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Abstract 

 

With the development of observation technology, we found a kind of disaster named “freak 

wave” in deep ocean water. It is also known as “rogue wave”, “giant wave” and “extreme wave”, 

which has abnormally huge waves bringing about a risk for the vessels and marine structures. 

The generation of the freak wave comes from the quasi-resonant four-wave interaction of high-

order non-linear modulated wave train, and the occurrence probability of freak wave in deep-

water can be estimated by the fourth-order cumulant of surface elevation. From recent 

observation records and physical experiments, freak wave not only occurs in deep and finite 

water but also in shallow water and offshore area. 

The Non-linear Schrödinger (NLS) equation is widely applied in the numerical simulation 

of the freak wave, since it reflects the high-order interaction in the modulated non-linear wave 

trains. Modified NLS equation can derived based on different hypotheses and boundary 

conditions. In this study, we derive the modified NLS equation over an uneven bottom in a two-

dimensional wavefield, and establish a numerical evolution model of the envelope of modulated 

wave trains. The contribution from four-wave interaction to the wave train instability is 

considered as an initial value problem, and we integrate the envelope from the offshore to 

onshore assuming periodic boundary conditions in time to give wave surface elevation through 

the pseudo spectral method and discrete Fourier transform. Setting random phase in initial data, 

we conduct a Monte Carlo simulation to analyze the evolution of the high-order nonlinearity 

and the occurrence of extreme events in the statistics of wave surface elevation. Compared with 

the previous studies, we give an exhaustive discussion about the evolution of the non-linear 

effect and its reflection in real surface elevation, and consider the effect from the shape of 

bottom topography specifically. 

Firstly, we summarize the simulation from the unidirectional modulated wave train, and 

concentrate on the contribution from the initial condition and spatial inhomogeneity on the 
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surface instability. We take the mean value of the high-order moment of surface elevation to 

reflect the nonlinearity in wave train and record the distribution of the maximum wave height 

and crest in the Monte Carlo simulation. The result indicates, the four-wave interaction 

contributes to the occurrence probability of extreme events in deep-water, and the second-order 

effect becomes an important factor in medium and shallow water. A steep slope angle will lead 

to the increase of the occurrence probability of the freak wave in the wave shoaling.  

Based on the numerical analysis of the unidirectional wave, we expand the non-linear 

evolution model into a two-dimensional wavefield. The directional dispersion effect is taken 

into consideration as a parameter in the initial condition, which disperses the four-wave 

interaction and gives a lower instability. Additionally, we discuss the wave evolution over 

different types of bottom shapes and the oblique incident wave case with a small angle between 

the principal direction and the gradient of depth.  

 

Key word: freak wave; NLS equation; modulated wave train; two-dimensional wavefield; 

spatial inhomogeneity; directional dispersion 
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Chapter 1  

Introduction 

1.1 Background 

As the development of observation technology in these decades, a special type of wave 

records has been found in deep-water showing how the vessels and marine structures were 

destroyed by the huge wave crest without any portent. With the summary from reports and 

stories mainly from the North Pacific and the North Atlantic, Draper (1965) introduced a 

concept as “freak wave” for the waves with very abnormal wave height. This disaster is also 

known as “rogue wave”, “giant wave” and “extreme wave”, and usually it was defined as the 

wave height exceeds the significant wave height by a factor of 2. Not only in water waves, a 

similar phenomenon has also been found in other mediums, such as acoustic and optical waves.  

With the systematical and comprehensive data collection and analyzation, thousands of 

freak waves have been found in the ocean. Figure 1.1 gives the wave data as one of the highest 

wave crests ever recorded in the North Sea by the Draupner platform on Jan 1st 1995 in the 

North Sea from Haver (2004), which is also called “New Year’s Wave” as a famous freak wave. 

In Figure 1.1 (a), a spike is recorded at around 250s with a very large crest, which brings about 

a wave height in 25.6m while the significant wave height is 12m in this group of wave trains. 

Figure 1.1 (b) gives the record of surface elevation for twenty minutes in the next hour, and 

there is no freak wave that can be observed. In this typical case, the duration of the freak wave 

is very short, but the prodigious wave height is too dangerous for navigation and marine 

structures. 

In the early study about the generation mechanism of the freak wave, researchers 
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concentrated on the linear random wave theory and external influence such as wind and current 

interaction. Dean (1990) discussed the probability density function of extreme events in the 

linear model based on the Rayleigh distribution for wave heights, and the observed data in field 

significantly disagreed with the Rayleigh distribution. Wind effect on wave instability has been 

considered in the study from Kharif et al. (2008), and the result suggested the wind forcing on 

energy focusing process of the freak wave is limited. Based on the non-linear wave evolution 

model, Benjamin(1967) indicated that modulational instability will lead to the generation of 

spectral-sidebands effect and the eventual breakup of the waveform in a uniform wave train by 

nonlinearity, which is considered to become an important reason causing freak wave in deep-

water after 90’s.  

 

(a) Wave record 1520. 

 

(b) Wave record 1620. 

Figure 1.1. Surface elevation in time series recorded by the Draupner platform on Jan 1st 

1995 in the North Sea (Haver, 2004) 
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In the early 90's, preliminary numerical and experimental studies have demonstrated that 

the freak wave can be generated in the long-distance propagation of random waves in deep-

water (Stansberg, 1990, Yasuda et al., 1992). Compared with other mechanisms and theoretical 

models, modulated wave trains can predict the occurrence probability of the freak wave in a 

more accurate way with the consideration of the surface instability due to the high-order non-

linear interactions.  

The total energy of the fluid 𝐸𝑓   can be expressed in an expansion in terms of wave 

steepness 𝜀 from Hamiltonian:  

𝐸𝑓 = 𝜀ϵ𝐸𝑓ϵ + 𝜀ϯ𝐸𝑓ϯ + 𝜀Κ𝐸𝑓Κ + 𝑂(𝜀Θ),               (1 − 1) 

where the subscript represents the contribution from different orders of 𝜀. The second-order 

term corresponds to the linear wave, and the third-order and fourth-order term correspond to 

the contribution from the non-linear effect, which are also known as three-wave interaction and 

four-wave interaction. In deep-water, the contribution from the three-wave interaction to wave 

energy is very limited, and the wavefield is mainly determined by the fourth-wave interaction 

(Janssen, 2003; Krasitskii, 1990). The relation between the fourth-wave interaction and wave 

envelope reflects in the Zakharov equation (Zakharov, 1968): 

𝜕𝑏φ

𝜕𝑡
+ i𝜔φ𝑏φ = −i௹ 𝑑𝒌و

�

−�

𝑑𝒌ه𝑑𝒌ب𝑇φӴϵӴϯӴΚ𝑏ϵ
∗𝑏ϯ𝑏Κ𝛿φ+ϵ−ϯ−Κ,     (1 − 2) 

where 𝑏 is the function of amplitude, 𝒌 is wave number vector, the subscript represents the 

contribution from different orders and 𝑏φ = 𝑏(𝒌غ) . 𝑇φӴϵӴϯӴΚ  is the non-linear transfer 

coefficient and 𝛿 is Dirac delta function.  

Modulational instability represents how much wave energy focusing through four-wave 

interaction from the different harmonics in wave train, and it can be estimated by a 

dimensionless number named Benjamin–Feir index (BFI) introduced by Janssen (2003) based 

on narrowband approximation of Zakharov equation: 

BFI =

√
2𝜀

𝜎֎

,                            (1 − 3) 

where 𝜎֎  is dimensionless spectral bandwidth. This ratio gives the balance between 

nonlinearity and the dispersion.  

The prediction theory of the freak wave is combined between high-order non-linear theory 

and random wave statistics. Mori and Janssen (2006) discussed the distribution of maximum 



Chapter 1 

- 4 - 
 

wave height in deep-water, and gave exceeding probability function of extreme events, which 

is determined by the kurtosis of surface elevation. Kurtosis 𝜇
4
  and skewness  𝜇

3
  are 

dimensionless moment in the fourth-order and third-order of surface elevation 𝜂: 

𝜇
4

=
𝐸𝑋൫𝜂𝑖

− 𝜂ത൯
4

𝜂
rms
4

,   𝜇
3

=
𝐸𝑋൫𝜂𝑖

− 𝜂ത൯
3

𝜂
rms
3

,            (1 − 4) 

where 𝐸𝑋 represents expected value, 𝜂 ̅ is the mean value and 𝜂ϝζϣ is the root mean square 

value of 𝜂. For a wave train in the Gaussian process (i.e. linear random waves), 𝜇
4
 = 3 and 

𝜇
3
 = 0. The value of 𝜇

4
 can be changed with different non-linear processes or hypotheses. 

For a narrowband second-order non-linear wave train, the Stokes wave model gives 

contribution from bound wave (Longuet-Higgins, 1963). Thus, values of 𝜇
4
  and 𝜇ϯ  are 

related to the wave steepness 𝜀: 

𝜇Κ
ս = 3 + 24𝜀ϵ, 𝜇ϯ

ս = 3𝜀.                      (1 − 5) 

In Janssen (2003) and Mori and Janssen (2006), 𝜇
4
 can be changed on the quasi-resonant and 

non-resonant interactions than Eq.(1-5). It is parameterized by the fourth-order cumulant 𝜅ΚЈ, 

which is proportional to the square of BFI defined by Janssen (2003):   

𝜇Κ
∗ = 𝜅ΚЈ + 3, 𝜅ΚЈ =

𝜋
√

3
BFIϵ.                 (1 − 6) 

Based on the contribution from the quasi-resonant four-wave interactions in Eq.(1-6) on wave 

height, Mori and Janssen (2006) gave the exceeding probability 𝑃(𝐻) of wave height 𝐻: 

𝑃(𝐻) = 𝑒
−թɞ

΅ ই1 +
𝜅ΚЈ

384
(𝐻Κ − 16𝐻ϵ)ঈ,            (1 − 7) 

and exceeding probability 𝑃ֈ(𝐻ζ͘Ђ) of maximum wave height 𝐻ζ͘Ђ: 

𝑃ֈ(𝐻ζ͘Ђ) = 1 − expছ−𝑁Ј𝑒
−թȟǁɫ

ɞ

΅ ই1 +
𝜅ΚЈ

384
(𝐻ζ͘Ђ

Κ − 16𝐻ζ͘Ђ
ϵ )ঈজ,    (1 − 8) 

where 𝑁Ј represents the number of waves in a wave train. Eq. (1-8) is well validated by the 

kurtosis in wave tank experiment from Mori et al. (2007) and Kashima & Mori (2019). In a 

two-dimensional (2D) wavefield, Alber and Saffman (1978) discussed the stability of deep-

water random waves in 2D space and several studies demonstrated the suppression of instability 

in directional dispersion (e.g. Waseda et al., 2009; Onorato et al., 2009a; Mori et al., 2011). 

With the consideration of directional effect, Mori et al. (2011) gave the estimation of maximum 

𝜅ΚЈ with the directional spread 𝜎ᇆ by asymptotic analysis in Monte Carlo simulation: 
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𝜅ΚЈ =
𝜋

√
3
BFIϵ গ

𝛼

𝜎ᇆ

ঘ,                     (1 − 9) 

where 𝛼 is the empirical coefficient. 

In the simulation study to generate freak wave numerically, Non-linear Schrödinger (NLS) 

equation derived by Zakharov (1968) is widely applied since it can reflect the four-wave 

interaction in wave evolution. Based on the Laplace equation and non-linear boundary 

conditions, the NLS equation gives the evolution of wave envelope at time and space. The form 

of the NLS equation varies from different hypotheses and boundary conditions, such as the 

assumption of bottom topography and surface tension. With the application of the pseudo 

spectral method and the Fourier transform, surface elevation of wave train can be constructed 

in a computational fluid dynamics (CFD) model from given the initial conditions.  

1.2 Research purpose and outline 

Previous research indicates the generation mechanism of freak wave in deep-water, and 

the numerical simulations have well validated it in related studies. However, the occurrence of 

the freak wave still exists in shallow water depth even the contribution from modulational 

instability becomes weak. In this dissertation, we concentrate on the medium and shallow water 

depth from offshore to onshore, and we intend to investigate the specific impacts from the 

bottom topography on the modulated wave trains at sea states.  

With the strong correlation between the high-order non-linear interactions and the 

occurrence probability of freak wave, we focus on investigating how the spatial inhomogeneity 

from the water depth variation and slope angle affects four-wave interaction in the envelope 

evolution of modulated wave, as the process water wave entering continental shelf from deep 

sea with mild slope. A numerical evolution model of modulated wave trains is established 

through modified Non-linear Schrödinger (mNLS) with water depth change and Monte-Carlo 

simulation. Dimensionless moment kurtosis and skewness are used as indicators for high-order 

interaction, and wave height distribution is given from the construction of discrete surface 

elevation. In a 2D wavefield, further development of the model considers the directional 

dispersion effect on four-wave interaction and the oblique incident wave. 

In Chapter 2, we introduce the traditional derivation of NLS equation and the third-order 
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mNLS model for the wave propagating over an uneven bottom that we applied in this study. 

In Chapter 3, we give the numerical result for mNLS model in the unidirectional (1D) 

wave trains. Four-wave interaction is given in Eq.(1-3), and we deal with the wave simulation 

as an initial value problem. Spatial inhomogeneity from the water depth change is reflected in 

spatial step for different bottom types. With Monte-Carlo simulation from random initial phase 

information, we discuss the evolution of the nonlinearity of wave trains from the high-order 

standardized moments of surface elevation, and wave height distribution at different conditions 

to analysis extreme events.  

In Chapter 4, we give the numerical result in a 2D wavefield based on the result in 

Chapter 3. Directional dispersion effect is taken into consideration from a directional random 

wave train, and the comparison between 1D and 2D shows the attenuation of four-wave 

interaction in a 2D wavefield. Additionally, we consider the effect from the bottom topography 

from different types of uneven bottom and the oblique incident wave with a small angle of 

incidence. 

A summary of the above results is given in Chapter 5. 
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Chapter 2  

Evolution Equations for Modulated 
Water Waves   

2.1 Introduction  

    In fluid dynamics, the potential flow theory is well applied to describe the spatial and 

temporal distribution of physical quantity in a flow field. For an irrotational, inviscid and 

incompressible flow field, the velocity potential satisfies the Laplace equation inside and the 

boundary conditions on the physical boundaries. For gravity water waves with a free surface, 

wave train becomes modulated due to the non-linear interactions from the high-order effect. 

Related discussion about the non-linear modulated wave can be referred to the reviews in Yuen 

and Lake (1980, 1982), Hammack and Henderson (1993), Dias and Kharif (1999) and Liu 

(1999). 

    The Non-linear Schrödinger (NLS) equation is the simplest form in the study of modulated 

wave trains. Zakharov (1968) firstly derived the NLS equation from the non-linear boundary 

conditions by Hamiltonian function for narrow spectral bandwidth, which is also called the 

Zakharov equation. The NLS equation gives the evolution of wave envelope at time and space 

in the form of a partial differential equation on the third-order. The non-linear term can reflect 

four-wave interaction to estimate modulational instability of wave train, so the NLS equation 

is widely used in freak wave study. Davey and Stewartson (1974) gave the derivation of NLS 

equation in an easy-to-understand way. With the application of the multiple scales method, they 

discussed the expression of the velocity potential and surface elevation of the Stokes wave in 

different orders and harmonics. In their study, wave packet is defined as a three-dimensional 

(3D) problem due to the form of wave surface in stereoscopic space. We can also call it a two-
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dimensional (2D) problem since the value of surface elevation on the vertical direction can be 

determined by the value from the other two dimensions at a certain time (this definition is used 

in the following content). For the NLS equation in standard form, we can give some particular 

solutions as the theoretical solutions such as decaying solutions, soliton and breather. (e.g. 

Benney and Newell, 1967; Segur and Ablowitz, 1976; Hui and Hamilton, 1979). The derivation 

of the NLS equation in the standard form varies in different ways (e.g. Chu and Mei, 1970; 

Hasimoto and Ono, 1972; Djordjevic and Redekopp, 1977), as well as the related numerical 

work (e.g. Lo and Mei, 1985 & 1987).  

With different hypotheses and boundary conditions, such as the special case in extreme 

condition, consideration of surface tension and an ambient current, modified NLS equations 

have been put up in various forms (e.g. Longuet-Higgins, 1976; Djordjevic and Redekopp, 1977; 

Dysthe, 1979; Turpin et al., 1983; Dysthe et al., 2003). With the contribution from spatial 

inhomogeneity on the modulation, Djordjevic and Redekopp (1978) derived a solution for an 

envelope-hole soliton moving over an uneven bottom and gave a modified NLS equation with 

slope effect. Variation of the depth in Liu and Dingemans (1989) was divided into different 

scales, then they gave evolution equations for modulated wave groups over an uneven bottom 

in different types. If fast varying component is ignored, Liu and Dingemans (1989)’s result for 

a very mild slope is the same as Djordjevic and Redekopp (1978)’s work.  

 

2.2 Governing equations  

With the hypothesis of an irrotational, inviscid and incompressible flow with free water 

surface, a coordinate system (𝑥, 𝑦, 𝑧)  is established. Plane (𝑥, 𝑦)  is defined along the 

quiescent water surface and 𝑧 is defined vertically upward direction, opposite to the gravity 

acceleration 𝑔. We define the velocity potential 𝛷 and free surface elevation 𝜂 are functions 

of space and time 𝑡: 

𝛷 = 𝛷(𝑥, 𝑦, 𝑧, 𝑡), 𝜂 = 𝜂(𝑥, 𝑦, 𝑡).                 (2 − 1) 

In the entire flow field 𝛷 is a solution of the Laplace equation to satisfy continuity: 
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𝛻ϵ𝛷 =
𝜕ϵ𝛷

𝜕𝑥ϵ
+

𝜕ϵ𝛷

𝜕𝑦ϵ
+

𝜕ϵ𝛷

𝜕𝑧ϵ
= 0.                 (2 − 2) 

On the boundary of free surface 𝑧 = 𝜂(𝑥, 𝑦, 𝑡), 𝛷  and 𝜂  satisfy the kinematic boundary 

condition (i.e. free surface equation) and the dynamic boundary condition (i.e. Bernoulli 

equation): 

𝜕𝛷

𝜕𝑧
=

𝜕𝜂

𝜕𝑡
+

𝜕𝛷

𝜕𝑥

𝜕𝜂

𝜕𝑥
+

𝜕𝛷

𝜕𝑦

𝜕𝜂

𝜕𝑦
, 𝑧 = 𝜂,               (2 − 3) 

2
𝜕𝛷

𝜕𝑡
+ 2𝑔𝜂 + গ

𝜕𝛷

𝜕𝑥
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑦
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑧
ঘ

ϵ

= 0, 𝑧 = 𝜂.         (2 − 4) 

At the bottom of flow field, 𝛷 satisfies the no-flux boundary along the sea floor. If the water 

depth ℎ is constant at a flat bottom 𝑧 = −ℎ, 𝛷 satisfies the flat bottom equation: 

𝜕𝛷

𝜕𝑧
= 0, 𝑧 = −ℎ.                       (2 − 5) 

If we assume the bottom is uneven and water depth varies at 𝑧 = −ℎ(𝑥, 𝑦), 𝛷 satisfies the 

uneven bottom equation: 

𝜕𝛷

𝜕𝑧
+

𝜕ℎ

𝜕𝑥

𝜕𝛷

𝜕𝑥
+

𝜕ℎ

𝜕𝑦

𝜕𝛷

𝜕𝑦
= 0, 𝑧 = −ℎ(𝑥, 𝑦).               (2 − 6) 

Eq. (2-1) to (2-5) consist of the governing equations of the wave evolution on a flat bottom, 

and for an even bottom we use Eq. (2-6) instead of (2-5). 

 

2.3 Method of multiple scales and solution of envelope 

    Base on the periodicity of the time and space in the propagation of gravity waves, wave 

frequency 𝜔 and wave number 𝑘 satisfy the linear dispersion relation: 

𝜔 = ఉ𝑔𝑘𝜎,                          (2 − 7) 

where 𝜎 = tanh𝑘ℎ. For a medium has no temporal variation, carrier wave frequency 𝜔 = 𝜔Ј 

is constant, where subscript 0 means linear waves. For a flat bottom with a constant water 

depth ℎ , carrier wave number 𝑘 = 𝑘Ј  is also constant as 𝜔 ; for an uneven bottom, wave 

number 𝑘 will be changed because of spatial inhomogeneity due to bottom topography. The 

change in wave dispersion will also be reflected in the group speed 𝑐ւ:  

𝑐ւ =
𝑔

2𝜔
[𝜎 + 𝑘ℎ(1 − 𝜎ϵ)].                   (2 − 8) 

In other words, 𝑘 and 𝑐ւ are functions of ℎ. 
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For a weakly non-linear wave train, the modulation parameter comes from the contribution 

from the small perturbation in high-order harmonic, so we further expand the velocity potential 

𝛷  and free surface elevation 𝜂  into harmonic functions. In this research, we assume the 

modulation caused by the nonlinearity and the depth variations are in the same order of 

magnitude referring to Liu and Dingemans (1989). We make this small parameter equal to wave 

steepness 𝜀, and expand 𝛷 and 𝜂 in the form of : 

𝛷(𝑥, 𝑦, 𝑧, 𝑡) = ం𝜀։ ঳ ం 𝛷։ֈ(𝑥, 𝑦, 𝑧, 𝑡)
։

ֈ=−։

𝐸ֈ঴
�

։=φ

,         (2 − 9) 

𝜂(𝑥, 𝑦, 𝑡) = ం𝜀։ ঳ ం 𝜂։ֈ(𝑥, 𝑦, 𝑡)
։

ֈ=−։

𝐸ֈ঴
�

։=φ

,          (2 − 10) 

𝐸 = exp[i(𝑘𝑥 − 𝜔Ј𝑡)],                  (2 − 11) 

where 𝐸 represent the harmonic functions, and the complex conjugates part satisfy 𝛷։Ӵ−ֈ =

𝛷̃
։ֈ，𝜂։Ӵ−ֈ = 𝜂։̃ֈ. We take 𝑛 ≤ 3 in the derivation since 𝜀 is very small.  

    With the expansion of 𝛷 and 𝜂 to the third-order of 𝜀, the method of multiple scales 

introduced in Davey and Stewartson (1974) is applied to give the solution at different order and 

harmonic. The details in this process in similar to the Hasimoto and Ono (1972).  

 

 

2.3.1 Solution of the envelope evolution for a flat bottom  

    Firstly, we concentrate on the derivation of 𝛷 and 𝜂 for the wave evolution on a flat 

bottom. We introduce the variables substitution as follow referring to Davey and Stewartson 

(1974): 

𝜏φ = 𝜀ϵ𝑡, 𝜉φ = 𝜀ि𝑥 − 𝑐ւ𝑡ी, 𝜁 = 𝜀𝑦,         (2 − 12) 

which makes 𝛷 = 𝛷(𝜏φ, 𝜉φ, 𝜁, 𝑧) and 𝜂 = 𝜂(𝜏φ, 𝜉φ, 𝜁). The harmonic 𝐸 = 0 represents the 

very long wave or wave-induced mean current, and we assume 𝛷φЈ and 𝛷ϵЈ are independent 

of 𝑧, and 

𝜕𝛷ϯЈ

𝜕𝑧
= −(𝑧 + ℎ)গ

𝜕ϵ𝛷φЈ

𝜕𝜉φ
ϵ +

𝜕ϵ𝛷φЈ

𝜕𝜁ϵ
ঘ.            (2 − 13) 

Take Eq. (2-9) into Eq. (2-2) and (2-5) to have a multiscale analysis, we get the basic solution 

of 𝛷։ֈ at different order and harmonic. We also need to pay attention to the high harmonic 

terms with the contribution from low harmonic in the non-linear interactions.   
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    At 𝑂(𝜀) , we can get the ordinary differential equation about 𝛷φφ  from the Laplace 

equation:  

𝜕ϵ𝛷φφ

𝜕𝑧ϵ
− 𝑘ϵ𝛷φφ = 0,                    (2 − 14) 

𝛷φφ = 𝐴φ
஥ 𝑒ֆ֕ + 𝐴ϵ

஥ 𝑒−ֆ֕.                  (2 − 15) 

With Eq. (2-5), we can get: 

𝛷φφ = 𝐴(𝜏φ, 𝜉φ, 𝜁)
cosh𝑘(𝑧 + ℎ)

cosh𝑘ℎ
,                (2 − 16) 

where 𝐴(𝜏φ, 𝜉φ, 𝜁) is an unknown coefficient. We can understand 𝐴 to represent the envelope 

of the velocity potential 𝛷 at the first-order and first-harmonic from the perspective of physical 

meaning.  

    At 𝑂(𝜀ϵ), we can give 𝛷ϵϵ and 𝛷ϵφ through the same process:  

𝛷ϵϵ = 𝐹(𝜏φ, 𝜉φ, 𝜁)
cosh2𝑘(𝑧 + ℎ)

cosh2𝑘ℎ
,               (2 − 17) 

𝛷ϵφ = 𝐷(𝜏φ, 𝜉φ, 𝜁)
cosh𝑘(𝑧 + ℎ)

cosh𝑘ℎ
− i

𝜕𝐴

𝜕𝜉φ

1

cosh𝑘ℎ
[(𝑧 + ℎ)sinh𝑘(𝑧 + ℎ) − ℎ𝜎coshk(𝑧 + ℎ)], 

(2 − 18) 

where 𝐹(𝜏φ, 𝜉φ, 𝜁) is an unknown coefficient of the envelope of the velocity potential 𝛷 at 

the second-order and second-harmonic, and 𝐷(𝜏φ, 𝜉φ, 𝜁)  is for the second-order and first-

harmonic.  

    At 𝑂(𝜀ϯ), we only give 𝛷ϯφ since the expression from higher harmonic is not required 

in the following derivation: 

𝛷ϯφ = 𝐺(𝜏φ, 𝜉φ, 𝜁)
cosh𝑘(𝑧 + ℎ)

cosh𝑘ℎ
 

+
(𝑧 + ℎ)sinh𝑘(𝑧 + ℎ) − ℎ𝜎coshk(𝑧 + ℎ)

2𝑘cosh𝑘ℎ
ঝ2𝑘 গℎ𝜎

𝜕ϵ𝐴

𝜕𝜉φ
ϵ − i

𝜕𝐷

𝜕𝜉φ

− i𝜀
𝜕𝐴

𝜕𝜉φ

ঘ −
𝜕ϵ𝐴

𝜕𝜁ϵ
ঞ 

−
[(𝑧 + ℎ)ϵ − ℎϵ]cosh𝑘(𝑧 + ℎ)

2cosh𝑘ℎ

𝜕ϵ𝐴

𝜕𝜉φ
ϵ ,               (2 − 19) 

where 𝐺(𝜏φ, 𝜉φ, 𝜁) is an unknown coefficient of the envelope 𝛷 at the third-order and first-

harmonic.  

To determine the unknown coefficients in the expression, we take the result of 𝛷  in 

Eq .(2-16) to (2-19) into Eq .(2-3) and Eq .(2-4). With the expansion of 𝜂 from Eq .(2-10), we 

take the Taylor-expansion at the equilibrium position 𝑧 =  0. The free surface equation in 

Eq .(2-3) can be written as:  
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0 =
𝜕𝜂

𝜕𝑡
+ গ−

𝜕𝛷

𝜕𝑧
+

𝜕𝛷

𝜕𝑥

𝜕𝜂

𝜕𝑥
+

𝜕𝛷

𝜕𝑦

𝜕𝜂

𝜕𝑦
ঘઊ

֕=ᇅ

 

=
𝜕𝜂

𝜕𝑡
+ গ−

𝜕𝛷

𝜕𝑧
+

𝜕𝛷

𝜕𝑥

𝜕𝜂

𝜕𝑥
+

𝜕𝛷

𝜕𝑦

𝜕𝜂

𝜕𝑦
ঘઊ

֕=Ј

+ 𝜂 ঳
𝜕

𝜕𝑧
গ−

𝜕𝛷

𝜕𝑧
+

𝜕𝛷

𝜕𝑥

𝜕𝜂

𝜕𝑥
+

𝜕𝛷

𝜕𝑦

𝜕𝜂

𝜕𝑦
ঘઊ

֕=Ј

঴ 

+
1

2
𝜂ϵ [

𝜕ϵ

𝜕𝑧ϵ
গ−

𝜕𝛷

𝜕𝑧
+

𝜕𝛷

𝜕𝑥

𝜕𝜂

𝜕𝑥
+

𝜕𝛷

𝜕𝑦

𝜕𝜂

𝜕𝑦
ঘઊ

֕=Ј

] + ⋯,         (2 − 20) 

and the Bernoulli equation in Eq .(2-4) can be written as:   

0 = 2𝑔𝜂 + ঳2
𝜕𝛷

𝜕𝑡
+ গ

𝜕𝛷

𝜕𝑥
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑦
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑧
ঘ

ϵ

঴ઑ
֕=ᇅ

 

= 2𝑔𝜂 + ঳2
𝜕𝛷

𝜕𝑡
+ গ

𝜕𝛷

𝜕𝑥
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑦
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑧
ঘ

ϵ

঴ઑ
֕=Ј

+ 𝜂 ৓
𝜕

𝜕𝑧
঳2

𝜕𝛷

𝜕𝑡
+ গ

𝜕𝛷

𝜕𝑥
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑦
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑧
ঘ

ϵ

঴ઑ
֕=Ј

৔ 

+
1

2
𝜂ϵ ৓

𝜕ϵ

𝜕𝑧ϵ
঳2

𝜕𝛷

𝜕𝑡
+ গ

𝜕𝛷

𝜕𝑥
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑦
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑧
ঘ

ϵ

঴ઑ
֕=Ј

৔ + ⋯.   (2 − 21) 

At 𝑂(𝜀), the mean surface elevation 𝜂φЈ = 0 and we get the surface elevation on first-

harmonic:  

𝑔𝜂φφ = i𝜔Ј𝐴.                        (2 − 22) 

At 𝑂(𝜀ϵ), we can give: 

𝑔𝜂ϵЈ = 𝑐ւ

𝜕𝜙φЈ

𝜕𝜉φ

− 𝑘ϵ|𝐴|ϵ(1 − 𝜎ϵ),               (2 − 23) 

𝑔𝜂ϵφ = 𝑐ւ

𝜕𝐴

𝜕𝜉φ

+ i𝜔Ј𝐷,                    (2 − 24) 

𝑔𝜂ϵϵ = −
𝑘ϵ𝐴ϵ

2𝜎ϵ
(3 − 𝜎ϵ), 𝜔Ј𝐹 =

3i𝑘ϵ𝐴ϵ

4𝜎ϵ
(1 − 𝜎Κ).       (2 − 25) 

At 𝑂(𝜀ϯ), we give the final evolution equation of 𝐴 by a equation set from 𝐸Ј and 𝐸 

respectively in the same form of Davey and Stewartson (1974): 

ि𝑔ℎ − 𝑐ւ
ϵी

𝜕ϵ𝜙φЈ

𝜕𝜉φ
ϵ + 𝑔ℎ

𝜕ϵ𝜙φЈ

𝜕𝜁ϵ
= −𝑘ϵॅ𝑐ւ(1 − 𝜎ϵ) + 2𝑐֋ॆ

𝜕|𝐴|ϵ

𝜕𝜉φ

, 𝑐֋ =
𝜔Ј

𝑘
, (2 − 26) 

i
𝜕𝐴

𝜕𝜏φ

+ 𝛽֓
φ 𝜕ϵ𝐴

𝜕𝜉φ
ϵ + 𝛽֔

φ 𝜕ϵ𝐴

𝜕𝜁ϵ
= 𝛽։

φ |𝐴|ϵ𝐴 + 𝛽ց
φ𝐴

𝜕𝜙φЈ

𝜕𝜉φ

,          (2 − 27) 

where  

𝛽֓
φ =

1

2

𝜕ϵ𝜔

𝜕𝑘ϵ
≡ −

1

2𝜔Ј

ॅ𝑐ւ
ϵ − 𝑔ℎ(1 − 𝜎ϵ)(1 − 𝑘ℎ𝜎)ॆ,          (2 − 28) 

𝛽֔
φ =

1

2𝑘

𝜕𝜔

𝜕𝑘
≡

𝑐ւ

2𝑘
,                        (2 − 29) 
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𝛽։
φ =

𝑘Κ

4𝜔Ј

(9𝜎−ϵ − 12 + 13𝜎ϵ − 2𝜎Κ),              (2 − 30) 

𝛽ց
φ =

𝑘ϵ

2𝜔Ј

ॅ2𝑐֋ + 𝑐ւ(1 − 𝜎ϵ)ॆ.                   (2 − 31) 

Eq. (2-26) and (2-27) consist of the evolution equation of the envelope of velocity potential at 

the first-harmonic on a flat bottom. Eq. (2-26) is a Poisson-type equation for forcing mean flow, 

and the equation in the same form with Eq. (2-27) is known as the NLS equation for the weak 

non-linear wave evolution, and the non-linear term 𝛽։
φ |𝐴|ϵ𝐴  represents the high-order 

interaction from different harmonics. Based on different definitions of 𝐴, the expression of 𝛽։
φ  

and 𝛽ց
φ are different (Liu, 1999). If 𝐴 represents the envelope of surface elevation, Eq. (2-30) 

and Eq. (2-31) become:  

𝛽։
φ∗ =

𝑔ϵ𝑘Κ

4𝜔Ј
ϯ (9𝜎−ϵ − 12 + 13𝜎ϵ − 2𝜎Κ),              (2 − 32) 

𝛽ց
φ∗ =

𝑔𝑘ϵ

2𝜔Ј
ϵ ॅ2𝑐֋ + 𝑐ւ(1 − 𝜎ϵ)ॆ.                   (2 − 33) 

 

 

2.3.2 Solution of the envelope evolution for an uneven bottom with mild slope 

If we consider the contribution from spatial inhomogeneity on the modulational instability 

of wave trains, a modified NLS equation can be derived in a NLS-like form. The governing 

equations for an uneven bottom is almost the same with flat bottom case, but the no-flux 

boundary on the bottom requires the application of Eq.(2-6) instead of (2-5). 

To simplify the problem, we suppose the water depth ℎ varies slowly. Additionally, we 

want to concentrate on the variation of depth on the wave propagating direction, so we assume 

the magnitude of the gradient of depth change satisfies ℎ஥(𝑥)~𝑂(𝜀ϵ)  and ℎ஥(𝑦)~𝑂(𝜀ϯ) . 

Considering the expansion form in Eq. (2-9) and (2-10), the effect from bottom topography 

change only reflects in the third-order 𝑂(𝜀ϯ) and ℎ஥(𝑦)~𝑂(𝜀ϯ) is equivalent to ℎ஥(𝑦) = 0. 

As for the dispersion relation between wave number and frequency, the carrier 𝜔 = 𝜔Ј is still 

constant since there is no temporal variation, but carrier wave number 𝑘 changes. Based on 

the above inference, we can get 𝑘 = 𝑘(𝑥) and 𝑐ւ = 𝑐ւ(𝑥) on the principal wave direction, 

and the harmonic term is in the form as:  

𝐸 = expছi ঝ௷ 𝑘(𝑥)𝑑𝑥
֓

− 𝜔Ј𝑡ঞজ,               (2 − 34) 
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Moreover, we expect to reflect the variation of ℎ in wave evolution process explicitly, so 

we introduce a different variable substitution of 𝑡  and  𝑥  referring to Djordjevic and 

Redekopp (1978):  

𝜏ϵ = 𝜀঳௷
𝑑𝑥

𝑐ւ(𝑥)

֓

− 𝑡঴ , 𝜉ϵ = 𝜀ϵ𝑥, 𝜁 = 𝜀𝑦.           (2 − 35) 

Through a similar derivation process for the flat bottom in 2.3.1, we give the solution of 

𝛷 and 𝜂 at different order and harmonic. 

At 𝑂(𝜀): 

𝛷φφ = 𝐴(𝜏ϵ, 𝜉ϵ, 𝜁)
cosh𝑘(𝑧 + ℎ)

cosh𝑘ℎ
,                (2 − 36) 

  𝑔𝜂φφ = i𝜔Ј𝐴.                         (2 − 37) 

At 𝑂(𝜀ϵ): 

𝛷ϵϵ = 𝐹(𝜏ϵ, 𝜉ϵ, 𝜁)
cosh2𝑘(𝑧 + ℎ)

cosh2𝑘ℎ
,               (2 − 38) 

𝛷ϵφ = 𝐷(𝜏ϵ, 𝜉ϵ, 𝜁)
cosh𝑘(𝑧 + ℎ)

cosh𝑘ℎ
− i

𝜕𝐴

𝜕𝜏ϵ

1

𝑐ւcosh𝑘ℎ
[(𝑧 + ℎ)sinh𝑘(𝑧 + ℎ) − ℎ𝜎coshk(𝑧 + ℎ)] 

(2 − 39) 

𝑔𝜂ϵЈ =
𝜕𝜙φЈ

𝜕𝜏ϵ

− 𝑘ϵ|𝐴|ϵ(1 − 𝜎ϵ),                 (2 − 40) 

𝑔𝜂ϵφ =
𝜕𝐴

𝜕𝜏ϵ

+ i𝜔Ј𝐷,                      (2 − 41) 

𝑔𝜂ϵϵ = −
𝑘ϵ𝐴ϵ

2𝜎ϵ
(3 − 𝜎ϵ), 𝜔Ј𝐹 =

3i𝑘ϵ𝐴ϵ

4𝜎ϵ
(1 − 𝜎Κ).         (2 − 42) 

At 𝑂(𝜀ϯ): 

𝜕𝛷ϯЈ

𝜕𝑧
= −(𝑧 + ℎ)ভ

𝜕ϵ𝛷φЈ

𝜕𝜏ϵ
ϵ

1

𝑐ւ
ϵ
+

𝜕ϵ𝛷φЈ

𝜕𝜁ϵ
ম,           (2 − 43) 

𝛷ϯφ = 𝐺(𝜏ϵ, 𝜉ϵ, 𝜁)
cosh𝑘(𝑧 + ℎ)

cosh𝑘ℎ
 

−
i

2cosh𝑘ℎ
঳2𝑘

d(ℎ)

d𝜉ϵ

𝐴 + ভ𝑘஥𝐴 −
i
𝑐ւ

ϵ

𝜕ϵ𝐴

𝜕𝜏ϵ
ϵ ম(𝑧 + ℎ)঴ (𝑧 + ℎ)cosh𝑘(𝑧 + ℎ) 

+
i

cosh𝑘ℎ
঳𝜎

d(𝑘ℎ)

d𝜉ϵ

𝐴 −
𝜕𝐴

𝜕𝜉ϵ

−
iℎ𝜎

𝑐ւ
ϵ

𝜕ϵ𝐴

𝜕𝜏ϵ
ϵ −

1

𝑐ւ

𝜕𝐷

𝜕𝜏ϵ

+ i
1

2𝑘

𝜕ϵ𝐴

𝜕𝜁ϵ
঴ (𝑧 + ℎ)sinh𝑘(𝑧 + ℎ),  

(2 − 44) 

where 𝐴,𝐷,𝐹 ,𝐺  are unknown functions of 𝜏ϵ, 𝜉ϵ, 𝜁 . At 𝑂(𝜀)  and 𝑂(𝜀ϵ) , the difference 

between 2.3.1 and 2.3.2 only comes from the different form of variable substitution. At 𝑂(𝜀ϯ), 

the effect of depth change shows up and we can give the evolution equation of 𝐴 in a similar 

equation set: 
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𝜕ϵ𝜙φЈ

𝜕𝜏ϵ
ϵ ভ1 −

𝑔ℎ

𝑐ւ
ϵ
ম − 𝑔ℎ

𝜕ϵ𝜙φЈ

𝜕𝜁ϵ
= 𝑘ϵ ঳(1 − 𝜎ϵ) + 2

𝑐֋

𝑐ւ

঴
𝜕|𝐴|ϵ

𝜕𝜏ϵ

, (2 − 45) 

i𝛽փ
ϵ𝐴 + i

𝜕𝐴

𝜕𝜉ϵ

+ 𝛽֏
ϵ 𝜕ϵ𝐴

𝜕𝜏ϵ
ϵ + 𝛽֔

ϵ 𝜕ϵ𝐴

𝜕𝜁ϵ
= 𝛽։

ϵ |𝐴|ϵ𝐴 + 𝛽ց
ϵ𝐴

𝜕𝜙φЈ

𝜕𝜏ϵ

,     (2 − 46) 

where  

𝛽փ
ϵ =

(1 − 𝜎ϵ)(1 − 𝑘ℎ𝜎)

𝜎 + 𝑘ℎ(1 − 𝜎ϵ)

𝑑(𝑘ℎ)

𝑑𝜉ϵ

=
1

2𝑐ւ

d(𝑐ւ)

d𝜉ϵ

,           (2 − 47) 

𝛽֏
ϵ = −

1

2𝜔Ј𝑐ւ

঳1 −
𝑔ℎ

𝑐ւ
ϵ

(1 − 𝜎ϵ)(1 − 𝑘ℎ𝜎)঴,             (2 − 48) 

𝛽֔
ϵ = 𝛽֔

φ =
1

2𝑘

𝜕𝜔

𝜕𝑘
≡

𝑐ւ

2𝑘
,                        (2 − 49) 

𝛽։
ϵ = 𝛽։

φ =
𝑘Κ

4𝜔Ј

(9𝜎−ϵ − 12 + 13𝜎ϵ − 2𝜎Κ),              (2 − 50) 

𝛽ց
ϵ = 𝛽ց

φ =
𝑘ϵ

2𝜔Ј

ॅ2𝑐֋ + 𝑐ւ(1 − 𝜎ϵ)ॆ.                   (2 − 51) 

𝛽փ
ϵ  reflects the contribution from the variation of bottom topography, and it is proportional to 

the gradient of water depth change. When 𝛽փ
ϵ = 0, the modified equation set is equivalent to 

the flat bottom equation in 2.3.1. From Eq. (2-47), the value of 𝛽փ
ϵ  can be positive or negative 

depending on the 𝑘ℎ, which implies the effect from bottom topography change on the non-

linear interaction may convert at different water depth or bottom shape.  

    For the case that slope is not very mild and ℎ஥(𝑥)~𝑂(𝜀), Liu and Dingemans (1989) also 

gave the evolution equation of wave envelope. The equation set for a unidirectional wave train 

in the form of: 

i𝛽փ
஥ 𝐴 + i

𝜕𝐴

𝜕𝜉
+ 𝛽֏

஥ 𝜕ϵ𝐴

𝜕𝜏ϵ
= 𝛽։

஥ |𝐴|ϵ𝐴 + 𝛽φ

𝜕𝜙φЈ

𝜕𝑥
𝐴 + 𝛽ϵ

𝜕𝜙φЈ

𝜕𝑡
𝐴,        (2 − 52) 

𝜕ϵ𝜙φЈ

𝜕𝑡ϵ
−

𝜕

𝜕𝑥
গ𝑔ℎ

𝜕𝜙φЈ

𝜕𝑥
ঘ =

𝑔ϵ

2𝜔Ј

𝜕

𝜕𝑥
(𝑘|𝐴|ϵ) −

𝜔Ј
ϵ

4sinhϵ𝑘ℎ

𝜕|𝐴|ϵ

𝜕𝑡
,        (2 − 53) 

where 𝛽ᇋ
஥ , 𝛽ᇊ

஥ , 𝛽ᇒ
஥ , 𝛽φ, 𝛽ϵ are coefficients consist of 𝜎, 𝑘, 𝜔Ј, ℎ and 𝑐ւ. We don’t apply Eq. 

(2-52) and (2-53) in this study, because the terms with 𝜙φЈ make it difficult to give the solution 

even in a numerical model.  

 

2.4 Real wave surface elevation 

In 2.3, we discuss the evolution equation of envelope in the NLS and NLS-like equation, 

and the expression can be different based on the definition of amplitude 𝐴. To give the real 
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wave surface elevation, usually we define 𝐴 is the envelope of surface elevation 𝜂. Liu and 

Dingemans (1989) defined 𝜂φφ = φ
ϵ
𝐴 as the basic solution in the first order, and considered 

the contribution from the second-order first-harmonic 𝐷 to the surface elevation. Under this 

consideration, we can denote 𝐴̅ = 𝐴 + 𝜀𝐷 instead of 𝐴 including the second-order effects. 

Besides, the term about 𝜕𝜙φЈ is unknown in the solving of NLS equation, which increases the 

difficulty to determine 𝐴 . Referring to Davey & Stewartson (1974) and Djordjevic & 

Redekopp (1978), Eq. (2-45) and Eq. (2-46) can be re-expressed in one equation:  

i𝛽փ𝐴̅+ i
𝜕𝐴̅

𝜕𝜉ϵ

+ 𝛽֏

𝜕ϵ𝐴̅

𝜕𝜏ϵ
ϵ + 𝛽֔

𝜕ϵ𝐴̅

𝜕𝜁
= 𝛽։ੵ𝐴̅ੵ ϵ𝐴̅+ 𝛽ᇈ𝐴𝑄̅Ј,        (2 − 54) 

where 𝛽փ = 𝛽փ
ϵ , 𝛽֏ = 𝛽֏

ϵ, 𝛽֔ = 𝛽֔
ϵ,  

𝛽։ = 𝑘ϵ𝜔Ј ই
1

16
(9 − 10𝜎ϵ + 9𝜎Κ) −

1

2sinhϵ2𝑘ℎ
ঈ                      

+ ঳
𝜔Ј

ϯ

𝑔

1

2𝑔
(𝜎ϵ − 1) +

𝑘

𝑐ւ

঴ভ
𝑐ւ

ϵ

𝑐ւ
ϵ − 𝑔ℎ

ম঳
𝑔ϵ𝑘

2𝜔Ј𝑐ւ

+
𝜔Ј

ϵ

4sinh(𝑘ℎ)ϵ
঴,    (2 − 55) 

𝛽ᇈ =
𝑘ϵ

2𝜎

𝑐֋

𝑐ւ

঳
2𝑐֋

𝑐ւ

+ (1 − 𝜎ϵ)঴.                     (2 − 56) 

𝑄Ј only effect phase in the result so we can regard 𝑄Ј = 0. Strictly speaking, removing the 

last term in Eq. (2-54) requires a special transformation about envelope 𝐴. In this study, we 

construct wave surface elevation with random phase to conduct the Monte Carlo simulation as 

following chapters, so the precise value of 𝑄Ј is not essential for the result we concentrate on. 

Eq. (2-54) can be solved numerically to give the wave envelop in time and space. Based 

on the periodicity in wavefield, we give the real surface elevation considering the second-order 

and second-harmonic: 

𝜂(𝑥, 𝑦, 𝑡) = 𝜀𝐸𝜂φφ + 𝜀ϵ(𝐸𝜂ϵφ + 𝐸ϵ𝜂ϵϵ).           (2 − 57) 

It can be expressed in the form of 𝐴:̅ 

𝜂(𝑥, 𝑦, 𝑡) = 𝜀Re ই
1

2
𝐴e̅xpॕi(𝑘(𝑥)𝑥 − 𝜔Ј𝑡)ॖঈ 

+𝜀ϵReঝ
𝑘cosh𝑘ℎ

8sinhϯ𝑘ℎ
(2coshϵ𝑘ℎ + 1)𝐴ϵ̅expॕ2i(𝑘(𝑥)𝑥 − 𝜔Ј𝑡)ॖঞ.     (2 − 58) 
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Chapter 3  

Numerical Model of Unidirectional 
Modulated Wave Train  

3.1 Introduction  

    From the observation record of the World Ocean and the coast in Nikolkina and 

Didenkulova (2011), freak wave not only occurs in deep-water but also finite and shallow water. 

In the process water wave entering the continental shelf from deep sea with a slope, wave 

evolution will be influenced by the water depth changing. Benjamin(1967) indicated the effect 

of modulational instability on the wave train has a critical water depth at 𝑘ℎ = 1.363. When 

𝑘ℎ <1.363, the modulational instability becomes weak and the occurrence of extreme value in 

wave train will significantly decrease. The evolution of modulated wave train over an uneven 

bottom can also refer to Peregrine (1983), Turpin and Mei (1983), Mei and Benmoussa (1984), 

Janssen et al. (2003). 

    In the numerical simulation, kurtosis and skewness of wave train are significantly affected 

by changes in water depth from Zeng and Trulsen (2012)’s study in Monte Carlo simulation 

through 1-D modified NLS equation. In deep and finite water, kurtosis and skewness 

monotonically decline as water depth decreasing. However, from the numerical simulation and 

physical experiments in shallow water, the slope of bottom topography brings about a 

rebounding process. From Kashima and Mori (2019) and Trulsen et al. (2020), kurtosis and 

skewness reach maximum value around the end of the slope region, which indicates the 

nonlinearity from shoaling effect increases wave train instability. Considering corresponding 

performance in wave height distribution, the slope angle of bottom topography may play an 
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important role for the occurrence probability of extreme value in the shallow water.  

In this chapter, we concentrate on the numerical solution of mNLS equation for an uneven 

bottom. We expect to simulate the evolution of wave envelope, and study the effect from spatial 

inhomogeneity on the modulational instability in wave trains. To get rid of the directional 

dispersion effect on four-wave interaction, we set up a simple numerical model for 

unidirectional wave trains, and collect surface elevation in the wavefield of one-dimensional 

space-time (1D+T). We apply Monte Carlo simulation and pseudo spectral method in the 

numerical model, and consider the wave shoaling in different types of bottom topography shape.  

 

3.2 Methodology 

3.2.1 1D mNLS equation for an uneven bottom 

 

    Based on the theoretical result in Chapter 2, we apply the mNLS equation for the 

evolution of wave envelope over an uneven bottom with mild slope. A flow field with 

unidirectional incident wave trains can be regarded as an 1-D problem, and the coordinate 

system (𝑥, 𝑧) is defined with origin 𝑂 at quiescent water surface as shown in Figure 3.1. The 

𝑥 is defined along the quiescent water surface and 𝑧 is defined vertically upward direction, 

 

 

Figure 3.1 Sketch of coordinate with sloping bottom 



Chapter 3 

- 19 - 
 

opposite to gravity acceleration 𝑔. As previous assumption, the flow is irrotational, inviscid 

and incompressible with free surface, and potential theory is applied to give wave velocity 

potential 𝛷 = 𝛷(𝑥, 𝑧, 𝑡)  and free surface elevation  𝜂 = 𝜂(𝑥, 𝑡) . The bottom 𝑧 = −ℎ(𝑥) 

varies in the direction of propagation, and it can be divided into three districts: flat bottom in 

deep-water; sloping region with a constant slope angle; flat bottom in shallow water. 

In the entire flow field 𝛷 and 𝜂 satisfy Eq. (2-1) to (2-4) and Eq. (2-6), and they can be 

simplified with omission of variation on 𝑦: 

𝛻ϵ𝛷 =
𝜕ϵ𝛷

𝜕𝑥ϵ
+

𝜕ϵ𝛷

𝜕𝑧ϵ
= 0,                              (3 − 1) 

𝜕𝛷

𝜕𝑧
+

𝜕ℎ

𝜕𝑥

𝜕𝛷

𝜕𝑥
= 0, 𝑧 = −ℎ(𝑥),                      (3 − 2) 

𝜕𝛷

𝜕𝑧
=

𝜕𝜂

𝜕𝑡
+

𝜕𝛷

𝜕𝑥

𝜕𝜂

𝜕𝑥
, 𝑧 = 𝜂,                         (3 − 3) 

2
𝜕𝛷

𝜕𝑡
+ 2𝑔𝜂 + গ

𝜕𝛷

𝜕𝑥
ঘ

ϵ

+ গ
𝜕𝛷

𝜕𝑧
ঘ

ϵ

= 0, 𝑧 = 𝜂.          (3 − 4) 

Based on the method of multiple scale and the dispersion relation in Eq. (2-7), 𝛷 and 𝜂 can 

be expanded into:  

𝛷(𝑥, 𝑧, 𝑡) = ం𝜀։ ঳ ం 𝛷։ֈ(𝑥, 𝑧, 𝑡)
։

ֈ=−։

𝐸ֈ঴
�

։=φ

,              (3 − 5) 

𝜂(𝑥, 𝑡) = ం𝜀։ ঳ ం 𝜂։ֈ(𝑥, 𝑡)
։

ֈ=−։

𝐸ֈ঴
�

։=φ

,                 (3 − 6) 

where 𝜀  is small constant equal to wave steepness and 𝐸 = exp{i[∫ 𝑘(𝑥)𝑑𝑥
֓

− 𝜔𝑡]} 

represents harmonic function. 𝑛, 𝑚 are integers and the complex conjugate part in the form of 

𝜙։Ӵ−ֈ = 𝜙։̃ֈ，𝜂։Ӵ−ֈ = 𝜂։̃ֈ, respectively.  

To simplify the problem, we suppose the water depth ℎ  varies slowly with the wave 

propagating direction in the same order to wave steepness, ℎ஥(𝑥) = 𝑂(𝜀ϵ). We concentrate on 

the effect from topography change, so the variation of ℎ should be reflected in solving process 

explicitly. Therefore, we introduce the variable transfer referring to Djordjevic and Redekopp 

(1978) as Chapter 2:  

𝜏 = 𝜀 ঳௷
𝑑𝑥

𝑐ւ

֓

− 𝑡঴ , 𝜉 = 𝜀ϵ𝑥,                   (3 − 7) 

𝑐ւ =
𝑔

2𝜔Ј

[𝜎 + 𝑘ℎ(1 − 𝜎ϵ)],                        (3 − 8) 



Chapter 3 

- 20 - 
 

where 𝑐ւ  is group velocity. 𝜏   and 𝜉  slowly vary on time and space, respectively. 

Substituting Eq.(3-5), (3-6) into (3-1) to (3-4), we can give the expression of 𝛷 and 𝜂 in the 

form of amplitude 𝐴 of first harmonic in the first-order, which is an unknown complex. We 

here denote 𝐴̅ = 𝐴 + 𝜀𝐷  instead of 𝐴  including the second-order effects, where 𝐷  is 

amplitude of first harmonic in second-order. Finally, the evolution equation of 𝐴 ̅ is in 

following form: 

i𝛽փ𝐴̅+ i
𝜕𝐴̅

𝜕𝜉
+ 𝛽֏

𝜕ϵ𝐴̅

𝜕𝜏ϵ
= 𝛽։ੵ𝐴̅ੵ ϵ𝐴,̅                  (3 − 9) 

where  

𝛽փ =
(1 − 𝜎ϵ)(1 − 𝑘ℎ𝜎)

𝜎 + 𝑘ℎ(1 − 𝜎ϵ)

𝑑(𝑘ℎ)

𝑑𝜉
=

1

2𝑐ւ

d(𝑐ւ)

d𝜉
,                         (3 − 10) 

𝛽֏ = −
1

2𝜔Ј𝑐ւ

঳1 −
𝑔ℎ

𝑐ւ
ϵ

(1 − 𝜎ϵ)(1 − 𝑘ℎ𝜎)঴,                          (3 − 11) 

𝛽։ = 𝑘ϵ𝜔Ј ই
1

16
(9 − 10𝜎ϵ + 9𝜎Κ) −

1

2sinhϵ2𝑘ℎ
ঈ                      

+঳
𝜔Ј

ϯ

𝑔

1

2𝑔
(𝜎ϵ − 1) +

𝑘

𝑐ւ

঴ ভ
𝑐ւ

ϵ

𝑐ւ
ϵ − 𝑔ℎ

ম঳
𝑔ϵ𝑘

2𝜔Ј𝑐ւ

+
𝜔Ј

ϵ

4sinh(𝑘ℎ)ϵ
঴.       (3 − 12) 

 

 

3.2.2 Numerical solution  

Eq.(3-9) is in the form of partial differential equation and needed to be rewrite into an 

ordinary differential equation to be solved numerically. We assume the boundary is periodic in 

time following Zeng and Trulsen (2012), then Fourier transform can be applied to simply the 

dispersion term in time, and Eq.(3-9) becomes:  

d𝐴̅

d𝜉
= −i𝛽։ੵ𝐴̅ੵ ϵ𝐴̅− i𝜔ᇑ

ϵ𝛽֏𝐴
̅− 𝛽փ𝐴̅ = 𝑓ॕ𝜉, 𝐴̅ॖ ,              (3 − 13) 

where 𝜔ᇑ  comes from the Fourier transform about 𝜏 : 

𝐴(̂𝜉, 𝜔ᇑ ) = 𝐹ज़𝐴(̅𝜉, 𝜏)ड़.                                 (3 − 14) 

The fourth-order Runge-Kutta method is applied to solving Eq.(3-13) in the spatial evolution. 

On the step 𝑛 + 1, the solution of 𝐴̅
։+φ can be derived from 𝐴̅

։ on the last step 𝑛:   

𝐴̅
։+φ = 𝐴̅

։ +
d𝜉ք

6
(𝑙φ + 𝑙ϵ + 𝑙ϯ + 𝑙Κ),             (3 − 15) 

where d𝜉ք is the calculation resolution on the spatial direction, and  
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𝑙φ = 𝑓ॕ𝜉։, 𝐴̅
։ॖ,                             (3 − 16) 

𝑙ϵ = 𝑓 গ𝜉։ +
d𝜉ք

2
,𝐴̅

։ +
d𝜉ք

2
𝑙φঘ,                  (3 − 17) 

𝑙ϯ = 𝑓 গ𝜉։ +
d𝜉ք

2
, 𝐴̅

։ +
d𝜉ք

2
𝑙ϵঘ,                  (3 − 18) 

𝑙Κ = 𝑓ॕ𝜉։ + d𝜉ք, 𝐴
̅
։ + d𝜉ք𝑙ϯॖ.                    (3 − 19) 

In this way, we deal with the solution of wave envelope 𝐴 ̅ of Eq. (3-9) as an initial value 

problem moving from 𝜉 = 𝜉Ј. To give the initial condition, we suppose the Fourier amplitudes 

𝐴̂
Ј(𝜉Ј, 𝜔ᇑ) satisfy the initially Gaussian spectrum with randomized phase information:  

𝐴̂
Ј(𝜉Ј, 𝜔ᇑ ) = 𝑎ఌ

1
√

2𝜋𝜎ᇖ

expগ−
(𝜔ᇑ − 𝜔Ј)

ϵ

4𝜎ᇖ
ϵ

+ i𝜓ঘ,           (3 − 20) 

Where 𝑎  represents amplitude scale, 𝜎ᇖ  is spectral bandwidth, 𝜓  represents phase and 

uniformly distributes at [0,2π]. Initial BFI value is given by Eq. (1-3), and 𝜎֎ = 𝜎ᇖ/𝜔Ј for 

dimensionless. In each step of spatial evolution, an array of amplitude 𝐴 ̅ in time series will be 

decided, then free surface elevation 𝜂 can be given in the second-order as Eq. (2-58). The 

process in generating the surface elevation from the amplitude varies due to different precision 

or hypotheses. Eq.(2-58) consists of free surface elevation of amplitude from the first-order to 

second-order and second harmonic. We integrate Eq.(2-58) from the offshore to onshore 

assuming periodic boundary condition in time. This is transverse process compared with ordinal 

treatment of the spectral wave modeling.  

    For a group of wave train, the distribution of surface elevation 𝜂 is very important in 

extreme wave study. In the linear random wave train (i.e. Rayleigh distribution), probability 

density function of maximum surface elevation 𝜂ζ͘Ђ is only decided by the number of sample, 

which can be estimated by the zero-up-crossing number 𝑁Ј  in random wavefield. For 

narrowband wave trains, maximum wave height 𝐻ζ͘Ђ  usually is simply defined by twice 

maximum 𝜂ζ͘Ђ. From Mori and Janssen (2006), distribution of 𝐻ζ͘Ђ is related to 𝑁Ј and 

kurtosis 𝜇Κ by the fourth-order cumulant 𝜅ΚЈ in Eq. (1-8). Therefore, our numerical work 

concentrate on the statistical parameters and spectrum shape of irregular wave. With a large 

ensemble size, the surface elevation at same stage will be generally closed to a zero-mean strict-

sense stationary process, and its statistical parameters such as 𝜇Κ only change with the initial 
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condition and spatial inhomogeneity in this study. It can also be applied in wave generation in 

laboratory to obtain irregular wave trains with required characteristics, e.g. Kashima and Mori 

(2019).  

In the wave height analysis from the zero-up-cross method, frequency spectrum 

peakedness 𝑄֋ in Eq.(3-21) proposed by Goda (1970) can also be used for the measure of 

frequency dispersion:  

𝑄֋ =
2∫ 𝑓𝑆(𝑓)ϵ𝑑𝑓

�

Ј

[∫ 𝑆(𝑓)𝑑𝑓
�

Ј
]ϵ

,                     (3 − 21) 

where 𝑆(𝑓) is the frequency spectrum of waves, 𝑓  represent frequency. The definition of 𝑄֋ 

is similar to the spectral bandwidth, but weighted on the share around peak frequency. In wave 

height statistic from zero-up-cross method, 𝑄֋ has a positive correlation with the maximum 

wave height distribution if we consider the high-order nonlinearity.  

    In the realization process, Mei and Benmoussa (1984) introduced a normalization to make 

all parameters become dimensionless. We apply a different normalization only for the variable 

(𝐴,̅ 𝜉, 𝜔ᇑ , 𝜏 ) in programing as following: 

𝐴஥ =
2𝜋

𝐿Ј

𝐴,̅ 𝜉஥ =
2𝜋

𝐿Ј

𝜉, 𝜔஥ = 𝜀
𝐿յ

2𝜋
𝜔ᇑ , 𝜏 ஥ =

2𝜋

𝜀𝐿յ

𝜏,      (3 − 22) 

where 𝐿յ  is the total time length at each step, 𝐿Ј is the initial wave length.  

 

 

3.2.3 Model setup 

    For a narrowband wave train, we start our simulation from wave energy spectral in 

Gaussian shape by Eq.(3-20) with carrier frequency 𝜔  = 2.5s-1, time length 𝐿յ = 40𝑇Ј , 

where 𝑇Ј is wave period. The initial shape of energy spectral is decided by value of BFI in 

Eq.(1-3). Figure 3.2 gives the absolute Fourier Amplitude at BFI = 1, 0.75, 0.5, 0.25, where the 

wave steepness 𝜀 = 𝑘𝑎  constantly at 0.1, and dimensionless spectral bandwidth 𝜎֎  varies 

from 0.141, 0.189, 0.283, 0.567, respectively. Figure 3.2 shows that the larger BFI gives 

concentrated wave energy on the carrier wave frequency. This effect can be reflected in wave 

surface in time series. 𝐴̂
Ј in the initial condition from Eq. (3-20) consists of real and imaginary 

part, so 𝐴 ̅ in spatial step is also complex. Figure 3.3 gives the numerical value about the 
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evolution of real and imaginary part of 𝐴 ̅ in time series at different spatial stages from a single 

sample at a constant water depth 𝑘ℎ = 7, where we can see the contribution from real and 

imaginary part is at the same level but the their envelope don’t coincide. We construct the 

surface elevation 𝜂 at each step in this model from 𝐴 ̅ by Eq. (2-58). Figure 3.4 indicates the 

details of surface elevation 𝜂 at initial point 𝜉 = 𝜉Ј(𝑥 = 𝑥Ј), from different spectra in Figure 

3.2 through the inverse Fourier transform as function of dimensionless time 𝑡/𝑇Ј. The wave 

train becomes more regular and the coherent wave period can be more easily distinguished in 

wave train with larger BFI. 𝜂  consists of different composition, and Figure 3.5 gives 

corresponding 𝜂  to the 𝐴 ̅ in Figure 3.3 at different orders. Compared with the first-order 

𝜂(𝜀) , the contribution from second-order term 𝜂(𝜀ϵ)  is very small, but 𝜂(𝜀ϵ)  significantly 

increases when extreme value occurs. 

    In Eq.(3-20) the wave phase 𝜓  is set to be random at [0,2π] , which is able to give 

different initial wave trains for given BFI. From groups of wave data at different initial 

conditions, we utilize Monte Carlo simulation (i.e. random phase approximation) to estimate 

the ensemble averaged non-linear wave characteristics. To check the convergence of result in 

this model, we give Figure 3.6 and Figure 3.7 to show the mean value and standard deviation 

of kurtosis 𝜇Κ  with different ensemble size 𝑀  . As the 𝑀   increases, mean value of 𝜇Κ 

gradually converges. In the numerical NLS model, the wave surface requires a distance from 

the initial point to become steady and usually it is about 10~15𝐿Ј. From Figure 3.6 and Figure 

3.7, the result at 𝑥 ≥ 15𝐿Ј becomes sufficiently convergent when 𝑀 ≥ 250, and we apply 

ensemble size 𝑀  = 300 in the following result. 
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Figure 3.2 Fourier Amplitude from different initial BFI when 𝜀 = 0.1, 𝜎֎ = 0.141, 0.189, 

0.283, 0.567 

 

 

Figure 3.3 A sample of real and imaginary part of wave amplitude in envelope in time series 

from initial BFI = 0.75 at 𝑥 = 10𝐿Ј, 20𝐿Ј, 30𝐿Ј when 𝜀 = 0.1, 𝑘ℎ = 7 
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Figure 3.4 Samples of free surface elevation in time series from different initial BFI at 𝑥 =

𝑥Ј when 𝜀 = 0.1 

 

 

Figure 3.5 Samples of contribution on free surface elevation from the first and second-order 

in time series from initial BFI = 0.75 at 𝑥 = 10𝐿Ј, 20𝐿Ј, 30𝐿Ј when 𝜀 = 0.1, 𝑘ℎ = 7 
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Figure 3.6 Spatial evolution of kurtosis from different ensemble size 𝑀  when initial BFI = 

0.75, 𝑘ℎ = 4.0 

 

 

 

Figure 3.7 Variation of mean value and standard deviation of kurtosis with ensemble size 𝑀  

at 𝑥 = 25𝐿Ј, initial BFI = 0.75, 𝑘ℎ = 4.0 
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To figure out what role does the slope of bottom topography play in the high-order non-

linear wave evolution, we assume water depth ℎ only varies for 𝑥 as described in 3.1. We 

consider the flat bottom case and three different bottom slopes as shown in Figure 3.8. The 

wave train propagates from the left to right starting in flat region with enough deep-water depth 

to achieve a stabilized high-order non-linear condition. When wave train comes to the slope 

region, dimensionless water depth 𝑘ℎ changes from 𝑘ℎ = 7.0 to 𝑘ℎ = 1.1 in all three types. 

With the hypothesis ℎ஥(𝑥) = 𝑂(𝜀ϵ), we assume the slope is very mild and ℎ஥(𝑥) = 0.05, 0.02, 

0.01. When water depth 𝑘ℎ reaches 1.1, it is enough shallow in mNLS equation and closed to 

limitation of our model due to the increasing water steepness 𝜀, so we set water depth come 

back to flat. In Figure 3.8, the initial water depth ℎ = 11 and initial wave length 𝐿Ј = 9.75 

obtained by dispersion relation in Eq. (2-7), slope regions start at 𝑥 = 15𝐿Ј and end up at 𝑥 

= 35𝐿Ј, 65𝐿Ј, 115𝐿Ј for different slope. In each spatial calculation step, d𝜉ք = 2×10-6𝐿Ј. 

    Figure 3.9 gives the changes in shoaling coefficient 𝛽փ, dispersion coefficient 𝛽֏ and 

non-linear coefficient 𝛽։  in Eq.(3-9) in wave evolution for different bottom topography. 

Downward triangle in black represents starting point of slope, and upward triangle in different 

colors represent starting point of slope for different bottom topography (blue: slope = 0.05, red: 

slope = 0.02, yellow: slope = 0.01). Following figures continue to use them to represent slope 

region at x-axis. From Eq.(3-10), 𝛽փ = 0 when bottom is flat. As the water depth changes from 

deep to shallow, 𝛽փ first descends to minimum at 𝑘ℎ = 1.785 (for slope = 0.05: 𝑥/𝐿Ј = 32.5; 

slope = 0.02: 𝑥/𝐿Ј = 58.5; slope = 0.01: 𝑥/𝐿Ј = 101) and then rises to maximum at 𝑘ℎ = 

1.1 (for slope = 0.05: 𝑥/𝐿Ј = 35; slope = 0.02: 𝑥/𝐿Ј = 65; slope = 0.01: 𝑥/𝐿Ј = 115) in the 

end of slope region. Extremum of 𝛽փ is decided by slope, and the maximum and absolute 

minimum will both be enlarged when ℎ஥(𝑥) rises. 𝛽֏, 𝛽։ are only decided by water depth 

𝑘ℎ, and smaller slope angle will make this process milder. In slope region, 𝛽֏ first rises to 

maximum at the same water depth where 𝛽փ reaches minimum, and begins to decreases. 𝛽։ 

monotonically decreases with water depth decreasing, but absolute 𝛽։ first decreases to 0 at 

𝑘ℎ = 1.614 (for slope = 0.05: 𝑥/𝐿Ј = 33.2; slope = 0.02: 𝑥/𝐿Ј = 60; slope = 0.01: 𝑥/𝐿Ј = 

105) and then increases, which indicates the contribution from 𝛽։ in wave train nonlinearity 

may have a process of increasing first and then decreasing. What the variety from coefficients 

bring to wave evolution will be reflected in high-order moments, wave heights and wave height 
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distribution as following section. 

 

 

Figure 3.8 Schematic view of different bottom topography with 𝑘ℎ = 7.0 – 1.1 

 

Figure 3.9 Coefficients in mNLS equation for different bottom topography 
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3.3 Evolution of modulated wave over a flat bottom 

Firstly, we set 𝛽փ = 0 to give the numerical result over a flat bottom as the reference. 

When 𝛽փ = 0, Eq. (3-9) is in the form of standard NLS equation for unidirectional wave. In 

Chapter 1, we mentioned dimensionless moment kurtosis 𝜇Κ and skewness 𝜇ϯ in surface 

elevation statistic. The Gaussian distribution suggests 𝜇Κ = 3 and 𝜇ϯ = 0, but nonlinearity in 

wave evolution will give different expected values. 

Figure 3.10 and Figure 3.11 show the evolution of 𝜇Κ  and 𝜇ϯ  in a flat bottom with 

different water depth 𝑘ℎ at initial BFI = 0.75. Mean 𝜇Κ monotonically decreases when water 

depth 𝑘ℎ  declines. In contrast, 𝑘ℎ  has little effect on 𝜇ϯ  when 𝑘ℎ ≥ 2 , and 𝜇ϯ  will 

significantly increase in shallow water.  

In 3.2.3, we give the initial wave data with wave steepness 𝜀 = 0.1 and we change 𝜎֎ to 

give different initial BFI based on the dispersion on the frequency spectral. Wave steepness 𝜀 

also plays an important role in the modulational instability, and the magnetic of 𝜀 represents 

the degree of the nonlinearity in wave train. Therefore, we also want to discuss the effect from 

different 𝜀 in the same initial BFI. For the uneven bottom topography in Figure 3.8, wave 

steepness starts from 𝜀  = 0.1 and increases to 0.13 at the end 𝑘ℎ  = 1.1 due to the wave 

shoaling effect, so we give 𝜇Κ  and 𝜇ϯ  in both 𝜀  = 0.1 and 𝜀  = 0.13 in Figure 3.10 and 

Figure 3.11 to have a comparison. In flat bottom 𝑘ℎ = 1.1, effect from 𝜀 on 𝜇Κ is very small, 

but enlarging 𝜀  will significantly increases 𝜇ϯ . Figure 3.12 and Figure 3.13 give the 

evolution of 𝜇Κ and 𝜇ϯ in flat bottom with different wave steepness 𝜀 and the initial BFI is 

constant at 0.5, where the water depth is finite at 𝑘ℎ = 4. As the 𝜀 increases from 0.05 to 0.2, 

𝜇Κ and 𝜇ϯ increases. The effect from the water steepness is more significant in 𝜇ϯ than 𝜇Κ, 

since 𝜇ϯ mainly reflect the second-order effect in bound wave theory. 

Figure 3.14 and Figure 3.15 show the comparison between 𝜇Κ and 𝜇ϯ in different water 

depth with flat bottom. When 𝑘ℎ = 4.0, kurtosis and skewness increase as the BFI becomes 

higher. However, it is contrast when 𝑘ℎ = 1.1 that kurtosis and skewness at lower BFI will 

significantly increase. For modulated wave trains, the nonlinearity comes from the contribution 
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from two parts: four-wave interaction in the third-order (estimated by BFI) and second-order 

effect. In deep-water, wave trains is mainly determined by BFI and higher BFI leads to larger 

𝜇Κ and 𝜇ϯ. When water depth becomes shallow, the four-wave interaction becomes weak and 

makes 𝜇Κ and 𝜇ϯ decrease, but in a small 𝑘ℎ the increase of wave steepness 𝜀 will increase 

𝜇Κ and 𝜇ϯ in different levels. For wave trains starting with low BFI in shallow water, the 

decrease of 𝜇Κ and 𝜇ϯ caused by the third-order effect is small compared with the increase 

caused by the second-order effect, which leads to the converse behavior about BFI in deep and 

shallow water. It can also explain the critical depth for modulated wave in Benjamin (1967). 

𝜇ϯ is more sensitive about the second-order effect so it significantly increases in shallow water.  

 

 

 

Figure 3.10 Spatial evolution of kurtosis in flat bottom, initial BFI = 0.75 
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Figure 3.11 Spatial evolution of skewness in flat bottom, initial BFI = 0.75 

 

 

Figure 3.12 Spatial evolution of kurtosis in flat bottom, when initial BFI = 0.5, 𝜎 = 0.14, 

0.28, 0.57, 𝑘ℎ = 4.0 
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Figure 3.13 Spatial evolution of Skewness in flat bottom, when initial BFI = 0.5, 𝜎 = 0.14, 

0.28, 0.57, 𝑘ℎ = 4.0 

 

 

 

Figure 3.14 Spatial evolution of kurtosis in flat bottom with different initial BFI 
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Figure 3.15 Spatial evolution of skewness in flat bottom with different initial BFI 

 

 

3.4 Evolution of modulated wave over an uneven bottom 

3.4.1 Evolution of the high-order nonlinearity  

Here we start the discussion about the nonlinearity from the high-order statistical moment 

in different initial condition on an uneven bottom. As a validation, Figure 3.16 shows the 

comparison between numerical result from this model and the experiment from Kashima and 

Mori (2019). We select the experimental data in the step bottom wave tank to have a comparison 

because wave breaking doesn’t occur in this case as well as this numerical model. Wave maker 

gives initial condition that wave steepness 𝜀 = 0.066, BFI = 1.45 and 𝑄֋ = 4.7. The water 

depth starts from ℎ = 0.5, 𝑘ℎ = 2.077 and decreases to ℎ = 0.2, 𝑘ℎ = 1 with a slope 1/30. 

In Figure 3.16, both numerical result and experiment data show that 𝜇Κ and 𝜇ϯ have similar 

evolution process: increase at the end of slope region, and immediately drops at flat bottom in 

shallow water. The numerical model seems to overestimate the value of 𝜇ϯ, and it comes from 

the limitation of mild slope in this model that 𝜀 = 0.066 and slope 1/30 exceed the assumption 

ℎ஥(𝑥) = 𝑂(𝜀ϵ). Additionally, the numerical NLS model more applies to deep and finite water, 

and we find the result will be not reliable when ℎ is too small. Here ℎ = 0.2 is very closed to 
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the limit range. We make 𝜀 = 0.1 and 𝑘ℎ = 7 – 1.1 in following numerical result as the setting 

in 3.2.3.  

In Figure 3.17, mean value of kurtosis 𝜇Κ from Monte Carlo simulation from different 

bottom topography are in the comparison with 𝜇Κ
ս  and 𝜇Κ

∗  from Eq.(1-5) and Eq.(1-6). 𝜇Κ
ս  is 

given by wave steepness 𝜀 in result of slope = 0.01. Figure 3.17 shows spatial evolution of 

kurtosis 𝜇Κ  for different initial BFI, while 𝜇Κ
ս   doesn’t change with BFI because 𝜇Κ

ս   is a 

function only for 𝜀 in bound wave theory. The differences between 𝜇Κ
∗  and 𝜇Κ

ս  demonstrate 

the proportion of fourth-order cumulant in nonlinearity. 

The mean value of 𝜇Κ  from numerical result is significantly affected by initial BFI. 

Enlarging initial BFI will lead to higher 𝜇Κ in deep-water, but lower 𝜇Κ in shallow water. In 

deep-water before slope region, 𝜇Κ  basically matches 𝜇Κ
∗   for different initial BFI, which 

provides a consistency with Mori and Janssen (2006) about the estimation of nonlinearity from 

four-wave interaction in deep-water. When slope angle is taken into consideration, 𝜇Κ in slope 

region have a descending process from deep to shallow water. At the end of slope region, 𝜇Κ 

has a slightly rebound due to wave shoaling, and the magnitude of this rebound will be enlarged 

by larger slope angle. However, when initial BFI is small (Initial BFI = 0.25), the four-wave 

interaction is weak in wave train and 𝜇Κ  becomes less affected by 𝑘ℎ, and maximum 𝜇Κ 

occurs in shallow water, which is consistent with the prediction of 𝜇Κ
ս .  
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Figure 3.16 Spatial evolution of kurtosis and skewness in comparison with experiment data on 

the step bottom 

 

(a) Initial BFI = 1 
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(b) Initial BFI = 0.75 

 

 

(c) Initial BFI = 0.5 
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(d) Initial BFI = 0.25 

Figure 3.17 Spatial evolution of kurtosis from different bottoms and initial BFI 

 

  

Figure 3.18 shows the comparison between numerical result and theoretical value of 

skewness 𝜇ϯ in the same form of Figure 3.17. In the second-order random wave theory in 

Mori and Janssen (2006), 𝜇Κ is given to be related to 𝜇ϯ in bound wave model by Eq.(1-5). 

However, can this relationship be established only when 𝑘ℎ ≥ 2.5 (for slope = 0.05: 𝑥/𝐿Ј ≤ 

30; slope = 0.02: 𝑥/𝐿Ј ≤  53; slope = 0.01: 𝑥/𝐿Ј ≤  90). When 𝑘ℎ <  2.5, 𝜇ϯ  starts to 

increase as 𝑘ℎ  decreasing and 𝜇ϯ  reaches maximum value at 𝑘ℎ  = 1.1(for slope = 0.05: 

𝑥/𝐿Ј = 35; slope = 0.02: 𝑥/𝐿Ј = 65; slope = 0.01: 𝑥/𝐿Ј = 115), the end of slope region. 

After water depth is stable at 𝑘ℎ = 1.1, 𝜇ϯ decreases to a smaller value but still larger than 

deep-water. Compared with the rising magnitude of 𝜇ϯ as 𝑘ℎ decreases in shallow water, this 

decline in deep-water is very small. Additionally, when initial BFI is large (BFI ≥ 0.5), steep 

slope will lead to a larger maximum of 𝜇ϯ at the end of slope region. 

Different with 𝜇Κ that, four-wave interaction is not major contributing factor in evolution 

of 𝜇ϯ. Maximum 𝜇ϯ occurs in shallow water and wave shoaling plays an important role in the 

evolution of 𝜇ϯ. In Eq.(3-10), wave shoaling effect is estimated by the slope angle and variation 

of wave number, and we find 𝜇ϯ reaches its maximum at the same position with maximum 
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shoaling coefficient 𝛽փ refer to Figure 3.9. Figure 3.9 and Figure 3.18 indicate, when wave 

trains come to shallow water, the non-linear effect from wave shoaling will reflect in 𝜇ϯ, and 

steep slope angle will enlarge this effect. 𝜇ϯ
ս  in bound wave model predict the rise of 𝜇ϯ in 

shallow water base on the increase of wave steepness in the second-order, but doesn’t consider 

the contribution from slope angle.  

 

(a) Initial BFI = 1 

 

(b) Initial BFI = 0.75 
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(c) Initial BFI = 0.5 

 

(d) Initial BFI = 0.25 

Figure 3.18 Spatial evolution of skewness from different bottoms and initial BFI 
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Figure 3.19 gives the variation of 𝑄֋ from Eq. (3-21) for different bottom topography 

and initial BFI. 𝑄֋ is decided by BFI in a clear way since the definition of BFI is also related 

to the spectral bandwidth, and 𝑄֋ starts to be affected by water depth 𝑘ℎ as BFI increasing. 

For large initial BFI at slope = 0.05, 𝑄֋ reaches maximum around 3.5 in the area 𝑘ℎ ≈ 2.5 

~ 1.5 (𝑥/𝐿Ј = 30 ~33 ), and drops rapidly until the bottom becomes flat at 𝑘ℎ = 1.1 (𝑥/𝐿Ј = 

35). When slope = 0.02 and 0.01, maximum 𝑄֋ are basically the same with slope = 0.05 but 

the corresponding area are 𝑘ℎ ≈ 2.8 ~ 1.5 (𝑥/𝐿Ј = 50 ~ 60) and 𝑘ℎ ≈ 3 ~1.3 (𝑥/𝐿Ј = 80 ~ 

105). Similar process can be observed in lower initial BFI but not very significant. Variation of 

𝑄֋ with 𝑘ℎ is similar but not the same with 𝜇ϯ and 𝛽փ. Compared with 𝜇ϯ, 𝑄֋ is more 

sensitive to initial BFI, and the maximum value occurs ahead of the end of slope region, where 

𝜇ϯ and 𝛽փ reaches maximum.   

 

 

 

Figure 3.19 Spatial evolution of 𝑄𝑝 from different bottoms and initial BFI 
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3.4.2 Statistics of extreme event in surface elevation 

In 3.4.1, we discuss the changes of wave spectral statistics due to the high-order 

nonlinearity in wave evolution with average value from the Monte Carlo simulation. Previous 

studies indicated that the increasing kurtosis accelerates occurrence probability of extreme 

waves in the train (e.g. Janssen, 2003; Mori and Janssen, 2006). Although the skewness 

contribution is strong for wave crest heights, the changes of kurtosis in extreme is dominative 

for total wave heights (crest to trough height) (e.g. Mori and Janssen, 2006; Mori et al., 2007; 

Kashima and Mori, 2019). We here examine the effects of high-order nonlinearity on the 

extreme wave height and crest height on the slope. 

Figure 3.20 shows average value with their standard deviation for 𝜇Κ, 𝜇ϯ and maximum 

wave height 𝐻ζ͘Ђ when initial BFI = 0.75. The 𝐻ζ͘Ђ is sampled from a maximum value for 

each realization of 300 ensembles. We use 𝐻ζ͘Ђ/𝜂ϝζϣ for dimensionless, and expected 𝐻ζ͘Ђ 

is given by Mori and Janssen (2006) based on fourth-order cumulant 𝜅ΚЈ from Eq.(1-8). The 

value of standard deviation expects how far result spread out from their average value, and it 

helps to estimate maximum value and wave train instability.  

From deep to shallow water, envelope consist of mean and ± standard deviation of 𝐻ζ͘Ђ 

first rises up and become stable in flat bottom, then declines as the water depth decreases in 

slope region, and finally stable at minimum in shallow water. Additionally, the width of this 

envelope of 𝐻ζ͘Ђ also decreases with slope, which indicates wave train in deep-water is more 

unstable and unpredictable than shallow water. Similar with 𝐻ζ͘Ђ , width of envelope of 

𝜇Κ, 𝜇ϯ also get narrow when water depth becomes shallow. Refer to Mori and Janssen (2006), 

expected 𝐻ζ͘Ђ  in purple line predicted by fourth-order cumulant 𝜅ΚЈ  matches numerical 

result well in deep-water, but overestimates 𝐻ζ͘Ђ in shallow water after slope region.  

At the end of slope region 𝑘ℎ = 1.1(for slope = 0.05: 𝑥/𝐿Ј = 35; slope = 0.02: 𝑥/𝐿Ј = 

65; slope = 0.01: 𝑥/𝐿Ј  = 114), 𝜇Κ  and 𝜇ϯ  have a rebound due to wave shoaling as our 

discussion about Figure 3.17 and Figure 3.18. In Figure 3.20, standard deviation of 𝜇Κ and 

𝜇ϯ have same process. Correspondingly, it also reflects in expected 𝐻ζ͘Ђ, and steep slope will 

enlarge this effect in the comparison of different topography. However, evolution of mean and 

standard deviation of 𝐻ζ͘Ђ from numerical result varies smoothly from slope region to flat 
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bottom in shallow water, even 𝜇Κ and 𝜇ϯ from numerical result suggest wave shoaling effect 

brings about the increase of nonlinearity and wave train instability. In both observation record 

and theoretical estimation, the occurrence probability of freak wave is on a very small scale, so 

standard deviation and mean value are not enough in the analysis of contribution of high-order 

nonlinearity from the slope to the extreme case.  

 

 

 (a) slope = 0.05 
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(b) slope = 0.02
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(c) slope = 0.01 

Figure 3.20 Mean 𝐻ζ͘Ђ, 𝜇Κ and 𝜇ϯ from different bottom topography with initial BFI = 

0.75 
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To develop this discussion with more details and make extreme event more clear, we plot 

Cumulative Distribution Function (CDF) of maximum wave height 𝐻ζ͘Ђ  from numerical 

result by scatters in logarithmic coordinates in Figure 3.21 (a). As a comparison, expected 

𝐻ζ͘Ђ in the Rayleigh distribution and Mori and Janssen (2006) from 𝜇Κ are plotted in solid 

lines. Usually we define freak wave as the wave height exceeds the significant wave height 

𝐻φ ϯ⁄  by a factor of 2, and Goda (2000) shows the relation 𝐻φ ϯ⁄  = 4.004 𝜂ϝζϣ by the linear 

random wave theory. Therefore, result from 𝐻ζ͘Ђ/𝜂ϝζϣ > 8 can be used as a reference of the 

freak wave estimation. 

For flat bottom topography, numerical result corresponds with Mori and Janssen (2006)’s 

result better than Rayleigh distribution when 𝑘ℎ > 2. When 𝑘ℎ = 1.1, numerical result has 

large deviation with both linear and non-linear suppose. In the comparison of different slope, 

we choose three typical sections of water depth 𝑘ℎ: 𝑘ℎ = 1.785, where shoaling coefficient 

𝛽փ reaches its minimum and dispersion coefficient 𝛽֓ reaches its maximum; 𝑘ℎ = 1.363, 

where 𝜇Κ ≈ 3, a neutral condition that linear and non-linear theories have same result; 𝑘ℎ = 

1.1, at the end of slope region, where shoaling coefficient 𝛽փ and 𝜇ϯ reaches its maximum. 

Contribution from four-wave interaction to wave height distribution can reflect in the deviation 

between two theoretical curves in figures. When 𝜇Κ > 3, occurrence probability of extreme 

wave height predicted by Mori and Janssen (2006) is higher than Rayleigh distribution; when 

𝜇Κ < 3, Mori and Janssen (2006)’s result is significantly lower than Rayleigh distribution in 

flat bottom.  

As the water depth 𝑘ℎ becomes smaller, the difference from slope generally apparent: 

steep slope lead to higher exceeding probability of large 𝐻ζ͘Ђ specifically in shallow water. 

When 𝑘ℎ = 1.785, the occurrence probability of large 𝐻ζ͘Ђ/𝜂ϝζϣ > 8 for steep slope (slope 

ℎ஥(𝑥) = 0.05) is 10 times larger than gentle slope (slope ℎ஥(𝑥) = 0.02), and it becomes 0 in 

very mild slope (slope ℎ஥(𝑥) = 0.01). This phenomenon can also be found in numerical result 

in Zeng and Trulsen (2012), and experimental data from Kashima and Mori (2019) and Trulsen 

et al. (2020). In 𝑘ℎ = 1.363 and 𝑘ℎ = 1.1, occurrence probability of extreme wave height is 

significantly lower than both two theoretical predictions, and effect from end of slope region 
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continues to lead to higher exceeding probability of large value in steep slope.  

We also give analysis about extreme crest height, since it is very important in estimation 

of wave pressure and maritime structure design. In Figure 3.21 (b), we give CDF of 𝜂ζ͘Ђ 

distribution in the same form of 𝐻ζ͘Ђ. In Rayleigh distribution and Mori and Janssen (2006)’s 

result, maximum wave height 𝐻ζ͘Ђ is assumed to be twice maximum 𝜂ζ͘Ђ. In numerical 

result of this study, wave height 𝐻 is obtained from wave envelop and mostly decided by 

wave amplitude 𝐴. Surface elevation 𝜂 in Eq.(2-58) considers the contribution from second-

order and second harmonic in wave train, so the CDF of 𝜂ζ͘Ђ is not exactly the same with 

𝐻ζ͘Ђ. If Rayleigh distribution is taken as standard, we find the CDF curve of 𝜂ζ͘Ђ for large 

value significantly exceed Rayleigh distribution than 𝐻ζ͘Ђ , which indicates the exceeding 

probability of 𝜂ζ͘Ђ in large value is higher than 𝐻ζ͘Ђ. In flat bottom, this deviation becomes 

very obvious, especially in deep-water. From result of different slope in same water depth, steep 

slope brings about the increase of extreme value occurrence probability in a similar way with 

𝐻ζ͘Ђ, and result in slope = 0.05 exceeds Rayleigh distribution when 𝜂ζ͘Ђ/𝜂ϝζϣ > 4.  

As a supplement to the CDF in Figure 3.21, Figure 3.22 give Probability Density Function 

(PDF) of 𝐻ζ͘Ђ and 𝜂ζ͘Ђ in form of bar graph correspondingly. Expected distribution in the 

Rayleigh distribution and Mori and Janssen (2006) are used as reference again. In CDF we 

concentrate on extreme large case, and PDF can provide more details and help to estimate peak 

probability. Figure 3.22 (a) shows peak of PDF is mainly decided by water depth through 𝜇Κ. 

For given water depth, peak of PDF from different bottom topography almost have no change, 

which is corresponding to the result in Figure 3.20 that the expected 𝐻ζ͘Ђ is not effected by 

wave shoaling effect. Compared with 𝐻ζ͘Ђ in Figure 3.22 (a), 𝜂ζ͘Ђ in Figure 3.22 (b) have 

more significant deviation with the Rayleigh distribution. Figure 3.21 (b) shows CDF of 𝜂ζ͘Ђ 

far exceeds Rayleigh distribution for large value when slope = 0.05, which suggests the non-

linear effect brought by wave shoaling and slope significantly enlarge the occurrence 

probability of extreme event. Deviation between maximum wave height and extreme crest 

height also points out, occurrence probability of extreme event will be promoted if second-

order term is taken into consideration in freak wave analysis. 

 

 



Chapter 3 

- 47 - 
 

 

(a) Maximum wave height 𝐻ζ͘Ђ 
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(b) Maximum free surface elevation 𝜂ζ͘Ђ 

Figure 3.21 Exceedance probability of wave height and free surface elevation distribution, 

initial BFI = 0.75 
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(a) Maximum wave height 𝐻ζ͘Ђ 
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(b) Maximum free surface elevation 𝜂ζ͘Ђ 

Figure 3.22 Probability Density Function of wave height and free surface elevation 

distribution, initial BFI = 0.75 
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3.5 Summary  

The nonlinearity analysis of high-order wave evolution is considered as effective approach 

in freak wave study. Quasi-resonant four-wave interaction has been proved to be related 

maximum wave distribution, which can be reflected in numerical result from NLS equation. 

Based on Monte Carlo simulation about 1-D NLS equation with bottom topography change by 

pseudo spectral method, we discuss the evolution process of wave moment and wave height 

distribution for narrowband unidirectional wave train. The result indicates: 

A) Dimensionless fourth moment kurtosis reflects the nonlinearity in wave train from fourth-

order cumulant, and it monotonically decreases from deep-water depth to shallow, or 

smaller initial BFI.  

B) Dimensionless third moment skewness is significantly affected by second-order term from 

wave steepness and shoaling effect. Steep slope leads to higher skewness, especially for 

large initial BFI. 

C) Maximum wave height distribution is mainly decided by kurtosis, and steep slope will 

increase occurrence probability of extreme value in shallow water.  

D) Due to notable deviation in extreme value estimation, distribution of extreme crest height 

can reflect the non-linear effect more than wave height. Wave height cannot be simply 

considered as twice surface elevation in non-linear analysis.  
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Chapter 4  

Numerical Model of Two-Dimensional 
Directional Modulated Wave Train 

4.1 Introduction 

    For a unidirectional modulated wave train, the occurrence of a freak wave is well predicted 

by the non-linear wave model about four-wave interaction, which is verified by the wave tank 

experiment (Mori et al., 2007; Kashima & Mori, 2019; etc.). Numerical work in Chapter 3 

supplemented the freak wave analysis with the consideration of spatial inhomogeneity from 

bottom topography.   

    However, when directional behaviors are taken into consideration in a 2D wavefield, 

recent work pointed out that four-wave interaction decreases due to the directional dispersion 

effect. The maximum wave height in a directional wavefield decreases compared with the 

unidirectional wave in the numerical simulation through the mNLS equation in Gramstad and 

Trulsen (2007). The enhancement of kurtosis is significantly suppressed by the increase of 

directional spread in the directional wave experiments in Waseda (2006), Onorato et al. (2009a), 

and Onorato et al. (2009b). Based on the contribution from the directional bandwidth in the 

directional spectrum, Mori et al. (2011) gave the theoretical estimation of kurtosis for 

directional sea states, and the occurrence probability of freak wave can be predicted by the 

fourth-order cumulant and directional spread. The dispersion from the directional effect on 

four-wave interaction is reflected in Eq. (1-9).  

    In order to further investigate the non-linear modulated wave evolution in an uneven 

bottom, this study aims to expand the wave evolution model for unidirectional wave train in 
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Chapter 3 into a 2D wavefield. The 2D mNLS equation for the uneven bottom in 2.3.2 is 

applied in the numerical simulation. In a 2D wave basin, we consider the directional dispersion 

effect as part of the initial value problem and improve the setting of bottom topography in the 

wave evolution. Monte-Carlo simulation is conducted to give the evolution of nonlinearity and 

the distribution of extreme events in two-dimensional space-time (2D+T).   

 

4.2 Methodology 

4.2.1 2D mNLS equation for an uneven bottom 

For a two-dimensional flow field, we continue to assume the flow is irrotational, inviscid, 

and incompressible with a free water surface. A coordinate system (𝑥, 𝑦, 𝑧) is defined with 

origin 𝑂 as shown in Figure 4.1. Plane 𝑂𝑥𝑦 is defined along the quiescent water surface, 

and 𝑧  axis is defined vertically upward direction, opposite to gravity acceleration 𝑔 . An 

incident directional random wave train comes from an external field, and its principal wave 

direction is along the 𝑥 axis. The bottom 𝑧 = ℎ(𝑥, 𝑦) mainly varies in the principal direction 

in the region between dashed line A and B. Velocity potential 𝛷 and free surface elevation 𝜂 

are defined as 𝛷 = 𝛷(𝑥, 𝑦, 𝑧, 𝑡), 𝜂 = 𝜂(𝑥, 𝑦, 𝑡) where 𝑡 represents time.  

To simplify the problem and concentrate on the inhomogeneity in a carrier wave 

propagating direction, we assume the water depth ℎ varies slowly on the wave propagating 

direction: ℎ஥(𝑥)~𝑂(𝜀ϵ)  and ℎ஥(𝑦)  = 0 where 𝜀  is a small constant equaling to the wave 

steepness. The governing equations and boundary conditions are the same as Eq. (2-1) to Eq. 

(2-6), and the dispersion relation of 𝜔Ј, 𝑘, ℎ on the principal wave direction is given in Eq. (2-

7). We apply the variable substitution in 2.3.2 from (𝑥, 𝑦, 𝑡)  into (𝜉, 𝜁, 𝜏)  for an uneven 

bottom, and give the evolution equation of envelope 𝐴(̅𝜉, 𝜁, 𝜏) for a very mild slope in the 

form of: 

i𝛽փ𝐴̅+ i
𝜕𝐴̅

𝜕𝜉
+ 𝛽֏

𝜕ϵ𝐴̅

𝜕𝜏ϵ
+ 𝛽֔

𝜕ϵ𝐴̅

𝜕𝜁
= 𝛽։ੵ𝐴̅ੵ ϵ𝐴,̅             (4 − 1) 

where  

𝛽փ =
(1 − 𝜎ϵ)(1 − 𝑘ℎ𝜎)

𝜎 + 𝑘ℎ(1 − 𝜎ϵ)

𝑑(𝑘ℎ)

𝑑𝜉
=

1

2𝑐ւ

d(𝑐ւ)

d𝜉
,            (4 − 2) 
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Figure 4.1 Sketch of the wave propagating over an uneven bottom in a 2D wavefield 
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+
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ϵ

4sinh(𝑘ℎ)ϵ
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4.2.2 Numerical solution and directional effect 

    In 3.2, we give the numerical solution of the mNLS equation for the unidirectional wave 

train. For a 2D problem, we need to eliminate the additional second-order partial differential 

term of 𝜁. Based on the periodicity on time and space for a 2D wavefield, the 2D Fourier 

transform is applied to transform Eq. (4-1) into an ordinary differential equation:  

d𝐴̅

d𝜉
= −i𝛽։ੵ𝐴̅ੵ ϵ𝐴̅− i𝛽֏𝜔ᇑ

ϵ𝐴̅− i𝛽֔𝑘ᇄ
ϵ𝐴̅− 𝛽փ𝐴̅,           (4 − 6) 

where we take the Fourier transformation twice for 𝜏  and 𝜁 on time and lateral length, and 

𝜔ᇑ  and 𝑘ᇄ  represent corresponding variables about the frequency and the lateral wave number 

in the Fourier transform: 
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𝐴(̇𝜔ᇑ , 𝜉, 𝜁) = 𝐹ज़𝐴(̅𝜏, 𝜉, 𝜁)ड़,                     (4 − 7) 

𝐴ि̈𝜔ᇑ , 𝜉, 𝑘ᇄी = 𝐹ज़𝐴(̇𝜔ᇑ , 𝜉, 𝜁)ड़.                   (4 − 8) 

Through the spatial evolution of 𝜉 in Eq. (4-6), wave envelope can be numerically simulated 

from an initial condition at 𝜉 = 𝜉Ј  as 3.2.2. We assume the initial Fourier amplitude 

𝐴ि̈𝜔ᇑ , 𝜉Ј, 𝑘ᇄी satisfies the 2D Gaussian shape directional spectral: 

𝐴ि̈𝜔ᇑ , 𝜉Ј, 𝑘ᇄी = 𝐴ि̈𝜔ᇑ , 𝜉Ј, 𝜃ᇄी 

=
𝑎

2𝜋𝜎ᇖ𝜎ᇆ

exp৓−
1

2
ঢ়গ

𝜔ᇑ − 𝜔Ј

𝜎ᇖ

ঘ
ϵ

+ গ
𝜃ᇄ − 𝜃Ј

𝜎ᇆ

ঘ
ϵ

৞ + 𝜓৔,          (4 − 9) 

𝜎ᇖ = 𝜔Ј ∗ 𝜎֎,                               (4 − 10) 

Where 𝑎  represents amplitude scale, 𝜃ᇄ   = arctan (
ֆᆚ

ֆɱ
)  represents the direction of a single 

wave with the lateral wave number 𝑘ᇄ  , 𝑘Ј  and 𝜔Ј  are carrier wave number and 

frequency, 𝜎ᇖ is frequency spectral width and 𝜎ᇖ = 𝜔Ј ∗ 𝜎֎, 𝜎ᇆ is dimensionless directional 

width, 𝜓 is the phase randomly distributed at [0,2π]. 𝜃Ј is the principal wave direction, and 

here we set 𝜃Ј is fixed at 𝜃Ј = 0. Referring to Eq. (1-3), the initial BFI value is decided by 

the ratio between 𝜀 and 𝜎֎.  

    Based on the above settings, we deal with the wave simulation as an initial value problem 

in Chapter 3. The difference is that the initial value is in the 2D matrix for time 𝑡 and spatial 

distribution on lateral length 𝑦 . On principal wave propagation direction, we can solve the 

wave envelope 𝐴  at each spatial step on 𝑥  through Eq. (4-6), and give the wave surface 

elevation 𝜂 by Eq. (2-58).  

    This numerical model also allows us to consider the oblique wave case with a small 

oblique angle. If we assume the principal wave propagation direction 𝜃Ј satisfies  

tan 𝜃Ј =
𝑘֔

𝑘֓

,                               (4 − 11) 

where 𝑘֓  is the component of carrier wave number 𝑘Ј  on 𝑥  direction, and 𝑘֔  is the 

component on 𝑦 direction, and 

𝑘Ј = ఊ𝑘֓
ϵ + 𝑘֔

ϵ,                            (4 − 12) 

then 𝑘Ј ≈ 𝑘֓ when tan 𝜃Ј ~𝑂(𝜀). We can approximately think the evolution of 𝐴 ̅ can still 
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be described by Eq. (4-1), and the wave surface elevation is given by: 

𝜂(𝑥, 𝑦, 𝑡) = 𝜀Re ই
1

2
𝐴e̅xp५iि(𝑘֓𝑥 + 𝑘֔𝑦) − 𝜔Ј𝑡ी६ঈ 

+𝜀ϵReঝ
𝑘cosh𝑘ℎ

8sinhϯ𝑘ℎ
(2coshϵ𝑘ℎ + 1)𝐴ϵ̅exp५2iि(𝑘֓𝑥 + 𝑘֔𝑦 − 𝜔Ј𝑡ी६ঞ.     (4 − 13) 

The effect from the small oblique angle also gives minor changes in the result. However, our 

simulation concentrates on a very long scale from offshore to onshore. The small oblique angle 

may lead to a different shape of wave envelope after long-distance evolution. 

In 3.2.2, we introduced the frequency spectrum peakedness 𝑄֋  for the zero-up-cross 

method as an estimation of spectral bandwidth. 𝑄֋ in Eq. (3-21) is defined from frequency 

spectrum, and the discussion in Chapter 3 concentrates on the variation in the initial condition 

from different shapes of the frequency spectrum. For a 2D wavefield, the directional dispersion 

effect also contributes to the initial condition, so we give the 𝑄֋ from the surface elevation 

distributed on the lateral direction: 

𝑄֋ =
2∫ 𝑘ᇄ𝑆ि𝑘ᇄी

ϵ𝑑𝑘ᇄ
�

Ј

[∫ 𝑆ि𝑘ᇄी𝑑𝑘ᇄ
�

Ј
]ϵ

,                         (4 − 14) 

where 𝑆ि𝑘ᇄी is the wave spectrum about lateral wave number 𝑘ᇄ . 𝑄֋ in Eq. (4-14) gives the 

estimation of the width of the directional spectral peak and the evolution of 𝑄֋  can be a 

reference of the degree of directional dispersion in the 2D wavefield.  

 

 

4.2.3 Model setup 

Based on the 1D mNLS model for the unidirectional wave train, we expand the modulated 

wave evolution model into 2D through the numerical solution in 4.2.2. The expansion of 

dimension not only increases the consideration of the nonlinearity on one more direction, but 

also brings about the complexity in the numerical calculation process.  

With the 2D Gaussian shape directional spectral in Eq. (4-9) and inverse Fourier transform, 

we give the initial envelope 𝐴(̅𝜏, 𝜉Ј, 𝜁) in the matrix of time series and spatial distribution on 

the lateral direction. As a pseudo spectral method, discrete Fourier transform requires a 

sufficient length of the target variable to make sure the result keeps enough information in the 

evolution. On the other hand, Fourier transform for a 2D matrix requires a large amount of time 
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in calculation compared with the 1D model, which is a critical problem since we apply Monte 

Carlo method simulation. We need to give an appropriate set of initial parameters to hold on to 

the accuracy and computational efficiency.  

Firstly, we adjust the output resolution in the result to find an optimistic output interval. 

To ensure the accuracy in the fourth-order Runge-Kutta method, we make the calculation step 

is constant at d𝜉  = 2×10-5𝐿Ј  where 𝐿Ј  is carrier wavelength, and slightly sacrifice the 

resolution on the lateral direction. We make the wave steepness 𝜀 = 0.1, total lateral length 𝐿֔ 

= 25𝐿Ј temporarily, and give time-series setting the same as 3.2.3: the carrier frequency 𝜔 = 

2.5s-1, and dimensionless spectral bandwidth 𝜎֎ varies to give different initial BFI. In Figure 

4.2 and Figure 4.3, we give the kurtosis 𝜇Κ and skewness 𝜇ϯ from a single sample starting 

from the same condition at different resolution at BFI = 0.4, 𝜎ᇆ = 0.3, and water depth 𝑘ℎ = 

5. 𝜇Κ and 𝜇ϯ in the 2D wavefield is gained from the surface elevation at a fixed point in time 

series. We consider 8 kinds of lateral resolution from (a) ~ (h): d𝑦  = 0.0057𝐿Ј , 0.017𝐿Ј , 

0.028𝐿Ј, 0.057𝐿Ј, 0.143𝐿Ј, 0.28𝐿Ј, 0.85𝐿Ј, 1.43𝐿Ј, and output the longitudinal result in the 

same resolution with the lateral. As the resolution becomes rough in Figure 4.2, the information 

keeps complete until Figure 4.2 (e), and Figure 4.2 (f) basically keeps key information which 

is enough for further discussion. In Figure 4.3, we can give a similar conclusion for skewness, 

and we get an approximate range of optimistic d𝑦 around 0.3𝐿Ј. 

To further explore the optimistic d𝑦 for a more accurate value and decide the total lateral 

length 𝐿֔ , we examine the correlation length by the auto-correlation and cross-correlation 

function. For a domain in strict-sense stationary (SSS), the statistical properties keep invariant 

to any shift at any order. In this study, the surface elevation at constant water depth will be 

generally closed to a zero-mean SSS process when the Monte Carlo simulation for random 

wave phase has enough ensemble size. Based on the classical surface model in Franceschetti 

and Riccio (2006), we need to ensure the 𝐿֔ is longer than the correlation length, then the 

distribution of surface elevation on the lateral direction can satisfy the zero-mean SSS process. 

In Figure 4.3, we give the normalized auto-correlation coefficient of the surface elevation 𝜂 

at 𝑡  = 40𝑇Ј  in the sequence of 𝑦  on different spatial step 𝑥  = 10𝐿Ј , 20𝐿Ј , 30𝐿Ј  with 

different 𝐿֔ and d𝑦. At 𝑦 = 0, the auto-correlation coefficient is 1 since it’s totally related to 

itself. As the calculation moves from 𝑥 = 10𝐿Ј to 30𝐿Ј on the propagation direction, the 
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difference caused by different d𝑦 gradually accumulates in the result from 𝐿֔ = 10𝐿Ј and 

20𝐿Ј. In the 𝐿֔ = 30𝐿Ј, the auto-correlation curve is basically under 0.5, and the result for 

different d𝑦 is almost the same, which implies 𝐿֔ = 30𝐿Ј is long enough in the simulation. 

In Figure 4.4, we give the normalized cross-correlation coefficient of the surface elevation 𝜂 

in different sequences at different d𝑦 with 𝐿֔ = 30𝐿Ј. Three columns on the left are in time 

series, and we select 𝜂(𝑡) at 𝑦 = 0 as the first sequence and 𝜂(𝑡) at 𝑦 = 𝐷֔ as the other 

sequence at 𝑥 = 0, 20𝐿Ј, 30𝐿Ј to give their normalized cross-correlation. The first column 

from the right is in spatial series, and we select 𝜂(𝑥) at 𝑦 = 0 as the first sequence and 𝜂(𝑥) 

at 𝑦 = 𝐷֔ as the other sequence at 𝑡 = 40𝑇Ј to give their normalized cross-correlation. The 

results are basically lower than 0.25, which means the correlation between the two sequences 

is weak enough. To make the calculation efficient, we choose 𝐿֔ = 30𝐿Ј and 𝑑֔ = 0.5𝐿Ј in 

Monte Carlo simulation. 
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Figure 4.2 Kurtosis from same sample at different resolution at BFI = 0.4, 𝜎ᇆ = 0.3, 𝑘ℎ =5 

(a) d𝑦 = 0.0057𝐿Ј (b) d𝑦 = 0.017𝐿Ј 

(c) d𝑦 = 0.028𝐿Ј (d) d𝑦 = 0.057𝐿Ј 

(e) d𝑦 = 0.143𝐿Ј (f) d𝑦 = 0.28𝐿Ј 

(g) d𝑦 = 0.85𝐿Ј (h) d𝑦 = 1.43𝐿Ј 
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Figure 4.3 Skewness from same sample at different resolution at BFI = 0.4,𝜎ᇆ = 0.3,𝑘ℎ = 5 

(a) d𝑦 = 0.0057𝐿Ј (b) d𝑦 = 0.017𝐿Ј 

(c) d𝑦 = 0.028𝐿Ј (d) d𝑦 = 0.057𝐿Ј 

(e) d𝑦 = 0.143𝐿Ј (f) d𝑦 = 0.28𝐿Ј 

(g) d𝑦 = 0.85𝐿Ј (h) d𝑦 = 1.43𝐿Ј 
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Figure 4.4 Normalized auto-correlation of the surface elevation in the sequence of 𝑦 on 

different spatial step with different model setting at 𝑡 = 40𝑇Ј 
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Figure 4.5 Normalized cross-correlation between surface elevation at 𝑦 = 0 and 𝑦 = 𝐷֔ in 

time and spatial series at different sections with different model setting 
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After finishing the initial setting of the computing environment, we examine the 

convergence of the Monte Carlo simulation. The same with 3.2.3, we take the kurtosis 𝜇Κ of 

surface elevation 𝜂 as the index and give the average 𝜇Κ of a 2D wavefield from different 

ensemble sizes 𝑀 . For an SSS process, the variation in statistical parameter 𝜇Κ from different 

samples only comes from the random initial phase 𝜓, and this difference will decrease to zero 

in the mean value when the ensemble size is large enough. In other words, the mean 𝜇Κ and 

𝜇ϯ don’t change on the lateral direction and only change with the bottom topography. Therefore, 

the result from the Monte Carlo simulation in this Chapter will be given in 2 forms: 2D 

distribution in the wavefield (e.g. Figure 4.2 & 4.3); 1D distribution along the 𝑥 axis (principal 

wave direction when 𝜃Ј = 0), where we take the mean value of the lateral direction result and 

plot them in 1D. In Figure 4.6, we give the spatial evolution of 𝜇Κ from different ensemble 

size 𝑀  at a 2D flat bottom with 𝑘ℎ = 5, initial BFI = 0.4 and 𝜎ᇆ = 0.5. The result shows, 

𝜇Κ is closed to be convergent when 𝑀 ≥ 200, and the improvement from enlarging 𝑀  is 

not obvious when 𝑀 ≥ 300. In Figure 4.7, we give the variation of mean value and standard 

deviation of 𝜇Κ with ensemble size 𝑀  at (𝑥, 𝑦) = (20𝐿Ј, 15𝐿Ј) with 𝑘ℎ = 5, initial BFI = 

0.4 and 𝜎ᇆ  = 0.5. When 𝑀 ≥  200, the mean value and standard deviation both become 

convergent enough. Corresponding results in 2D are given in Figure 4.8. In a 2D area, a totally 

convergent mean value of 𝜇Κ  requires a very large ensemble size 𝑀  , but we think the 

approximate range of the distribution of 𝜇Κ  in 𝑀 ≥  300 is enough for the following 

discussion. Therefore, the ensemble size 𝑀  in Monte Carlo result and statistical analysis in 

the following part is 300. 
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Figure 4.6 Spatial evolution of kurtosis of surface elevation from different ensemble size 𝑀  

at a 2D flat bottom with 𝑘ℎ = 5, initial BFI = 0.4 and 𝜎ᇆ = 0.5 

 

Figure 4.7 Variation of mean value and standard deviation of kurtosis with ensemble size 𝑀  

at (𝑥, 𝑦) = (20𝐿Ј, 15𝐿Ј) with 𝑘ℎ = 5, initial BFI = 0.4 and 𝜎ᇆ = 0.5 
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Figure 4.8 Kurtosis of surface elevation from different ensemble size 𝑀  at a 2D flat bottom 

with 𝑘ℎ = 5, initial BFI = 0.4 and 𝜎ᇆ = 0.5  

M = 50 M = 100 

M = 200 M = 300 

M = 500 M = 1000 
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4.3 Numerical result  

4.3.1 Evolution of modulated wave over a 2D flat bottom 

Firstly, we consider the wave evolution over a flat bottom to investigate the effect from 

initial conditions. From the initial condition given in Eq. (4-9), the shape of the initial 

directional spectrum is decided by the dimensionless spread 𝜎ᇆ  and the frequency spectral 

width 𝜎ᇖ. In Chapter 3, the effect from 𝜎ᇖ has been discussed from the unidirectional wave 

train with different initial BFI. For a 2D wavefield, the dimensionless spread 𝜎ᇆ in different 

sea states varied from 0.15 to 0.5 from the research about observation and wave age (Ewans, 

1998; Forristall and Ewans, 1998; Banner and Young, 1994). Yuen and Lake (1982) indicated 

a limitation of the 2D NLS wave model that the instability of wave train continually increases 

in a certain interval, which reflects in our numerical model that the result is unable to reach 

convergence in Monte Carlo simulation when 𝜎ᇆ ≤ 0.25. Therefore, we set the 𝜎ᇆ = 0.3, 0.4, 

0.5 in the following comparison for different directional spread, and we make the wave 

steepness 𝜀 = 0.1 the same as the unidirectional wave train study.  

In Figure 4.9, we give the real surface elevation 𝜂 at 𝑡 = 40𝑇Ј from three samples with 

different directional spread 𝜎ᇆ and initial BFI = 1, 𝑘ℎ = 5. With a large initial BFI, the wave 

train becomes regular and the coherent wave envelope can be easily distinguished by the crest 

and trough. In Figure 4.10, we give the vertical upper view of Figure 4.9, and the effect from 

the directional spread 𝜎ᇆ reflects in the coherent envelope. As the 𝜎ᇆ increases, the direction 

of propagation becomes more divergent, which makes the lateral envelope appear to be 

discontinuous. Figure 4.11 and Figure 4.12 show the surface elevation with initial BFI = 0.4 

in the same form. In a lower initial BFI, the coherence and continuity of the wave envelope 

become more irregular and dispersed, and the directional spread reflects in the lateral direction 

of the envelope. In the following result, we make the initial BFI = 0.4 and concentrate the effect 

from different 𝜎ᇆ.  

Figure 4.13 and Figure 4.14 give the mean value of kurtosis and skewness from different 

water depth and 𝜎ᇆ in Monte Carlo simulation at initial BFI = 0.4 in 2D. The left column is 
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the result at 𝜎ᇆ = 0.3, and the right is 𝜎ᇆ = 0.5. As the water depth 𝑘ℎ decreases from 𝑘ℎ = 

5 to 𝑘ℎ = 1.1, kurtosis 𝜇Κ decreases when 𝜎ᇆ = 0.3 but increases when 𝜎ᇆ = 0.5. It also 

reflects in the result at the same 𝑘ℎ and different 𝜎ᇆ: for 𝑘ℎ = 5 and 𝑘ℎ = 3, the 𝜇Κ in 𝜎ᇆ 

= 0.3 is larger than 𝜎ᇆ = 0.5, but the situation becomes the opposite when 𝑘ℎ = 1.1. The cause 

of this phenomenon can be traced back to the conclusion in the unidirectional wave. In deep 

and mediate water depth, wave trains with higher BFI will show larger 𝜇Κ; in shallow water 

depth, the contribution from higher BFI tends to make 𝜇Κ smaller, but the increasing trend of 

𝜇Κ caused by the second-order effect from the bound wave is more significant. From Eq. (1-

9), the increase of the directional spread 𝜎ᇆ can be understood as the decrease of BFI to some 

extent. Therefore, 𝜎ᇆ  also gives different effect on 𝜇Κ  through four-wave interaction 

depending on water depth. A similar result can be seen in skewness 𝜇ϯ in Figure 4.14. 𝜇ϯ 

mainly reflects the second-order effect, so the increase in shallow water depth is more 

significant, and the contribution from 𝜎ᇆ is relatively weak. 

In Figure 4.15 and Figure 4.16, we give a comparison between the unidirectional wave 

train and the 2D wavefield. With the same numerical environment in 3.3, we give the Monte 

Carlo result with initial BFI = 0.5 for a flat bottom 𝑘ℎ  = 7 to discuss the effect from the 

directional spread 𝜎ᇆ on the principal wave direction. The result in the unidirectional wave 

train can be regarded as 𝜎ᇆ  = 0. As the 𝜎ᇆ  increases, both kurtosis 𝜇Κ  and skewness 𝜇ϯ 

decrease. For the 2D propagation in a directional wavefield, both short-time and long-time 

behavior of 𝜅ΚЈ for a narrowband wave train is related to the directional width and frequency 

width (Janssen and Bidlot, 2009). In freak wave forecasting, we are also interested in the 

kurtosis distribution at the intermediate stages. Mori et al. (2011) conducted an asymptotic 

analysis of 𝜅ΚЈ , BFI and 𝜎ᇆ  by numerical simulation, and give Eq.(1-9) with empirical 

coefficient 𝛼. Table 4.1 shows the ensemble-averaged result of the expected maximum 𝜅ΚЈ 

and mean 𝜅ΚЈ at 𝑥 ∈ [20𝐿Ј, 30𝐿Ј] from Monte Carlo simulation of the wave model in this 

study, and gives the empirical coefficient 𝛼ζ͘Ђ and 𝛼ζ΄͘μ by Eq.(1-9) for maximum 𝜅ΚЈ 

and mean 𝜅ΚЈ, respectively. Due to different calculation conditions, we give different 𝛼ζ͘Ђ 

with Mori et al. (2011) (𝛼φ = 0.0169), and the expected maximum 𝜅ΚЈ is significantly larger 

than their prediction. Nevertheless, the result from 𝑘ℎ = 7 shows that the increase of 𝜎ᇆ and 

decrease of BFI lead to the decrease of both maximum and mean 𝜅ΚЈ , but the change in 
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empirical coefficient 𝛼  represents the 𝜅ΚЈ  is not strictly inversely proportional to 𝜎ᇆ  as 

Eq.(1-9), and the case from different initial BFI will ask for a different 𝛼. The 𝛼ζ΄͘μ for mean 

𝜅ΚЈ at 𝑘ℎ = 7 is better than 𝛼ζ͘Ђ to describe the instability of wavefield, and its value is 

around 0.09~0.14. When the water depth becomes shallow (𝑘ℎ = 5, 3, 1.1), Eq.(1-9) is no 

longer applicable and 𝛼ζ΄͘μ and 𝛼ζ͘Ђ significantly decrease. For 𝑘ℎ = 1.1, the increase of 

𝜎ᇆ leads to the increase of 𝜅ΚЈ and 𝛼ζ΄͘μ seems anomalous. The behavior of 𝜅ΚЈ further 

indicates that the surface instability in medium and shallow water can not be predicted by the 

four-wave interaction as in deep-water. The contribution from water depth becomes important, 

especially in shallow water, and the simulation over a changing depth can reveal this process 

in a more effective way.  
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(a) 𝜎ᇆ = 0.3 

 

(b) 𝜎ᇆ = 0.4 

 

(c) 𝜎ᇆ = 0.5 

Figure 4.9 Surface elevation 𝜂 from single sample at 𝑡 = 40𝑇Ј from different directional 

spread 𝜎ᇆ with initial BFI = 1, 𝑘ℎ = 5 
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(a) 𝜎ᇆ = 0.3 

 

(b) 𝜎ᇆ = 0.4 

 

(c) 𝜎ᇆ = 0.5 

Figure 4.10 View from above: surface elevation 𝜂 in Figure 4.9 at 𝑡 = 40𝑇Ј from different 

directional spread 𝜎ᇆ with initial BFI = 1, 𝑘ℎ = 5 
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(a) 𝜎ᇆ = 0.3 

 

(b) 𝜎ᇆ = 0.4 

 

(c) 𝜎ᇆ = 0.5 

Figure 4.11 Surface elevation 𝜂 from single sample at 𝑡 = 40𝑇Ј from different directional 

spread 𝜎ᇆ with initial BFI = 0.4, 𝑘ℎ = 5 
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(a) 𝜎ᇆ = 0.3 

 

(b) 𝜎ᇆ = 0.4 

 

(c) 𝜎ᇆ = 0.5 

Figure 4.12 View from above: surface elevation 𝜂 in Figure 4.11 at 𝑡 = 40𝑇Ј from 

different directional spread 𝜎ᇆ with initial BFI = 0.4, 𝑘ℎ = 5 
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Figure 4.13 Mean kurtosis of surface elevation in the 2D wavefield at different directional 

spread and water depth with initial BFI = 0.4 

  

(a) 𝑘ℎ = 5, 𝜎ᇆ = 0.3 

 

(b) 𝑘ℎ = 5, 𝜎ᇆ = 0.5 

 

(c) 𝑘ℎ = 3, 𝜎ᇆ = 0.3 

 

(d) 𝑘ℎ = 3, 𝜎ᇆ = 0.5 

 

(e) 𝑘ℎ = 1.1, 𝜎ᇆ = 0.3 

 

(f) 𝑘ℎ = 1.1, 𝜎ᇆ = 0.5 
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Figure 4.14 Mean skewness of surface elevation in the 2D wavefield at different directional 

spread and water depth with initial BFI = 0.4 

 

 

 

(a) 𝑘ℎ = 5, 𝜎ᇆ = 0.3 

 

(b) 𝑘ℎ = 5, 𝜎ᇆ = 0.5 

 

(c) 𝑘ℎ = 3, 𝜎ᇆ = 0.3 

 

(d) 𝑘ℎ = 3, 𝜎ᇆ = 0.5 

 

(e) 𝑘ℎ = 1.1, 𝜎ᇆ = 0.3 

 

(f) 𝑘ℎ = 1.1, 𝜎ᇆ = 0.5 
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Figure 4.15 Spatial evolution of kurtosis of surface elevation from directional spread 𝜎ᇆ 

with initial BFI = 0.5, 𝑘ℎ = 7 

 

 

Figure 4.16 Spatial evolution of skewness of surface elevation from directional spread 𝜎ᇆ 

with initial BFI = 0.5, 𝑘ℎ = 7 
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Table 4.1 The ensemble-averaged 𝜅ΚЈ dependence on BFI and 𝜎ᇆ at different 𝑘ℎ 

𝑘ℎ 𝜎ᇆ Initial BFI Max 𝜅ΚЈ Mean 𝜅ΚЈ 𝛼ζ͘Ђ 𝛼ζ΄͘μ 

7.0 0.3 0.5 6.329 0.180 4.187 0.119 

7.0 0.4 0.5 4.555 0.127 4.018 0.112 

7.0 0.5 0.5 4.206 0.092 4.638 0.101 

7.0 0.6 0.5 3.841 0.064 5.082 0.085 

7.0 0.3 0.4 4.441 0.136 4.591 0.141 

7.0 0.5 0.4 3.725 0.083 6.418 0.143 

5.0 0.3 0.4 3.976 0.117 4.110 0.121 

5.0 0.5 0.4 3.368 0.070 5.803 0.121 

3.0 0.3 0.4 3.148 0.065 3.254 0.067 

3.0 0.5 0.4 2.948 0.038 5.079 0.066 

1.1 0.3 0.4 2.294 0.059 2.371 0.061 

1.1 0.5 0.4 2.754 0.113 4.745 0.195 
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4.3.2 Evolution of modulated wave over 2D uneven bottoms 

The discussion about unidirectional wave train in Chapter 3 indicates that the second-

order effect plays an important role in the medium and shallow water depth, and the result in 

4.3.1 confirms that a similar conclusion can be derived for the 2D flat bottom. Not only the 

water depth 𝑘ℎ, but also the bottom topography contributes to the wave evolution with the 

second-order effect in shallow water. To consider the impact from bottom shapes on the non-

linear evolution of modulated wave trains in a 2D wavefield, we conduct the Monte Carlo 

simulation of the 2D wave model for uneven bottoms.  

In the numerical model of the unidirectional wave train, the 𝛽փ in the evolution equation 

reaches its maximum at the end of the sloping region in Figure 3.9. In a very shallow water 

depth (𝑘ℎ = 1.1), the gradient of relative depth change dℎ/ℎ and the group speed 𝑐ւ will 

continue to increase if the slope angle is constant, and it immediately becomes zero when it 

comes to a flat bottom in the shallow water. In the physical experiment in the wave tank 

(Kashima and Mori, 2019; Trulsen et al., 2020) and our numerical result in Chapter 3, this 

sudden change contributes to the after-effect. In a 2D wavefield, we find the after-effect will be 

significantly magnified due to the dispersion effect at the third-order from the directional spread.  

To make our simulation closer to the natural seabed, we adjust the sloping region in Figure 

4.1 between A and B to become more smooth and continuously decrease as Figure 4.17: the 

sloping region is divided into 2 parts, where (2) has a constant slope angle and (3) has a 

changing slope angle generally decreasing to zero. (1) is flat bottom in deep-water and (4) is 

flat bottom in shallow water. We consider four different bottom shapes which have different 

lengths of region (2) in Table 4.2, where ℎ֎ is the water depth at the demarcation point of (2) 

and (3), and 𝛾֎ is a constant slope angle at (2). To make the transition smooth, we set the 

changing slope is a function of 𝛾֎ and the slope at demarcation point C equal to 𝛾֎, which 

makes the effect from different slope can also be reflected in (3). The topography of the four 

types of bottom in Table 4.2 are given in Figure 4.18. In 𝐵φ the district (3) is flat, and it is 

the same as the unidirectional wave model on principal wave direction. From 𝐵φ to 𝐵Κ, the 

transition region becomes milder with different value of ℎ֎, and the length of (3) becomes 
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longer until 𝑘ℎ decreases to 1.1 in (4). In Figure 4.19, we give the spatial variation of 𝛽փ at 

the transition region from different bottom types with 𝛾֎ = 0.05. We can see there is a spike 

of 𝛽փ at the end of (2) in 𝐵φ, and it becomes smaller as the bottom change is getting milder. 

In 𝐵ϯ and 𝐵Κ, the variation of 𝛽փ is more smooth.  

To examine the effect from different bottom types on the wave evolution process, we give 

the Monte Carlo result of kurtosis 𝜇Κ on uneven bottoms with initial BFI = 0.4, 𝜎ᇆ =0.3, 𝛾֎ 

= 0.05 in Figure 4.20. The result is plotted in 1D on the principal wave direction. As the wave 

train propagates from deep-water into shallow water, water depth 𝑘ℎ decreases from 5 to 1.1. 

𝜇Κ decreases with the decrease of 𝑘ℎ in deep and medium water but has a rebound at the end 

of the sloping region. The magnitude of rebound is determined by the bottom types, and we 

find the rebound will decrease if the bottom topography becomes mild and smooth. However, 

even the mildest bottom 𝐵Κ leads to a non-negligible rebound, which implies the effect from 

slope angle starts to contribute to the wave evolution in the water depth deeper than 𝑘ℎ = 1.363. 

We apply the bottom type 𝐵ϯ in the following discussion about the wave evolution over the 

2D uneven bottom. 

 

 

Figure 4.17 Modified uneven bottom topography from deep to shallow water 

  

A B C 
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Table 4.2 Four different bottom topography types 

Bottom type ℎ֎ 𝑘ℎ in ① ℎ஥(𝑥) in ② ℎ஥(𝑥) in ③ 𝑘ℎ in ④ 

𝐵φ 1.1 5.0 𝛾֎ 0 1.1 

𝐵ϵ 1.15 5.0 𝛾֎ 𝛾֎(
ℎ

ℎ֎

)ΚЈ 1.1 

𝐵ϯ 1.2 5.0 𝛾֎ 𝛾֎(
ℎ

ℎ֎

)ΚЈ 1.1 

𝐵Κ 1.363 5.0 𝛾֎ 𝛾֎(
ℎ

ℎ֎

)φΘ 1.1 

 

 

 

Figure 4.18 Spatial variation of water depth of different bottom types in Table 4.1 
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Figure 4.19 spatial variation of 𝛽փ of different bottom types in Table 4.1 with 𝛾֎ = 0.05

 

Figure 4.20 Mean kurtosis of surface elevation in Monte Carlo simulation from different 

bottom types with initial BFI = 0.4, 𝜎ᇆ =0.3, 𝛾֎ = 0.05 

 

 

 

𝛽փ 
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From Figure 4.21 to Figure 4.23, we give the mean value from the Monte Carlo 

simulation of the bottom type 𝐵ϯ. In Figure 4.21, we give the mean kurtosis 𝜇Κ in 2D and 

1D form at the different directional spread 𝜎ᇆ  and slope angle 𝛾֎  with initial BFI = 0.4. 

Comparing the result from different 𝜎ᇆ  in Figure 4.21 (a), (b) and (c), we find the 𝜇Κ 

decreases in the deep-water depth but increases in the shallow water when 𝜎ᇆ increases from 

𝜎ᇆ = 0.3 to 𝜎ᇆ = 0.5, which shows the same phenomenon with the result in a flat bottom in 

4.3.1. In the medium water depth region between A and C, 𝜇Κ decreases as the decrease of 

water depth, and it rebounds at the end of the constant sloping region where 𝑘ℎ = 1.2. In the 

region between C and B where the slope angle mildly decreases, 𝜇Κ decreases and becomes 

stable at the same level with the final flat bottom in shallow water 𝑘ℎ = 1.1. The evolution of 

𝜇Κ indicates that the directional dispersion effect decreases the occurrence probability of freak 

wave in deep and medium water but increases it in shallow water. As the wave propagates from 

the medium water to shallow water, the wave evolution is significantly affected by the bottom 

topography, and the 1D result in Figure 4.21 (d) clearly gives the rebound of 𝜇Κ due to the 

slope angle. To further study the effect from the bottom topography, we give the mean 𝜇Κ at 

𝛾֎ = 0.02 and 𝛾֎ = 0.01 with initial BFI = 0.4 and 𝜎ᇆ = 0.3 in Figure 4.21 (e) and Figure 

4.21 (f). The result shows the rebound of 𝜇Κ decreases as the bottom change becomes milder, 

and Figure 4.21 (g) provides the variation of 𝜇Κ  on the principal wave direction in 1D. 

Comparing the 𝜇Κ  over uneven bottoms between the unidirectional wave train and the 2D 

wavefield, we find the slope angle affects the wave evolution in a similar way but its 

contribution is more significant in 2D due to the dispersion effect on four-wave interaction, 

which implies the second-order effect plays a more important role in a directional 2D wavefield. 

In Figure 4.22, we give skewness 𝜇ϯ in the same form with 𝜇Κ in Figure 4.21 at the 

same condition. Different from 𝜇Κ, 𝜇ϯ is hardly affected by directional spread from Figure 

4.22 (a), (b), (c), and (d). When the bottom topography changes, Figure 4.22 (e), (f), and (g) 

show the 𝜇ϯ increases as the water depth become shallow. This process will slow down if the 

slope angle becomes mild, but it only means 𝜇ϯ is determined by the water depth 𝑘ℎ and the 

change from slope angle 𝛾֎ has little influence. Different from the unidirectional wave train, 

𝜇ϯ in the 2D wavefield is basically only determined by the second-order effect. When the wave 
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trains propagate into shallow water, the 𝜇ϯ increases with the increase of wave steepness 𝜀. 

To examine the evolution of the directional spectrum, we give the mean 𝑄֋ from Eq. (4-

14) at different directional spread 𝜎ᇆ and slope angle 𝛾֎ with initial BFI = 0.4 in Figure 4.23. 

As 𝜎ᇆ increases from 0.3 to 0.5 in Figure 4.23 (a), (b) and (c), the 𝑄֋ significantly rises 

since the directional dispersion increases from the initial condition. With the water depth 

decreases from deep to shallow, 𝑄֋ slowly decreases in each bottom type. The variation of 

𝑄֋ in the 2D wavefield is similar to the low BFI result in the unidirectional wave in Figure 

3.19, and the effect from different slope angle is very limited. The decrease of 𝑄֋ in shallow 

water indicates the directional spread will become weak slightly compared with the initial 

condition.  
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(a) 𝜎ᇆ = 0.3, 𝛾֎ = 0.05                (e) 𝜎ᇆ = 0.3, 𝛾֎ = 0.02 

 
(b) 𝜎ᇆ = 0.4, 𝛾֎ = 0.05                (f) 𝜎ᇆ = 0.3, 𝛾֎ = 0.01 

 
          (c) 𝜎ᇆ = 0.5, 𝛾֎ = 0.05            (g) 𝜎ᇆ = 0.3, 𝛾֎ = 0.05, 0.02, 0.01 

 
    (d) : 𝜎ᇆ = 0.3, 0.4, 0.5, 𝛾֎ = 0.05 

Figure 4.21 Mean kurtosis of surface 

elevation 𝜂  at uneven bottoms at 

different directional spread 𝜎ᇆ  and 

slope angle 𝛾֎ with initial BFI = 0.4 
 

A B C A C B 
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(a) 𝜎ᇆ = 0.3, 𝛾֎ = 0.05                (e) 𝜎ᇆ = 0.3, 𝛾֎ = 0.02 

 
(b) 𝜎ᇆ = 0.4, 𝛾֎ = 0.05                (f) 𝜎ᇆ = 0.3, 𝛾֎ = 0.01 

 
          (c) 𝜎ᇆ = 0.5, 𝛾֎ = 0.05            (g) 𝜎ᇆ = 0.3, 𝛾֎ = 0.05, 0.02, 0.01 

 
    (d) : 𝜎ᇆ = 0.3, 0.4, 0.5, 𝛾֎ = 0.05 

Figure 4.22 Mean skewness of surface 

elevation 𝜂  at uneven bottoms at 

different directional spread 𝜎ᇆ  and 

slope angle 𝛾֎ with initial BFI = 0.4 
 

A B C A C B 
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(a) 𝜎ᇆ = 0.3, 𝛾֎ = 0.05                (e) 𝜎ᇆ = 0.3, 𝛾֎ = 0.02 

 
(b) 𝜎ᇆ = 0.4, 𝛾֎ = 0.05                (f) 𝜎ᇆ = 0.3, 𝛾֎ = 0.01 

 
          (c) 𝜎ᇆ = 0.5, 𝛾֎ = 0.05            (g) 𝜎ᇆ = 0.3, 𝛾֎ = 0.05, 0.02, 0.01 

 
    (d) : 𝜎ᇆ = 0.3, 0.4, 0.5, 𝛾֎ = 0.05 

Figure 4.23 Mean 𝑄֋  of surface 

elevation 𝜂  at uneven bottoms at 

different directional spread 𝜎ᇆ  and 

slope angle 𝛾֎ with initial BFI = 0.4 
 

A B C A C B 
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Figure 4.24 Five different sections on the uneven bottom type 𝐵ϯ with 𝛾֎ = 0.02 

 

To discuss the occurrence of extreme events in a more visible way, we give the distribution 

of the wave height and crest from the Monte Carlo simulation. On principal wave direction, we 

record the maximum wave height 𝐻ζ͘Ђ  and maximum wave crest 𝜂ζ͘Ђ  on the lateral 

direction from 40 periods of wave trains in 300 ensemble sizes. On the basis of it, we give the 

Cumulative Distribution Function (CDF) for the 2D wavefield in the same form as the 

unidirectional wave train. From deep to shallow water, we choose five different sections on the 

sloping region as Figure 4.24: S1 represents the demarcation point between the end of flat 

bottom in deep-water and the start of the sloping region at 𝑘ℎ = 5 (dashed line A in previous 

figures); S2 is the section when water depth 𝑘ℎ = 3; S3 is the section when water depth 𝑘ℎ = 

2; S4 is the demarcation point between the end of the sloping region with a constant slope 𝛾֎ 

and the start of decreasing slope at 𝑘ℎ = 1.2 (dashed line C in previous figures); S5 is the 

demarcation point between the end of the sloping region and the start of flat bottom in shallow 

water at 𝑘ℎ = 1.1 (dashed line B in previous figures).  

Figure 4.25 shows the exceedance probability of the wave height and free surface 

elevation from the different directional spread in logarithmic coordinates at 𝛾֎ = 0.05, initial 

BFI = 0.4. In Figure 4.25 (a), we give the CDF of the maximum wave height 𝐻ζ͘Ђ from the 

numerical model with 𝜎ᇆ  = 0.3, 0.4, 0.5 and Rayleigh distribution. As the water depth 

decreases from S1 to S5, the occurrence probability of extreme wave height significantly 

A B C 
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decreases from the comparison with the Rayleigh distribution (the linear distribution model 

doesn’t change with water depth). The non-linear model gives a higher exceeding probability 

of extreme events than the linear distribution in deep-water (S1) but lower in shallow water (S4, 

S5). In medium water depth (S2, S3), they have a similar prediction of wave heights distribution. 

In S1-S4, the increase of directional spread 𝜎ᇆ  leads to the decrease of the exceeding 

probability for 𝐻ζ͘Ђ/𝜂ϝζϣ > 7. However, in a very shallow water depth (S5), the result from 

the larger 𝜎ᇆ shows a slightly higher occurrence probability of extreme events. Corresponding 

to the variation of kurtosis in Figure 4.21, the increase of 𝜎ᇆ has different consequents in 

𝐻ζ͘Ђ at different water depths, which comes from the change of the four-wave interaction on 

the wave train instability. In shallow water, the incident wave with higher 𝜎ᇆ  gives more 

dispersion on BFI, and the increase of the wave train instability due to the second-order effect 

becomes more significant. This result is consistent with the previous discussion in the evolution 

of wave train nonlinearity in 1D and 2D. In Figure 4.25 (b), we give the exceeding probability 

of wave crest 𝜂ζ͘Ђ  from the different directional spread. The CDF of 𝜂ζ͘Ђ  has similar 

behaviors with 𝐻ζ͘Ђ  under the effect from 𝜎ᇆ  and water depth. However, the deviation 

between the 𝜂ζ͘Ђ  from the non-linear model and Rayleigh distribution is very significant, 

which reflects the contribution from the non-linear effect in the surface construction.   

The CDF of maximum wave height and crest at 𝜎ᇆ = 0.3, initial BFI = 0.4 from different 

bottom topography is given in Figure 4.26. In Figure 4.26 (a), the effect from slope angle 

mainly reflects in the medium and shallow water depth in S2-S4. The exceeding probability of 

extreme events will increase if the slope angle 𝛾֎ gets steep, and this trend is getting obvious 

in shallower water depth. When the bottom change is very mild (in S5), the effect from different 

𝛾֎ is very small. The CDF of 𝜂ζ͘Ђ from different bottom topography in Figure 4.26 (b) gives 

a similar conclusion. The result from different bottom topography mainly reflects the second-

order effect, which is one of the important determining factors of the wave train instability in 

the medium and shallow water depth. If we compare Figure 3.21 and Figure 4.26, we will find 

different bottom topography has a similar effect in both 1D and 2D, but the result in 1D wave 

has a lower exceeding probability of extreme events in shallow water than 2D due to the lack 

of directional dispersion effect.   
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(a) Maximum wave height 𝐻ζ͘Ђ from different directional spread 

Figure 4.25 Exceedance probability of wave height and free surface elevation distribution 

at 𝛾௦ = 0.05, initial BFI = 0.4  
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(b) Maximum wave crest 𝜂ζ͘Ђ from different directional spread 

Figure 4.25 Exceedance probability of wave height and free surface elevation distribution at 

𝛾֎ = 0.05, initial BFI = 0.4 (cont.) 
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(a) Maximum wave height 𝐻୫ୟ୶ from different slope angle 

Figure 4.26 Exceedance probability of wave height and free surface elevation distribution at 

𝜎ఏ = 0.3, initial BFI = 0.4 
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(b) Maximum wave crest 𝜂ζ͘Ђ from different slope angle 

Figure 4.26 Exceedance probability of wave height and free surface elevation distribution at 

𝜎ᇆ = 0.3, initial BFI = 0.4 (cont.) 
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4.3.3 Evolution of oblique modulated wave  

    If we assume the principal wave propagation direction 𝜃Ј has a small oblique angle that 

tan 𝜃Ј < 𝑂(𝜀), the carrier wave number 𝑘Ј ≈ 𝑘֓ in the numerical tank. We here apply the 

numerical model to consider the slightly oblique modulated wave in the 2D wavefield.  

Firstly, we conduct the simulation at a flat bottom. Figure 4.27 gives the above view of 

the surface elevation given in Eq. (4-13) from a single sample at tan 𝜃Ј = 0.1, 0.2 and 0.3. To 

make the wave propagation easier to be distinguished, we set the initial BFI = 1 in this example 

to make the wave train more regular. The coherent wave envelope reflects the principal wave 

direction and the oblique angle between it and the 𝑥 axis. In Figure 4.28, we give the mean 

kurtosis and skewness from Monte Carlo simulation at flat bottoms from a different oblique 

angle 𝜃Ј with initial BFI = 0.4, 𝜎ᇆ = 0.3, 𝑘ℎ = 5. The result from tan 𝜃Ј = 0.1 to 0.3 don’t 

show the difference caused by the change of 𝜃Ј. The statistical parameters are uniform in an 

SSS 2D field, so the stabilized 𝜇Κ and 𝜇ϯ are constant in each direction. In Figure 4.29, we 

give the mean 𝑄֋ from Monte Carlo simulation at flat bottoms from different oblique angles 

𝜃Ј with initial BFI = 0.4, 𝜎ᇆ = 0.3, 𝑘ℎ = 5. Different from 𝜇Κ and 𝜇ϯ, the increase of 𝜃Ј 

brings about the significant rise of 𝑄֋ . This is because we calculate 𝑄֋  by the spatial 

distribution of 𝜂 on the lateral direction of the bottom contour, not the principal direction, and 

𝑄֋  is given in an 𝑥 − 𝑡  plane. As the increase of incident oblique angle, the directional 

dispersion increases on the 𝑦 axis, which reflects in the spectral bandwidth and 𝑄֋, but it is 

only a difference in expression and there is no change occurs in the wave field.  

    The result by a flat bottom only provides an examination of the numerical model and a 

reference for the following discussion. Essentially, the change in the incident oblique angle 

does not lead to any influence on the wave evolution in a 2D wavefield with the flat bottom 

condition. The difference in result is only caused by the statistical method in different directions. 

However, when we consider an uneven bottom, the oblique angle may bring about changes 

since the wave propagation direction is not consistent with the contour line of the bottom 

topography.  
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    (a) tan 𝜃Ј = 0.1 

 

(b) tan 𝜃Ј = 0.2 

 

(c) tan 𝜃Ј = 0.3 

Figure 4.27 Surface elevation 𝜂 over a flat bottom at 𝑡 = 40𝑇Ј from different directional 

spread 𝜎ᇆ with initial BFI = 1, 𝜎ᇆ = 0.3, 𝑘ℎ = 5 
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Figure 4.28 Mean 𝜇Κ and 𝜇ϯ of surface elevation 𝜂 at flat bottoms from different oblique 

angle 𝜃Ј with initial BFI = 0.4, 𝜎ᇆ = 0.3, 𝑘ℎ = 5 

 

 

 

(a) 𝜇Κ at tan 𝜃Ј = 0.1 

(c) 𝜇Κ at tan 𝜃Ј = 0.2 

(e) 𝜇Κ at tan 𝜃Ј = 0.3 

(b) 𝜇ϯ at tan 𝜃Ј = 0.1 

(d) 𝜇ϯ at tan 𝜃Ј = 0.2 

(f) 𝜇ϯ at tan 𝜃Ј = 0.3 
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Figure 4.29 Mean 𝑄֋ of surface elevation 𝜂 at flat bottoms from different oblique angle 𝜃Ј 

with initial BFI = 0.4, 𝜎ᇆ = 0.3, 𝑘ℎ = 5 

  

(a) 𝑄֋ at tan 𝜃Ј = 0.1 (b) 𝑄֋ at tan 𝜃Ј = 0.2 

(c) 𝑄֋ at tan 𝜃Ј = 0.3 (d) 𝑄֋ on the principal direction 
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    Next, we conducted a series of numerical simulations for oblique waves on the slopes. 

When tan 𝜃Ј = 0.3, the carrier wave number 𝑘Ј ≈ 1.044𝑘֓ and the result may not be reliable. 

Thus we take tan 𝜃Ј = 0, 0.1 and 0.2 for the sloping cases that the principal wave direction is 

different from the gradient direction of depth. In Figure 4.30, we calculated the ensemble-

averaged kurtosis 𝜇Κ and skewness 𝜇ϯ from Monte Carlo simulation at the uneven bottom 

𝐵ϯ with 𝛾֎ = 0.05 from the different oblique angle 𝜃Ј with initial BFI = 0.4, 𝜎ᇆ = 0.3. On 

the sloping region and shallow water depth, the result from the oblique angle tan 𝜃Ј = 0 to 0.2 

almost have no difference. Figure 4.30 (g) and Figure 4.30 (h) give the mean 𝜇Κ and 𝜇ϯ in 

1D from the lateral direction of the gradient of water depth change (i.e. the 𝑥 axis) instead of 

the principal wave direction, and the change of oblique angle have very little influence on the 

variation of 𝜇Κ  and 𝜇ϯ . The little change in 𝜇Κ  and 𝜇ϯ  indicates, the third-order and 

second-order nonlinearities of 2D wavefield are hardly affected by the included angle between 

the wave propagation direction and the gradient of water depth change statistically when this 

angle is not significant. In the estimation of the maximum wave height and crest, the extreme 

events are basically triggered by the instability caused by the non-linear effect, so the 

approximately unchanged results of 𝜇Κ and 𝜇ϯ imply the oblique angle is not an important 

factor in the freak wave analysis. 

For the purpose of developing the simulation model of the non-linear modulated wave 

evolution, we continue to explore the change in wavefield due to the oblique angle. In Figure 

4.31, we give the mean 𝑄֋  of surface elevation 𝜂  at the uneven bottom 𝐵ϯ  from the 

different oblique angle 𝜃Ј  with initial BFI = 0.4, 𝜎ᇆ  = 0.3, 𝛾֎  = 0.05. When the wave 

propagates into shallow water, the 𝑄֋ significantly increases at tan 𝜃Ј = 0.2. From the 1D 

mean result on the gradient direction of depth in Figure 4.31 (d), the increase of 𝜃Ј leads to 

an increasing trend of 𝑄֋  at the sloping region in shallow water. However, 𝑄֋  decreases 

slightly as the water depth decrease when 𝜃Ј = 0 in Figure 4.23, which gives an opposite result.  

Different from the other index in the analysis of nonlinearity of wave train, the increase of 

𝑄֋ with the increase of the oblique angle 𝜃Ј in shallow water reflects the influence from the 

disagreement between the principal wave direction and the gradient direction of depth. In the 
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wave shoaling process, the group speed 𝑐ւ and wave steepness 𝜀 increase with the decrease 

of water depth on the bottom contour as well as the contribution from the slope angle. If the 

oblique angle 𝜃Ј is large enough, the differenct 𝑐ւ on the lateral direction of the principal 

wave direction will lead to the refraction and the change of the principal wave direction. 

However, these changes don’t exist in our wave model for small 𝜃Ј. We assume the directional 

wave spectrum is in Gaussian distribution with 𝜃Ј as the expectation from the initial condition, 

and the increase of 𝑄֋  in shallow water represents the width of directional spectral peak 

becomes wider with the decrease of water depth in shallow water. The value of the oblique 

angle 𝜃Ј seems to play a role in the evolution of the directional wave spectrum in shallow 

water with an uneven bottom, even the initial spectrum has the same shape and bandwidth. The 

increase of 𝜃Ј disperses the wave energy into more directions as the water depth decreases on 

the slope. In spite of this, this effect is not significant in terms of the magnitude of the values. 

To check the reflection from the wave nonlinearity on the real surface elevation, we give 

the ensemble-averaged maximum wave height 𝐻ζ͘Ђ/𝜂ϝζϣ  and maximum wave crest 

𝜂ζ͘Ђ/𝜂ϝζϣ in Figure 4.32. Even the increase of the incident oblique angle 𝜃Ј brings about the 

increase of 𝑄֋  in shallow water, this contribution is so weak that the distribution of the 

expected maximum value doesn’t change with the oblique angle. It is more clear in the averaged 

𝐻ζ͘Ђ/𝜂ϝζϣ and 𝜂ζ͘Ђ/𝜂ϝζϣ on the 𝑥 axis in 1D from Figure 4.32 (g) and Figure 4.32 (h). 

In Figure 4.33, we give the exceedance probability of wave height and free surface elevation 

distribution in the same form with Figures 4.25 and 4.26 for tan 𝜃Ј  = 0, 0.1 and 0.2. At 

different sections of water depth, the effect from oblique angle 𝜃Ј is not significant in neither 

the CDF of 𝐻ζ͘Ђ or 𝜂ζ͘Ђ. 
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Figure 4.30 Mean 𝜇Κ and 𝜇ϯ of surface elevation 𝜂 at uneven bottoms from different 

oblique angle 𝜃Ј with initial BFI = 0.4, 𝜎ᇆ = 0.3, 𝛾֎ = 0.05 

A C B A C B 

(a) 𝜇Κ at tan 𝜃Ј = 0 

(c) 𝜇Κ at tan 𝜃Ј = 0.1 

(e) 𝜇Κ at tan 𝜃Ј = 0.2 

(g) 𝜇Κ on the gradient of depth 

(h) 𝜇ϯ on the gradient of depth 

(f) 𝜇ϯ at tan 𝜃Ј = 0.2 

(d) 𝜇ϯ at tan 𝜃Ј = 0.1 

(b) 𝜇ϯ at tan 𝜃Ј = 0 
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Figure 4.31 Mean 𝑄֋ of surface elevation 𝜂 at uneven bottoms from different oblique 

angle 𝜃Ј with initial BFI = 0.4, 𝜎ᇆ = 0.3, 𝛾֎ = 0.05 

  

A C B A C B 

(b) 𝑄֋ at tan 𝜃Ј = 0.1 (a) 𝑄֋ at tan 𝜃Ј = 0 

(c) 𝑄֋ at tan 𝜃Ј = 0.2 (d) 𝑄֋ on the gradient direction of depth 



Chapter 4 

- 100 - 
 

 

 

 

 

 

Figure 4.32 Ensemble-averaged maximum wave height and surface elevation at uneven 

bottoms from different oblique angle 𝜃Ј with initial BFI = 0.4, 𝜎ᇆ = 0.3, 𝛾֎ = 0.05 

A C B A C B 

(a) 𝐻ζ͘Ђ/𝜂ϝζϣ  

at tan 𝜃Ј = 0 

(c) 𝐻ζ͘Ђ/𝜂ϝζϣ  

at tan 𝜃Ј = 0.1 

(e) 𝐻ζ͘Ђ/𝜂ϝζϣ  

at tan 𝜃Ј = 0.2 

(g) 𝐻ζ͘Ђ/𝜂ϝζϣ  

on the gradient of depth 

(b) 𝜂ζ͘Ђ/𝜂ϝζϣ  

at tan 𝜃Ј = 0 

(d) 𝜂ζ͘Ђ/𝜂ϝζϣ  

at tan 𝜃Ј = 0.1 

(f) 𝜂ζ͘Ђ/𝜂ϝζϣ  

at tan 𝜃Ј = 0.2 

(h) 𝜂ζ͘Ђ/𝜂ϝζϣ on  

the gradient of depth 
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(a) Maximum wave height 𝐻ζ͘Ђ from different oblique angle 𝜃Ј 

Figure 4.33 Exceedance probability of wave height and free surface elevation distribution at 

𝜎ఏ = 0.3, initial BFI = 0.4, 𝛾֎ = 0.05 
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(b) Maximum wave crest 𝜂ζ͘Ђ from different oblique angle 𝜃Ј 

Figure 4.33 Exceedance probability of wave height and free surface elevation distribution at 

𝜎ᇆ = 0.3, initial BFI = 0.4, 𝛾֎ = 0.05 (cont.) 
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4.4 Summary 

    Based on the 2D mNLS equation and pseudo spectral method, we expand the third-order 

non-linear model for the evolution of the unidirectional wave train into a 2D wavefield for 

variable depth. With the Monte Carlo simulation from random initial phase information, we 

study the evolution of directional modulated wave trains over the uneven bottom with the 

consideration of directional dispersion and spatial inhomogeneity from different bottom types. 

In a similar way with the analysis of 1D, we discuss the surface instability from the high-order 

moment of surface elevation and the distribution of extreme wave height and crest. Additionally, 

we also consider the wave evolution with a small oblique incident angle with the contour line 

of the bottom topography. The result indicates:  

A) The directional dispersion effect can weaken the four-wave interaction in a 2D wavefield. 

The rise of the directional dispersion will make the kurtosis of surface elevation decrease 

in deep-water but increase in shallow water, in a similar way with the decrease of the initial 

BFI. Correspondingly, the directional spread contributes to the exceedance probability of 

maximum wave height and crest the same as to kurtosis.  

B) The directional dispersion effect has almost no effect on the skewness of surface elevation, 

and the skewness in a 2D wavefield is mainly determined by the wave steepness.  

C) Steep slope angle leads to the rebound of kurtosis in the shallow water due to wave 

shoaling as the unidirectional wave train, and it reflects in the increase of the exceedance 

probability of maximum wave height and crest.  

D) When we estimate the directional spectrum peakedness by 𝑄֋ on the lateral direction, 

𝑄֋ is related to the directional spread. For direct incident waves, 𝑄֋ decreases slightly 

from the deep-water to shallow water, but 𝑄֋ increases in the medium and shallow water 

when the included angle between the contour line and the principal wave direction 

increases before the wave refraction occurs.
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Chapter 5 

Conclusions  

The study on the freak wave contributes to the understanding of the non-linear fluctuation 

in natural phenomena, and helps to the estimation of ocean waves for navigation and ocean 

engineering in a practical sense. Previous study indicates the occurrence of freak wave is caused 

by the modulational instability from the high-order interactions. 

In this research, we investigate the generation of the freak wave by the simulation of non-

linear modulated wave trains. As a simplified expression of the weak non-linear modulated 

wave, the NLS equation is applied to give the evolution equation of wave envelope. Based on 

the bottom boundary equation with mild changing depth, we derive the 2D modified NLS 

equation in a similar form with previous theoretical research.  

The particular solution of the NLS equation has been given as soliton, breather, and so on, 

and the numerical simulations in deep-water have well explained the generation of freak wave 

in related studies. In this dissertation, we concentrate on the medium and shallow water depth 

from offshore to onshore, and we intend to investigate the specific impacts from the bottom 

topography on the modulated wave trains at sea states. Whether it is in the unidirectional wave 

or the 2D wavefield, the spatial inhomogeneity contributes to the wave train instability through 

the change of dispersion relation and the shoaling effect due to the slope angle.  

We build the non-linear evolution model for the unidirectional wave train and the 2D 

wavefield by numerically solving modified NLS equation on the gradient direction of depth. 

To simulate the real wave surface in more accurate way, we construct the surface elevation from 

the solution of wave envelope considering the second-order and second-harmonic term. Monte 

Carlo simulation is applied to give the estimation of the high-order moment kurtosis and 
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skewness of the surface elevation, which reflect the wave train instability and are related to the 

occurrence probability of the freak wave. We also record the distribution of maximum wave 

height and crest from the ensemble data as the outcomes in real surface.  

The initial condition plays an important role in both the unidirectional wave and the 2D 

wavefield. We assume the initial frequency spectrum is consistent with the Gaussian 

distribution, and give the initial BFI as the ratio between the wave steepness and dimensionless 

spectral bandwidth. The degree of four-wave interaction varies in the wave trains starting with 

different BFI, and it is affected by the water depth: in the deep-water, wave train with higher 

initial BFI has larger kurtosis and skewness; in the medium and shallow water, the rise of BFI 

gives the decrease of kurtosis and skewness. In a 2D wavefield, the initial spectrum has the 

Gaussian shape distribution on the frequency and the direction of component waves, so we 

introduce the directional spread as another variable to determine the spectral bandwidth in 2D. 

The numerical result shows that the directional spread has a dispersion effect on the four-wave 

interaction as the theoretical prediction: the increase of the directional spread leads to the 

decrease of kurtosis in deep-water, but it will make the kurtosis increase in shallow water, which 

has similar effect as decreasing the initial BFI. Different with kurtosis, the directional spread 

hardly affects skewness.  

From the deep-water to shallow water, the evolution of kurtosis and skewness reflect the 

contribution from the water depth change and bottom types. In deep-water, the wave train 

instability is mainly determined by the four-wave interaction, and it increases when the water 

depth gets deeper. As the wave propagates into the medium and shallow water, the effect from 

the four-wave interaction becomes weak and the increase of initial BFI will instead lead to the 

decrease of kurtosis in very shallow water. As opposed to the four-wave interaction at the third-

order, the second-order effect gradually becomes an important factor from the bound wave. In 

the wave shoaling process, the wave steepness and the group speed increases with the decrease 

of water depth, which reflects in the increase of the second-order nonlinearity by skewness. The 

slope angle contributes to the wave train instability in the wave shoaling, and it becomes more 

significant in a shallower depth. Steep slope angle brings about a rebound process of kurtosis 

in the shallow water, and it disappears when the slope becomes very mild or the wave 

propagates into a flat bottom.  
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The theoretical occurrence probability of the freak wave can be estimated by kurtosis, and 

it is sufficiently reflected in the distribution of wave height and free surface elevation from the 

numerical result. The exceedance probability of extreme events is corresponding to the 

variation of kurtosis at different conditions. In summary, the increase of the initial BFI and the 

decrease of the directional spread give the rise of the occurrence rate of the freak wave in deep-

water but reduce it in the shallow water. Steep slope angle also contributes to the increase of 

the occurrence probability of freak wave in medium and shallow water. As a linear prediction, 

the Rayleigh distribution underestimates the exceedance probability of maximum wave height 

in deep-water and overestimates it in the shallow water. The distribution of the wave crest 

shows a significant exceeding than the wave height due to the contribution from the non-linear 

term in the surface construction.  

The spectrum peakedness 𝑄֋ is applied to give an estimation of spectral bandwidth in 

the wave train evolution. 𝑄֋ of the frequency spectrum is highly relevant of the initial BFI, 

and 𝑄֋ of the directional spectrum reflects the magnitude of the directional spread. When the 

principal wave direction has a little oblique angle 𝜃Ј with the gradient of water depth change, 

kurtosis and skewness almost have no change but the 𝑄֋ of directional spectrum increases in 

the shallow water, which indicates that 𝜃Ј contributes to the evolution of the directional wave 

spectrum and disperse the wave energy into more directions on the slope.  

The summary of the effect from the initial condition and the bottom topography change 

acting on the non-linear wave evolution is given in Figure 5.1. 
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Figure 5.1 The summary of the effect from the initial condition and the bottom topography 

change acting on the non-linear wave evolution 
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