedback induces rich varieties of dynamics to the oscillators.
The most famous example would be the optical feedback in the semiconductor laser.
There, small optical feedback stabilizes the laser operation [54] but a strong optical
feedback leads to the instabilities such as multistability [55,56], self-pulsations [55],
coherence collapse [57], and bifurcation to chaos [58]. These behavior are originated
from the dynamics of the electric field and the carrier densities in the semiconductor
laser. As such, the time-delayed feedback causes various dynamics reflecting the
oscillator dynamics.

We note that another interesting effect of time-delayed feedback is stabilizing
the unstable oscillation. Especially, the stabilization of the chaotic oscillation by
time-delayed feedback is famous as Pyragas control [59].
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1.2.6 Note on Liénard equation

We note that van der Pol equation (1.5) and Duffing-van der Pol equation (1.10)
are the famous example of the nonlinear equations called Liénard equations [13]. It
has a form of

ẍ+ f(x)ẋ+ g(x) = 0. (1.24)

It has been shown that a Liénard equation has a single limit cycle around the origin
in the phase space, when the following conditions are satisfied: (i) df/dx, dg/dx are
continuous (ii) f(x) is an even function (iii) g(x) is an odd function (iv) g(x) > 0
for x > 0, and (v) F (x) =

∫ x
0 f(u)du is a non-decreasing function and it satisfies

F (x) < 0 at 0 < x < a, F (x) = 0 at x = a, and F (x) > 0 at x > a. Conditions
for g(x) shows that it works as a restoring force that reduces the displacement x.
Conditions for f(x) shows that it works as a nonlinear dumping which works as
a gain when the amplitude |x| is small, and as a loss when the amplitude |x| is
large. Among the Liénard equations that has a limit cycle, the simplest case of
f(x) = ϵ(x2 − 1) and g(x) = x is the van der Pol equation, and another simple case
of f(x) = (γx2 − α) and g(x) = (1 + βx2)x is the Duffing-van der Pol equation.

1.3 Purpose and composition

The purpose of this study is to clarify the nonlinear response of the RTD terahertz
oscillator to the driving forces such as periodic force and time-delayed feedback. It is
expected that the quantum effects unique to the RTD lead to non-trivial responses.

The quantum effects in the RTD are also present in the other resonant tunneling
systems and low-dimensional systems. Due to the simple structure of the RTD
oscillator composed of an RTD and an LCR resonator, it would be a good test
system to understand the nonlinear oscillators including such quantum systems,
for instance, the quantum cascade lasers [60], Josephson junctions [61], Josephson
junction lasers [62], and quantum dot lasers [63].

This thesis is composed as follows: In Chapter 2, we introduce the RTD terahertz
oscillator used in this study. In Chapter 3, we introduce the terahertz heterodyne
measurement system constructed and used in this study. In Chapter 4, we show the
injection-locking properties of the RTD oscillator. We found that the locking range
is approximately described by Adler’s model. However, there is a deviation from
Adler’s model, asymmetry of the locking range. With a simulation, we showed that
the nonlinear capacitance of RTD may cause such a deviation. In Chapter 5, we
show the response of the RTD oscillator to the time-delayed feedback. We found a
non-trivial behavior, a passive mode-locking of the RTD oscillator by optical feed-
back. We discussed the mechanism with a simulation model including the nonlinear
capacitance of RTD. Then, we showed that the nonlinear capacitance and optical
feedback from multiple paths are necessary for the mode locking. In Chapter 6, we
review the models used in Chapter 4 and Chapter 5 and discuss why the nonlin-
ear capacitance causes the behaviors such as asymmetric locking range and passive
mode-locking. In Chapter 7, we summarize the thesis and state the outlook.



Chapter 2

Characterization of RTD
Terahertz Oscillators

2.1 Antenna and Packaging Structure

We purchased the prototype RTD terahertz oscillators shown in Ref. [10] from Rohm.
Co., Ltd. The RTD oscillators used in this study had the antenna structure shown
in Figure 1.5. It had a packaging structure with a plastic horn antenna shown in
Figure 2.1. The detailed structure of the ultrathin semiconductor layers for the
quantum well, spacer, and contact layers are not clarified.

We had four oscillators: one was purchased in 2018, and the others were pur-
chased in 2020. The device purchased in 2018 is noted as 2018T in this thesis.
The devices purchased in 2020 had a serial number 62-006-001T, 62-006-002T, and
62-006-003T. They are noted simply as 001T, 002T, and 003T in this thesis. The
dimensions of the horn antenna were different between 2018T and the others, and
the devices purchased in 2020 had higher directivity of the emission beam. We used
2018T and 002T for the experiment in Chapter4 and that in Chapter5, respectively.

2.2 Fundamental Properties

Here, we show the voltage dependence of the current, emission power, and oscillation
frequency of the devices.

In this study, the DC bias voltage on the RTD oscillator was supplied from a
source meter (2400 Series SourceMeter, Keythley Instruments, Inc.) through a bias
Tee, as shown in Figure 2.2. The bias Tee enables us to apply a modulation on
the bias voltage. It also enables us to detect a modulation of the time-averaged
current when we irradiate a modulated terahertz wave on the RTD oscillator. Fig-
ure 2.3a shows the current-voltage curve, the time-averaged current measured under
a DC bias voltage, of the four devices. The oscillation takes place in the nega-
tive differential conductance (NDC) region, and result in the discontinuities in the
current-voltage curves. The NDC region is different between 2018T and the other
oscillators. It would be originated from the different horn antenna structures that
have different impedance.

17
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Figure 2.1: Packaging structure of the RTD oscillator used in this study. (a) Front
view of the RTD oscillator mounted on the horn antenna (white plastic). (f) Cross-
section of the horn antenna with the RTD oscillator. (Reprinted from Ref. [10].
©2020 IEEE).

Figure 2.3b and 2.3c shows the ILV curve, the voltage dependence of current,
and the emission power of 2018T and 002T. We obtained significant output power
in the NDC region. The emission power was typically about 10 µW. We measured
the emission power using the setup shown in Fig. 2.2. The emission was modulated
in a square-wave on-off shape with an optical chopper. The modulation frequency
was 11 Hz. The detector was a calibrated pyroelectric detector (THz 20, SLT Sensor
& Lasertechnik GmbH). The detected signal was measured with a lock-in amplifier.
In this measurement, we did not observe the significant standing THz wave effect
that affects the precision of the power measurement [64].

Figure 2.3d shows the frequency-voltage curve of 2018T measured with a hetero-
dyne measurement system introduced in Chepter 3. When the voltage is increased
from the lower side, the frequency increases continuously. When the voltage is
reached at 533 mV, it shows a discontinuous frequency change of approximately
30 GHz. When the voltage is swept from the upper side, the discontinuity occurs
at 516 mV, i.e., there is a hysteresis in the frequency-voltage curve. Figure 2.3e
shows the frequency-voltage curve of the other devices. These curves show smaller
discontinuities than that of 2018T. We expect the discontinuities of the four de-
vices are originated from the optical feedback effect caused by the reflection of the
emitted terahertz wave, as shown in Section 5.4.1 (see Equation (5.11) and the fol-
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lowing discussion.) It is expected that the large difference of the frequency-voltage
curve between 2018T and the others are originated from the different horn antenna
structures that have different reflectivity.

2.3 Summary

In this chapter, we introduced the device structure and free-running oscillation prop-
erties of the RTD oscillators used in this study. In this thesis, we study the modifica-
tion of the oscillation properties by injection locking and time-delayed feedback. The
current-voltage curve and the emission power are used to estimate the parameters
in the injection-locking experiment.
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Figure 2.2: Setup to measure the emission power of the RTD THz oscillator. Pyro.,
BT and SM represents pyroelectric detector, bias tee and source meter, respectively.
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Figure 2.3: Oscillation properties of the devices used in this study. a, Current-
voltage curve of the four devices. The NDC region of 001T is indicated by the
horizontal arrow. b, ILV curve of 2018T. c, ILV curve of 002T. d, Frequency-voltage
curve of 2018T. e, Frequency-voltage curve of 001T, 002T, and 003T.



Chapter 3

Terahertz Heterodyne
Measurement System

To characterize the emission signal of the RTD terahertz oscillator, we have con-
structed a heterodyne measurement system operating in the terahertz frequency
region. Figure 3.1 shows the schematic setup for the heterodyne measurement.

We generated continuous terahertz waves for the local oscillator (LO) signal with
photomixers called uni-traveling-carrier photodiodes [65] (UTC-PDs, IOD-PMAN-
13001, NTT electronics, Co). We also generated the injection signal with another
UTC-PD in the study of the injection locking. We prepared three semiconductor
lasers whose frequencies are stabilized to the independent frequency-comb lines sep-
arated by integer multiples of 100 MHz. We set their frequencies (f1, f2, f3) so that
their difference would be the desired terahertz frequencies. One is the LO frequency
fLO = f2 − f1. The other is the injection frequency finj = f3 − f2 in the injection-
locking experiment. The linewidths of the terahertz waves were less than 120 mHz
if we stabilize the lasers to an optical frequency comb. We also had a stabilization
method based on a wavelength meter (Ångstrom WS7/30 IR, HighFinesse GmbH).
In this method, we can sweep the laser frequencies continuously but it resulted in a
linewidth of a few hundred kHz.

In the heterodyne detection system, the terahertz LO signal was generated by
UTC-PD in Fig. 3.1. The LO signal and the emission of the RTD terahertz os-
cillator were combined using a wire-grid polarizer (WG). The typical power of the
LO signal reflected by the WG was 10 µW. The mixed signal was detected by a
Fermi-level managed barrier diode (FMBD), which can detect a 0.2 - 1 THz signal
with a 10-GHz intermediate frequency bandwidth [66]. The FMBD has small noise
equivalent power and is suitable for the detection of a terahertz wave with a small
power. These properties of the FMBD was necessary for this study. The spectrum
was measured with a spectrum analyzer (MXA 9020B, Keysight Technologies Inc).
Its frequency range was 10 Hz to 26.5 GHz. It can operate in real-time spectrum
analyzer (RTSA) mode, in which we can capture the signal without dead time and
obtain a spectrogram, which is a series of spectra over time. The resolution band-
width (RBW) of the spectrum analyzer in RTSA mode was 240 mHz at best. The
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Figure 3.1: Schematic figure of the heterodyne measurement system to measure the
emission signal of the RTD terahertz oscillator. The dotted line represent WG.

spectral resolution of the system with a frequency-comb-based terahertz source was
limited by the RBW. The total noise floor of the detection system was determined
by the background noise of the FMBD.

3.1 CW Terahertz Wave Generation

Here, we describe the details of narrow-band continuous terahertz wave generation
by differential frequency photomixing with uni-traveling-carrier UTC-PDs. In this
method, we injected outputs from two CW lasers to a UTC-PD. The frequency
difference of the lasers was set to the desired terahertz frequency. We stabilized
the frequencies of the CW lasers using a wavelength meter (WLM) or an optical
frequency comb.

Figure 3.2 shows the feedback configuration using a WLM (Ångstrom WS7/30
IR, HighFinesse GmbH). Merit of this method was that the center terahertz fre-
quency was continuously tunable. We used three frequency-tunable laser diodes
(LDs) operating at 1.5 µm, i.e., DLpro (TOPTICA Photonics AG), CTL1550 (TOP-
TICA Photonics AG), and ORION (RIO lasers). We used optical fibers to connect
optical components such as the LDs, the optical amplifiers, the UTC-PDs, and the
WLM. We could read an operating frequency and also set a target frequency for
each LD using WLM. Error signals were generated in WLM and sent to DLpro and
CTL to control their frequencies. ORION was operated without the feedback con-
trol. The linewidths of the LD frequencies were a few hundred kHz, which limited
the linewidth of the generated terahertz wave.

Figure 3.3 (a) shows the schematic diagram for the frequency stabilization method
using an optical frequency comb as a frequency standard. With this method, the
linewidth of the generated terahertz wave was as narrow as 120 mHz, which was lim-
ited by the frequency resolution of the measurement system. The center frequency
could be integer multiple of 100 MHz. For the optical frequency comb, we used a
mode-locked Er-doped fiber laser (OCLS-100DP-KY, NEOARK CORPORATION).
The optical frequency comb had a comb-like spectrum, and the frequencies of the
lines were expressed as

fn = fceo + nfrep (3.1)

where n is an integer, fceo is the carrier-envelope offset frequency, and frep is the
repetition frequency. In this study, fceo and frep were 10 MHz and 100 MHz, respec-
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tively. Both fceo and frep were stabilized using the 10 MHz frequency reference from
atomic clocks in Global positioning satellite (GPS). To stabilize an LD, we chose
one of the comb lines close to the target frequency and measured the beat frequency
between the selected comb line and LD. The beat frequency is stabilized to 10 MHz
with a feedback control unit (OCLS-STB-KY, NEOARK CORPORATION). We
chose another comb line to stabilize another CW laser to generate terahertz wave
with the difference frequency between the two comb lines. To generate 300 GHz
signal, the difference of the indices of the comb lines (∆n) is 3× 103.The instability
of frep(∆frep) was 10−4 Hz in 1 second. Hence, the expected linewidth of the 300
GHz signal is estimated to be ∆n ×∆frep 300 mHz, which is comparable to the
measured value (120 mHz). Figure 3.3 (b) shows the feedback configuration. In this
setup, we controlled all the LDs.

3.2 Characterization of Spectral Resolution

We characterized the spectral resolution of the heterodyne measurement system by
using the LO signal and the input signal stabilized with a frequency comb. Figure
3.4 shows the setup for the characterization. The heterodyne detection part is the
same as the one shown in Fig.3.1. Figure 3.5 shows the measured power spectrum.
The half-width at half maximum (HWHM) of the heterodyne spectrum is 120 mHz,
which is limited by the best RBW of 240 mHz of the spectrum analyzer operated
in real-time spectrum analyzer (RTSA) mode. We can see some minor sidebands 40
dB less than the carrier signal at several MHz from the center, which results from
the spectra of the feedback-controlled laser. Due to the very low signal level, those
sidebands do not matter in this study.

In the above measurement, the 10 MHz frequency reference from GPS (fGPS) was
used as the reference of the frequency comb and spectrum analyzer. We received it
with FS740 GPS/GNSS Time and Frequency System of Stanford Research Systems.
The reference frequency has a long-term stability of better than 1 × 10−13. We
note that the observed linewidth of 120 mHz does not guarantee the stability of
the absolute frequencies of the terahertz waves in the above measurement by itself.
However, with the stability of the GPS frequency reference, we can show the stability
of the absolute frequencies.

For example, let us consider the case where the LO and input signal frequen-
cies were fLO =300 GHz fsig =305 GHz, respectively. They are referenced to the
frequency-comb lines with a repetition frequency frep of 100 MHz. Hence, they can
be written as fLO = 3000frep and fsig = 3050frep. The heterodyne frequency is
fIF = fsig − fLO = 50frep. The fluctuation of the 10 MHz GPS reference ∆fGPS

would cause the fluctuation of the 100 MHz repetition frequency ∆frep = 10∆fGPS.
It results in the fluctuation of the heterodyne frequency ∆fIF = 500∆fGPS. On the
other hand, the frequency scale of the spectrum analyzer at fIF =5 GHz also has
a fluctuation of 500∆fGPS. Hence, the fluctuation of the GPS frequency reference
cancels in the measurement. Hence, the spectral linewidth of 120 mHz in the hetero-
dyne spectrum is not enough to prove the high stability of the absolute frequencies
of the LO and input signal, although it proves their relative stability to the reference
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Figure 3.2: Feedback configuration with a wavelength meter. Three semiconductor
lasers (CTL, DLpro and ORION) are connected to a wavelength meter (WLM) via
optical fiber. Feedback control on the frequencies of CTL and DLpro was performed.
Emission from CTL and DLpro are combined with a fiber coupler, amplified with
an optical amplifier (Amp.), and injected to a UTC-PD to generate the injection
signal. Similarly, emission from DLpro and ORION are used to generate the local
oscillator.

frequency.
However, the long-term stability of the GPS reference guarantees the stability

of their absolute frequencies. The fluctuation of the GPS reference ∆fGPS is only
100 µHz(=10 MHz×10−13). It causes the fluctuation of ∆fLO = 30000∆fGPS =
30 mHz and ∆fsig = 30500∆fGPS = 30.5 mHz in the LO and signal frequencies,
respectively. Hence, the fluctuation of GPS reference causes only a fluctuation of
the absolute frequencies smaller than the frequency resolution of 120 mHz. The
observed linewidth of 120 mHz proves the stability of the absolute frequencies of the
LO and input signal.

3.3 Summary

This chapter introduced the terahertz heterodyne system. In this system, the
narrow-band THz signal referenced to an optical frequency comb enabled the het-
erodyne measurement with a high frequency resolution of 240 mHz. We could also
capture the signal without a dead time to obtain the spectrogram by using RTSA. It
had a broad bandwidth of 10 GHz. In this study, we utilized the high frequency res-
olution and RTSA measurement to characterize the stability of the signal obtained
by the injection locking and the time-delayed feedback. We utilized the broad band-
width to measure the broad spectrum obtained by the time-delayed feedback.
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Figure 3.3: Feedback method with an optical frequency comb: (a) Schematic dia-
gram for the stabilization method and (b) feedback configuration.

Figure 3.4: Setup for characterizing the spectral resolution consists of (a) heterodyne
detection part. and (b) input signal part. We stabilized all the laser frequencies
(f1, f2, f3) with the frequency-comb based feedback control method.
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Figure 3.5: (a) Power spectrum of the frequency-comb based terahertz signal mea-
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Chapter 4

Injection Locking

4.1 Introduction

The injection locking is practically important to stabilize the RTD terahertz oscil-
lator, that has large linewidth in the free-running state. It is typically 10 MHz for
an oscillator operating around several hundred GHz [18, 67], where the statistical
property and the origin of the noise have yet to be determined. Applications such as
communications and RADAR require a narrow linewidth and frequency tunability.
They also require the oscillator to synchronize with a frequency reference in order
to perform homodyne or heterodyne detection. The most commonly used methods
to stabilize the frequency of the oscillators are injection locking [37, 39, 40, 43, 44]
and phase-locked loop (PLL) [68], which have complementary properties. [69] PLL
has an advantage in controlling the long-time frequency drift, but it is difficult to
suppress the high-frequency noise faster than the loop-propagation delay time. In-
jection locking can often achieve the suppression of the high-frequency noise in a
reasonable injection condition. However, if the free-running frequency drifts far
away from the injection frequency, it is difficult to keep the injection locking. For
the RTD terahertz oscillators, an intensive study on spectral narrowing by PLL is
already reported [70].

The injection locking of the RTD terahertz oscillator has been discussed in the
context of sensitive terahertz-wave detection [71, 72]. These studies including sub-
harmonic injection locking [73] revealed some properties such as the locking range
in the middle- or large-signal regime, where the injection signal amplitude is similar
to or larger than the oscillation amplitude. Thorough investigation of the injection
locking itself especially in the small-signal regime is missing. The middle or large in-
jection signal makes it difficult to understand the locking mechanism and may cause
the complex dynamics such as chaos. As shown in Section 1.2.3, it is important
to characterize the injection-locking properties in the small-signal injection regime
to understand the locking mechanism. However, it has been difficult because an
inevitable small return light always exists and affects the RTD terahertz oscillator,
resulting in a complex behavior. This may have limited the previous studies on the
injection locking in the middle- or large-signal injection regime to have a well-defined
locking behavior.

27
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We investigated the injection-locking properties of the RTD terahertz oscillator
in the small-signal injection regime without an optical feedback effect. We used
isolators for terahertz waves [74] to reduce optical feedback from the detection sys-
tem. In the visible frequency range, such devices are well established and used in
injection-locking experiments [41, 75, 76]. In the terahertz frequency range, such
devices are still under development [74]. To observe the noise reduction behavior
by injection locking, we stabilized continuous terahertz sources to have a linewidth
below 120 mHz and utilized them for precise spectroscopy and injection locking.
We performed measurements and analysis to obtain the spectra in which the free-
running frequency of the RTD terahertz oscillator exactly equals to the injection
frequency. This approach enabled us to obtain noise spectra which can be analyzed
with a simple theory [77].

We found that the injection locking caused the linewidth of the emission spec-
trum to decrease dramatically. We determined the amplitude of the injection volt-
age at the antenna of the oscillator caused by the injection terahertz wave. The
locking range was proportional to the injection amplitude and approximately con-
sistent with Adler’s model, a phase-reduction model that applies to the limit-cycle
oscillators with a small nonlinearity (see section 1.2.3). However, we also found a de-
viation from Adler’s model, an asymmetry in the locking range. With a simulation,
we showed that the nonlinear capacitance of RTD may cause such an asymme-
try. As increasing the injection amplitude, the injection-locked component in the
power spectrum gradually increased whereas the noise component, which manifests
the free-running state, alternatively decreased. The noise reduction and injection-
locking behavior can be qualitatively explained by Maffezzoni’s model for general
limit-cycle oscillators [77].

4.2 Method

4.2.1 Experimental Setup

We have constructed a measurement system for the injection-locking. Figure 4.1
shows the schematic setup. It consists of a: heterodyne detection system and b:
Injection-locking system. The detection system is that described in Section 3. We
generated the narrow-band terahertz wave for the LO signal and the injection signal
with the UTC-PDs, as described in Section 3.

Injection system

The power of the injection signal was changed using a pair of WGs. In the weaker
region we also changed the laser intensity incident on UTC-PD2. This is because the
extinction ratio of the WGs was not high enough to reduce the amplitude of injec-
tion field precisely down to 10−3. As the RTD oscillator, we used 2018T introduced
in Chapter2. The terahertz wave emitted from the RTD terahertz oscillator was
detected by the heterodyne detection system. We used two home-made isolators for
terahertz waves, originally proposed by Shalaby [74] to eliminate optical feedback as
shown in Fig. 4.1. The structure and specifications of the isolators are described in
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Section 4.2.2. Without the isolators, it would have been impossible to examine the
injection-locking properties in the small-signal injection regime, since there were un-
expected return light from the FMBD and UTC-PD2. The RTD terahertz oscillator
was seriously affected even by such small return light, as described in Section 4.2.3.
The effect of the return light competes with that of the externally injected signal and
results in a complex behavior, especially in the small-signal injection regime. We
also used electromagnetic-wave absorption sheets in sub-THz Bands [78] (Maxell,
Ltd.) to eliminate unexpected return light from surrounding objects.

RTD terahertz oscillator

A source meter supplied DC bias voltage to the RTD terahertz oscillator via the
low-frequency (DC) port of a bias tee. The high-frequency (RF) port of the bias tee
is used in the measurements of injection amplitude in Section A. The current and
emission power as function of bias voltage are plotted in Fig. 4.1c. Typical emission
power was about 8 µW.
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Figure 4.1: System for measuring the emission spectrum of the injection-locked RTD
terahertz oscillator. a, Heterodyne detection system. b, Injection-locking system.
The dotted lines represent WGs. The boxes with arrows“←”represent the isolators.
SM is the source meter, and BT is a bias tee, respectively. c, Basic properties of the
RTD terahertz oscillator: current ‒ voltage curve (red line) and voltage dependence
of the emission power (blue line). The dashed line is the noise floor of the terahertz
power measurement.
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4.2.2 Terahertz Isolator

Here, we describe the structure and the properties of the terahertz isolators. We have
constructed terahertz isolators, which has been originally proposed by Shalaby [74].
Figure 4.2 is the photograph of an isolator. The isolator consists of an anisotropic
Sr-ferrite magnet of approximately 2 mm-thick (Himeji Denshi Co., Ltd.) and two
wire-grid polarizers (WG). The thickness of the magnet is determined to set the
Faraday rotation angle to approximately 45 degrees. It was not precisely 45 degrees,
and we adjusted the angle of the WGs to minimize the backward transmission.
The magnet and the WGs are tilted so that the terahertz wave reflected at the
surfaces does not return to the signal source. The isolator was constructed on
a breadboard to change its position without changing the configuration inside the
isolator. Specifications of two isolators at 322 GHz are summarized in Table 4.1. The
small forward transmission comes from the optical property of Sr-ferrite magnets: it
has refractive index of 6 that results in a large Fresnel loss and absorption coefficient
of 6 cm−1 at 300 GHz [74]. Investigation of magnets without absorption loss and
improvement of the forward transmission should be an important challenge in future.

Figure 4.3 shows schematics of the evaluation setup of the forward transmission
and the backward transmission. We generated a terahertz wave using a UTC-PD,
and measured its power using an FMBD. The transmission of isolator 2 was mea-
sured. Isolator 1 was used to avoid the formation of a standing terahertz wave in
Figure 4.3d, which would have disturbed a precise power measurement. The WG
between isolator 1 and isolator 2 was used to align the polarization of the terahertz
beam incident on isolator 2. We modulated the input laser to the UTC-PD with an
electro-optic modulator to modulate the intensity of the terahertz wave. Square-law
detection signals from FMBD was measured with a lock-in amplifier. We calculated
the forward and backward transmission of the isolator as follows:

Tf =
Ptrans,f

Pin
(4.1)

Tb =
Ptrans,b

Pin
(4.2)

where Ptrans,f is the forward transmission power, Ptrans,b is the backward transmis-
sion power, and Pin is the incident power. In Fig. 4.4, we show the details of the
experimental setup of Fig. 4.1, especially focusing the polarization of the terahertz
waves. The angles of the WGs are set to obtain a large signal in the heterodyne
detection and high injection power. The reflection of the RTD emission from UTC-
PD2 and the FMBD was eliminated by the isolators. The round-trip attenuation
to the reflected field amplitude was

√
TfTb = 6× 10−3. Several factors, such as the

reflectivity at UTC-PD2 and the FMBD, would also have reduced the amplitude of
the feedback field by more than one order. From these results, we expect that the
amplitude ratio of the voltage at the antenna caused by the optical feedback and
the oscillation voltage is less than 5× 10−4, which is the threshold for the injection
locking. This enabled us to measure the intrinsic properties of the injection locking
in the small-signal injection regime.
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Table 4.1: Transmission and polarization rotation angle of the isolators at 322 GHz.

Forward
transmission

Tf

Backward
transmission

Tb

Faraday rotation
angle

(degree)

Isolator 1
for injection

5× 10−2

(-13 dB)
7× 10−4

(-32 dB)
45.0

Isolator 2
for measurement

6× 10−2

(-12 dB)
6× 10−4

(-32 dB)
50.5

Figure 4.2: Photograph of an isolator used in the experiment. It is composed of a
ferrite magnet and two wire-grid polarizers (WG1 and WG2).
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Figure 4.3: Optical system for the transmission measurement of the isolators. a,
Setup for the forward transmission power measurement of isolator 2. Pin is the power
incident on the isolator, and Ptrans,f is the forward transmission power, respectively.
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4.2.3 Exclusion of the Optical Feedback Effect

Here we describe the optical feedback effect on the RTD terahertz oscillator elimi-
nated by the isolator. When we remove the isolator for the detection path, a reflected
terahertz wave of a small amplitude from the FMBD goes back to the RTD terahertz
oscillator. We compared the emission power spectrum with and without the isolator
for the detection path. We scanned the position of the RTD terahertz oscillator
along the z-direction (relative distance: dz) to change the time delay of the feedback
as shown in Fig. 4.5. Figure 4.6a shows the emission power spectrum measured
with moving the RTD terahertz oscillator without the isolator. One can see that the
oscillation spectrum is largely affected by the distance dz. When we use the isolator
(Fig. 4.6b), the oscillation frequency is almost independent of the position of the
RTD oscillator. The small change in the oscillation frequency is due to the frequency
fluctuation of the RTD oscillator, as shown in the control experiment (Fig. 4.6c).
One possible explanation for the spectral change in Fig. 4.6a is an optical feedback
effect from the reflection from the FMBD, which may have formed an external cavity
with a series of longitudinal modes. Systematic shift in Fig. 4.6a should be assigned
to the shift of the longitudinal modes due to the distance change between the RTD
oscillator and the FMBD (dz).

WG

UTC-
PD RTD

Osc.
LO

←

WG

Sig.

FMBD

dz

Isolator
for detection
path

Dump

Figure 4.5: Setup for the demonstration of the optical feedback effect. The emis-
sion of the RTD terahertz oscillator is partially reflected by a WG and enters the
heterodyne detection system. The transmitted part of the emission is dumped.
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Figure 4.6: Optical feedback effect. a, Emission power spectra of the RTD terahertz
oscillator measured with scanning the position of the oscillator dz without using
the isolator. b, Similar series of emission power spectra taken with the isolator.
c, Control experiment: Emission power spectrum of the RTD terahertz oscillator
taken every 3 seconds without scanning the position while using the isolator. The
measurement timing is denoted by dt. The measurement interval of 3 seconds is the
same in a,b, and c. To capture the wide frequency span of 200 MHz, we used the
spectrum analyzer in swept spectrum analyzer mode. The RBW was 100 kHz.
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4.2.4 Post Selection of the Fluctuating Spectra

The center frequency of the RTD terahertz oscillator in the free-running state fluctu-
ated in time. In this section, firstly we show the basic properties of the fluctuation.
Next, we show how much the fluctuation affects the emission power spectra. Finally,
we describe the post-selection analysis for characterize the spectra without the effect
of the fluctuation. We used this method to take data shown in Fig. 4.12a, Fig. 4.15,
and Fig. 4.16.

Properties of free-running-frequency fluctuation

We measured a spectrogram, which is a series of emission power spectrum over time
using the spectrum analyzer (MXA 9020B, Keysight Technologies Inc.) in RTSA
mode. Figure 4.7a shows a bare spectrogram in 1 second measured in the free-
running case. The time between each trace is 115 s. We can see fluctuation in
the instantaneous center frequency ω0(t). We derive the center frequency as the
spectral centroid. Figure 4.7b shows the temporal change of the spectral centroid of
Fig. 4.7a in terms of the offset from its average. This corresponds to the frequency
noise δω(t) = ω0(t)− ω0(t), where ω0(t) is the center frequency averaged over time.
Figure 4.7c shows its power spectrum. We can see that the frequency noise has 1/f
spectrum. This indicates that a parameter which affects the free-running frequency
fluctuates with 1/f spectrum. A possible candidate for such a parameter is the
capacitance of the RTD. The origin of the 1/f fluctuation cannot be determined
from this measurement.
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Figure 4.7: Properties of the frequency fluctuation. a, Bare spectrogram of the
emission signal measured in the free-running case. b, Temporal change of the spectral
centroid of Fig. 4.7a, i.e., frequency noise. c, Power spectrum of the frequency noise.

Impact of the fluctuation on the spectra

Figure 4.8 shows the spectrogram measured with the injection signal of several am-
plitudes. The horizontal axis is the frequency offset from the injection frequency.
Figure 4.8a shows the free-running case with fluctuation. Figure 4.8b shows the
spectrogram measured with very weak injection. We can see a narrow peak, i.e.,
injection-locked component at the injection frequency and a broad peak, i.e., noise
component fluctuating in time. Figure 4.8c shows the spectrogram taken with the
maximum-amplitude injection in our setup. We can see only a narrow peak at the
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center with no fluctuating component. This means that the RTD terahertz oscillator
is perfectly injection locked.

In Figure 4.9, we show spectra at several timings extracted from Fig. 4.8 to
show the spectral shape clearly. As we described above, the noise component in Fig.
4.9a and b fluctuates in time. We emphasize that the spectral shapes in Fig. 4.9b
are different. This is because the relation between the injection frequency and the
free-running frequency is different for each trace. Hence, we need to choose spectra
in which these two frequencies coincide in order to discuss the noise spectra with
a simple model. If the injection signal is sufficiently strong, we observed perfectly
injection-locked spectra as shown in Fig. 4.9c.
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Figure 4.8: a, Spectrogram measured with no injection signal. b, Spectrogram
measured with injection signal whose frequency is close to the free-running frequency.
The normalized injection amplitude k was 2.8×10−2. c, Spectrogram measured with
the injection signal with the normalized injection amplitude of 1.
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Figure 4.9: Spectra at several timings in the spectrograms of Fig. 4.8. Fig. 4.9a-c
corresponds to Fig. 4.8 a-c.
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Post-selection method

We performed a post-selection analysis to compensate the fluctuation of the free-
running frequency. Figure 4.10a shows a bare spectrogram (10,000 traces) measured
when a signal is injected close to the free-running frequency with a normalized
injection amplitude of k = 1.6 × 10−2. The horizontal axis is the frequency offset
to the injection frequency. To pick-up the spectra whose free-running frequency is
the same as the injection frequency, we performed the following selection procedure:
First, we calculated the spectral centroid at each moment, as shown in Fig. 4.10b.
Then, we sorted the spectra by the spectral centroid, as shown in Fig. 4.11a. Figure
4.11b shows the corresponding spectral centroid. Next, we picked-up spectra with
the same spectral centroid as the injection frequency (50 traces from 10,000 traces)
and averaged them to obtain the spectra. We note that this method can be extended
to pick-up a spectrum with an arbitrary offset-frequency between the injection-
locked component and the noise component. In the free-running case, we measured
a spectrogram of the free-running RTD oscillator in the same way and picked-up the
spectra with a common center frequency.
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Figure 4.10: a, Spectrogram measured when the injection frequency is close to the
free-running frequency (the normalized injection amplitude k = 1.6 × 10−2. b,
Spectral centroid at each moment.
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4.3 Result

4.3.1 Spectral Narrowing

Free-running State

A typical emission power spectrum of the RTD terahertz oscillator in the free-
running state is shown in Fig. 4.12a. The center frequency was about 322 GHz.
We found that the center frequency fluctuates slowly in time. In order to eliminate
the fluctuation and to obtain instantaneous linewidth, we applied a post-selection
method; we used the spectrum analyzer in RTSA mode to acquire a spectrogram
and selected only the spectra with the same center frequency. The half width at half
maximum (HWHM) of the free-running spectrum is 4.4 MHz. This value is on the
same order as that in the previous study [67].

Injection-locked State

The emission power spectrum of the RTD terahertz oscillator under signal injection
is shown in Fig. 4.12b. The injected power was about 2 µWin front of the RTD
terahertz oscillator, which is the maximum power in our experiment. In this case,
the oscillator was stably locked and we did not observe any effect of the fluctuation.
Hence, we did not apply the post-selection analysis. The linewidth was dramatically
decreased by the signal injection. Figure 4.12c shows the injection-locked spectrum
measured with an RBW of 240 mHz. The observed linewidth was 120 mHz, which is
limited by the RBW. The shape of the injection-locked spectrum is almost the same
as that of the injection terahertz signal shown in Section 3. The small sidebands in
Figs. 4.12b and c come from the spectrum of the LO signal and the injection signal,
which is shown in Section 3. This is consistent with a theory in which the injection-
locked spectrum would be almost the same as that of the injection signal when
the injection signal is strong enough [79]. We note that the linewidth of 120 mHz
shows the stability of the absolute frequency of the injection-locked RTD terahertz
oscillator. It can be shown with a discussion similar to that of Section 3.2, since the
RTD terahertz oscillator is frequency-locked to the injection signal referenced to the
frequency comb.

4.3.2 Locking Range

We swept the injection frequency and measured the emission power spectra of the
RTD terahertz oscillator (Fig. 4.13). The blue trace in the top shows the free-
running spectra with a vertical dashed line indicating the position of the free-running
frequency. The narrow peaks in other traces (grouped by A, B, and C) show the
positions of the injection frequency. As the injection frequency approaches the free-
running one (group A), we start to see equally spaced sidebands. This state is called
injection-pulled state [43] and commonly observed in nonlinear oscillators. As we
further decrease the injection frequency below a certain point (fL,max, red dotted
line), sidebands disappear and only a narrow peak at the injection frequency remains,
i.e., the RTD terahertz oscillator is injection locked (group B). To distinguish the
injection-locked state from the injection-pulled state, we used the same criterion as a
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Figure 4.12: Typical emission power spectra of the RTD terahertz oscillator. The
horizontal axis is the frequency offset from the free-running frequency (322 GHz),
and the vertical axis is the normalized intensity. The bias voltage was 540 mV. The
LO and injection signal were frequency-stabilized with a frequency comb. We used
the spectrum analyzer in RTSA mode. a, Power spectrum without the injection
signal (in the free-running state) measured with an RBW of 240 kHz. To eliminate
the effect of the fluctuation, we analyzed the spectrogram with the post-selection
method described in Section 4.2.4. b, Power spectrum with the injection signal (in
the injection-locked state) measured with an RBW of 240 kHz. c, Power spectrum
of the injection-locked RTD terahertz oscillator measured with an RBW of 240 mHz.
For b and c, we did not use the post-selection analysis. The noise level difference in
b and c is due to the RBW difference.

previous study [76]: if the height of the peak at the injection frequency is more than
20 dB larger than that of the sidebands, it is an injection-locked state. When the
injection frequency becomes less than fL,min shown as a red dotted line, sidebands
appear (group C); the oscillator is no more injection locked but injection pulled
again. The spacing of the sidebands increases as the injection frequency depart
from the free-running frequency. The frequency range from fL,min to fL,max is the
locking range. There was no significant variation of the locking range in time.

We measured the locking range for various amplitudes of injection field. Fig-
ure 4.14a shows the Arnold tongue, the region where the injection locking occurs
in the injection-frequency and injection-amplitude plane. The vertical axis is the
normalized injection amplitude k = Vinj/Vinj,max . Here, Vinj is the amplitude of
injection voltage at the antenna caused by the injection electric field. Vinj,max is
0.41 mV, which is the maximum value of Vinj in the series of experiments in this pa-
per. Vinj,max and Vinj were determined by making injection-amplitude measurements
based on square-law detection described in Section A. It should be noted that the
maximum locking range in this study ( 250 MHz in half-width) is much smaller than
the half locking range of about 10 GHz in the previous study [71]. This is because
we injected a small signal of at most 2 µW, whereas they injected a large signal of
about 100 µW. According to Adler’s model [37, 39, 43], the half locking range af of
a weakly nonlinear oscillator under small-signal injection is represented as

af =
f0
2Q

Vinj
Vosc

=
f0r

2Q
(4.3)
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where f0 is the free-running frequency, Q is the Q-factor of the resonator, and Vosc
is the amplitude of oscillation voltage at the antenna. The factor r = Vinj/Vosc is
commonly called the injection ratio. Equation (4.3) predicts that the locking range
is proportional to the injection amplitude, and we can see the proportionality in
Fig. 4.14a. We can calculate the half locking range af for a normalized injection
amplitude k of 0.75 as 400 MHz, which is on the same order as the experimentally
obtained af of 250 MHz. Parameters used in the calculation are as follows: the
injection ratio r = 1 × 10−2 when k = 0.75, f0 = 322GHz, and Q = 4. We
determined the oscillation voltage Vosc by making emission power measurement and
calculated the injection ratio r, as described in Section A. Q was obtained from a
finite-difference time-domain (FDTD) simulation [80] of the antenna structure on
the substrate. This result shows that Adler’s model approximately describes the
locking range of the RTD terahertz oscillator in the small-signal injection regime.

However, there is a deviation from Adler’s model. Figure 4.14b shows the locking
range for the normalized injection amplitude of k=0.75 at several bias voltages as
red vertical bars. The free-running frequency and free-running linewidth are also
shown as black curves and blue dots, respectively. We can see that the locking range
depends on the bias voltage. Furthermore, the locking range is asymmetric about
the free-running frequency at some bias points. This behavior cannot be explained
by Adler’s model.

To investigate what causes the asymmetric locking range, we conducted a simu-
lation of a full circuit equation. Then, we found that the voltage-dependent capac-
itance of RTD could result in a voltage-dependent and asymmetric locking range.
We used a circuit model similar to the one developed by Diebold [81] that includes
the nonlinear capacitance of RTD. We calculated the locking range for two cases,
i.e., in which the capacitance of RTD does not vary despite the oscillating voltage
and in which it varies with the oscillating voltage. As shown in Section 4.4.1, the
latter model reproduces the voltage-dependent and asymmetric locking range. It is
consistent with previous studies showing that voltage-dependent susceptance results
in asymmetric locking range [82, 83]. In Fig. 4.14b, the asymmetry becomes large
at 555 mV, where a kink exists in the free-running frequency, and a peak appears
in the linewidth. We expect that the gradient of the voltage-dependent capacitance
would be large here and give rise to a large asymmetry.
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Figure 4.13: Emission power spectra of the RTD terahertz oscillator under various
injection conditions. The free-running frequency is shown as the blue dashed line.
The narrow peaks in other traces (grouped by A, B, and C) show the positions of
the injection frequency. The spectra in group A and C show injection-pulled state,
and the spectra in group B show injection-locked state. The bias voltage was 540
mV, and the injection power was about 2 µW, which is the maximum power in
our setup. To capture the wide frequency span of 1.2 GHz, we used the spectrum
analyzer in swept spectrum analyzer mode, not in RTSA mode where the frequency
span is limited to 160 MHz. Although we could not apply the post-selection analysis
in this experiment, the center frequency fluctuation (~ 10 MHz) does not largely
affect the locking range of several hundred MHz. The RBW was 400 kHz, and each
spectrum was averaged over 1 s. We stabilized the frequency of the LO and injection
signal with the wavelength meter.
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Figure 4.14: a, Arnold tongue measured at a bias voltage of 540 mV (red filled area).
The vertical axis is the injection amplitude k normalized to the maximum injection-
voltage amplitude in the series of experiments in this paper. The maximum value
of k in this figure is 0.75, which corresponds to the injection ratio of r = 1 × 10−2.
The vertical dashed line indicates the free-running frequency. The diagonal dashed
lines are guides-to-the-eye indicating that the locking range is proportional to the
normalized injection amplitude and symmetric about the free-running frequency. b,
Bias-voltage dependence of the free-running frequency (black curve), locking range
for the normalized injection amplitude of k = 0.75 (red vertical bars), and free-
running linewidth (blue dots) presented in the voltage range of 515 - 592 mV. a and
b was obtained from the locking-range measurements, in which we did not use the
post-selection analysis.
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4.3.3 Noise Reduction

Noise reduction threshold

It is important to explore the minimum injection strength to injection-lock the os-
cillator. We set the injection frequency at the center of the free-running spectrum
and changed the amplitude of the injection field. Figure 4.15a shows the spectral
shape for various normalized injection amplitudes k. The free-running frequency
fluctuates in time and it does not exactly coincide with the injection frequency as
shown in Section 4.2.4. This makes the analysis of the noise spectra difficult. To
obtain the spectra in which the free-running frequency exactly coincides with the
injection frequency, we used the post-selection method described in Section 4.2.4.
In the case of no injection (k = 0), there is only a broad peak with the HWHM
wD of 4.4 MHz. We call the broad peak the noise component. As the normalized
injection amplitude increases, the noise component starts to diminish. Instead, a
narrow peak, i.e., the injection-locked component, appears and grows. In the case
of k = 1, only the injection-locked component remains. The weak sidebands (40 dB
below the main peak) at several MHz are attributed to the injection signal or the
LO signal.

We derived the power of the noise component and the injection-locked compo-
nent from the spectral area with the method described in Supplementary Section
B. Figure 4.15b shows the dependence of the normalized peak area on the normal-
ized injection amplitude k. The top axis shows the estimated half locking range
af for each normalized injection amplitude. For the estimation, we performed an
interpolation and an extrapolation of the locking range shown in Fig. 4.14a based
on Eq. (4.3) of Adler’s model. As the normalized injection amplitude k increases,
the noise component decreases and the injection-locked component increases. The
total power, i.e., the sum of the two components, is almost conserved. The power
of the injection-locked component exceeds that of the noise component when the
normalized injection amplitude k is 3× 102, which corresponds to an injection ratio
r of 5× 10−4. At this threshold, the half locking range af is about 9 MHz as we can
see in the top axis.

To examine the threshold, we applied Maffezzoni’s model [77], which describes
the noise reduction by injection locking in general nonlinear oscillators with a white
noise source. The model predicts that the intensity ratio between the noise compo-
nent and the injection-locked component becomes unity when af = wD/ ln 2. This
gives af = 6.3MHz, very close to the experimentally obtained 9 MHz. Hence, the
threshold value is consistent with Maffezzoni’s model.

Finally, it is noteworthy that the RTD terahertz oscillator can be injection-
locked by such a small signal which corresponds to an injection ratio r of 5× 10−4.
This would be useful in a practical situation to stabilize it with a weak injection
signal. At the same time, the small threshold also implies that the RTD terahertz
oscillator is sensitively disturbed by an external terahertz signal, including tiny
optical feedback [84–86]. This fact points to the need for isolators in our experiment
and also in the future applications of the RTD terahertz oscillators.



4.3. RESULT 45

Details of the noise spectra

Figure 4.16a shows the power spectrum of the noise component for several injection
strengths in terms of a log-log plot. Here, we used the half-locking range af at
each injection strength to label the experimental condition, where af = 0MHz is
the free-running state. As the injection strength increases, the noise decreases. In
the strong-injection limit (af = 330MHz), the spectrum is almost the same as the
heterodyne spectrum of the LO signal and the injection signal. Figure 4.16b shows
the power spectrum predicted by Maffezzoni’s model. One can see that the frequency
range where the noise reduction occurs is qualitatively reproduced by Maffezzoni’s
model; the noise is substantially reduced within the locking range.

It should be noticed that there is a difference in the slope of the high-frequency
noise between the experimental spectra (∆f−3) and theoretical spectra (∆f−2).
The theory assumes that the noise source i.e., ζ(t) in equation (1.21), is a white
noise. The ∆f−2 slope is consistent with the Lorentzian lineshape of a free-running
oscillator under a white noise. We expect that the experimentally observed ∆f−3

slope is originated from the noise source with a 1/f spectrum [87] in the frequency
range up to 4.4 MHz.
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Figure 4.15: a, Emission power spectra of the RTD terahertz oscillator for various
normalized injection amplitudes k. The bias voltage was 540 mV. The frequencies of
the LO and injection signal were stabilized with the frequency comb. The injection
frequency was set to the free-running frequency. To eliminate the effect of the
frequency fluctuation, we extracted the spectra from spectrograms by using the post-
selection analysis shown in Section 4.2.4. The RBW was 240 kHz. The sweep time
for each spectrum in the spectrograms was 100 µs. b, Dependence of the normalized
peak area of the spectral components on the normalized injection amplitude k.
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Figure 4.16: a, Measured power spectra for various injection strengths in log-log
plot. The half locking range af represents the injection strength. The chain line is
a guide-to-the-eye indicating the slope of D−3 in the free-running spectrum. This
figure is based on Fig. 4.15a, which is obtained with the post-selection analysis. b,
Calculated power spectra for various injection strengths with Maffezzoni’s model. As
the parameter of the theoretical curves, we used the half locking range af , the free-
running half-linewidth wD = 4.4MHz, and the normalization factor in the spectral
height. The chain line is a guide-to-the-eye indicating the D−2 slope of the high-
frequency noise.
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4.4 Discussion

4.4.1 Circuit Simulation of Locking Range

We confirmed that the nonlinear capacitance of RTD can cause the asymmetric
locking range with a circuit simulation. The simulation model is constructed mainly
by H. Yasuda, a co-author of Publication 1. T. Hiraoka participated in discussing
the model design and contents to be calculated. Figure 4.17 shows an equivalent
circuit of an RTD oscillator for the circuit simulations. We modeled the RTD as the
parallel connection of the voltage-dependent resistance and the voltage-dependent
capacitance. We used expressions presented by Diebold [81] for the current-voltage
curve and the capacitance-voltage curve of an RTD. The circuit geometry and some
values of the lumped elements were derived from Ref. [71]. We put a white noise
source of 1.8× 10−20W/Hz with a cutoff frequency of 10 THz in series with the DC
voltage source to reproduce the linewidth of the emission spectrum. The differential
equations for the circuit were converted to difference equations. The difference
equations were solved numerically with the time transient analysis. We set the
injection amplitude Vinj as 2 mV. On the antenna resistance, it caused voltage with
an amplitude of 1.9 mV in the non-oscillating condition with the bias voltage of 0.35
V. The typical oscillation amplitude on the antenna was 345 mV. Hence, the typical
injection ratio here was 1.9 mV/345 mV = 6× 10−3. It is the same as the injection
ratio of r = 1× 10−2 in Fig. 4.14b.

We performed simulations for two cases. For the first case, capacitance of the
RTD does not vary in time. It is a constant value of CRTD(VRTD,0), where CRTD(V )
is the dependence of the capacitance of the RTD on the voltage V , and VRTD,0 is the
voltage applied on the RTD when we apply DC bias voltage with the capacitors open
and the inductor shorted. For the second case, we assumed that the capacitance
responds to the AC voltage on the RTD VRTD(t) instantaneously. Then, capacitance
of the RTD is a time-varying value of CRTD(VRTD(t)). The other parameters used
in the two cases were the same.

Figure 4.18 shows the free-running frequency, the free-running linewidth, and
the locking range calculated with the constant RTD capacitance. Here, the locking
range was independent of the bias voltage. Figure 4.19 represents the result for the
case of the time-varying capacitance. Here, the locking range was bias-voltage de-
pendent, and it was asymmetric at several bias points. Hence, these results support
our statement that the voltage-dependent capacitance results in the bias-voltage
dependent and asymmetric locking range.

4.5 Summary

We successfully characterized the injection locking of an RTD terahertz oscilla-
tor in the small-signal injection regime. We performed precise measurements with
frequency-stabilized terahertz sources, a real-time spectrum analyzer, and terahertz
isolators. Injection locking reduced the linewidth of the emission power spectrum
from 4.4 MHz to less than 120 mHz. The locking range is approximately consistent
with Adler’s model, a phase-reduction model that apply to the limit-cycle oscillators
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Figure 4.17: Equivalent circuit of an RTD oscillator with an injection signal source.
The area of the RTD is 1.6 m2. The values of the lumped elements of Rant =
150Ω, Lline = 17pH, Cline = 120fF were derived from Ref. 2. We set the values of
Rline = 5Ω, and Rcont = 1Ω as a reasonable value.

with a small nonlinearity. However, there is also deviation from Adler’s model, the
asymmetry of the locking range. We showed that the nonlinear capacitance of RTD
can lead to such asymmetry with a simulation. Use of an RTSA enabled us to ob-
tain the noise spectra which can be compared with a simple model. We determined
the noise reduction threshold, setting the injection frequency at the free-running
frequency. The threshold injection ratio was 5× 10−4. At the threshold, the locking
range is as small as the free-running linewidth, as expected from Maffezzoni’s model.
We note that this is the first report showing the locking range in the small-signal
injection regime and the limitation of the injection locking due to the noise in the
RTD oscillator.
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Figure 4.18: Simulation results with constant RTD capacitance. a, Free-running
frequencies and free-running linewidths at several bias voltages. b, Locking ranges
at several bias voltages for an injection amplitude of 2 mV are shown as frequency
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Figure 4.19: Simulation results with time-varying RTD capacitance. a, Voltage-
dependence of the free-running frequency and the free-running linewidth. b, Voltage-
dependence of the locking ranges at several bias voltages for an injection amplitude
of 2 mV.



Chapter 5

Mode-Locking due to Optical
Feedback

5.1 Introduction

5.1.1 Time-Delayed Feedback in RTD terahertz Oscillator

As shown in Section1.2.5, the time-delayed feedback causes various dynamics in the
autonomous oscillators. In the previous studies of the RTD terahertz oscillator, it
was shown that the oscillation frequency and the output power are modulated with
the time-delayed feedback [84, 85]. There is also a report implying a self pulsation
of the RTD terahertz oscillator due to the time-delayed feedback [86].

In this chapter, we experimentally show the response of the RTD terahertz os-
cillator to the optical feedback from an external mirror. We found that the multiple
optical modes are generated due to the feedback, and they can be mode-locked by
simply controlling the optical feedback conditions. The mode-locking results in a
terahertz frequency comb with a stable repetition frequency. With an additional bias
modulation, the standard deviation of the repetition frequency was decreased to less
than 420 mHz. We present a simulation model which reproduces the mode-locking
and predicts the future improvement in comb performance. As far as we know, the
mode-locking mechanism is different from conventional mechanisms already known.
The mode-locked RTD terahertz oscillator is not only interesting but also impor-
tant in applications, since it can cover the frequency range where a frequency-comb
source based on simple semiconductor devices has not been available.

5.1.2 Optical Frequency Comb in Terahertz Range

The optical frequency comb is a crucial light source for metrology and spectroscopy.
Its spectrum consists of equidistant optical modes [88]. The frequency of each mode
is represented as follows:

fn = fceo + nfrep (5.1)

Here, frep, fceo, and n are the repetition frequency, carrier-envelope-offset frequency,
and modal index, respectively. The optical modes are coherent and have a stable
phase relationship with each other. The frequency-comb source is long-awaited as

51
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the frequency standard for spectroscopy of gaseous molecules [89] and high-speed
communications in the terahertz frequency range [2]. However, such light sources
typically depend on bulky, energy-consuming, and expensive femtosecond lasers [90].
Development of a compact, efficient and low-priced terahertz frequency-comb source
based on a semiconductor device is still being pursued.

A promising candidate for a semiconductor-based terahertz frequency-comb source
is the quantum cascade laser (QCL) [60], which is a compact device emitting watt-
class terahertz waves [91,92]. A frequency comb using a terahertz QCL was recently
demonstrated [93–96]. Moreover, differential frequency generation in mid-infrared
QCL comb has been used to make a comb from 1.8 to 3.3 THz at room tempera-
ture [97, 98]. However, it is difficult for a QCL to generate terahertz comb below
2 THz. There are also devices based on Si CMOS technologies. For instance, a
frequency-comb source based on a multiplier was demonstrated a for spectroscopy
in the range from 220 to 330 GHz [99]. Moreover, a bipolar CMOS device was used
to generate a frequency comb from 0.03 to 1.1 THz [100]. However, it is difficult for
CMOS devices to generate terahertz waves of higher frequency.

The RTD terahertz oscillator can oscillate in the frequency range from sub-
terahertz to 1.98 THz. Hence, the mode-locked RTD terahertz oscillator can be a
frequency-comb source that fills the remained gap. Moreover, the room-temperature
operation and high efficiency would be an advantage to the other terahertz-comb
sources.

5.2 Experimental Setup

Figure 5.1 is a schematic diagram of the experimental setup. We measured the emis-
sion spectrum of an RTD oscillator under optical feedback with variable amplitude
and delay. The distance between the oscillator and the mirror zM was about 500
mm. We performed a heterodyne measurement with the local oscillator (LO) signal,
which had a center frequency of 303.5 GHz and a linewidth of less than 240 mHz at
FHWM (see the Experimental setup in the Methods).

As the RTD oscillator, we used 002T introduced in Chapter 2. It was connected
to a source meter and a signal generator via a bias-Tee. The RTD oscillator was
biased with a DC voltage. When we wanted to show the effect of the bias modulation,
we used a signal generator (RF002, RFnetworks Corporation). The signal generator
was stabilized using the 10 MHz frequency reference from the atomic clocks in global
positioning satellites (GPS). The emission power of the RTD oscillator was typically
about 10 µW.

The measurement part is basically the same as that used in Chapter 4. The local
oscillator (LO) signal was a frequency-stabilized CW terahertz wave. We utilized
a LO signal with a linewidth less than 240 mHz to evaluate the linewidth of the
heterodyne spectrum and measure the temporal heterodyne waveform. The power
of the LO signal was about 10 µW. The mixed terahertz wave was detected by
a Fermi-level managed barrier diode (FMBD) with an amplifier bandwidth of 10
GHz [66]. The RF spectrum of the detected signal was measured with a spectrum
analyzer (MXA 9020B, Keysight Technologies Inc). It had a bandwidth of 23 GHz
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and maximum resolution bandwidth of 1 Hz. The spectrum analyzer was referenced
to the 10-MHz frequency reference from GPS atomic clocks. The temporal waveform
of the RF signal was also measured with an oscilloscope (MSO68B 10 GHz, Tektronix
Inc). It had a sampling rate of 50 GS/s and a bandwidth of 10 GHz.

We should note that there would be some inaccuracy in the measured amplitude.
The sensitivity of the measurement system might have some frequency dependence
because of standing waves forming [64] between the oscillator and the detector. In
addition, the mixed terahertz wave was so strong that saturation of the integrated
amplifier in the FMBD module [66] might have taken place. Hence, it is difficult
to compare the intensity of the frequency-comb spectrum and the inter-mode beat
note. It is also difficult to discuss the depth of the amplitude modulation in the
temporal waveform of the passive mode-locked state.

UTC-PD

𝑧" Mirror

WG2

WG1
Sig.LO

FMBD RTD
osc.

Oscillo-
scope

Spectrum
Analyzer

Source-
meter

Signal
Generator

Block

Measurement Generation

Feedback

Figure 5.1: Schematic diagram of the experimental setup. The RTD oscillator is bi-
ased with a DC bias voltage and generates a terahertz wave. We applied an external
modulation only when we demonstrated hybrid mode-locking. The terahertz emis-
sion is split into two beams by the wire-grid polarizer WG1 with a power ratio of 1:1.
The beam transmitted by WG1 is reflected at the mirror and fed back to the RTD
oscillator. The distance between the mirror and the oscillator, zM, is about 500 mm.
It is tunable with a motorized stage on which the mirror is mounted. The amplitude
of the return light is controlled by rotating another wire-grid polarizer, WG2. WG2
is tilted to the beam in order to prevent a direct reflection to the oscillator. The
beam reflected at WG1 enters the heterodyne measurement part. Abbreviations
are as follows: WG; wire-grid polarizer, Sig.; signal, LO; local oscillator, UTC-PD;
uni-traveling-carrier photodiode, FMBD; Fermi-level managed barrier diode.
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5.3 Result

5.3.1 Observation of Frequency Comb

Figure 5.2a shows a typical emission power spectrum of a continuous-wave (CW)
oscillatory state observed without optical feedback from the mirror. It is a single-
frequency spectrum with minor sidebands with much lower power spectral densities
(PSD) compared with the main peak. The bottom axis shows the heterodyne fre-
quency, and the top axis shows the corresponding terahertz frequency.

We found that a frequency comb is generated when optical feedback is injected
into the RTD oscillator in a certain phase. The red trace in Figure 5.2b shows a
typical frequency-comb spectrum. Including the small peaks that are not numbered
in Figure 5.2b, there are optical modes with a free spectral range (FSR) of 273.3
MHz. One in four optical modes has a large intensity. The RF frequencies of the
numbered peaks are described with the following equation:

fRF
n = fRF

0 + nfrep (5.2)

Here, fRF
n is the RF frequency of the mode with index n, and fRF

0 is the offset RF
frequency. We derived the frequencies of the comb lines fRF

n (n = 0 to 9) as the
center frequencies obtained by fitting the peaks with a Gaussian function. We fitted
the relationship between the frequencies of the comb lines fRF

n (n = 0 to 9) and n
with equation (5.2), taking the linewidths of the peaks as the standard deviation
of fRF

n . Then, we obtained the parameters with the average values and standard
deviation as follows: fRF

0 = 618.97± 0.45 MHz and frep = 1093.13± 0.11 MHz (see
the Spectrum characterization in the Methods). Since frep is an integer multiple of
the FSR, it is a harmonic frequency comb [101,102]. In the present experiment, the
harmonic frequency comb with a separation of 4 FSR was the most stable. The FSR
was approximately proportional to the inverse of zM. However, it does not follow
the FSR relation of a Fabry-Perot cavity, i.e., c/2zM, where c is the speed of light.
This is because the amplitude of the return light is small, and a good cavity is not
formed in our setup, as described in the Section 5.4.2.

The peaks shown in the black trace of Figure 5.2b are homodyne signals that
appeared even when we blocked the LO signal. Figure 5.2c shows the homodyne
signal measured under the same conditions as those of Figure 5.2b. There are three
peaks. We derived their frequencies fIMB,m from a Gaussian fitting. We fitted
fIMB,m with

fIMB,m = mfrep (5.3)

where m = 1, 2, and 3, taking the linewidths of the peaks as the standard deviation
of fIMB,m. The resulting frep, 1093.16 ± 0.33 MHz, matches the value derived from
the comb spectrum within the margin of error. Hence, the homodyne peaks are
the inter-mode beat note of the harmonic comb. Figures 5.2d and 5.2e show the
magnified spectrum of the comb line indexed as n=3 and the homodyne peak at
1.0931 GHz. The linewidth of the comb line is 1.9 MHz. The homodyne peak
has a smaller linewidth of 310 kHz. Its small linewidth corresponds to a small
error in frep and implies that the optical modes are phase-locked to each other. In
Section5.3.2, we show that the modes stably obey a certain relationship. Note that
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similar oscillatory states have been reported before [86]. However, the conditions
under which to obtain the oscillatory state and phase-locking have not been clarified
until now.
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Figure 5.2: Frequency comb spectrum. a, Emission spectrum of CW oscillation
state observed when the return light was blocked. The left axis shows the power
spectral density (PSD) relative to the noise level. The bottom axis shows the het-
erodyne frequency, and the top axis shows the corresponding terahertz frequency.
b, Frequency-comb spectrum measured with the local oscillator (LO) signal. The
peaks shown by the black trace were observed even without the LO signal. The
numbers at the peaks are the mode indices of the frequency comb. c, Emission spec-
trum of the passive mode-locked state measured without the LO signal. Three peaks
are inter-mode beat notes. d, Magnified view of a comb line indexed as n=3. The
vertical axis is PSD normalized with the peak height. e, Magnified spectrum of the
inter-mode beat note indexed as m=1. f, Magnified spectrum of the inter-mode beat
note indexed as m=1 when the bias modulation was applied (Hybrid mode-locked
state). These spectra were accumulated over 1 second. The bias voltage was 471
mV.

5.3.2 Relative Modal Phases

To clarify that the modal phases obey a stable relationship, we measured the single-
shot temporal waveform of the heterodyne signal shown in Figure 5.2c. A sequential
waveform was measured over 65.6 µs, as shown in Figure 5.3. It is longer than the
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inverse of the linewidths of the comb lines (1/1.9 MHz = 520 ns), a typical timescale
that the significant phase diffusion takes place. Hence, it is long enough to verify
that the phase relation between the modes is held under the phase diffusion effect
caused by random noise. The dots in Figure 5.4a show a typical part of the measured
waveform. The heterodyne waveform has an average period of approximately 200
ps corresponding to the center RF frequency of 5 GHz in the comb spectrum.

We performed a fitting analysis of a long-term waveform of 65.6 µs. We utilized
a fitting function representing the heterodyne beat of the frequency comb:

f(t) = Σ6
n=2An sin[2π(f

RF
0 + nfrep)t+ ϕn]. (5.4)

Here, n is the modal index shown in Figure 5.2c. We considered only the five modes
of n from 2 to 6, which have significant amplitudes. An denotes the amplitudes of the
modes, derived from the area of the comb lines in the magnified spectra. A constant
coefficient k = 0.95 was multiplied to all the amplitudes to correct the difference of
the amplitude between the spectrum measurement and the waveform measurement.
ϕn denote the initial phases. fRF

0 , frep, and ϕn are the fitting parameters. We
neglected the phase fluctuation of the LO signal because its linewidth was less than
240 mHz. In the time scale of longer than 520 ns, noise causes a significant random
phase diffusion in the waveform. Even in the mode-locked waveform, noise causes
timing jitter. Hence, we cannot fit the entire waveform in 65.6 µswith equation (5.4),
in which each frequency component is described as a single sinusoidal wave with a
well-defined phase. Even if the longitudinal modes hold a certain phase relationship,
there should be timing jitter in the repetitive waveform. We divided the long span
of 65.6 µsinto short spans of 164 ns and fitted the waveform in each short span with
the following equation:

fi(t) = Σ6
n=2An sin[2π(f

RF
0,i + nfrep,i)(t− t0,i) + ϕn,i]. (5.5)

Here, fi(t) is the fitting function in each short span. fRF
0,i , frep,i, and ϕn,i are the

fitting parameters in each span corresponding to those in equation (5.4). A fitting
parameter t0,i is the time origin in each shot span introduced to compensate the
timing jitter. If the longitudinal modes obeys a certain phase relationship, it is
possible to fit the waveform in each span with a fixed combination of ϕn,i (n=2
to 6) with appropriate choice of t0,i. Since the modes have different frequencies
for each other, the relation between the initial phases ϕn,i depends on the choice
of t0,i. To express the phase relationship uniquely, we choose t0,i as the timing
when ϕ3 = ϕ4 stands, as described in Section5.3.2. As a fitting condition, we put a
constraint that ϕ3 = ϕ4 and used fRF

0,i , frep,i, ϕn,i, and t0,i as the fitting parameters.
A typical fitting curve is shown as the trace in Figure 5.4a; it fits the data points.
It is not a short and intense pulse, as is often the case for a mode-locked pulse.
Figures 5.4b and 2c show f0 and frep for each fitting span. The average values and
standard deviations considering the fitting error are as follows: f0 = 618.039±0.061
MHz and frep = 1093.1500 ± 0.0032MHz. The average values are consistent with
those derived from the spectrum. The standard deviations are smaller than the
linewidths in Figures 5.2e and 1f. It indicates that there is a long-term deviation
not observed in this span. Figure 5.4d shows the relative initial phase, defined as
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∆ϕn ≡ ϕn − ϕ4 in each fitting span. Surprisingly, they held the same relationship
stably for 65.6 µs. The stable relationship between modal phases is clear evidence of
mode-locking. Their average values and standard deviations are as follows: ∆ϕ2 =
−0.40 ± 0.61,∆ϕ5 = 3.29 ± 0.48,∆ϕ6 = 0.25 ± 0.49 rad. Their relation can be
expressed approximately as

(∆ϕ2,∆ϕ3,∆ϕ4,∆ϕ5,∆ϕ6) = (0, 0, 0, π, 0) (5.6)

This means that the temporal waveform is not an intense and short pulse, but rather
a frequency-modulated waveform. Figure 5.5 shows the instantaneous frequency of
the typical heterodyne waveform and the corresponding terahertz frequency derived
from the Hilbert transform. It has as large frequency modulation as the bandwidth
of the comb spectrum in Figure 5.2c. The gray trace in Figure 5.5a is the envelope
of the typical heterodyne waveform. Here, we do not discuss amplitude modulation
in detail due to the possible inaccuracy of the amplitude measurement.

We note that the frequency-modulated waveform is also observed in the fre-
quency comb generated in the QCL. It is known that a four-wave mixing and a fast
saturable gain causes the mode-locking in QCL [102]. In the RTD oscillator, the
longitudinal modes can couple through the third-order nonlinearity caused by non-
linear conductance and capacitance. It would have a similar effect to the four-wave
mixing in the laser medium. In the RTD terahertz oscillator, when the oscillation
amplitude increase, the cycle-averaged gain decreases. We expect these effects to
result in the generation of a similar waveform to that of the mode-locked QCL.

Uniqueness of the phase representation

Here, we show that the relative initial phase ∆ϕn,i ≡ ϕn,i − ϕ4,i depends on the
choice of the time origin t0,i, and there is a countless number of the equivalent
representations on the phase relationship. We also show how we choose the t0,i in
which we can uniquely represent it. Let us consider equation (5.5), and the temporal
evolution of the modal phases described as

ψn,i = 2π(fRF
0,i + nfrep,i)(t− t0,i) + ϕn,i. (5.7)

In the analysis of the mode-locking, we are interested in the relative phase between
the modes. If we take the mode with index n = 4 as the reference, the relative phase
can be defined as

∆ψn,i = ψn,i − ψ4,i = 2π(n− 4)frep,i(t− t0,i) + ∆ϕn,i. (5.8)

Figure 5.6 shows the temporal evolution of the relative phases ∆ψn,i when the initial
condition is (∆ϕ2,∆ϕ3,∆ϕ4,∆ϕ5,∆ϕ6) = (0, 0, 0, π, 0). The bottom axis shows the
time originated at t = t0,i, and normalized with the period Trep = 1/frep. The modes
have different frequencies for each other, and the evolution of the relative phase ∆ψn,i

is dependent on the modal index n. We note that there is an arbitrariness in the
choice of the time origin t0,i. For example, we can choose the time t = t0,i + 0.5Trep
as a new time origin t∗0,i. In that case, the relative phase can be written as

∆ψn,i = 2π(n− 4)frep,i(t− t∗0,i) + ∆ϕ∗n,i (5.9)
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Figure 5.3: Measured temporal waveform shown in various length. Dots in each fig-
ure are the data points. a, Measured waveform over 65.6 µs. b, Measured waveform
over 164 ns, which is a single fitting span.

with the initial relative phases of (∆ϕ∗2,i,∆ϕ
∗
3,i,∆ϕ

∗
4,i,∆ϕ

∗
5,i,∆ϕ

∗
6,i) = (0, π, 0, 0, 0).

Hence, the phase relationship has countless number of the equivalent representations.
To represent the phase relationship uniquely, we choose the time where ϕ3,i = ϕ4,i
stands as the origin. This condition identifies the time origin in the period of Trep
uniquely because it is only one time that the phases of the adjacent modes are equal.

5.3.3 Conditions for Mode-Locking

We found that passive mode-locking occurred only around a particular point in the
frequency-voltage curve, which we call the ”frequency jump.” Figure 5.7a shows
frequency-voltage curves measured over a wide range with and without optical feed-
back from the mirror. When there is no optical feedback, the curve shows a fre-
quency jump of about 2 GHz around 471 mV. The frequency changes continuously
at the other bias points. When feedback is present, many small steps appear in
the frequency-voltage curves. The oscillation frequency shows a hysteretic behav-
ior in the sweeping direction. A large hysteresis loop in the frequency-voltage curve
formed at the frequency jump point of 471 mV. These behaviors can be qualitatively
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explained with the oscillation condition for a simplified circuit model with optical
feedback [84], which is given in Supplementary Section 5.4.1. Furthermore, these
frequency-voltage curves were reproduced in a simulation, as shown in Section 5.4.2.
When the bias voltage is set near the frequency jump point and the position of
the mirror is swept, the passive mode-locking state appears. Figure 5.7b shows the
detailed frequency-voltage curve measured near the frequency jump and the peak
frequencies of the comb (green crosses). We swept the mirror from 467 to 475 mV
in 0.5 mV steps and obtained the comb spectra only in the range of 470 to 472 mV,
which is the vicinity of the frequency jump.

The comb spectra appeared at a particular mirror position. Figure 5.7c shows
the heterodyne spectrum measured by sweeping the mirror in steps of 0.02 mm at a
fixed voltage of 471 mV. The comb spectra were observed periodically to the mirror
position, as shown by the vertical lines on the top of Figure 5.7c. The period was
0.500 mm. The round-trip length of 1.000 mm is equal to the wavelength of the
terahertz wave of 300 GHz. This shows that passive mode-locking takes place at a
certain phase of the optical feedback.

In the present experiment, the feedback amplitude was close to the lower limit
of the passive mode-locking. Figure 5.8 shows the change of the spectrum when the
feedback from the mirror was decreased from the passively mode-locked state. The
passive mode-locked state is represented by the equidistant peaks observed when
the feedback amplitude is close to its maximum value in our setup. It disappeared
when the feedback amplitude was decreased to less than 93 %.

5.3.4 Hybrid Mode-Locking

We succeeded in stabilizing the repetition frequency by using the hybrid mode-
locking technique [103], in which an additional bias modulation is applied to the
passively mode-locked oscillator. Figure 5.9 compares the RF spectrum in the pas-
sively mode-locked state and the hybrid mode-locked state when the output power
of the modulator is only -40 dBm, while the emission power from the RTD oscillator
was -20 dBm. The modulation frequency was set to 1.0932 GHz (with a linewidth
of less than 1 Hz), which is the same as the harmonic-comb spacing of the pas-
sive mode-locked state. Figures S5.9a and d show the amplitudes of the comb lines.
They do not change due to the modulation. Figures S5.9b and e show the linewidths
of the comb lines. They also do not change largely by the hybrid mode-locking. It
means that the carrier-envelope-offset frequency is not stabilized by the modulation.
Figures 5.9c and f show the linewidths of the inter-mode beat notes. By applying
the modulation, the linewidth of the inter-mode beat note decreased to less than 1
Hz. It corresponds to the standard deviation of 420 mHz in the repetition frequency.

Conditions for Hybrid Mode-Locking

Here, we discuss the conditions of the optical feedback and the modulation power
to obtain the hybrid mode-locked state. We show that the passive mode-locking
mechanism is necessary to obtain a broadband comb spectrum. Figures 5.10a, b,
and c show the spectra measured in different optical-feedback conditions. Figure
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5.10a shows the spectra measured without feedback from the mirror. Figure 5.10b
shows the spectra measured when the feedback with the feedback from the mirror,
but its position was not suitable for the passive mode-locking. In these cases, a
comb spectrum was not obtained for any modulation power. When the feedback
condition is suitable for the passive mode-locking, a small bias-voltage modulation
was efficient to stabilize the comb. Figure 5.10c shows the spectra under various
modulation conditions. Figure 5.10c (i) shows the passively mode-locked spectrum
observed without the modulation. Figure 5.10c (ii) and (iii) show the spectra under
the bias-voltage modulation of -40 dBm and -30 dBm, respectively. The modulation
frequency was 1.0932 GHz, which was the same as the harmonic-comb spacing of the
passively mode-locked state. When the modulation amplitude is further increased,
the condition to obtain the mode-locked state becomes complicated. The amplitudes
of the modes did not change largely, and the hybrid mode-locking was achieved.
Figure 5.10c (iv) shows the spectrum under a modulation with a power of -20 dBm
and a frequency of 1.0932 GHz. In this case, a comb spectrum was not obtained.
Figure 5.10c (v) shows the spectrum under a modulation with a power of -20 dBm
and a frequency of 1.1023 GHz. In this case, a comb spectrum was obtained. It is
a remained task to reveal the range of modulation frequency and amplitude where
we can obtain the harmonic mode-locking.
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Figure 5.4: Fixed relationship between modal phases. a, Measured heterodyne
temporal waveform of passive mode-locked state (orange dots) and fitting curve
(black trace) plotted over 10 ns. The temporal resolution of the measurement was
20 ps. Long-term stability of b, offset frequency, c, repetition frequency, and d,
relative initial phases over 65.6 µs. The numbers beside the right axis show the
mode indices corresponding to the markers. The error bars show the estimated
standard deviation of the fitting parameter. In Figures 5.4b and 2c, the error bars
are smaller than the marker size. In Figure 5.4d, the error bars are shown in one
data point in the first few µsfor each marker as a typical value.
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and the inter-mode beat note (black trace) in the passively mode-locked state. b,
Magnified view of the comb line indexed as -1. c, Magnified spectrum of the inter-
mode beat note. d-f, Corresponding spectra to a-c in the hybrid mode-locked state.
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Figure 5.10: Heterodyne spectra (red) and homodyne spectra (black) for various
conditions of the return light and the modulation power. a, Return light was blocked.
b, Return light was injected, but the mirror position was not suitable for the passive
mode-locking. c, Return light was injected, and the passive mode-locking took place.
For each case, the modulation powers were (i) 0 (no modulation), (ii) -40 dBm, (iii)
-30 dBm, and (iv) -40 dBm. These spectra are offset by 50 dBm. The modulation
frequency was 1.0932 GHz, which is the harmonic-comb spacing in c (i). c (v)
corresponds to the modulation power of -20 dBm and the modulation frequency of
1.1023 GHz.
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5.4 Discussion

5.4.1 Analytical Model of Optical Feedback Effect

Here, we show an analytical model to explain the optical feedback effect on the
frequency-voltage curve qualitatively. We utilize the model derived in the reference
[84]. They modelized the RTD oscillator under optical feedback with the following
circuit equation:

Cant
d2V

dt2
+ (Gr −GRTD − 2

√
ηGr exp[−j(2k0 + l + ϕ)])

dV

dt
+
V

L
= 0. (5.10)

The condition for steady oscillation in equation (5.10) yields the following equation:

ωtd ≈ ω0td −
√
ηω0td

Q
sin(ωtd + ϕ) = ω0td − C sin(ωtd + ϕ). (5.11)

Here, ω is the oscillation frequency under the influence of the feedback, ω0 is the
free-running oscillation frequency, and Q is the quality factor of the LCR resonator.
η is the ”reflectivity” of the return light including the coupling efficiency. td is the
delay time, ϕ is a constant phase shift of the return light, and

C =

√
ηω0td

Q
. (5.12)

is a feedback parameter.

Equation (5.11) gives the relationship between the oscillation frequency f =
ω/2π and the free-running frequency f0 = ω0/2π. Figure 5.11 is the numerical plot
for various feedback parameters C. This plot corresponds to the frequency-voltage
curve because the voltage sweep causes the sweep of the free-running frequency.
C = 0 is the case of no feedback and ω = ω0. Small feedback of C=0.5 makes a
slight modulation of ω from ω0. When the feedback parameter C is unity, ω shows a
sudden change around the vertical dashed line, which corresponds to the frequency
jump observed in the absence of the mirror in this Chapter. We note Equation
(5.11) results in multiple frequency jump shown in Figure 2.3e, because the term
C sin(ωtd + ϕ) has a period of 2π/td in the frequency ω. In the case of C = 2,
ω becomes a multivalued function of ω0. The curve with a negative slope (dotted
line) is an unstable steady-state [56]. Around the multivalued part, sweeping ω0

causes the frequency jumps and hysteresis of the frequency depending on the sweep
direction. It corresponds to a frequency jump and hysteresis observed in the presence
of the mirror in this Chapter. The jump and the hysteresis of the device 2018T in
Figure 2.3d can be explained in the same way. With much strong feedback of C=10
and 100, more longitudinal modes appear, and their spacing approaches equivalence.
The strong feedback limit corresponds to a Fabry-Perot cavity with high finesse.

Interestingly, the same equation as (5.11) can be obtained for a semiconductor
laser under weak optical feedback [56]. We note that this model assumes that the
oscillation amplitude does not vary in time. It also omits the detail of the laser.
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a b

Figure 5.11: Relation of oscillation frequency f = ω/2π and the free-running fre-
quency f0 = ω0/2π derived from equation (5.11) for f0 =300 GHz, τ = 2 × 10−10

s (corresponds to an optical distance of 30 mm) and various feedback parameters
C. The dotted curves with negative slopes are unstable solutions [56]. a, C=0,5,1
and 2. The black arrow shows the frequency change observed when f0 is swept. b,
C=0,10 and 100.

5.4.2 Circuit Simulation

Circuit Geometry

Here, we present a circuit simulation model that reproduces the frequency-voltage
curve, the frequency comb in the vicinity of the frequency jump, and the frequency-
modulated waveform. The simulation model is constructed mainly by Y. Inose, a
co-author of Publication 2. T. Hiraoka participated in discussing the model design
and contents to be calculated. It simulates the RTD oscillator under optical feedback
in a circuit diagram of Fig. 5.12. The circuit is the LCR parallel oscillator with
nonlinear conductance GRTD(V ) = IRTD(V )/V and a nonlinear capacitance of RTD,
C(V ). For IRTD(V ), the following function [104,105] was used:

IRTD(V ) = C1V
iarctanC2(V − Vth)− arctanC2(V − Vn1) + C3V

j . (5.13)

For C(V ), we used the following function:

C(V ) = −C5V
k(

C6

1 + C2
6 (V − Vth)2

− C6

1 + C2
6 (V − Vn2)2

) + C4. (5.14)

Equation (5.14) is our original function based on the previous studies showing that
the quantum capacitance of RTD is proportional to the differential conductance
gRTD(V ) [30, 32, 33]. Equation (5.14) is obtained by taking the derivative of equa-
tion (5.12) and picking the major terms that contribute to the nonlinearity around
the inflection point of IRTD(V ). The parameters of equations (5.12) and (5.14) are
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shown in Supplementary Section 8(1) of Publication 2. Figure 5.13 is the plot of
IRTD(V ) and C(V ). The parameters of IRTD(V ) were decided from the experimen-
tally measured current-voltage curve Itot,exp, so that the following condition in the
following steps: the current flowing in the high-frequency circuit IHF,exp is derived
from Itot,exp. Then, we choose the parameters of IRTD(V ) which shows similar curve
to that of IHF,exp when the circuit is not oscillating [see Supplementary Section 8(2)
of Publication 2]. The nonlinear capacitance of RTD C(V ) was tuned so that the
simulation reproduces the frequency-voltage curve of the oscillator. The passive el-
ements of the circuit were L=21.2 pH and Gload=3.3 mS. In is a white noise source.
Shot noise has the root-mean-square current fluctuations of 162 µA and the single-
sided bandwidth of 10 THz. We did not include the shot-noise enhancement of the
RTD [18].

The optical feedback was modeled as the feedback current

IFB =
√
ηIload(t− td). (5.15)

Here, η is the reflectivity which includes the coupling efficiency, and td is the time
delay. Iload(t) is the current at the load in the circuit. When we include several
return lights from several surfaces, the contributions from these return lights were
included as a summation:

IFB = Σn
√
ηnIload(t− td,n). (5.16)

Here, ηn and td,n are reflectivities and time delays for each return light. The included
feedback parameters are shown in Supplementary Section 5.4.2. The simulation was
performed using LTspice.

Figure 5.12: Circuit diagram used in the simulation.

Determination of Feedback Delays and Reflectivity

In the simulation, we included three return lights shown in Table 5.1. Here, we
describe how we determined the feedback delay and reflectivity of the return lights
included in our model.

As explained with a simple model in Section 5.4.1, the frequency jump is origi-
nated from the optical feedback from a surface nearby the oscillator. Figure 5.14a
shows frequency-voltage curves of three oscillators of the same design but have some
variation in actual properties. The number of the frequency jump is different for
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Figure 5.13: Nonlinear current-voltage curve IRTD(V ) and nonlinear capacitance
C(V ) used in the simulation. a, Current-voltage curve. IRTD is the current-voltage
curve of the RTD used in the simulation. As shown in Figure 5.13a, the device
consists of high-frequency and low-frequency circuit. Itot,exp is the experimentally
measured time-averaged current in the entire circuit. IHF,exp is the time-averaged
current in the high-frequency circuit estimated from Itot,exp. Experimentally, os-
cillation took place between the bias voltage of V1 and V2, indicated by the ditted
vertical lines. b, Nonlinear capacitance.

three oscillators. These characteristics cannot be explained with a single return light
because it causes equidistant frequency jumps as expressed by equation (5.11). To
reproduce the frequency jump, we found that two additional optical-feedback terms
with parameters(td, η) of (19.7ps, 10−2.0) and (178ps, 10−3.0) were necessary. They
correspond to reflection surfaces separated from the oscillator by 2.95 mm and 26.7
mm, that are presumably due to the device itself and the experimental setup. Figure
5.14b shows that a simulation reproduced them by assuming two reflection surfaces.
The variation of the three oscillators was reproduced by assuming a variation of the
inductance L. Here, we did not correct the detailed discrepancy in the voltage value
because we intend to reproduce the behavior of the oscillator qualitatively. We also
ignored the increase of the simulated frequency at the high-voltage limit.

The reflectivity η of the mirror was estimated by the oscillation frequency change
observed when the mirror was swept. Figure 5.15a shows the experimentally mea-
sured frequency change. The oscillation frequency showed hysteretic behavior de-
pending on the sweep direction, as shown by the green and red dots. The blue
dots were measured without hysteresis effect, rotating an optical chopper in front
of the RTD oscillator. This hysteretic behavior means that the feedback from the
feedback parameter C is large, and there are multiple longitudinal modes. The free
spectral range of the longitudinal modes, shown as FSR in Figure 5.15a, was 270
MHz. As shown in Figure 5.15b, the simulation reproduced the frequency change by
the mirror position and the hysteresis. Here, the optical length was swept around
500 mm. The FSR changed depending on the reflectivity η. When the reflectivity
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Table 5.1: Parameters of the return lights included in the simulation. Here, ♯ is the
index to identify the return light. The optical length is l = ctd/2, where td is the
delay time, and c is the speed of the light in the vacuum. The feedback parameter
is C =

√
ηω0td/Q as introduced in equation (5.12). In the calculation of C, we

assumed ω0=300 GHz and Q=8. Feedback ♯1 and ♯2 generates the frequency jump
observed in the absence of the feedback from the mirror. Feedback ♯3 generates the
longitudinal modes with an FSR of 270 MHz.

♯
Delay
td(ps)

Optical
length
l(mm)

Reflectivity
η

Feedback
parameter

C

Expected
object

1 19.7 2.95 10−2.0 0.46
Horn

antenna

2 178 26.7 10−3.0 1.3 Mount

3 3360 500 10−3.25 19 Mirror

was η = 10−3.25, the simulation well reproduced the FSR of 270 MHz. The feedback
parameter is C=19, which is large enough to cause the multiple longitudinal modes.

Finally, we confirmed that the three return lights estimated above reproduce the
observed behavior. The simulated frequency-voltage curve shown in Figure 5.16a
well reproduced the frequency-voltage curve of Figure 5.7a. Hence, we utilized the
parameters of the return lights discussed above. We note that slight return lights
from the lens shown in Figure 5.1 and the detector were neglected in the simulation.
In the experiment, we confirmed that these return lights had a small effect on the
oscillator, for example, a change of the linewidth in the CW oscillation state and a
slight shift of the frequency-jump voltage. However, the amplitude of these return
lights was estimated to be so small that we did not take these return lights in our
simulation.



5.4. DISCUSSION 71

310

300

290

280

Fr
eq

ue
nc

y 
(G

H
z)

550500450400

Voltage (mV)

 001T
 002T
 003T

310

300

290

280

Fr
eq

ue
nc

y 
(G

H
z)

600550500450

Voltage (mV)

 Device 1
 Device 2
 Device 3

a b

Figure 5.14: Frequency-voltage curves of three oscillators of the same design. a,
Experimental result. b, Simulation result. The inductance L is assumed to be 20.5,
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Figure 5.15: Change of the oscillation frequency when the mirror was swept. a,
Experimental result. The bias voltage was 500 mV, which is expected to be close
to the inflection point of the current-voltage curve of the RTD. The red and green
dots show the results for the different sweep directions. The blue dots shows the
results for the measurement without hysteresis effect, in which an optical chopper is
rotating in front of the RTD oscillator. b, Simulation result. The bias voltage was
520 mV, which is the inflection point of the current-voltage curve of the RTD. The
red and green dots were simulated with sweeping the feedback delay time. The blue
dots were simulated without the sweep.
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Simulation Result

Figure 5.16a shows a simulated frequency-voltage curve that reproduces the exper-
imentally measured curve in Figure 5.7a. Around the frequency jump, we found
a state which produces a harmonic frequency comb spectrum, as shown in Figure
5.16b. The harmonic comb spectrum was preserved under noise level of one-tenth
the shot noise but was not preserved under the shot noise level. We could not verify
whether the mode-locked state can be made more stable by tuning the parameters
or we need another stabilizing effect.

Here, we show that the temporal waveform is not a short and intense pulse, but
rather a frequency-modulated waveform. Figure 5.17a shows the simulated wave-
form. The oscillation frequency is so fast that the waveform is filling the envelope.
Clearly, it does not show a significant amplitude modulation. A magnified view of
the terahertz waveform is shown in Figure 5.17c. Figure 5.17 b is the instantaneous
frequency obtained by the Hilbert transform of the terahertz waveform in the fol-
lowing steps: (i) The simulated waveform has harmonic components such as second
harmonics around 600 GHz, third harmonics around 900 GHz, and the other higher
harmonics. To obtain the modulation of the fundamental frequency, these harmonic
components and low-frequency noise were removed with a band-pass filter of 250
GHz to 350 GHz. (ii) We applied the Hilbert transform to the filtered temporal
waveform. The instantaneous frequency in Figure 5.17 b is modulated with a period
of approximately 1.2 ns, which is the inverse of the comb spacing of 835 MHz in
Figure 5.16b. The frequency modulation was as large as the spectral bandwidth.
The simulated frequency-comb state was observed in the vicinity of the frequency
jump and it generated a frequency-modulated waveform. Hence, we expect this
oscillatory state corresponds to the passive mode-locked state in the experiment.

To investigate the mechanism of passive mode-locking, we performed a simulation
experiment removing the nonlinear effects one by one from the conditions of Figure
5.16b. When we removed the feedback term with a time delay of 19.7 ps and 178 ps,
we obtained neither a frequency jump nor a comb spectrum. When we replaced the
nonlinear capacitance with a constant capacitance of 8 fF, we obtained a frequency
jump around 303 GHz, but no comb spectrum. On the other hand, we obtained
a comb spectrum when we removed the noise. Hence, feedback with a short delay
time and a nonlinear capacitance are necessary for passive mode-locking, whereas
noise is not necessary. It is a subject for future work to determine how these effects
cause mode-locking.
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Figure 5.16: Circuit simulation. a, Wide-range frequency-voltage characteristics. In
the simulation, the temporal waveform was calculated by sweeping the bias voltage.
At each data point, the voltage sweep was stopped, and the temporal waveform
was simulated for 0.62 µs. The spectrum was obtained by Fourier transforming the
temporal waveform of the last 0.1 µs. The shot noise was included. b, Harmonic
frequency comb spectrum simulated for reflectivity ηMirror = 10−3.25, which corre-
sponds to the experimental condition. The result in Figures 5.16b was obtained
under the following conditions: the bias voltage was 573.5 mV. The temporal wave-
form was simulated over 11.0 µs, and the spectrum was calculated using the last 1.0
µs. Noise had a standard deviation 10 times smaller than the shot noise.
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5.4.3 Improvement in Comb Performance

Through hybrid mode-locking, the repetition frequency can be tuned with an ex-
ternal signal. Therefore, if we can stabilize the carrier-envelope offset frequency,
we can obtain a fully stabilized comb spectrum. To stabilize the offset frequency,
a resonant-tunneling-diode oscillator combined with a varactor diode [70] would be
effective. In this oscillator, a phase-locked-loop (PLL) control through the varactor
diode can be used to decrease the linewidth to less than 1 Hz in a CW oscillation
state. Stabilization of one of the comb lines through PLL control would stabilize
the offset frequency. Fixing one of the comb lines to a molecular absorption line will
also result in narrow frequency comb lines with known absolute frequencies.

The simulation model shows that we can broaden the spectral bandwidth of the
frequency comb in a different feedback condition. Figure 5.18a shows a simulated
harmonic frequency-comb spectrum for ηMirror = 10−1. Since the circuit has a non-
radiative loss, it corresponds to the case where all the emitted power is fed back
from the mirror. In this case, the comb spectrum is broader than in Figure 5.16b.
The simulation showed that various broadband comb spectra can be generated de-
pending on the feedback conditions. Figure 5.18 shows comb spectra simulated for
various feedback conditions, and Table 5.2 shows the conditions. Depending on the
feedback conditions, we obtained various broadband comb spectra. We note that in
Figure 5.18c and d, the mode-locking is caused only by two feedback term. Opti-
mization of the feedback conditions and circuit parameters will enable us to control
the bandwidth and mode spacing of the comb.

Table 5.2: Feedback conditions for Figure 5.18a, b, c, and d. The reflectivities at
the reflection surfaces and their delays are shown. The spacing of the comb lines are
also shown.

Figure
Delay
and

reflectivity

Comb
spacing
(GHz)

♯1
19.7 (ps)

♯2
178 (ps)

♯3
3360 (ps)

a 10−2.0 10−3.0 10−1.0 0.894

b 10−1.0 10−2.0 10−2.25 4.76

c 10−1.0 10−2.0 0 4.61

d 10−1.0 0 10−2.0 0.296
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Figure 5.18: Broadband comb spectra simulated for the conditions shown in Table
5.2. The distances of the reflection surfaces are the same as those in Table 5.1.
These result were obtained under the following conditions: the bias voltage was
573.5 mV. The temporal waveform was simulated over 11.0 µs, and the spectrum
was calculated using the last 1.0 µs. Noise had a standard deviation 10 times smaller
than the shot noise.
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5.5 Summary

In this chapter, we investigated the response to time-delayed feedback. We clari-
fied that multiple optical modes are generated due to optical feedback in the RTD
terahertz oscillator, and they can be mode-locked simply by controlling the feed-
back condition. We succeeded in stabilizing the repetition frequency with an ad-
ditional bias-voltage modulation. The mode-locked waveform is not a short and
intense pulse but rather a frequency-modulated waveform. We performed a simula-
tion which includes the nonlinear capacitance of RTD. In the simulation, we found
that the nonlinear capacitance and multiple time-delayed feedback is necessary for
the mode-locking. The simulation also showed the possibility of broadband comb
generation. The passive mode-locking of the RTD oscillator is not only interest-
ing but also important for applications: The mode-locked RTD oscillator would be
suitable as a frequency standard for terahertz sensing and communications, since
it is based on a compact, efficient, and room-temperature operating semiconductor
device,





Chapter 6

Discussion

6.1 Review of Two Experiments

In this chapter, we review the injection-locking and passive-mode-locking experi-
ment, in which the nonlinear capacitance showed significant effects in the nonlinear
response. Then, we discuss the role of the nonlinear capacitance in the nonlinear
dynamics.

In Chapter 4, we investigated the injection-locking property. The locking range
is approximately described by Adler’s model, a phase-reduced model that applies
to the limit-cycle oscillator with small nonlinearity (see section 1.2.3). However, we
also found the deviation from Adler’s model, the asymmetry of the locking range.
We conducted a full circuit simulation to find what cause the asymmetric locking
range. Then, we showed that the nonlinear capacitance of RTD may cause it.

In Chapter 5, we found that multiple optical modes are generated due to op-
tical feedback, and they can be passively mode-locked by controlling the feedback
conditions. Since it is not obvious if the phase-reduction method apply to the
mode-locking, we investigated the mode-locking mechanism with a circuit simula-
tion including the nonlinear capacitance of RTD. Then, we found that the nonlinear
capacitance and multiple time-delayed feedback is necessary for the mode-locking.

Therefore, we showed that the nonlinear capacitance of RTD has a significant
effect in the nonlinear response. Although the circuit simulation model used in
Chapter 4 and Chapter 5 differs in their detail, both of them included the charac-
teristics of the nonlinear capacitance of RTD shown in Section 1.1.3. It should be
noted that we did not proved that it is the only possible origin for the asymmetric
locking range and mode-locking. However, the RTD oscillator always contains the
nonlinear capacitance of RTD, and it is enough to cause these behaviors.

6.2 Origin of Nonlinear Capacitance of RTD

The nonlinear capacitance of RTD has a quantum mechanical origin. As described
in Section 1.1.3, the total capacitance of RTD can be expressed as Cp(V ) = CG +
CQ(V ), where the nonlinear part CQ(V ) is called quantum capacitance. The origin
of quantum capacitance CQ(V ) is often considered as the density change of the

79
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two-dimensional electron gas in the quantum well [28–32].
In Reference [31], they explained the quantum capacitance with a sequential

tunneling model; the electron tunneling through the RTD is treated as sequential
tunneling events through the two barriers. Figure 6.1 shows the schematic figure of
their model. Here, Jew represents the tunneling current through the barrier between
the emitter and well, and Jwc represents the tunneling current through the well and
collector. Jew depends on the bias voltage largely because it is a resonant-tunneling
current to the discrete energy level in the quantum well. The difference of these
current results in the change of the charge density in the well, that can be regarded
as a finite response time of the charge density to the applied voltage. They also
pointed out that the Coulomb interaction between the electrons in the well with
emitter and collector shortens the response time. In this way, the RTD has a finite
response time, which can be described as a capacitance in a circuit model.

We note that some studies emphasize that the electron transit time in the collec-
tor spacer layer is also important for the nonlinear capacitance of RTD [33]. In their
estimation about an RTD used in oscillator of 600 GHz, the tunneling time through
the well and the transit time in the collector spacer are 33 fs and 38 fs, respectively.
Although they consider the electron motion in the collector layer as drift motion,
a quantum mechanical treatment is necessary to obtain the tunneling time in this
model, too.

Jew
Jwc

Figure 6.1: Schematic figure of charging of an RTD.

6.3 Role of Nonlinear Capacitance

Here, we discuss the role of nonlinear capacitance in the nonlinear equation. Let
us consider the circuit model shown in Figure 6.2, which is same as that used in
Chapter 5 without noise and feedback.

C(V )V̇ +Gtot(V )V +
1

L

∫
V dt = 0. (6.1)

Here, Gtot(V ) = GRTD +Gload is sum of the conductance of the RTD and the load.
By taking the time derivative of equation (6.1), we obtain

C(V )V̈ +
dC

dV
V̇ 2 + gtot(V )V̇ +

V

L
= 0. (6.2)
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Here, gtot(V ) = gRTD +Gload is sum of the differential conductance. Figure 6.3a, b,
and c shows the current-voltage curve IRTD(V ), gtot(V ), and C(V ) used in Chapter5,
respectively. Equation (6.2) has an unfamiliar term of (dC/dV )V̇ 2, but it would
be negligible: Assuming that V (t) can be approximated as a sinusoidal function
V (t) ≈ Vosce

iωt, and diving the second term in equation (6.2) by the first term, we
obtain

σ(V ) = Vosc
1

C(V )

dC

dV
= Vosc

d

dV
logC. (6.3)

Figure 6.3d shows σ(V ) derived from C(V ) in Figure 6.3c and Vosc ≈ 100 mV. It
shows that the first term of equation (6.2) is always larger than the second term
with a factor of at least 5. Neglecting the second term, we obtain

V̈ + λ(V )V̇ + κ(V )V = 0, (6.4)

where λ(V ) = gtot(V )/C(V ) is nonlinear dumping and κ(V )V = V/LC(V ) is non-
linear restoring force. Figure 6.3e and f shows λ and κ, respectively.

Therefore, we expect that the main contribution of the nonlinear capacitance
C(V ) is introducing the nonlinear restoring force in the oscillator dynamics. As
discussed in Section 1.1.3, it is known that the nonlinear restoring force causes
amplitude dependence of the frequency, and complex dynamics such as nonlinear
resonance.

In the injection locking of RTD oscillator, the deviation from Adler’s model shows
that the assumption of the small nonlinearity is not perfect, and the phase sensitivity
function in the phase equation (1.15) cannot be approximated as a simple sinusoidal
function. It seems that the nonlinear restoring force results in the non-trivial phase
sensitivity function. However, it is a remained task to prove it.

Understanding the mechanism of the passive mode-locking of RTD oscillator
is another remained task. Since the simulation model in Chapter 5 is a full cir-
cuit simulation that includes high-order nonlinearities in the current-voltage curve
and capacitance-voltage curve, further investigation is necessary to understand the
essence. A simulation of Duffing-van der Pol oscillator obtained by approximating
λ and κ in equation (6.4) would be useful to verify if the high-order nonlinearity is
important or not. In addition, it might be possible to apply phase reduction analysis
of time-delayed feedback system [53] to obtain an analytical model. It would be also
interesting how the mode-locking phenomenon appears when we gradually introduce
the nonlinearity of the capacitance to the constant-capacitance model.

𝐺"#$(𝑉)𝐺()*+
𝑉(𝑡)

𝐿 𝐶"#$(𝑉)

Figure 6.2: Model circuit to discuss the effect of the nonlinear capacitance.
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Chapter 7

Conclusion and outlook

7.1 Conclusion

In this study, we investigated the nonlinear response of the RTD terahertz oscillator
with an expectation that the quantum effects in the RTD will cause non-trivial
dynamics. Especially we focused on injection locking and the response to optical
feedback.

We characterized the RTD terahertz oscillator with an oscillation frequency of
approximately 300 GHz and an emission power of approximately 10 µW. We con-
structed a terahertz heterodyne measurement system. It had a high frequency res-
olution of 240 mHz, a broad bandwidth of 10 GHz, and capable of capturing a
fluctuating signal without a dead time.

In Chapter 4, we successfully characterized the injection-locking property of the
RTD terahertz oscillator in the small-signal injection regime. The experiment was
enabled by our heterodyne measurement system and terahertz isolators for the first
time. The locking range is approximately consistent with Adler’s model. However,
there is a deviation from Adler’s model, the asymmetry of the locking range. With
a circuit simulation, we showed that the nonlinear capacitance of RTD can lead
to such asymmetry. We also characterized the noise reduction and determined the
threshold amplitude of the injection signal for injection locking.

In Chapter 5, we investigated the response to optical feedback. We found that
optical feedback generates multiple optical modes, and they can be mode-locked by
controlling the feedback condition. We also clarified that the temporal waveform
of the mode-locked state is not an intensity-modulated waveform but a frequency-
modulated waveform. To determine what causes the mode-locking, we performed a
circuit simulation which includes the nonlinear capacitance of RTD. Then, we found
that the nonlinear capacitance and multiple time-delayed feedback are necessary for
the mode-locking. To the best of our knowledge, the passive mode-locking of the
RTD oscillator is different from conventional mode-locking mechanisms. It is also
important in the applications since it covers the frequency range where a compact,
efficient, and room-temperature operating frequency-comb source had been missing
until today.

In Chapter 6, we reviewed the studies on injection locking and passive-mode-
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locking experiment. From both of them, we can conclude that the nonlinear ca-
pacitance of RTD, that has a quantum-mechanical origin, has a significant effect in
the nonlinear response. We discussed why the nonlinear capacitance causes non-
trivial behaviors such as the asymmetric locking range and passive mode-locking.
We showed that the main contribution of the nonlinear capacitance would be in-
troducing nonlinear restoring force. However, it is a remained work to show the
connection between the nonlinear restoring force and the non-trivial behaviors.

7.2 Outlook

An important remained task is clarifying the essential mechanism of the mode-
locking, even though we have verified that the nonlinear capacitance and multiple
time-delayed feedback are necessary. It is important to clarify the necessity of the
high-order nonlinearities included in the current-voltage and capacitance-voltage
curves in the simulation. If the high-order nonlinearities unique to the RTD are
not essential, the mode-locking mechanism might apply to the other oscillators with
similar nonlinear capacitances. Understanding the mode-locking mechanism will
also lead to an optimized device to achieve high performance as a frequency-comb
source.

We also note that we could not observe a significant effect of the photon-assisted
tunneling and shot-noise enhancement/suppression on the nonlinear dynamics as
expected. The photon-assisted tunneling would be more apparent in an RTD oscilla-
tor with a higher oscillation frequency. The shot-noise properties would be apparent
when we observe the dynamics related to the noise, such as stochastic resonance and
coherence resonance. Due to the simple composition of the RTD terahertz oscillator
in which a quantum well is connected to an LCR resonator, it will be a good test
system to verify the impact of these effects on the nonlinear oscillator.
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Appendix A

Measurement of injection ratio

In this section, we describe how to determine the injection amplitude Ṽinj and injec-
tion ratio r = Ṽinj/Ṽosc. Ṽinj is the injection amplitude at the antenna caused by the
injection electric field. Ṽosc is the oscillation amplitude of the RTD oscillator itself
measured at the antenna. In this section, tilde on Ṽinj and Ṽosc are used to clarify
that these symbols represent the amplitude of the ac voltage at terahertz frequency.

A.1 Measurement of the injection voltage (Ṽinj)

We performed a square-law detection of the injection terahertz wave using the RTD
terahertz oscillator [71, 72] with a setup shown in Fig. A.1. The injection terahertz
wave was generated with a UTC-PD. The laser incident on the UTC-PD was mod-
ulated square-wave on-off shape at 9.7 MHz. The bias voltage of the RTD terahertz
oscillator was set to 406 mV, where no oscillation took place.

UTC
-PDEOM

LD1

LD2

RTD
Osc.

DC

RF
BT

SMAmp.

LIA

Figure A.1: Setup for the measurement of injection voltage. The emission of two
laser diodes (LD1 and LD2) are input to the electro-optic modulator (EOM), the
optical amplifier (Amp.), and the UTC-PD via optical fiber. Intensity-modulated
terahertz wave is generated with the UTC-PD and injected to the RTD terahertz
oscillator. The RTD terahertz oscillator is connected to a bias tee (BT). A source me-
ter (SM) supplies DC voltage to the RTD terahertz oscillator via the low-frequency
(DC) port of the bias tee. The high-frequency (RF) port is connected to a lock-in
amplifier (LIA) and the square-law signal is measured.
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Figure A.2a shows the current-voltage curve IFP(V ) in the voltage range of
300-500 mV. We can utilize its nonlinearity for terahertz-wave detection. When a
signal of Ṽinj cosωt is injected, time-averaged current changes from that without the
injection. The difference is described as

∆IDC(Ṽinj) = IFP(VDC + Ṽinj cosωt)− IFP(VDC), (A.1)

where VDC is the bias voltage, and the overline represents time average. When Ṽinj
is small, it can be calculated as

∆IDC(Ṽinj) =
1

4
|I(2)FP(VDC)|Ṽ 2

inj +
1

64
|I(4)FP(VDC)|Ṽ 4

inj +O(Ṽ 6
inj) (A.2)

= ∆I2(Ṽinj) + ∆I4(Ṽinj) +O(Ṽ 6
inj), (A.3)

where I
(n)
FP (V ) represents the n-th order derivative of IFP(V ).

To obtain the derivative coefficients, we fitted IFP(V ) around the bias voltage of
406 mV. Figure A.2b shows IFP(V ) as the red line in the voltage range of 397-415
mV. We fitted the current-voltage curve in the voltage range of 401-411 mV. To
confirm that the higher-order term in Eq. (A.3) does not contribute to the signal
∆IDC, we used the 4th-order polynomial:

IFP(V ) =IFP(VDC) + I
(1)
FP(VDC)∆V +

1

2!
I
(2)
FP(VDC)∆V

2 (A.4)

+
1

3!
I
(3)
FP(VDC)∆V

3 +
1

4!
I
(4)
FP(VDC)∆V

4, (A.5)

where ∆V = V − V0, and VDC is the bias voltage of 406 mV. The fitting result is
shown as the dashed curve in Fig. A.2b. Table A.1 shows the fitting parameters
and standard deviations as well as ∆In (5 mV) in Eq. (A.3) for n = 2 and 4. We
can see that ∆I2(5mV) ≫ ∆I4(5mV). Hence, the higher order terms in Eq. (A.3)
is small in the case of Ṽinj ≤ 5mV, which holds true in our experiment as described
later.

Table A.1: Coefficients of the fitting on the current-voltage curve IFP(V ) with Eq.
(A.5).

order n 0 1 2 3 4

Value of I
(n)
FP (VDC)

(A/Vn)
2.1× 10−2 2.9× 10−2 −8.2× 10−1 −3× 10 −1× 104

Standard deviation

of I
(n)
FP (VDC) (A/V

n)
3× 10−8 1× 10−5 1× 10−2 4 7× 103

∆In(5mV) (A) - - 5× 10−6 - 1× 10−7

Figure A.3 shows the equivalent circuit for the measurement. The RTD terahertz
oscillator was composed of an RTD, an LCR circuit, and a MIM capacitor. The bias
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Figure A.2: a, Current-voltage curve IFP(V ) in the voltage range of 300-500 mV.
The boxed region corresponds to the plot range of b. b, Current-voltage curve
IFP(V ) in the voltage range of 397-415 mV measured with the voltage step of 100
µV(red line) and its fitting curve (black dashed line).

voltage was applied to the RTD terahertz oscillator through the DC port of a bias
tee. We used a bias tee with a frequency range of 0.1-6000 MHz. The modulated
injection field caused a modulated square-law detection signal, which is coupled to
a lock-in amplifier through the RF port of the bias tee. The square-law detection
current at the feed point ∆IDC is represented as

∆IDC =
1

4
|I ′′
FP(VDC)|Ṽ 2

inj, (A.6)

where Ṽinj is the injection amplitude at the antenna. The voltage measured at the
lock-in amplifier is described as follows:

VLIA = RLIA∆IDC =
1

4
RLIA|I

′′
FP(VDC)|Ṽ 2

inj. (A.7)

Therefore,

Ṽinj = 2

√
VLIA

RLIA|I
′′
FP(VDC)|

. (A.8)

Related values were RLIA = 50Ω and I
′′
FP = −0.82A/V2. The maximum injection

voltage (Ṽinj,max) was determined from the maximum value of VLIA (6.9 µV) in the
series of experiments in this paper as follows:

Ṽinj,max = 0.82mV. (A.9)

We also confirmed that VLIA was proportional to Ṽinj by attenuating the injection
field with a pair of WGs. We note that Ṽinj in the case of no attenuation slightly
varied from experiment to experiment depending on the conditions such as optical
alignment. In each experiment, we first measured Ṽinj in the case of no attenuation,
and derived other Ṽinj values for various attenuations using the proportionality.

Ṽinj has two significant figures because the related quantities I
′′
FP, VLIA and the

transmission of the WG pair has two significant figures.
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Figure A.3: Equivalent circuit for the measurement of injection voltage. Rr, L and C
are the resistance, the inductance, and the capacitance of the antenna, respectively.
ZRTD is the impedance of the RTD. LMIM is the inductance of the MIM capacitor.
CBT and LBT are the capacitance and the inductance of the bias tee, respectively.
RLIA is the input impedance of the lock-in amplifier. VDC is the bias voltage.

A.2 Estimation of the oscillation voltage (Ṽosc)

We estimated the oscillation voltage from the radiation power. The assumed equiva-
lent circuit of the RTD terahertz oscillator is shown in Fig. A.4. The RTD terahertz
oscillator is composed of a negative resistance −R and an LCR resonator, which
corresponds to the antenna. The oscillation amplitude Ṽosc can be represented as

Ṽosc =
√
2PoutRr, (A.10)

where Pout is the emission power, and Rr is the radiative resistance. The emis-
sion power was typically 8 µW, as shown in Figure 4.1c. The antenna was a half-
wavelength antenna. We assume its radiative resistance as 150 Ω, as in the previous
study on the RTD terahertz oscillator of a similar structure [71]. Therefore, we can
derive the oscillation voltage as

Ṽosc = 50mV. (A.11)

Here, Ṽosc has one significant figure in the above derivation because Pout has only
one significant figure due to noise in the measurement, and the assumption of Rr

has uncertainty due to the unknown effective refractive index of the substrate.

A.3 Derivation of the injection ratio

From the results above, we can derive the injection ratio r = Ṽinj/Ṽosc. Its maximum
value in the series of experiments in this paper was

rmax =
Ṽinj,max

Ṽosc
=

0.82

50
= 2× 10−2 (A.12)
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Figure A.4: Equivalent circuit of the RTD terahertz oscillator to calculate the oscil-
lation voltage

An injection ratio for a normalized injection amplitude k = Ṽinj/Ṽinj,max can be
calculated as

r =
Ṽinj

Ṽosc
=
kṼinj,max

Ṽosc
(A.13)

Here, r has one significant figure because Ṽosc has one significant figure, while Ṽinj
has two significant figures.

A.4 Verification of the coupling efficiency by beam shape

So far, we derived the maximum injection voltage Ṽinj,max = 0.82mV. The radiative
resistance is 150 Ω, so it corresponds to an injection power of Pinj,max = 2nW. The
incident terahertz power in front of the RTD terahertz oscillator is P0 = 2W . Hence,
the coupling efficiency in power can be derived as

Pinj,max

P0
=

2nW

2W
= 1× 10−3 (A.14)

We verify this coupling efficiency by comparing the beam area and the effective
antenna area. We estimate the beam radius focused on the antenna (w03) with the
formula for the Gausssian beam:

w03 = (
2f

kw01
)/sqrt1 + (

2f

kw01
)2. (A.15)

Here, f=100 mm is the focal length of the parabolic mirror, k=6.3 /mm is the
wavenumber, and w01=8 mm is the radius of the parallel beam. From this formula,
we can derive that w03=3 mm. It is known that the effective area of a dipole antenna
can be represented as

Ae = 0.13λ2 (A.16)

where λ is the effective terahertz wavelength at the antenna. The antenna length of
the RTD terahertz oscillator was measured as 166 µm with an optical microscope.
This corresponds to the half of the effective wavelength, so the antenna is designed
for λ = 332 µm and the effective area of the dipole antenna is Ae = 0.014mm2.
Hence, the coupling efficiency derived from the beam shape is

Ae

πw2
03

= 4× 10−4. (A.17)

This value is comparable to the value of Eq. (A.14).





Appendix B

Peak area derivation and
correction

In this section, we show how to derive the spectral area shown in Fig. 4.15b. We
fitted the narrow and broad peaks in Fig. 4.15a with the Lorentzian functions. The
HWHMs of both peaks were independent of the normalized injection amplitude k.
The HWHM of the narrow peak was about 50 kHz, which corresponds to the RBW
of the spectrum analyzer. The HWHM of the broad peak was 4.4 MHz.

Here, the spectral height and the area of the broad peak were underestimated
in the RTSA because of their noisiness and the frequency fluctuation. To correct
this, we executed an independent total power measurement. In this measurement,
we modulated the emission of the RTD terahertz oscillator using an optical chopper
and performed a square-law detection with an FMBD. We compared the emission
power in the free-running condition and the injection-locked condition. Here, the
injection amplitude was the maximum value in our setup, i.e., the normalized in-
jection amplitude k was about unity. We found that the total emission power was
almost the same; the power difference in the two cases was less than 2%, which was
comparable to the noise level of the measurement. We also confirmed that the total
emission power was constant for various injection amplitudes.

From above experiments, we determined the correction factor for the spectral
area of the broad peaks as 1.7 to keep the total peak area constant. We multiplied
the spectral areas of the broad peaks by the factor, and normalized all the spectral
areas with the total spectral area at k = 1 to obtain Fig. 4.15b.
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Appendix C

Slope of Noise Spectrum

Here, we look into the detail of the output noise spectra (Fig. 4.16a). We show that
the spectra can be explained as a result of a flicker noise source, especially in the high
frequency part, where the output noise is small compared to the signal. The flicker
noise is the noise with the power spectrum of f−α(0 < α < 2) [87]. There are several
types of theories on phase noise of the oscillator. They can be classified into the linear
time-invariant (LTI) theories [106], linear time-variant (LTV) theories [79,107], and
nonlinear time-variant (NLTV) theories [47, 77, 108]. We use the LTV theories in
this section. The oscillator’s output voltage Vout(t) is expressed as

Vout(t) = (A+∆A(t))g(2πf0t+∆ϕ(t)), (C.1)

where A is the amplitude, and f0 is the oscillation frequency without a noise effect,
and g is a periodic function with a period of 2π. ∆ϕ(t) is the phase fluctuation,
and ∆A(t) is the amplitude fluctuation due to the noise source, such as the current
fluctuation. In the output noise spectrum, the amplitude noise is usually much
smaller than the phase noise [107]. We ignore the amplitude noise here.

Fig. C.1a shows measured power spectra for various injection strength. The half
locking range af represents the injection strength. The chain line is a guide-to-the-
eye indicating the slope of f−3 in the free-running spectrum. The two-dot chain
lines indicate the slope of f−α in the injection-locked case of af = 13, 30, and66
MHz. α = 0.8 is derived from the fitting.b Fitting result of the measured noise
spectra with Eq. (C.4). Dashed lines are the fitting curve.

In Fig. C.1a, we again show the noise spectra of Fig. 4.16a. In the free-running
case (af = 0), the output noise spectrum has an ∆f−3 tail in the high frequency part
and a flat region in the middle. The ∆f−3 slope may result from the up conversion
of the input ∆f−1 noise to the carrier frequency by the oscillator. This effect is
well-known as the Leeson effect described as [106,107]

Lϕ,free(∆f) = (
f0

2Q∆f
)2Lϕ,input(∆f) (C.2)

in the frequency range of ∆f ≪ f0/2Q. Here, Lϕ,free(∆f) is the output phase noise
spectrum and Q is the Q-factor of the resonator. Lϕ,input(f) is the power spectrum
of the input phase fluctuation defined as

Lϕ,input(f) = |F [∆ϕ(t)]|2 (C.3)
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where F means the Fourier transform. We note that the variable f is not the
frequency offset but the frequency around DC. In Leeson’s formula (C.2), there is
a problem that the output noise spectrum diverges at ∆f = 0. It is because this
theory can be applied only in the high frequency region where the output noise is
small. Therefore, we focus only on the high frequency part where the divergence
does not matter. In the injection-locked case of af = 13, 30,and 66 MHz, each output
noise spectrum is composed of an approximately ∆f−3 tail and an ∆f−α(α 0.8) part
at the center. Here, the value of α is determined by the fitting with the following
function:

Lϕ,out(∆f) =
A

∆fα
1

∆f2 + a2f
(C.4)

where A and α are common parameters for these traces. The fitting curves shown in
Fig. C.1b well reproduce the experimental results. It indicates that the output power
spectrum is determined by the input phase fluctuation with the power spectrum of
f−α. Eq. (C.4) is derived from an LTV theory [79]. According to Eq. (32) in Ref.
8, output noise spectra of an injection-locked oscillator can be described as

Lϕ,out(∆f) = Lϕ,free(∆f)
∆f2

∆f2 + a2f
+ Lext(∆f)

a2f
∆f2 + a2f

(C.5)

where Lϕ,free(∆f) is the free-running output noise spectrum, and Lext(∆f) is the
phase noise spectrum of the injection signal. We assume the power spectrum of
input phase fluctuation is

Lϕ,input(∆f) =
A

′

∆fα
, (C.6)

where A
′
is a constant. Then, the free-running output noise spectrum Lϕ,free(∆f)

expected from Leeson’s formula (C.2) is

Lϕ,free(∆f) =
A

∆f2+α
. (C.7)

Here, A = A′(f0/2Q∆f)2. By substituting Eq. (C.7) to Eq. (C.5), we obtain

Lϕ,out(∆f) =
A

∆fα
1

∆f2 + a2f
+ Lext(∆F )

a2f
∆f2 + a2f

. (C.8)

By neglecting the second term in Eq. (C.8), we can obtain Eq. (C.4). In the
strong injection case (af = 330 MHz), we cannot neglect the second term. It is
because when af ≫ ∆f , the first term vanishes while the second term approaches
to Lext(∆f). Equation (C.4) does not fit the experimental result in the case of
af = 1.8 and 5.8 MHz. This is due to the problem of the output noise divergence
at low frequency in the LTV theories. We can avoid the divergence with NLTV
theories in the case of a free-running oscillator with a colored noise source [108] and
an injection-locked oscillator with a white noise source [77]. However, NLTV theory
on the injection locking under colored noise source has not been developed. In the
above discussion, there is a strange point that it looks like the power spectrum of
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the noise source changed from f−1 to f−0.8 due to the injection locking. If this was
not an artifact, a possibly related mechanism is the photon-assisted tunneling [24]
that changes conduction property of the RTD due to the strong terahertz electric
field applied on it.
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Figure C.1: a, Measured power spectra for various injection strength. The half
locking range af represents the injection strength. The chain line is a guide-to-the-
eye indicating the slope of f−3 in the free-running spectrum. The two-dot chain
lines indicate the slope of f−α in the injection-locked case of af = 13, 30,and 66
MHz. α = 0.8 is derived from the fitting. b, Fitting result of the measured noise
spectra with Eq. (C.4). Dashed lines are the fitting curve.
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