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Abstract

With the development of observation technology, we found a kind of disaster named “freak
wave” in deep ocean water. It is also known as “rogue wave”, “giant wave” and “extreme wave”,
which has abnormally huge waves bringing about a risk for the vessels and marine structures.
The generation of the freak wave comes from the quasi-resonant four-wave interaction of high-
order non-linear modulated wave train, and the occurrence probability of freak wave in deep-
water can be estimated by the fourth-order cumulant of surface elevation. From recent
observation records and physical experiments, freak wave not only occurs in deep and finite
water but also in shallow water and offshore area.

The Non-linear Schrodinger (NLS) equation is widely applied in the numerical simulation
of the freak wave, since it reflects the high-order interaction in the modulated non-linear wave
trains. Modified NLS equation can derived based on different hypotheses and boundary
conditions. In this study, we derive the modified NLS equation over an uneven bottom in a two-
dimensional wavefield, and establish a numerical evolution model of the envelope of modulated
wave trains. The contribution from four-wave interaction to the wave train instability is
considered as an initial value problem, and we integrate the envelope from the offshore to
onshore assuming periodic boundary conditions in time to give wave surface elevation through
the pseudo spectral method and discrete Fourier transform. Setting random phase in initial data,
we conduct a Monte Carlo simulation to analyze the evolution of the high-order nonlinearity
and the occurrence of extreme events in the statistics of wave surface elevation. Compared with
the previous studies, we give an exhaustive discussion about the evolution of the non-linear
effect and its reflection in real surface elevation, and consider the effect from the shape of
bottom topography specifically.

Firstly, we summarize the simulation from the unidirectional modulated wave train, and

concentrate on the contribution from the initial condition and spatial inhomogeneity on the
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surface instability. We take the mean value of the high-order moment of surface elevation to
reflect the nonlinearity in wave train and record the distribution of the maximum wave height
and crest in the Monte Carlo simulation. The result indicates, the four-wave interaction
contributes to the occurrence probability of extreme events in deep-water, and the second-order
effect becomes an important factor in medium and shallow water. A steep slope angle will lead
to the increase of the occurrence probability of the freak wave in the wave shoaling.

Based on the numerical analysis of the unidirectional wave, we expand the non-linear
evolution model into a two-dimensional wavefield. The directional dispersion effect is taken
into consideration as a parameter in the initial condition, which disperses the four-wave
interaction and gives a lower instability. Additionally, we discuss the wave evolution over
different types of bottom shapes and the oblique incident wave case with a small angle between

the principal direction and the gradient of depth.
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spatial inhomogeneity; directional dispersion
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Chapter 1

Introduction

1.1 Background

As the development of observation technology in these decades, a special type of wave
records has been found in deep-water showing how the vessels and marine structures were
destroyed by the huge wave crest without any portent. With the summary from reports and
stories mainly from the North Pacific and the North Atlantic, Draper (1965) introduced a
concept as “freak wave” for the waves with very abnormal wave height. This disaster is also
known as “rogue wave”, “giant wave” and “extreme wave”, and usually it was defined as the
wave height exceeds the significant wave height by a factor of 2. Not only in water waves, a
similar phenomenon has also been found in other mediums, such as acoustic and optical waves.

With the systematical and comprehensive data collection and analyzation, thousands of
freak waves have been found in the ocean. Figure 1.1 gives the wave data as one of the highest
wave crests ever recorded in the North Sea by the Draupner platform on Jan 1% 1995 in the
North Sea from Haver (2004), which is also called “New Year’s Wave” as a famous freak wave.
In Figure 1.1 (a), a spike is recorded at around 250s with a very large crest, which brings about
a wave height in 25.6m while the significant wave height is 12m in this group of wave trains.
Figure 1.1 (b) gives the record of surface elevation for twenty minutes in the next hour, and
there is no freak wave that can be observed. In this typical case, the duration of the freak wave
is very short, but the prodigious wave height is too dangerous for navigation and marine
structures.

In the early study about the generation mechanism of the freak wave, researchers
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Chapter 1

concentrated on the linear random wave theory and external influence such as wind and current
interaction. Dean (1990) discussed the probability density function of extreme events in the
linear model based on the Rayleigh distribution for wave heights, and the observed data in field
significantly disagreed with the Rayleigh distribution. Wind effect on wave instability has been
considered in the study from Kharif et al. (2008), and the result suggested the wind forcing on
energy focusing process of the freak wave is limited. Based on the non-linear wave evolution
model, Benjamin(1967) indicated that modulational instability will lead to the generation of
spectral-sidebands effect and the eventual breakup of the waveform in a uniform wave train by
nonlinearity, which is considered to become an important reason causing freak wave in deep-

water after 90’s.
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Figure 1.1. Surface elevation in time series recorded by the Draupner platform on Jan 1
1995 in the North Sea (Haver, 2004)
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In the early 90's, preliminary numerical and experimental studies have demonstrated that
the freak wave can be generated in the long-distance propagation of random waves in deep-
water (Stansberg, 1990, Yasuda et al., 1992). Compared with other mechanisms and theoretical
models, modulated wave trains can predict the occurrence probability of the freak wave in a
more accurate way with the consideration of the surface instability due to the high-order non-
linear interactions.

The total energy of the fluid Ef can be expressed in an expansion in terms of wave
steepness ¢ from Hamiltonian:

Ef =?Efy, + 3Efy + e Ef, + O(?), (1-1)
where the subscript represents the contribution from different orders of . The second-order
term corresponds to the linear wave, and the third-order and fourth-order term correspond to
the contribution from the non-linear effect, which are also known as three-wave interaction and
four-wave interaction. In deep-water, the contribution from the three-wave interaction to wave
energy is very limited, and the wavefield is mainly determined by the fourth-wave interaction
(Janssen, 2003; Krasitskii, 1990). The relation between the fourth-wave interaction and wave
envelope reflects in the Zakharov equation (Zakharov, 1968):

ob, . , >
o +iw by = 1/// dkqy dkgdk T 5 3 40503040115 3 4, (1—-2)
—o0
where b is the function of amplitude, k is wave number vector, the subscript represents the
contribution from different orders and b, =b(k;). T;,3,4 is the non-linear transfer
coefficient and § is Dirac delta function.

Modulational instability represents how much wave energy focusing through four-wave
interaction from the different harmonics in wave train, and it can be estimated by a
dimensionless number named Benjamin—Feir index (BFI) introduced by Janssen (2003) based
on narrowband approximation of Zakharov equation:
V2¢e
P

S

BFI = (1—-3)
where o, is dimensionless spectral bandwidth. This ratio gives the balance between
nonlinearity and the dispersion.

The prediction theory of the freak wave is combined between high-order non-linear theory

and random wave statistics. Mori and Janssen (2006) discussed the distribution of maximum
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wave height in deep-water, and gave exceeding probability function of extreme events, which

is determined by the kurtosis of surface elevation. Kurtosis p, and skewness p, are

dimensionless moment in the fourth-order and third-order of surface elevation #:

4 3
EX(”z‘ - ﬁ) EX(”z‘ - ﬁ)
M4=T7 M?’:T’ (1—4)

where EX represents expected value, 7 is the mean value and 7, is the root mean square
value of 7. For a wave train in the Gaussian process (i.e. linear random waves), u, =3 and
5 = 0. The value of y, can be changed with different non-linear processes or hypotheses.
For a narrowband second-order non-linear wave train, the Stokes wave model gives
contribution from bound wave (Longuet-Higgins, 1963). Thus, values of p, and pj are
related to the wave steepness ¢:

ph =3+24e%, b =3e. (1—5)
In Janssen (2003) and Mori and Janssen (2006), (1, can be changed on the quasi-resonant and
non-resonant interactions than Eq.(1-5). It is parameterized by the fourth-order cumulant «,,

which is proportional to the square of BFI defined by Janssen (2003):

Hi= ki + 3, Ry = —=BFI2. (1-6)

V3

Based on the contribution from the quasi-resonant four-wave interactions in Eq.(1-6) on wave

height, Mori and Janssen (2006) gave the exceeding probability P(H) of wave height H:

—H? K
P(H) =e 8 |1+ =%(H*—16H" 1—
(H)=e s [1+328 (H' —16H?), 1-7)
and exceeding probability P, (H,,,.) of maximum wave height H . :
7Hr2nax K
P(Hy) = 1= exp{~Noe ™ # [1 4208 (11}, —1612,0] }. (19

where N, represents the number of waves in a wave train. Eq. (1-8) is well validated by the
kurtosis in wave tank experiment from Mori et al. (2007) and Kashima & Mori (2019). In a
two-dimensional (2D) wavefield, Alber and Saffman (1978) discussed the stability of deep-
water random waves in 2D space and several studies demonstrated the suppression of instability
in directional dispersion (e.g. Waseda et al., 2009; Onorato et al., 2009a; Mori et al., 2011).
With the consideration of directional effect, Mori et al. (2011) gave the estimation of maximum

k4o Wwith the directional spread o, by asymptotic analysis in Monte Carlo simulation:
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™ (&%
K, = —— BFI2 (—) 1-9
40 \/g oy ( )

where « is the empirical coefficient.

In the simulation study to generate freak wave numerically, Non-linear Schrédinger (NLS)
equation derived by Zakharov (1968) is widely applied since it can reflect the four-wave
interaction in wave evolution. Based on the Laplace equation and non-linear boundary
conditions, the NLS equation gives the evolution of wave envelope at time and space. The form
of the NLS equation varies from different hypotheses and boundary conditions, such as the
assumption of bottom topography and surface tension. With the application of the pseudo
spectral method and the Fourier transform, surface elevation of wave train can be constructed

in a computational fluid dynamics (CFD) model from given the initial conditions.

1.2 Research purpose and outline

Previous research indicates the generation mechanism of freak wave in deep-water, and
the numerical simulations have well validated it in related studies. However, the occurrence of
the freak wave still exists in shallow water depth even the contribution from modulational
instability becomes weak. In this dissertation, we concentrate on the medium and shallow water
depth from offshore to onshore, and we intend to investigate the specific impacts from the
bottom topography on the modulated wave trains at sea states.

With the strong correlation between the high-order non-linear interactions and the
occurrence probability of freak wave, we focus on investigating how the spatial inhomogeneity
from the water depth variation and slope angle affects four-wave interaction in the envelope
evolution of modulated wave, as the process water wave entering continental shelf from deep
sea with mild slope. A numerical evolution model of modulated wave trains is established
through modified Non-linear Schrédinger (mNLS) with water depth change and Monte-Carlo
simulation. Dimensionless moment kurtosis and skewness are used as indicators for high-order
interaction, and wave height distribution is given from the construction of discrete surface
elevation. In a 2D wavefield, further development of the model considers the directional
dispersion effect on four-wave interaction and the oblique incident wave.

In Chapter 2, we introduce the traditional derivation of NLS equation and the third-order
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mNLS model for the wave propagating over an uneven bottom that we applied in this study.

In Chapter 3, we give the numerical result for mNLS model in the unidirectional (1D)
wave trains. Four-wave interaction is given in Eq.(1-3), and we deal with the wave simulation
as an initial value problem. Spatial inhomogeneity from the water depth change is reflected in
spatial step for different bottom types. With Monte-Carlo simulation from random initial phase
information, we discuss the evolution of the nonlinearity of wave trains from the high-order
standardized moments of surface elevation, and wave height distribution at different conditions
to analysis extreme events.

In Chapter 4, we give the numerical result in a 2D wavefield based on the result in
Chapter 3. Directional dispersion effect is taken into consideration from a directional random
wave train, and the comparison between 1D and 2D shows the attenuation of four-wave
interaction in a 2D wavefield. Additionally, we consider the effect from the bottom topography
from different types of uneven bottom and the oblique incident wave with a small angle of
incidence.

A summary of the above results is given in Chapter 5.



Chapter 2

Chapter 2

Evolution Equations for Modulated
Water Waves

2.1 Introduction

In fluid dynamics, the potential flow theory is well applied to describe the spatial and
temporal distribution of physical quantity in a flow field. For an irrotational, inviscid and
incompressible flow field, the velocity potential satisfies the Laplace equation inside and the
boundary conditions on the physical boundaries. For gravity water waves with a free surface,
wave train becomes modulated due to the non-linear interactions from the high-order effect.
Related discussion about the non-linear modulated wave can be referred to the reviews in Yuen
and Lake (1980, 1982), Hammack and Henderson (1993), Dias and Kharif (1999) and Liu
(1999).

The Non-linear Schrédinger (NLS) equation is the simplest form in the study of modulated
wave trains. Zakharov (1968) firstly derived the NLS equation from the non-linear boundary
conditions by Hamiltonian function for narrow spectral bandwidth, which is also called the
Zakharov equation. The NLS equation gives the evolution of wave envelope at time and space
in the form of a partial differential equation on the third-order. The non-linear term can reflect
four-wave interaction to estimate modulational instability of wave train, so the NLS equation
is widely used in freak wave study. Davey and Stewartson (1974) gave the derivation of NLS
equation in an easy-to-understand way. With the application of the multiple scales method, they
discussed the expression of the velocity potential and surface elevation of the Stokes wave in
different orders and harmonics. In their study, wave packet is defined as a three-dimensional

(3D) problem due to the form of wave surface in stereoscopic space. We can also call it a two-
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dimensional (2D) problem since the value of surface elevation on the vertical direction can be
determined by the value from the other two dimensions at a certain time (this definition is used
in the following content). For the NLS equation in standard form, we can give some particular
solutions as the theoretical solutions such as decaying solutions, soliton and breather. (e.g.
Benney and Newell, 1967; Segur and Ablowitz, 1976; Hui and Hamilton, 1979). The derivation
of the NLS equation in the standard form varies in different ways (e.g. Chu and Mei, 1970;
Hasimoto and Ono, 1972; Djordjevic and Redekopp, 1977), as well as the related numerical
work (e.g. Lo and Mei, 1985 & 1987).

With different hypotheses and boundary conditions, such as the special case in extreme
condition, consideration of surface tension and an ambient current, modified NLS equations
have been put up in various forms (e.g. Longuet-Higgins, 1976; Djordjevic and Redekopp, 1977;
Dysthe, 1979; Turpin et al., 1983; Dysthe et al., 2003). With the contribution from spatial
inhomogeneity on the modulation, Djordjevic and Redekopp (1978) derived a solution for an
envelope-hole soliton moving over an uneven bottom and gave a modified NLS equation with
slope effect. Variation of the depth in Liu and Dingemans (1989) was divided into different
scales, then they gave evolution equations for modulated wave groups over an uneven bottom
in different types. If fast varying component is ignored, Liu and Dingemans (1989)’s result for

a very mild slope is the same as Djordjevic and Redekopp (1978)’s work.

2.2 Governing equations

With the hypothesis of an irrotational, inviscid and incompressible flow with free water
surface, a coordinate system (z,y,z) is established. Plane (z,y) is defined along the
quiescent water surface and z is defined vertically upward direction, opposite to the gravity
acceleration g. We define the velocity potential @ and free surface elevation 7 are functions
of space and time t:

b =d(x,y,z,t),n=n(x,y,t). (2—1)

In the entire flow field & is a solution of the Laplace equation to satisfy continuity:
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PP 0® D

2 — —
v 0x? + 0y? + 022

(2-2)

On the boundary of free surface z = n(x,y,t), @ and 7 satisfy the kinematic boundary

condition (i.e. free surface equation) and the dynamic boundary condition (i.e. Bernoulli

equation):
ob Oy 0DPon 0D
- =7 777 = 2 —
52 ot Towow Toyoy " (2-3)
oP OP\>  0D\?  [OP\>
25—%29?7—1-(%) —i-(@) —i-(@) =0, z=m. (2—4)

At the bottom of flow field, & satisfies the no-flux boundary along the sea floor. If the water

depth A is constant at a flat bottom z = —h, @ satisfies the flat bottom equation:

oP
= =0 =—h. 25
If we assume the bottom is uneven and water depth varies at z = —h(z,y), ¢ satisfies the

uneven bottom equation:
ob  ohow ohob
0z Ordxr Oyoy

Eq. (2-1) to (2-5) consist of the governing equations of the wave evolution on a flat bottom,

0, z=—h(z,y). (2—06)

and for an even bottom we use Eq. (2-6) instead of (2-5).

2.3 Method of multiple scales and solution of envelope

Base on the periodicity of the time and space in the propagation of gravity waves, wave
frequency w and wave number k satisfy the linear dispersion relation:

w = \/gho, (2-7)
where o = tanhkh. For a medium has no temporal variation, carrier wave frequency w = wy
is constant, where subscript 0 means linear waves. For a flat bottom with a constant water
depth h, carrier wave number k = k is also constant as w; for an uneven bottom, wave
number k£ will be changed because of spatial inhomogeneity due to bottom topography. The

change in wave dispersion will also be reflected in the group speed c,:

cg:%[ + k(1 — o?)]. (2—8)

In other words, & and ¢, are functions of h.
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For a weakly non-linear wave train, the modulation parameter comes from the contribution
from the small perturbation in high-order harmonic, so we further expand the velocity potential
@ and free surface elevation 7 into harmonic functions. In this research, we assume the
modulation caused by the nonlinearity and the depth variations are in the same order of
magnitude referring to Liu and Dingemans (1989). We make this small parameter equal to wave

steepness ¢, and expand @ and 7 in the form of :

D(z,y,2,t) = ie” [ i D, .. (x,y,2,1) Em] , (2—-9)
U(fﬁayat):i*fn |: i nnm(xvyvt>Em:|v (271())
E = expli(kx — wyt)], (2—11)

where E represent the harmonic functions, and the complex conjugates part satisfy @, _,, =

m

7 M—m = Tnm- We take n < 3 in the derivation since ¢ is very small.

With the expansion of @ and n to the third-order of &, the method of multiple scales
introduced in Davey and Stewartson (1974) is applied to give the solution at different order and

harmonic. The details in this process in similar to the Hasimoto and Ono (1972).

2.3.1 Solution of the envelope evolution for a flat bottom
Firstly, we concentrate on the derivation of ¢ and 7 for the wave evolution on a flat
bottom. We introduce the variables substitution as follow referring to Davey and Stewartson
(1974):
T = e, £ = e(x —c,t), (= ey, (2—-12)
which makes ¢ = &(1,&,,(, 2) and n = n(r,&;,¢). The harmonic E = 0 represents the
very long wave or wave-induced mean current, and we assume &, and &,, are independent

of z, and

=— h
5=+ ( o e
Take Eq. (2-9) into Eq. (2-2) and (2-5) to have a multiscale analysis, we get the basic solution

of @, atdifferent order and harmonic. We also need to pay attention to the high harmonic

terms with the contribution from low harmonic in the non-linear interactions.

-10 -
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At O(g), we can get the ordinary differential equation about &, from the Laplace

equation:
0%
Wél — k2@, =0, (2 —14)
@y, = Ajel® + Ale . (2—15)
With Eq. (2-5), we can get:
coshk(z + h)

@11 = A<7—17 é-la C) (2 — 16)

coshkh

where A(7y,&;,() isanunknown coefficient. We can understand A to represent the envelope
ofthe velocity potential @ at the first-order and first-harmonic from the perspective of physical
meaning.

At O(g?), we can give @,, and P,, through the same process:

cosh2k(z + h)

@22 :F<7—17§1a<) cosh2kh )
coshk(z+h) .0A 1

Doy = D(71,61, ) — ' 9€, coshkh

(2—17)

[(z + h)sinhk(z + h) — hocoshk(z + h)],

(2 —18)
where F'(7,,&,,() is an unknown coefficient of the envelope of the velocity potential & at
the second-order and second-harmonic, and D(71,&;,() is for the second-order and first-

harmonic.
At O(e?), we only give @, since the expression from higher harmonic is not required

in the following derivation:

B coshk(z + h)
Dy = G(11,4,0) coshkh
(2 + h)sinhk(z + h) — hocoshk(z + h) [ ( 9*A 0D 8A) 82A}
9 A S Pl IOl
+ kcoshih “\hoge e 0 ) T ae
[(z 4+ h)? — h?]coshk(z + h) 9% A

— 2—1
2coshkh &3 ( 2

where G(7,&;,() is an unknown coefficient of the envelope ¢ at the third-order and first-
harmonic.

To determine the unknown coefficients in the expression, we take the result of @ in
Eq .(2-16) to (2-19) into Eq .(2-3) and Eq .(2-4). With the expansion of 7 from Eq .(2-10), we
take the Taylor-expansion at the equilibrium position z = 0. The free surface equation in

Eq .(2-3) can be written as:
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_On (0P 00Oy OPOn

0_(9t+< 6z+6x8x+ayay>zzn

oy (00 ovoy odon O (-2 o 20
=5t ("5 "o T 0y 0) ”[a_(é‘_ 7 ) ]

|+, (2 —20)
z=0

1, 0% ( 0B ooy 0bon
375z (5t arar * oy )

and the Bernoulli equation in Eq .(2-4) can be written as:

0= 2gn+ [2%5* (%)2 * <g%>2+ @;fﬂ =
e e () () ()]
ol @ G L)

+%n2 {59—;[2§+ (5_392 + (%)2 + (%ﬂ ZO} +e (221

At O(e), the mean surface elevation 7,, = 0 and we get the surface elevation on first-

z=0

harmonic:
g1 = lwyA. (2—22)
At O(£?), we can give:
9¢
GNao = ¢, 8§1°—k2\A|2(1—a2), (2 —23)
1
0A
9Ny = €, = + 1wy D, (2—24)
21 g 851 0
k2 A? 3ik? A2

(1—o%). (2 —25)

(370’2% WOF:

gnag = —

202 402

At O(g?), we give the final evolution equation of A by a equation set from E° and F

respectively in the same form of Davey and Stewartson (1974):

(gh — cg) a;?%w + gh 62?210 = —k? [cg(l —0?) + 20p] 0522 , c, = %, (2 —26)
ig—ﬁ—i—ﬂ;%—iﬂﬁ;%:5}L|A‘2A+,3}Aa;21107 (2—27)

where
B = 3o = [ — b1 )L~ ko), 2-28)
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k4

Bl = o (9072 — 12 + 1302 — 20%), (2 —30)
0
k2
By :ﬂ[2cp+cg(1—02)]. (2—31)
0

Eq. (2-26) and (2-27) consist of the evolution equation of the envelope of velocity potential at
the first-harmonic on a flat bottom. Eq. (2-26) is a Poisson-type equation for forcing mean flow,
and the equation in the same form with Eq. (2-27) is known as the NLS equation for the weak
non-linear wave evolution, and the non-linear term [3!|A[*A represents the high-order
interaction from different harmonics. Based on different definitions of A, the expression of 31
and ﬁ} are different (Liu, 1999). If A represents the envelope of surface elevation, Eq. (2-30)

and Eq. (2-31) become:
g2k4

ﬁrll* = 1 (90*2 — 12+ 1302 — 204), (2 — 32)
0
. _ gk
ﬂ} - 22 [20p+cg(1 —a?)]. (2—33)

2.3.2 Solution of the envelope evolution for an uneven bottom with mild slope

If we consider the contribution from spatial inhomogeneity on the modulational instability
of wave trains, a modified NLS equation can be derived in a NLS-like form. The governing
equations for an uneven bottom is almost the same with flat bottom case, but the no-flux
boundary on the bottom requires the application of Eq.(2-6) instead of (2-5).

To simplify the problem, we suppose the water depth h varies slowly. Additionally, we
want to concentrate on the variation of depth on the wave propagating direction, so we assume
the magnitude of the gradient of depth change satisfies h'(z)~O(g?) and h'(y)~O(g?).
Considering the expansion form in Eq. (2-9) and (2-10), the effect from bottom topography
change only reflects in the third-order O(g3) and h'(y)~O(e?®) is equivalent to h'(y) = 0.
As for the dispersion relation between wave number and frequency, the carrier w = w, is still
constant since there is no temporal variation, but carrier wave number % changes. Based on
the above inference, we can get k = k(x) and c, = c,(x) on the principal wave direction,

and the harmonic term is in the form as:

E =exp {i [/wk(x)dx — wot] }, (2—34)
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Moreover, we expect to reflect the variation of h in wave evolution process explicitly, so
we introduce a different variable substitution of ¢ and z referring to Djordjevic and

Redekopp (1978):

72:8[/96 dw _t]7 £, =c2e, C=ey. (2 — 35)

cql)

Through a similar derivation process for the flat bottom in 2.3.1, we give the solution of

@ and 7 at different order and harmonic.

At O(e):
B coshk(z + h)
@11 - A<7—27 §2a C) coshkh ) (2 - 36)
g = iwpA. (2—37)
At O(e?):
B cosh2k(z + h)
¢22_F(7—2a§2aC)W7 (2—38)

coshk(z+h) 0A 1

coshkh la—am [(z 4+ h)sinhk(z + h) — hocoshk(z + h)]

@21 - D(7—27§27 C)

(2 — 39)
Moo = (98¢1°—k2|A\2(1—02), (2 — 40)
T2
0A .
I =+ iwy D, (2 —41)
k2 A2 3ik? A2
gn22:*ﬁ(3*02)7 Wonw(1*04)- (2 —42)
At O(e3):
8@30 82¢10 1 82@10
9 pol 2—4
32 (Z+h) ( 07_22 C§+ 0€2 s ( 3)
coshk(z + h)
03 = G<Tza§2aC)W
i d(h) ,, 10%4
" 2coshkh {Zk ag, *F (k A= %0—79 (= + h)] (2 + h)coshk(z + h)
i d(kh) . 0A ihod*A 19D .1 9%°A _
o4 tWeod tob L 1o4 .
coshkh {G d¢, 06, 2 072 ¢, 0m + T e (z + h)sinhk(z + h),
(2 — 44)

where A, D, F,G are unknown functions of 7,,&,,(. At O(e) and O(g?), the difference
between 2.3.1 and 2.3.2 only comes from the different form of variable substitution. At O(g?),
the effect of depth change shows up and we can give the evolution equation of A in a similar
equation set:
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82leo gh 9 P10 8|A|2
710 (1 =k2((1— 2 2—4
72 ( cg) Ihge =k {( )+ cg] or, . 27
A 82A 02 A ¢
2 27 17 02(4)2 2 10 _
lﬁhA+la§2 +Bt o 2 Y 0€2 ﬁn|A| A+ﬁfA 87_2 ) (2 46)
where
o, _ (1—=0*)(1 —kho)d(kh) _ 1 d(cy) B
Bn = o+kh(l—02) d& — 2c, d&, (2—-47)
1 gh
2 _ _ I _ _ —
B2 = S, 1 2 (1—02)(1 —kho)|, (2 — 48)
10w ¢
2 __pl - - 77 —_9 _
by = vo2kok 2k (2-49)
4
B2 =8 =—(9072 - 12+ 1302 — 20%), (2 —50)
Wo
k2
8% =Bf =5—[2¢c, + c,(1—0?)]. (2—51)

Wo

(32 reflects the contribution from the variation of bottom topography, and it is proportional to
the gradient of water depth change. When 37 = 0, the modified equation set is equivalent to
the flat bottom equation in 2.3.1. From Eq. (2-47), the value of 37 can be positive or negative
depending on the kh, which implies the effect from bottom topography change on the non-
linear interaction may convert at different water depth or bottom shape.

For the case that slope is not very mild and A’ (z)~O(e), Liu and Dingemans (1989) also

gave the evolution equation of wave envelope. The equation set for a unidirectional wave train

in the form of:

0A 0% A 0 0
16, A+ 5+ﬂta = BLlAPA+ B, ¢10A+52 ¢10A (2 —52)
82¢10 0 01 N g 0 2 Wo ‘A|2
o2 _%< L ) _E%UM‘ )~ TsnnEh o (2-353)

where 8, B3, B, 81, By are coefficients consist of o, k,wy, h and c,. We don’t apply Eq.
(2-52) and (2-53) in this study, because the terms with ¢;, make it difficult to give the solution

even in a numerical model.

2.4 Real wave surface elevation

In 2.3, we discuss the evolution equation of envelope in the NLS and NLS-like equation,

and the expression can be different based on the definition of amplitude A. To give the real
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wave surface elevation, usually we define A is the envelope of surface elevation 7. Liu and
Dingemans (1989) defined 7n,; = %A as the basic solution in the first order, and considered
the contribution from the second-order first-harmonic D to the surface elevation. Under this
consideration, we can denote A = A + D instead of A including the second-order effects.
Besides, the term about O¢;, is unknown in the solving of NLS equation, which increases the
difficulty to determine A. Referring to Davey & Stewartson (1974) and Djordjevic &

Redekopp (1978), Eq. (2-45) and Eq. (2-46) can be re-expressed in one equation:
0A  0*A 9?A

iBhAJria—ngrﬂta—T%Jrﬂya—C:Bn\APAJrBHAQo’ (2 — 54)
where 8, = 57, B, = b7, B, = 55’
B, = k2w, [116 (9 — 1002 + 90*) — m}
2
" ES% (=1~ %] (cg c—g gh) [2320[; + 4sin;)§kh)2 o (2-59
5,{:;2_’; {%+(102)]. (2 —56)

Qo only effect phase in the result so we can regard ), = 0. Strictly speaking, removing the
last term in Eq. (2-54) requires a special transformation about envelope A. In this study, we
construct wave surface elevation with random phase to conduct the Monte Carlo simulation as
following chapters, so the precise value of (), is not essential for the result we concentrate on.

Eq. (2-54) can be solved numerically to give the wave envelop in time and space. Based
on the periodicity in wavefield, we give the real surface elevation considering the second-order
and second-harmonic:

n(w,y,t) = eBnyy + *(Enyy + E*ny,). (2—57)

It can be expressed in the form of A:
n(z,y,t) = eRe [%/Iexp(i(k(x)x — wot))]

kcoshkh -
2 2 2 : _ _
+e°Re [8sinh3kh (2cosh?kh + 1) A2exp(2i(k(z)z — wt)) | . (2 —58)
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Numerical Model of Unidirectional
Modulated Wave Train

3.1 Introduction

From the observation record of the World Ocean and the coast in Nikolkina and
Didenkulova (2011), freak wave not only occurs in deep-water but also finite and shallow water.
In the process water wave entering the continental shelf from deep sea with a slope, wave
evolution will be influenced by the water depth changing. Benjamin(1967) indicated the effect
of modulational instability on the wave train has a critical water depth at kh = 1.363. When
kh <1.363, the modulational instability becomes weak and the occurrence of extreme value in
wave train will significantly decrease. The evolution of modulated wave train over an uneven
bottom can also refer to Peregrine (1983), Turpin and Mei (1983), Mei and Benmoussa (1984),
Janssen et al. (2003).

In the numerical simulation, kurtosis and skewness of wave train are significantly affected
by changes in water depth from Zeng and Trulsen (2012)’s study in Monte Carlo simulation
through 1-D modified NLS equation. In deep and finite water, kurtosis and skewness
monotonically decline as water depth decreasing. However, from the numerical simulation and
physical experiments in shallow water, the slope of bottom topography brings about a
rebounding process. From Kashima and Mori (2019) and Trulsen et al. (2020), kurtosis and
skewness reach maximum value around the end of the slope region, which indicates the
nonlinearity from shoaling effect increases wave train instability. Considering corresponding
performance in wave height distribution, the slope angle of bottom topography may play an

-17-



Chapter 3

important role for the occurrence probability of extreme value in the shallow water.

In this chapter, we concentrate on the numerical solution of mNLS equation for an uneven
bottom. We expect to simulate the evolution of wave envelope, and study the effect from spatial
inhomogeneity on the modulational instability in wave trains. To get rid of the directional
dispersion effect on four-wave interaction, we set up a simple numerical model for
unidirectional wave trains, and collect surface elevation in the wavefield of one-dimensional
space-time (1D+T). We apply Monte Carlo simulation and pseudo spectral method in the

numerical model, and consider the wave shoaling in different types of bottom topography shape.

3.2 Methodology

3.2.1 1D mNLS equation for an uneven bottom

Based on the theoretical result in Chapter 2, we apply the mNLS equation for the
evolution of wave envelope over an uneven bottom with mild slope. A flow field with
unidirectional incident wave trains can be regarded as an 1-D problem, and the coordinate
system (x,z) is defined with origin O at quiescent water surface as shown in Figure 3.1. The

x is defined along the quiescent water surface and z is defined vertically upward direction,

Incident wave

——
O >
- h

Figure 3.1 Sketch of coordinate with sloping bottom
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opposite to gravity acceleration g. As previous assumption, the flow is irrotational, inviscid
and incompressible with free surface, and potential theory is applied to give wave velocity
potential ¢ = &(x,z,t) and free surface elevation 1 = n(z,t). The bottom z = —h(x)
varies in the direction of propagation, and it can be divided into three districts: flat bottom in
deep-water; sloping region with a constant slope angle; flat bottom in shallow water.

In the entire flow field @ and n satisfy Eq. (2-1) to (2-4) and Eq. (2-6), and they can be

simplified with omission of variation on y:

VQ@:Z%EJr?;Tf:O, (3—1)
%+%g—i: 0, z = —h(x), (3—2)
2%—1—2977—1—(%?)2—1-(%)2:07 z=1. (3—14)

Based on the method of multiple scale and the dispersion relation in Eq. (2-7), ¢ and n can

be expanded into:

D(z,2,t) = is” [min Dz, 2,1) Em] ) (3—05)
n(x,t) = ie” [min Ny (2, 1) Em] , (3—16)

where ¢ is small constant equal to wave steepness and F = exp{i[[” k(z)dz — wt]}

represents harmonic function. n, m are integers and the complex conjugate part in the form of

Gpm = (Z;nm N —m = Tnms TESPectively.

To simplify the problem, we suppose the water depth h varies slowly with the wave
propagating direction in the same order to wave steepness, h’(z) = O(e?). We concentrate on
the effect from topography change, so the variation of A should be reflected in solving process

explicitly. Therefore, we introduce the variable transfer referring to Djordjevic and Redekopp

(1978) as Chapter 2:
“d
7:5{/ C—x—t}, ¢ =e’n, (3—=T)

) =500+ kh(1— 0%, (3-8)
Wo
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where ¢, is group velocity. 7 and ¢ slowly vary on time and space, respectively.
Substituting Eq.(3-5), (3-6) into (3-1) to (3-4), we can give the expression of ¢ and 7 in the
form of amplitude A of first harmonic in the first-order, which is an unknown complex. We
here denote A = A+¢eD instead of A including the second-order effects, where D is
amplitude of first harmonic in second-order. Finally, the evolution equation of A is in

following form:

o= 0A 0%A o x
lﬁhA+la_€+ﬁtw:Bn|A|2A’ (3-9)
where
1 —02)(1 — kho)d(kh 1 d(e,)
Bh:< )( — ) ( >:_ 97 (3_10)
o+ kh(l—o02) d¢ 2¢, d§
_ 1 gh 2
B, = 2onc, [1 2 (1—0%)(1 kho)], (3—11)
1 1
— 12 [ 20 1042 4y _
b = K [16 (9 =100% +90%) 2sinh22kh}
3 2 2 2
wo 1, 5 k €9 gk wo
| N AL S QL . 12
* [ g 2g (o )+ cg] (cg — gh) [2wocg * 4sinh(kh)? (3 )

3.2.2 Numerical solution
Eq.(3-9) is in the form of partial differential equation and needed to be rewrite into an
ordinary differential equation to be solved numerically. We assume the boundary is periodic in
time following Zeng and Trulsen (2012), then Fourier transform can be applied to simply the
dispersion term in time, and Eq.(3-9) becomes:
dA

ac = TBAPA-iB A B A= f(5 A), (3-13)

where w. comes from the Fourier transform about 7:
The fourth-order Runge-Kutta method is applied to solving Eq.(3-13) in the spatial evolution.

On the step n + 1, the solution of A, 41 can be derived from A, on the last step n:

_ _de
A = A+ S0 A L+ 4 1), (3-15)
where d¢; is the calculation resolution on the spatial direction, and
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L=, A4,), (3—16)
12:f<§n+d§i,ﬁn+d§izl), (3-17)
13:f<§n+d2§i,fin+%lz>, (3—18)
Iy = f(& +d&, A, +d&l,). (3—19)

In this way, we deal with the solution of wave envelope A of Eq. (3-9) as an initial value
problem moving from ¢ = §. To give the initial condition, we suppose the Fourier amplitudes

/io (&y,w,) satisfy the initially Gaussian spectrum with randomized phase information:

- [ 1 - 2
AO(&O’ w‘l’) =a \/%O'w exXp <_% + 1¢> ) (3 - 20)

Where a represents amplitude scale, o, is spectral bandwidth, 1) represents phase and

uniformly distributes at [0,2x]. Initial BFI value is given by Eq. (1-3), and o, = 0,,/w, for
dimensionless. In each step of spatial evolution, an array of amplitude A in time series will be
decided, then free surface elevation 7 can be given in the second-order as Eq. (2-58). The
process in generating the surface elevation from the amplitude varies due to different precision
or hypotheses. Eq.(2-58) consists of free surface elevation of amplitude from the first-order to
second-order and second harmonic. We integrate Eq.(2-58) from the offshore to onshore
assuming periodic boundary condition in time. This is transverse process compared with ordinal
treatment of the spectral wave modeling.

For a group of wave train, the distribution of surface elevation 7 is very important in
extreme wave study. In the linear random wave train (i.e. Rayleigh distribution), probability
density function of maximum surface elevation 7, ,, isonly decided by the number of sample,
which can be estimated by the zero-up-crossing number N, in random wavefield. For

narrowband wave trains, maximum wave height H . usually is simply defined by twice

X

maximum 7),,... From Mori and Janssen (2006), distribution of H, ,  is related to N, and

X
kurtosis j, by the fourth-order cumulant x,, in Eq. (1-8). Therefore, our numerical work
concentrate on the statistical parameters and spectrum shape of irregular wave. With a large

ensemble size, the surface elevation at same stage will be generally closed to a zero-mean strict-

sense stationary process, and its statistical parameters such as i, only change with the initial
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condition and spatial inhomogeneity in this study. It can also be applied in wave generation in
laboratory to obtain irregular wave trains with required characteristics, e.g. Kashima and Mori
(2019).

In the wave height analysis from the zero-up-cross method, frequency spectrum
peakedness @), in Eq.(3-21) proposed by Goda (1970) can also be used for the measure of

frequency dispersion:

2 [ fS(p)df

TS (3=20

Qp

where S(f) is the frequency spectrum of waves, f represent frequency. The definition of @,
is similar to the spectral bandwidth, but weighted on the share around peak frequency. In wave
height statistic from zero-up-cross method, @, has a positive correlation with the maximum
wave height distribution if we consider the high-order nonlinearity.

In the realization process, Mei and Benmoussa (1984) introduced a normalization to make
all parameters become dimensionless. We apply a different normalization only for the variable
(fi, &, w,, T) in programing as following:

27 <

2m L
A/:—A /:— /: —T /:— —2
o 13 Log, W=egw T T, (3—22)

where L, is the total time length at each step, L, is the initial wave length.

3.2.3 Model setup

For a narrowband wave train, we start our simulation from wave energy spectral in
Gaussian shape by Eq.(3-20) with carrier frequency w = 2.5s7!, time length L, = 40T},
where 7|, is wave period. The initial shape of energy spectral is decided by value of BFI in
Eq.(1-3). Figure 3.2 gives the absolute Fourier Amplitude at BFI=1, 0.75, 0.5, 0.25, where the
wave steepness ¢ = ka constantly at 0.1, and dimensionless spectral bandwidth o, varies
from 0.141, 0.189, 0.283, 0.567, respectively. Figure 3.2 shows that the larger BFI gives
concentrated wave energy on the carrier wave frequency. This effect can be reflected in wave
surface in time series. /10 in the initial condition from Eq. (3-20) consists of real and imaginary

part, so A in spatial step is also complex. Figure 3.3 gives the numerical value about the
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evolution of real and imaginary part of A in time series at different spatial stages from a single
sample at a constant water depth kh = 7, where we can see the contribution from real and
imaginary part is at the same level but the their envelope don’t coincide. We construct the
surface elevation 7 at each step in this model from A by Eq. (2-58). Figure 3.4 indicates the
details of surface elevation 7 at initial point & = ,(x = x,), from different spectra in Figure
3.2 through the inverse Fourier transform as function of dimensionless time ¢/7,. The wave
train becomes more regular and the coherent wave period can be more easily distinguished in
wave train with larger BFL. 1 consists of different composition, and Figure 3.5 gives
corresponding 7 to the A in Figure 3.3 at different orders. Compared with the first-order
n(e), the contribution from second-order term n(e?) is very small, but 7(e?) significantly
increases when extreme value occurs.

In Eq.(3-20) the wave phase ¢ is set to be random at [0,27], which is able to give
different initial wave trains for given BFI. From groups of wave data at different initial
conditions, we utilize Monte Carlo simulation (i.e. random phase approximation) to estimate
the ensemble averaged non-linear wave characteristics. To check the convergence of result in
this model, we give Figure 3.6 and Figure 3.7 to show the mean value and standard deviation
of kurtosis p, with different ensemble size M. As the M increases, mean value of 1,
gradually converges. In the numerical NLS model, the wave surface requires a distance from
the initial point to become steady and usually it is about 10~15L,,. From Figure 3.6 and Figure
3.7, the result at * > 15L, becomes sufficiently convergent when M > 250, and we apply

ensemble size M =300 in the following result.
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Figure 3.2 Fourier Amplitude from different initial BFI when ¢ = 0.1, o, =0.141, 0.189,

0.283, 0.567
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Figure 3.3 A sample of real and imaginary part of wave amplitude in envelope in time series

from initial BFI=0.75 at = 10L,,20L,,30L, when ¢ =0.1, kh =7
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Figure 3.4 Samples of free surface elevation in time series from different initial BFl at x =
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Figure 3.5 Samples of contribution on free surface elevation from the first and second-order

in time series from initial BFI = 0.75 at « = 10L,20L,30L, when ¢ =0.1, kh =7
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Figure 3.6 Spatial evolution of kurtosis from different ensemble size M when initial BFI =

0.75, kh =4.0
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Figure 3.7 Variation of mean value and standard deviation of kurtosis with ensemble size M

at x = 25L,, initial BFI=0.75, kh =4.0
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To figure out what role does the slope of bottom topography play in the high-order non-
linear wave evolution, we assume water depth A only varies for x as described in 3.1. We
consider the flat bottom case and three different bottom slopes as shown in Figure 3.8. The
wave train propagates from the left to right starting in flat region with enough deep-water depth
to achieve a stabilized high-order non-linear condition. When wave train comes to the slope
region, dimensionless water depth kh changes from kh =7.0to kh = 1.1 in all three types.
With the hypothesis 4’ (x) = O(g?), we assume the slope is very mild and »’(z) =0.05,0.02,
0.01. When water depth kh reaches 1.1, it is enough shallow in mNLS equation and closed to
limitation of our model due to the increasing water steepness e, so we set water depth come
back to flat. In Figure 3.8, the initial water depth » = 11 and initial wave length L, =9.75
obtained by dispersion relation in Eq. (2-7), slope regions start at * = 15L, and end up at z
=35L,, 65L,, 115L, for different slope. In each spatial calculation step, d¢; =2x10°L,,.

Figure 3.9 gives the changes in shoaling coefficient [3,, dispersion coefficient 3, and
non-linear coefficient 3, in Eq.(3-9) in wave evolution for different bottom topography.
Downward triangle in black represents starting point of slope, and upward triangle in different
colors represent starting point of slope for different bottom topography (blue: slope = 0.05, red:
slope = 0.02, yellow: slope = 0.01). Following figures continue to use them to represent slope
region at x-axis. From Eq.(3-10), 3, =0 when bottom is flat. As the water depth changes from
deep to shallow, f3;, first descends to minimumat kh =1.785 (for slope =0.05: z/L, =32.5;
slope =0.02: z/L, = 58.5; slope = 0.01: /L, = 101) and then rises to maximum at kh =
1.1 (for slope =0.05: x/L, =35;slope=0.02: x/L, =65;slope=0.01: x/L, =115)inthe
end of slope region. Extremum of 3, is decided by slope, and the maximum and absolute
minimum will both be enlarged when h'(z) rises. f3,, [, are only decided by water depth
kh, and smaller slope angle will make this process milder. In slope region, 3, first rises to
maximum at the same water depth where 3, reaches minimum, and begins to decreases. [3,,
monotonically decreases with water depth decreasing, but absolute 3, first decreases to 0 at
kh =1.614 (for slope = 0.05: x/L, =33.2;slope =0.02: z/L, =60; slope=0.01: z/L, =
105) and then increases, which indicates the contribution from [, in wave train nonlinearity
may have a process of increasing first and then decreasing. What the variety from coefficients

bring to wave evolution will be reflected in high-order moments, wave heights and wave height
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distribution as following section.
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Figure 3.8 Schematic view of different bottom topography with kh =7.0 - 1.1
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Figure 3.9 Coefficients in mNLS equation for different bottom topography
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3.3 Evolution of modulated wave over a flat bottom

Firstly, we set /3, = 0 to give the numerical result over a flat bottom as the reference.
When 3, =0, Eq. (3-9) is in the form of standard NLS equation for unidirectional wave. In
Chapter 1, we mentioned dimensionless moment kurtosis p, and skewness p4 in surface
elevation statistic. The Gaussian distribution suggests 1, =3 and ps = 0, but nonlinearity in
wave evolution will give different expected values.

Figure 3.10 and Figure 3.11 show the evolution of i, and 4 in a flat bottom with
different water depth kh at initial BFI=0.75. Mean p, monotonically decreases when water
depth kh declines. In contrast, kh has little effect on p5 when kh > 2, and pg will
significantly increase in shallow water.

In 3.2.3, we give the initial wave data with wave steepness ¢ = 0.1 and we change o, to
give different initial BFI based on the dispersion on the frequency spectral. Wave steepness ¢
also plays an important role in the modulational instability, and the magnetic of ¢ represents
the degree of the nonlinearity in wave train. Therefore, we also want to discuss the effect from
different ¢ in the same initial BFI. For the uneven bottom topography in Figure 3.8, wave
steepness starts from ¢ = 0.1 and increases to 0.13 at the end kh = 1.1 due to the wave
shoaling effect, so we give p, and 4 in both € = 0.1 and ¢ = 0.13 in Figure 3.10 and
Figure 3.11 to have a comparison. In flat bottom kh =1.1, effect from ¢ on p, isverysmall,
but enlarging ¢ will significantly increases ps. Figure 3.12 and Figure 3.13 give the
evolution of p, and g5 in flat bottom with different wave steepness ¢ and the initial BFI is
constant at 0.5, where the water depth is finite at kh =4. As the ¢ increases from 0.05 to 0.2,
i, and pg increases. The effect from the water steepness is more significant in j5 than i,
since [ mainly reflect the second-order effect in bound wave theory.

Figure 3.14 and Figure 3.15 show the comparison between j, and 4 in different water
depth with flat bottom. When kh = 4.0, kurtosis and skewness increase as the BFI becomes
higher. However, it is contrast when kh = 1.1 that kurtosis and skewness at lower BFI will

significantly increase. For modulated wave trains, the nonlinearity comes from the contribution
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from two parts: four-wave interaction in the third-order (estimated by BFI) and second-order
effect. In deep-water, wave trains is mainly determined by BFI and higher BFI leads to larger
iy and p5. When water depth becomes shallow, the four-wave interaction becomes weak and
makes 1, and p5 decrease,butinasmall kh the increase of wave steepness € will increase
iy and pg in different levels. For wave trains starting with low BFI in shallow water, the
decrease of p, and p5 caused by the third-order effect is small compared with the increase
caused by the second-order effect, which leads to the converse behavior about BFI in deep and
shallow water. It can also explain the critical depth for modulated wave in Benjamin (1967).

I3 1s more sensitive about the second-order effect so it significantly increases in shallow water.

4.5 T T T T T

kh=1.1(c = 0.1)
kh = 1.1 (¢ = 0.13)

2+ kh=2 (e = 0.1) 1
kh =4 (c = 0.1)
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15 1 1 1 1 1
0 5 10 15 20 25 30

x/LO

Figure 3.10 Spatial evolution of kurtosis in flat bottom, initial BFI = 0.75
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Figure 3.11 Spatial evolution of skewness in flat bottom, initial BFI = 0.75
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Figure 3.12 Spatial evolution of kurtosis in flat bottom, when initial BFI = 0.5, ¢ =0.14,

0.28,0.57, kh =4.0
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Figure 3.14 Spatial evolution of kurtosis in flat bottom with different initial BFI
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Figure 3.15 Spatial evolution of skewness in flat bottom with different initial BFI

3.4 Evolution of modulated wave over an uneven bottom

3.4.1 Evolution of the high-order nonlinearity

Here we start the discussion about the nonlinearity from the high-order statistical moment
in different initial condition on an uneven bottom. As a validation, Figure 3.16 shows the
comparison between numerical result from this model and the experiment from Kashima and
Mori (2019). We select the experimental data in the step bottom wave tank to have a comparison
because wave breaking doesn’t occur in this case as well as this numerical model. Wave maker
gives initial condition that wave steepness ¢ = 0.066, BFI = 1.45 and @), = 4.7. The water
depth starts from h = 0.5, kh =2.077 and decreases to h = 0.2, kh =1 with a slope 1/30.
In Figure 3.16, both numerical result and experiment data show that 1, and p, have similar
evolution process: increase at the end of slope region, and immediately drops at flat bottom in
shallow water. The numerical model seems to overestimate the value of 15, and it comes from
the limitation of mild slope in this model that £ =0.066 and slope 1/30 exceed the assumption
h'(x) = O(£?). Additionally, the numerical NLS model more applies to deep and finite water,

and we find the result will be not reliable when h is too small. Here h = 0.2 is very closed to

-33-



Chapter 3

the limit range. We make ¢ =0.1 and kh =7 — 1.1 in following numerical result as the setting
in 3.2.3.

In Figure 3.17, mean value of kurtosis p, from Monte Carlo simulation from different
bottom topography are in the comparison with 4 and u from Eq.(1-5) and Eq.(1-6). 1} is
given by wave steepness ¢ in result of slope = 0.01. Figure 3.17 shows spatial evolution of
kurtosis p, for different initial BFI, while 4 doesn’t change with BFI because pf is a
function only for ¢ in bound wave theory. The differences between 1 and pf demonstrate
the proportion of fourth-order cumulant in nonlinearity.

The mean value of p, from numerical result is significantly affected by initial BFI.
Enlarging initial BFI will lead to higher u, in deep-water, but lower 1, in shallow water. In
deep-water before slope region, s, basically matches p; for different initial BFI, which
provides a consistency with Mori and Janssen (2006) about the estimation of nonlinearity from
four-wave interaction in deep-water. When slope angle is taken into consideration, i, inslope
region have a descending process from deep to shallow water. At the end of slope region, 1,
has a slightly rebound due to wave shoaling, and the magnitude of this rebound will be enlarged
by larger slope angle. However, when initial BFI is small (Initial BFI = 0.25), the four-wave
interaction is weak in wave train and p, becomes less affected by kh, and maximum p,

occurs in shallow water, which is consistent with the prediction of 4.
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Figure 3.17 Spatial evolution of kurtosis from different bottoms and initial BFI

Figure 3.18 shows the comparison between numerical result and theoretical value of
skewness ji; in the same form of Figure 3.17. In the second-order random wave theory in
Mori and Janssen (2006), 1, is given to be related to 4 in bound wave model by Eq.(1-5).
However, can this relationship be established only when kh > 2.5 (for slope = 0.05: z/L, <
30; slope = 0.02: z/L, < 53; slope = 0.01: z/Ly, < 90). When kh < 2.5, pg starts to
increase as kh decreasing and ji5 reaches maximum value at kh = 1.1(for slope = 0.05:
x/L, = 35; slope = 0.02: z/L, = 65; slope = 0.01: /L, = 115), the end of slope region.
After water depth is stable at kh = 1.1, ug decreases to a smaller value but still larger than
deep-water. Compared with the rising magnitude of p; as kh decreases in shallow water, this
decline in deep-water is very small. Additionally, when initial BFI is large (BFI > 0.5), steep
slope will lead to a larger maximum of ;5 at the end of slope region.

Different with 1, that, four-wave interaction is not major contributing factor in evolution
of p5. Maximum g5 occurs in shallow water and wave shoaling plays an important role in the
evolution of 5. In Eq.(3-10), wave shoaling effect is estimated by the slope angle and variation
of wave number, and we find p; reaches its maximum at the same position with maximum
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shoaling coefficient (3, refer to Figure 3.9. Figure 3.9 and Figure 3.18 indicate, when wave
trains come to shallow water, the non-linear effect from wave shoaling will reflect in 5, and
steep slope angle will enlarge this effect. p§ in bound wave model predict the rise of y; in
shallow water base on the increase of wave steepness in the second-order, but doesn’t consider

the contribution from slope angle.
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Figure 3.18 Spatial evolution of skewness from different bottoms and initial BFI
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Figure 3.19 gives the variation of (), from Eq. (3-21) for different bottom topography
and initial BFL. @), is decided by BFI in a clear way since the definition of BFI is also related
to the spectral bandwidth, and @, starts to be affected by water depth kh as BFI increasing.

For large initial BFI at slope = 0.05, (), reaches maximum around 3.5 in the area kh ~ 2.5

p
~1.5(x/L, =30~33), and drops rapidly until the bottom becomes flatat kh =1.1 (z/L, =
35). When slope = 0.02 and 0.01, maximum (), are basically the same with slope = 0.05 but
the corresponding area are kh ~ 2.8~ 1.5 (z/L, =50~60)and kh ~ 3 ~1.3 (x/L, =80~
105). Similar process can be observed in lower initial BFI but not very significant. Variation of
(), with kh is similar but not the same with p; and 3,. Compared with p3, @, is more

sensitive to initial BFI, and the maximum value occurs ahead of the end of slope region, where

i3 and (3, reaches maximum.
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Figure 3.19 Spatial evolution of ()p from different bottoms and initial BFI
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3.4.2 Statistics of extreme event in surface elevation

In 3.4.1, we discuss the changes of wave spectral statistics due to the high-order
nonlinearity in wave evolution with average value from the Monte Carlo simulation. Previous
studies indicated that the increasing kurtosis accelerates occurrence probability of extreme
waves in the train (e.g. Janssen, 2003; Mori and Janssen, 2006). Although the skewness
contribution is strong for wave crest heights, the changes of kurtosis in extreme is dominative
for total wave heights (crest to trough height) (e.g. Mori and Janssen, 2006; Mori et al., 2007;
Kashima and Mori, 2019). We here examine the effects of high-order nonlinearity on the
extreme wave height and crest height on the slope.

Figure 3.20 shows average value with their standard deviation for 14, 15 and maximum
wave height H_

when initial BFI=0.75. The H . issampled from a maximum value for

X X

each realization of 300 ensembles. We use H

max/nrms

for dimensionless, and expected H, .
is given by Mori and Janssen (2006) based on fourth-order cumulant ~,, from Eq.(1-8). The
value of standard deviation expects how far result spread out from their average value, and it
helps to estimate maximum value and wave train instability.

From deep to shallow water, envelope consist of mean and + standard deviation of H_
first rises up and become stable in flat bottom, then declines as the water depth decreases in
slope region, and finally stable at minimum in shallow water. Additionally, the width of this

envelope of H, . also decreases with slope, which indicates wave train in deep-water is more

X

unstable and unpredictable than shallow water. Similar with H

max?

width of envelope of
Iy, [t5 also get narrow when water depth becomes shallow. Refer to Mori and Janssen (2006),

expected H, . in purple line predicted by fourth-order cumulant x,, matches numerical

X

result well in deep-water, but overestimates H .. in shallow water after slope region.

At the end of slope region kh = 1.1(for slope = 0.05: z/L, =35;slope=0.02: /L, =
65; slope = 0.01: z/L, = 114), u, and ps; have a rebound due to wave shoaling as our

discussion about Figure 3.17 and Figure 3.18. In Figure 3.20, standard deviation of p, and

115 have same process. Correspondingly, it also reflects in expected H

max?

and steep slope will
enlarge this effect in the comparison of different topography. However, evolution of mean and

standard deviation of H . from numerical result varies smoothly from slope region to flat
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bottom in shallow water, even p, and p, from numerical result suggest wave shoaling effect
brings about the increase of nonlinearity and wave train instability. In both observation record
and theoretical estimation, the occurrence probability of freak wave is on a very small scale, so

standard deviation and mean value are not enough in the analysis of contribution of high-order

nonlinearity from the slope to the extreme case.
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To develop this discussion with more details and make extreme event more clear, we plot
Cumulative Distribution Function (CDF) of maximum wave height H .. from numerical
result by scatters in logarithmic coordinates in Figure 3.21 (a). As a comparison, expected
H_ .. in the Rayleigh distribution and Mori and Janssen (2006) from p, are plotted in solid

lines. Usually we define freak wave as the wave height exceeds the significant wave height

H, 5 by a factor of 2, and Goda (2000) shows the relation H;,; =4.004 7, by the linear

random wave theory. Therefore, result from H_ .. /7., > 8 canbe used as a reference of the
freak wave estimation.

For flat bottom topography, numerical result corresponds with Mori and Janssen (2006)’s
result better than Rayleigh distribution when kh > 2. When kh = 1.1, numerical result has
large deviation with both linear and non-linear suppose. In the comparison of different slope,
we choose three typical sections of water depth kh: kh = 1.785, where shoaling coefficient
B, reaches its minimum and dispersion coefficient §, reaches its maximum; kh = 1.363,
where p, ~ 3, a neutral condition that linear and non-linear theories have same result; kh =
1.1, at the end of slope region, where shoaling coefficient 3, and j5 reaches its maximum.
Contribution from four-wave interaction to wave height distribution can reflect in the deviation
between two theoretical curves in figures. When p, > 3, occurrence probability of extreme
wave height predicted by Mori and Janssen (2006) is higher than Rayleigh distribution; when
1y < 3, Mori and Janssen (2006)’s result is significantly lower than Rayleigh distribution in
flat bottom.

As the water depth kh becomes smaller, the difference from slope generally apparent:

steep slope lead to higher exceeding probability of large H . specifically in shallow water.

When kh = 1.785, the occurrence probability of large H, .. /7. > 8 for steep slope (slope
h’(xz) =0.05) is 10 times larger than gentle slope (slope h’(z) = 0.02), and it becomes 0 in
very mild slope (slope h’(z) =0.01). This phenomenon can also be found in numerical result
in Zeng and Trulsen (2012), and experimental data from Kashima and Mori (2019) and Trulsen
et al. (2020). In kh =1.363 and kh = 1.1, occurrence probability of extreme wave height is

significantly lower than both two theoretical predictions, and effect from end of slope region
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continues to lead to higher exceeding probability of large value in steep slope.

We also give analysis about extreme crest height, since it is very important in estimation
of wave pressure and maritime structure design. In Figure 3.21 (b), we give CDF of 7.,
distribution in the same form of H, .. In Rayleigh distribution and Mori and Janssen (2006)’s

result, maximum wave height H . is assumed to be twice maximum 7, . In numerical

result of this study, wave height H is obtained from wave envelop and mostly decided by
wave amplitude A. Surface elevation 7 in Eq.(2-58) considers the contribution from second-
order and second harmonic in wave train, so the CDF of 7. is not exactly the same with
H_ ... If Rayleigh distribution is taken as standard, we find the CDF curve of 7, . for large

value significantly exceed Rayleigh distribution than H, ., which indicates the exceeding

ax?
probability of 7. inlarge value is higher than H, .. In flat bottom, this deviation becomes
very obvious, especially in deep-water. From result of different slope in same water depth, steep

slope brings about the increase of extreme value occurrence probability in a similar way with

H

max?

and result in slope = 0.05 exceeds Rayleigh distribution when 7,,,,../7,.s > 4.
As a supplement to the CDF in Figure 3.21, Figure 3.22 give Probability Density Function

(PDF) of H,,, and 7,,,, inform of bar graph correspondingly. Expected distribution in the

Rayleigh distribution and Mori and Janssen (2006) are used as reference again. In CDF we
concentrate on extreme large case, and PDF can provide more details and help to estimate peak
probability. Figure 3.22 (a) shows peak of PDF is mainly decided by water depth through ,.
For given water depth, peak of PDF from different bottom topography almost have no change,

which is corresponding to the result in Figure 3.20 that the expected H . is not effected by

X

wave shoaling effect. Compared with H, . in Figure 3.22 (a), 7., in Figure 3.22 (b) have

more significant deviation with the Rayleigh distribution. Figure 3.21 (b) shows CDF of 7, ..
far exceeds Rayleigh distribution for large value when slope = 0.05, which suggests the non-
linear effect brought by wave shoaling and slope significantly enlarge the occurrence
probability of extreme event. Deviation between maximum wave height and extreme crest

height also points out, occurrence probability of extreme event will be promoted if second-

order term is taken into consideration in freak wave analysis.
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Figure 3.21 Exceedance probability of wave height and free surface elevation distribution,

initial BFI =0.75
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Figure 3.22 Probability Density Function of wave height and free surface elevation

distribution, initial BFI = 0.75
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3.5 Summary

The nonlinearity analysis of high-order wave evolution is considered as effective approach
in freak wave study. Quasi-resonant four-wave interaction has been proved to be related
maximum wave distribution, which can be reflected in numerical result from NLS equation.
Based on Monte Carlo simulation about 1-D NLS equation with bottom topography change by
pseudo spectral method, we discuss the evolution process of wave moment and wave height
distribution for narrowband unidirectional wave train. The result indicates:

A) Dimensionless fourth moment kurtosis reflects the nonlinearity in wave train from fourth-
order cumulant, and it monotonically decreases from deep-water depth to shallow, or
smaller initial BFL.

B) Dimensionless third moment skewness is significantly affected by second-order term from
wave steepness and shoaling effect. Steep slope leads to higher skewness, especially for
large initial BFIL.

C) Maximum wave height distribution is mainly decided by kurtosis, and steep slope will
increase occurrence probability of extreme value in shallow water.

D) Due to notable deviation in extreme value estimation, distribution of extreme crest height
can reflect the non-linear effect more than wave height. Wave height cannot be simply

considered as twice surface elevation in non-linear analysis.
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Numerical Model of Two-Dimensional
Directional Modulated Wave Train

4.1 Introduction

For a unidirectional modulated wave train, the occurrence of a freak wave is well predicted
by the non-linear wave model about four-wave interaction, which is verified by the wave tank
experiment (Mori et al., 2007; Kashima & Mori, 2019; etc.). Numerical work in Chapter 3
supplemented the freak wave analysis with the consideration of spatial inhomogeneity from
bottom topography.

However, when directional behaviors are taken into consideration in a 2D wavefield,
recent work pointed out that four-wave interaction decreases due to the directional dispersion
effect. The maximum wave height in a directional wavefield decreases compared with the
unidirectional wave in the numerical simulation through the mNLS equation in Gramstad and
Trulsen (2007). The enhancement of kurtosis is significantly suppressed by the increase of
directional spread in the directional wave experiments in Waseda (2006), Onorato et al. (2009a),
and Onorato et al. (2009b). Based on the contribution from the directional bandwidth in the
directional spectrum, Mori et al. (2011) gave the theoretical estimation of kurtosis for
directional sea states, and the occurrence probability of freak wave can be predicted by the
fourth-order cumulant and directional spread. The dispersion from the directional effect on
four-wave interaction is reflected in Eq. (1-9).

In order to further investigate the non-linear modulated wave evolutio