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ABSTRACT 

Vegetation fire event was referred to the fire mostly caused by anthropogenic 

activities, including forest fire and slash and burn in the agricultural practices. High level 

of particulate matter (PM) has been seasonally reported in eight provinces across Upper 

Northern Thailand (Chiangmai, Chiangrai, Lamphun, Lampang, Nan, Mae Hong Son, 

Phayao, and Phrae). There has been a concern about the association of PM emitted from 

vegetation fire burning with adverse health effects. Several epidemiological evidences 

have been documented various health effects from exposure to fire-related PM ranging 

from mild to severe effects such as irritating symptoms, hospital/clinic visits, emergency 

visits, hospital admission, and premature death. The haze control by regulatory measures 

is an important intervention that might alleviate the health impacts attributable to air 

pollution from vegetation fire events. This thesis aimed to investigate the health impacts 

from exposure to PM emitted from vegetation fire events in view of risk estimation, effect 

of the burning ban policy, and health burden estimation.  

 

The first study (Study I) investigated association between PM10 and hospital visits 

for respiratory, conjunctivitis, and dermatitis in children on burning, non-burning, and 

mixed day in UNT. Pooled estimated showed that there were significant increased 

hospital visits for respiratory diseases on burning days [Odd Ratio (OR): 1.01 (95% 

confidence interval (CI): 1.00, 1.02)]. The effect estimates of hospital visits for 

respiratory diseases on non-burning day was higher than burning day with the OR of 1.03 

(95% CI: 1.02, 1.04). The effects of hospital visits for conjunctivitis and dermatitis were 

observed on non-burning and mixed days, but not on the burning days. 
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The second study (Study II) evaluated the effect of the burning ban enforced in 

May 2016 on hospital visits for respiratory diseases. The ban led to both decreases of the 

number of fire hotspot and PM10 concentration across UNT ranging from 14.3 to 81.5% 

and 5.3% to 34.3%, respectively. The pooled effect estimates of hospital visits for 

respiratory diseases decreased by 8.7% (95% CIs: 4.3, 12.9), whereas null association 

was observed for gastrointestinal diseases, a negative control disease.  

 

The third study (Study III) assessed number of hospital visits for respiratory 

diseases attributable to VFS and the impacts of the burning ban policy. During five-years 

period, 75,380 and 34,399 cases of hospital visits for respiratory diseases among people 

of all ages and children under 15 years were estimated from exposure to PM10 emitted 

from vegetation fire events. A decline of the cases attributable to VFS-PM10 were 

observed after the burning ban has enforced in 2016 from 64,061 (before the ban 

enforcement) to 11,319 (after the ban enforcement) cases. 

 

In brief, this thesis concluded that PM from vegetation fire events poses health 

impacts in UNT. In addition, the regulation measure by prohibition burning events 

implemented in 2016 was effective to decrease PM10 concentration and consequently 

reduced the prevalence of respiratory morbidity in UNT.  
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EXECUTIVE SUMMARY 

Vegetation fire events are getting more attention on public health issues. Exposure to 

air pollution emitted from vegetation fire events poses health effects ranging from irritating 

symptoms to premature deaths. Moreover, the effect of exposure to air pollution emitted from 

vegetation fire events for vulnerable groups, such as children, elderly, and pre-existing 

respiratory patients, is a further concern.  

 

This thesis illustrated the health impacts of vegetation fire related particles, covering 

the description of the historical situations, its sources, health risk and the exposure assessments, 

as well as regulatory measures for vegetation fire to reduce air pollution in UNT. Furthermore, 

this thesis introduced an interrupted time series study design, which has been increasingly used 

for the evaluation of public health intervention. The content also included the process of health 

burden estimation (HBE) attributable to vegetation fire-related air pollution, and the existing 

studies of HBE in Southeast Asian region.   

 

The purposes of this thesis were to investigate health impacts of particulate matter from 

vegetation fire events and the burning ban policy in Upper Northern Thailand (UNT) in view 

of health risk estimation, the effect of a prohibition of vegetation fire on health, and estimation 

of the health burden attributable to vegetation fire smoke.  

 

The first study examined the risk on hospital visits for respiratory diseases, 

conjunctivitis, and dermatitis among children from exposure to PM10 on different classified 

days (burning, non-burning, and mixed day) in UNT. The assumption of this study was that 

exposure to PM10 on burning, non-burning, and mixed day may lead to different health effects 

due to the different components of PM on each day. The burning day occurrence was identified 
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by PM10 concentration (> 100 g/m3) and fire hotpots count (> 90th percentile of the daily 

distribution of the entire data; 10 counts). A time stratified case-crossover analysis fitted with 

conditional logistic regression was used for examining the association of each occurrence day 

(burning, non-burning, and mixed day) for each province separately. A random-effects meta-

analysis was applied in the second stage to pool the province-specific effect estimates. Number 

of burning days across eight provinces in UNT ranged from 64 to 139 days. I found a positive 

association between PM10 on burning day and hospital visits for respiratory diseases at lag 0 

(OR = 1.01 (95% CIs: 1.00, 1.02) per a 10 μg/m3 increase in PM10concentration). The 

association between PM10 on non-burning day with hospital visits for respiratory diseases was 

also observed, with the effect estimates higher than burning day (OR = 1.03 (95% CIs: 1.02, 

1.04)). Hospital visits for conjunctivitis and dermatitis were significantly associated with PM10 

concentration at lag 0 on both non-burning and mixed days. This study concluded that increase 

of hospital visits for respiratory diseases among children was associated with PM10 on burning 

day and non-burning day. The effect on burning days was lower than non-burning days. 

 

The second study evaluated the effect of the burning ban policy enforced in May 2016 

on hospital visits for respiratory diseases. This study responds to answer the research question 

whether the respiratory morbidity rate decreased as a result of a decline in PM10 concentration 

and fire hotpots in the years after the burning ban policy was implemented in UNT. In this 

study, I analyzed the data between January to April of 2014-2016 (before ban enforcement) 

and between January to April of 2017-2018 (after ban enforcement). PM10 concentrations, 

numbers of satellite fire hotspots, and age-standardized rates of hospital visits for respiratory 

diseases before and after the ban enforcement were compared. For each province, the effect of 

the ban on hospital visits for respiratory diseases was evaluated using a controlled interrupted 

time series analysis adjusting for season-specific temporal trends, day of week, public holiday, 
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temperature, relative humidity, number of hospitals, and offset population, with gastrointestinal 

diseases as a negative control. A random-effects meta-analysis was performed to pool 

province-specific effect estimates. The daily average PM10 concentration and the number of 

fire hotspots decreased after the ban enforcement in all provinces in UNT, with percent changes 

ranging from 5.3 to 34.3% and 14.3 to 81.5%, respectively. The pooled effect estimates of 

hospital visits for respiratory diseases decreased by 8.7% (95% CI: 4.3, 12.9), whereas null 

association was observed for gastrointestinal diseases. The second study concluded that the 

2016 burning ban led to a decrease in average PM10 concentration and the hospital visits for 

respiratory diseases in UNT.  

The third study estimated the number of hospital visits from respiratory diseases 

attributable to PM10 emitted from vegetation fire smoke (VFS-PM10) and the health impact of 

the burning ban policy in UNT. This study can help to consider the priority for controlling air 

pollution emitted from vegetation fire events, relative to other interventions that improve public 

health to minimize the impact from exposure to air pollution from vegetation fire events.  

Exposure estimation was applied from the first study. VFS-PM10 was derived after conducting 

population-weighted and classifying the burning occurrence day. The number of hospital visits 

due to respiratory diseases attributable to VFS-PM10 was estimated during 2014 to 2018 for all 

age groups and children aged below 15 years by using the population weighted VFS-PM10, 

population data, and concentration-response function derived from the first study. The 

attributable cases were then compared between before and after 2016 when the burning ban 

was implemented. Daily average VFS-PM10 during the study period across UNT was 133.5 

μg/m3. The estimated 75,380 and 34,399 cases of hospital visits due to respiratory diseases for 

all ages and children were attributed to the VFS-PM10 during 2014 to 2018. The estimated total 

cases were accounted for approximately 1% during the study periods and 12% during the 

burning days. There was a decline in the cases attributable to VFS-PM10 from 64,061 before 
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the ban enforcement to 11,319 after the ban enforcement cases. This study suggests that PM10 

emitted from vegetation fire events affected hospital visits for respiratory diseases across UNT 

and the burning ban policy decreased the number of hospital visits attributable to VFS-PM10. 

 

In conclusion, exposure to vegetation fire related PM10 has effect on respiratory 

morbidity across UNT. Information of risk estimation and estimated cases may be useful for 

further policy decision on haze control. Additionally, the finding of this study suggests that the 

regulatory actions on vegetation fire event control had a positive impact on both air pollution 

levels and rates of hospital visits for respiratory diseases in UNT.
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CHAPTER 1: INTRODUCTION 

1.1 Situation of vegetation fire events 

Southeast Asian (SEA) region has seasonally affected from smoke haze caused from 

vegetation fire events and peat fires more than two decades (Nichol, 1997). The events have 

occurred from intensive burning for several purposes such as agricultural practices, land 

clearing, and plantation (Jones, 2006). Vegetation fires terminology was given by WHO and 

referred to the fires mostly caused by anthropogenic activities, including forest fire and slash 

and burn (World Health Organization, 1998). As SEA is located in the equatorial Pacific Ocean, 

smoke haze episodes were worsened by El Nino some year (Fuller and Murphy, 2006; Khan et 

al., 2020). EI Nino phenomenon has driven more drought conditions occurring from the 

interaction between high air pressure and sea surface temperature among tropical central and 

eastern Pacific Ocean. A previous study had also documented that the severe disastrous smoke 

haze was associated with the El Nino event in 1997 (Sastry, 2002). The earlier smoke haze 

events were frequently observed in the Equatorial SEA countries (Indonesia, Malaysia and 

Singapore) which is usually occurring during the monsoon season (June-September) (Jones, 

2006). 

Recently, Mainland Southeast Asian (MSEA) has also faced with local and 

transboundary air pollution from vegetation fire smoke across the region (Yin et al., 2019). 

MSEA is located in a half of a mountainous area, including Vietnam, Laos, Cambodia, 

Myanmar, and Upper Northern Thailand. Figure 1.1 shows the monthly occurrence of 

vegetation fire events in SEA for year 2019 by satellite-fire hotspot data, with a different 

burning period between the Equatorial SEA and MSEA. The period of haze in MSEA occur 

during January to April (Figure 1.1, upper row), which differs from the Equatorial SEA 

countries.  
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Figure 1.1. MODIS-fire hotspot detected (red dot) in SEA countries during January 

to December of 2019 (Data was retrieved on 19 April 2020 from FIRM-NASA MODIS 

website). 

In Thailand, it is reported that seasonal characteristics of air pollution from vegetation 

fire events differs between northern and southern regions. Figure 1.2 presents the smoke haze 

situation in Thailand with the fire hotspot and wind directions. During the dry season, the air 

quality in northern area was affected by VFS from the local burning sources within the areas 

and from the neighbor areas (Figure 1.2, upper row). On the other hand, the smoke detected in 

southern region is mainly from transboundary-Equatorial Asia-smoke, which was transported 

by the prevailing winds of Southwest Monsoon during September to November (Figure 1.2, 

lower row).  

Smoke in UNT has occurred as a seasonal air pollution event across the region 

(Phairuang et al., 2017). The two dominant sources of the vegetation burning in this area are 

agricultural debris practice and forest fire (Phairuang et al., 2017). As Thailand is the 
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agricultural country, a huge amount of agricultural residues are usually disposed by burning in 

the open areas. Furthermore, forest fires have also manifested as the crucial contributor of air 

pollution in the UNT. The man-made forest fires in this area have often occurred from non-

timber forest product picking, e.g., mushroom, and bamboo shoot (Forest Fire Control Office, 

2005). Among the vegetation fire events setting, forest was reported as the predominant burnt 

area in the UNT (Geo-Information and Space Technology Development Agency, 2019). 

Moreover, a previous study conducting air pollution inventory from vegetation fire events 

found that the largest amount of burning occurred in the deciduous forest areas of UNT 

(Boonman et al., 2014). The fires typically originate in the mountainous areas with dry and 

stagnant atmospheric conditions during January to April (Kim Oanh and Leelasakultum, 2011). 

High concentration of daily PM10, particulate matter with a diameter of 10 μm, was also 

reported at 428 μg/m3 in this area (Pollution Control Department, 2019). Other sources of non-

fire PM10 include traffic, tobacco curing, and the brick-making industry (Kim Oanh and 

Leelasakultum, 2011).  
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Figure 1.2 Smoke haze situation in Thailand from January to March (upper row) and from 

September to November (lower row). Red points indicate fire hotspot, yellow areas indicate 

transboundary smoke haze, and red arrows presents wind direction at 762 meters. Source: 

International workshop on the “Haze and biomass burning in Asia”, Bandung, Indonesia, 

October 2018.  

 

 

1.2 Air pollution from vegetation fire smoke and health effects  

Vegetation fire smoke (VFS) emits various health-relevant pollutants, including 

gaseous and particles such as oxides of nitrogen, sulfur dioxide, carbon monoxide and 

particulate matter (PM) (World Health Organization, 1998). PM is the most considered of all 

pollutants from vegetation because it has potentially detrimental health effects. The differences 

of PM compositions between vegetation fires and urban sources have documented in the 

previous study (Naeher et al., 2007). Vegetation fires-derived particle comprised toxic 

components such as Polycyclic Aromatic Hydrocarbon (PAHs) and Leveglucosan (Naeher et 

al., 2007).  

Many epidemiological studies found the consistent relationship between exposure to 

air pollution from VFS-PM and increased respiratory health outcomes. The previous studies 

have manifested that smoke from vegetation burning may increase hospital admissions and 

hospital visits for respiratory diseases (Chen et al., 2006; Henderson et al., 2011; Morgan et al., 

2010; Naeher et al., 2007). An increase in hospitalization for asthma has also been documented 

during the burning periods (Jacobs et al., 1997) Several studies also indicated the association 

between vegetation burning smoke exposure and emergency department visits (Alman et al., 

2016; Hutchinson et al., 2018). Some evidence revealed the physical and psychological 

symptoms of fires-haze exposure (Ho et al., 2014). In contrast, the evidence of relationship 

between fires-haze exposure and cardiovascular health outcomes is inconsistent. A study found 
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the association of exposure to fires-related haze with cardiovascular health outcomes 

(Haikerwal et al., 2015) while others did not (Alman et al., 2016; Henderson et al., 2011).   

Considering susceptibility to the health effects of exposure to vegetation burning is also 

necessary. Children are more vulnerable to fire-haze exposure because of their underdeveloped 

respiratory system and higher breathing rate (Lipsett and Materna, 2008). The recent studies 

have suggested that smoke from vegetation burning may increase hospital admission and 

emergency room visits due to asthma and acute bronchitis in children in Australia (Chen et al., 

2006) and Brazil (Paraiso and Gouveia, 2015). However, such studies have not been conducted 

much in Asian region (Gupta, 2019). Moreover, the physical symptoms were also associated 

with exposure to fire-smoke in children (Künzli et al., 2006). Given that direct exposure to 

pollutants from smoke induces biological responses in both the eyes and skin, the burden of 

these symptoms is not negligible. Despite this, few studies have focused on eye and skin 

symptoms. Therefore, quantifying the health effects of exposure to air pollutants from 

vegetation burning is warranted to prevent these consequences, particularly among susceptible 

groups. 

1.3 Exposure assessment of particulate matter from vegetation fire events  

 The most common method for estimating air pollution is to use recorded data from air 

pollution monitoring (Martin et al., 2013; Moran et al., 2019). However, only the monitoring 

PM data may not be yielded the precise level of exposure to fire-specific PM. In developing 

countries, air pollution monitoring station are commonly located in the urban area with high 

population density because of limited resources. On some occasions, high PM concentration 

may be caused by unusual activities such as traffic congestion from holiday events, rather than 

the burning activities. Satellite-derived fire hotspots have been used for exposure assessment 

of vegetation burning (Chakrabarti et al., 2019). Combining the information from fire hotspots 
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with PM concentrations is expected to increase the accuracy of fire-PM. The previous study 

also found the correlation between satellite fire hotspot and PM10 concentration (Sukitpaneenit 

and Kim Oanh, 2014).  

Alternatively, simulated VFS-PM from air pollution modelling is another metric for 

exposure assessment of VFS-PM. The air pollution inventory from vegetation fire events using 

satellite data such as MODIS products (burnt area and fire radiative power: FRP) is a useful 

input data for VFS-PM simulation (Boonman et al., 2014; Kollanus et al., 2017). The previous 

epidemiological study using different exposure metrics (monitoring and modelling) found the 

consistence results of the VFS-PM exposure on health outcomes (Deflorio-Barker et al., 2019).  

1.4 Control measures of smoke haze from vegetation fire events  

 Vegetation fire events are now common in MSEA which can has negative effects on 

economy, security, and health (Vadrevu et al., 2019). VFS is a substantial source of local and 

transboundary air pollutions (Kim Oanh et al., 2018; Vongruang and Pimonsree, 2020; Yin et 

al., 2019). In 2015, the Association Asian Nations (ASEAN) committees proposed a 

framework to response the prevalent of vegetation fires by achieving “Transboundary Haze-

free ASEAN” by 2020, and strict laws and policies were enforced to control vegetation fire 

events and haze smoke (ASEAN, 2018). In UNT, the government proactively introduced the 

National Haze Action Plan in 2004 (Figure 1.3) and several haze controls measures have been 

implemented since then (e.g., preparation of firebreaks to prevent intensifying forest fires, 

promotion of the “villages free from burning” campaign, enhancement of public relations to 

raise awareness, and expanded cooperation with neighboring countries to mitigate 

transboundary haze). “Zero-burning” campaign was also implemented and introduced in the 

area during dry seasons (January to April) in 2013. However, due to lack of strict prohibition 

measures, the occurrence of seasonal smoke haze from vegetation fire events have still affected 
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the region. Later on, the measure that relies on regulation for burning prohibition with strong 

penalties has been strictly implemented since May 2016. This law was enforced under the 

National Reserved Forest Act and was amended to impose strict penalties and sanctions—

ranging from fines to criminal charges—for violations (The Office of the Council of State, 

2016). The number of fire hotspots detected by satellite, as well as PM concentrations, 

reportedly decreased after the enactment of the law (Yabueng et al., 2020). 

 

Figure 1.3. Haze control measures in the UNT. 

1.5 Interrupted time series study  

Recently, the evidence of the relationship between respiratory morbidity and vegetation 

smoke exposure have increased in MSEA (Johnston et al., 2019; Pothirat et al., 2019; Uttajug 

et al., 2020). Mitigation policy aiming to reduce the level of air pollution as an intervention for 

the burning ban, is expected to reduce the prevalence of respiratory morbidity. To examine the 
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effect of the interventions on health outcomes, interrupted time series (ITS) study design has 

been used in the previous accountability studies in different settings such as industry and traffic 

(Friedman et al., 2001; Hasunuma et al., 2014; Yorifuji et al., 2016, 2011). ITS has increasingly 

being used for evaluation of health intervention, which is a comparison between the effect from 

interrupted (underlying trend at a known point in time) and the counterfactual scenario (the 

expected trend without the intervention) (Bernal et al., 2019, 2017). This counterfactual 

scenario can provide a comparison for examining any change occurring after intervention 

(Figure 1.4).  

 

Figure 1.4. Interrupted time series. Blue vertical line indicates an intervention. The 

red continuous line indicates an example in which the intervention was effective while the red 

dashed line indicated the effect without intervention.  

 However, the basic ITS design cannot exclude co-interventions or other events during 

the time of the intervention. Using the control series as a comparison group can be the one 

approach to minimize the confounding from co-intervention or other simultaneous events of 

the study. The recent published study has documented the range of control series such as 

location-based, characteristic based, behaviors based, historical cohort, or control time periods 
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(Lopez Bernal et al., 2018). For instant, the study evaluated the effect of diesel emission control 

on mortality also performed an ITS with comparing the target population with the reference 

population (Yorifuji et al., 2016). Moreover, a negative control which is a health outcome 

presumably unrelated to the policy can be used when no appropriate control groups are 

available (Boogaard et al., 2017).  

1.6 Health burden estimation of vegetation fire smoke 

 Air pollution from vegetation fire events is defined as a source of risk to human health 

and well-being. Estimation of the health burden attributable to VFS is useful for public health 

communication and policy decision. In this study, I used the term “health burden estimation 

(HBE)” as estimating the potential adverse health outcomes resulting from VFS and the health 

impacts of a regulatory intervention on vegetation fire events ban.  

The estimation of health burden follows the guideline “Health Risk Assessment of Air 

Pollution (AP-HRA)” involves several steps including inputting data, such as the level of air 

pollution, the exposed population, and the health outcome affected. It is also necessary to build 

valid concentration-response functions (CRF) connecting the air pollution and the health 

outcomes (WHO Regional Office for Europe, 2016) (the details are described in Chapter 4).  

Most of the studies in SEA estimated mortality attributable to fire-related PM using simulated 

data obtained from air pollution modellings and some combined with the Satellite-Aerosol 

Optical Depth (AOD) for exposure estimation (Crippa et al., 2016; Johnston et al., 2012; Kiely 

et al., 2020; Koplitz et al., 2016; Uda et al., 2019). CFR is typically based on Relative Risks 

(RRs) expressed as the proportional increase in the health outcomes associated with a given 

increase in pollutant concentration, which is derived from epidemiological studies. Because 

this thesis focuses on morbidity rather than mortality, I summarized the epidemiological studies 

examining the health effects of exposure to vegetation fire events-related air pollution on 
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morbidity in Table 1.1. Four epidemiological studies conducted in the U.S. where wildfire was 

the important sources of VFS (Alman et al. (2016); Deflorio Barker et et. (2019); Hutchinson 

et al. (2018); and Reid et al. (2016)) while two studies were conducted in Thailand (Mueller et 

al. (2020); Pothirat et al. (2019). All of the studies examined health effects from short-term 

exposure to PM emitted from burning events. 
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Table 1.1 Epidemiological studies used for CRF of morbidity from exposure vegetation fire events-related air pollution. 

Author (year) 
Study 

period 
Study area Sources 

Air 

pollutants 
Health outcomes 

Short/long 

term 

effect 

Risk 

Unit 

Effect estimates (per 10 

g/m3 increase) 

Alman et al. (2016) 2012 Colorado, U.S. Wildfire PM2.5 Emergency department visits 
Short-

term 
OR 1.02 (1.01, 1.03) 

Deflorio Barker et et. 

(2019) 
2008-2010 U.S. Wildfire PM2.5 Respiratory hospitalization 

Short-

term 
RR 2.08 (1.28, 2.89) 

Hutchinson et al. 

(2018) 
2007 California, U.S. Wildfire PM2.5 

Hospital visits for  

respiratory diseases 

Short-

term 
RR 1.07 (1.02, 1.14) 

Mueller et al. (2020) 2014-2017 Thailand Vegetation fire events PM10 Hospital visits for CLRD 
Short-

term 
RR 1.02 (1.01, 1.03) 

Pothirat et al. (2019) 2016-2017 Thailand Vegetation fire event 
PM10, 

PM2.5 
Respiratory hospitalization 

Short-

term 
RR 

PM10: 1.05 (1.02, 1.09) 

PM2.5: 1.06 (1.01, 1.10) 

Reid et al. (2016) 2008 California, U.S. wildfire PM2.5 Respiratory health 
Short-

term 
RR 1.07 (1.05, 1.10)* 

CLRD is chronic lower respiratory diseases 

*Effect estimates per 5 g/m3 increase in PM2.5 
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There are several challenges in HBE from exposure to vegetation fire events. The scarce 

epidemiological evidence on the health risk of exposure to air pollution emitted from vegetation 

fire events is one of the most important challenges. In most of the polluted areas across 

Southeast Asia, particularly MSEA, there is a severe lack of epidemiological evidence on both 

short-term and long-term effects of exposure to VFS. Such studies are urgently needed in these 

areas, because the health response per units change in air pollution at such high levels may diff 

from other countries with low pollution levels. In case of limited or no evidence from 

epidemiological studies, information from studies in other countries may be used to conduct 

HBE (Crippa et al., 2016; Marlier et al., 2019; Uda et al., 2019). However, using the 

extrapolated information may not accurately describe the concentration response relationship 

in the area to be assessed, leading to high uncertainties in the results.  

Another challenge is the distribution of exposure estimation. PM was commonly chosen 

as a principal pollutant when considering health impact from vegetation fire smoke. Most of 

the studies conducted HBE of VFS by using simulated fire-PM data derived from air modelling 

(Crippa et al., 2016; Johnston et al., 2012; Kiely et al., 2020; Koplitz et al., 2016; Marlier et al., 

2019, 2013; Uda et al., 2019). The strength of using air modelling data is that it allows full 

geographical coverage and is useful for estimates of future exposure based on predicted change 

in air pollution as a result of new policies. However, the simulated data are based on a set of 

assumptions, it is not possible to obtain the certain estimated exposure in a given location. 

Moreover, such data is scares in some countries, particularly in MSEA. Using data from 

monitoring station coupled with satellite-fire hotspot might be useful for exposure estimation 

of VFS-PM10 for HBE study. 

Up to date, there are few studies estimating the health impacts attributable to VFS. 

Globally, more than 300,000 premature deaths were estimated from exposure to PM emitted 
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from vegetation fire events, with the biggest death accounted in sub-Saharan Africa and SEA 

(Johnston et al., 2012). Most of HBE studies in SEA mainly assessed the health impacts among 

the Equatorial region, which the sources of VFS are rather different from MSEA (Crippa et al., 

2016; Johnston et al., 2012; Kiely et al., 2020; Koplitz et al., 2016; Marlier et al., 2019, 2013; 

Uda et al., 2019). There is no study estimating the health burden from VFS in the MSEA. 

1.7 Rational 

 As seasonal air pollution emitted from vegetation fire events has been recently common 

in MSEA. Health impacts from exposure to VFS is necessary to consider for public health 

prevention and environmental policy decisions at the local, national and international level. 

While there is increasing epidemiological evidence on health effects of PM from burning 

events in other regions of the world, the sources of burning and the background of health 

outcomes in MESA is distinctively different from those regions. Thus, the evidence examining 

the health effects of exposure to air pollution from VFS on respiratory health is needed in this 

area, particularly for susceptible groups such as children. Prohibition of vegetation fire events 

by regulatory measures is an important key for haze control. The ASEAN committee meeting 

for coping the haze problems in SEA also emphasized this. The achievement of the ban is 

indicated by a decrease of number of fire hotspot, air pollution concentration, as well as 

respiratory-related health outcomes. Evaluation of the effect of the burning ban policy on 

respiratory health outcomes may provide evidence for haze management in UNT. Moreover, 

estimation of health burden from exposure to PM released from vegetation fire events might 

be useful for the public health communication, and the future environmental policy decision 

for smoke haze abatement and control.  

 

1.8 Objective 

General objective 
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This thesis aims to comprehensively investigate the health impacts of exposure to PM 

from vegetation fire events and the implementation of burning ban in view of risk estimation 

and the effect from the burning ban policy, as well as estimation of morbidity burden 

attributable to VFS in the area.  

 

Specific objectives  

1. To investigate the association between PM10 concentrations and the number of hospital 

visits to address respiratory, conjunctivitis, and dermatitis in children under age 15 years. 

(Study I) 

2. To evaluate the effect of a burning ban in May 2016 on hospital visits for respiratory 

diseases. (Study II) 

3. To estimate the number of hospital visits for respiratory diseases attributable to VFS-PM10 

and implementation of strict ban. (Study III) 

 

The study diagram of health impact from exposure VFS in UNT is presented in Figure 1.5. 

Study II was examined the effect of the ban on respiratory morbidity after the association of 

hospital visits for respiratory diseases and VFS was found in Study I. Study III utilized the CRF 

derived from study I and evaluated the attributable cases from the effect of the burning ban 

which was observed in Study II. 
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Figure 1.5. Study diagram of health impacts from VFS in UNT
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CHAPTER 2: Study I (Association between PM10 from vegetation fire events and hospital 

visits by children in upper northern Thailand) 

 This chapter discussed the first study investigating the effects of exposure to PM10 from 

vegetation fire events on hospital visits for children as the morbidity health indicator. 

Specifically, the objective of the first study was to examine the association between PM10 

concentrations and hospital visits to address respiratory, conjunctivitis, and dermatitis in 

children aged under 15 years across the UNT.  

 In chapter I, I briefly explained that the difference in the components of PM originated 

from vegetation fire events and other sources may lead to different outcomes/magnitude of the 

effects. In this study, I examined and compared the effect estimates of PM on respiratory 

morbidity among burning, non-burning, and mixed days. As this study emphasized the health 

effect of PM from vegetation fire smoke, I classified each day into above categories based on 

the level of PM10 concentration coupled with the satellite-fire hotspot data retrieved from 

Moderate Resolution Imaging Spectroradiometer (MODIS)-NASA information. 

 

2.1 Methodology 

Study area  

 The study area comprised of eight provinces in the UNT, including Chiangmai, 

Chiangrai, Lamphun, Lampang, Mae Hong Son, Nan, Phayao, and Phrea. These provinces are 

the most affected by smoke from vegetation fire events (Phairuang et al., 2017; Pollution 

Control Department, 2019). Figure 2.1 presents the provincial boundaries and locations of the 

ambient monitoring stations. 
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Figure 2.1. Study area and air monitoring stations. 

 

Hospital visits data 

 Daily hospital visits data (outpatient visits) for children aged under 15 years except for 

new born less than 1 month old within the study area between January 2014 and December 

2018, which were provided by the Ministry of Public Health (MOPH), Thailand. The data were 

collected from 1,274 public hospitals belong to MOPH covering eight provinces of UNT area.  

 The data contained the information on sex, age, date of visit, and International 

Classification of Diseases version 10 (ICD10) codes for diagnosis. The hospital visit data 

included for respiratory disease (J00-J99.8), conjunctivitis (H10-H10.9), and dermatitis (L20-

L30). 

 

Air pollution and metrological data 

 Hourly concentrations of PM10 (μg/m3), carbon monoxide (CO), ozone (O3), sulphur 

dioxide (SO2), and nitrogen dioxide (NO2) were obtained from 14 air monitoring stations 

(Figure 2.1) from the Pollution Control Department, Thailand. Daily concentrations of each air 
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pollutant were computed from hourly data. Metrological data were obtained from 

Meteorological Department, Thailand, which included ambient temperature, relative humidity, 

wind speed, and rainfall. The value of PM10 and meteorological data were averaged from the 

stations within the province. 

Burning day occurrence 

 Satellite-fire hotspot and PM10 concentration were used to identify the burning events. 

Fire hotspot data (MCD14ML) (Giglio et al., 2018) were obtained from National Aeronautics 

and Space Administration (NASA) Land, Atmosphere Near Real-time Capability for EOS 

(LANCE) Fire Information for Resource Management System (FIRMS) (NASA, 2018). Fire 

hotspot data were retrieved from satellite data obtained from NASA’s Moderate Resolution 

Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites. The resolution of fire-

hotspots is 1 kilometer as recorded when both Terra and Aqua satellites overlap (occurring 

globally at 1:30 am, 10:30 am, 1:30 pm, and 10:30 pm) (Jordan et al., 2008). Fire hotspot were 

provincially mapped and summed by QGIS 3.4 (QGIS Development Team 2014). Numbers of 

fire hotspots of this study are compared with the data of GISTDA, Thailand (Table A-1). The 

detection of hotspots may be influenced by reflective surfaces or cloud cover. However, 

meteorological conditions during the burning season in UTN are dry with low wind speed and 

cloudiness (Kim Oanh and Leelasakultum, 2011). Hotspot data also included confidence values 

that indicate the quality of individual fire pixels determined from the geometric mean of the 

difference between background and brightness temperatures in each channel algorithm, which 

was classified into three categories i.e., low (0-30%), medium (30-80%), and high (80-100%) 

(Giglio and Justice, 2003). In this study, fire hotspots with a confidence value under 20% (low 

confidence) were excluded from the analysis (Figure A-2).  

As no study have been using fire hotspot data to be a criterion of a burning day, I defined 

a ‘burning day’ as a day when the number of fire hotspots exceeded the 90th percentile of the 
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daily distribution of the entire region (10 counts) (Figure A-3) and the daily PM10 concentration 

in each province was greater than 100 µg/m3. The correlation of PM10 and fire hotspot is 

presented in Figure A-1. A day without fire hotspot was defined as a ‘non-burning day’. The 

remaining days were classified as ‘mixed days. For example, at day1, when the cumulative 

number of fire hotspots for the entire area region (sum up of eight provinces) was 45 counts, 

and PM10 was 23 µg/m3 and 260 µg/m3 in Chiangmai and Chiangrai, respectively, I defined 

this day as a ‘burning day’ in Chiangrai and as a ‘mixed day’ in Chiangmai (Figure 2.2). Hence, 

I assumed that increases in PM10 on a burning day was driven by vegetative fire events. The 

cut-off PM10 concentration was based on published studies that found that health effects from 

haze days developed when PM10 concentrations were higher than 100 µg/m3 (Sahani et al., 

2014).  

 

 

Figure 2.2. Examples of classification of the burning day occurrence. Upper figure (Day 1) 

shows Chiang Rai and Lampang was classified as “burning day” because the total fire hotpots 

(indicated as yellow dots) within these provinces were more than 10 counts (>90th percentile 
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of the daily distribution of the entire region) and PM10 concentration exceeded 100 µg/m3; 

Lower figure (Day 2) shows that all provinces were classified as “mixed day”.   

Study design and statistical analysis  

 The association between vegetation burning-derived PM10 and hospital visits among 

children using a time-stratified case-crossover study design. This analysis is similar to that of 

a case-control study, except that each case serves as its own control (Maclure, 1991). The 

hospital visits occurred were assigned as the case day and comparisons to control days chosen 

on the same day of the week earlier and later in the same month in the same year (Janes et al., 

2005). A conditional logistic regression model was used to estimate the odds ratio for exposure 

to PM10 on burning/ non-burning/mixed days and hospital visits in all health endpoints. The 

model included the natural splines of a 3-day moving average lag in temperature (Morgan et 

al., 2010), assuming 3 degrees of freedom (df). The model with the best fit was selected by the 

Akaike Information Criterion (AIC). Some environmental variables were also adjusted in the 

model such as relative humidity, precipitation, and wind speed. However, relative humidity did 

not influence the AIC value and was omitted from the final model. The analyses were 

separately conducted for burning, non-burning, and mixed days because the association may 

vary by the type of day. Lagged effects were examined as single (lag 0 - lag 3) and average 

(lag 01- lag 03) lag for all health outcomes.  

A random-effects meta-analysis was conducted to obtain pooled effect estimates of 

PM10 and hospital visits on burning, non-burning, and mixed days. I also tested whether the 

effect estimates for burning days are significantly different from those for non-burning and 

mixed day by calculating the difference of effect estimate, 95% CIs, and P-value (Altman and 

Bland, 2003). The modification effect was explored as a stratified analysis by age groups, i.e., 

0–4 year-olds (pre-school children) and 5–14 year-olds (school children) at lag 0.   
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Sensitivity analyses were performed using the alternative criteria of a burning day. First, 

I compared the results among the different percentile cut-off point of the fire hotspot (i.e., 75th 

(1 count), 90th (10 counts), and 99th (88 counts)). Next, I repeated the analysis using the 

different of PM10 concentration (100 µg/m3 and 120 µg/m3) with fixing the fire hotspot at 90th 

percentile. 

All statistical analyses were conducted using the package “survival” (Fox J, 2012) and 

“metafor” (Viechtbauer, 2010) of R (version 1.2.1335, The R Foundation for Statistical 

Computing, Vienna, Austria). Results are presented as odd ratios (ORs) with 95% confidence 

intervals (CIs) for 10 μg/m3 increase in PM10.  

 

Ethical review  

This study was officially exempted from ethics approval by the Ethics Committee of 

Kyoto University Graduate School of Engineering because it did not use personal data (No. 

201904). 

 

2.2 Results  

Table 2.1 presents the summary statistics for the environmental variables, including air 

pollution, temperature, relative humidity, wind speed, precipitation, and number of fire 

hotspots, for burning, non-burning, and mixed days. Numbers of burning days ranged from 64 

days in Lamphun to 139 days in Mae Hong Son over the five-year study period. Concentrations 

of PM10, CO, NO2, SO2, and O3 were higher on burning days than on mixed days or non-

burning days in all provinces. Daily average PM10 concentration ranged from 122.9 μg/m3 to 

165.1 μg/m3 in the UNT. There was no significant difference of daily mean temperature 

between burning, non-burning, and mixed days. 
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During the study period, 5,641,107 hospital visits due to respiratory disease, 

conjunctivitis, and dermatitis among children aged <15 years were recorded during the study 

period (Table 2.2). Study subjects included more pre-school children (age 0-4 years) than 

school-aged children (age 5-14 years). Hospital visits for respiratory diseases was the most 

responsible among three reported smoke related health conditions. 
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Table 2.1. Daily average of environmental variables during 2014 – 2018 (values represent daily mean (standard deviation)).  

Variables Chiangmai Chiangrai Lamphun Lampang Maehongson Nan Phayao Phrae 

Days (count)         

Burning day 103 103 64 122 139 87 119 126 

Non-burning day 950 950 950 950 950 950 950 950 

Mixed day 773 773 812 754 737 789 757 750 

Air pollution*         

PM10 (μg/m3)         

Burning day 132.7 (35.7) 165.1 (55.1) 128.4 (26.5) 125.3 (23.6) 160.3 (60.0) 132.2 (24.3) 135.8 (37.2) 122.9 (22.1) 

Non-burning day 30.4 (10.6) 24.3 (9.3) 24.0 (12.9) 23.4 (10.6) 18.7 (9.9) 21.3 (9.9) 18.0 (12.0) 26.2 (12.5) 

Mixed day 53.4 (20.7) 46.7 (19.6) 53.8 (22.5) 52.1 (24.6) 42.9 (26.4) 45.3 (22.1) 46.8 (22.9) 54.8 (24.4) 

CO (ppm)         

Burning day 1.2 (0.3) 1.3 (0.7) 1.1 (0.4) 1.2 (0.3) 1.1 (0.5) 1.0 (0.2) 0.8 (0.3) 0.8 (0.4) 

Non-burning day 0.7 (0.2) 0.6 (0.4) 0.4 (0.2) 0.6 (0.2) 0.5 (0.3) 0.4 (0.2) 0.3 (0.2) 0.3 (0.2) 

Mixed day 0.8 (0.2) 0.7 (0. 3) 0.6 (0. 3) 0.7 (0.3) 0.6 (0.3) 0.5 (0.2) 0.5 (0.2) 0.4 (0.2) 

O3 (ppb)         

Burning day 39.6 (7.7) 38.6 (6.1) 39.6 (7.6) 47.4 (6.0) 41.9 (10.8) 40.9 (7.8) 49.8 (9.4) 41.6 (8.7) 

Non-burning day 17.2 (7.1) 13.4 (5.8) 19.3 (8.4) 18.2 (5.3) 12.4 (7.0) 14.6 (6.3) 19.3 (7.3) 17.7 (6.9) 

Mixed day 28.5 (9.4) 23.8 (10.3) 31.1 (11.2) 31.4 (11.4) 23.7 (12.2) 26.4 (11.3) 33.3 (12.9) 31.1 (13.1) 

NO2 (ppb)         

Burning day 25.5 (7.1) NA 13.2 (4.0) 10.4 (2.5) NA 7.8 (3.3) 12.3 (4.1) 16.1 (4.0) 

Non-burning day 10.2(4.8) NA 4.8(3.5) 3.4(1.5) NA 2.1(1.5) 4.7(2.2) 5.3 (2.8) 

Mixed day 15.3 (5.9) NA 7.5 (3.9) 6.2 (2.2) NA 4.3 (2.4) 7.4 (2.6) 9.6 (3.9) 

SO2 (ppb)         

Burning day 1.8 (0.9) NA 2.6 (1.3) 1.7 (0.6) NA 1.2 (0.9) 2.0 (1.4) 1.7 (1.6) 

Non-burning day 1.0 (0.4) NA 1.6 (1.3) 1.2 (0.3) NA 0.8 (0.8) 1.0 (1.0) 1.2 (1.5) 

Mixed day 1.1 (0.6) NA 2.0 (1.6) 1.4 (0.5) NA 1.1 (0.9 0.9 (0.9) 1.2 (1.3) 

Meteorology         

Temperature (°C)         

Burning day 29.6 (2.2) 26.8 (2.1) 27.6 (3.1) 28.4 (3.0) 28.6 (2.4) 29.3 (2.1) 27.7 (2.5) 27.9 (2.8) 

Non-burning day 27.1 (2.1) 26.0 (2.6) 27.0 (2.2) 27.1 (2.2) 26.7 (2.2) 27.2 (2.3) 25.9 (3.6) 27.2 (2.1) 

Mixed day 26.6 (3.3) 24.3 (3.4) 26.6 (3.5) 26.7 (3.6) 25.6 (4.3) 26.1 (3.4) 24.6 (4.7) 26.9 (3.6) 

Relative humidity (%)         

Burning day 51.0 (4.5) 61.8 (6.7) 53.7 (5.7) 56.0 (5.8) 54.5 (4.9) 61.0 (4.6) 60.0 (7.4) 61.4 (5.8) 

Non-burning day 76.7 (7.0) 81.0 (5.7) 79.4 (7.2) 79.7 (6.7) 82.5 (5.9) 80.1 (11.0) 82.8 (10.0) 81.3 (6.0) 

Mixed day 64.4 (8.3) 72.2 (7.1) 66.5 (10.6) 69.0 (9.0) 71.1 (10.5) 72.4 (7.3) 73.9 (12.3) 70.6 (8.5) 
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Variables Chiangmai Chiangrai Lamphun Lampang Maehongson Nan Phayao Phrae 

Wind speed (m/s)         

Burning day 19.3 (7.1) 17.6 (8.5) 13.8 (6.2) 13.5 (9.4) 18.0 (5.1) 16.6 (3.5) 12.9 (4.6) 13.5 (7.0) 

Non-burning day 21.5 (10.0) 20.6 (8.3) 18.4 (6.9) 17.9 (9.8) 16.8 (5.6) 17.4 (3.3) 12.4 (4.2) 16.5 (8.5) 

Mixed day 20.6 (11.2) 20.5 (10.4) 16.7 (6.8) 16.4 (11.3) 17.5 (6.8) 17.1 (3.9) 12.7 (5.7) 15.9 (9.0) 

Precipitation (mm)         

Burning day 0.2 (0.2) 0.3 (0.3) 0.5 (0.3) 0.3 (0.3) 0.1 (0.1) 1.1 (0.4) 0.2 (0.2) 0.3 (0.2) 

Non-burning day 5.0 (4.5) 8.1 (4.9) 5.1 (4.7) 5.0 (4.6) 5.4 (3.6) 5.2 (3.2) 5.1 (3.3) 5.3 (4.4) 

Mixed day 1.3 (5.4) 2.3 (8.6) 1.5 (7.0) 1.6 (7.1) 1.0 (4.5) 1.5 (5.9) 1.3 (5.3) 1.5 (6.3) 

No. hotspots          

Burning day 43.9 (40.0) 28.0 (22.3) 7.0 (4.75) 20.2 (17.8) 42.7 (42.6) 32.5 (31.3 7.9 (7.1) 12.6 (10.0) 

        Non-burning day 0 0 0 0 0 0 0 0 

        Mixed day 4.8 (1.4) 3.6 (2.0) 4.9 (1.7) 2.2 (1.6) 3.0 (2.6) 3.1 (3.0) 0.7 (0.6) 1.6 (1.2) 

* One-way ANOVA was applied to compare the concentration of all air pollutants among burning, non-burning, and mixed days in each 

province and the results showed significantly different (p < 0.01) for all provinces. 

NA: not assessed. 
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Table 2.2. Summary of hospital visits for children during 2014 – 2018. 

 Case count 

 
Chiangmai Chiangrai* Lamphun Lampang Maehongson Nan Phayao Phrae 

Total number 1,680,799 1,173,571 376,871 600,436 393,262 576,122 484,132 355,914 

Daily number (%) 

Age (years)         

0 – 4 60.0 59.6 56.7 53.3 60.7 56.8 52.9 50.4 

5 – 14 40.0 40.4 43.3 46.7 39.3 43.2 47.1 49.6 

Sex         

Male 53.0 52.7 52.7 53.1 52.8 52.4 53.0 53.0 

Female 47.0 47.3 47.3 46.9 47.2 47.6 47.0 47.0 

Diagnosis (ICD-10) 

Conjunctivitis  

(H10-H19) 

2.1 2.1 2.3 2.5 1.7 2.2 1.9 3.3 

Dermatitis 

(L20-L30) 

6.8 7.4 5.5 6.7 6.9 8.5 8.0 7.3 

Respiratory 

(J00-J99) 

91.0 90.5 92.2 90.8 91.4 89.3 90.0 89.4 

*Available data are from October 2014 to December 2018
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 PM10 was associated with hospital visits due to respiratory disease on both burning and 

non-burning days while its associations with conjunctivitis and dermatitis were found on non-

burning and mixed days (Figure 2.3). Significantly positive associations between PM10 and 

hospital respiratory diseases on burning days were observed in the immediate lag (lag 0, lag 1, 

lag 01, and lag 02). The pooled estimate was high on the day of exposure, with an OR of 1.01 

(95% CIs: 1.00, 1.02) (Figure 2.3). Positive associations between PM10 concentration and 

hospital visits due to respiratory disease in children were found in all provinces except 

Chiangrai (Figure A-4). The effect estimates of each provinces and diseases are presented in 

Figure A-4 to A-11. 

The positive relationships were also found between hospital visits for all health 

outcomes and PM10 concentrations on non-burning days. On mixed days, hospital visits for 

conjunctivitis and dermatitis were associated with PM10 concentrations. Pooled risks for non-

burning days were 1.03 (95% CIs: 1.02, 1.04 (lag 0)) for respiratory disease, 1.04 (95% CIs: 

1.03, 1.05 (lag 0)) for dermatitis, and 1.02 (95% CIs: 1.00, 1.03 (lag 02)) for conjunctivitis 

(Figure 2.3). For mixed days, an elevated risk was found with lag 0 for conjunctivitis (OR=1.01, 

95% CIs: 1.00, 1.02) and dermatitis (OR=1.01, 95% CIs: 1.01, 1.02) (Figure 2.3). The 

comparison of non-burning/mixed days with burning days showed that the estimated effect of 

PM10 on respiratory disease on burning days was slightly but significantly lower when 

compared with non-burning days at lag 0 (Figure 2.3). 
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Figure 2.3. Odds ratio of hospital visits (pooled effect) as associated with a 10 μg/m3 increase 

in PM10 concentration on burning, non-burning, and mixed days for single and average lag 

models. *Statistically significant difference at p < 0.05 compared to burning day. 

 

The results of stratified analysis are presented in Figure 2.4. I found that ORs for school 

children (5-14 year olds) were slightly higher than pre-school children (0-4 year olds) on both 

burning and non-burning day although there was no significant difference in ORs between the 

two age groups. 

Figures 2.5 and 2.6 present the sensitivity analyses by comparing the effect estimate of 

different cut-off points for fire hotspot and PM10 concentration, respectively. Applying 

different cut-off point of fire hotspot and PM10 concentration generally showed similar effect 

estimates 
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Figure 2.4. Odds ratio of hospital visits for stratified analysis of children age 0-4 and 5-14 

years as associated with a 10 μg/m3 increase in PM10 concentration on burning, non-burning, 

and mixed day at lag 0. 

 

 

Figure 2.5 Odds ratio of hospital visits for respiratory diseases in children associated with a 

10 μg/m3 increase in PM10 concentration on burning and mixed days at lag 0 applying the 
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different cut-off point of fire hotspot (75th, 90th, and 99th percentile). The results of non-

burning days were not presented because changing the cut-off point does not affect them. 

 

 

 Figure 2.6 Odds ratio of hospital visits for respiratory diseases in children associated 

with a 10 μg/m3 increase in PM10 concentration on burning and mixed day compared to the 

different cut-off point of PM10 (100 and 120 µg/m3). The results of non-burning days were 

not presented because changing the cut-off point does not affect them. 

 

2.3 Discussion 

 The main finding from this study is that a significant association between PM10 and 

hospital visits due to respiratory disease were observed on both burning and non-burning days 

while its associations with conjunctivitis and dermatitis were found on non-burning and mixed 

days. The effects were highest in the immediate lag, especially at lag 0, which indicates an 

acute effect of PM10.  

 Previous studies have also demonstrated the consistent evidence that exposure to PM10 

on burning days significantly influenced the number of hospital visits for respiratory disease 
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(Henderson et al., 2011; Stowell et al., 2019). Specifically, various health outcomes of 

respiratory diseases were observed in children during burning events such as asthma 

(Henderson et al., 2011; Stowell et al., 2019), upper respiratory inflammation (Künzli et al., 

2006), lower respiratory inflammation (Mirabelli et al., 2009), and respiratory mortality 

(Sahani et al., 2014). However, the negative association were found in Chaingrai province. 

This may suggest the effectiveness of burning ban policy implemented (Yabueng et al., 2020) 

or implementation of the preventive activities e.g., establishment of safety zone, and school 

closure in the province during burning day. This inverse association could also be by chance. 

Children are more vulnerable to respiratory issues because their lungs are less developed, and 

they have higher respiratory rates than adults. Thus, the effects of vegetation burning-derived 

PM are most evident in their respiratory system; in some cases, systemic damage in the lung 

may be sustained (World Health Organization, 2005). It is possible that the different patterns 

of activities and the duration of time spent in outdoor may contribute to variation in 

susceptibility to PM effects among different age groups. However, the effect estimates of 

preschool children and school children in this study were not different. 

 In contrast, the associations between vegetation burning-related PM and hospital visits 

for conjunctivitis and dermatitis were not observed. The previous study found an increased 

likelihood of doctor visits to address eye irritation when wildfire-derived PM concentrations 

were high (Künzli et al., 2006). Another study reported clinical cases of eye complaints and 

dermatitis during a haze period in Singapore (Yeo et al., 2014). The discrepancy between our 

results and those of previous studies may be attributed to differences in the severity of the 

disease (e.g., complaint data, eye symptoms reported by school, or hospital visits data). In the 

present study, only a few of those who had symptoms may have visited the hospital during the 

burning period.   
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 As the different components of PM of each setting, the prior hypothesis is that the 

effects of PM10 on burning days would be more prominent than those on non-burning and 

mixed days. However, I found a slightly higher effect estimate for respiratory diseases of non-

burning day compared to burning day at the immediate lag. This result was inconsistent with 

the previous study which found that the similar increase in risk of respiratory illness-related 

hospitalization and PM from smoke and non-smoke days (Deflorio-Barker et al., 2019). One 

potential reason can be attributed to difference in the toxicity of PM components derived from 

different sources. It is possible that PM during non-burning days may have contained more 

toxic components in this study. A toxicological study also found that the markers of vegetation-

derived PM (encompassing levoglucosan, mannosan, and galactosan) reduced cell viability and 

IL-8 induction, while urban-derived PM increased pro-inflammatory and mutagenic activity 

(Heuvel et al., 2018). These findings collectively suggest that both vegetation burning and 

urban sources can trigger respiratory incidents in children. 

 In addition, hospital visits for conjunctivitis and dermatitis were associated with PM10 

on non-burning and mixed days. The main sources of PM on non-burning and mixed days 

include urban sources e.g., traffic and some burning activities such as waste burning. The 

finding of risk on hospital visits for dermatitis was consistent to those reported in a previous 

study (Kim et al., 2017). Children are more susceptible to dermatitis given their immature skin 

barrier function, and thus are in a vulnerable developmental stage (Ahn, 2014). I also observed 

positive associations between the number of hospital visits for conjunctivitis and dermatitis 

and PM concentrations on mixed days, but not on burning days. This may be due to the fact 

that people likely spent more time outside on non-burning days; typically, they are cautioned 

to stay indoors on burning days (Moran et al., 2019). In California, for example, children are 

more likely to take preventive actions such as staying indoors during the wildfire season 

(Künzli et al., 2006). 
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Strengths 

This study has several strengths. First, this study conducted a multi-province analysis, 

which provides a representative overview of associations between various health outcomes and 

air pollution levels during a burning event in Southeast Asia. Second, this study examined 

associations between the number of hospital visits and exposure to PM10, specifically focusing 

on burning days using satellite data coupled with PM concentrations, whereas some previous 

studies used only PM concentrations (Martin et al., 2013) or limited the study period to burning 

seasons which might lead to misclassification of burning day (Gupta, 2019). Third, this study 

compared effect estimates of PM10 on burning, non-burning, and mixed days in the same 

population, rather than in different populations. Finally, I examined the health effects of 

vegetation fire events among children and was thus one of the first to address the question in 

this susceptible population (Gupta, 2019; Sahani et al., 2014). 

 

Limitations 

There were some limitations for this study. This study used PM10 concentrations from 

ground monitoring to reflect exposure, which may have been subject to misclassification, and 

may not accurately represent an individual’s exposure. While our results offer insight into the 

health effects of vegetation burning, generalizing these findings to other regions may require 

further research, since conditions relating to fuel type, meteorology, and topography can all 

influence the characteristics of PM (composition, size, and concentration) and impact health 

outcomes. Another limitation might be misclassification of a burning day. First, smoldering 

fires sometimes cannot be detected from satellite observation even when they emit substantial 

smoke which can lead to high level of PM concentration and might contain toxic substances 
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from insufficient burning such as PAHs. Second, valley topography of UNT might have 

affected the spatial distribution of PM10 and could cause misclassification of burning day. 

2.4 Conclusion  

 PM10 on burning days was significantly associated with the number of hospital visits 

among children due to respiratory disease, but not conjunctivitis or dermatitis. Effect estimates 

of PM10 on hospital visits for respiratory diseases was lower on burning than non-burning days. 

The associations observed were generally acute, occurring within the first two days. 
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CHAPTER 3: Study II (Effect of vegetation fire events ban on hospital visits for 

respiratory diseases in Upper Northern Thailand) 

 This chapter discussed the second study on evaluating the effects of the burning ban 

policy on hospital visits for respiratory diseases. In study I, the association between VFS-PM10 

and hospital visits for respiratory diseases was observed in the UNT area. As mentioned in the 

Chapter I, the burning ban policy was amended and enforced on May 2016. Number fire 

hotspots and PM10 concentrations have set as the crucial indicators for evaluating the 

effectiveness of the vegetation haze control by the government. The decline of both indicators 

was documented after policy implementation by the previous study (Yabueng et al., 2020). 

This raised the hypothesis that hospital visit for respiratory diseases may consequently decrease 

after observing the decrease of PM10 and fire hotspot from the ban. In this chapter, I evaluated 

the effect of vegetation fire events ban on hospital visits for respiratory diseases in the UNT. 

 

3.1 Methodology 

Study area  

 This study included the data from eight provinces of the UNT which were described in 

the study I. The population of year 2016 in each province is presented in the Table 3.1 while 

the population trend is presented in Figure 3.1.  

 

Study design 

 The study periods were defined into two specific time, as follows: 1) January to April 

of 2014-2016 (before ban enforcement) and 2) January to April of 2017-2018 (after ban 

enforcement). The data during the burning season (January through April) were analyzed, since 

these months represent the time when the region is most affected by intense fire events. Also, 

high concentrations of PM, which is predominantly emitted from vegetation fires, have been 
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noted in the region during the dry season. I also utilized the data during the non-burning season 

(May through December) to compare the difference of PM10 concentration and the rate of 

hospital visits from the burning season. The study period was set to 5 years spanning 2014 - 

2018 to cover both periods before and after ban enforcement. 

 

Table 3.1. Population of each province in the UNT (National Statistical Office of Thailand, 

2016). 

Province Population 

Chiangmai 1,735,762 

Chiangrai 1,282,544 

Lamphun 748,850 

Lampang 405,999 

Maehongson 275,884 

Nan 479,916 

Phayao 479,188 

Phrae 449,810 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Population trend of each province in the UNT during 2014-2018 
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Hospital visits data  

 The hospital visits data of each province of the UNT during 2014 to 2018 were derived 

from Ministry of Public Health, Thailand. Data of Chiangrai province were available only from 

January 1 2015 to December 31 2018. The data included demographic information (age and 

sex), date of visit, and code of International Classification of Diseases version 10 (ICD10). In 

this study, I focused on hospital visits for respiratory diseases (J00-J99), since I expected that 

reduced PM10 concentrations due to ban enforcement would consequently lead to a reduced 

prevalence of respiratory diseases. On the other hand, assuming that the effect of the ban on 

the prevalence of gastrointestinal diseases would be minimal, if any, I also collected data for 

gastrointestinal diseases (K00-K99) as negative controls according to a previous study 

(Boogaard et al., 2017). 
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Daily age-standardized morbidity rates 

 Daily age-standardized rates of hospital visits for respiratory and gastrointestinal 

diseases were calculated to compare between before and after the ban intervention. I adjusted 

for population changes by calculating age-standardized rates of hospital visits for both 

respiratory diseases and gastrointestinal diseases. Daily morbidity rates were determined by 

age group (5-year intervals up to 85 years and >85 years) for each province by dividing the 

daily number of hospital visits by daily population (estimated by linear-interpolation of age-

specific census population counts in 2014-2018 provided by the National Statistical Office of 

Thailand). Age-standardized rate of hospital visits was obtained by dividing the total number 

of daily expected cases for each age group by the standard population. Daily expected cases 

were calculated by multiplying the daily morbidity rate by the standard population of that same 

age group (2016 census population in each province). Morbidity rates were expressed per 

100,000 person-days. 

 

Environmental data  

 Hourly average PM10 concentrations from 14 stations across UNT were provided by 

the Pollution Control Department of Thailand. Daily average PM10 concentrations were 

estimated from hourly data within each province. I obtained daily meteorological data, 

including ambient temperature (in degrees Celsius; ℃), relative humidity (in percent; %), wind 

speed (in meter per second; m/s), and rainfall (in millimeters; mm) from the Department of 

Meteorology of Thailand. I averaged PM10 concentrations and meteorological data from all 

stations in each province. 

 Data on fire hotspots representing possible fires or burning activities were retrieved 

from satellite data obtained from NASA’s MODIS onboard Terra and Aqua satellites. Daily 

fire hotspots were summed by province using QGIS 3.4 (QGIS Development Team 2014). 
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Statistical analyses 

 In the first stage, the analysis was separately performed by each province. T-test was 

used to compare PM10 concentrations and age-standardized rates of hospital visits for 

respiratory diseases and gastrointestinal diseases before and after ban enforcement, and the 

Man-Whitney U test was used to analyze differences in the number of fire hotspots. 

 Controlled interrupted time-series (CITS) analysis was applied to assess the effect of 

the burning ban on hospital visits for respiratory diseases with a generalized linear model 

(GLM) based on a Poisson distribution for burning periods. Adjustments for season-specific 

temporal trends were performed by using a natural cubic spline of day of the season with 1 

degree of freedom (df) (Bhaskaran et al., 2013). Adjustments were also performed for offset 

population (log of the population under the study period), number of hospitals (province/year) 

(Figure B-1), day of week, and public holidays as dummy variables, a 3-day moving average 

lag in temperature, and relative humidity using a smoothing function with 3 df. I changed the 

df of temperature ranging from 3-5 to check for robustness. The best fitted model was selected 

by the Akaike Information Criterion (AIC). Because initial analyses manifested an 

overdispersion, a quasi-Poisson models was used for all latter analyses. In this study, I only 

examined step changes in the model based on the hypothesis that the impact of the ban might 

be an abrupt effect on health outcomes. The same analysis was also applied to hospital visits 

for gastrointestinal diseases as the negative control, to verify whether the changes in the 

hospital visits for respiratory disease are truly attributable to the burning ban.  

 In second stage, a random-effect meta-analysis was performed to pool multi-province 

effect estimates. The heterogeneity was performed using I2 statistic, while the significance of 

heterogeneity was tested by Cochran’s Q statistic. 

 Sensitivity analyses were performed for temporal control by changing df from 1 to 5 

for both respiratory and gastrointestinal diseases. I found narrower confidence intervals for 
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hospital visit rates when df =1, whereas wider confidence intervals were observed with 

increasing df (Figure 3.2). The effect estimates were not significantly different for all df in both 

respiratory and gastrointestinal diseases. Moreover, lower heterogeneities in both diseases were 

consistently observed when df = 1. It is thus reasonable to believe that the use of df = 1 for the 

temporal control is suitable in examining the change of hospital visits after burning ban 

implementation. I also conducted sensitivity analyses by varying the cut-point year of burning 

ban instead of a year 2016 by year 2015 and 2017. I thus compared effects between three cut 

point-years (cut-point year 2015: 2014-2015 versus 2016-2018, cut-point year 2016: 2014-

2016 versus 2017-2018, and cut-point year 2017: 2014-2017 versus 2018). 

 

 

Figure 3.2. Sensitivity analyses by changing degree of freedom (ranged from 1 to 5) of day of 

season. Heterogeneity of each df of the pooled-effect estimate is represented as I2. 
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All statistical analyses were conducted in R (version 3.5.1, The R Foundation for 

Statistical Computing, Vienna, Austria) utilizing the R package tsModel and metafor 

(Viechtbauer, 2010). All results were presented as percent change with 95% confidence 

intervals (CIs).  

 

3.2 Results 

 The trends of PM10 and the number of fire hotspot during burning seasons decreased 

after the ban implementation in most of the provinces in the UNT while PM10 concentration 

levels and fire hotspot counts during non-burning seasons did not differ between before and 

after burning ban implementation (Figure 3.3 and 3.4). The decline of daily average PM10 

concentration and fire hotspot ranged from 5.3 to 34.3 % and 14.3 to 81.5 %, respectively 

(Figure 3.5 and Table 3.2). The largest decreases in PM10 concentration and the number of fire 

hotspots were noted in Chiangrai province (Figure 3.5). 

 Age-standardized rates of hospital visits for respiratory diseases were higher in the 

burning season compared to the non-burning season and were slightly lower after ban 

enforcement compared to before in some provinces (Figure 3.6). On the other hand, age-

standardized rates of hospital visits for gastrointestinal diseases did not differ between burning 

and non-burning seasons, while an increasing trend was observed over the course of the study 

period (Figure 3.7). The comparison of age-standardized rates of hospital visits for respiratory 

diseases before and after ban enforcement revealed a decrease by 6.5-18.8% in 5 provinces 

(Chiangmai, Chiangrai, Lampang, Phayao, and Phrae), whereas the rates for gastrointestinal 

diseases increased in all provinces by 5.7-64.6% (Table 3.3). 
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Figure 3.3. Daily average PM10 concentration by eight provinces during burning (January to 

April) and non-burning periods (May to December).  

The vertical break line indicates 19 May 2016 when the ban came into force. 
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Figure 3.4. Daily sum of fire hotspot by eight provinces during burning (January to April) 

and non-burning periods (May to December). 

The vertical break line indicates 19 May 2016 when the ban came into force. 
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. 

Figure 3.5. Change of (a) Daily average PM10 (µg/m3) and (b) Daily mean of fire hotspots 

after implementation of burning ban in the UNT.
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Figure 3.6. Period mean of standardized rates of hospital visit for respiratory disease  

during 2014-2018 in each province. Noted that the data in Chaingrai province is not available in year 2014. 
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Figure 3.7. Period mean of standardized rates of hospital visit for gastrointestinal disease 

 during 2014-2018 in each province. Noted that the data in Chaingrai province is not available in year 2014 
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Table 3.2. A comparison of daily average PM10 concentration and fire hotspot before and after burning ban in UNT, by province.  

 

Province Period 

PM10 (µg/m3) Fire hotspot 

Mean 
Change from baseline 

period 
p-value Total count Mean 

Change (mean) from baseline 

period 
p-value 

Chiangmai 
2014-2016 76.4 

-5.3 
0.10 6347 17.6 

-64.8 
< 0.01 

2017-2018 72.4  1499 6.2  

Chiangrai 
2014-2016 79.9 

-34.3 
< 0.01 2925 8.1 

-81.5 
< 0.01 

2017-2018 52.5  351 1.5  

Lampang 
2014-2016 77.5 

-31.3 
< 0.01 2618 7.3 

-39.7 
< 0.01 

2017-2018 53.2  1066 4.4  

Lamphun 
2014-2016 75.7 

-21.7 
< 0.01 1018 2.8 

-14.3 
0.22 

2017-2018 59.3  583 2.4  

Maehongson 
2014-2016 83.4 

-18.3 
< 0.01 5924 16.4 

-48.8 
< 0.01 

2017-2018 68.2  2024 8.4  

Nan 
2014-2016 75.3 

-26.0 
< 0.01 3882 10.8 

-59.3 
< 0.01 

2017-2018 55.7  1063 4.4  

Phayao 
2014-2016 80.3 

-29.7 
< 0.01 1029 2.9 

-75.9 
< 0.01 

2017-2018 56.5  178 0.7  

Phrae 
2014-2016 86.9 

-28.8 
< 0.01 1637 4.5 

-53.3 
< 0.01 

2017-2018 61.9  516 2.1  
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Table 3.3 Age-standardized rate of hospital visits for respiratory and gastrointestinal diseases before and after burning ban implementation in the 

UNT, by province 

Province 

Total hospital 

visits for 

respiratory 

diseases (n) 

Total hospital 

visits for 

gastrointestinal 

diseases (n) 

Period 

Respiratory diseases Gastrointestinal diseases 

Age-

standardized 

rate (per 

100,000 

person-day 

Change from 

pre-intervention 
p-value 

Age-

standardized 

rate (per 

100,000 

person-day) 

Change from 

pre-intervention 

 

p-value 

Chiangmai 595,724 43,833 
2014-2016 116.0 -12.5 

 

<0.01 60.0 8.8 0.284 

2017-2018 101.6  65.2   

Chiangrai 340,769 17,693 
2015-2016 114.1 -11.9 <0.01 45.9 64.6 <0.01 

2017-2018 100.5   75.6   

Lampang 313,931 20,597 
2014-2016 113.8 -6.5 0.12 63.3 28.6 <0.01 

2017-2018 106.4   81.4   

Lamphun 184,430 10,683 
2014-2016 112.7 15.4 <0.01 65.2 42.3 <0.01 

2017-2018 130.0   92.7   

Maehongson 109,930 7,610 
2014-2016 146.5 0.4 0.90 69.7 33.1 <0.01 

2017-2018 147.0   92.8   

Nan 199,258 8,890 
2014-2016 50.5 0.3 0.94 64.2 20.0 <0.01 

2017-2018 50.6   77.0   

Phayao 311,244 14,032 
2014-2016 154.3 -18.0 <0.01 106.7 5.7 0.284 

2017-2018 126.4   112.8   

Phrae 196,330 12,176 
2014-2016 103.6 -18.8 <0.01 69.1 13.6 <0.05 

2017-2018 84.1   78.6   

Total 3,448,659 2,251,616 
2014-2016 114.0 -4.7 <0.01 94.4 22.8 <0.01 

2017-2018 109.3   117.2   
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The controlled ITS analysis revealed that the enforcement of the ban was associated 

with a decrease in hospital visits for respiratory diseases in all provinces except for Lampang 

province, after adjusting for potential confounders (Table 3.4). The effect estimates for 

respiratory diseases decreased in seven provinces (-1.2% (95% CI: -8.0, 6.2) to -15.7% (95% 

CI: -21.2, -9.8)). The pooled estimate of the effect of ban enforcement was -8.7% (95% CI: -

12.9, -4.3) for respiratory diseases, whereas that for gastrointestinal diseases was 1.0% (95% 

CI: -2.1, 3.4). The test for heterogeneity of pooled effect estimates revealed I2 values of 83.1% 

(P < 0.01) and 70.3% (P < 0.01) for respiratory diseases and gastrointestinal diseases, 

respectively. 

 

Table 3.4. Effect estimates of the burning ban implementation on respiratory and 

gastrointestinal diseases in the UNT. 

Province % Change (95% CI) 

Respiratory diseases Gastrointestinal diseases 

Chiangmai -10.3 (-13.6, -6.9) -2.4 (-10.0, 5.8) 

Chiangrai -1.2 (-8.0, 6.2) -3.5 (-26.9, 19.8) 

Lampang 4.4 (-2.2, 11.5) -8.2 (-2.8, 19.2) 

Lamphun -11.7 (-16.0, -7.3) -3.5 (-6.3, 13.3) 

Maehongson -15.7 (-21.2, -9.8) -1.1(-8.5, 6.4) 

Nan -10.0 (-14.7, 4.9) 0.2 (-5.5, 5.9) 

Phayao -8.8 (-12.8, -4.5) -0.7 (-5.8, 7.2) 

Phrae -13.6 (-18.9, -7.9) 0.9 (-5.2, 7.0) 

UNT* -8.7 (-12.9, -4.3)a 1.0 (-2.1, 3.4)b 

* Pooled effect by meta-analysis 

aTest for heterogeneity: I2 = 83.1%, df = 7 (P <0.01)  

bTest for heterogeneity: I2 = 70.3%, df = 7 (P <0.01)  

 

 The sensitivity analyses using 2015 and 2017 as cut-point years revealed that the 

decreases in rates of hospital visits for respiratory diseases disappeared with changing cut-point 
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years earlier (2015) from the original cut-point (Table 3.5). However, small increases in the 

rates of hospital visits for respiratory diseases were observed for the 2017 cut-point year. 

 

Table 3.5. Sensitivity analyses by adjusting the cut-point year of the ban. 

Province 
Change of respiratory diseases (Percentage (%) with 95 CI) 

2014-2015 vs. 2016-2018 2014-2016 vs. 2017-2018 2014-2017 vs. 2018 

Chiangmai 15.6 (11.6, 19.9) -10.3 (-13.6, -6.9) -4.4 (-7.4, -1.4) 

Chiangrai 7.2 (3.3, 11.2) -1.2 (-8.0, 6.2) 0.9 (-2.7, 4.7) 

Lamphun 31.7 (23.9, 39.9) 4.4 (-2.2, 11.5) -18.2 (-21.9, -14.3) 

Lampang 5.6 (0.6, 10.8) -11.7 (-16.0, -7.3) 7.4 (3.5, 11.4) 

Meahongson -3.4, (-8.0, 1.5) -15.7 (-21.2, -9.8) -1.2 (-5.6, 3.4) 

Nan 1.1 (-3.9, -8.1) -10.0 (-14.7, 4.9) 6.0 (2.0, 10.1) 

Phayao 4.0 (-0.7, 8.9) -8.8 (-12.8, -4.5) 2.2 (1.6, 2.5) 

Phrae 24.9 (18.7, 31.4) -13.6 (-18.9, -7.9) 2.8 (-1.9, 7.9) 

UNT 11.2 (4.4, 18.6) -8.7 (-12.9, -4.3) 1.2 (-6.2, 9.2) 

 

3.3 Discussion 

 This study found that the burning ban policy in 2016 led to reduce in both average PM10 

concentration and number of fire hotspot counts during burning periods in all provinces of 

UNT ranging from 5%-34% and 14%-81% respectively. the enforcement of the ban was 

associated with a decrease in the rate of hospital visits for respiratory diseases (-8.7% (95% CI: 

-12.9, -4.3)). On the other hand, the rate of hospital visits for gastrointestinal diseases increased, 

albeit non-significantly, by 1.0% (95%CI: -2.1, 3.4)) during the same period. 

 The decline of PM10 concentration and fire hotspot in this study were consistent with 

the previous study (Yabueng et al., 2020). In addition, I found the constant trend of PM10 

concentration during non-burning periods. Thus, suggesting that the burning ban is effective in 

reducing PM10 from vegetation fire events.  
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  In the controlled ITS analyses, the meta-analysis results revealed the reduction of the 

hospital visits rates for respiratory diseases for entire the UNT. As a potential factor, decreased 

PM10 concentrations due to ban enforcement across the region might have led to a reduced 

prevalence of respiratory diseases. The decrease of respiratory visits might be attributable to 

the burning ban when burning activities was prohibited (decrease of fire hotspot counts) and 

the level of PM10 concentration consequently decreased after the ban enforcement in 2016. The 

heterogeneity of the pooled effect estimates was high, possibly due to differences in settings 

(e.g., urban, rural, mixed area) and the rigidity of the policy enforcement by each province. 

Indeed, I found a non-significant increase of hospital visits in Lampang province after burning 

ban enforcement contrast to the rest of the provinces. This might be due to the variability in 

law enforcement among the provinces as I observed a smaller decline of daily fire hotspot and 

PM10 concentration after burning ban enforcement in 2016 in Lampang. 

 Second factor is that the secular change might have led to reduce the rates of hospital 

visits for respiratory diseases as Thailand has been facing low birth rates for several decades, 

and a decline in birth rates was also noted across UNT during the study period. However, age-

standardized rates of hospital visits for gastrointestinal diseases showed an increasing trend in 

all provinces in UNT. In 2002, Thailand implemented the universal health coverage (UHC) 

insurance, which supported financial assessment for medical services (Tangcharoensathien et 

al., 2018). The UHC also extended beneficial services to hard-to-reach areas in 2014 

(Tangcharoensathien et al., 2018). Moreover, the UHC reportedly increased the rate of 

outpatient visits by 13% (Ghislandi et al., 2014). This may explain the increase in hospital 

visits for gastrointestinal diseases across UNT, but not for respiratory diseases.  

 Different cut-point year of implementation was adopted in the sensitivity analyses. I 

found that no reduction in the rate of hospital visits for respiratory diseases when the cut-point 

was moved to earlier years. However, the effect was slightly increased when the cut-point year 
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was changed to 2017 (2014-2017 vs. 2018). The strict penalties imposed for violations may 

not be sustained after enforcement in the later years. In order to overcome haze/smoke crises, 

not only regulation measures but also other preventive mechanisms will be needed to reduce 

burning practices, such as educating and providing information to villagers regarding the health 

effects of haze exposure, facilitating land allocation to optimize use for different purposes, and 

encouraging and supporting modern farming methods (Moran et al., 2019; Quah and Johnston, 

2001).  

 

Strengths 

 There were several strengths of this study. First, this study is initiate applying an 

interrupted time series as a powerful quasi-experimental design for revealing the effect of 

burning control measures and morbidity, which might be useful for evaluating the policy 

implementation. Second, this study is performed multi-city of controlled ITS to clarify the 

effect of burning control measures on morbidity. Another strength is that data on 

gastrointestinal diseases, which are unrelated to air pollution, were included in the analyses as 

a negative control, and comparisons with respiratory diseases were performed using the same 

model. This allowed us to control for the same potential confounders that affect both respiratory 

and gastrointestinal diseases in the area (e.g., health care education, health insurance system). 

 

Limitations 

 There were potential limitations of this study. First, I compared PM10 concentrations 

before and after ban enforcement by using the average from few stations in the area. Increased 

PM concentrations may not only be due to emissions from burning activities, as PM can also 

be released from other sources such as traffic. However, a previous study found vegetation fire 

events to be the dominant source of PM during the year 2012-2018 (Yabueng et al., 2020). 
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Second, I did not control for the effect of other environmental policies which could have 

impacted PM concentrations and affected the hospital visits for respiratory diseases in UNT. 

Third, I did not perform external validation in this study. According to Cochrane Effective 

Practice and Organization of Care Review Group (Cochrane EPOC), eligible control sites 

should be comparable to the implementation affected areas (EPOC, 2008). A previous 

accountability study compared the effect of vehicle-related air pollution on health outcomes 

between regulation-affected and non-regulation-affected populations by selecting similar 

urbanization areas (Yorifuji et al., 2016). However, there was no appropriate reference 

population for our study, because vegetation fires in UNT uniquely affect forest areas in the 

mountainous landscape. Moreover, the particular topography of UNT may account for high 

PM10 concentrations during the burning season compared to ‘flat’ areas, such as Bangkok 

Metropolitan Region (Narita et al., 2019). 

 

3.4 Conclusion 

 Implementation of the burning ban to control vegetation fire events in UNT led to a 

decrease in PM10 concentrations and the number of satellite fire hotpots in the area. After 

adjusting for several confounders, a reduction in the rate of hospital visits for respiratory 

diseases was observed across UNT, which could be attributed to the effect of the burning ban. 
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CHAPTER 4: Study III (Estimation of hospital visits for respiratory diseases attributable 

to vegetation fire smoke-PM10 and health impacts from regulatory intervention of a 

vegetation fire event ban in Upper Northern Thailand) 

 In the Study I and II, I examined the health effects from exposure to VFS-PM10. The 

results revealed that short-term exposure to PM10 on the burning day is associated with hospital 

visits for respiratory diseases. Study II further evaluated the effect of the smoke haze control 

using regulatory measures in 2016, and I found the beneficial effect of the ban on both PM10 

concentration and hospital visits for respiratory diseases.   

 In this chapter, I estimated the number of hospital visits for respiratory diseases 

attributable to VFS for all-age and children groups during 2014 to 2018. This study also 

compared the estimates cases before and after the burning ban implementation. 

 

4.1 Methodology 

  Studying the HBE from VFS need several inputs for calculation. In this study, I 

estimated the number of respiratory disease-related hospital visits attributable to VFS-PM10 in 

eight provinces in UNT (same as Study I and II). I used the population weighted VFS-PM10, 

population data, and concentration-response function derived from Study I. The inputs and data 

sources used for each step is presented in Figure 4.1. 
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Figure 4.1 Overview of HBE process used in this study  

 

4.1.1 Exposure estimation 

 Daily average PM10 concentrations were obtained from 14 monitoring stations provided 

by the Pollution Control Department Thailand. Data of VFS-PM10 concentrations were used to 

conduct the analyses after performing population weighted and classifying the burning days. 

First, I calculated population weighted PM10 concentration for more refined exposure 

estimation as, 

Population weighted 𝑃𝑀10 =  ∑
𝐶𝑖  ×  𝑃𝑖

𝑃𝑡𝑜𝑡
 

 where Ci is the PM10 concentration and Pi is the population of district i (in each 

province), and Ptot is the total population of each province (Chapter 3 (Table 3.1)). The 

population data of each district was retrieved from Gridded Population of the World, version 4 

(GPW v.4) (Center for International Earth Science Information Network and NASA 

Socioeconomic Data and Applications Center, 2016).  
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Next, population weighted VFS-PM10 concentrations were obtained after classifying 

the burning occurrence day which was applied the method from the Study I in each province. 

 

4.1.2 Concentration-Response Function and morbidity impact assessment 

 In this study, I focused on the health impact of short-term exposure to VFS-PM10 on 

respiratory outcomes. I followed the methodology in the previous studies (Kollanus et al., 

2017). First, risk of hospital visits for respiratory diseases caused by VFS-PM10 in each 

province and day of year was calculated as  

 

𝑅𝑅 =𝑒𝑥𝑝  (𝛽 ×(pop-weighted VFS-PM10))  
  

where RR is the relative risk of daily averaged concentration of population weighted 

VFS-PM10 on burning day for each province. The coefficient 𝛽 was derived from Study I. 

Specifically, we estimated the odd ratio of hospital visits for respiratory diseases as 1.009 (95% 

CI: 1.001 to 1.016) per 10 μg/m3 in VFS-PM10, which approximate to relative risk per unit 

increase. Therefore, 𝛽 is calculated as ln(1.009) per 10 μg/m3 in VFS-PM10. 

Next, the population attributable fraction (PAF) of hospital visits for respiratory 

diseases attributable to VFS-PM10, was calculated for each province and day as 

 

𝑃𝐴𝐹 = (𝑅𝑅 − 1)/ 𝑅𝑅 
 

Last, the number of daily respiratory visits attributable to the VFS-PM10 in each 

province and day was calculated as 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 = 𝐻𝑉 × 𝑃𝐴𝐹 
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 where HV is the daily number of hospital visits for respiratory diseases for total ages 

and children under age 15 years, which was derived from Ministry of Public Health Thailand 

for 2014-2018 of eights provinces in UNT. Finally, the number of attributable cases were 

summed over all days of the year and regional-or provincial-specific boundaries.  

 

4.1.3 Sensitivity analyses 

 The sensitivity analyses were performed to address the uncertainty from several sources 

of the inputs in the HBE process. In the principal analysis, I used CFR from the Study I, which 

was the risk function of the children group. Then, the risk function from the previous studies 

were applied to estimate the attributable cases same as the principal analyses (Muller et al., 

2020; Pothirat et al., 2016). I also tested the sensitivity analysis by changing the cut-point to 

determine the burning occurrence day using PM10 concentration from 100 μg/m3 to 50 μg/m3 

(WHO guideline for daily PM10 concentration). 

 

4.2 Results 

 Daily average of population weighted VFS-PM10 concentration ranged from 120.9 to 

149.2 μg/m3 across the region (mean = 133.5 μg/m3) and the number of the burning ranged 

from 64 to 139 days (Figure 4.2). The average of VFS-PM10 and the number of burning days 

in each year are presented in Table 4.1. 
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Figure 4.2. Mean of VFS-PM10 concentration (μg/m3) and total number of burning days 

during 2014 to 2018 by province. 

 

 The estimate for cases of hospital visits for respiratory diseases attributable to VFS-

PM10 for total ages and children groups throughout the study period were 75,380 and 34,399 

cases, respectively (Table 4.1). The estimation of total attributable cases accounted for 

approximately 1% of the total hospital visits for respiratory diseases of five years and 12% 

during the burning days. Number of attributable cases in each province for total age and 

children by province-year is shown in Figure 4.3 and 4.4. The attributable cases of both total 

ages and children decreased after the burning ban was implemented in 2016, from 64,061 to 

11,319 and 29,553 to 4,845 cases, respectively. The estimated cases of each province and year 

are presented in Table C-1.  
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Figure 4.3. The estimation of each annual total cases of hospital visits due to 

respiratory diseases attributable to VFS-PM10 during 2014 to 2018. 
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Figure 4.4 The estimation of each annual children cases of hospital visits due to 

respiratory diseases attributable to VFS-PM10 during 2014 to 2018. 

 

 Table 4.2 presents the results of the sensitivity analyses. The proportion of the estimated 

cases by applying CFR derived from previous studies were higher 4.3 times (Pothirat et al. 

2016) and 2.1 times (Muller et al. 2020) compared to the principal analysis. Moreover, the 

attributable cases after changing the cut-point year by using the value from WHO guideline 

was also higher than using cut-point from the Study I. Number of the cases attributable to VFS-

PM10 for the sensitivity analyses are presented in Table C-2.
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Table 4.1. Summary of number of burning days, daily average VFS-PM10 concentration, and cases of hospital visits due to respiratory diseases 

attributable to VFS-PM10. 

Year 

Number of 

burning 

daysa 

VFS-PM10(µg/m3) Annual case of respiratory visits 

Average 

VFS-PM10 

Population 

weighted VFS-

PM10 

Total Children 

% attributableb 

Whole 

period 

Burning 

day 

2014-2018 863a 141.5 133.5 75,380 (11,062-132,744) 34,399 (5,052-60,529) 0.7 11.6 

2014 244 143.5 140.5 19,842 (2,906-35,005) 8,720 (1,277-15,381) 1.2 11.4 

2015 197 150.3 151.4 20,586 (3,049-35,936) 9,452 (1,401-16,486) 1.0 13.0 

2016 259 144.1 137.7 23,633 (3,463-41,673) 11,381 (1,670-20,041) 1.0 11.4 

2017 78 136.6 122.2 5,222 (759-9,282) 2,302 (334-4,093) 0.2 10.1 

2018 85 132.9 121.0 6,097 (885-10,848) 2,543 (369-4,528) 0.3 9.8 

 

aTotal number of the days among eight provinces for 2014 to 2018 was 14,600 days 

bPercentage of attributable cases were calculated from the total cases throughout study period (10,161,191 cases) and the burning days (651,121 

cases) 
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Table 4.2. Results of sensitivity analyses. 

Source of uncertainty 
Case estimate proportion 

(75,380 cases) 
Reference 

Concentration response function   

1.01 (1.00, 1.02)* 1 Uttajug et al., 2020 

(Study I) 

1.05 (1.02, 1.09) 4.3  Pothirat et al., 2016 

1.02 (1.01, 1.03) 2.1 Muller et al., 2020 

Cut-off of PM10 concentration   

100 µg/m3* 1 Uttajug et al., 2020 

(Study I) 

50 µg/m3 2.1 WHO guideline 

* Data used in the principal analysis 

 

4.3 Discussion 

The population-weighted daily average VFS-PM10 concentration across UNT for 2014 to 

2018 were 133.5 µg/m3 (ranged from 121.0 to 140.5 µg/m3). In general, the distribution of 

VFS-PM10 concentrations were lower after the burning ban policy implementation in year 

2016.  

Although air pollution from vegetation fire events has more concerned, their far-reaching 

health effects are often ignored. This study suggests that exposure to particles emitted from 

vegetation fire events can poses the health effects of respiratory morbidity throughout UNT, 

with approximately 75,000 cases of all ages and the half were accounted for children group. 

Number of the attributable cases of respiratory visits decreased after the burning ban 

enforcement.  

There are few studies conducted health impacts from exposure to air pollution from 

vegetation fire events, particularly on morbidity. Previously published HBE studies have 

mainly addressed mortality globally or Equatorial Asia (Johnston et al., 2012; Kiely et al., 

2020; Kollanus et al., 2017; Koplitz et al., 2016; Marlier et al., 2019, 2013; Uda et al., 2019). 
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Some studies used morbidity as a health outcome such as hospitalization for cardiovascular 

and asthma in Australia (Borchers-Arriagada et al., 2020) and respiratory diseases in the United 

States (Fann et al., 2019). However, no study estimated the morbidity impacts from short-term 

exposure to particles emitted from vegetation fire events in MSEA, particularly in Thailand. 

Only the impact of long-term exposure to particles from all sources was conducted in Thailand 

(Mueller et al., 2020). As it was mentioned in Chapter I that most of HBE studies were 

conducted in the Equation Asia, health burden attributable to VFS-PM10 is needed in MSEA 

because the impacts may vary due to the difference in other environmental factors, pollution-

temperature conditions, population-age distributions, background health conditions, 

socioeconomic statuses, and health-care systems.  

There were uncertainties involved in the analyses. The validity of HBE is dependent on 

CRF used in risk assessment. Since there was no risk estimation for respiratory morbidity from 

exposure to VFS-PM10, I used the OR from Study I as an approximation of RR and estimated 

the PAF and the number of hospital visits for respiratory diseases attributable to VFS-PM10 for 

all-age group. However, the estimates cases might be overestimated because the estimates risk 

was obtained from children who are more susceptible to exposure to VFS.   

After applying the RR from other epidemiological studies, I observed greater estimates 

cases than the principal results. The reason is that this RRs were obtained from different 

exposure assessment methods. RR from Pothirat et al. (2016) was obtained from ambient PM 

data which was not specific to VFS source while Muller et al. (2020) used the 90th and 95th 

percentiles of PM10 concentrations to determine days of exposure to PM predominantly from 

vegetation burning. Moreover, RRs from the previous studies were derived from using more 

specific respiratory diseases which may lead to different effect estimates (e.g., chronic lower 

respiratory diseases (Muller et al., 2020) and chronic obstructive pulmonary diseases (Pothirat 

et al., 2016)).  



Chapter 4  
 

 
63 

Another source of uncertainty was the cutoff level above which the risk of hospital visits 

increases. The concentration of daily PM10 level was guided not to be exceeded 50 µg/m3 by 

WHO. However, the guideline was set based on ambient air particles. In this study as 

considering the effects from VFS, I assumed that hospital visits for respiratory diseases 

increase when PM10 concentration exceeds 100 µg/m3, the cut-off level of fire-related particles 

in UNT based on Study I. 

Quantifying the health burden associated with exposure to air pollution emitted from 

vegetation burning may be useful for policy-making. In this study, I also observed a decline of 

attributable cases after the year 2016, when the strict burning ban was implemented. The results 

are consistent with the Study II, which found a decrease the prevalence of respiratory morbidity 

after the ban implementation in UNT. However, in order to minimize the health effects from 

exposure to VFS, not only the regulatory measures, but also other sustained measures will be 

needed to cope the smoke haze emission as mention in the discussion part of Study II. 

 

4.4 Conclusion 

 This study suggests that PM10 emitted from vegetation fire events poses impacts on 

hospital visit for respiratory diseases across the UNT, with total estimates of approximately 

75,000 cases. Number of hospital visits for respiratory decreased after a prohibited of 

vegetation fire events has implemented in year 2016. Adverse effects of VFS air pollution on 

overall health outcomes should be taken into consideration in the future when worsen air 

pollution from vegetation fire events are growing concern from climate change with increasing 

of population.  



Chapter 5 

 64 

CHAPTER 5: CONCLUSION 

Overall summary 

From the finding of this thesis, vegetation fire events are an important contributor of 

PM10, which increased respiratory morbidity in UNT. Exposure to PM10 during the burning 

days was associated with increased hospital visits due to respiratory diseases among children. 

This thesis also found that the policy of burning ban reduced both PM10 concentration and the 

prevalence of respiratory morbidity in UNT. Importantly, the estimated cases of respiratory 

visits attributable to PM10 emitted from vegetation fire events were accounted 1% of the total 

cases throughout five-years (2014 to 2018) and 12% during the burning days. 

 

Implications of findings 

Study I  

 The findings support the causal link between PM10 during burning days and hospital 

visits for respiratory diseases for children. The effect estimates of hospital visits for 

respiratory diseases from exposure to PM10 on burning days is applicable to build the 

risk function for HBE study estimating the health burden caused by vegetation fire in 

this area. However, it is important for other areas’ study to use this risk function with 

considering about the characteristic of the health outcomes and the different 

components of the PM emitted from different burning sources. 

Study II 

 I presented that the implementation of burning ban reduced the hospital visits for 

respiratory diseases and quantified the extent of its health effect. This would be 

beneficial for future implementation of burning ban in other areas of Asia. A prohibition 

of burning with strict regulatory measures is one effective measure that can minimize 

health effects from VFS. However, this measure may not be sustainable because it is 
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difficult to observe the real-time burning events and need more manpower to observe 

the violations in the vast areas. In order to overcome VFS in this area, high participation 

of people living in both urban and rural area will be needed to reduce burning activities 

with other smoke haze control measures such as converting the method of agricultural 

debris disposal from conventional burning to modern method.  

Study III 

 I quantified the number of hospital visits from respiratory diseases during the study area 

using the frame of HBE. I also explored the sources and the extent of uncertainty in the 

estimates. The finding from this study can be further used to evaluate costs-benefits of 

the policy on haze control with careful consideration of the uncertainties of the results. 
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CHAPTER 6: FUTURE STUDIES 

 To investigate health effects of other air pollutants from vegetation fire events 

Vegetation fire events is an important contributor of particle air pollutants, and toxic 

gaseous. PM is the principal pollutants of concern from exposure to VFS. Other pollutants 

of concern during smoke events are carbon monoxide (CO), ozone (O3), and formaldehyde.  

Exposure to CO can lead to more severe symptom by the people who have heart diseases 

while other gaseous can pose respiratory irritants or potentially exacerbate asthma. 

Moreover, toxic recondensed organic vapors are also emitted from vegetation fire events 

such as PAHs. Most of the studies of PAHs focused on benzo[a] pyrene (B[a]P) which is a 

physiologically active substance that can contribute to the development of cancer in 

humans. However, the study of health effects from exposure to other gaseous and chemicals 

emitted from VFS is still limited in SEA. Investigating health effects of the other air 

pollutants from vegetation fire events may be useful for the future HBE study.  

 

 To investigate health effects of air pollution from vegetation fire events by considering 

the burning duration, intensity, and phases. 

Indeed, exposure to air pollution from catastrophic haze from intensive burning is 

continuous over time (e.g., some extreme burning events emitted smoke from few days to 

weeks). Furthermore, burning phases (smoldering and flaming) significantly release 

different level of PM concentration and its components. Considering duration (number of 

consecutive days of burning day), intensity (level of air pollution concentration), and 

burning phase is challenge for the study examined health effects from exposure to VFS. 

These may provide insightful information for future policy decisions on smoke haze.  

 

 To differentiate health effects of local and transboundary air pollution from vegetation 
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fire events 

In response to regional haze smoke, health effects from both local and transboundary of 

VFS is needed for seeking appropriate control measures to minimize the impacts. Thus. 

differentiating the health effects from local and transboundary sources of air pollution 

should be performed in the further study. In local scale, most of the previous studies used 

only PM concentration exposure assessment of VFS. However, these finding might not be 

clearly elucidated the actual sources of VFS which may be difficult for haze management 

in the policy circumstance. In this study, I examined health effects from air pollution 

emitted from VFS by utilizing PM concentration with the information of fire hotspot 

(representing the burning in the study area). For transboundary-VFS, the information such 

as fire hotpots and wind direction may be helpful for exposure assessment of the future 

study.     

 

 To predict health impacts of exposure to air pollution from vegetation fire events-driven 

by a climate change  

Up to date, few studies have estimated future health impacts attributable to VFS due to 

climate change, despite several evidence have been linked climate change and higher 

intensive vegetation burning in the future (Calheiros et al., 2021; Flannigan et al., 2009). 

Additionally, further studies are needed to investigate effective measures for reducing 

population exposure in the future such as land management practices, housing-air filters, 

and clean air-shelter.  

 

 To estimate health costs from vegetation fire smoke 

As health impact of air pollution from VFS may carry many significant financial and 

economic implications in term of the hospital and public budgets and also included for the 
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society cost of mortality and morbidity. Thus, the further studies from health impact 

assessment are required to evaluate the economic burden arising from adverse health effects 

of VFS in order to obtain adequate consideration in policy decision process. 
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APPENDIX 

The Appendices used to depict the supporting information in addition to what have been 

inserted in the main chapter. 

Appendix A: Providing the additional information for Chapter 2  

Appendix B: Providing the additional information for Chapter 3  

Appendix C: Providing the additional information for Chapter 4 
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Appendix A 

This section provides the additional information of Chapter 2 (study 1). 

Table A-1 Comparison of fire hotspot of this study and GISTDA during 2014 -2018 

Province 
Number of fire hotspot 

This study GISTDA* % comparison difference 

Chaingmai 8,082 8,144 99.2 -0.8 

Chaingrai 3,789 3,665 103.4 3.4 

Lamphun 1,660 1,653 100.4 0.4 

Lampang 3,800 3,775 100.7 0.7 

Mae Hong Son 8,058 8,260 97.6 -2.4 

Nan 5,210 5,313 98.1 -1.9 

Phrae 2,404 2,333 103.0 3.0 

Phayao 1,374 1,308 105.0 5.0 

Total 34,377 34,451 99.8 -0.2 

*Geo-Information and Space Technology Development Agency, Thailand 



Appendix 

 82 

 

 

Figure A-1. Correlation of PM10, Carbon monoxide, and fire hotspot of the eight provinces in UNT. 



Appendix 

 83 

 

Figure A-2. Distribution of the confidence of fire hotpot. 

 

Figure A-3. Boxplot of the percentiles of fire hotspot. 
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Figure A-4. Odds ratio of hospital visits for respiratory diseases as associated with a 10 μg/m3 increase in PM10 concentration on burning days 

for single and average lag models. 
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Figure A-5. Odds ratio of hospital visits for respiratory diseases as associated with a 10 μg/m3 increase in PM10 concentration on non-burning 

days for single and average lag models. 
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Figure A-6. Odds ratio of hospital visits for respiratory diseases as associated with a 10 μg/m3 increase in PM10 concentration on mixed days for 

single and average lag models. 
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Figure A-7. Odds ratio of hospital visits for conjunctivitis as associated with a 10 μg/m3 increase in PM10 concentration on burning days for 

single and average lag models. 
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Figure A-8. Odds ratio of hospital visits for conjunctivitis as associated with a 10 μg/m3 increase in PM10 concentration on non-burning days for 

single and average lag models. 
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Figure A-9. Odds ratio of hospital visits for conjunctivitis as associated with a 10 μg/m3 increase in PM10 concentration on mixed days for single 

and average lag models. 
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Figure A-10. Odds ratio of hospital visits for dermatitis as associated with a 10 μg/m3 increase in PM10 concentration on burning days for single 

and average lag models. 



Appendix  
 

 
91 

 

Figure A-11. Odds ratio of hospital visits for dermatitis as associated with a 10 μg/m3 increase in PM10 concentration on non-burning days for 

single and average lag models. 
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Figure A-12. Odds ratio of hospital visits for dermatitis as associated with a 10 μg/m3 increase in PM10 concentration on mixed days for single 

and average lag models.
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Appendix B 

This section provides the additional information of Chapter 3 (study II) 

 

 

Figure B-1. Number of hospitals in each province by year. 
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Appendix C 

This section provides the additional information of Chapter 4 (study III) 

Table C-1. Summary of the attributable cases (total ages and children), daily average PM10 concentration (μg/m3), and number of burning days 

by province and year. 

Province year PM 10 concentration Number of burning days 
Estimated of total ages 

Estimated of children  

(below 15 years) 

Cases Lower limit Upper limit Cases Lower limit Upper limit 

Chiangmai 2014 140.8 24 5474 802 9649 2581 378 4550 

2015 155.1 25 6332 940 11027 2896 430 5048 

2016 122.9 33 5733 834 10179 2722 396 4833 

2017 114.1 6 931 135 1659 425 62 758 

2018 111.6 15 2041 295 3642 915 132 1633 

Chiangrai 2014 158.3 24 NA NA NA NA NA NA 

2015 180.0 23 3857 578 6657 2224 333 3840 

2016 179.2 41 6219 926 10803 3663 545 6362 

2017 117.9 8 1060 154 1887 541 79 964 

2018 110.7 7 764 110 1367 373 54 667 

Lampang 

 

 

 

 

 

2014 123.1 41 4117 599 7310 1691 246 3003 

2015 133.7 26 2404 352 4247 909 133 1605 

2016 119.1 32 2839 412 5050 1098 159 1953 

2017 126.9 15 1267 185 2243 434 63 769 

2018 130.9 8 1015 148 1795 330 48 583 

Lamphun 

 

2014 125.2 19 724 105 1286 274 40 487 

2015 146.3 16 984 145 1728 387 57 679 
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Province year PM 10 concentration Number of burning days 
Estimated of total ages 

Estimated of children  

(below 15 years) 

Cases Lower limit Upper limit Cases Lower limit Upper limit 

2016 127.3 17 1194 174 2117 471 69 834 

2017 111.6 3 185 27 331 62 9 111 

2018 110.8 9 497 72 887 174 25 311 

Maehongson 2014 188.9 26 1243 186 2148 695 104 1200 

2015 188.8 30 2009 301 3466 1058 159 1827 

2016 151.0 34 1541 227 2708 885 130 1555 

2017 130.5 29 992 145 1757 545 80 966 

2018 139.3 20 646 95 1140 326 48 576 

Nan 2014 132.2 33 2445 357 4328 1146 167 2028 

2015 131.3 19 1294 189 2288 601 88 1064 

2016 135.9 30 1771 259 3131 782 114 1382 

2018 113.2 5 221 32 393 91 13 161 

Phayao 2014 146.6 33 3447 508 6045 1348 198 2366 

2015 148.3 29 2459 363 4304 891 131 1560 

2016 128.8 40 2643 385 4683 1019 149 1806 

2017 111.4 7 401 58 716 147 21 262 

2018 108.5 10 374 54 668 135 19 242 

Phrae 2014 126.7 44 2316 337 4104 986 144 1747 

2015 121.6 29 1248 181 2218 485 71 863 

2016 122.9 32 1691 246 3002 742 108 1317 

2017 110.2 10 385 56 688 148 21 264 

2018 123.2 11 540 79 957 200 29 355 

Noted: NA represents data not available. 
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Table C-2. Number of hospital visits for respiratory diseases attributable VFS-PM10 from 

sensitivity analyses. 

Year 

Sensitivity analyses 

CFR Cut-off PM10 

Pothirat et al. 2016 Muller et al., 2020 50 µg/m3 

2014 87,057 (46,275 to 115,114) 41,117 (22,133 to 57,448) 31,793 (4,611 to 56,623) 

2015 86,264 (47,314 to 111,368) 42,197 (23,020 to 58,256) 35,629 (5,194 to 63,173) 

2016 103,862 (55,259 to 137,301) 49,107 (26,449 to 68,582) 43,432 (6,291 to 77,444) 

2017 23,839 (12,376 to 32,129) 10,966 (5,846 to 15,458) 24,243 (3,467 to 43,756) 

2018 27,977 (14,475 to 37,830) 12,822 (6,827 to 18,095) 24,479 (3,508 to 44,096) 

 

 


