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Abstract 
 

Regarding the rapid regional growth of Southeast Asia, water resources have become 

a highly essential resource for their economy and society. As a dam reservoir is an 

effective tool in water management, several dams have been developed in various stages 

ranged from operated to planned in this region. However, the operation of a dam becomes 

challenging due to the high uncertainty of hydrologic conditions in the tropical climate 

basin with distinct wet and dry seasons providing a primary effect on reservoir operation 

increased the risk of water disasters such as flood and drought. This challenge becomes 

increasingly driven by climate change which increases in extreme events. 

To investigate the effect of climate change on reservoir operation is an important and 

interesting finding for effective management of reservoirs to cope with future hydrologic 

conditions. The main goal of this thesis is to develop the approaches to assess the impact 

of climate change on reservoir operations and introduce the strategies to manage the 

reservoir coping with the uncertainty of water resources in the tropical climate basin. 

Chapter 2 proposes the structural improvement of a distributed hydrological model for 

better results on long-term river discharge prediction in a tropical climate basin, by 

incorporating bedrock aquifers as part of the slope flow component of the original model 

structure. Using an application of this improved model, the simulated long-term river 

discharge results in better performance compared to the original model structure. 

Chapter 3 proposes the development of an integrated model that combined reservoir-

hydropower model and a distributed hydrological model to evaluate the effect of dam 

operation on river discharge and power generation. The model performed well which the 

results agree with the actual operation record. The coupling model is applied to assess the 

impact of hydropower development in a tropical climate basin such as the Nam Ngum 

Basin in Lao PDR in various stages of dam development. The results showed the primary 

change in river flow regulated by the upstream cascade dams. 

Chapter 4 proposes the sensitivity assessment of the Nam Ngum 1 reservoir in Laos 

PDR to the uncertainty of water resources driven by a combination of climate change and 

upstream cascade dam development using a large ensemble of future climate projections. 
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The integrated model (Chapter 3) was applied with the projected climate to project future 

river flow and hydropower production. Even though the results showed a wide range of 

changes, the future inflow and generated energy tend to decrease when the projected 

temperature increase. The strategies to cope with the effect of climate change on 

hydropower generation are discussed. 

Chapter 5 proposes the approaches for introducing ensemble weather forecast to real-

time reservoir optimization for hydropower and irrigation benefit in Thailand. The 

medium-range ensemble precipitation forecasts are employed with the hydrologic model 

in adaptive mode to predict real-time reservoir inflow. Real-time optimization for 

determining one-week advance water release strategy is conducted with different 

scenarios using dynamic programming considering inflow predictions. The real-time 

reservoir inflow prediction performed well compared to the observation. The result of 

reservoir implementation presented that considering ensemble forecasts in real-time 

reservoir optimization provided more efficient operating decisions than employing 

historical data. 
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Chapter 1 Introduction 
 

1.1 Background 

Southeast Asia is one of the fastest-growing regions in the world in terms of both 

economy and population, with urbanization expected to continue at a high pace in the 

coming years (Vinayak et al., 2014). As human populations and economies grow, water 

resources become very important for maintaining an adequate food supply and a 

productive environment for all living organisms (Kılıç, 2020). Although water is 

considered a renewable resource because it depends on rainfall, its availability is finite in 

terms of the amount available per unit of time in any one region (Paz et al., 2000). 

According to the regional growth of Southeast Asian Countries, water resource is a 

highly essential resource for the region where agriculture and hydropower are the one of 

main income of their economy. Although water is required to serve the region's growth, 

water disasters such as floods and drought are prevalent in this region which is naturally 

disaster-prone (ESCAP-UNISDR, 2012). Moreover, increasing water consumption due 

to population and economic growth is the most crucial feature and will continue at an 

accelerating rate so long as current attitudes and patterns of water utilization remain 

unchanged (Abu-Zeid and Shiklomanov, 2004). Therefore, the efficient management of 

water resources becomes an important role for the region. 

A dam reservoir, which controls rivers for both water use and flood control, can play a 

significant role in effectively managing water resources (Nohara et al., 2016). It is an 

effective tool to store water when a severe flood occurs for mitigation of the huge loss, 

damage of lives and economics (Manee, 2016). According to rapid regional growth and 

energy demands in Southeast Asia, several dams in main rivers have been developed in 

various stages ranged from operated to planned especially in the Lower Mekong Basin, 

numerous dams along the mainstream and tributaries are planned to build (Kummu and 

Varis, 2007). 
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Even though building dams can boost their economies, dam operation is challenging 

due to the uncertainty (unpredictable) on hydrologic conditions in the tropical climate 

basin with a large difference between wet and dry seasons providing the primary effect 

on reservoir operation increased the risk of water disasters (Tingsanchali and 

Boonyasirikul, 2006) such as flood and drought. 

Several studies (Bates et al., 2008; Milly et al., 2005; Palmer et al., 2008) indicated 

that climate change will affect the supply and demand for water resources resulting in an 

impact on freshwater ecosystems and ecosystem services worldwide. An increase in 

extreme events such as floods and drought has been predicted (Bates et al., 2008). 

However, current water management may not adequately cope with the impacts of climate 

change on the reliability of water supply, flood risk, health, agriculture, energy generation 

and aquatic ecosystems (Palmer et al., 2008).  

Also, many studies indicate the impact of climate change on water resources in 

Southeast Asian Basins such as the Chao Phraya Basin (Hunukumbura and Tachikawa, 

2012; Wichakul et al., 2015), Mekong Basin (Lauri et al., 2012; Perera et al., 2017) and 

Irrawaddy (Sirisena et al., 2020). Previous studies have also indicated the combined 

effects of climate change and existing (or planned) reservoirs on the river flow of 

Mekong’s tributaries (Ngo et al., 2018; Piman et al., 2015). In addition, (MRC, 2018) 

reported a significant decrease in hydropower production in Southeast Asia Countries 

such as Thailand, Laos, Vietnam and Cambodia by 2060 during the GISS scenario. 

Therefore, predictions of climate change effect cloud increase the awareness of decision-

makers to adopt policies and management procedures for rivers and infrastructure (Pahl-

Wostl, 2007). 

Several studies indicated the advantages of considering forecast information to improve 

reservoir operation efficiency (Alemu et al., 2011; Faber and Stedinger, 2001; Kim et al., 

2007; Nohara et al., 2016; Nohara and Hori, 2018). Another approach that may improve 

the efficiency of decision-making on reservoir operation is to consider forecast 

information. 

To assess the effect of climate change on water resources, a hydrological model is 

widely used. The distributed hydrologic model based on a kinematic wave approximation 
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with surface and subsurface flow components (DHM-KWSS) is a well-known model and 

applicable to basins with climatic conditions similar to those of such Japanese basins 

(Kim et al., 2011; Sayama et al., 2006; Takasao and Shiiba, 1988). However, describing 

hydrological behavior under different conditions is difficult (Hunukumbura et al., 2012). 

Therefore, improving the DHM-KWSS structure for estimating long-term river discharge 

in a tropical climate basin is an initial requirement for assessing the change of hydrologic 

conditions due to climate change. Furthermore, to assess the effect of reservoir operation 

on river flow and hydropower production under various climate scenarios, the integrated 

model that combines a distributed hydrologic model and reservoir-hydropower plant 

model is required to develop. 

Assessment of the effect of climate uncertainty on reservoir operations and its 

introduction on the approaches to operate the large-scale reservoir in a tropical climate 

basin such as in the Southeast Asian region to cope with the effect is a key and interest 

for water management effectively in hydropower production and irrigation purpose as 

well. Furthermore, introducing forecast information to the real-time decision-making for 

increasing the effectiveness of reservoir operation should be examined. This information 

will be helpful for stakeholders to propose the strategies of water resources management. 

 

1.2 Objective 

The main goal of this thesis is to assess the impact of climate change on reservoir 

operations and examine the approaches to operate the large-scale reservoir in a tropical 

climate basin on the uncertainty of hydrologic conditions driven by the future climate 

conditions. The specific objectives of each interest are as follows. 

 To improve the structure of a distributed hydrological model to predict the long-

term river flow that is an initial requirement for reservoir operation study in a 

tropical climate basin where there is a primary difference in hydrologic condition 

between wet and dry seasons. 

 To couple the hydrologic model with the reservoir-hydropower plant process for 

assessing the impact of reservoir operation on river flow and energy production. 
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 To predict future river flow and energy production in various climate change 

scenarios using a large ensemble climate model. 

 To introduce the strategies on reservoir operation for hydropower generation to 

cope with the effect of climate change. 

 To examine the approaches for introducing the real-time ensemble weather 

forecast to reservoir operation for hydropower and irrigation benefit. 

 

1.3 Outline of thesis 

This thesis mainly focuses on the effect of future climate on a large-scale reservoir 

operation and introduces the approach to cope with the uncertainty on the hydrologic 

condition. For this purpose, the integrated model that combines hydrologic and reservoir-

hydropower plant models have been developed to access the impact on water resources 

and to examine the operation of the reservoir. 

Therefore, all contents in a total of six (6) chapters are related to the step-by-step 

developments of an integrated model, projection of future river flow and hydropower 

production, and the introduction of the real-time forecast for optimization of reservoir 

operation.  

Chapter 2 illustrates the structural improvement of a distributed hydrological model for 

better results on long-term river discharge prediction in the Nam Ngum River, the main 

tributary of the Mekong River, by incorporating bedrock aquifers as part of the slope flow 

component of the original model structure. To find the suitable model structure, three 

types of bedrock groundwater structures are configured to incorporate with the original 

model structure. The parameter set is optimized based on the available physical data for 

each structure type. Using an application of this improved model, the simulated long-term 

river discharge results in better performance compared to the original model structure. 

Chapter 3 illustrates the development of a reservoir-hydropower plant model and 

incorporates it into a distributed hydrological model (Chapter 2) to evaluate the effect of 

dam operation on river discharge and power generation. The model composes of reservoir 

power generation and hydrological processes with a concept of a kinematic wave-based 
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assumption. The coupling model is applied to assess the impact of hydropower 

development in the Nam Ngum Basin in Lao PDR in various stages of dam development. 

Chapter 4 assesses the sensitivity of the Nam Ngum 1 reservoir in Laos PDR to the 

uncertainty of water resources driven by a combination of climate change and upstream 

cascade dam development using a large ensemble of future climate projections. The future 

climate variables are projected based on the delta method in various scenarios. The 

climate variables such as precipitation, actual evapotranspiration and reservoir 

evaporation are input into the coupling model (Chapter 3) as forcing data to project future 

river flow and hydropower production. The strategies to cope with the effect of climate 

change on hydropower generation is discussed. 

Chapter 5 examines the approaches for introducing ensemble weather forecast to 

reservoir operation for hydropower and irrigation benefit in Thailand. The medium-range 

ensemble precipitation forecasts are employed with the hydrologic model to predict real-

time reservoir inflow. Data assimilation is applied to determine the initial condition of the 

model before performing the inflow forecasts. Moreover, the effect of the initial 

conditions on inflow forecast has been assessed based on differences in data assimilation 

procedures. Real-time optimization of the one-week advance water release strategy for 

hydropower generation and irrigation is conducted with different scenarios using dynamic 

programming considering inflow predictions. 

Finally, the chapter 6 presents concluding remark of the thesis. 
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Chapter 2 Structural improvement of a kinematic wave-
based distributed hydrologic model to estimate long-term 
river discharge in a tropical climate basin 

 

A distributed hydrologic model based on a kinematic wave approximation with surface 

and subsurface flow components is applicable to basins that have temperate climatic 

conditions similar to basins in Japan. However, it is difficult to present long-term river 

discharge using the existing model structure in basins with different climatic conditions. 

This study aims to improve the model structure for better results of estimates of long-

term discharge in the Nam Ngum River, the main tributary of the Mekong River, by 

incorporating bedrock aquifers as part of the slope flow component of the original model 

structure. Three bedrock groundwater structures are configured to incorporate with the 

original model structure. The results show that a combination of the original model 

component and one unconfined aquifer structure are the best representations of the river 

flow regime from the original model structure, in which the rate of infiltration from the 

layer into the bedrock aquifer was calculated using vertical hydraulic conductivity. The 

Nash–Sutcliffe efficiency coefficient of the original and improved models increased from 

0.8 to 0.86 during the calibration period and from 0.56 to 0.62 during the validation period. 

The results of this study show that the improved model structure is applicable for long-

term hydrologic predictions in Southeast Asian catchments with distinct dry and rainy 

seasons (Meema and Tachikawa, 2020). 

 

2.1 Introduction 

Rapid regional growth and energy demands from neighboring countries have prompted 

plans to build numerous dams along the mainstream and tributaries of the Mekong River 

(Kummu and Varis, 2007). A dam reservoir, which controls rivers for both water use and 

flood control, can play a significant role in effectively managing water resources (Nohara 

et al., 2016). Thus, the efficient operation of large-scale water infrastructure such as dam 
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reservoirs requires a good estimation of long-term river discharge for reservoir operation 

plans, water resource management, and flood control. 

The distributed hydrologic model based on a kinematic wave approximation with 

surface and subsurface flow components (DHM-KWSS) is a well-known model used to 

describe rainfall-runoff processes for many river basins in Japan where most of the basins 

have steep slopes (Kim et al., 2011; Sayama et al., 2006; Takasao and Shiiba, 1988). The 

DHM-KWSS is applicable to basins with climatic conditions similar to those of such 

Japanese basins. However, describing hydrological behavior under different conditions, 

such as arid basins, is difficult (Hunukumbura et al., 2012). Tanaka and Tachikawa (2015) 

applied 1K-DHM with a DHM-KWSS structure to two river basins in Europe and 

Australia that have different climatic conditions than those in Japan for a long-term river 

flow simulation. The results of this study showed that the model structure of the DHMs-

KWSS is applicable to river basins in temperate climatic conditions but has difficulty 

describing rainfall-runoff processes in semi-arid basins. Tanaka (2016) has suggested that 

to improve the long-term river flow estimation, especially in the dry season, future studies 

should incorporate a groundwater component into the model structure. 

Katsura et al. (2008) found that the infiltration of water from soil into the weathered 

bedrock was the dominant factor and that the underlying bedrock makes important 

contributions to water flow. Several previous studies adopted a reservoir or multi-

reservoir with linear, non-linear, or combined relationships to generate baseflow in 

hydrologic models (Ferket et al., 2010; Luo et al., 2012; Samuel et al., 2012). 

In this study, the 1K-DHM was applied to estimate long-term river discharge in a 

tropical climate basin—the Ngum River basin in Lao People's Democratic Republic. The 

results show that explaining the hydrological behavior of a tropical climate basin using 

the original 1K-DHM model structure that includes only surface conditions (i.e. 

topography and land cover) and surface soil layer properties is difficult. Therefore, the 

main objective of this paper is to improve the DHM-KWSS structure for estimating long-

term river discharge in a tropical climate basin by incorporating three bedrock 

groundwater structures, including unconfined and confined aquifers into the 1K-DHM. 

The parameter values for each model structure are identified using the SCE-UA algorithm, 



Structural improvement of a kinematic wave-based distributed hydrologic model to estimate long-term 
river discharge in a tropical climate basin 

9 
 

and the performance of models with three aquifer structures was evaluated for five years, 

not including identification periods. 

 

2.2 Applying 1K-DHM to the Nam Ngum River Basin 

2.2.1 General description of 1K-DHM 

The 1K-DHM is a distributed hydrological model based on a kinematic wave flow 

approximation that considers surface-subsurface flow. The elevation and flow direction 

are determined using topographical data provided by HydroSHEDS (Lehner et al., 2006) 

with digital elevation models (DEMs) at 30 second (approximately 1 km) resolution.  

Each cell of 1K-DHM consists of river and slope flow components (Tanaka and 

Tachikawa, 2015). The schematic drawing of 1K-DHM is shown in Fig. 2.1. Discharge 

from the slope flow components on both sides of the river-channel component is 

estimated using rainfall input to the cell with the following discharge-storage relationship 

in Eq. 2.1 that considers surface-subsurface flow components (Tachikawa et al., 2004). 

An influence of the catchment land cover in 1K-DHM is explained by considering the 

Manning’s roughness coefficient of the surface flow condition on the soil surface 

component (ns) as expressed in the equation below. 

𝑞௦(ℎ௦) =

⎩
⎪
⎨

⎪
⎧𝑑௠𝑘௠ ൬

ℎ௦

𝑑௠
൰

ఉ

𝑖                                                     (0 ≤ ℎ௦ ≤ 𝑑௠)

𝑑௠𝑘௠𝑖 + (ℎ௦ − 𝑑௠)𝑘௔𝑖                                  (𝑑௠ ≤ ℎ௦ ≤ 𝑑௔)

𝑑௠𝑘௠𝑖 + (ℎ௦ − 𝑑௠)𝑘௔𝑖 +
√𝑖

𝑛௦
              (ℎ௦ − 𝑑௔)௠(𝑑௔ ≤ ℎ௦)

 (2.1) 

where qs is runoff per unit slope width, hs is water depth, dm is the maximum water content 

in the capillary pore, km is hydraulic conductivity when the capillary pore is saturated, β 

is an exponent parameter that describes the relationship between hydraulic conductivity 

and water content, da is the maximum water content in the effective porosity, ka is 

saturated hydraulic conductivity, ns is the Manning’s roughness coefficient for surface 

flow in the slope flow component, i is slope gradient, and m = 5/3.  

Eq. 2.1 represents the qs − hs relationship for the surface and subsurface soil layer which 

realizes three flow mechanisms including subsurface flow through capillary pore, 
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subsurface flow through non-capillary pore and surface flow on the soil layer as shown 

in the conceptual soil model in Fig. 2.3. At a slope segment, when the water depth is 

lower than the equivalent water depth for unsaturated flow (dm), flow is simulated by 

Darcy’s law with an unsaturated hydraulic conductivity (km). If the water depth exceeds 

the equivalent depth for unsaturated flow, the saturated subsurface flow is simulated by 

Darcy’s law with saturated hydraulic conductivity (ka). And when the water depth is 

greater than the effective soil layer (da = γD where γ is the soil porosity and D is the total 

soil depth), the water flows as surface flow which is calculated by Manning’s equation. 

The water depth (hs) and discharge per unit slope (qs) can be calculated by combining Eq. 

2.2 with the continuity equation showed below. 

𝜕ℎ௦

𝜕𝑡
+

𝜕𝑞௦

𝜕𝑥
= 𝑟 − 𝑒 (2.2) 

  The discharge from the slope flow component on both sides of the river channel (2qs) as 

shown in Fig. 2.1 is distributed into the river-channel component as the lateral discharge 

per unit length. The discharge from upper cells is assigned as the boundary condition into 

the river-channel component of the cell. River flow of the river-channel component is 

simulated by the following 1-D kinematic wave equations 

𝑄 = 𝛼𝐴௠ (2.3) 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 2𝑞௦ (2.4) 

where Q is the river discharge, A is the cross-sectional area, 𝛼 = ඥ𝑖௢/(𝑛𝐵௠ିଵ) (where n 

is the Manning’s roughness coefficient of the channel; io is the slope gradient of the 

channel and B is the channel width), m = 5/3 and qs is the total runoff from the slope flow 

component of a unit cell. 



Structural improvement of a kinematic wave-based distributed hydrologic model to estimate long-term 
river discharge in a tropical climate basin 

11 
 

 

Fig. 2.1 Schematic of flow simulation in 1K-DHM. 

 

 

Fig. 2.2 Conceptual of soil surface model. 

 

  To calculate water depth (hs) and discharge per unit slope (qs), the combination of Eq. 

2.1 and Eq. 2.2 is derived as a nonlinear first-order partial differential equation which 

describes the change of qs and hs in time and space. This equation can be solved by using 

numerical methods. There are several methods such as the finite difference method, the 

finite element method, and the finite volume method. For 1K-DHM, the finite difference 
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method is used to solve the equation. There are two types of finite difference method 

which are explicit and implicit methods. Explicit methods evaluate all spatial derivatives 

in a partial differential equation at the time level where the solution is known. Implicit 

methods evaluate all spatial derivatives at the time level where the solution is unknown. 

Generally, implicit methods are more complex than explicit methods. However, the 

implicit method is better in numerical stability. 

  To apply the finite difference method for the numerical solution of the kinematic wave 

model, the propagation velocity (c) is introduced. Regarding to Eq. 2.1, the propagation 

velocity of the kinematic wave is determined as follows. 

𝑐 =
𝑑𝑞௦

𝑑ℎ
௦

= 𝑓 ඁቀℎ
௦
ቁ =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝛽𝑘௠ ൭
ℎ

௦

𝑑௠
൱

ఉିଵ

𝑖                             ቀ0 ≤ ℎ
௦

≤ 𝑑௠ቁ

𝑘௔𝑖                                                  ቀ𝑑௠ ≤ ℎ
௦

≤ 𝑑௔ቁ

𝑚
√𝑖

𝑛௦
ቀℎ

௦
− 𝑑௔ቁ

௠ିଵ
+ 𝑘௔𝑖                    ቀ𝑑௔ ≤ ℎ

௦
ቁ

 (2.5) 

 

So, the continuity equation in the Eq. 2.2 can be rewritten as. 

𝜕𝑞௦

𝜕𝑡
+ 𝑐 ൭

𝜕𝑞௦

𝜕𝑥
− (𝑟 − 𝑒)൱ = 0 (2.6) 

 

  Following a finite difference solution (Beven, 1979), the Eq. 2.6 can be rewritten by 

using the grid scheme as shown in Fig. 2.3 that sets the values of 𝑞௦௝
௜ , 𝑞௦௝ାଵ

௜  and 𝑞௦௝
௜ାଵ to 

determine the value of 𝑞௦௝ାଵ
௜ାଵ  which can be written as 

𝒒𝒔𝒋ା𝟏
𝒊ା𝟏 =

𝒒𝒔𝒋శ𝟏
𝒊 ା𝜽𝒄𝒋శ𝟏/𝟐

𝒊శ𝟏 𝜟𝒕ቌ
𝒒𝒔𝒋

𝒊శ𝟏

𝜟𝒙
ା൫𝒓𝒊శ𝟏ି𝒆𝒊శ𝟏൯ቍି(𝟏ି𝜽)𝒄𝒋శ𝟏/𝟐

𝒊 𝜟𝒕ቌ
𝒒𝒔𝒋శ𝟏

𝒊 ష𝒒𝒔𝒋
𝒊

𝜟𝒙
ି൫𝒓𝒊ି𝒆𝒊൯ቍ

𝟏ା𝜽𝒄𝒋శ𝟏/𝟐
𝒊శ𝟏 𝜟𝒕

𝜟𝒙

  
(2.7) 

 



Structural improvement of a kinematic wave-based distributed hydrologic model to estimate long-term 
river discharge in a tropical climate basin 

13 
 

 

Fig. 2.3 Finite difference mesh used in kinematic model. 

 

2.2.2 Nam Ngum River Basin and data input 

  The Nam Ngum River basin located in the central part of Lao People's Democratic 

Republic is one of the main tributaries of the Mekong River. The catchment area of the 

Nam Ngum River basin at the Naluang station is approximately 4852 km2. The basin has 

a tropical climate condition where the whole area of the basin has distinct dry and rainy 

seasons. The mean annual precipitation in the basin is approximately 1765 mm, and high 

discharge always occurs in the wet season from May to October. Rainfall during this 

period accounts for 85% of the annual rainfall. During the dry season, there is less rainfall, 

however, the basin can maintain and contribute low flow to the river. According to a map 

of the depth to bedrock (DTB) (Shangguan et al., 2017) as shown in Fig. 2.4, the average 

DTB in the study basin is 3.1 m with a standard deviation of 2.55 m. Daily precipitation 

from 4 stations (Xiengkhuang, Kasy, Vangvieng and Naluang) and observed river 

discharge at the Naluang station were collected for use in this study. 

  For long-term river discharge simulation, actual evapotranspiration (AET) is required. 

Information on evapotranspiration is not available in the study area. Therefore, AET was 

estimated based on water balance calculated from observed annual river discharge at the 
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Naluang station and the annual amount of basin rainfall. The estimation of AET over the 

basin is shown in Fig. 2.5. 

 

Fig. 2.4 General physical condition of Nam Ngum River Basin (a) watershed boundary 

with rain gauges location; (b) DTB map of Naluang catchment (Shangguan et al., 2017); 

(c) aquifer storage map of Naluang catchment (Viossanges et al., 2018). 
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Fig. 2.5 Estimation of long-term actual evapotranspiration. 

 

2.2.3 Result and discussion on applying 1K-DHM to the basin 

The simulation optimized soil depth parameters – such as effective soil porosity depth 

(da) – to be much larger than the average DTB of the basin as shown in Fig. 2.4b so as to 

maintain river discharge in the dry season. The range of porosity for an unconsolidated 

deposit is approximately 0.25–0.7 (Freeze and Cherry, 1979); thus, the range of da should 

be from 0.8–2.2 m. However, the calibrated soil depth of the original 1K-DHM structure 

is much larger (the value is shown in a later section). The thick soil layer also resulted in 

an underestimation of the river discharge during the transition from the dry to the wet 

season. Thus, the existing model structure that considers only surface conditions (i.e. 

topography and land cover) and the properties of the soil surface layer does not explain 
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the hydrological behavior of a tropical climate basin that has distinct dry and rainy 

seasons. Therefore, this study aims to improve the model structure of the 1K-DHM for a 

better estimation of long-term river discharge in the basin. 

 

2.3 Improvement of the model structure 

Shallow and deep bedrock aquifers are analyzed in this study based on the literature on 

conceptual aquifer models described in the introduction section. Three aquifer structures 

are configured to incorporate the 1K-DHM by adding a single or multi aquifer of bedrock 

into the surface-subsurface component (soil surface) of the original model structure. The 

schematic of each slope flow model and discharge-storage relationship for each 

component are summarized in Fig. 2.6, and the description of each structure is provided 

below. 

2.3.1 Model structure 1 (M1) 

   M1 consists of the surface-subsurface flow, shallow aquifer, and deep aquifer 

components on the slope unit.  

2.3.1.1 Surface-subsurface flow component 

  The surface-subsurface flow component has the same structure as the original 1K-DHM 

(M0) (explained in Section 2.2.1). Thus, the discharge-storage relationship applies the 

same formula as M0, as expressed in Eq. 2.1. To consider the vertical infiltration from 

the surface-subsurface flow component into the shallow aquifer bedrock, the continuity 

equation of the soil surface layer is modified as follows: 

𝜕ℎ௦

𝜕𝑡
+

𝜕𝑞௦

𝜕𝑥
= 𝑟 − 𝑒 − 𝑝௨ (2.8) 

where t is time, x is the space coordinate, r is rainfall intensity, e is actual 

evapotranspiration (AET), hs is the water depth in the soil surface component, qs is the 

discharge per unit width of the soil surface component, and pu is the vertical infiltration 

rate from the surface soil layer into the shallow aquifer. 
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Fig. 2.6 Schematic conceptual of all model structures and their discharge-storage 

relationship. 

 

2.3.1.2 Unconfined aquifer component 

  The shallow groundwater aquifers of river basins are predominantly unconfined, 

suggesting that the relationship between baseflow and storage is nonlinear (Wittenberg, 

1999). Banks et al., (2009) described the flow through bedrock as being controlled by the 

fracture network and connectivity. This study assumed that some part of the groundwater 

flowed out from the soil layer boundary, infiltrated into the bedrock, flowed through the 

underlying bedrock and the connected rock fracture, and contributed to the river discharge. 

According to Darcy’s law, the total discharge per unit width of the unconfined aquifer 

qu(hu) is expressed as:  

𝑞௨(ℎ௨) = 𝑘௨(ℎ௨)𝑖ℎ௨ = 𝑘௨ ൬
ℎ௨

𝑑௨
൰ 𝑖ℎ௨ = 𝛼௨ℎ௨

ଶ (2.9) 

where du is the total effective depth of rock fracture in the unconfined bedrock aquifer as 

shown in Fig. 2.7; hu is the total water depth in the fracture of the aquifer; ku is the 
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hydraulic conductivity that corresponds to the actual cross-sectional area of flow in the 

rock fracture. In the unconfined aquifer, the hydraulic conductivity is assumed to decrease 

when hu decreases; therefore, the hydraulic conductivity is assumed to be 𝑘௨(ℎ௨) =

𝑘௨(ℎ௨ 𝑑௨⁄ )ఉೠ , where βu is a parameter that corresponds to the reduction of hydraulic 

conductivity in the unconfined aquifer (in this study , βu is assumed to be 1), i is the 

gradient of the hillslope, and 𝛼௨ =  𝑘௨𝑖 𝑑௨⁄ . 

The unconfined aquifer in a slope unit is calculated by the following continuity equation: 

𝜕ℎ௨

𝜕𝑡
+

𝜕𝑞௨

𝜕𝑥
= 𝑝௨ − 𝑝௖ (2.10) 

where pc is the vertical infiltration from the unconfined aquifer to the confined aquifer. 

 

 

Fig. 2.7 Conceptual of bedrock aquifer model. 

2.3.1.3 Confined aquifer component 

  A deep aquifer can be defined as a confined aquifer with a linear discharge-storage 

relationship. For the confined aquifer, dc is the total effective depth of the rock fracture 

in the confined bedrock aquifer, and hc is the total water depth in the rock fracture of the 

aquifer. kc is the hydraulic conductivity that corresponds to the actual cross-sectional area 

of the flow in the rock fracture. Thus, the total discharge per unit width qc(hc) can be 

calculated by:  

𝑞௖(ℎ௖) = 𝑘௖𝑖ℎ௖ = 𝛼௖ℎ௖ (2.11) 

where 𝛼௖ =  𝑘௖𝑖. 
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The confined aquifer in a slope unit is calculated by the following continuity equation:  

𝜕ℎ௖

𝜕𝑡
+

𝜕𝑞௖

𝜕𝑥
= 𝑝௖ (2.12) 

  The total discharge from all slope flow components on both sides of the river channel 

(2qs, 2qu, and 2qc) contributes to the river channel component as the lateral discharge per 

unit length. Consequently, the continuity equation of a river channel flow model was 

modified as follows: 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 2(𝑞௦ + 𝑞௨ + 𝑞௖) (2.13) 

where A is the river cross-section area, Q is the river discharge, and the relation 𝑄 = 𝛼𝐴௠ 

(𝛼 = ඥ𝑖௢/(𝑛𝐵௠ିଵ) where n is the Manning’s roughness coefficient of the channel; io is 

the slope gradient of the channel and B is the channel width, m = 5/3) is assumed based 

on the kinematic wave flow assumption. 

2.3.2 Model structure 2 (M2) 

  The structure of M2 is similar to that of M1 but consists of only an unconfined aquifer. 

Thus, M2 consists of two main components on the slope unit – the surface-subsurface 

flow and the unconfined aquifer components.  

  The surface-subsurface flow component is calculated with the same discharge-storage 

relationship as M1 with the continuity equation in Eq. 2.8. For the unconfined aquifer 

component, the discharge per unit width (qu) is calculated using Eq. 2.9 and the continuity 

equation in Eq. 2.10, where the vertical infiltration from the unconfined aquifer to the 

confined aquifer (pc) is set to 0. For a river channel flow model, the total lateral discharge 

from the confined aquifer component (qc) in Eq. 2.13 is set to 0. 

2.3.3 Model structure 3 (M3) 

  The structure of M3 is similar to that of M2 and consists of two main components on 

the slope unit: the surface-subsurface flow and the unconfined aquifer components. The 

difference between M3 and M2 is the estimation of the vertical infiltration from the soil 

surface layer to the unconfined aquifer (pu), in which M3 is introduced as the vertical 

hydraulic conductivity (kv) to calculate the infiltration rate. 
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2.3.4 Estimation of vertical infiltration 

  To estimate the amount of vertical infiltration into the bedrock, the storage routing 

technique (Arnold et al., 1998) was adopted. The storage routing technique is based on 

the equation  

𝑑𝑆

𝑑𝑡
= −𝑝 (2.14) 

where p is infiltration rate and S is the water content in the layer which can be expressed 

with following storage function:  

𝑆(௧) = 𝑘 ∙ 𝑒𝑥𝑝 ൬−
𝑡

𝑇
൰ (2.15) 

where k is the constant value, t is the current time and T is the infiltration time of water 

from the upper layer. 

  The estimation of the vertical infiltration rate from the soil layer to the unconfined 

aquifer (pu) in this model follows the assumption that the infiltration process occurs when 

the water content in the soil layer exceeds the unsaturated flow condition (hs > dm). Thus, 

by adopting the storage routing technique, pu can be calculated using the numerical 

solution as follows: 

𝑝௨ = ቐ

  0                                                                     (0 ≤ ℎ௦ ≤ 𝑑௠)

  (ℎ௦ − 𝑑௠) ൤1 − 𝑒𝑥𝑝 ൬
−𝛥𝑡

𝑇
൰൨ 𝛥𝑡ൗ                     (𝑑௠ < ℎ௦)

 (2.16) 

where dm is the capillary depth, Δt is the time step and T is calculated by 𝑇 =

(ℎ௦ − 𝑑௠) 𝑘⁄ . For M1 and M2, the saturated hydraulic conductivity in the soil layer (ka) 

is used for k; the vertical hydraulic conductivity (kv) is used for M3. 

  Only the M1 structure considers the confined aquifer, and the vertical infiltration from 

the unconfined aquifer to the confined aquifer (pc) is calculated using the numerical 

solution as follows: 

𝑝௖ = ℎ௨ ൤1 − 𝑒𝑥𝑝 ൬
−𝛥𝑡

𝑇
൰൨ 𝛥𝑡ൗ  (2.17) 

where 𝑇 = ℎ௨ 𝑘௨⁄ . 
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  The infiltration from the upper component does not occur when the storage in the aquifer 

component is filled full of water. 

 

2.4 Numerical solution for the improved models 

2.4.1 Surface-subsurface flow component 

  The numerical solution for the surface-subsurface flow component is similar to the 

original model. By adding the vertical infiltration (pu) from the surface-subsurface flow 

component into the shallow aquifer bedrock into the continuity equation of the soil 

surface layer as expressed in Eq. 2.1, Eq. 2.6 and Eq. 2.7 can be rewritten as follows: 

𝜕𝑞௦

𝜕𝑡
+ 𝑐 ൭

𝜕𝑞௦

𝜕𝑥
− (𝑟 − 𝑒 − 𝑝௨)൱ = 0 (2.18) 

 

𝑞௦௝ାଵ
௜ାଵ =

௤ೞೕశభ
೔ ାఏ௖ೕశభ/మ

೔శభ ௱௧ቌ
೜ೞೕ

೔శభ

೩ೣ
ା൫௥೔శభି௘೔శభି௣ೠ

೔శభ൯ቍି(ଵିఏ)௖ೕశభ/మ
೔ ௱௧ቌ

೜ೞೕశభ
೔ ష೜ೞೕ

೔

೩ೣ
ି൫௥೔ି௘೔ି௣ೠ

೔൯ቍ

ଵାఏ௖ೕశభ/మ
೔శభ ೩೟

೩ೣ

  

(2.19) 

2.4.2 Unconfined aquifer component 

  For the numerical solution of the bedrock aquifer, a similar concept of kinematic wave 

assumption with the surface-subsurface layer is applied. Regarding to Eq. 2.9, the 

propagation velocity of the kinematic wave in the unconfined aquifer (cu) is determined 

as follows. 

𝑐௨ =
𝑑𝑞௨

𝑑ℎ௨
= 𝑓 ඁ(ℎ௨) = 𝛼௨ℎ௨ (2.20) 

And the continuity equation of the unconfined aquifer in the Eq. 2.10 can be rewritten as. 

𝜕𝑞௨

𝜕𝑡
+ 𝑐௨ ൭

𝜕𝑞௨

𝜕𝑥
− (𝑝௨ − 𝑝௖)൱ = 0 (2.21) 

  Following a finite difference solution (Beven, 1979), the Eq. 2.21 can be rewritten by 

using the grid scheme as shown in Fig. 2.3 that sets the values of 𝑞௨௝
௜ , 𝑞௨௝ାଵ

௜  and 𝑞௨௝
௜ାଵ to 

determine the value of 𝑞௨௝ାଵ
௜ାଵ  which can be written as follow; 
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𝑞௨௝ାଵ
௜ାଵ =

௤ೠೕశభ
೔ ାఏ௖ೠೕశభ/మ

೔శభ ௱௧ቌ
೜ೠೕ

೔శభ

೩ೣ
ା൫௣ೠ

೔శభି௣೎
೔శభ൯ቍି(ଵିఏ)௖ೠೕశభ/మ

೔ ௱௧ቌ
೜ೠೕశభ

೔ ష೜ೠೕ
೔

೩ೣ
ି൫௣ೠ

೔ି௣೎
೔൯ቍ

ଵାఏ௖ೠೕశభ/మ
೔శభ ೩೟

೩ೣ

  
(2.22) 

For M2 and M3, pc is set to 0. 

2.4.3 Confined aquifer component 

Regarding to Eq. 2.11 and Eq. 2.12, the propagation velocity of the kinematic wave 

(cc) and the continuity equation in the confined aquifer layer can be expressed as follows. 

𝑐௖ =
𝑑𝑞௖

𝑑ℎ௖
= 𝑓 ඁ(ℎ௖) = 𝛼௖ (2.23) 

𝜕𝑞௖

𝜕𝑡
+ 𝑐௖ ൬

𝜕𝑞௖

𝜕𝑥
− 𝑝௖  ൰ = 0 (2.24) 

 

To determine  𝑞௖௝ାଵ
௜ାଵ ,  the values of 𝑞௖௝

௜ , 𝑞௖௝ାଵ
௜  and 𝑞௖௝

௜ାଵ are set as known value in a 

finite difference equation as expressed below. 

 

𝑞௖௝ାଵ
௜ାଵ =

௤೎ೕశభ
೔ ାఏ௖೎ೕశభ/మ

೔శభ ௱௧൭
೜೎ೕ

೔శభ

೩ೣ
ା௣೎

೔శభ൱ି(ଵିఏ)௖೎ೕశభ/మ
೔ ௱௧൭

೜೎ೕశభ
೔ ష೜೎ೕ

೔

೩ೣ
ି௣೎

೔൱

ଵାఏ௖೎ೕశభ/మ
೔శభ ೩೟

೩ೣ

  (2.25) 

 

2.5 Calibration and validation process of the improved model 

The simulation is divided into the calibration and validation stages. Due to data 

availability and the condition of the basin (without upstream dam reservoirs), 1990 was 

selected as the calibration period, and 1991–1995 was selected as the validation period. 

For each model, the SCE-UA algorithm (Duan et al., 1994) was applied to optimize the 

model parameters by searching for the parameter with the highest Nash–Sutcliffe 

efficiency coefficient (NSE). The important preparation to identify the parameter set is to 

design the range of the parameters.  

As the optimization process using SCE-UA requires the range of each parameter, 

important preparation to identify the parameter set is needed to design the range value of 



Structural improvement of a kinematic wave-based distributed hydrologic model to estimate long-term 
river discharge in a tropical climate basin 

23 
 

the additional parameters of the aquifer component in the improved models. According 

to the map of shallow groundwater storage in Fig. 2.4c, the average shallow groundwater 

storage (unconfined aquifer storage) in the basin is approximately 1.53 m (30 m of total 

depth of bedrock is considered) which can be ranged from 0.8–4.0 m. For the deep storage 

(confined aquifer storage), we assume that there is less of an influence on the river 

discharge than the shallow aquifer; thus, 15 m of the total depth of bedrock is considered. 

Therefore, the range of dc can be 0.4–2.0 m (assuming that the bedrock is quite 

homogeneous and the porosity is similar to the shallow aquifer). To find ku and kc that 

represents the average hydraulic conductivity in the bedrock aquifers of the basin (kc is 

set smaller than ku based on the assumption that the deeper aquifer has slower hydraulic 

conductivity), the recession part (December, 1990– March, 1991) was manually 

simulated to match the recession hydrograph with the observation discharge in which the 

simulation is based on the assumption that river flow was contributed from the bedrock 

aquifer during that period. An initial condition was assigned to the model at the beginning 

of the simulation equivalent to the observed river flow at that moment. 

We found that the parameters obtained from the recession part simulation should not 

directly be used when processing the optimization of parameters throughout the year 

simulation. This is because it is sometimes difficult to simulate the previous part to meet 

the flow condition at the beginning of the recession period. Therefore, the parameters 

were assigned as the range that is used to the SCE-UA algorithm. The kv was introduced 

to control the amount of infiltration into the aquifer, thus the value of kv should be in the 

range of input rainfall intensity. Due to the lack of hourly observed data in the study area, 

the input rainfall intensity was adopted by dividing the daily amount of rainfall into hourly 

rainfall intensity. 

Finally, to optimize the parameters of M1-M3 with 5 more additional parameters, the 

range of du was designed as 0.8 – 4.0 m; the range of ku was designed as 0.0001–0.001 

m/s; the range of dc was designed as 0.4 – 2.0 m; the range of kc was designed as 0.00001–

0.0001 m/s and the range of kv was designed as 1.0×10-7 – 5.0×10-7m/s. The results of 

optimized model parameters for each model compared with parameter sets obtained from 

river basins in Japan were presented in Table 2.1. 
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Table 2.1 Comparison of optimized model parameters. 

Parameter (Units)  
Nam Ngum Kurokawa1 Katsura1 

M0 M1 M2 M3 M0 

Soil surface 

ns (m-1/3/s) 0.284 0.664 0.094 0.038 0.146 0.400 

ka (m/s) 0.0012 0.0085 0.0075 0.0038 0.0017 0.0005 

da (m) 7.420 2.241 2.173 2.139 1.314 0.380 

dm (m) 7.381 2.071 2.069 1.951 0.987 0.160 

β (-) 24.93 28.68 25.29 27.30 7.87 6.00 

Unconfined aquifer 

ku (m/s) - 0.00029 0.00032 0.00023 - - 

du (m) - 2.417 2.486 1.570 - - 

kv (m/s) - - - 1.16×10-7 - - 

Confined aquifer 

kc (m/s) - 7.83×10-7 - - - - 

dc (m) - 0.572 - - - - 

*  1Tanaka (2016)             

 

2.6 Result and discussion 

According to the optimized parameter sets for the Nam Ngum basin in Table 2.1, the 

effective soil depth parameters such as da and dm are the primary difference between M0 

and M1–M3. M0 attempted to simulate the base flow in the dry season by reflecting a soil 

depth value much larger than that of M1–M3. The comparison of optimized parameters 

between M1–M3 simulated in the Nam Ngum Basin and M0 simulated in Japanese basins 

shows no large difference in the effective soil depth parameters. Nevertheless, M0 for 

Japanese basins was simulated based on large flood events. Therefore, for the long-term 

simulation of M1–M3 in the Nam Ngum Basin, β is set much higher to maintain the base 

flow during the dry season. 

The observed and simulated discharge hydrographs during the calibration and 

validation stages obtained from each model structure at the Naluang station are compared 

in Fig. 2.8. Fig. 2.9 shows the model performance indices, such as the NSE, Root mean 
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square error (RMSE), and Percent bias (PBIAS), of each model during the calibration and 

validation stages. 

All the models presented the characteristics of long-term river discharge in the basin 

with distinct dry and rainy seasons. However, M0 attempts to maintain the base flow 

during the dry season by placing an emphasis on both soil and bedrock groundwater 

processes in only the soil layer component. This resulted in the overly thick da value 

shown in Table 2.1. 

2.6.1 Improvement by M1 and M2 

According to the simulation results, the M1 and M2 hydrograph and performance 

indexes showed similar tendencies. The combination of discharge generated by the 

confined and unconfined aquifers in M1 is similar to the discharge generated by the 

unconfined aquifer in M2. Moreover, the hydrologic processes in the soil layer 

component of the model structure are the same. On the one hand, the result of the river 

flow hydrograph at the basin outlet in M1 is very similar to that of M2. On the other hand, 

the incorporation of the bedrock aquifer into the 1K-DHM structure in M1 and M2 

yielded better model performance indices than M0 for NSE and RMSE for all periods 

(annual, wet, and dry seasons) during the calibration stage. NSE and RMSE also showed 

a better performance in M1 and M2 than in M0 during the validation stage.  
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Fig. 2.8 Hydrograph of observed (black line) and simulated discharge (red line) at 

Naluang station including discharge generated by unconfined aquifer (dash red line; in 

M1 means combination of unconfined and confined aquifers) and confined aquifer (dot 

red line). 
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Fig. 2.9 Evaluation of model performances (Annual means throughout the year, wet 

season means May – October and dry season means January – April and November-

December). 

 

2.6.2 Disadvantages of M1 and M2 

For M1 and M2, the optimized processes control the amount of infiltration by reflecting 

a high value of ka to maintain unsaturated flow conditions in the soil layer. When high 

rainfall intensity causes the water stage in the soil layer (hs) to exceed dm, saturated flow 

conditions occur, and the vertical infiltration process begins. Most rainwater was 
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infiltrated into the bedrock aquifer because of high rates of ka that caused the simulated 

river discharge at the beginning of the rainy season to be underestimated during the 

calibration stage (Fig. 2.8).  Additionally, the recession part of simulated hydrograph 

during the calibration period was higher than the observed hydrograph because of a slow 

discharge rate in the aquifer and the time required to release the infiltrated water that is 

stored in the aquifer components. Therefore, the calculation of the vertical infiltration 

component is required to improve the simulation. 

2.6.3 Improvement by M3 

As mentioned above, the contribution of the confined aquifer in M1 is substituted by 

that of the unconfined aquifer in M2 for this study area. This suggests that developing M3 

based on the M2 structure has more advantages than M1 because, to consider the confined 

aquifer in the model as M1, extra parameters are required which least to a more 

complicated calibration process. 

To appropriately estimate the amount of infiltration, kv was introduced into M3. The 

reduction in the amount of infiltration not only improved the simulation of base flow 

during the recession period, but also captured the peak flow at the beginning of the rainy 

season during the calibration stage (Fig. 2.8). Therefore, M3 provided the best 

performance for all indices such as NSE, RMSE, and PBIAS for all periods (annual, wet, 

and dry seasons) among the modified models during the calibration period. For the 

validation periods, the average annual NSE and RMSE in M3 are quite similar to those 

in M1 and M2; however, PBIAS is smaller, indicating that M3 improved the simulation 

of river discharge obtained in M1 and M2. 

2.6.4 Prediction uncertainties due to limited data accuracy 

Accurate data is necessary to evaluate the performance of the model. One of the reasons 

for the universally poor performance of the models in 1994 may be the uncertainty in the 

observed data. From Aug 29–Sep 15, the amount of rainfall in the basin was 69 mm; 

however, the amount of runoff in the basin reached 290 mm (more than 4 times the rainfall 

amount) (Fig. 2.8). These questionable results suggested underestimation of river 

discharge and explained the poor performance of the model. 
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Moreover, the lack of rainfall stations in the study basin may directly affect the 

performance of the model. By using the nearest neighbor method to distribute the amount 

of rainfall from 4 stations over the Naluang catchment, we found that only 3 main stations 

contributed rainfall values over the catchment as input for the model. This may lead to 

uncertainty in the amount and spatial distribution of rainfall estimation—one of the most 

important factors in the distributed hydrologic model. 

The overestimation in the dry season by all the models may be caused by the AET 

estimation. In this study, AET was roughly estimated by adopting the difference between 

annual rainfall and discharge in the basin and using the average of this amount as daily 

AET input into the model. Consequently, AET might be underestimated during the dry 

season, which, in turn, may have resulted in overestimation of low flow during the dry 

season. 

 

2.7 Conclusions 

The model that combined the soil layer and the unconfined aquifer component with the 

estimation of the vertical infiltration based on kv (M3) best reproduced the river in this 

study. The NSE values for M3 at the calibration and validation stages were 0.86 and 0.62, 

respectively, and notably improved the results of the original model (M0). 

Therefore, by incorporating the bedrock aquifer into the DHM-KWSS model structure, 

the estimation of long-term river discharge – especially low flow in the dry season – was 

explained and improved remarkably. The model improved river discharge estimation and 

produced a reasonable set of parameters that agreed with physical data sets such as DTB 

and groundwater storage in the study area. Furthermore, the result of kv value seemed to 

be reasonable. Maréchal et al. (2004) determined that a horizontal-to-vertical anisotropy 

ratio for hydraulic conductivity close to 10 (kh/kv~10) in the fractured rock aquifer. In this 

study, ku/kv is approximately 70 (consider ku through the total aquifer depth) which shows 

a large difference between ku and kv. This may be caused by the fact that kv responded as 

the infiltration threshold related to the input rainfall intensity (if rainfall intensity is 

smaller than kv, all of rain water is infiltrated). Due to data limitations, the input rainfall 

intensity is estimated by using 24-hour mean rainfall (in which kv of 1.16×10-7 m/s is 
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approximately 12 mm/24 hours). On the other hand, assuming that the 12 mm of rainfall 

occurs in 4 hours (assume that this value is the infiltration threshold), the input rainfall 

intensity might increase 6 times; then kv values could be increased and ku/kv potentially 

close to 10.    

The estimation of rainfall-runoff in the hydrologic model is subject to uncertainties in 

the accuracy of the data, such as the discharge and rainfall amount measurements, and the 

number of rain gauge stations in the basin. Furthermore, a better estimation of AET is 

required to improve long-term river flow prediction in basins with distinct dry and wet 

conditions.   Additionally, further study is required to test the application of the improved 

model in other basins that have similar or different climatic conditions.  
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Chapter 3 Integrated reservoir-hydropower-hydrologic 
model for water resources and energy assessment 

 

This chapter aims to develop a reservoir-hydropower plant model and incorporate it 

into a distributed hydrological model to evaluate the effect of dam operation on river 

discharge and power generation. The model was composed of a reservoir power 

generation and hydrological processes with a concept of a kinematic wave-based 

assumption. By using the integrated model to assess the impact of hydropower 

development in the Nam Ngum Basin in Lao PDR, the results indicated that the change 

of river discharge at the downstream of Nam Ngum 1 reservoir is +218.8% during the dry 

season and –28.5% during the wet season in the full development scenario from the 

natural condition. There is no primary effect on the inflow of the Nam Ngum 1 dam by 

the operation of the under-construction dam. On the other hand, the annual energy product 

of the Nam Ngum 1 has a minor increase (Meema et al., 2020). 

 

3.1 Introduction 

The Mekong River Basin (MRB) spans six countries—China, Myanmar, Lao PDR, 

Thailand, Cambodia, and Vietnam—with approximately 795,000 km2 of the total basin 

area. The catchment area of MRB in Laos PDR is approximately 25% of the total basin 

and contributes 35% of the total flow into the river considered as the most contributed 

country in MRB. Several dams are proposed to develop in the MRB due to rapid regional 

growth and energy demands from neighboring countries. Asian Development Bank 

(ADB, 2019) reported that the country’s exploitable hydro potential is estimated to be 

23,000 MW, and 5,172 MW of hydropower capacity had been operated as of 2017. 

Hydropower makes a significant contribution to the overall economy of the country. 

Based on an analysis of projects to be completed by 2030, total hydropower build-out for 

both domestic and export use will total 16,500 MW or around 70% of estimated potential. 

Several studies reported that the development of large-scale hydropower reservoirs, 

which controls rivers for water use in power generation, can make a significant effect on 
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water resources. For example, Piman et al. (2016) indicated that development of all 

proposed dams in the major tributaries of the Mekong—Sekong, Sesan and Srepok Rivers 

(3S)—will significantly change the seasonal flows. It reported that 88.1% increase in dry 

season flows and 24.7% decrease in wet season flows at the 3S outlet. 

The main objective of this study is to develop a distributed hydrologic model combined 

with a reservoir-hydropower plant process to assess the effect of large-scale hydropower 

dam operation in various scenarios of dam development on water resources and energy 

production. The developed model is applied to the Nam Ngum River Basin (NNRB)—a 

major tributary of the Mekong River—located in Laos PDR, and the effect of dam 

development in terms of change in river flows regime and power generation in various 

scenarios are analyzed. 

 

3.2 Description of study area 

3.2.1 The Nam Ngum River Basin 

The Nam Ngum River Basin (NNRB) is the main Mekong tributary located in the 

central part of Lao PDR. The basin is one of the most important in Lao PDR, in terms of 

size (approximately 16,800 km2 and 7% of the country area). Annual flows contributing 

to the mainstream at the Mekong River is approximately 14%, which is approximately 

40% of country’s contribution to the Mekong River flow. The headwaters of the Nam 

Ngum river are at an elevation of 2,800 m in the northeast of the basin and heads 

southwards for 420 km to its outlet at the Mekong River. Along the downstream of the 

Nam Ngum 1 reservoir, the Nam Ngum river has a gentle slope as it meanders along its 

course. The Vientiane Plain extends from each bank, covering an area of about 2,000 km2 

at elevations of 160 m to 180 m. During the wet season, the plain is influenced by flooding 

on the floodplain. 

The average annual discharge of the Nam Ngum river to the Mekong is approximately 

21,000 million cubic meters (mcm). The flows are very seasonal with the low flow from 

March to April and high flow from August to September. The climate of the Nam Ngum 

Basin is largely tropical with a distinct wet season from June to October and a dry season 

for the rest of the year. The highest temperature is in March and April, where average 
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temperatures range from 30°C to 38°C depending on location and altitude. The lowest 

temperatures occur between November and February on average of 15°C at higher 

elevations—Xiengkhuang Plateau. The mean annual rainfall of the basin is approximately 

2,000 mm which ranges from 1,450 mm to 3,500 mm across the basin. The highest 

amount of rainfall occurs nearby the Vangvieng area and gradually decreases 

northeastward to the Xiengkhuang vicinity. 

3.2.2  Water resources development 

There are currently six hydroelectricity related schemes located in the NNRB with total 

reservoir storage of approximately 15,200 mcm and a combined electricity generation 

capacity of 990 MW. The first hydropower station in the basin is the Nam Ngum 1 (NN1) 

reservoir developed in 1971 with an existing installed capacity of 155 MW. The Nam 

Ngum 1 scheme—the largest among the six hydropower schemes—has a storage capacity 

of 7,010 mcm. The Nam Song diversion project (NS_DV) operated in 1996, diverts 

approximately 3650 mcm/year of water from the Nam Song River into the Nam Ngum 1 

reservoir. The other two hydropower stations—Nam Ngum 2 (NN2) and Nam Lik 1/2 

reservoirs—started operation in 2011 with the installed capacity of 615 MW and 100 MW 

respectively. The Nam Ngum 2 is the major power station located upstream of the NN1 

reservoir with the largest power capacity and the second largest in storage volume of 6270 

mcm (among the dams in the basin). In 2012, the Nam Ngum 5 (NN5) hydropower station 

started operation with an installed capacity of 120 MW. The dam is located on the 

tributary of the Nam Ngum River—Nam Ting River. In addition, the Nam Leuk (NL) and 

the Nam Mang hydropower dams, located outside of the Nam Ngum Basin which started 

operating in 2000 and 2005 respectively, diverting water from the Nam Leuk and Nam 

Mang Basins into the NN1 reservoir and the Vientiane plain, respectively. 

As the NNBR has a significant hydropower potential with high rainfalls and large 

differences in elevation. An additional four dams are at various stages of development 

ranging from planning to construction. In the case that all dams are constructed, bringing 

the total power generation capacity of 1,900 MW and the total storage volume of 17,200 

mcm which is approximately 80% of the total annual river discharge of the Nam Ngum 

River. The location of hydropower stations is shown in Fig. 3.1 and the list of hydropower 

stations in the basin is summarized in Table 3.1. 
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Fig. 3.1 Location of dams in the Nam Ngum River Basin. 
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Table 3.1 List of hydropower stations and other related water resources project in the 

basin. 

Project Status 
Catchment 
area (km2) 

Annual 
inflow 
(mcm) 

Storage at 
full supply 

(mcm) 

Effective 
storage 
(mcm) 

Installed 
capacity 
(MW) 

Within the basin 

Nam Ngum 1 E 8460 12047 7010 4714 155 

Nam Ngum 2 E 5640 6270 6774 2617 615 

Nam Ngum 3 UC 3888 3090 1407 1070 440 

Nam Ngum 4 UC 1748 1512 85.6 72.1 230 

Nam Ngum 5 E 483 719 314 72.4 120 

Nam Lik 1/2 E 1993 2690 1095 na 100 

Nam Lik 1 P 5050 5786 61.3 na 61 

Nam Bak 1 P 597 750 250 na 115 

Nam Bak 2 P 320 400 190 na 68 

Nam Song E 1303 3072 14.2 na - 

Outside the basin 

Nam Mang 3 E 65 na 45 na 40 

Nam Leuk E 274 438 154 na 60 

 

 

3.3 Modeling approach 

The main model component can be divided into two parts—hydrologic process and 

reservoir-hydropower plant process—as shown in the schematic drawing of the integrated 

model in Fig. 3.2. The description of the model development is explained as follows. 

3.3.1 Hydrologic process 

The improved 1K-DHM that incorporates the bedrock aquifer into a slope component 

resulted better in long-term river discharge simulation is selected for the study. A model 

is explained by (Meema and Tachikawa, 2020). 
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Fig. 3.2 Schematic drawing of the integrated model. 

 

3.3.2 Reservoir-hydropower plant process 

A reservoir-hydropower plant process is the process of reservoir routing that the release 

discharge to downstream grid is determined by using the reservoir guide curve method 

(see section 3.3.3). Release is specified for each time step, as well as reservoir level and 

spillage. The reservoir storage is simulated using the law of mass balance as below: 

𝑑𝑆

𝑑𝑡
= 𝑄௜௡ − (𝑄௚௘௡ + 𝑄௦௣௜௟௟) − 𝑆௟௢௦௦௘௦ 𝑑𝑡⁄  (3.1) 

where S is the reservoir storage; t is the time; Slosses is the reservoir storage losses; Qin is 

reservoir inflow; Qgen is the generated discharge through the turbine; and Qspill is the 

spilled discharge expressed as below: 

𝑄௦௣௜௟௟ = ൜
0, 𝑆௧ାଵ ≤ 𝑆௠௔௫

   𝑆௠௔௫ − 𝑆௧ାଵ, 𝑆௧ାଵ > 𝑆௠௔௫
 (3.2) 
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where Smax is the reservoir storage at the full supply level (FSL); St+1 is the storage at the 

end of the time step; and Qgen is estimated by using the release decision model based on 

the multiple zones of reservoir and their operating rules (see section 3.3.3). This process 

provides the target of energy generation (E) that evaluate the release to get the reservoir 

water level to the guide curve (rule curve) at the end of the time step as much possible 

based on the starting reservoir water level and current inflow (Qin). Then, Qgen is 

calculated as follow. 

𝑄௚௘௡ =
𝐸

𝜂 ∙ 𝜌 ∙ 𝑔 ∙ 𝐻
 (3.3) 

where E is generated energy in the time step; η is turbine efficiency; ρ is water density; 𝑔 

is gravitational acceleration; and H is hydraulic head which can be calculated by 

𝐻 = 𝑊𝐿 − 𝑇𝑊𝐿 − 𝐻௟௢௦௦௘௦ (3.4) 

where WL is current reservoir water level obtained using the relationship between 

reservoir elevation−storage (𝑊𝐿 = 𝑓(𝑆)); TWL is downstream tailwater level; and Hlosses 

is the hydraulic losses. 

The reservoir storage losses (Slosses) due to reservoir surface evaporation can be 

expressed as; 

𝑆௟௢௦௦௘௦ = 𝐸𝑉௥௘௦ ∙ 𝐴௥௘௦ (3.5) 

where EVres is reservoir evaporation rate and Ares is the current reservoir surface area in 

which 𝐴௥௘௦ = 𝑓(𝑊𝐿). 

3.3.3 Defining reservoir operation  

The basic of reservoir operation can be described by a seasonal variation of target 

reservoir level which calls guide curve (rule curve). It is proposed as a guideline to 

determine the reservoir release with the basic objective of regulation that the release will 

increase when the reservoir level is above the guide curve and the release will decrease 

when the reservoir level is below the guide curve.  

To simulate the reservoir operation using numerical modeling, determination of water 

release is required at each time step (see Eq. 3.1). For this purpose, the release decision 

scheme called “multiple zones of reservoir operation” is applied. 
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The multiple zones of reservoir operation consist of guide curves, zones and rules. 

“Zones” are operational subdivisions of the reservoir. Each zone is separated by a curve 

called zone separation curve (can have more than one curve for any reservoir). The full 

supply level (FSL) and minimum operation level (MOL) are considered as the zone 

separation also. 

“Rule” is used to represent the target and constraints of release which are applied to 

each zone of the reservoir to define the release decision when the current reservoir level 

is within each zone. 

The purpose of “guide curve” is to use to determine the release to get the target reservoir 

level at the end of the time step as much as possible based on the starting reservoir water 

level and current inflow of the time step. The guide curve can be used as the zone 

separation curve also. 

 

3.4 Applying the integrated model to NNRB 

3.4.1 Input precipitation 

The daily observed data of rainfall from the stations over the NNRB were collected to 

create the gridded rainfall intensity using the nearest neighbor method. The summary of 

annual rainfall for each rain station is presented in Table 3.2. From 2006 to 2009, 

Vangvieng and Naluang are not available and Xaysomboun is incomplete in 2007. 
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Table 3.2 Summary of annual rainfall in study basin. 

Station Hinheup Vangvieng Kasy Naluang Xaysomboun Xienkhuang 

2002 1387.5 3974.5 1349.3 3357.3 2626.7 1862.3 

2003 1278.6 3188.6 1085.5 2110.8 2694.3 1090.3 

2004 2192.3 4104.9 1016.9 2480.1 2847.1 1371.9 

2005 2603.9 4428.2 1140.0 2863.3 3337.7 1736.8 

2006 1946.8   2210.9   2725.6 1364.3 

2007 2528.9   2559.9     1001.5 

2008 2155.6   3433.0   2946.6 1658.4 

2009 2307.4   1983.8   2423.6 1317.9 

2010   4213.8 2940.5   2588.0 1400.8 

2011   4496.2 2844.0   3269.1 1581.7 

2012   3412.5 2742.7   2393.9 1557.9 

2013   4075.6 2549.3   3005.1 1614.8 

 

 

3.4.2 Actual evapotranspiration 

For long-term river flow simulations, actual evapotranspiration (AET) is required; 

however, however, it is the most difficult parameter to measure when calculating a site's 

water balance which is a function of precipitation, temperature, solar radiation, soil water 

storage, wind, canopy and understory interception, and growth rates (Kolka and Wolf, 

1998). For this study, assuming that the error in the water balance calculated from AET 

is equal to zero, the annual AET (Ea) shown in Fig. 3.3a is estimated as follow; 

𝐸௔(𝑖) = 𝑃(𝑖) − 𝑄(𝑖) (3.6) 

where i is year; P is annual average basin rainfall; and Q is the annual river discharge 

(runoff depth) at the basin outlet.  

  To estimate monthly change of AET, the historical data set in a database for Policy 

Decision making for Future climate change (d4PDF) (Mizuta et al., 2017) was used. A 

d4PDF is a data set simulated from a global atmospheric model, which include the 

estimation of the total amount of water transferred from the surface into the atmosphere. 

The monthly average ( 𝑒̅௠ ) of a combination of water transpiration from soil (TS), 

evaporation on soil (ES) and evaporation on leaf (EL) from d4PDF data set with 60-year 

(1951−2010) data and 100 ensembles is used to estimate the seasonal variation of the 
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reference annual AET (Ea). The monthly AET (ea) for each year shown in Fig. 3.3b can 

be calculated as follow. 

𝑒௔(𝑖, 𝑗) = 𝛼(𝑖)𝑒̅௠( 𝑗) (3.7) 

  

where i is year; j is month and 𝛼(𝑖) = 𝐸௔(𝑖) 𝐸ത௠⁄  in which 𝐸ത௠ =  ∑ 𝑒̅௠
ଵଶ
௝ୀଵ (𝑗). 

 

 

Fig. 3.3 (a) long-term estimated AET (b) comparison of mean monthly AET estimation 

 

3.4.3 Selection of the large-scale dam and reservoir input data 

In this study, we focused on the impact of large-scale hydropower reservoirs. Piman et 

al. (2016) defined the large-scale hydropower projects in tributaries of the Mekong with 

installed capacity above 300 MW and/or active storage over 1000 million cubic meters 

(mcm). Therefore, two existing dams—NN1 and NN2—and a proposed dam—Nam 

Ngum 3 (NN3)—met the criteria. The general reservoir data in Table 3.1 is collected as 

the reservoir model input. The reservoir guide curve for NN1 is collected from JICA 

report (JICA, 2010). For NN2, this data is not available, so the reservoir guide curve is 

estimated based on the estimation of reservoir water level as shown in Fig. 3.4. The 

operation rule for each operation zone is estimated based on the operating historical 

record during the calibration period. For the future dam with no data record, the standard 

operation in this region is applied with the criterial that a reservoir tries to keep water in 

the wet season and releases in the dry season with 8-hour of minimum operation. 
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Fig. 3.4 Model input for multiple zones of reservoirs operation. 

 

3.4.4 Reservoir evaporation losses 

Winter (1981) suggests that one of the main approaches to estimate the evaporation of 

a water body is to use the pan coefficient. For this study, the evaporation from the 

reservoir (𝐸𝑉௥௘௦) can simply estimate by the following equation. 

𝐸𝑉௥௘௦ = 𝑘௣ ∙ 𝑃𝐸𝑉 (3.8) 

where kp is pan coefficient (0.7), PEV is the potential evaporation. 

Due to no pan measurement at the reservoirs, the potential evaporation of the basin 

(PEVbasin) is used  in which estimated by adopting the mean monthly pan measurement at 

reference station (𝑃𝐸𝑉௥௘௙) with a monthly delta (∆) of estimated potential evaporation 

(Thornthwaite, 1948) between using mean basin temperature (𝑃𝐸𝑉തതതതതത
௕௔௦௜௡
்ௐ ) and mean grid 

temperature (𝑃𝐸𝑉തതതതതത
௥௘௙.௚௥௜ௗ
்ௐ ) at the reference station extracted from the d4PDF historical 

data set (60-year ×100 ensembles). The mean monthly potential evaporation of the basin 

can be calculated as follow. 

𝑃𝐸𝑉തതതതതത
௕௔௦௜௡(𝑗) = ∆(𝑗) ∙ 𝑃𝐸𝑉തതതതതത

௥௘௙(𝑗) (3.9) 

where j is 1, 2, 3 …, 12 and  
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∆(𝑗) = 𝑃𝐸𝑉തതതതതത
௕௔௦௜௡
்ௐ (𝑗) 𝑃𝐸𝑉തതതതതത

௥௘௙.௚௥௜ௗ
்ௐ (𝑗)ൗ  (3.10) 

   For this study, the mean monthly pan measurement at Xiengkhuang station located in 

the upper part of the basin during 1989−1997 is used as reference data. Fig 3.5b presents 

the comparison of potential evaporation between the reference station (Xiengkhuang) and 

the estimation. The result showed that the estimation of basin averaged potential 

evaporation has a higher trend than the reference. This can describe using Fig. 3.5a that 

shows the mean temperature of the basin average higher than the reference. Furthermore, 

the estimation of reservoir evaporation quite agrees with the actual evaporation from the 

reservoirs in Thailand—considered as a similar climatic condition with the study area—

in which the daily average range from 2.8 to 3.6 mm/day (Rittima et al., 2013). The 

estimated daily reservoir evaporation of 2.4 mm/day for NNRB shows a minor lower than 

the reservoirs in Thailand where the mean temperature is approximately 5−7 ˚C higher 

than the study area. 

 

 

Fig. 3.5 (a) comparison of temperature (b) comparison of potential evaporation. 

 

3.5 Model calibration and validation 

The model setup with calibration and validation processes is required before applying 

the model to assess the impact of dam operation on water resources. The process can be 

divided into two parts as follow. 
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3.5.1 Hydrologic model part 

To calibrate and validate the model for estimation of river discharge to the reservoir, 

the model is set as a natural condition (without dams and water diversion). The natural 

inflow estimated from the record of the NN1 (subtracted by diversion amount) is used to 

evaluate the result of the model. According to data availability, the period of 2002−2005 

is selected to be a calibration period and 2006−2009 is selected to be a validation period. 

For the calibration process, the SCE-UA algorithm was applied to optimize the model 

parameters by searching for the parameters with the smallest root mean square error 

(RMSE). The design range of parameters in this study and the result of the optimized 

parameter set are shown in Table 3.3.  

 

Table 3.3 The optimized hydrologic parameter set. 

Parameter (Units)  Opt. parameter Parameter range 

ns (m-1/3/s) 0.173 0.05 − 0.5 

ka (m/s) 0.002 0.0005 − 0.005 

da (m) 2.060 
0.8 − 2.25 

dm (m) 1.831 

β (-) 27.03 9 − 30 

ku (m/s) 9.83E-05 5.0E-05 − 5.0E-04 

du (m) 1.334 0.8 − 4.0 

kv (m/s) 1.79E-07 1.0E-07 − 5.0E-07 

 

3.5.2 Integrated model part 

The calibration period for reservoir operation of NN1 is 2002−2005. The operation 

record of this period is adopted to estimate the operation rule for each month in each zone 

of the reservoir; then, apply the same rules to validate the model. The multiple zones of 

the reservoirs and their operating rules (operation hour) are shown in Fig. 3.4. For the 

validation process, we divide the process into two stages due to the basin condition. The 

first validation period is 2006−2009 that refers to the stage of the basin before developing 

the NN2 reservoir. The second validation period is 2012−2013 that refers to the current 

stage of the basin. The description of simulation periods for calibration and validation of 

the integrated model are summarized in Table 3.4. 
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Table 3.4 Description of simulation periods for calibration and validation of the 

integrated model. 

Period Year Dams Remark 

Calibration 2002 - 2005 
NN1+NS_DV+NL 

Before NN2 
operation Validation 1 2005 - 2009 

Validation 2  2012 - 2013 NN1+NS_DV+NL+NN2 Existing condition 

 
 

3.6 Model performances results 

3.6.1 Hydrologic model part 

A comparison of river flow into the NN1 in Fig. 3.6 indicated a good agreement 

between the simulation and the reference river discharge. The improved 1K-DHM 

performed well in a long-term river discharge simulation with the NSE and RMSE are 

0.977 and 51.5 m3/s respectively; and PBIAS is 2.4% for the calibration period. For the 

validation period, the NSE, RMSE, and PBIAS are 0.912, 81.2 m3/s, and 5.2% 

respectively. The improved 1K-DHM is well reproducing a long-term river discharge 

simulation with a reasonable parameter set comparing with the available physical data in 

the basin. 
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Fig. 3.6 Comparison of river discharge at the NN1 dam in natural condition between 

simulation and reference. 

 

3.6.2 Integrated model part 

A comparison of inflow to NN1, reservoir water level, generated energy and regulated 

flow between simulation and data record is shown in Fig. 3.7 and the performances are 

summarized in Table 3.5. Even though the model results well in a simulation of reservoir 

inflow with PBIAS of 1.8% during the calibration period. However, an error in the 

volume of inflow affects other parameters. For example, in 2003, the overestimation of 

inflow results in an overestimation of water level in the reservoir because the reservoir 

requires larger storage to keep a larger amount of water. The higher level of reservoir 

results in an overestimation of released discharge for power generation leading to an 

overestimation of energy product as shown in Fig. 3.7. According to this reason, reducing 

an error of the hydrologic process can provide a better result of reservoir simulation.  

The model results well in a simulation of the reservoir water level. For the NN1, the 

historical operation quite follows the reservoir guide curve; therefore, the simulation that 

tries to release discharge to keep the reservoir level at the guide curve target elevation as 

much possible at the end of time step provides a small RMSE of 1.0 m during a calibration 

period and lower than 1.4 m during validation periods It is very hard to capture the release 
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decision made by operators and current demands. On the other hand, the multiple zones 

model provided quite well result in a simulation of energy generation with the PBIAS of 

3.5% during a calibration period and lower than 6.6% during validation periods. The 

model provided well performances with an agreement between the simulation result and 

the operation record. Thus, we consider that the model is applicable to simulate the 

reservoir operation and can be applied to access the impact of dam operation in various 

scenarios. 

 

 

Fig. 3.7 Comparison of inflow (Q_in), reservoir water level (Res_WL), generated energy 

(Energy) and regulated flow (Q_reg) between simulation (Sim.) and reference data (Ref.) 

of the NN1 reservoir. For the horizontal axis, "02−06" is calibration period (2002−2005), 

"06−10" is validation period 1 (2006−2009), and "12−14" is validation period 2 

(2012−2013). (RC: rule curve, FSL: full supply level, MOL: minimum operation level, 

NN2_reg: regulated discharge by NN2 and Spill: spill discharge through the NN1 

spillway) 
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Table 3.5 Model performances of reservoir simulation for the NN1 power station 

(Q_in: reservoir inflow, Res_WL: reservoir water level, Energy: generated energy and 

Q_reg: regulated flow). 

Variables 
Calibration Validation 1 Validation 2  

RMSE PBIAS RMSE PBIAS RMSE PBIAS 

Q_in (m3/s) 51.9 1.8 82.3 4.9 90.3 8.0 

Res_WL (m) 1.0 0.1 1.2 -0.2 1.4 -0.1 

Energy (GWh) 13.9 3.5 14.7 6.6 10.3 2.5 

Q_reg (m3/s) 69.2 1.7 99.3 4.3 100.4 8.1 

 

3.7 Simulated scenarios 

To access the effect of dam development in various stages in the study basin, the 

simulation scenarios can be defined as below. The summary of simulation scenarios is 

presented in the Table 3.6 and the map showing dam location for each scenario is 

presented in Fig. 3.8. 

3.7.1 Baseline scenario (BL) 

The model is set to simulate the river flows in a natural condition (unregulated river 

flow) in which there are no dams and water diversion stations in the simulation. 

3.7.2 Individual NN1 scenario (ID) 

The simulation is considered only the NN1 reservoir. This scenario is referred to as the 

stage of the basin before developing the major water diversion into the NN1 reservoir. 

3.7.3 NN1 and diversion scenario (DV) 

The simulation is considered the NN1 reservoir including the water diversion from 

other river system (NL and NS_DV) into the NN1 reservoir. This scenario is referred to 

as the stage of the basin before developing the other major hydropower stations. 

3.7.4 Existing dam scenario (ED) 

This scenario is referred to as the current stage of the basin in which the simulation 

includes NN1 (with NL and NS_DV diversions) and NN2. 
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3.7.5 Future dam scenario (FD) 

This scenario includes existing dams—NN1 (with NL and NS_DV diversions) and 

NN2—and a proposed large-scale dam (NN3). 

 

 

Fig. 3.8 Dam location for each scenario (a) for ID, (b) for DV, (c) for ED and (d) for 

FD. 
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Table 3.6 Summary of simulation scenarios. 

Scenarios Abbreviation Dam 
No. 
Dam 

Purpose 

Baseline BL - 0 Natural condition 

NN1 individual ID NN1 1 Individual NN1 

River diversion DV NN1+NS_DV+NL 3 Effect of diversion 

Existing Dams ED NN1+NS_DV+NL and NN2 4 Effect of NN2 

Future Dams FD All 5 Effect of proposed dam 

 

3.8 Results and discussion on impact of hydropower development 

  Regarding to the simulation scenarios as shown in section 3.7, the results of simulation 

can be summarized in Table 3.7. The comparison of NN1 dam inflow (Q_in), Reservoir 

water level (Res_WL), generated energy (Energy) and regulated discharge (Q_reg) in 

different scenarios was shown in Fig. 3.9. 

 

Fig. 3.9 Comparison of the NN1 reservoir simulation among the simulated scenarios. 
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Table 3.7 Summary of simulation results for various scenarios (wet season is 

June−October and dry season is November−May). 

Scenarios 
Q_in (m3/s) Energy (GWh) Q_reg (m3/s) Spill 

(mcm) 

Mean 
WL 
(m) Wet Dry Annual Wet Dry Annual Wet Dry Annual 

BL 592.7 108.9 310.5 - - - 592.7 108.9 310.5 - - 

ID 592.7 108.9 310.5 355.5 462.1 817.6 325.5 296.0 308.3 160.8 203.8 

DV 740.4 134.4 386.9 459.0 542.8 1001.7 446.4 332.8 380.1 920.9 206.2 

ED 614.2 224.5 386.9 498.7 582.0 1080.6 423.0 347.6 379.0 346.9 207.5 

FD 603.7 233.6 387.8 503.9 581.8 1085.7 425.2 347.2 379.7 400.5 207.8 

 

3.8.1 Effect of river diversion (DV)  

The impact of river flow and energy of the NN1 due to river diversion is assessed by 

comparing the simulation results between DV and ID (only NN1). The diversion record 

in a period of 2002−2009 from the NS_DV and NL with the mean annual of water 

diversion of 3650 mcm and 350 mcm respectively is used in this simulation. The result 

of the simulation in Table 3.7 presents that the amount of water diversion provides a 

primary increase in water budget for the NN1 reservoir (24.6% increase in the annual 

inflow) and provides a significant increase in the energy product (22.5% increase in the 

annual energy product). Diverted water also changes the seasonal river discharge of the 

Nam Ngum River. 12.4% increase during the dry season and 37.2% increase during the 

wet season in the downstream of the NN1 reservoir are found in this study. 

3.8.2 Effect of the NN2 dam (ED) compared to DV 

The NN2 dam has a large reservoir capacity with effective storage of 2,994 mcm, which 

can regulate 42% of the annual inflow. As shown in Fig. 3.7, the inflow to NN1 becomes 

much stable (seasonal variation is decreased) due to the regulating capability of the NN2. 

Table 3.7 indicates that the mean inflow to the NN1 reservoir is increased by 67.1% 

during the dry season and decreased by 17.0% during the wet season. The annual energy 

product of the NN1 dam increases by 7.9% due to a high potential of power generation 

throughout the year.  

The spilled water of NN1 decreases by 62.2% due to a decrease of inflow to the NN1 

from the upstream during the wet season. The reduction of spilled water may conclude 

that the downstream flood risk is reduced also. Furthermore, the risk of water shortage is 
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reduced compared with the scenarios without NN2 especially in the drought year; for 

example, in 2007, as shown a comparison of the reservoir water stage for various 

scenarios in Fig. 3.7.  

3.8.3 Effect of proposed dam (FD) compared to ED 

The result of the simulation shows that there is no primary effect on the planed NN3 

operation to the NN1 because its effective storage is small comparing to the total inflow 

of the NN1 reservoir (effective storage is 8.9% of NN1 total inflow). Furthermore, the 

major hydropower stations are already developed which regulate most of the river flows 

in the basin. On the other hand, the inflow to the NN1 reservoir has a minor increase in 

the dry season (4.0% increasing) and decreasing in the wet season (1.7% decreasing), the 

annual energy production has a minor increase (0.5% increase in the annual energy 

product) as shown in Table 3.7. 

 

3.9 Conclusions 

The integrated model has been developed to assess the effect of dam operation in the 

Nam Ngum River Basin, Laos PDR by combining the hydrologic and reservoir-

hydropower processes. The integrated model performed well in calibration and validation 

processes that the result agrees with the actual operation record. By using the model to 

assess the impact of hydropower development in the NNRB, the results indicated a 

primary change in both annual and seasonal river discharge due to flow regulation by the 

cascade dams in full development (FD) compared to natural river flow condition (BL).  

The regulated flow by the upstream cascade dams also results in the benefits in terms 

of energy production of the NN1 power station. Increasing river flow during the dry 

season has the benefits for the potential of water use for other purposes such as irrigation, 

domestic and industrial consumption with consideration to the effect of the change of 

water and sediment on the environment. The uncertainty of reservoir operation due to 

climate change in the NNRB will be implemented in further study. 
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Chapter 4 Uncertainty assessment of water resources and 
long-term hydropower generation using a large ensemble 
of future climate projections  

 

This chapter aims to assess the sensitivity of the Nam Ngum 1 reservoir in Laos PDR 

to the uncertainty of water resources driven by a combination of climate change and 

upstream cascade dam development using a large ensemble of future climate projections. 

The results of study present that the precipitation projections of the basin under a 4 degree 

increase scenario vary in the range of −9.6% to +6.9% compared to the historical observed 

precipitation (present climate). The impacts of changing climate on hydropower resources 

were investigated. Based on a combined effect of climate change and upstream cascade 

dam development, the projected inflow of the Nam Ngum 1 reservoir at the full 

development stage will change from −16.0% to +6.5%, which resulted in a large range of 

annual energy production changes from −18.8% to +2.8% compared to the current 

condition (present climate and existing dam stage). Furthermore, water losses from the 

reservoir due to water discharge from spillway for extreme floods and evaporation are 

expected to increase when increasing temperature, which will lead to a loss in energy 

production. Our study indicated that the operation of hydropower should be adapted to 

the effect of climate change. This information will be used for stakeholders to propose 

the strategies of water resources management (Meema et al., 2021). 

 

4.1 Introduction 

The Mekong flows southward for approximately 4,800 km from its source (Tibetan 

Plateau) through China, Myanmar, Lao PDR, Thailand and Cambodia before entering the 

South China Sea via a complex delta system in Viet Nam with an approximately 795,000 

km2 of the total basin area. The Mekong ranks 10th amongst the world’s great rivers based 

on mean annual flow (MRC, 2005). Rapid regional growth and energy demands from 

neighboring countries have prompted plans to build numerous dams along the mainstream 

and tributaries of the Mekong River (Kummu and Varis, 2007). 
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The catchment area of MRB in Laos PDR is approximately 25% of the total basin and 

contribute 35% of total flow into the river considered as the most contributed country in 

the Mekong River Basin (MRB) (MRC, 2005). The country has benefit in topography 

and water resources which provide a significant potential of hydropower development. 

ADB (2019) reported that the country’s exploitable hydro potential is estimated to be 

23,000 MW, and 5,172 MW of hydropower capacity had been operated as of 2017. Based 

on an analysis of projects to be completed by 2030, total hydropower build-out for both 

domestic and export use will total 16,500 MW or around 70% of estimated potential. 

However, the large variations of changes in hydropower generation across regions and 

even within regions due to the effect of climate change were reported (Hamududu and 

Killingtveit, 2012). The uncertainty of future hydropower generation is derived not only 

by the current river flow inter-annual variation but also the change in long-term river flow 

availability due to the effect of climate change (Blackshear et al., 2011). 

Several of previous studies assessed the impacts of climate change on hydropower 

generation at a global scale (Hamududu and Killingtveit, 2012; van Vliet et al., 2016), 

continental-scale (IEA, 2020; Lehner et al., 2005), national scale (Fan et al., 2020; Grijsen 

and Patel, 2014) and basin-scale (Beyene et al., 2010; Kopytkovskiy et al., 2015; Mohor 

et al., 2015; Shrestha et al., 2016). Some studies have been conducted on the impact of 

climate change on hydropower generation related to the Mekong River Basin. Mekong 

River Commission (MRC, 2018) reported that the percentage change in the average 

energy production on hydropower in Laos PDR for the climate change scenarios during 

2060 (RCP2.6−8.5) compared to the baseline ranges from +7.5% to −31.1%. Piman et al. 

(2015) reported that there a minor decrease in energy production of hydropower in the 

Mekong tributaries—Srepok, Sesan and Sekong (3S) basins—during the full 

development level driven by A2 and B2 emission scenarios (MPI_ECHAM4) compared 

to the baseline scenario. 

However, the significant uncertainty in hydropower production assessment is 

associated with the variability of precipitation projections (Hamlet et al., 2010) resulted 

from the use of different general circulation models (GCMs). The model projections are 

affected by a range of uncertainties including emissions scenario uncertainty, internal 

variability of the climate system, and model response uncertainty (Hawkins and Sutton, 
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2009). The quantification of all aspects of model uncertainty requires multi-model 

ensembles, ideally as a complement to the exploration of single-model uncertainties 

through perturbed physics ensembles experiments (Tebaldi and Knutti, 2007). Several 

studies applied a large-ensemble to improve the uncertainties of future river discharge 

projections (Ayers et al., 2016; Mohammed et al., 2015; Thompson et al., 2017). Carvajal 

et al. (2017) use a large-ensemble (CMIP5) to assess the sensitivity and improve the 

reliability of hydropower generation to uncertain water resource availability driven by 

future climate change in Ecuador. A database for Policy Decision making for Future 

climate change (d4PDF) is a large GCM ensemble database with a high-resolution model 

that permits analysis of long-term trends and future changes in localized and severe events 

(Mizuta et al., 2017). A number of studies adopted the database to project the future 

hydroclimate e.g., precipitation (Endo et al., 2017; Hibino et al., 2018), extreme flood 

and river discharge (Hanittinan et al., 2020; Tanaka et al., 2020).  

The information about the adaptability of hydropower generation to hydrologic changes 

and global warming effects in the region is scarce especially for the large-scale dam in 

the main tributaries of the Mekong. Thus, this study aims to assess a combined impacts 

of climate change and dam development in a tributary of the Mekong River in Laos PDR 

(Nam Ngum River) on hydropower generation using a large ensemble of climate 

projections. For this purpose, a physically-based distributed hydrologic model (Meema 

and Tachikawa, 2020) is adopted with the projected climate variables using the delta 

method for different climate scenarios obtained from a large GCM ensemble database, 

d4PDF. The mean of projected climate ensembles from each climate scenario was used 

to evaluate the change of water resources and power production with different dam 

development stages of the basin. Furthermore, the result of the study demonstrated that 

implementation strategies of an adaptive reservoir operation are needed to mitigate the 

impact of climate change. 
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4.2 Modeling approach 

4.2.1 General description of the model application 

   In chapter 2, the 1K-DHM has been improved for long-term river flow simulation in a 

tropical climate basin and it was extended by incorporating the reservoir-hydropower 

plant process into the model for accessing the impact of hydropower development in the 

NNRB (as described in Chapter 3, (Meema et al., 2020)). 

   The coupled model (consist of hydrological and reservoir-hydropower plant processes) 

has been calibrated from 2002 to 2005 in which the hydrologic parameters and reservoir 

operation of the NN1 (operation rules) have been optimized to perform the simulation 

agree with the actual operation record. Two validation periods were proposed, validation 

period 1 (2006-2009) presents the condition without the NN2, and validation period 2 

(2012-2013) presents the existing condition of the basin (including the NN2). The model 

resulted well with an agreement between simulation and reference data (inflows, 

regulated discharge, reservoir water level and energy production) of the NN1 power 

station during the calibration and validation processes (see Fig. 3.7).  

   Thus, to project the hydropower generation and dam regulation flow in various 

scenarios, the calibrated hydrologic parameters and reservoir operation (rule curve and 

operation rules as shown in Fig. 3.4) are collected to apply for this purpose. 

 

4.2.2 Estimation of water diversion 

As the basin has the structures that transfer water from other rivers into the Nan Ngum 

1 Reservoir (NN1) as shown in Fig. 3.1. To calculate the amount of water diversion in 

this study, we assign the amount of water diversion as the boundary condition into the 

model. The diversion record in a period of 2002−2009 from the Nam Song Diversion 

Dam (NS_DV) and the Nam Leuk Dam (NL) is used as the diversion amount from the 

dams in the present climate scenario. To predict the amount of water diversion in different 

climate scenarios, we assume that the operation of the diversion dams is based on the 

amount of inflow. 

Therefore, we adopted the monthly ratio between the simulated flow in the present 

climate condition and the discharge of the diversion record; then, we applied the ratio 

with the simulated river discharge for each climate scenario.  The diverted water discharge 
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is limited to the maximum diversion capacity (200 m3/s for NS_DV and 60 m3/s for NL). 

The water diversion amount can be calculated as follow; 

𝑄ௗ௩௦௜௠
(𝑖, 𝑗) = 𝑘(𝑖, 𝑗) ∙ 𝑄௜௡௦௜௠

(𝑖, 𝑗) (4.1) 

where j is month, i is a year (2002, 2003, …, 2009), 𝑄௜௡௦௜௠
is simulated inflow to the 

diversion dam, 𝑄ௗ௩௦௜௠
is simulated diversion discharge and k is diversion ratio in which 

can be calculated as follow; 

𝑘(𝑖, 𝑗) =
𝑄ௗ௩௥௘௖

௉ௌ (𝑖, 𝑗)

𝑄௜௡௦௜௠
௉ௌ (𝑖, 𝑗)

 (4.2) 

where 𝑄ௗ௩௥௘௖
௉ௌ  is record of mean monthly diversion discharge in the present condition and 

𝑄௜௡௦௜௠
௉ௌ is simulation of mean monthly inflow in the present condition. 

 

4.3 Future climate projection  

4.3.1 Future climate projection data base (d4PDF) 

A database for policy decision making for future climate change (d4PDF) contains the 

outputs from global warming simulations under the present, 4 degrees (+4K) and 2 

degrees (+2K) temperature increase conditions using a 60-km atmospheric general 

circulation model (AGCM). The duration of each experiment is 60 years. Each set of 

experiments has 100 and 90  ensemble members for the historical and 4 degree increase 

experiments, in  which the initial conditions and the lower boundary conditions are 

perturbed (Mizuta et al., 2017). The settings of the experiments are summarized in Table 

4.1. 

The historical climate is simulated with a 100-member ensemble. The observed 

monthly mean sea-surface temperature (SST), sea ice concentration (SIC) (Hirahara et al., 

2014), and climatological monthly sea ice thickness (SIT) (Bourke and Garrett, 1987) are 

used as the lower boundary conditions of the AGCM.  

For the +4K simulation, in which the global mean surface air temperature is 4 degrees 

warmer than in the pre-industrial era. The greenhouse gases (GHG) are set to the value in 

2090 of the RCP8.5 scenario. The climatological SST warming patterns (ΔSSTs) from 
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six CMIP5 models−CCSM4 (CC), GFDL CM3 (GF), HadGEM2-AO (HA), MIROC5 

(MI), MPI-ESM-MR (MP), and MRI-CGCM3 (MR)−are added to the observational SST 

after removing the long-term trend component. Each of the six ∆SSTs contains a 15-

member ensemble, giving a total of 90 members.  

For the +2K simulation, in which the global mean surface air temperature is 2 degrees 

warmer than in the pre-industrial era and the GHGs are set to the value in 2040 of the 

RCP8.5 scenario (Fujita et al., 2019). The same six CMIP5 models as in the +4K 

simulation were used as ∆SSTs of the AGCM. Each of the six ∆SSTs contains a 9-

member ensemble, giving a total of 54 members. 

 

Table 4.1 Simulation settings and description of the period, number of ensembles and 

future SST change obtained from CMIP5 model. 

  
Historical 
simulation 

+2K Future 
simulation 

+4K Future 
simulation 

CMIP5 model for obtaining ΔSST 

Duration 
60 (1951-

2010) 
60 (2031-2090) 60 (2051-2110) Model Institution (Country) 

Members 100 9 (m101-m109) 15 (m101-m109) CCSM4 (CC) NCAR (United States) 

(GCM) (m001-m100)  × 6 SSTs × 6 SSTs GFDL CM3 (GF) NOAA GFDL (United States) 

        
HadGEM2-AO 

(HA) 
Met Office Hadley Center 

          (United Kingdom) 

        MIROC5 (MI) AORI, NIES, JAMSTEC (Japan) 

        
MPI-ESM-MR 

(MP) 
Max Planck Institute for 

          Meteorology (Germany) 

        MRI-CGCM3 (MR) Meteorological Research 

          Institute (Japan) 

Greenhouse Observed 
Values at 2040 

of 
Values at 2090 

of 
    

gases   RCP8.5 RCP8.5     

 

4.3.2 Climate projection scenarios using the delta method 

One of the simplest ways to statistically downscale GCM projections is to use the delta 

or change factor method (Trzaska and Schnarr, 2014). The change factor (Δ) is the ratio 

between GCM simulations of future and current climate and is used as a multiplicative 

factor to obtain future regional conditions. This method assumes that GCMs more reliably 
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simulate relative change rather than absolute values (Hay et al., 2000). Thus, climate 

variables can be projected as follow,  

𝑉ி = ∆(𝑗) ∙ 𝑉௉ௌ (4.3) 

where VF is daily mean projected climate variable, VPS is daily mean present climate 

variable (observed or references data) and ∆(𝑗) is monthly change factor in which can be 

calculated as follow. 

∆(𝑗) =
𝑉തி

ீ஼ெ(𝑗)

𝑉തு
ீ஼ெ(𝑗)

 (4.4) 

where j is month, 𝑉തு
ீ஼ெ  and  𝑉തி

ீ஼ெ  are mean monthly value of GCM variable for 

historical and future conditions respectively in which can be calculated as follow. 

𝑉ത ீ஼ெ(𝑗) =
∑ 𝑉ത௡

ீ஼ெ( 𝑗)ே
௡ୀଵ

𝑁
 (4.5) 

where N is the number of the ensembles, j is month, n is the ensemble number (1, 2, 3, 

…, N) and 𝑉ത௡
ீ஼ெ(𝑗) is the mean monthly value of the GCM variable for the ensemble 

member n which is calculated as follows,  

𝑉ത௡
ீ஼ெ( 𝑗) =

∑ 𝑉௡,௜
ீ஼ெ( 𝑗)଺଴

௜ୀଵ

60
 (4.6) 

where j is month, i is a year number (1, 2, 3, …, 60) and 𝑉௡,௜
ீ஼ெ(𝑗) is the monthly value of 

the GCM variable for the n-th member. 

4.3.2.1 Projection of precipitation 

The observed daily rainfall from 2002 to 2009 over the basin is collected to represent 

the present climate condition. The future precipitation amount for different climate 

scenarios is projected using Eq. 4.3.  To obtained the delta factor of precipitation for each 

month, monthly precipitation extracted from d4PDF is used as the j-th monthly value of 

the GCM climate variable (𝑉௡,௜
ீ஼ெ(𝑗)) for the i-th year in n-th member in Eq. 4.6. Then, 

the delta factor of precipitation for different climate scenarios can be obtained by 

following Eq. 4.5 and Eq. 4.4 respectively. 
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4.3.2.2 Projection of actual evapotranspiration 

To simulate a long-term river flow, actual evapotranspiration (AET) is another 

necessary input parameter; however, it is the most difficult parameter to measure in the 

field of basin hydrology. Meema et al. (2020) estimated the AET for the NNRB with a 

daily average of 2.78 mm/day using the water balance method (the difference amount of 

water between annual precipitation and river discharge). For this study, we adopted this 

information as the AET of the present climate scenario. 

To project future AET in different climate scenarios, Eq. 4.3 is adopted. To calculate 

the delta factor for AET, a combination of the simulated amount of water transferred from 

the global surface into the atmosphere including the water transpiration from soil (TS), 

the evaporation on soil (ES) and the evaporation on the leaf (EL) in different climate 

scenarios obtained from d4PDF is used as the monthly value of the GCM climate variable 

in Eq. 4.6. Then, the delta factor of AET for different climate scenarios can be obtained 

by following Eq. 4.5 and Eq. 4.4 respectively. 

4.3.2.3 Projection of reservoir evaporation 

The estimated evaporation from a water body for NNBR with the mean daily value of 

2.4 mm/day—estimated by Meema et al. (2020)—is adopted as the present reservoir 

evaporation loss. 

For the future projection of reservoir evaporation loss due to the climate change 

(assume that the pan coefficient of 0.7 has no significant change in future condition), the 

delta factor of the basin potential evaporation between historical and future conditions is 

used to multiply with the present reservoir evaporation as similar to Eq. 4.3.  

To calculate the delta factor of reservoir evaporation, the basin-average mean monthly 

temperature in different climate scenarios is extracted from d4PDF to estimate the 

potential evaporation of the basin using the Thornthwaite method (Thornthwaite, 1948) 

and use this as the monthly value of GCM variable in Eq. 4.6. Then, the delta factor can 

be calculated by following Eq. 4.5 and Eq. 4.4 respectively. 
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4.4 Simulation scenarios 

   The combination scenarios between upstream dam development and climate change are 

conducted to investigate the uncertainty on basin hydrology and dam operation. A list of 

simulated scenarios is shown in Table 4.2.  The description of simulation scenarios is as 

follows. 

4.4.1 Dam development scenarios 

To assess the uncertainty due to dam development in the Nam Ngum River Basin as 

shown the dam location in Fig. 3.1, three stages of dam development—no dam (ND), 

existing dam (ED), and future dam (FD)—were conducted. In this study, we focused on 

the large-scale dam that has many effects on river flow due to its regulation.  Based on 

the large-scale dam criteria in the Mekong tributaries (Piman et al., 2016), Nam Ngum 1 

and Nam Ngum 2 met the criteria for the existing dam stage (ED) as shown in Fig. 3.8c , 

while Nam Ngum 3 (NN3) met the criteria for the future dam stage (FD) as shown in Fig. 

3.8d. 

4.4.2 Climate change scenarios 

Fifteen scenarios of climate (1 for present, 7 for +2K, and 7 for +4K) were conducted 

to assess the uncertainty of different climate projections on precipitation and actual 

evapotranspiration. The present climate scenario (BL) is referred to the historical data—

precipitation and actual evapotranspiration—in a period of 2002−2009. The +2K 

scenarios is referred to greenhouse gas levels at 2040 from the RCP8.5, six warming 

patterns (∆SST)—+2K with CC pattern (2K_CC), +2K with GF pattern (2K_GF), +2K 

with HA pattern (2K_HA), +2k with MI pattern (2K_MI), +2K with MP pattern (2K_MP) 

and +2K with MR pattern (2K_MR)—and +2K with the mean value of warming patterns 

(2K_AVR) are carried out. The +4K scenarios is referred to greenhouse gas levels at 2090 

from the RCP8.5, six warming patterns (∆SST)—+4K with CC pattern (4K_CC), +4K 

with GF pattern (4K_GF), +4K with HA pattern (4K_HA), +4K with MI pattern (4K_MI), 

+4K with MP pattern (4K_MP) and +4K with MR pattern (4K_MR)— and +4K with the 

mean value of warming patterns (4K_AVR) are carried out. 
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Table 4.2 List of Simulation scenarios. 

Climate scenario ΔSST 
Scenarios 

Without dam (ND) Existing dams (ED) Future dams (FD) 

Present - ND-PS ED-PS FD-PS 

+2K Future 

CC  ND-2K_CC ED-2K_CC FD-2K_CC 

GF ND-2K_GF ED-2K_GF FD-2K_GF 

HA ND-2K_HA ED-2K_HA FD-2K_HA 

MI ND-2K_MI ED-2K_MI FD-2K_MI 

MP ND-2K_MP ED-2K_MP FD-2K_MP 

MR ND-2K_MR ED-2K_MR FD-2K_MR 

AVR ND-2K_AVR ED-2K_AVR FD-2K_AVR 

+4K Future 

CC  ND-4K_CC ED-4K_CC FD-4K_CC 

GF ND-4K_GF ED-4K_GF FD-4K_GF 

HA ND-4K_HA ED-4K_HA FD-4K_HA 

MI ND-4K_MI ED-4K_MI FD-4K_MI 

MP ND-4K_MP ED-4K_MP FD-4K_MP 

MR ND-4K_MR ED-4K_MR FD-4K_MR 

AVR ND-4K_AVR ED-4K_AVR FD-4K_AVR 

 

4.5 Results and discussion 

4.5.1 Climate change projections 

4.5.1.1 Precipitation 

Fig. 4.1a shows the differences between reference data and 100-member ensemble 

d4PDF basin-averaged monthly precipitation estimates across the basin. The purpose is 

to demonstrate the performance of the GCM (d4PDF) compared to the observation. The 

analysis presented a difference in magnitude with the GCM (d4PDF) over-predicting 

precipitation during the dry season especially in March and April, under-prediction during 

the wet season in June and July. On the other hand, the climate model resulted well in 

capturing the seasonal variation with the observed data. This demonstrates that the 

historical experiment of GCM (d4PDF) shows an agreement in seasonal variation with 

the reference observed data and is appropriate to adopt to project the climate variables 

from the present climate in various scenarios using the delta change method to assess the 

uncertainty of climate projection for the NNRB. 

Fig. 4.1b illustrates mean monthly basin precipitation trends of all climate scenarios in 

the 2 degree and 4 degree increase experiments from the GCM prediction. The monthly 
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delta changes factor obtained by analyzing the GCM data set for +2K scenarios is ranged 

from 0.73 to 1.36 and for +4K scenarios is ranged from 0.71 to 1.50. This shows that the 

range of change in precipitation is much larger when temperature increase. Although the 

range of the delta change in the dry season seems similar to the wet season (0.71−1.44 for 

the dry season and 0.73−1.50 for the wet season), a primary difference in prediction of 

precipitation magnitude occurs during the wet season, especially in July and August. 

By using the delta factors obtained by analyzing the d4PDF data set with the observed 

precipitation (present climate), the precipitation projection in different climate scenarios 

is predicted as shown in Fig. 4.1c. Based on average daily accumulation for all climate 

scenarios, the climate projections describe a range of changes in mean annual 

precipitation (compared to historical observed data) from −5.5% to +4.9% for +2K 

scenarios and from −9.6% to +6.9% for +4K scenarios. Similar to the delta change factors, 

a significant change in amount of projected precipitation is in the wet season especially 

in July and August. 

The average pattern of +2K climate scenario (2K_AVR) results in a slight increase 

(0.35% increase) in mean annual precipitation compared to the observation (present 

climate) and a slight reduction (0.64% reduction) has resulted for the average pattern of 

+4K climate scenario (4K_AVR). 
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Fig. 4.1 (a) Comparison of reference data (Observation) and historical experiment of the 

100-member ensemble d4PDF basin-averaged monthly precipitation, (b) comparison of 

basin-averaged monthly precipitation estimated by d4PDF in various climate scenarios in 

the 2 degree and 4 degree increase experiments and (c) comparison of projected basin-

averaged monthly precipitation estimated by using delta change method in various 

climate scenarios. (HPB is historical data estimated by d4PDF and Present is present value 

collected from historical observed data). 

 

4.5.1.2 Actual evapotranspiration projections 

Fig. 4.2a shows the mean monthly AET in various climate scenarios obtained from the 

GCM (d4PDF) prediction. The estimated amount of water transfer to the atmosphere 

tends to increase when the temperature increase. The monthly delta changes factor 

obtained by analyzing the GCM data set for +2K scenarios is ranged from 0.91 to 1.10, 

for +4K scenarios is ranged from 0.91 to 1.15. 

By using the delta factors obtained by analyzing the d4PDF data set (Fig. 4.2a) with 

the references AET, the AET projection in different climate scenarios is predicted as 
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shown in Fig. 4.2b. Under the climate projections, a range of increase in mean annual 

AET compared to the reference (present climate) is varied from +0.57% to +3.78% for 

+2K scenarios and from +4.50% to +7.94% for +4K scenarios. All climate scenarios show 

the highest amount of AET during April and May in which this period has a high 

temperature with a moderate precipitation amount. The average pattern of +2K climate 

scenario (2K_AVR) results in a 2.8 mm/day in the average daily value (0.57% increase 

from present climate) and a 2.95 mm/day (5.96% increase) has resulted for the average 

pattern of +4K climate scenario (4K_AVR). 

According to the projected AET, it is distinct that increasing temperature results in an 

increase in the potential of water transferred to the atmosphere leading to fewer water 

resources availability in the basin. 

 

 

Fig. 4.2 (a) Comparison of basin-averaged monthly AET in various climate scenarios 

projected by d4PDF and (b) Comparison of projected basin-averaged monthly AET 

estimated by using delta change method in various climate scenarios. (HPB is historical 

data estimated by d4PDF and Present is present value estimated from historical data). 

 

4.5.2 Climate change and hydropower development impact on river flow 

Regarding the simulation scenarios described in section 4.4, Table 4.3 presents the 

summary of simulation results on river flow (unregulated flow) at the NN1 dam site in 
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different climate scenarios with no dam condition. 

Inflow and regulated flow (downstream river flow) of the NN1 reservoir were used to 

analyze the impact of climate change and hydropower development on annual and 

seasonal flow change. A comparison of annual and seasonal flow in different climate 

scenarios for existing (ED) and future dam (FD) conditions is summarized in Table 4.4 

and Table 4.5, respectively. 

 

 

Table 4.3 Summary of simulation results on annual and seasonal flow at the Nam Ngum 

1 damsite in different climate scenarios without dam condition (ND). “Change” is the 

percent of change from the ND-PS scenario. 

 

Scenario 

Wet season Dry season Annual 

Flow change Flow change Flow change 

(m3/s) (%) (m3/s) (%) (m3/s) (%) 

ND-PS 617.9 - 109.5 - 321.3 - 

ND-2K_CC 643.5 4.1 109.3 -0.2 331.9 3.3 

ND-2K_GF 604.5 -2.2 107.6 -1.7 314.6 -2.1 

ND-2K_HA 606.3 -1.9 110.5 0.9 317.1 -1.3 

ND-2K_MI 535.1 -13.4 100.0 -8.7 281.3 -12.5 

ND-2K_MP 540.8 -12.5 103.2 -5.8 285.5 -11.1 

ND-2K_MR 601.8 -2.6 107.5 -1.8 313.5 -2.5 

ND-2K_AVR 588.3 -4.8 106.4 -2.8 307.2 -4.4 

ND-2K_CC 570.2 -7.7 105.3 -3.9 299.0 -7.0 

ND-2K_GF 613.7 -0.7 108.0 -1.3 318.7 -0.8 

ND-2K_HA 633.8 2.6 117.3 7.1 332.5 3.5 

ND-2K_MI 468.6 -24.2 96.6 -11.8 251.6 -21.7 

ND-2K_MP 516.5 -16.4 95.7 -12.6 271.0 -15.7 

ND-2K_MR 569.7 -7.8 107.3 -2.0 300.0 -6.6 

ND-2K_AVR 561.2 -9.2 105.3 -3.9 295.2 -8.1 
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4.5.2.1 Climate change impact on natural condition flow 

The simulation without dams is conducted to assess the impact of climate change on 

river flow without the impact of dam operation. Fig. 4.3 shows a comparison of the 

average monthly flow in various climate scenarios. Comparison between different climate 

scenarios shows that the change of average annual flow compared to the present climate 

scenario (ND_PS) is ranged from −12.5% to +3.3% for +2K scenarios and from −21.7% 

to +3.5% for +4K scenarios with a significant difference in magnitude in the wet season—

July, August, and September (similar to the projection of precipitation). The average of 

2K (2K_AVR) and 4K (4K_AVR) climate scenarios show a reduction trend in the annual 

river flow with −4.4% and −8.1% respectively. 

 

Fig. 4.3 Mean monthly projected river flow at the Nam Ngum 1 dam in different climate 

scenarios without dam (Unregulated flow). 

 

4.5.2.2 Climate change impact on Nam Song water diversion 

To predict the amount of water diversion in different climate scenarios, we adopted the 

ratio between the simulated flow in the present climate condition and the discharge of the 

diversion record; then, we applied the ratio with the simulated river discharge for each 

climate scenario.  The diverted water discharge is limited to the maximum diversion 

capacity.  
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Fig. 4.4a presents a change of mean monthly water availability at the diversion 

headwork (Nam Song River) in different climate scenarios in which the mean annual flow 

is varied from −7.5% to + 6.3% for +2K scenarios and from −15.7% to + 8.1% for +4K 

scenarios compared with the present climate scenarios. 

Fig. 4.4b presents a change of mean monthly water diversion from the Nam Song at 

diversion headwork to the NN1 reservoir in different climate scenarios, the mean annual 

diversion discharge is varied from −4.5% to +2.2% for +2K scenarios and from −9.6% to 

+6.1% for +4K scenarios compared with the present climate scenarios.  

According to the result of simulations, climate change has less effect on the total 

amount of water diversion from the Nam Song River to the NN1 reservoir compared to 

the change of water availability at the diversion headwork (inflow of the Nam Song dam).  

For example, in the case of the 4K_MI climate scenario (the most reduction of river flow), 

a reduction of water transfer to the NN1 reservoir is only a 1.5% reduction from the NN1 

reservoir total inflow compared to the present climate scenario with existing dam 

condition (ED_PS). 

 

Fig. 4.4 Mean monthly projected flow at the Nam Song diversion dam in different climate 

scenarios (a) inflow of the Nam Song diversion dam and (b) diversion discharge to the 

Nam Ngum 1 reservoir. 

4.5.2.3 Climate change impact on river flow with existing dam condition 

Fig. 4.5a describes the impact of climate change on the inflow of the NN1 reservoir 
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with the existing dam condition. The change of the annual inflow is ranged from −8.3% 

to +5.9% for +2K scenarios and from −16.7% to +6.5% for +4K scenarios compared to 

the present climate scenario (ED_PS). To assess a combined effect of climate change and 

dam development, the degree of change in the river flow is compared with the natural 

flow condition (ND_PS), a range of change in the mean annual inflow from +0.3% to 

+28.2% was found. A significant change in seasonal flow (inflow of NN1) due to 

upstream dam development in different climate scenarios—compared with natural flow 

condition (ND_PS)—is varied from +74.1% to +117.3% in the dry season and −18% to 

+8.2% in the wet season. A significant alteration in the seasonal inflow of NN1 is mainly 

due to a regulation of the large storage dam such as NN2 with a 2617 mcm of the effective 

storage capacity. 

Fig. 4.5b describes the impact of climate change on the regulated flow of the NN1 

reservoir with the inflow from the existing upstream dam condition. The change of the 

annual regulated flow to downstream of the NN1 reservoir for different climate scenarios 

is ranged from −8.7% to +5.7% for +2K scenarios and from −15.8% to +5.8% for +4K 

scenarios compared to the present climate scenario (ED_PS). 

The effect of the NN1 reservoir regulation with large effective storage of 4714 mcm is 

assessed by comparing the seasonal flow change between the predicted inflow (Fig. 4.5a) 

and regulated flow (Fig. 4.5b) for each climate condition. A simulation result shows a 

49.0−22.9% reduction in the wet season and a 44.2−56.1% increase in the dry season. 
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Fig. 4.5 Comparison of mean monthly river flow between base line (present climate 

without dam, ND_PS) and different climate scenarios with existing dam development 

stage (a) inflow of the Nam Ngum 1 reservoir and (b) regulated flow to downstream of 

the Nam Ngum reservoir. 

 

4.5.2.4 Climate change impact on river flow with future dam condition 

Fig. 4.6a shows the impact of climate change on the inflow of the NN1 reservoir with 

the regulated flow from the future upstream dam condition (NS_DV, NL, NN2, and NN3). 

The change of the annual inflow of the NN1 reservoir for different climate scenarios is 

ranged from −8.0% to +5.6% for +2K scenarios and from −16.2% to +6.3% for +4K 

scenarios compared with the present climate scenario (FD_PS). The inflow of the NN1 

reservoir becomes more stable (slightly decrease in seasonal variation) due to an increase 

in regulated storage of the upstream dams. An additional power station—Nam Ngum 3 

with effective storage of 1070 mcm—is taken into account in this simulation. To assess 

the impact of the NN3 regulation on the inflow of the NN1, the simulated inflow for future 

dam development condition (Fig. 4.6a) is compared with the existing dam condition (Fig. 

4.5a) for each climate scenario. The results show that there is a slight reduction of 

0.2−2.6% in the wet season inflow and a slight increase of 2.4−5.3% in the dry season 

inflow of the NN1 reservoir. 

Fig. 4.6b shows the impact of climate change on the regulated flow of the NN1 
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reservoir to downstream with future dam conditions. The change of the annual river flow 

in downstream of the NN1 reservoir for different climate scenarios is ranged from −8.4% 

to +5.4% for +2K scenarios and from −15.5% to +5.6% for +4K scenarios compared with 

the present climate scenario (FD_PS). A primary change in seasonal river flow due to 

dam development in different climate scenarios—compared with natural flow condition 

(ND_PS) at the downstream of the NN1 reservoir—is varied from −48.8% to −23.1% in 

the wet season and +196.0% to +217.8% in the dry season. 

To assess the impact of the NN3 operation on regulated flow of the NN1, the regulated 

flow with FD condition (as shown in Fig. 4.6b) is compared to the river flow with ED 

condition (as shown Fig. 4.5b) for each climate scenario, the result shows that there is no 

primary change in the regulated flow from the NN1 reservoir to the downstream because 

the regulated potential of the NN3 (effective storage of 1070 mcm) is approximately only 

9.0% (range from 8.2% to 10.4%) of the mean predicted total inflow of the NN1 for 

different climate scenario with future dam condition. This agrees with Meema et al. 

(2020) that the major large-scale hydropower dams are already developed in which can 

regulate most of the river flows in the basin. 

By comparing the individual effect between climate change and dam development with 

the natural flow condition (ND_PS), the changing climate has a primary effect in terms 

of the total amount of water availability (mean annual river flow) due to a combined effect 

of precipitation change and AET increasing. A significant effect occurs during the wet 

season due to a change in precipitation magnitude leading to a change in river flow. Only 

a slight change in seasonal flow driven by climate change was found in this study. 

The dam development in the basin has a primary effect in terms of seasonal flow 

variation due to a regulation using its storage. Furthermore, not only a primary change in 

seasonal flow but dam development with a river diversion type from another catchment 

results in increasing of mean annual river flow also. The simulation result demonstrates 

that the large-scale dam reservoir—which can control a huge volume of water in the 

basin—has an important role in water resources management. 
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Fig. 4.6 Comparison of mean monthly river flow among present climate without dam 

(ND_PS), present climate with existing dam (ED_PS) and different climate scenarios 

with future dam development stage (a) inflow of the Nam Ngum 1 reservoir and (b) 

regulated flow to downstream of the Nam Ngum reservoir. 

 

4.5.3 Linkage between projected precipitation, evaporation, inflow and regulated 

flow 

The model has included the soil and bedrock aquifers that respond as natural storage of 

the basin. During the dry season, the amount of precipitation is lower than AET, river 

flow is mainly contributed by the basin storages. Although some effective rainfall 

happens (Precipitation > AET) during the beginning of the wet season (May and June), 

most rainwater is infiltrated into the aquifers. Therefore, the hydrograph of river flow (Fig. 

4.3) shows a minor difference during these periods.  

The highest amount of precipitation is in July and August, effective rainfall has much 

enough to become surface flow which the magnitude of river flow is depended on the 

amount of projected precipitation resulted in a primary difference in river flow 

hydrograph (as shown in Fig. 4.3). 

In September and October, the storages are full filled from the previous months, most 

of the effective rainwater becomes surface runoff. A combination of groundwater and 

surface flow results in a higher significant difference in river flow compared to 
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precipitation. 

The major difference in regulated flow among the scenarios is due to spillage water. In 

the study, we assume that the operation follows the present operation. So, during the dry 

season including the beginning of wet seasons such as June and July, the amount of 

reservoir inflow can be controlled by the reservoir storage (current storage; St <= 

maximum storage; Smax). So, the comparison of regulated flow for various scenarios is 

quite similar (as shown in Fig. 4.5 and Fig. 4.6). During the mid to late wet seasons 

(August to October), much spill will happen (St > Smax) when river discharge has an 

increasing trend leading to the significant difference in regulated flow during this period 

(as shown in Fig. 4.5 and Fig. 4.6).  

Although a larger difference in precipitation was observed in July and August, the 

primary difference in regulated flow from the NN1 was found in August to October due 

to the storage capacity (regulated capacity) of the reservoirs. In this study, the 

hydrological residence time (HRT) of the NN1, NN2 and NN3 reservoirs for the present 

climate scenarios with future dam condition are 0.39, 0.46 and 0.41 year respectively 

(HRT [year] = effective storage capacity [MCM] / inflow [MCM/year]). On the other 

hand, when the HRT decreases, the regulated hydrograph will be closer to the inflow 

hydrograph.  

4.5.4 Climate change impact on reservoir water level and water spill  

Fig. 4.7a present a comparison of mean monthly water level of the NN1 reservoir in 

different climate scenarios with existing dam condition. A change of mean water level for 

different climate scenarios compared with present climate scenarios (ED_PS) is varied 

from −0.63 to + 0.12 m for +2K scenarios and from −2.86 to + 0.41 m for +4K scenarios. 

For the average climate scenarios such as 2K_AVR and 4K_AVR, the reduction in mean 

reservoir water level is 0.12 and 0.34 m respectively.  

Fig 4.7b present a comparison of mean monthly water level of the NN1 reservoir in 

different climate scenarios with future dam condition. The tendency of the mean monthly 

reservoir water level is quite similar to the existing dam condition (Fig. 4.7a) but the trend 

is slightly increased. By using the same operation pattern, more stable inflow (increase in 

the dry season flow and decrease in the wet season) due to increasing the regulation 

capacity of the upstream dam results in a slightly higher water levels in the reservoir, 
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which a 0.18−0.36 m increase in mean reservoir water level compared with the existing 

dam condition for each climate scenario has resulted. 

 

 

 

Fig. 4.7 (a) comparison of mean monthly reservoir water level for different climate 

scenarios with existing dam condition and (b) comparison of mean monthly reservoir 

water level between present climate scenario with existing dam (ED_PS) and different 

climate scenarios with future dam condition. (RC: rule curve, FSL: full supply level and 

MOL: minimum operation level). 

 

Table 4.6 summaries the mean annual reservoir water and the total amount of water 

spill from the NN1 reservoir in different simulation scenarios. The mean annual amount 

of water spill for all simulation scenarios is ranged from 0 to 921.6 mcm. For each dam 

development condition, the mean annual water spill trends to increase when the mean 

reservoir water level increase.  

To assess the effect of dam development on water spill from the NN1 reservoir, the 

amount of water spill for each climate scenario between existing dam (ED) and future 

dam (FD) conditions is compared. A comparison shows that even though all climate 

scenarios in FD result in an increase in mean water level compared with ED, some climate 

scenarios result in a reduction of a water spill. This demonstrated that the amount of water 
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spill is not only a function of water level but other factors also. For example, in the case 

4K_MR, even though the mean water level in FD has a 0.2 m higher than ED, the water 

spill is reduced by 42.0%. Because most of the water level in FD is higher than ED during 

the period without spill (spill usual occurs in September and October) and the regulated 

flow from the upstream in FD condition is more appropriate for power generation; Thus, 

the most of amount of water is used to generate the power through the turbines leading to 

less water spill through the spillway. 

The water level of the NN1 Reservoir seems to have less fluctuation when there are 

more reservoirs upstream due to its regulated flow that tends to increase the NN1 inflow 

in the dry season and decrease in the wet season.  

Water spill is the amount of water released through the spillway without generating 

electricity when the current reservoir storage is exceeded the maximum storage. Thus, to 

use water effectively, the operation of the reservoir should be considered to avoid the 

amount of water spill.   

 

Table 4.6 Summary of simulation result on the mean annual reservoir water and the 

total amount of water spill from the Nam Ngum 1 reservoir for different climate 

scenarios with the existing (ED) and future (FD) dam development conditions. 

Existing dams (ED) 

Water 
level 

Spill 
Future dams (FD) 

Water 
level 

Spill 

(m) (mcm) (m) (mcm) 

ED-PS 207.5 348.1 FD-PS 207.8 399.4 

ED-2K_CC 207.6 856.0 FD-2K_CC 208.0 911.6 

ED-2K_GF 207.5 423.1 FD-2K_GF 207.8 458.7 

ED-2K_HA 207.6 438.0 FD-2K_HA 207.9 541.5 

ED-2K_MI 206.9 68.0 FD-2K_MI 207.1 85.2 

ED-2K_MP 207.0 82.2 FD-2K_MP 207.2 84.7 

ED-2K_MR 207.4 403.7 FD-2K_MR 207.8 414.2 

ED-2K_AVR 207.4 310.8 FD-2K_AVR 207.7 308.9 

ED-4K_CC 207.3 184.0 FD-4K_CC 207.5 146.0 

ED-4K_GF 207.5 478.7 FD-4K_GF 207.8 538.9 

ED-4K_HA 207.9 855.4 FD-4K_HA 208.2 921.6 

ED-4K_MI 204.7 0.0 FD-4K_MI 204.9 0.0 

ED-4K_MP 206.1 19.8 FD-4K_MP 206.3 59.1 

ED-4K_MR 207.3 215.4 FD-4K_MR 207.5 124.9 

ED-4K_AVR 207.2 151.9 FD-4K_AVR 207.4 104.2 
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4.5.5 Climate change impact on hydropower production 

The hydrologic impact on hydropower production was analyzed considering an overall 

effect on climate change and upstream dam development. The simulation results of the 

mean annual energy production for the different simulation scenarios are provided in 

Table 4.7. 

Fig. 4.8a presents a comparison of the mean monthly energy product of the NN1 power 

station in different climate scenarios with the existing dam development condition. Under 

projected climate scenarios, a difference in mean annual energy production compared to 

the present climate (ED_PS) is varied from –8.4% to +1.9% for +2K scenarios and from 

−19.5% to +2.8% for +4K scenarios. Its reduction in energy production due to a reduction 

in inflow to the reservoir and a decrease in reservoir water level (leading to generated 

hydraulic head reduction) results in less energy production. 

Fig. 4.8b illustrates a comparison of the mean monthly energy product of the NN1 

power station in different climate scenarios with the future dam development condition. 

A change in mean annual energy production from the present climate (FD_PS) for 

different projected climate scenarios is quite similar to a change in the existing dam 

development condition. To demonstrate the effect of upstream cascade dam development 

on energy production of the NN1 power station, the mean monthly energy between 

existing (Fig. 4.8a) and future (Fig. 4.8b) dam development conditions is compared for 

each climate scenario. Under the future dam development level, the annual energy 

production of the NN1 power station has a slight increase trend due to more upstream 

reservoirs in operation. 

Construction of upstream cascade dams improves the stabilization between wet and dry 

season of inflow to the NN1 reservoir leading to improvement in reservoir water level 

results in an increase in the potential of power generation and an increase in total energy 

production. However, a general trend (2K_AVR and 4K_AVR) seems to indicate a 

reduction in the annual energy product when the projected temperature is increased. 
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Fig. 4.8 (a) Comparison of energy production for NN1 power station with existing dam 

stage in different climate scenarios and (b) Comparison of energy production for NN1 

power station with future dam stage in different climate scenarios. 

 

Table 4.7 Summary of simulation result on the mean annual energy production of the 

Nam Ngum 1 power station for different climate scenarios with the existing (ED) and 

future (FD) dam development conditions. “Change” is the percent of change from the 

ED-PS scenario. 

Scenario 
Energy Change 

Scenario 
Energy Change 

(GWh) (%) (GWh) (%) 

ED-PS 1080.6 - FD-PS 1085.7 0.5 

ED-2K_CC 1101.5 1.9 FD-2K_CC 1104.8 2.2 

ED-2K_GF 1081.5 0.1 FD-2K_GF 1087.7 0.7 

ED-2K_HA 1093.6 1.2 FD-2K_HA 1092.1 1.1 

ED-2K_MI 989.8 -8.4 FD-2K_MI 998.1 -7.6 

ED-2K_MP 1003.6 -7.1 FD-2K_MP 1013.4 -6.2 

ED-2K_MR 1077.0 -0.3 FD-2K_MR 1086.6 0.6 

ED-2K_AVR 1064.6 -1.5 FD-2K_AVR 1075.4 -0.5 

ED-4K_CC 1040.9 -3.7 FD-4K_CC 1055.2 -2.3 

ED-4K_GF 1084.9 0.4 FD-4K_GF 1087.9 0.7 

ED-4K_HA 1110.8 2.8 FD-4K_HA 1110.5 2.8 

ED-4K_MI 869.6 -19.5 FD-4K_MI 877.7 -18.8 

ED-4K_MP 940.4 -13.0 FD-4K_MP 946.8 -12.4 

ED-4K_MR 1039.5 -3.8 FD-4K_MR 1059.7 -1.9 

ED-4K_AVR 1029.1 -4.8 FD-4K_AVR 1044.1 -3.4 
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4.5.6 Climate change impact on water loss from the reservoir 

The mean monthly evaporation rate from the water body is placed at the reservoirs to 

account for the net amount of water loss due to evaporation from the water surface of the 

reservoirs. The difference in water loss from the NN1 reservoir for different simulation 

scenarios is summarized in Table 4.8. 

Fig. 4.9a presents a comparison of the mean monthly amount of water loss from the 

NN1 reservoir in different climate scenarios with the existing dam development condition. 

The amount of water loss due to evaporation in different climate scenarios is varied from 

9.2% to 13.4% for +2K scenarios and from 24.5% to 35.6% for +4K scenarios compared 

to the present climate with the existing dam development stage (ED_PS). Even though, 

evaporation loss rate in November and December has a significantly lower than in March 

and April (as shown in Fig. 4.9c), the net amount of water loss is quite similar (as shown 

in Fig. 4.9a). Because the operation pattern tries to maintain the water in the reservoir at 

a high level at the end of the rainy season and the beginning of the dry season leading to 

an increase in free water surface area in which results in a high amount of water loss. 

Fig. 4.9b presents a comparison of the mean monthly amount of water loss from the 

NN1 reservoir in different climate scenarios with the future dam development condition. 

The tendency of water loss from the reservoir in different climate scenarios compared to 

the present climate (FD_PS) is quite similar tendency to the existing dam development 

condition. By comparing the result of simulation in different climate scenarios between 

the future dam condition (Fig. 4.9b) and the existing dam condition (Fig. 4.9a) to assess 

the impact of future dam development on the projected amount of water loss from the 

NN1 reservoir, there is a slight increase in actual water loss. As the water level increase 

(discussed in the previous section), there will be more reservoir water surface area in 

which results in an additional amount of water loss due to evaporation. 

The amount of water loss from the reservoir in present (ED_PS) is approximately 2.4% 

of the total inflow of the NN1 reservoir. However, under the projected climate scenarios, 

the amount of water loss from the NN1 reservoir due to evaporation will be increased to 

be approximately 2.7% and 3.2% of the present mean annual inflow for 2K and 4K 

temperature increase scenarios respectively (2K_AVR and 4K_AVR). Assume that the 



Uncertainty assessment of water resources and long-term hydropower generation using a large ensemble 
of future climate projections 

81 
 

total amount of water loss due to evaporation can be used to utilize the hydropower, an 

approximately 3.6 and 9.4 GWh/year of additional energy production for the NN1 power 

station will be lost when the temperature increase 2K and 4K respectively (2K_AVR and 

4K_AVR). 

 

 

 

Fig. 4.9 (a) mean monthly net amount of water loss from the NN1 reservoir due to 

evaporation in different climate scenarios for existing dam development stage. (b) mean 

monthly net amount of water loss from the NN1 reservoir due to evaporation in different 

climate scenarios for future dam development stage. (c) mean monthly evaporation rate 

from water body in different climate scenarios. 
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Table 4.8 Summary of simulation result on the mean annual water loss due to 

evaporation from the Nam Ngum 1 reservoir for different climate scenarios with the 

existing (ED) and future (FD) dam development conditions. “Change” is the percent of 

change from the ED-PS scenario. 

Existing dams (ED) 
Loss Change 

Future dams (FD) 
Loss Change 

(mcm) (%) (mcm) (%) 

ED-PS 289.2 - FD-PS 290.8 0.5 

ED-2K_CC 323.7 11.9 FD-2K_CC 326.0 12.7 

ED-2K_GF 323.6 11.9 FD-2K_GF 325.5 12.6 

ED-2K_HA 326.0 12.7 FD-2K_HA 327.7 13.3 

ED-2K_MI 315.8 9.2 FD-2K_MI 316.9 9.6 

ED-2K_MP 325.4 12.5 FD-2K_MP 326.8 13.0 

ED-2K_MR 328.1 13.4 FD-2K_MR 330.1 14.1 

ED-2K_AVR 324.3 12.1 FD-2K_AVR 326.1 12.7 

ED-4K_CC 371.3 28.4 FD-4K_CC 373.1 29.0 

ED-4K_GF 384.7 33.0 FD-4K_GF 386.9 33.8 

ED-4K_HA 380.8 31.7 FD-4K_HA 382.4 32.2 

ED-4K_MI 360.1 24.5 FD-4K_MI 361.2 24.9 

ED-4K_MP 380.5 31.6 FD-4K_MP 381.9 32.0 

ED-4K_MR 392.2 35.6 FD-4K_MR 394.0 36.2 

ED-4K_AVR 382.7 32.3 FD-4K_AVR 384.3 32.9 

 

4.5.7 Reservoir operation strategy to cope with climate change 

As hydropower production strongly relate to inflow, the power generation for the NN1 

power station could be varied significantly due to large variation in inflow projections. 

To mitigate the variability, implementing strategy such as changing the existing operation 

is necessary to address. Fig. 4.10 shows the implementation of reservoir operation of the 

NN1 reservoir for the increasing trend of inflow (for example 4K_HA scenario). Fig. 

4.10a shows the implementation by dropping the level of the NN1 rule curve to avoid a 

spill. By dropping the rule curve to a lower level, the results present that water spill is 

tended to decrease and energy production is tended to increase. Although dropping the 

level of rule curve over 2.5 m results in a higher reduction of the water spill, the head is 

reduced and result in less power output. The maximum increase in energy output has 

resulted when dropping the rule curve by 2.5 m with a 1.7% increase in energy production 

compared to the existing rule curve (dropping 0 m). Fig. 4.10b shows the implementation 
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by increasing installed power capacity. It is possible that in terms of the future inflow 

trend has increased, the stakeholders can consider installing more capacity to utilize 

additional water to get more power generation. The engineering design and construction 

processes are required. Furthermore, installing more power capacity, the implementation 

cost should be considered against the benefit of the increase in energy production. By 

increasing the capacity (with the existing rule curve), the results present that water spills 

are tended to decrease and energy production is tended to increase. Although the water 

spill is more decreased when increase capacity over 10%, it results in less energy output 

due to a large amount of water is discharged downstream which results in a reduction of 

water level in the reservoir (reduction head) leading to less power generation. The 

maximum increase in energy output has resulted when increasing the capacity by 10% 

with a 3.8% increase in energy production compared to the existing capacity.  

 

Fig. 4.10 (a) A relationship among dropping rule curve level, water spill and annual 

energy output of the NN 1 power station for FD_4K_HA. (b) A relationship among 

increasing installed capacity, water spill and annual energy output of the NN 1 power 

station for FD_4K_HA. 

 

Fig. 4.11 shows the implementation of reservoir operation of the NN1 reservoir by 

changing the rule curve for the decreasing trend of inflow (for example FD_4K_MI 

scenario). Fig. 4.11a shows the shifting elevation of the NN1 rule curve at a different 
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level. Fig. 4.11b shows the implementation of the NN1 reservoir by shifting the rule curve 

to a higher level. By shifting the rule curve (as shown in Fig. 4.11a), a higher hydraulic 

head is provided due to higher reservoir water levels result in more energy production. 

As a result of the higher water level, the water spill is tended to increase. Although the 

water level in the reservoir is increased when shifting the rule curve with an average of 

shifting elevation higher than 2.5 m, the energy output is tended to decrease due to the 

higher water spill. The maximum increase in energy output has resulted when shifting the 

rule curve of the NN1 reservoir by 2.5 m on average with a 5.4% increase in energy 

production compared to the rule curve. 

 

Fig. 4.11 (a) shifting elevation of the NN1 rule curve in different levels, the number shows 

the average shifting level of the rule curve from the existing in meter and (b) the 

relationship among annual energy, water spill and the shifting rule curve. 

 

4.6 Conclusions 

A change of long-term river flow projection covers a wide range dominated mainly by 

the difference in precipitation projections. The mean climate projection of +2K and +4K 

scenarios (2K_AVR and 4K_AVR) show a slight decrease in mean annual river flow. 

Even though the climate change dominates a primary effect on river flow in total annual 

amount, the impact on seasonal flow change is quite low compared to the effect of dam 

development. The effect of dam development shows a significant reduction in seasonal 
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flow variation at the downstream of the NN1 reservoir (regulated flow) in all climate 

scenarios compared to the natural flow condition (ND). At the full dam development stage 

(FD), all climate scenarios show a distinct trend of change in seasonal flow compared to 

the existing dam stage (ED) that there is a slight increase in the dry season and a slight 

decrease in the wet season due to an additional regulated storage of the under-construction 

dam (NN3).  

Estimation of energy production of the NN1 power station under climate projections 

shows a large variation in mean annual energy output due to an uncertainty of river flow 

projections in different climate scenarios. At the full dam development stage (FD), the 

annual energy production has a slight increasing trend compared to the existing dam 

development stage (ED) due to the regulated flow from more storage of the upstream 

cascade dam. 

As an increase in temperature projections, the NNBR seems to face a decrease trend in 

future precipitation. A combination of precipitation reduction and high temperature 

resulted in a reduction trend of river flow and hydropower production.  Without any 

implementation, the existing operation will lead to loss in annual energy production. Thus, 

adaptive implementations are necessary to mitigate the impact of climate change on the 

long-term hydropower generation. Rule curve—a long-term hydropower operation is 

based—needs to be effectively managed to optimize hydropower production while other 

related purposes such as downstream flood risk, water demand deficit, ecosystems and 

social vulnerability are minimized. 

Based on our approach for this study, there are some limitations. Firstly, by using delta 

method to project the climate variables, a lack of change in the variability and spatial 

patterns of climate. To access the spatial distribution and the variability of the projected 

climate, GCM downscale including bias correction process might be required. 

Secondly, this study assumed that the hydrologic variables that have an influent in river 

flow projection (including basin land cover) are not change. For further study, land use 

change and upstream water use (irrigation or other purposes) might be taken into account. 

As the operation of a large-scale dam with a large storage capacity can play a primary 

role in water resources management of the river basin. In order to improve the efficiency 

of reservoir operation, consideration of forecast information might be taken into account.  

However, the hydrological forecast contain a large uncertainty and it is difficult to 
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perfectly predict future conditions. Nohara et al. (2016) applied the ensemble prediction 

technique to support preliminary operation of the reservoir. The information including 

the possible conditions and the uncertainty of prediction can be important for more 

effective decision strategy for the reservoir real-time operation. 
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Chapter 5 Real-time optimization of a large-scale 
reservoir operation using adaptive river flow prediction  

 

This chapter examines the application of ensemble weather forecasting for reservoir 

operations which provide hydropower and irrigation facilities in Thailand. Medium-range 

ensemble precipitation forecasts were employed using a hydrological model to predict the 

real-time reservoir inflow. The effects of initial conditions on the model inflow prediction 

were examined using different methods. Real-time optimization of the water release 

strategy, determined a week in advance, for hydropower generation and irrigation was 

conducted with different scenarios using dynamic programming considering inflow 

predictions. The medium-range ensemble precipitation forecast conducted by the 

European Centre for Medium Range Weather Forecasts was used to quantify precipitation 

for the study basin. The ensemble precipitation forecast with the hydrological model was 

employed for inflow prediction of the study basin (which was located in a tropical climate 

with a distinct wet and dry season). The initial conditions of the hydrological model 

influenced the real-time inflow forecast. To determine the initial conditions of the model, 

the empirical data assimilation considering a drainage area factor was utilized, and 

observed precipitation data were used as model input forcing data during the warmup 

period. This method improved the reservoir inflow prediction and reduced the 

computational cost. Real-time reservoir optimization using dynamic programming with 

considering ensemble forecasts provided more efficient operating decisions than 

employing historical data. This is despite the difficulties encountered while operating a 

reservoir in a tropical region with significant uncertainty regarding hydrological 

conditions. The resulting information will be useful for water resource management, 

which may be adapted to other basins in the study region. 
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5.1 Introduction 

The Sirikit Dam is one of the two large reservoirs in the Chao Phraya River Basin 

(CPRB). The river basin is the largest (158,000 km2) and most important in Thailand. The 

CPRB supports the local community and economy and generates 66% of Thailand’s gross 

domestic product (Mateo, 2012). The Sirikit reservoir, containing 9,510 million m3 of the 

total storage volume, has a significant role in effectively managing the water resources of 

the basin. However, the basin is located in a tropical climate with significant seasonal 

differences and uncertainty regarding the basin’s hydrological condition. These 

uncertainties have a primary effect on reservoir operation, increasing the risk of water 

shortages (Tingsanchali and Boonyasirikul, 2006). 

For reservoir operations, the reservoir outflow must be determined. However, the 

decision is challenging because of the uncertainty regarding river flows. These 

uncertainties are significant in a tropical climatic region where hydrological 

characteristics have large seasonal variations. In addition, climate change complicates 

future water resource management because of increasing extreme weather fluctuations 

(Miles et al., 2000; Stocker et al., 2013). 

Incorporating weather forecast data may improve the efficiency of decision making 

(Hamlet et al., 2002; Lettenmaier and Wood, 1993; Zhu et al., 2002). However, forecast 

data have accuracy limitations (forecast uncertainty) with increasing forecast time. 

Therefore, mid- or long-term forecast data are not currently used frequently in reservoir 

management practices (Nohara and Hori, 2018). 

Using an ensemble forecast rather than a single (deterministic) forecast is an ideal 

solution to reduce forecast uncertainty because a set of random, equally probable 

(independent) forecasts are associated with the ensemble forecast (Zhu, 2005). In recent 

decades, ensemble forecast techniques have been rapidly developed. Ensemble forecast 

techniques are now generally accepted as a reliable approach for estimating forecast 

confidence, especially for high-impact weather (Bougeault et al., 2010). Based on these 

advantages, several studies have been conducted using ensemble forecast data, such as 

storm track prediction (Lin et al., 2020; Nishimura and Yamaguchi, 2015; Weber, 2003), 
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reservoir inflow prediction (Fan et al., 2015), river flow prediction, and flood forecasting 

(Alfieri et al., 2012; Bao et al., 2011; He et al., 2010; Sayama et al., 2020). 

Many studies have been conducted regarding ensemble streamflow predictions to 

improve reservoir operation efficiency (Alemu et al., 2011; Faber and Stedinger, 2001; 

Kim et al., 2007). In addition, some studies have introduced operational ensemble 

hydrometeorological predictions to reservoir operation for water use (Nohara et al., 2016; 

Nohara and Hori, 2018). Although these studies considered ensemble predictions for 

reservoir optimization, information regarding the methods for performing reservoir 

inflow forecasts using ensemble hydrometeorological predictions is scarce. This 

procedure becomes more important for a reservoir located in a tropical-climate basin with 

distinct wet and dry hydrological conditions, such as the CPRB. 

This study investigates forecasting river flows using a distributed hydrological model 

with ensemble precipitation forecasts (EPF) for real-time reservoir optimization using 

dynamic programming (DP). For this purpose, a physical distributed hydrological model 

is adopted. An adaptive mode of operation (state variable update) with different update 

procedures to assess the effect of the model's initial state condition on the results of river 

flow forecasts is also utilized. Medium-range EPFs are used to determine the reservoir 

inflow two weeks in advance of reservoir inflow forecast. Then, the optimization of 

reservoir release is examined in different scenarios of optimization using the two-week 

inflow forecasts. In Section 5.2, the hydrological model is calibrated and validated prior 

to its adoption and use for forecasting. In Section 5.3, the methodology of implementing 

the real-time inflow forecast using precipitation forecasts is described, and the effect of 

the model’s initial conditions with different model state update procedures on the inflow 

forecast results is evaluated. In Section 5.4, real-time reservoir optimization for one-week 

advanced release strategy using forecast inflows is examined with different scenarios 

regarding future long-term inflow assumptions. In Section 5.5, the advantages of 

introducing ensemble hydrometeorological forecasts are demonstrated for real-time 

optimization of Sirikit reservoir operation during 2019. 
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5.2 Reservoir inflow prediction model  

5.2.1 Hydrological model 

The improved 1K-DHM that incorporate the unconfined bedrock aquifer as described 

in Chapter 2 is applied for the reservoir inflow prediction in this chapter. The model 

should be calibrated and validated before applying it to the inflow forecast. To apply the 

model for long-term forecasting, periods should contain the seasonal hydrological 

characteristics of the basin (wet and dry seasons). The SCE-UA algorithm (Duan et al., 

1994) was applied to optimize the model parameters by searching for the parameter with 

the smallest root mean square error (RMSE) when compared with observations. 

Designing the range of the parameters is important to identify the parameter set. The 

model calibration method was described by Meema and Tachikawa (2020). 

The inflow of the Sirikit reservoir in 2014, which is considered a normal hydrological 

year, was selected as the calibration period. The optimized model parameters are listed in 

Table 5.1. The same parameter set was applied to the validation periods in 2008 and 1998, 

which were considered wet and dry, respectively. 

The model performed well in both calibration and validation periods with an RMSE 

less than 63.9 million m3 and Nash–Sutcliffe efficiency (NSE) coefficient greater than 

0.82, as shown in the comparison between simulated and observed inflow of the reservoir 

in Fig. 5.1. The model efficiently represents the inflow characteristics of the basin for 

both the wet and dry seasons for all simulation periods. This model, with the optimized 

parameter set, was applied to produce real-time inflow forecasts for the 2019 Sirikit 

reservoir. 
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Table 5.1 Optimized parameters of the hydrologic model. 

Parameter Units Value 

ns m-1/3/s 0.975 

ka m/s 1.14×10-4 

da m 3.179 

dm m 2.984 

 β - 19.906 

ku m/s 8.46×10-5 

du m 0.323 

kv m/s 1.08×10-7 

 

 

 

Fig. 5.1 Comparison between simulated and observed inflow at the Sirikit dam (a) during 

the calibration period (b) validation period 1 (c) validation period 2 (RMSE [million m3] 

and NSE [-]). 
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5.2.2 Estimation of actual evapotranspiration 

To predict the reservoir inflow in the Nan River Basin, the actual evapotranspiration 

(AET) is important especially during the dry season or less of precipitation period. For 

this study, the long-term estimation of daily average AET is adopted in inflow prediction 

period. 

To estimate AET in Nan River Basin, assume that the error in the water balance 

calculated from AET is equal to zero, the annual AET can be estimated using Eq. 3.6 

which the inflow of Sirikit Dam is used as annual river discharge (Q). Thus, the estimation 

of annual AET for Nan River Basin is presented in Fig. 5.2.  

 

Fig. 5.2 Estimation of long-term AET for Nan River Basin 

 

5.3 Ensemble inflow prediction using European Centre for Medium Range 

Weather Forecasts (ECMWF) precipitation forecast 

5.3.1 Ensemble precipitation forecasts (EPF) 

TIGGE (THORPEX Interactive Grand Global Ensemble) is a database of ensemble 

medium-range forecasts conducted by different forecasting centers worldwide for 

conducting scientific research (Bougeault et al., 2010). Ensemble Prediction System data 

are available from approximately ten of these forecasting centers. 

Among all data on TIGGE, ECMWF has superior performance compared to other 

forecasting systems (Buizza et al., 2005). Therefore, it was selected as the EPF data for 
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generating reservoir inflow forecasts in this study. 

The ECMWF forecasts consist of 51 members of precipitation with approximately 0.5° 

resolution for the whole globe. Initial uncertainties are considered using a singular vector 

technique. A stochastic scheme is used to model uncertainties resulting in possible 

variations in physical parameterizations (Buizza et al., 2007). The data are available twice 

a day at 00:00 UTC and 12:00 UTC with time steps of 6 h and 15 d.  

5.3.2 Real-time state update of hydrological model   

The update procedure of the model state variables is based on observed errors in river 

flow, and empirical methods or Kalman filtering has been used (Moore et al., 2005; 

Romanowicz et al., 2006). Using Kalman filtering with complex distributed and nonlinear 

models results in highly complex computations (O’Connell and Clarke, 1981). A cost-

effective approach has been developed for computation using an empirical data 

assimilation procedure and applied to a large-scale hydrological model (Collischonn et 

al., 2005). 

Therefore, we adopted this empirical data assimilation procedure to incorporate the 

large-scale distributed hydrological model (as explained in Section 5.2.1) to obtain the 

initial state of the basin (at t0) using observed and ensemble precipitation forecasts as the 

model input prior to performing reservoir inflow forecasts. The updating correction factor 

(FCA) is calculated at gauge station k using the following equation:  

𝐹𝐶𝐴௞ =
𝑄௢௕௦,௞

𝑄௖௔௟,௞
 (5.1) 

where Qobs, k and Qcal, k are the observed and calculated river discharges at gauge station 

k. 

To evaluate the updating procedure during the warmup period, different empirical 

equations were investigated in this study. First (model states update type 1), the correction 

factor is directly applied to update the state variables for any cell i located upstream of 

gauge station k as expressed in Eq. 5.2. Second (model states update type 2), the 

correction factor is applied to correct the state variables for any cell i located upstream of 

gauge station k considering a drainage area factor of the upstream grids at each cell, as 

expressed in Eq. 5.3. 

𝑆௨௣,௜,௞ = 𝐹𝐶𝐴௞ ∙ 𝑆௖௔௟,௜ (5.2) 
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𝑆௨௣,௜,௞ = 𝐹𝐶𝐴௞ ∙ 𝑆௖௔௟,௜ ∙ ൬
𝐴௜

𝐴௞
൰ + 𝑆௖௔௟,௜ ∙ ൬1 −

𝐴௜

𝐴௞
൰ (5.3) 

where Sup, i, k are the updated model state variables at cell i located upstream of gauge 

station k,  Sup, i, k can be substitute with the variables of the hydrological model such as 

river discharge (Q), lateral discharge from the surface soil layer (qs), and the bedrock 

aquifer layer (qu); Ai and Ak are the drainage areas upstream of cell i and gauging station 

k. 

5.3.3 Real-time reservoir inflow forecast algorithm 

Fig. 5.3 illustrates the procedure of the reservoir inflow forecast using the EPF. The 

simulation can be divided into two periods: the warmup and forecast periods. For real-

time forecasting, it is necessary to operate the model in adaptive mode (Moore et al., 

2005) for which the model output is based on previous model inputs as well as previously 

observed information that is used to update the model prior to a new forecast. Thus, this 

study proposes a warmup period to account for uncertainties in the model initial 

conditions before the forecast period is performed. For this purpose, data assimilation (as 

explained in Section 5.3.2) is adopted to improve the estimate of the initial states of the 

model and to reduce the simulation errors in the forecast period (Madsen and Skotner, 

2005). 

We not only considered model state variables for the data assimilation implementation, 

but also the errors due to model input. To assess the errors due to input data during the 

warmup period, two procedures of input precipitation data for the model were considered. 

First, a single pattern of observed data was applied to the model. Second, a combination 

of observed data and ensemble forecasts with 52 patterns (one pattern of observation + 

51 patterns of ensemble forecasts) of precipitation was applied to the model. Fig. 5.3a 

describes the procedure of using observed precipitation and model state updates up to the 

starting time of the forecasts (t0). Then, the EPFs were applied to the model as forcing 

input data up to the lead time (t+15) for the 15-d reservoir inflow forecasts. Fig. 5.3b 

describes the procedure of using a combination of observed and ensemble forecast data 

and the update procedure of the model states up to the starting time of the forecasts (t0). 

Using 52 precipitation patterns during the warmup period, 52 flow patterns were obtained. 

To select the flow pattern that represents the model states at the starting time of the 

forecasts (t0), the highest NSE coefficient computed from the comparison between each 
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simulated flow pattern with the observation during the warmup period was selected. 

Data assimilation methods used during the warmup period to reproduce the initial state 

of the model at the initial time of the forecast (t0) are summarized in Table 5.2. The model 

state variables were updated in forecast methods 1 and 2 using Eq. 5.2 and in forecast 

methods 3 and 4 using Eq. 5.3. A single pattern of observed precipitation was used in 

forecast methods 1 and 3 (Fig. 5.3a). For forecast methods 2 and 4, 52 precipitation 

patterns were used (Fig. 5.3b). For the forecast period (all methods), precipitation 

forecasts were used, and the observed precipitation was applied in this study to evaluate 

the inflow forecast procedures as a possibly perfect forecast of precipitation. 

 

 

Fig. 5.3 Schematic of inflow forecast procedure using (a) observed rainfall and (b) a 

combination between observed and end ensemble forecasts up to the starting time of the 

forecasts (t0), and ensemble precipitation forecast up to the lead time. 
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Table 5.2 Description of data assimilation methods used in the warmup period and 

input forcing data for each simulation period 

Method 
Warmup period (t-7 − t0) Forecast period (t0 − t+15) 

State update 
type 

Input data 
No. input 

pattern 
Input data 

No. input 
pattern 

1 1 Obs. 1 

Obs. + Ens. Forecast 52 
2 1 

Obs. + Ens. 
Forecast 

52 

3 2 Obs. 1 

4 2 
Obs. + Ens. 

Forecast 
52 

 

 

5.4 Reservoir optimization with ensemble inflow forecast in Sirikit Dam  

5.4.1 Current reservoir operation of the Sirikit Dam  

The Sirikit Dam contains 6,660 million m3 of effective storage and 500 MW of power 

generation capacity located on the Nan River, the main tributary of the Chao Phraya River. 

The dam controls 13,130 km2 of drainage area. The main functions of the dam include 

irrigation purposes, domestic and industrial use, flood control, ecological conservation, 

and power generation (Amnatsan et al., 2018). The location of the study basin is shown 

in Fig. 5.4. 

Due to unpredicted inflow, reservoir operation faces significant challenges in 

controlling water for society. In 2019, the reservoir storage level was higher than the 

lower rule curve (LRC) at the beginning of the year, and the reservoir release was still 

above average because of the downstream demand and power supply requirement during 

the dry season. However, the low inflow volume from the beginning to the middle of the 

wet season was unexpected. This event presented difficulties for reservoir operation and 

resulted in a low storage level (lower than LRC) after mid-August. 

Fig. 5.5 shows the operation records of the Sirikit reservoir during 2019. Compared to 

the 30 years historical data, the reservoir inflow volume is low (lower than 25th percentile), 

as shown in Fig. 5.5a, whereas the released volume is relatively high (close to the 75th 

percentile), as shown in Fig. 5.5b. This difference led to a low level of reservoir storage 

at the end of the year (significantly less than the LRC), as shown in Fig. 5.5c.  

For effective basin water management, reservoir operation requires forecasting 
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information. Therefore, we selected this period as a case study to evaluate the 

performance of release strategy estimation forecasting one-week in advance using 

medium-range weather forecast information and the reservoir optimization process. 

 

 

Fig. 5.4 Location of study basin and the Sirikit Reservoir (SK). 
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Fig. 5.5 Operation record of Sirikit Reservoir in 2019 (a) reservoir inflow compared to 

historical record (b) release compared to the historical record and (c) reservoir storage 

(p0.0 is minimum, p0.25 is 25th percentile, p0.75 is 75th percentile and p1.0 is maximum). 

 

5.4.2 Optimization framework for dam release strategy using DP 

The objective of this study is to develop a future release strategy for large-scale 

reservoirs using weather forecasts. For this purpose, the optimization process of the 

released strategy for long-term reservoir operation using EPF is illustrated in Fig. 5.6. 

For real-time river flow forecasting, an initial condition setting of the hydrological 

model is necessary. The previous week’s (t-1) flow condition was simulated with 

observed rainfall (forecast method 3 was selected, discussed in Section 5.5.2) as the model 

warmup in adaptive mode (data assimilation is associated). The model state variables at 

the beginning of the forecast period obtained from the simulation in the warmup period 

were assigned to the model as the initial state condition (see Section 5.3). 
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The two-week inflow forecast (Qt and Qt+1) obtained from the hydrological model 

(simulated with two-week advanced EPF) was input into the DP to optimize the one-week 

advanced release strategy (Rt) at any storage level (see Section 5.4.3). To optimize the 

release strategy, the future benefit at the end of the target period (Ft+2) is required to 

associate the penalties to lower storage levels of the reservoir (see Section 5.4.4). 

Objective functions such as irrigation and hydropower benefits are required for the 

optimization process (see Section 5.4.5). Reservoir information such as elevation-storage-

area, maximum–minimum storage, evaporation rate from the water body at any stage, and 

generated power capacity are required. Furthermore, the minimum and maximum 

released capacities are assigned to the DP algorithm as the constraint for the reservoir 

release condition. 

 

Fig. 5.6 Optimization of dam release strategy for long-term reservoir operation using EPF. 

 

5.4.3 Application of DP for reservoir optimization 

To interpret the results of the ensemble inflow forecast, the general method is to 

consider the mean value (ensemble mean) or median, which represents the tendency of 

all ensemble forecast members. To optimize the operation strategy of the reservoir using 

the ensemble mean or median of the ensemble inflow forecast, the deterministic DP 

(DDP) can be applied (Nohara and Hori, 2018). 
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By using DDP in reservoir problems, the reservoir storage at time t is divided into 

decision-making stages (St). The optimized water release (Rt) at each state is selected 

based on the maximum value of the sum of the current benefit (Bt(Rt)) and future benefit 

(Ft+1(St+1)). The computation is started at the end of the optimization time (the final stage) 

and then moved backward to the beginning stage (Louoks and Falkson, 1970). The 

recursive equation for optimization can be defined by the following equation: 

𝐹௧(𝑆௧) = max [𝐵௧(𝑆௧, 𝑄௧, 𝑅௧) + 𝐹௧ାଵ(𝑆௧ାଵ)] (5.4) 

where t is the time period, and Bt(‧) is the benefit function of period t. 

The storage (state variable) can be described using the reservoir continuity equation as 

follows: 

𝑆௧ାଵ = 𝑆௧ + 𝑄௧ − 𝑅௧ − 𝑒௧(𝑆௧, 𝑆௧ାଵ) (5.5) 

where St is the storage at the beginning of period t, Qt is the reservoir inflow for period t, 

𝑒௧(𝑆௧, 𝑆௧ାଵ)  is the loss due to reservoir evaporation during period t, which can be 

calculated as follows: 

𝑒௧(𝑆௧, 𝑆௧ାଵ) = 𝐴(𝑆௧, 𝑆௧ାଵ) ∙ 𝑒𝑣௧ (5.6) 

where 𝐴(𝑆௧, 𝑆௧ାଵ) is the reservoir surface area for period t, and 𝑒𝑣௧ is the evaporation rate 

from the water body during period t. 

5.4.4 Implementation with the optimized strategy and scenarios 

We assume that the simulation for 1-week in advance released strategy performs every 

Sunday. The volume of water released from the reservoir follows the simulated strategy 

throughout the week. A total of 52 weeks in 2019 was the target period of this study. 

Fig. 5.7 presents the optimization scheme for a target week (t) release strategy using 

DP. To adopt DP, the penalties must be utilized at lower reservoir storage levels after the 

final time step of optimization. This is to ensure that the reservoir will not draw down to 

low storage levels by releasing excess water to generate quantified benefits during the 

optimized period. For this purpose, the sum of future benefits was applied to each storage 

level after the final time step of the optimization (Ft+2) as losses or penalties. 

To calculate penalties at the stage of t+2 (Ft+2) for each storage level, the next year’s 

benefits (possible future benefit in 2020) were also considered. However, to begin the 

calculation of the DP recursive equation, as expressed in Eq. 5.4, the initial assumption 

is that all future benefits (losses or penalties) will be zero at some point of time (Loucks 
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et al., 2005). For this purpose, a dummy year was proposed to quantify the benefits or 

penalties at the end of 2020 (FT’’+1), avoiding the assumption of terminating operation. 

The 50th percentile of the 30-year historical data was used for the reservoir inflow in the 

dummy year. Thus, all future benefits (losses or penalties) after the final stage of the 

dummy year (FT*+1) were defined as 0. Following Eq. 5.4, we can start calculating the 

penalties (F) in each stage progressing backward to the stage after the optimization period 

(t+2). Finally, the penalties at the stage after the optimization period (Ft+2) for each storage 

level were obtained. 

According to the limitation of forecast information (approximately two weeks), the 

future long-term reservoir inflow that is used to calculate the penalties after the 

optimization period (t+2) was proposed with different assumptions, which is summarized 

in Table 5.3. The general method for future inflow assumptions is to use the 50th 

percentile of historical data for all remaining periods (up to the end of 2020). This is 

proposed in Scenario 1. The 25th percentile of historical data was adopted in Scenario 2, 

assuming drought conditions.  

To assess the effect of the future inflow assumption, it was assumed that the assumption 

is perfect, as proposed in Scenario 3. A combination of perfect forecasting and future 

assumptions was proposed in Scenario 4. To assess the effect of the use of forecast inflow 

in optimization, Scenario 5 was introduced with the general procedure using the 50th 

percentile of historical data as the future inflow assumption. 

The one-week advanced release strategy (Rt) obtained from the optimized process can 

be implemented for any initial reservoir storage level (St) at the target time (t). This 

signifies that this strategy can be implemented under different flow patterns using linear 

interpolation among the release tables obtained from the optimization process. 

To determine the strategy performance, the strategies were utilized on observed flow 

patterns (using a forward calculation). The strategy performance is evaluated based on 

the sum of the benefits from the present to the future using the same objective function. 

Storage of the target time (St+1) can be estimated using Eq. 5.5, which will be the initial 

storage of the following time step. The same procedure will be repeated with the next 

operation strategy. 
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Fig. 5.7 Optimization scheme for any target week release strategy (Rt) and calculation of 

ending storage penalties (F(t+2)) using DP. 

 

Table 5.3 Description of optimization scenarios with different future long-term inflow 

assumptions for each period. (Hist. is historical data, p50 and p25 are 50th and 25th 

percentile respectively). 

Scenarios 
Periods 

Optimization Remaining 2019 2020 Dummy 

Scenario 0 baseline scenario (actual operation) 

Scenario 1 Forecast mean Hist. p50 Hist. p50 

Hist. p50 
Scenario 2 Forecast mean Hist. p25 Hist. p25 

Scenario 3 Forecast mean 2019 2020 

Scenario 4 2019 2019 2020 

Scenario 5 Hist. p50 

 

5.4.5 Objective function  

The objective function for the reservoir operation optimization may be defined as a 

maximization of the total benefit over the study period. In this study, irrigation and 

hydropower benefits were considered as functions of reservoir release. The objective 

function for this problem is expressed as follows: 
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𝑚𝑎𝑥 ෍ 𝐵௧

்

௧ୀଵ

 

 

(5.7) 

where T is the number of optimization stages, and Bt is the total benefit at stage t, which 

can be expressed as follows: 

𝐵௧ = 𝐵௧
௜௥௥ + 𝐵௧

௛ௗ௣ (5.8) 

where 𝐵௧
௜௥௥ and 𝐵௧

௛ௗ௣ are irrigation and hydropower benefits at stage t, respectively.  

For the irrigation objective, the relationships between irrigation loss-benefit (𝐵௧
௜௥௥ ) and 

the release of Sirikit reservoir (Rt) were obtained from Tingsanchali and Boonyasirikul 

(2006). To apply this relationship to this study, the present value of irrigation loss-benefit 

was estimated based on Eq. 5.9, as shown in Fig. 5.8. 

𝐵௧
௜௥௥ (ଶ଴ଵଽ)

= 𝐵௧
௜௥௥ (ଶ଴଴଺)

∙ (1 + 𝑖𝑟)ே (5.9) 

where 𝐵௧
௜௥௥ (ଶ଴଴଺) is irrigation loss-benefit in 2006, 𝐵௧

௜௥௥ (ଶ଴ଵଽ) is irrigation loss-benefit in 

2019, N is the number of years, and ir is the interest rate, with an average rate of 2.4 % 

between 2006 and 2019 (Bank of Thailand, 2021). 

For hydropower benefit (𝐵௧
௛ௗ௣), a fixed tariff rate of hydropower of 0.0375 per kWh is 

used according to the Electricity Generating Authority of Thailand (EGAT) (Tingsanchali 

and Boonyasirikul, 2006). As this fixed tariff rate is the official rate according to the 

power purchase agreement between EGAT and its customer, the hydropower benefit can 

be expressed as follows: 

𝐵௧
௛ௗ௣

= 𝑇𝑎𝑟𝑖𝑓𝑓 ∙ 𝜂 ∙ 𝑔 ∙ 𝑅௧ ∙ 𝐻௧ (5.10) 

where Tariff is the tariff rate, 𝜂 is the turbine efficiency, 𝑔 is the gravitational acceleration, 

Rt is the discharged discharge through the turbine (we assume that water is released 

downstream from the reservoir through the turbines), and Ht is the hydraulic head, which 

can be calculated as follows: 

𝐻௧ = 𝑊𝐿௧(𝑆௧ , 𝑆௧ାଵ) − 𝑇𝑊𝐿 − 𝐻௟௢௦௦ (5.11) 

where WLt is the reservoir water level, TWL is the tailwater level downstream of the dam, 

and Hloss is the hydraulic head loss. 
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Fig. 5.8 Irrigation loss-benefit function base on the release of the Sirikit reservoir. 

 

5.5 Results and discussion 

5.5.1 Performance of EPF  

Fig. 5.9a and Fig. 5.9b present the comparison of accumulated basin-averaged 

precipitation between forecasts and observations for accumulated 1 week (days 1–7) and 

accumulated 2 weeks (days 1–14), respectively. The forecast is capable of estimating 

precipitation during the dry season (around weeks 1–17 and weeks 45–52). However, 

during the wet season, there are some differences between precipitation forecasts and 

observation, especially during the start to mid of the wet season (around weeks 18–29), 

which resulted in an overestimation of the accumulated precipitation for both 1 week and 

2 weeks.  

In contrast, using the mean of forecast ensembles for accumulated basin precipitation, 

the forecast performed well, when compared to the observation, with an RMSE value of 

22.6 mm (2.0% relative difference using annual precipitation) and 43.6 mm (3.9% relative 
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difference using annual precipitation) for 1 week and 2 weeks, respectively.  

 

Fig. 5.9 Comparison of accumulated basin-averaged precipitation between observed and 

forecasts (a) one week of forecast (b) two weeks of forecast. 

 

5.5.2 Performance of inflow forecasting 

 Fig. 5.10 and Fig. 5.11 present the reservoir inflow comparison between forecasts 

(box plot) and observations in different forecast methods for one and two weeks 

accumulated inflows, respectively. Precipitation forecasts were used during the forecast 

period, and the observed precipitation was adopted to evaluate the forecast procedure as 

a possible perfect forecast. The performances of inflow forecasts such as RMSE and NSE 

in different forecast methods were calculated by comparing the mean of the forecast 

ensembles with the observations, as summarized in Table 5.4.  
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Table 5.4 performance of inflow forecasts in different forecast methods and input 

forcing data (RMSE [million m3] and NSE [-]). 

Method 

One-week Two-week 
Forecasts Observation Forecasts Observation 

RMSE NSE RMSE NSE RMSE NSE RMSE NSE 

1 104.2 0.32 124.0 0.04 236.5 0.07 208.4 0.28 

2 126.6 0.004 103.3 0.34 270.5 - 178.2 0.47 

3 36.1 0.92 33.2 0.93 78.7 0.90 48.5 0.96 

4 43.5 0.88 33.7 0.93 105.9 0.81 58.4 0.94 

 

 

 

Fig. 5.10 Comparison of accumulated one week reservoir inflow between forecasts (box 

plot) and observation in different forecast methods (a) method 1 (b) method 2 (c) method 

3 and (d) method 4. 
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Fig. 5.11 Comparison of accumulated two weeks reservoir inflow between forecasts (box 

plot) and observation in different forecast methods (a) method 1 (b) method 2 (c) method 

3 and (d) method 4. 

 

According to the results obtained from different forecast methods, the model initial 

state condition (including its spatial distribution) has a primary effect on inflow forecasts. 

This results in a significant difference in the forecast inflow volume. Using the state 

update a type 1 scenario (applied same ratio to all upstream grids), the forecast inflow had 

a significant fluctuation among the forecast members compared to using the state update 

type 2. The use of forecast and observed precipitation resulted in a significant difference 

in the forecast volume, especially during high flow (see Fig. 5.10a, 5.10b, 5.11a, and 

5.11b). Moreover, the two-week accumulated inflow forecast resulted in a significant 

overestimation throughout the year compared to the observations (see Fig. 5.11a and Fig. 

5.11b). 
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Using the state update type 2 (considered grid drainage area), the inflow forecast had 

more stable results among the members compared to the results obtained from the type 1 

state update. There is no primary difference in the simulated results obtained using 

forecasts and observed precipitation (see Fig. 5.10c, 5.10d, 5.11c, and 5.11d). 

Furthermore, the accumulated forecast inflow for one and two weeks corresponded well 

with observations. 

This may be described by comparing the spatial distribution of the model’s initial 

state (the model state at the initial forecast time, t0) that resulted in a difference in the 

forecast inflow. For example, Fig. 5.12 presents a comparison of the initial model state 

spatial distribution for week 31 (July 28, 2019, 00:00 UTC) using different forecast 

methods. Figs. 5.12a−5.12d present the distributed grid discharge ranged from 0.0−265.0 

m3/s that emphasize the discharge state in the mainstream. Figs. 5.12e−5.12h present the 

distributed grid discharge ranged from 0.0−1.0 m3/s that emphasize the discharge state 

for the most of catchment area (small streams). The spatial distribution of discharge state 

at the upstream grids shows a difference in value compared among different update 

methods (see the procedure in Section 4) in contrast to the river discharge at the basin 

outlet (observed station) having the same value for all methods. Fig. 5.12a, 5.12b, 5.12e 

and 5.12f present the spatial distribution of the initial model state resulting from update 

procedure type 1 that the correction factor (FCA) is directly applied to update the state 

variables for any upstream grid of the observed station as expressed in Eq. 5.2, which 

exhibited greater river discharge at the upstream grids than Fig. 5.12c, 5.12d, 5.12g and 

5.12h resulting from update type 2 that the correction factor (FCA) is reduced when 

updating the state variables for any upstream grid based on a drainage area factor at each 

cell (the ratio of drainage area between any upstream grid and the observed station) as 

expressed in Eq. 5.3. 
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Fig. 5.12 Comparison of initial state conditions for the simulation of week 31 among 

different forecast methods (a) method 1 (b) method 2 (c) method 3 and (d) method 4 

which value range from 0.0−265.0 m3/s, (e) method 1 (f) method 2 (g) method 3 and (h) 

method 4 which value range from 0.0−1.0 m3/s. 

 

The difference in the initial state value resulted in different inflow forecasts, as shown 

in Fig. 5.13. The forecast hydrograph in Fig. 5.13a and 5.13b resulting from state updated 

type 1 presented a higher forecast inflow than those (Fig. 5.13c and 5.13d) from state 

updated type 2. Higher discharge from the upstream grids at the initial state of forecast 

simulation resulted from the higher update coefficient flow to the outlet, when the 

simulation time was extended.  

There is no primary difference in the forecast results compared to the use of different 

forcing data during the warmup period. Using only observed precipitation during the 

warmup period, the inflow forecast resulted in higher performance and lower simulation 

cost. Therefore, it may be considered as a cost-effective procedure for setting the initial 
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states of the model prior to performing the forecast. As forecast method 3 resulted in 

satisfactory performance and reduced simulation cost, the result from this method was 

adopted to optimize the Sirikit Dam release strategy. 

 

 

Fig. 5.13 Comparison of forecast hydrograph for simulation of week 31 among different 

forecast methods (a) method 1 (b) method 2 (c) method 3 and (d) method 4. 

 

5.5.3 Reservoir optimization results  

 Fig. 5.14 presents the results of the reservoir operation by adopting the release 

strategies obtained from different scenarios of the real-time optimization process. Fig. 

5.14a shows a comparison of the reservoir releases in different optimization scenarios. 

The actual release (Scenario 0) is large at the beginning of the year owing to increased 

demand for both downstream water and power during the dry season. The reservoir 



Real-time optimization of a large-scale reservoir operation using adaptive river flow prediction 

111 
 

storage might be considered to be at a high level (much higher than the LRC). The water 

release gradually decreased to low storage levels as a result of the imbalance between 

reservoir inflows and outflows. The water release hydrographs resulting from the 

optimization process (scenarios 1−5) have a similar tendency to increase water releases 

to mitigate the irrigation loss during March and April and to decrease releases during the 

wet season. This is a result of the irrigation sector requiring significant water from the 

reservoir for agricultural activities during the dry season. However, during the wet season, 

the water demand decreases due to seasonal rainfall. 

Fig. 5.14b shows a comparison of the reservoir storage operated by the release 

strategies obtained from different optimization scenarios. Using an optimization process 

to determine the reservoir release decision, the reservoir storage at the end of 2019 was 

greater than that observed in operation (Scenario 0) for all scenarios. By associating 

forecast information in the real-time optimization of reservoir operation decision-making, 

such as scenarios 1−4, the overall reservoir water storage in 2019 is greater than that when 

predictions had not been considered (Scenario 5). Although Scenario 4 is considered as 

the perfect inflow forecast, there is no primary difference in the results obtained from 

Scenario 3. The forecast inflow for determining the release strategy in Scenario 3 has a 

similar tendency compared the actual inflow used in Scenario 4. 

Fig. 5.14c presents a comparison of the accumulated total benefits of the reservoir 

operation in different optimization scenarios. Although increased releases provided a 

greater benefit at the end of the year as the benefit is a function of reservoir release, the 

remaining water budget for the future operation is different (difference in reservoir 

storage level at the end of the year). To compare the effectiveness of the optimization 

scenarios, the penalty might be considered for each storage level at the end of the year. 

This storage penalty can be calculated based on the future long-term inflow assumption 

using a backward calculation (Eq. 5.4). For this study, we used the actual inflow in 2020 

and the 50th percentile of the historical data in the dummy year. Thus, the penalties based 

on the end storage level for each scenario are summarized in Table 5.5. 

The sum of the total benefit in 2019 and end year storage penalty were the greatest for 

scenarios 3 and 4 and had the highest value among all scenarios. Scenario 5 (without 
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considering forecast) had the highest benefit in 2019 among optimization scenarios 

(scenarios 1−5), but resulted in the smallest value when considering the storage penalty. 

This demonstrates that there are advantages when associating forecast information with 

real-time optimization for decision making in reservoir operation. 

The future long-term inflow assumption (for penalty calculation) has a significant effect 

on the results of the reservoir operation. To improve optimization process efficiency, 

long-term forecasts with high performance should be utilized. In contrast, although the 

future long-term inflow is practically difficult to predict, the use of historical data, such 

as in scenarios 1 and 2, provided satisfactory results in this study. 

 

Table 5.5 Summary of reservoir operation result using release strategy obtained from 

different optimization scenarios. 

Scenarios 
Total release 
[million m3] 

End year 
storage 

[million m3] 

End year storage 
penalties* 

[million USD] 

Benefit [million USD] 

within 
2019 

including 
penalties  

Scenario 0 6175.9 4851.0 64.7 56.8 121.6  

Scenario 1 5213.0 5786.4 104.3 33.1 137.5  

Scenario 2 4473.2 6515.6 134.8 2.8 137.6  

Scenario 3 4797.6 6197.6 121.6 16.2 137.8  

Scenario 4 4796.9 6198.3 121.6 16.2 137.8  

Scenario 5 5296.1 5703.9 100.9 36.5 137.4  

* Possible max. future benefit at each storage level based on actual inflow in 2020 and Hist. p50 in dummy year  
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5.6 Conclusions 

This study presented a methodology to introduce ensemble weather forecast 

information collected from TIGGE archive data for real-time optimization of a one-week 

advanced release strategy of the Sirikit reservoir, Thailand. The basin is located in a 

tropical climate region with a distinct wet and dry season, which has high uncertainty 

regarding hydrological conditions. This uncertainty increases challenges for reservoir 

operation.  

This study illustrates the importance of TIGGE, which provides forecast data from 

various centers worldwide, which provide the benefits of research development in regions 

where these advanced products are scarce. 

To predict reservoir inflow, the hydrological model was operated in an adaptive mode 

during the warmup period to account for the uncertainties in the initial conditions of the 

model. The results showed that the state update that considers the drainage area factor 

(state update type 2) using observed precipitation as input forcing data has an advantage 

in terms of computation cost compared to other methods. By using this method to set the 

model initial condition, the two-week advanced inflow predictions using ECMWF 

perform well, which corresponds well with the observations throughout the year. 

The ensemble mean of inflow predictions was introduced to the real-time optimization 

of Sirikit reservoir during 2019 using DP with different assumptions of optimization 

scenarios. The results showed that all optimization scenarios resulted in improved 

benefits (including end year storage penalties) compared to the observed operation. In 

conclusion, despite the reservoir's operational challenges resulting from the high 

uncertainty regarding hydrological conditions in a tropical-climate basin, the case study 

indicated that reservoir operation would benefit by considering ensemble weather 

forecasts. Such reservoir operation improvements would have positive impacts for long-

term hydropower generation and irrigation purposes.  

Although this study indicates potential advantages of considering ensemble weather 

predictions for the one-week advanced reservoir release strategy, further studies might 

consider updating the forecast and reservoir optimization in the shortest period possible 

to improve the efficiency of decision making in reservoir operation. Moreover, this study 
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presented significant differences in reservoir operation results driven by future long-term 

inflow assumptions (for a storage penalty estimation). Further studies might introduce 

long-range weather forecasts for more robust decision-making during reservoir operation. 
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Chapter 6 Concluding remarks 
 

Regarding regional growth, water resources have become a highly essential resource 

for the countries in Southeast Asia where agriculture and hydropower are one of the main 

incomes for their economy. As a dam reservoir that controls rivers for both water use and 

flood control is an effective tool in water management, several dams have been developed 

in various stages ranged from operated to planned in this region. 

Even though building dams can boost their economies, dam management becomes 

challenging due to the uncertainty (unpredictable) of hydrologic conditions in the tropical 

climate basin with distinct wet and dry seasons providing a primary effect on reservoir 

operation increased the risk of water disasters such as flood and drought. Furthermore, 

the effect of climate change on water resources results in more complicated efficient 

manage the dam. 

In particular, this thesis focused on developing the approaches to assess the impact of 

climate change on reservoir operations and introduce the strategies to manage the 

reservoir coping with the uncertainty of water resources. Thus, the achievements in this 

thesis are as follows; 

1) Improvement of the distributed hydrological model to improve the long-term river 

flow prediction in a tropical climate basin, 

2) Development of an integrated model that coupled reservoir-hydropower plant 

model with a distributed hydrological model, 

3) Applying the integrated model to assess the effect of climate change on reservoir 

operation and introducing the strategies to cope with the effect. 

4) Introducing weather forecast to the real-time reservoir optimization using DP. 

In Chapter 2, the original 1K-DHM was applied to the Nam Ngum River Basin, Laos 

PDR where the basin characteristic is distinct between wet and dry season for long-term 

river flow estimation.  Even though the result is satisfactory, the optimized parameters 

such as soil depth is unreasonable (much larger than the available physical data). 
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Regarding this reason, the model structure of the 1K-DHM has been improved for a better 

estimation of long-term river discharge by incorporating bedrock aquifer into the original 

model structure. Based on different structures of bedrock aquifer, the model structure that 

combined the soil layer (original model) and the unconfined aquifer component with the 

estimation of the vertical infiltration based on vertical hydraulic conductivity best 

reproduced the long-term river discharge phenomena. The improved model structure not 

only improved river flow estimation but produced a reasonable set of parameters that 

agreed with physical data sets also. 

In Chapter 3, the integrated model combined hydrological model (Chapter 2) and 

reservoir-hydropower model has been developed to assess the effect of dam operation in 

the Nam Ngum River Basin, Laos PDR. The integrated model performed well in 

calibration and validation processes that the result agrees with the actual operation record 

of the Nan Ngum 1 dam. The integrated model was applied to assess the impact of 

hydropower development in the Nam Ngum River Basin. The result indicated a primary 

change in annual and seasonal river flow due to regulated flow by the cascade dams in 

full development compared to natural river flow conditions. Furthermore, regulated flow 

by the upstream cascade dams also resulted in benefits in energy production of the Nam 

Ngum 1 power station. 

In Chapter 4, the integrated model (Chapter 3) was applied to assess the combined 

effect of climate change and hydropower development in the Nam Ngum River Basin. 

The future climate has been projected using a large ensemble of future climate projections 

(d4PDF). The simulation results indicated a slight reduction trend of river flow (including 

dam inflow) and hydropower production due to a combination of precipitation reduction 

and high temperature in the mean climate projection of +2K and +4K scenarios. Therefore, 

to mitigate the impact of climate change on long-term reservoir operation, adaptive 

implementations are required to consider. 

In Chapter 5, the methodology that introduced ensemble weather forecasting for real-

time reservoir optimization for hydropower and irrigation facilities of Sirikit Dam in 

Thailand was conducted using dynamic programming. The real-time reservoir inflow 

prediction using medium-range ensemble precipitation forecasts with a hydrological 
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model in adaptive mode performed well compared to the observation. The result of 

reservoir implementation presented that considering ensemble forecasts in real-time 

reservoir optimization provided more efficient operating decisions than employing 

historical data. 

This thesis successfully proposed a methodology for assessing the impact of water 

resource uncertainty in tropical climate basin with a distinct wet and dry season on 

reservoir operation and introduced adaptive implementations to cope with this uncertainty 

included a real-time optimization approach. The resulting information will be useful for 

water resources management, which may be adapted to other basins in the study region. 

This thesis indicates the potential advantages of hydropower production and irrigation 

in reservoir management using adaptive implementations. For further research, the other 

multi-purposes of the reservoir (flood control, drought, etc.) may be taken into account to 

perform robust decision-making during reservoir operation. For this purpose, the real-

time river flow forecast requires the accuracy of prediction in a shorter time step. 

Uncertainties in river flow forecast such as initial condition, precipitation, model 

parameters, and model structure might be taken into account, especially initial condition 

uncertainty as provided a primary effect on river flow prediction (mentioned in Chapter 

5). By achieving this, supporting information for decision-making would be more reliable, 

leading to efficient water resources management and contributing benefits to society. 
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Table A1 Inflow of the Nam Ngum 1 reservoir in mcm. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

2001 255.3 154.6 385.4 163.9 810.3 1761.2 2714.9 2747.3 1958.3 1120.9 508.9 388.3 12969.4 

2002 297.2 237.2 204.4 143.8 818.0 2222.0 3061.0 3364.6 1506.8 957.7 602.8 468.2 13883.8 

2003 328.5 233.0 219.0 174.7 377.3 891.0 1644.5 2210.3 1817.1 676.0 345.8 277.6 9194.7 

2004 253.8 225.0 184.7 319.3 601.1 1113.0 2621.9 2773.9 2964.0 732.1 392.8 315.9 12497.6 

2005 286.1 259.1 229.7 296.8 267.2 1388.6 2759.3 4025.2 2638.8 1274.6 559.6 357.9 14343.0 

2006 294.4 238.4 269.8 275.3 704.0 802.5 2785.5 2447.3 1396.8 811.8 394.4 290.3 10710.4 

2007 246.7 220.7 201.7 188.7 405.1 719.1 1098.0 1889.0 2071.2 1291.0 432.3 312.1 9075.6 

2008 253.0 199.2 228.5 233.1 769.0 2576.4 3520.3 3021.3 1471.6 1055.4 573.5 338.4 14239.8 

2009 291.2 256.4 257.2 199.9 598.7 1159.0 2707.7 1851.4 1147.0 700.8 324.1 238.3 9731.6 

2010 290.3 177.7 157.1 127.9 153.4 828.5 1472.3 1888.6 1543.3 552.7 332.2 260.4 7784.5 

2011 164.0 165.5 346.2 829.1 1228.4 2206.4 2646.6 2698.2 2346.6 1289.5 702.5 361.7 14984.7 

2012 445.5 475.9 727.0 810.2 845.9 1089.2 1378.5 1764.7 1220.6 744.8 525.6 363.0 10391.1 

 

Table A2 Released flow of the Nam Ngum 1 reservoir in mcm. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

2001 743.8 695.2 887.5 906.9 867.8 970.4 1097.5 1127.8 1098.6 1149.7 886.7 970.5 11402.5 

2002 771.5 764.4 890.7 924.8 956.1 1045.1 1129.0 1151.3 1122.1 1158.7 910.4 1014.7 11838.8 

2003 881.1 753.0 782.3 919.9 945.3 724.2 863.3 961.0 681.4 725.5 708.4 782.6 9728.1 

2004 755.3 726.0 929.0 962.7 888.6 978.9 1002.8 1181.5 1162.7 1003.0 745.5 808.5 11144.5 

2005 884.4 941.9 1165.4 1061.9 707.5 533.2 1106.7 1174.5 1154.5 1198.2 951.2 849.1 11728.6 

2006 906.3 901.9 1000.8 970.2 977.3 982.9 1013.3 1141.5 755.3 751.4 675.7 694.2 10770.8 

2007 713.3 733.9 888.8 923.3 896.0 744.0 942.7 732.9 601.6 595.4 751.5 694.4 9217.6 

2008 671.9 660.4 836.7 889.3 1031.1 1058.9 1156.9 1160.4 1118.3 1145.0 780.3 785.0 11294.1 

2009 797.6 812.6 873.3 830.0 820.2 888.7 1138.0 1167.9 961.7 778.3 523.2 527.8 10119.1 

2010 576.9 574.9 736.7 714.1 829.3 739.4 543.6 582.8 745.5 774.7 667.5 982.9 8468.3 

2011 896.7 820.0 837.0 807.6 768.9 741.0 1097.1 1188.9 1155.9 1182.2 1006.4 1026.5 11528.1 

2012 1042.1 1005.6 875.6 820.7 840.8 815.6 846.0 859.4 842.5 834.4 826.4 892.4 10501.5 
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Table A3 Delta change of precipitation from present climate scenario in different future 

climate scenarios for the Nam Ngum River Basin. 

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

HFB_2K_CC 1.362 1.119 1.040 0.951 0.981 1.061 1.153 1.059 0.981 0.940 0.989 1.165 

HFB_2K_GF 1.003 0.983 0.897 0.951 0.998 1.013 1.062 1.001 1.049 1.047 1.002 1.030 

HFB_2K_HA 1.074 1.210 1.076 1.005 1.041 1.018 1.033 0.975 1.063 1.122 0.971 1.010 

HFB_2K_MI 0.878 0.734 0.871 0.957 1.006 1.050 0.934 0.820 0.995 0.924 0.982 0.929 

HFB_2K_MP 1.073 0.986 0.994 0.959 1.010 1.013 0.948 0.907 0.928 0.966 1.210 1.327 

HFB_2K_MR 1.196 1.335 0.900 0.987 1.025 1.017 1.020 1.025 1.051 0.944 0.906 0.945 

HFB_2K_AVR 1.098 1.061 0.963 0.968 1.010 1.029 1.025 0.965 1.011 0.990 1.010 1.068 

HFB_4K_CC 1.162 0.937 0.953 0.957 1.009 1.030 0.990 0.889 1.056 1.209 1.037 1.058 

HFB_4K_GF 0.765 0.706 0.871 0.956 1.028 1.056 1.000 1.030 1.153 1.228 1.020 0.744 

HFB_4K_HA 1.032 1.303 1.143 1.022 1.062 1.032 0.985 0.959 1.302 1.503 1.220 0.847 

HFB_4K_MI 1.125 0.922 0.959 1.036 1.016 0.987 0.761 0.731 1.055 1.037 1.127 1.256 

HFB_4K_MP 1.119 1.005 0.959 0.965 1.021 1.063 0.925 0.855 0.937 0.790 0.889 0.961 

HFB_4K_MR 1.335 1.437 1.026 1.021 1.073 0.985 0.924 0.942 1.176 1.151 0.837 0.903 

HFB_4K_AVR 1.090 1.052 0.985 0.993 1.035 1.026 0.931 0.901 1.113 1.153 1.022 0.961 

 

Table A4 Delta change of actual evapotranspiration from present climate scenario in 

different future climate scenarios for the Nam Ngum River Basin. 

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

HFB_2K_CC 1.025 1.012 0.996 1.023 1.032 1.023 0.981 1.005 1.051 1.054 1.027 1.015 

HFB_2K_GF 1.026 0.998 0.961 0.996 1.035 1.034 1.045 1.047 1.040 1.036 1.038 1.032 

HFB_2K_HA 1.031 1.034 1.030 1.062 1.095 1.034 1.007 1.008 1.029 1.029 1.032 1.034 

HFB_2K_MI 1.016 0.953 0.908 0.987 1.004 1.006 1.035 1.012 1.045 1.052 1.026 1.019 

HFB_2K_MP 1.027 1.003 0.984 1.011 1.032 1.020 1.024 1.071 1.074 1.053 1.009 1.023 

HFB_2K_MR 1.028 1.033 0.971 1.035 1.079 1.037 1.024 1.035 1.029 1.052 1.029 1.017 

HFB_2K_AVR 1.025 1.006 0.975 1.019 1.046 1.026 1.019 1.030 1.045 1.046 1.027 1.023 

HFB_4K_CC 1.064 1.028 0.979 1.057 1.055 1.008 1.030 1.061 1.062 1.060 1.074 1.064 

HFB_4K_GF 1.060 0.972 0.912 1.036 1.088 1.043 1.076 1.086 1.085 1.095 1.093 1.067 

HFB_4K_HA 1.085 1.089 1.079 1.119 1.141 1.029 1.012 1.019 1.025 1.046 1.078 1.090 

HFB_4K_MI 1.085 1.013 0.960 1.063 1.052 1.005 1.110 1.047 1.056 1.099 1.068 1.060 

HFB_4K_MP 1.050 0.967 0.923 1.068 1.127 1.055 1.043 1.124 1.126 1.113 1.029 1.014 

HFB_4K_MR 1.085 1.077 1.007 1.096 1.147 1.059 1.106 1.068 1.056 1.086 1.083 1.057 

HFB_4K_AVR 1.072 1.024 0.977 1.073 1.102 1.033 1.063 1.068 1.069 1.083 1.071 1.059 
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Table A5 Delta change of reservoir evaporation from present climate scenario in different 

future climate scenarios for the Nam Ngum River Basin. 

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

HFB_2K_CC 1.123 1.092 1.121 1.127 1.115 1.117 1.103 1.104 1.120 1.112 1.087 1.164 

HFB_2K_GF 1.084 1.101 1.139 1.138 1.127 1.134 1.137 1.131 1.130 1.112 1.086 1.132 

HFB_2K_HA 1.129 1.119 1.122 1.153 1.141 1.117 1.105 1.104 1.115 1.117 1.107 1.148 

HFB_2K_MI 1.000 1.059 1.152 1.126 1.125 1.118 1.113 1.110 1.132 1.163 1.139 1.086 

HFB_2K_MP 1.073 1.095 1.136 1.145 1.133 1.120 1.117 1.127 1.131 1.155 1.223 1.193 

HFB_2K_MR 1.157 1.139 1.179 1.193 1.145 1.128 1.121 1.120 1.121 1.088 1.074 1.138 

HFB_2K_AVR 1.094 1.101 1.141 1.147 1.131 1.122 1.116 1.116 1.125 1.125 1.119 1.144 

HFB_4K_CC 1.204 1.275 1.375 1.387 1.322 1.292 1.282 1.290 1.318 1.280 1.206 1.253 

HFB_4K_GF 1.197 1.317 1.439 1.418 1.359 1.360 1.367 1.358 1.371 1.337 1.261 1.231 

HFB_4K_HA 1.249 1.319 1.342 1.389 1.344 1.297 1.274 1.276 1.305 1.320 1.264 1.244 

HFB_4K_MI 1.205 1.310 1.428 1.396 1.353 1.324 1.319 1.297 1.324 1.419 1.408 1.324 

HFB_4K_MP 1.272 1.324 1.426 1.443 1.390 1.349 1.321 1.345 1.362 1.350 1.411 1.349 

HFB_4K_MR 1.379 1.387 1.450 1.473 1.385 1.346 1.340 1.331 1.341 1.288 1.243 1.336 

HFB_4K_AVR 1.251 1.322 1.410 1.417 1.359 1.328 1.317 1.316 1.337 1.332 1.299 1.289 

 

Table A6 Delta change of basin-averaged temperature from present climate scenario in 

different future climate scenarios for the Nam Ngum River Basin. 

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

HFB_2K_CC 1.116 1.081 1.074 1.069 1.062 1.063 1.059 1.059 1.066 1.072 1.083 1.132 

HFB_2K_GF 1.105 1.088 1.082 1.074 1.067 1.070 1.073 1.070 1.071 1.074 1.085 1.124 

HFB_2K_HA 1.123 1.095 1.076 1.079 1.073 1.063 1.061 1.060 1.065 1.076 1.093 1.130 

HFB_2K_MI 1.065 1.069 1.086 1.068 1.066 1.063 1.063 1.062 1.071 1.092 1.104 1.101 

HFB_2K_MP 1.106 1.090 1.083 1.078 1.071 1.065 1.066 1.070 1.073 1.093 1.142 1.154 

HFB_2K_MR 1.138 1.106 1.099 1.095 1.075 1.068 1.068 1.067 1.068 1.066 1.083 1.131 

HFB_2K_AVR 1.109 1.088 1.083 1.077 1.069 1.066 1.065 1.065 1.069 1.079 1.098 1.129 

HFB_4K_CC 1.218 1.192 1.179 1.165 1.141 1.132 1.132 1.135 1.145 1.154 1.175 1.235 

HFB_4K_GF 1.230 1.213 1.200 1.175 1.153 1.153 1.159 1.156 1.162 1.175 1.203 1.242 

HFB_4K_HA 1.237 1.208 1.170 1.166 1.148 1.133 1.131 1.131 1.141 1.167 1.196 1.235 

HFB_4K_MI 1.233 1.211 1.197 1.169 1.151 1.143 1.145 1.138 1.148 1.199 1.249 1.273 

HFB_4K_MP 1.262 1.219 1.198 1.182 1.162 1.150 1.146 1.153 1.160 1.181 1.253 1.287 

HFB_4K_MR 1.295 1.237 1.204 1.190 1.161 1.149 1.152 1.149 1.154 1.162 1.200 1.281 

HFB_4K_AVR 1.246 1.213 1.191 1.175 1.153 1.143 1.144 1.143 1.152 1.173 1.213 1.259 
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Table A7 Inflow of the Sirikit Reservoir in mcm. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

1986 124.3 115.1 131.4 164.1 466.2 410.2 912.7 865.7 812.1 384.3 208.0 121.4 4715.5 

1987 75.9 66.4 72.1 61.6 88.0 160.6 142.1 951.6 661.1 414.9 221.7 89.8 3005.6 

1988 78.8 66.0 50.0 89.2 310.8 346.5 817.8 1464.3 635.6 413.6 165.3 103.5 4541.4 

1989 74.0 76.1 63.1 47.2 279.4 237.2 642.8 828.5 941.2 492.3 173.7 93.0 3948.5 

1990 84.0 80.4 59.4 48.6 239.9 360.7 730.5 884.0 885.6 395.5 219.8 97.2 4085.6 

1991 86.4 44.6 29.3 68.5 226.6 260.8 347.9 826.9 846.4 413.1 167.4 85.7 3403.4 

1992 81.9 66.5 64.2 45.0 58.5 91.1 418.0 693.1 741.5 440.2 176.5 150.9 3027.3 

1993 93.7 49.9 75.2 69.8 125.5 205.6 787.3 643.0 649.7 322.2 130.6 80.9 3233.4 

1994 65.6 58.2 91.8 67.2 218.3 411.3 875.1 3272.4 1665.4 631.5 254.6 183.9 7795.4 

1995 119.3 84.8 55.9 51.7 133.5 211.3 1019.3 3300.1 2614.2 744.4 510.4 210.7 9055.5 

1996 156.6 149.1 95.8 151.2 194.6 387.6 886.3 1592.5 1196.9 744.5 316.0 161.0 6032.2 

1997 124.2 99.3 50.6 96.8 107.4 69.8 460.9 1125.3 1367.8 738.8 248.7 134.1 4623.7 

1998 111.7 73.4 71.8 96.1 103.4 144.3 503.9 657.6 1155.4 265.2 159.5 84.0 3426.3 

1999 71.3 67.1 74.4 115.9 237.8 432.0 458.8 1578.6 2193.7 685.6 285.2 128.1 6328.4 

2000 141.7 146.3 101.2 111.1 421.0 517.4 1181.0 1054.8 1433.0 643.2 287.5 175.8 6214.0 

2001 138.3 107.8 201.8 83.3 283.6 333.3 1202.8 2740.7 1642.4 609.8 286.1 176.7 7806.7 

2002 146.4 123.3 91.0 61.4 547.1 653.4 777.7 1531.1 1668.5 621.5 327.5 219.9 6768.8 

2003 186.5 143.0 158.8 102.2 120.3 268.0 934.0 1243.6 1607.0 370.2 215.7 132.7 5482.0 

2004 137.7 105.1 81.4 127.1 221.6 665.7 1239.2 1596.0 2225.2 511.3 258.7 178.0 7347.0 

2005 168.5 108.3 111.8 114.2 108.0 450.6 685.8 1771.7 1867.7 847.8 322.1 203.3 6759.7 

2006 169.3 124.5 92.5 165.5 467.9 287.2 727.8 2356.7 1535.5 936.3 265.8 213.3 7342.1 

2007 163.7 139.9 121.8 105.1 264.6 361.1 391.4 1091.9 1035.0 896.1 275.9 184.0 5030.4 

2008 136.8 144.8 103.6 135.7 301.5 772.4 1503.1 2095.1 1136.9 654.1 367.8 223.1 7575.0 

2009 180.7 142.6 129.4 140.8 205.2 329.3 1103.8 769.6 775.0 466.0 215.9 142.5 4600.7 

2010 135.5 97.4 84.1 68.9 115.0 154.9 634.6 2288.4 1761.2 513.1 207.2 188.9 6249.1 

2011 116.1 93.5 117.3 134.3 525.7 1237.7 1945.6 3096.0 2320.7 1031.1 365.0 243.8 11226.6 

2012 215.7 142.9 119.9 147.2 448.4 273.2 628.4 1290.7 1211.9 454.0 300.4 211.0 5443.8 

2013 122.5 108.1 92.0 78.5 133.5 160.3 598.3 1404.2 1060.0 429.1 198.0 150.7 4535.1 

2014 118.8 98.4 86.0 88.0 181.7 209.4 728.0 1094.7 1287.5 430.8 262.4 126.6 4712.4 

2015 133.6 94.1 92.3 106.5 127.2 149.5 353.4 944.3 812.2 618.7 215.3 170.7 3817.6 

2016 117.8 82.6 66.9 46.5 199.0 275.6 799.3 1919.2 1407.7 630.2 242.2 143.0 5929.8 

2017 178.1 94.8 52.4 129.4 209.6 209.1 1163.1 1101.7 1167.4 885.4 266.8 212.2 5670.0 

2018 178.1 113.8 127.9 179.8 265.2 605.1 1639.4 1919.8 1271.8 493.8 239.3 166.3 7200.4 
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Table A8 Released flow of the Sirikit Reservoir in mcm. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

1986 193.2 544.1 849.6 728.7 679.0 681.5 556.3 397.1 302.5 422.4 667.4 233.3 6255.0 

1987 319.3 686.9 657.8 633.5 571.4 266.2 452.7 303.7 118.4 71.9 188.8 45.6 4316.0 

1988 192.6 542.5 412.3 237.1 140.0 63.5 147.5 120.2 180.1 140.7 171.6 77.2 2425.3 

1989 208.5 339.8 356.9 556.4 557.8 143.6 168.5 429.7 475.5 202.9 342.5 105.9 3888.0 

1990 267.0 428.8 727.4 635.9 479.8 374.8 410.9 411.9 431.6 321.0 329.7 169.1 4987.9 

1991 209.1 506.7 655.5 587.4 318.1 149.9 331.8 313.3 59.9 181.7 261.0 160.1 3734.6 

1992 215.6 340.4 465.9 465.0 320.2 118.9 118.5 24.9 57.4 39.2 208.3 210.1 2584.3 

1993 148.9 292.1 411.0 417.5 353.2 295.0 426.2 735.7 257.7 125.5 457.2 195.3 4115.1 

1994 174.7 238.2 274.6 136.7 103.0 30.1 14.5 101.0 302.4 160.0 446.5 341.5 2323.1 

1995 369.2 629.0 824.4 745.6 598.2 472.6 268.9 822.8 1177.0 753.6 526.7 375.6 7563.7 

1996 482.8 799.3 1081.0 939.2 793.8 737.9 645.6 734.4 358.6 212.8 373.6 244.1 7403.1 

1997 382.5 615.0 775.4 721.3 634.1 409.7 446.4 331.8 177.7 199.4 462.8 338.5 5494.8 

1998 421.1 658.5 658.6 614.0 330.6 226.1 157.0 334.6 50.3 183.2 320.2 233.6 4187.7 

1999 375.7 448.9 545.8 277.3 66.5 38.5 134.3 158.2 103.4 11.4 40.5 81.5 2281.9 

2000 599.1 917.3 1006.4 777.8 452.1 371.5 273.0 333.6 127.6 280.6 332.0 526.7 5997.6 

2001 765.3 894.8 806.7 969.9 406.2 148.2 407.1 724.8 1280.5 230.3 186.8 479.2 7299.8 

2002 683.4 830.0 979.5 943.0 739.7 379.8 628.7 473.8 42.9 217.1 285.6 244.1 6447.4 

2003 683.5 786.7 847.3 638.8 884.4 494.8 517.3 428.8 96.8 234.3 629.0 549.8 6791.4 

2004 572.8 699.5 802.4 762.8 440.2 167.5 406.3 186.7 372.7 339.3 667.4 830.5 6248.0 

2005 875.6 838.9 948.8 744.8 806.7 420.0 406.1 215.2 101.1 229.2 298.8 683.3 6568.5 

2006 804.9 817.7 930.8 864.5 374.4 288.3 222.5 264.0 255.0 413.5 300.2 788.6 6324.5 

2007 939.0 813.7 850.3 739.8 264.3 500.2 526.4 527.1 276.3 208.6 449.2 642.6 6737.3 

2008 756.1 673.4 722.0 778.8 488.7 427.4 483.0 349.1 275.7 248.8 330.5 719.0 6252.5 

2009 854.5 790.1 940.3 878.3 683.7 394.4 286.5 392.1 297.3 247.6 354.2 596.6 6715.6 

2010 594.7 589.5 541.6 366.2 250.6 328.5 265.8 131.8 60.0 110.9 180.6 511.7 3931.9 

2011 926.4 927.9 769.6 395.4 213.0 183.1 508.8 1558.4 1723.0 903.8 422.7 864.3 9396.3 

2012 1235.0 1377.8 935.8 762.0 696.4 691.6 478.9 361.0 121.3 191.2 541.3 760.8 8153.1 

2013 883.3 656.5 479.2 346.0 427.3 342.6 277.2 181.8 113.7 87.5 121.4 368.4 4284.8 

2014 520.3 562.5 501.2 391.3 601.4 537.9 523.7 200.9 76.5 93.9 91.3 199.1 4300.0 

2015 274.6 298.0 354.6 510.7 956.3 723.7 449.5 315.1 191.7 123.2 250.5 264.4 4712.3 

2016 295.8 291.7 312.5 301.5 317.2 313.7 257.5 170.9 65.7 79.2 141.0 556.4 3103.2 

2017 757.0 772.0 754.8 474.7 421.2 243.9 201.5 110.9 88.7 20.4 104.6 765.9 4715.5 

2018 824.0 758.3 743.5 631.5 659.5 545.8 476.0 862.7 324.3 299.9 539.0 783.1 7447.6 
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Table A9 Reservoir storage at the end of month for Sirikit Dam in mcm. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1986 8144.7 7683.0 6930.1 6328.5 6079.3 5782.1 6117.0 6565.1 7053.0 6992.5 6511.0 6377.6 

1987 6110.7 5462.9 4846.9 4244.7 3733.0 3607.7 3280.9 3914.3 4440.8 4766.1 4780.7 4806.4 

1988 4669.8 4169.0 3782.3 3606.2 3749.9 4012.4 4664.4 5989.8 6424.8 6676.2 6647.8 6652.2 

1989 6493.7 6201.2 5876.2 5333.3 5022.4 5092.4 5546.3 5925.7 6371.2 6639.1 6448.4 6414.0 

1990 6207.5 5831.1 5130.5 4507.4 4237.9 4202.5 4503.9 4958.5 5393.9 5449.1 5319.6 5228.4 

1991 5084.8 4598.0 3946.3 3400.9 3283.6 3375.7 3375.7 3874.6 4644.6 4858.0 4746.0 4653.6 

1992 4500.4 4202.5 3776.1 3330.0 3043.0 2997.3 3275.5 3928.7 4596.2 4979.1 4926.7 4845.1 

1993 4769.7 4502.2 4140.6 3765.3 3510.8 3402.3 3746.8 3639.1 4015.7 4195.8 3852.6 3722.3 

1994 3595.8 3395.3 3190.3 3096.1 3186.3 3548.7 4392.0 7543.4 8882.1 9327.4 9108.5 8924.7 

1995 8646.1 8068.1 7263.3 6530.4 6027.2 5739.4 6467.8 8899.6 9476.4 9440.3 9396.6 9204.9 

1996 8849.7 8164.0 7143.1 6317.8 5682.7 5307.9 5528.4 6366.9 7183.8 7692.3 7610.7 7504.1 

1997 7220.1 6674.0 5917.4 5259.4 4700.6 4338.5 4335.1 5111.5 6281.7 6799.3 6562.9 6337.0 

1998 6004.3 5392.0 4777.1 4229.5 3973.6 3871.5 4200.8 4507.5 5594.3 5656.5 5476.8 5307.9 

1999 4984.7 4578.4 4081.1 3892.1 4035.2 4407.7 4713.3 6114.9 8183.2 8832.2 9050.4 9070.6 

2000 8584.6 7779.0 6839.1 6135.9 6068.9 6188.5 7073.3 7772.0 9052.9 9388.9 9317.1 8939.7 

2001 8284.5 7464.8 6825.8 5903.0 5745.5 5905.0 6678.4 8670.9 9007.6 9360.7 9432.6 9103.4 

2002 8537.9 7797.8 6874.5 5956.7 5729.3 5977.4 6104.5 7140.9 8742.7 9121.2 9136.4 9085.7 

2003 8560.0 7882.7 7158.9 6584.7 5784.2 5532.4 5927.7 6722.3 8209.7 8320.8 7882.7 7441.8 

2004 6981.4 6356.2 5604.3 4936.0 4686.1 5161.1 5973.2 7361.4 9189.6 9335.1 8899.6 8221.7 

2005 7487.9 6726.6 5857.8 5193.8 4463.5 4472.3 4733.3 6271.0 8015.6 8609.2 8606.7 8101.6 

2006 7439.5 6715.7 5845.5 5113.4 5174.6 5149.7 5634.4 7706.4 8962.3 9458.4 9396.6 8794.8 

2007 7991.8 7286.0 6523.9 5853.7 5818.9 5654.5 5498.6 6043.9 6781.6 7446.4 7249.6 6768.4 

2008 6125.4 5568.3 4921.1 4248.1 4032.0 4355.7 5356.7 7082.3 7920.6 8301.4 8313.6 7793.1 

2009 7093.5 6416.2 5574.2 4804.6 4295.7 4209.2 5007.3 5366.5 5825.0 6023.0 5863.9 5390.0 

2010 4910.0 4393.8 3911.1 3587.0 3424.9 3232.6 3585.5 5725.2 7405.0 7783.7 7786.1 7439.5 

2011 6604.2 5741.5 5060.2 4767.9 5048.8 6079.4 7492.5 8919.7 9394.1 9494.5 9409.5 8762.5 

2012 7713.4 6446.3 5598.3 4951.0 4671.6 4231.2 4362.6 5274.9 6345.5 6586.8 6324.2 5753.6 

2013 4971.6 4399.0 3986.5 3691.8 3371.5 3170.7 3476.2 4682.5 5610.3 5931.9 5987.7 5749.6 

2014 5323.5 4834.0 4392.0 4059.7 3612.2 3264.7 3453.3 4331.6 5524.4 5841.4 5991.9 5898.9 

2015 5735.4 5504.5 5213.0 4775.2 3915.9 3321.8 3210.0 3824.3 4428.5 4906.2 4852.5 4740.5 

2016 4542.8 4309.4 4038.5 3756.1 3610.7 3553.1 4077.8 5808.6 7129.6 7657.3 7734.4 7297.4 

2017 6693.7 5987.7 5255.5 4878.4 4635.6 4578.4 5520.4 6491.5 7548.0 8388.8 8525.6 7946.7 

2018 7274.7 6599.9 5952.5 5466.9 5039.4 5075.3 6218.1 7254.2 8178.4 8347.5 8022.8 7382.1 

 


