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Chapter 1

Introduction

1.1 Background and motivation

The impingement of droplets on solid surfaces is a ubiquitous phenomenon in nature

and the fields of engineering, including the falling raindrops [1], spray flames [2], and

ink-jet printing [3]. Under the influence of numerous factors (e.g., the impingement

velocity, droplet diameter, and surface wettability), the possible outcomes of droplet im-

pingement on a dry solid surface are spreading, rebounding, fingering, and splashing [4].

Among these factors, the surface wettability (quantified by the contact angle) is most

influential, which is controlled by the surface−free energy and geometric structures. The

surface−free energy quantifies the disruption of intermolecular bonds that occurs when

a surface is created. This is also called surface energy or interfacial−free energy. Sur-

faces with a low surface−free energy, or so-called hydrophobic surfaces (with a contact

angle of larger than 90◦), have attracted widespread attention owing to their promising

applications, such as self-cleaning [5], anti-icing [6], drop-wise condensation [7], and drag

reduction [8]. Many artificial hydrophobic surfaces have been fabricated by employing

chemical coatings. However, such surfaces face challenges in terms of robustness and

durability because the chemical layers are inevitably abraded or eroded in engineering

projects, thus leading to a loss of surface hydrophobicity [9, 10]. Inspired by superhy-

drophobic surfaces in nature, such as the lotus leaf shown in Fig.1.1(a) and the butterfly
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(a) (c)

Figure 1.1: Droplets sitting on superhydrophobic surfaces: (a) lotus leaf and its micro-

pillared structure [13]; (b) butterfly wing and its micro-grooved structure [14]; (c) arti-

ficial hydrophobic surface with micro pillars [11].

Droplet

Liquid

𝜃W

Rough substrate

(a) Wenzel state

Air

𝜃C

Droplet

Rough substrate

(b) Cassie state

Figure 1.2: Wetting states of droplets on rough substrates: (a) Wenzel state; (b) Cassie

state.

wing in Fig.1.1(b), higher hydrophobicity [11, 12] surfaces can also be produced through

the combination of surface roughness with low energy surfaces, as shown in Fig.1.1(c).

Regarding the hydrophobicity caused by the surface roughness, two models have been

proposed to describe the wetting state of a water droplet on a rough substrate, namely,

the Wenzel [15] and Cassie models [16]. In general, the states that can be modelled by the
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Wenzel and Cassie models are referred to as the Wenzel and Cassie states, respectively.

As shown in Fig. 1.2, a Wenzel state is obtained when liquid wets the rough substrate

completely, whereas the behavior of liquid contacting only the outermost tops of the

micro-scale structures is called the Cassie state. The apparent contact angle (θW) of

a droplet in the Wenzel state is computed by cosθW = rcosθY, where r is the surface

roughness factor defined as the ratio of the total surface area (including the sides and

base) of the roughness elements to the projected surface area (not including the sides) of

the roughness elements. Thus, r is always larger than 1 for rough surfaces. In addition,

θY is the Young’s angle [17] or the intrinsic contact angle, when the thermodynamic

equilibrium is reached on a smooth, homogeneous, and rigid horizontal solid surface,

and cosθY = (σsa − σsl)/σ, where σsa, σsl and σ are surface tension on the solid−air

boundary, solid−liquid boundary, and liquid−air boundary, respectively.

For the Cassie state, however, the apparent contact angle (θC) is given by cosθC =

fscosθY +fs−1, where fs is the area fraction of the solid−liquid interface in the apparent

wetting region. From this equation, θC approaches 180◦ when fs closes to zero. Therefore,

by reducing fs, superhydrophobic surfaces with an apparent contact angle (ACA) of

larger than 150◦ and a roll-off angle (RA) of smaller than 10◦ can be manufactured [18].

These surfaces present a promising approach to realizing the easy-removal of water

droplets for different industrial applications. In general, in industrial fields, droplets

experience an impact, spread, and rebound. Thus, the impingement of a droplet on a

textured surface has been a hot topic [9, 10, 19].

By means of experiments, impinging droplets show rapid removal on surfaces masked

with pillars [11], grooves [20] and holes [21]. On a surface with micro-pillars, for instance,

Liu et al. [11] found the pancake bouncing behavior (illustrating the superhydrophobicity

of the surface) of an impinging droplet. This brings about a fourfold reduction in the

contact time (tc, the time period from when the droplet first touches the surface to

when it leaves the surface [22]) compared with that of a conventional complete rebound.

On surfaces with micro-scale grooves, Guo et al. [23] observed that impacting droplets

bounced off the surface in a petal-like shape, and the contact time was reduced by
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∼70%. On these textured surfaces, however, a wetting transition from the Cassie state

to the Wenzel state occurs under external factors such as large impinging velocities [24],

imposed pressure [25], and vibration [26]. In the Wenzel state, the liquid in the structure

space is arrested by the micro-scale structures, thereby weakening the hydrophobicity of

a textured surface. To prevent this Cassie-to-Wenzel transition, efforts have been made

to construct surfaces by introducing multi-scale structures [27], re-entrant topographies

[28], T-shaped posts [29], and mushroom pillars [30]. Despite the employment of the

above surfaces, a Cassie-to-Wenzel inevitably occurs when a droplet impinges on these

surfaces with large velocities. In addition, these re-entrant and T-shaped structures are

facing challenges in manufacturing owing to the complex profiles. Hence, further studies

should be conducted on designing surfaces with a robust Cassie state.

Theoretical models for predicting the droplet-wall contact time (tc) and the maximum

spreading factor (βmax) have been proposed. Here, βmax is defined as the ratio of the

maximum spreading diameter (Dmax) to initial droplet diameter (D0). For a droplet

on a flat surface, tc is yielded using a popular function proposed by Richard et al. [22]

when balancing the inertia (on the order of ρlD0/2t
2
c) with the capillarity (4σ/D0

2),

tc ≈ (ρlD0
3/8σ)1/2, where ρl is the density of a liquid droplet, and D0 is the initial droplet

diameter. This equation illustrates that tc is not dependent on the impinging velocity

or properties of the surrounding air, but is expected to be a function of ρl, D0, and

σ. On textured surfaces, however, tc behaves rather different, and it is greatly affected

by the structure shape, the impinging velocity, and the wetting state. As for βmax,

semiempirical correlations [31–33] and theoretical models [34–37] have been formulated

on smooth and textured surfaces. It can be seen that βmax depends on liquid properties

such as the density (ρl), viscosity (µl), and surface tension (σ), as well as solid properties

including the intrinsic contact angle (θY) and surface roughness. Accurately predicting

the maximum spreading factor is important for understanding the deformation of an

impinging droplet. However, current models make many different assumptions, which

may lead to a larger error in βmax. For instance, although the droplet shape at the

maximum spreading stage is assumed to be a cylinder [34, 37], or a central cylinder
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wrapped by another semi-cylinder [20], experimental [38–40] and numerical [40, 41]

evidence shows that an air cavity appears in the center of the droplet, forming a donut-

or ring-like shape. In addition, the energy loss of the three-phase contact line (TPCL)

depinning on micro-scale structures has yet to be considered in many existing models

(A TPCL is formed when a liquid droplet in air meets a solid surface. In a 3D system,

the TPCL is a 2D curve representing the intersection of the free surface with the surface

of the geometry [42]).

A numerical simulation is a powerful and cost-effective tool for investigating the

droplet−wall interaction. Undoubtedly, one of the most challenging tasks for such a

simulation is how to correctly predict the evolution of the air−liquid interface. Se-

lective (but not limited) studies have provided different models for interface tracking,

i.e., Lagrangian (marker cell [43], deforming grid [44, 45],and front tracking [46, 47]),

Eulerian (volume of fluid method (VOF) [48–51], level set method [52, 53], coupled

level set and volume of fluid method (CLSVOF) [54, 55]), Eulerian−Lagrangian [56],

Lattice−Boltzmann [57, 58], and lately the phase field approach (Cahn−Hillard equa-

tion) [59]. For example, Malgarinos et al. [60] performed simulations of a droplet imping-

ing on a flat surface, and found that the evolution of the liquid−air interface was well

predicated using the VOF method. Yokoi [61] conducted a study on a droplet−wall inter-

action using a CLSVOF method and found that free surface flows with complex interface

geometries (droplet splashing) are well captured. Furthermore, numerical methods for

both the air−liquid interface and the air−liquid−solid interface (the TPCL) should be

employed. The sliding of the TPCL is largely affected by the wettability of the sur-

face, thus leading to different behaviors of the water droplets. For example, a pancake

bouncing behavior is obtained on superhydrophobic (contact angle of larger than 150◦)

surfaces [11], whereas the liquid spreads out and forms a thin film on superhydrophilic

(contact angle of smaller than 5◦) substrates [62]. Therefore, the contact angle should be

implemented into the boundary condition. Three widely utilized methods for a contact

angle implementation are (1) imposing the contact angle while calculating the interface

vector and surface curvature [63], (2) considering the contact angle while projecting the
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ghost value in the wall [64], and (3) implementing the contact angle directly while solving

the CLSVOF functions [42]. However, methods (1) and (2) face a challenge of accurately

locating the TPCL, which is typically represented by three or more cells in the com-

putational fluid dynamics (CFD). Method (3), proposed by Sussman [42], implements

the contact angle directly when computing the extension velocity in the level-set (LS)

function, which is an effective approach, that brings about no extra labor for locating

the specific position of the TPCL. This method was employed by Yokoi [54, 61] in study-

ing the droplet impingement on a flat surface; however, its effectiveness in performing a

droplet impinging on a textured surface remains unclear.

Based on the situation mentioned above, in this thesis, the droplet impingement

on surfaces with micro-scale structures is investigated using a CLSVOF-based direct

numerical simulation (DNS) method. The aim is to explore the dynamics and wetting

sate of an impinging droplet on textured surfaces. First, the relationship between the

groove structures and the surface hydrophobicity is quantitatively investigated. The

findings provide guild lines for following works. Second, we study the effect of nonuniform

structures on the dynamics of a water droplet. A nonuniform structure is obtained by

gradually altering the groove width. Third, the issue of the wetting transition from the

Cassie to the Wenzel state is considered because this wetting transition usually weakens

the hydrophobicity of textured surfaces. Hence, we designed a novel surface with higher

primary structures (to enhance the hydrophobicity) and a shorter secondary structure

(to suppress the Cassie-to-Wenzel transition). To better stabilize the Cassie state even

at a large impingement velocity, a surface with multiple holes is finally studied.

6



1.2 Thesis outline

This thesis consists of seven chapters, the outline of which is shown in Fig. 1.3.

Chapter 1, the present chapter, describes the background, motivation, and outline

of this thesis.

Chapter 2 describes the numerical method, an examination of the grid independence,

and a numerical validation. First, the CLSVOF method is described. We then show the

strategy of how to implement the contact angle into the boundary condition. Prior to

the main task, we first conduct a check of the domain size, followed by the grid indepen-

dence examination, and a numerical validation by comparing the numerical results with

existing experiments. Hence, such numerical method is used to model the deformation

of an impinging droplet in this thesis.

Chapter 3 presents the relationship between the surface hydrophobicity and the

groove structures. The effects of the groove width and the initial impacting velocity

on the spreading factor and the contact time are investigated. A smaller spreading fac-

tor and a shorter contact time mean an enhanced surface hydrophobicity. Two phase

diagrams summarising the droplet bouncing state and wetting state are provided.

Chapter 4 shows the droplet rebound behavior on surfaces with a roughness gradient,

which can be utilized to control and manipulate the transport of liquid droplets. The

effects of the Weber number, groove depth, and groove width on the rebound directions

of a droplet are studied. A phase diagram, illustrating the distinct areas of the rebound

direction, is then provided.

Chapter 5 presents a novel textured surface to amplify the surface hydrophobicity

as much as possible and simultaneously stabilize the Cassie state. The surface is deco-

rated by higher primary structures and shorter secondary structures. The deformation,

penetration, and wetting transition of droplets on the novel surface are investigated.

Inspired by the simulation results, a fractal-structured surface that can obtain a more

stable Cassie state owing to the multi-level structures is proposed.

Chapter 6 shows the stability of the Cassie state on surfaces with multiple holes.

The variation in the pressure in the holes is analyzed. In addition, a theoretical model
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for predicting the maximum spreading factor is deduced, which considers the air cavity

in the center of the droplet and the energy loss of the TPCL depinning.

Chapter 7 summaries all investigations carried out in this thesis. Recommendations

for possible future extensions of the present study are also provided.

Uniform roughness

Roughness gradient

Hierarchical roughness

Multi-hole structure

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Enhancing the surface hydrophobicity
 by introducing micro-scale structures 

Manipulating the rebound direction of a 
droplet by surfaces with roughness gradient

Suppressing the Cassie-to-Wenzel transition
using surfaces with hierarchical structures

Stabilizing the Cassie state using 
surfaces with multi-hole structures

Chapter 7

Conclusions and Future work

Chapter 2

Numerical method  and validation

Chapter 1

Introduction

Results

Figure 1.3: Outline of this thesis.
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Chapter 2

Numerical method and validation

2.1 Introduction

In this chapter, the computational methodology used in this thesis is introduced. Con-

sidering the droplet size at the real scale and the accuracy of the calculation, a cou-

pled level-set and volume of fluid (CLSVOF) method based direct numerical simulation

(DNS) is employed to track the evolution of the liquid−air interface [1, 2]. When the

liquid meets the substrate, the shape and the behavior of a droplet depend on the

wettability (quantified by the contact angle) of the surface. For example, the pancake

bouncing behavior is obtained on superhydrophobic (contact angle of larger than 150◦)

surfaces [3], whereas the liquid spreads out and forms a thin film on superhydrophilic

(contact angle of smaller than 5◦) substrates [4]. Therefore, the contact angle should be

implemented into the boundary of the three-phase contact line (TPCL). We apply the

method proposed by Sussman [5], which brings about no extra effort for locating the

position of the TPCL. The contact angle is imposed into the boundary directly while we

solve the CLSVOF function. The numerical discretization following the finite difference

method (FDM) is then described. Prior to the main task, we conduct a domain size val-

idation and a grid independence examination. The numerical validation is presented by

comparing the numerical results with experiments. Thus, we confirm that the numerical

method is applicable to the simulation of a droplet impinging on a textured surface.
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2.2 Methodology

2.2.1 Governing equations

In this study, fluids are assumed to be incompressible. The deformation of an impinging

droplet on a solid surface is examined using an in-house code FK3 [1, 2], where a single set

of governing equations are utilized within the entire computational domain. With this

approach, the governing equations for mass conservation (continuity) and momentum

conservation (Navier–Stokes) are written as

∇ · u = 0 (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P +∇ · µ

[
∇u + (∇u)T

]
+ ρg + F σ (2.2)

where u is the velocity, t is the time step; t=2 × 10−6s initially, which is dynamically

controlled by the Courant number Cfl = ut/∆ to enforce the stability of the calculation

(Cfl=0.2), and ∆ is the mesh size. In addition, P is the pressure, ρ and µ are the

density and viscosity, respectively, whose jump values at the interface are smoothed by

the Heaviside function HΓ(ϕ), g the gravitational acceleration (|g|= 9.8 m/s2), and the

surface tension force (F σ) is interpreted as a body force localized on the interface based

on the continuum surface force (CSF) method [6]. The density (ρ) and the viscosity

(µ) in Eq. (2.2) are smoothed by the Heaviside function HΓ(ϕ) (see Fig. 2.1) and are

defined as

ρ = ρlHΓ(ϕ) + ρa[1−HΓ(ϕ)] (2.3)

µ = µlHΓ(ϕ) + µa[1−HΓ(ϕ)] (2.4)

HΓ(ϕ) =


0 (ϕ < −Γ)

1
2

[
1 + ϕ

Γ
+ 1

π
sin
(
πϕ
Γ

)]
(|ϕ| ≤ Γ)

1 (ϕ > Γ)

(2.5)
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Figure 2.1: One-dimensional schematic figure of the Heaviside function (bold line) [7].

The dotted line represents the characteristic function of VOF method.

where a and l represent the air and the liquid, respectively, ϕ is the level-set function,

∆ is the mesh size, and Γ= 1.5 ∆ selected in the present the study represents the

half-thickness of the air−liquid interface.

2.2.2 CLSVOF interface capturing scheme

As mentioned in Chapter 1, one challenge in the numerical modelling of two-phase flows

is to accurately track the evolution of the dynamic interface, particularly when the den-

sity and viscosity ratios between the two fluids are high. The volume of fluid (VOF)

method has the advantage of mass conservation, whereas with the level-set (LS) method,

the surface tension force can be calculated more accurately. Hence, a CLSVOF method

is employed in this study. In the numerical framework, the VOF method is a conservative

interpolation scheme for interface tracking. Based on the location of the interface calcu-

lated from the VOF function, the LS function is obtained by solving the equation used

with the LS method for re-initialization without needing to solve its advection equation.

In addition, the CLSVOF method is shown to be less computationally expensive.

2.2.2.1 VOF method

With the VOF method, the interface is localized based on the VOF function (C), which

represents the volume fraction occupied by the liquid phase in each computational cell.

We define C = 0 representing a control volume completely filled with air, whereas a
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Figure 2.2: Surface representation of VOF method. The fraction number indicates the

ratio of volume occupied by the liquid. The deep pink area represents the liquid phase

with C = 1, whereas the white area represents the air phase with C = 0. The area

colored by light pink represents the air−liquid interface with 0 < C < 1. The black

solid line represents the air-liquid interface.

value of C = 1 corresponds to a volume filled with liquid. Therefore the position of the

air-liquid interface is described by cells with a value of 0 < C < 1 as shown in Fig. 2.2.

The advection equation of the VOF function for three-dimensional cases is expressed

as [7, 8]

∂Ci,j,k
∂t

+∇ · (Ci,j,kui,j,k)− Ci,j,k∇ · ui,j,k = 0 (2.6)

Taking a 2-D case for example, Eq. (2.6) is discretized as follows [7],

C∗i,j = Cn
i,j −

F n
x,i+1/2,j − F n

x,i−1/2,j

∆x
∆t+ Cn

i,j

ui+1/2j − ui−1/2,j

∆x
∆t (2.7)

Cn+1
i,j = C∗i,j −

F ∗y,i,j+1/2 − F ∗y,i,j−1/2

∆y
∆t+ C∗i,j

vi,j+1/2 − vi,j−1/2

∆y
∆t (2.8)
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Fx,i+1/2,j =



(
ωx,i,j min

(
ui+1/2,j∆t, Ci,j∆x

)
+ ωy,i,jCi,jui+1/2,j∆t

)
1

∆t

(if ui+1/2,j ≥ 0 and nx,i,j ≥ 0)(
ωx,i+1,j max

(
ui+1/2,j∆t,−Ci+1,j∆x

)
+ ωy,i+1,jCi+1,jui+1/2,j∆t

)
1

∆t

(if ui+1/2,j < 0 and nx,i+1,j < 0)(
ωx,i,j max

(
0, ui+1/2,j∆t− (1− Ci,j) ∆x

)
+ ωy,i,jCi,jui+1/2,j∆t

)
1

∆t

(if ui+1/2,j ≥ 0 and nx,i,j < 0)(
ωx,i+1,j min

(
0, ui+1/2,j∆t+ (1− Ci+1,j) ∆x

)
+ ωy,i+1,jCi+1,jui+1/2,j∆t

)
1

∆t

(if ui+1/2,j < 0 and nx,i+1,j ≥ 0)

(2.9)

Fy,i,j+1/2 =



(
ωy,i,j min

(
vi,j+1/2∆t, Ci,j∆y

)
+ ωx,i,jCi,jvi,j+1/2∆t

)
1

∆t(
if vi,j+1/2 ≥ 0 and ny,i,j ≥ 0

)(
ωy,i,j+1 max

(
vi,j+1/2∆t,−Ci,j+1/2∆y

)
+ ωx,i,j+1/2Ci,j+1/2vi,j+1/2∆t

)
1

∆t(
if vi,j+1/2 < 0 and ny,i,j+1 < 0

)(
ωy,i,j max

(
0, vi,j+1/2∆t− (1− Ci,j) ∆y

)
+ ωx,i,jCi,jvi,j+1/2∆t

)
1

∆t(
if vi,j+1/2 ≥ 0 and ny,i,j < 0

)(
ωy,i,j+1 min

(
0, vi,j+1/2∆t+ (1− Ci,j+1) ∆y

)
+ ωy,i,j+1Ci,j+1vi,j+1/2∆t

)
1

∆t(
if vi,j+1/2 < 0 and ny,i,j+1 ≥ 0

)
(2.10)

Here, ωx,i,j, and ωy,i,j are weight functions, and are obtained from the interface normal

vector as follows:

ωx,i,j =
|nx,i,j|

|nx,i,j|+ |ny,i,j|
(2.11)

ωy,i,j =
|ny,i,j|

|nx,i,j|+ |ny,i,j|
(2.12)

where the subscript n represents the time step, and ∗ represents the intermediate physical

quantity after the advection calculation in the x- direction. In addition, Fx,i+1/2,j and

Fy,i,j+1/2 are advection fluxes in the x- and y- directions, respectively. Considering
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Figure 2.3: Schematic figure of WLIC algorithm [7].

the volume conservation of the fluid, the weighted linear interface calculation (WLIC)

method as shown in Fig. 2.3 is utilized to weight the interface [7, 9]. Moreover, nx,i,j

and ny,i,j are x- and y- components of the surface normal (n), which are calculated using

the values in a 3 × 3 lattice as follows:

nx,i,j =
1

4
(nx,i+1/2,j+1/2 + nx,i−1/2,j+1/2 + nx,i+1/2,j−1/2 + nx,i−1/2,j−1/2) (2.13)

ny,i,j =
1

4
(ny,i+1/2,j+1/2 + ny,i−1/2,j+1/2 + ny,i+1/2,j−1/2 + ny,i−1/2,j−1/2) (2.14)

where the surface normal n is estimated using a VOF function

nx,i+1/2,j+1/2 =
1

2∆x
(Ci+1,j − Ci,j + Ci+1,j+1 − Ci,j+1) (2.15)

ny,i+1/2,j+1/2 =
1

2∆y
(Ci,j+1 − Ci,j + Ci+1,j+1 − Ci+1,j) (2.16)
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Although the VOF method shows excellent mass conservation for the interface track-

ing, it lacks accuracy for the direct calculations of the normal vectors and the curvature

at the interface owing to the discontinuous spatial derivatives of the VOF function. To

obtain accurate interface parameters, LS method is introduced hereafter.

2.2.2.2 Level-set method

The LS method is an approach used to identify air and liquid phases by defining an

LS function (ϕ), which indicates the signed-distance from the interface in each grid as

shown in Fig. 2.4. Hence, the normal vector and the surface curvature can be accurately

calculated from the continuous and smooth distance function. In addition, the surface

tension term and the physical property values ρ and µ in Eqs. (2.3) and (2.4) are

calculated using ϕ. In this calculation, the initial value of ϕ is constructed from the

advected VOF function (C) every step [10]. For instance, the LS function (ϕni,j,k) at the

nth step is calculated as follows,

ϕni,j,k =
(
Cn
i,j,k − Cint

)
· Γ(≡ ϕn0,i,j,k) (2.17)

where Γ = 1.5∆ represents the half-thickness of the air−liquid interface, Cn
i,j,k is the

VOF value at the nth step, and Cint is the VOF value at the interface, for which 0.5 is

Figure 2.4: Surface representation in LS method. The deep pink area represents the

liquid phase with ϕ >0, whereas the white area represents the air phase with ϕ <0. The

area colored by light pink represents the air−liquid interface.
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chosen.

In general, the direct transport of the LS function in Eq. (2.17) will destroy the

signed-distance property. In addition, a transported LS function should not be utilized

for an estimation of the normal vector and the surface curvature. Hence, a reinitialization

process must be employed to obtain a valid signed-distance function.

The LS value (ϕni,j,k) in Eq. (2.17) is first re-distanced by solving the reinitialization

equation:
∂ϕni,j,k
∂τ

+ S
(
ϕn0,i,j,k

) ∇ϕn0,i,j,k∣∣∇ϕni,j,k∣∣ · ∇ϕni,j,k = S
(
ϕn0,i,j,k

)
(2.18)

ϕni,j,k
∣∣
τ=0

= ϕn0,i,j,k (2.19)

S
(
ϕn0,i,j,k

)
=

ϕn0,i,j,k√
ϕn0,i,j,k

2 + Γ2
(2.20)

where τ is the artificial time step, S
(
ϕn0,i,j,k

)
is a sign function, and n denotes the time

step. A secondary accuracy essentially non-oscillatory (ENO) scheme [11] is used for the

discretization of Eq. (2.18).

Compared to the VOF method, the LS method brings about a smoother interface,

and thus the calculation accuracy of the curvature and the normal vector at the interface

is higher. Considering the merits and drawbacks of VOF and LS, we therefore select

the CLSVOF method to accurately capture the liquid−air interface with a good mass

conservation.

2.2.3 Surface tension

After the reinitialization process, the surface tension is calculated using Eq. (2.21) based

on the continuum surface force (CSF) method [6].

F σ = σκnϕδΓ(ϕ) (2.21)

Here, κ is the curvature of the interface, nϕ is the normal vector, and δΓ(ϕ) is the

smoothed Delta function (see Fig. 2.5) used to limit the effect of the surface tension to
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Figure 2.5: Schematic of the smoothed Delta function [7].

a narrow region around the interface [7], which can be estimated by

δΓ(ϕ) =

 0 (|ϕ| ≥ Γ)

1
2Γ

[
1 + cos(πϕ

Γ
)
] [

1 + ϕ
Γ

+ 1
π
sin
(
πϕ
Γ

)]
(|ϕ| < Γ)

(2.22)

nϕ =
∇ϕ
|∇ϕ|

(2.23)

κ = ∇ · nϕ =
1

|∇ϕ|
(
∇ϕ
|∇ϕ|

· ∇|∇ϕ| − ∇ · ∇ϕ) (2.24)

For the present calculation, the surface tension is only considered on the interface where

the smoothed Delta function δΓ(ϕ) in Eq. (2.22) is used, for which a modified standard

CSF model is applied to improve the stability [7].

2.2.4 Contact angle implementation

In the simulations, the contact angle should be implemented near a solid surface, where

a liquid meets a solid and air. A notable method proposed by Brackbill [6] effectively

imposes the contact angle into the boundary condition while calculating the interface

vector (nϕ), nϕ = n⊥ cos θY + n‖ sin θY, where n⊥ denotes the normal vector of the

wall surface, and n‖ is the parallel vector to the wall surface. In another study [12],

the contact angle is implemented in the height function (HF) of hj−1 = hj + ∆/ tan θY

while projecting the ghost value of the height (hj−1) in the wall, where ∆ is the mesh

size, and h is the height value. With these methods [6, 12], all cells with the TPCL
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Figure 2.6: Contact angle implementation (a 2-D case) based on the method proposed

by Sussman [5], and staggered grid near the wall. TPCL is in the cell (i, j) with a contact

angle θ. Black circles and squares represent the solid and fluid phases, respectively. Red

solid arrow uex denotes the extension velocity in the wall.

should be accurately identified to compute nϕ and κ, which is not an easy task because

the interface of liquid is typically represented by three or more cells (such as Γ in this

thesis). Given this background, an alternative approach developed by Sussman [5] is

utilized here, which requires no extra effort in locating the specific position of TPCL.

The contact angle is considered while computing the extension velocity (see the 2-D case

in Fig. 2.6) in the VOF and the LS function [13, 14],

∂ϕni,j,k
∂τ

+ uex · ∇ϕni,j,k = 0 (2.25)

where τ is the artificial time, and uex is the extension velocity depending on the contact

angle between the liquid and the wall. Specifically, for a surface with a contact angle

of 90◦, uex=nwall (ignoring the dimensions) is satisfied. For surfaces with other contact

angles, uex is estimated by,

uex =


nwall−cot(π−θnum)n2

|nwall −cot(π−θnum)n2| ( if Ω < 0)

nwall ( if Ω = 0)

nwall +cot(π−θnum)n2

|nwall +cot(π−θnum)n2| ( if Ω > 0)

(2.26)
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nwall = (0,−1, 0) (2.27)

n1 = − nϕ × nwall

|nϕ × nwall|
(2.28)

n2 = − n1 × nwall

|n1 × nwall|
(2.29)

Ω = nϕ · n2 (2.30)

In 3-D cases, the TPCL is a 2-D curve, which represents the intersection of the free

liquid surface with the geometry surface. The vector n2 is orthogonal to the TPCL and

lies within the tangent plane of the geometry surface.

In Eq. (2.26), a numeric contact angle (θnum) is introduced, which varies and depends

on the combined effect of the solid material (characterized as the intrinsic contact angle,

θY), contact line velocity (ucl), and surface roughness. Cox [15] divided the contact

region near the TPCL into three distinct regions, as shown in Fig. 2.7: (1) the inner

TPCL cell

Solid wall

�(r)

�num

Inner region Intermediate region Outer region

r0

rri

�app

Liquid phaseGas phase

Interface

Figure 2.7: Three regions near the TPCL and the corresponding contact angles [15]:

inner region with interface slope θnum; intermediate region with interface slope θ(r); and

outer region with interface slope θapp.
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region close to the molecular size with characteristic length ri and interface slope θnum,

(2) the intermediate region with characteristic length r, where the interface slope θ(r)

changes sharply under the influences of viscous and surface tension forces, and (3) the

outer macroscopic region with characteristic length ro, where the so-called apparent

contact angle (θapp) is measured at distances of above ∼100µm during the experiments.

Hence, the mesh size should be smaller than 100µm in the simulation to capture the

evolution of TPCL [16]. The value of θapp is often formulated as a function of θY and

Capillary number Ca=µucl/σ, where ucl is the velocity of the TPCL, which is calculated

based on the actual velocity at each computational cell. Equation (2.31), which is further

developed by Kistler [17] based on the Hoffman’s empirical correlation fH [18], is utilized

in this study.

θapp = fH[Ca+ f−1
H (θY)] (2.31)

fH(x) = arccos

{
1− 2 tanh

[
5.16

(
x

1 + 1.31x0.99

)0.706
]}

(2.32)

Although some studies [19, 20] have obtained good results by inserting θapp into the

boundary condition, the interface slope in the inner regions is not resolved. Considering

the mesh size and computational cost, the numeric contact angle (θnum) developed by

Voinov [21] is employed

θ3
num =

θ
3
app − 9Ca ln( K

∆/2
), if 0 ≤ θapp ≤ 3π

4
.

π − θ3
app + 2.25π ln(1−cos(θapp)

1+cos(θapp)
)− 9Ca ln( K

∆/2
), if 3π

4
< θapp ≤ π.

(2.33)

where K represents the macroscopic length scale, for which Voinov [21] adopted the

capillary length K =
√
σ/ρg; ∆/2 is the slip length due to the staggered grid as shown

in Fig. 2.6, and the surface tension force is applied a half cell width away from the

substrate. Thus, the singularity problem is numerically avoided in this study.
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2.2.5 Numerical procedure

The governing equations are discretized using the FDM adopting a staggered Cartesian

grid. The code solver [2, 13, 14] employs a pressure-based semi-implicit (fractional-step)

algorithm for incompressible flows. The nonlinear term in the momentum equation in

Eq. (2.2) is approximated using a fourth-order central difference scheme, and a weighted

essentially non-oscillatory (WENO) scheme [22] is applied to the convection terms of the

scalar quantities. The scalar C in Eq. (2.6) is evolved using an approximation through

a dimensional splitting algorithm [8], whereas a third-order accurate total variation

diminishing (TVD) Runge–Kutta scheme is employed for the time integration of the

convection terms in Eq. (2.2). In addition, no additional momentum source term is

considered in this modelling framework.
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2.3 Numerical validation

2.3.1 Domain size and grid independence study

In a numerical study on the droplet−wall interaction, effective simulation models play

a vital role. Furthermore, several parameters (the mesh size, computation domain size,

initial velocity, and interface thickness) should be tested and validated. In our study, over

100 test cases were applied to find the best combination, leading to stable and economic

calculations. In this section, we first discuss cases with different computational domain

sizes to find the optimal computational domain. Subsequently, the results with three

different mesh schemes are compared to check the mesh independence. The validated

computational domain and the mesh scheme are used in subsequent studies.

2.3.1.1 Domain size validation

For the size of the computational domain in droplet-wall interaction simulations, the

commonly utilized schemes in existing studies (some of which are listed in Table 2.1)

apply values of (2D0)3 to (5D0)3, where D0 is the droplet diameter. If the computational

domain is excessively small, the boundary conditions will bring about artifacts in the

results, leading to a divergence in the pressure. An overly large domain unnecessarily

increases the computational cost. Hence, to limit the artifacts to within an acceptable

Table 2.1: Computational domains in existing studies.

Author Target Velocity Domain size

U. Olgac et al. [23] Flat surface 0m/s 1.25D0×1.875D0

C. Shao, et al. [24] Flat surface 0.746m/s (2D0)3

M. Moradi, et al. [25] Vibrating surface 4.36m/s 2D0×3D0

A.Fath, et al. [16] Flat surface 1.04− 4.1m/s 2D0×4D0

S. Shin, et al. [26] A cylinder 0.75m/s 3D0×3D0×6D0

W. Li, et al. [27] Gradient surface 2.21m/s (5D0)3
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level, the size of the domain is optimized prior to our study.

A mesh with ∆ = 32 µm is selected in the domain size validation. As shown in Table

2.2, five cases with a domain size ranging roughly from (2D0)3 to (6D0)3 are applied and

compared to obtain a suitable size. The droplet is represented by (63∆)3, and heads

toward a the flat surface with an initial velocity of u0=0.6m/s. The gravitational force is

considered as g = −9.8m/s2. Other physical properties are listed in Table 2.3, in which

an unrealistically high air density is utilized in our simulation (density ratio ρl/ρa is

greater than 30) to enhance the numerical stability. Note that the effects of the viscosity

and density ratios decrease rapidly and become insignificant when ρl/ρa ≥10 [23, 28].

In addition, according to the existing equations [29], the droplet spreading diameter is

Table 2.2: Cases set for a validation of the domain size.

Domain size Mesh (cells) Cores Time (h) /1000 steps

(2D0)3 120 × 120 × 120 4 × 4 × 4 3.0

(3D0)3 200 × 180 × 200 5 × 6 × 5 5.0

(4D0)3 250 × 250 × 250 5 × 10 × 5 5.5

(5D0)3 320 × 300 × 320 8 × 6 × 8 5.5

(6D0)3 360 × 360 × 360 10 × 6 × 10 8.0

Table 2.3: Physical properties for droplet, surrounding air, and substrate.

Parameter Symbol Value

Initial droplet diameter D0 63∆

Intrinsic contact angle θY (◦) 100

Surface tension coefficient σ (N/m) 0.0728

Water density ρl (kg/m3) 1000

Water viscosity µl (mPa·s) 1.0

Air density ρa (kg/m3) 30

Air viscosity µa (mPa·s) 0.0183
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the relation of the Reynolds number Re, Weber number We, and contact angle, and the

liquid−wall contact time [30] is expected to be a function of D0, ρl, and σ. Therefore, the

density ratio ρl/ρa > 30 used herein is acceptable for studying the droplet deformation

on a substrate.

A comparison of the droplet shape evolution is shown in Fig. 2.8 with the domain

size equal to (4D0)3, (5D0)3, and (6D0)3. Evidently, no significant difference can be

4D0

5D0

6D0

Figure 2.8: Comparison of the droplet shape evolution with the domain size at (4D0)3,

(5D0)3, and (6D0)3 (cross-sectional view at the same time step).
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Figure 2.9: Effect of domain size on the maximum spreading factor (βmax) and the

contact time (tc) of a droplet impinging on a flat surface.
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found during the spreading stage, the retracting stage, or the rebounding stage.

In addition, we compare the relative errors of the maximum spreading diameter

(βmax) and the contact time (tc) with respect to the values for domain size at (5D0)3,

as shown in Fig. 2.9. Here, the error of βmax slightly increases with an increase in

the domain size, but shows no significant difference when the domain size is larger than

(3D0)3. For tc, although its relative error slowly decreases with an increase in the domain

size, the difference is quite small. The relative error of tc with the domain size at (2D0)3

is not obtained because the calculation diverges during the retracting stage, which is

caused by the small domain size and the high-speed jet injection [31]. Based on the

above results, the computational domain size of (5D0)3 is selected in the following study

for accurate calculations and better computational cost.

2.3.1.2 Grid independence examination

To check the mesh convergence, three cases with different grid sizes of ∆ = 50µm, 32µm,

and 25µm in Table 2.4, are employed to examine the grid independence by comparing

the maximum spreading factor (βm) and the relative error with respect to the experiment

Table 2.4: Cases for grid independence examination.

Mesh Grid size (µm) Domain size Time (h) /1000 steps

Coarse 50 5D0 3.6

Moderate 32 5D0 5.5

Dense 25 5D0 11.5

Table 2.5: Maximum spreading factor (βmax) and relative error with respect to the

experiment [32] for three different grid sizes.

Grid size ∆=50µm ∆=32µm ∆=25µm

βmax 1.610 1.628 1.632

Relative error 3.07% 1.95% 1.72%
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[32]. In all simulations, a droplet with diameter D0 = 2.1mm and initial velocity u0=

0.5m/s impacts the neutrally wet surface at θY= 90◦. Based on the grid independence

test in Table 2.5, the grid size is set to ∆=32µm for the simulations conducted hereafter.

2.3.2 Comparison with experiment

2.3.2.1 Contact angle model validation

To further validate the numerical models, we apply other three other cases of a water

droplet impacting a flat surface with a different wettability namely θY = 50◦, 90◦, and

180◦, and then compare the results with those of the previous experiment [32]. Except for

the density ratio, other impact conditions such as the droplet diameter and the impact

velocity are same as those in the experiment. The comparison in Fig. 2.10 illustrates

a good agreement in terms of the droplet shape evolution between the simulations and

experiments. Here, We is given by We= ρlu
2
0D0/σ.

Figure 2.11 compares the spreading factor (β) and apparent contact angle (θapp).

4.6754.6

0 ms 0 ms 1.0 2.52.4 4.0 4.0

(a)

5.55.6

0 ms 0 ms 1.01.0 2.52.6 3.8 4.0

(b)

5.0 5.0

0.9251.0 3.553.6

(c)

12120 ms

1.0

Figure 2.10: Droplet shape comparison between the simulation results (in red) and the

experimental results [32] (in black): (a) droplet impinging on a strongly wetting surface

with θY = 50◦; (b) droplet impinging on a neutrally wetting surface with θY =90◦;

(c) droplet impinging on a completely nonwetting surface with θY = 180◦. The initial

droplet diameter D0 = 2.28mm and impact velocity u0 = 0.35 m/s, corresponding to

We = 3.84.
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Figure 2.11: Variation of spreading factor (β) and apparent contact angle (θapp) for a

droplet impinging on different surfaces: (a) evolution of β against time; (b) evolution

of θapp against time. Red lines represent the simulation results, and blue lines are the

experimental results [32]. The droplet diameter D0 = 2.1 mm and impact velocity u0 =

0.5 m/s, corresponding to We=7.21.

These comparisons show that, despite the simulations capture the primary features of

a droplet deformation on a solid surface well. Therefore, the present numerical method

can be used to investigate the dynamics of an impacting droplet on a substrate with a

difference in the wettability .

2.3.2.2 Droplet impinging on textured surfaces

Because our objective is focusing on the interaction between droplets and textured sur-

faces, prior to the simulations, cases with different impinging velocities are tested by

comparing the numerical results with the experiments [29]. The experiment [29] studied

the droplet impact on a micro-groove-textured substrate. Here, experimental results

from a substrate of TS220 and distilled water (see Fig. 2.12) are chosen to validate the

simulation because the ridge and groove section are extremely close to a rectangular

shape. The cell sizes ∆ utilized is 32 µm, and the droplet diameter D0 is approximately

2.6mm.
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Figure 2.12: Textured surfaces used in the experiment [29], from which a substrate of

TS220 and distilled water are chosen to validate our simulations.
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Figure 2.13: Comparison of the droplet shape between experimental results [29] (in

black) and simulation results (in red).
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A comparison of the droplet shape between the experiment [29] and simulation re-

sults is shown in Fig. 2.13. The first and third rows (Exp.) are from the experiment [29],

whereas the second and fourth rows (Sim.) are predications of our simulation. Although

small differences are seen, such as a surface wave caused by the coarse mesh, the numer-

ical model utilized captures the main features of a droplet deformation well on a groove

decorated surface. In addition, a Cassie state with u0 = 0.44 m/s and a Transition state

(partially impaled state [33, 34]) with u0 = 0.88 m/s observed in the experiment are

successfully projected by our simulations.

To further support this claim, comparisons of the maximum spreading factor in the

parallel (βmax,‖) and perpendicular (βmax,⊥) groove directions are plotted against We in

Fig. 2.14. In the parallel groove direction, the liquid spreads freely, whereas the liquid
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Figure 2.14: Comparison of the maximum spreading factor (βmax) between experimental

results [29] (in red) and simulation results (in blue). In addition, βmax,‖ and βmax,⊥

are the maximum spreading factor in the parallel and perpendicular groove directions,

respectively.
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meets grooves or ridges in the perpendicular groove direction. Red lines (Exp.) show

the experimental data, and blue lines (Sim.) show the simulation results. It is clear that

the numerical projections match well with the experiments for an error of within 5%.

The error may be caused by the small difference in the groove structures between our

simulations and the experiments.

2.3.3 Accuracy of the simulation

Although the DNS has been proven to be effective in studies on droplet−wall interac-

tions, it still cannot resolve all scales involved in this problem. Here, the limitations of

the present simulation are discussed to judge the simulation accuracy and the outcomes.

The greatest discrepancy between the simulations and experiments is the rupture of the

liquid film on a solid surface as shown at 4.8ms in Fig. 2.15, which is likely caused by the

grid size, and the VOF method associated with WLIC interface reconstruction scheme.

Indeed, this problem can be prevented by refining the grid such as in a thickness-based

adaptive mesh refinement scheme [35], by which the thin film near the wall was efficiently

resolved with a minimum grid size of approximately 0.02 µm. Many studies [16, 36] us-

ing DNS have shown good agreement with experimental results although the rupture of

a thin film has not been considered. Thus, the simulation in the present study is accept-

able. In addition, the numerical capability of the mass conservation is evaluated based

Figure 2.15: Thin liquid film rupture near a solid. The solid is suppressed to make the

film visible.
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on the relative mass error, Em = mt−m0

m0
, where mt is the total mass at time t , and m0 is

the initial mass. For the computations, the maximum mass error (Em) is always smaller

than 2.5 ×10−6. The negligibly small error proves the accurate mass conservation ability

of the present simulation. Therefore, in this thesis, the simulation method is extended

to predict the wetting states and deformation of droplets on substrates with micro-scale

structures.
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2.4 Conclusions

In this chapter, a CLSVOF-based DNS was introduced to study the dynamics of a

droplet. A mesh-dependent contact angle model was implemented into the boundary

condition to evaluate the effect of the surface wettability. In addition, the computational

domain size was checked, and the independence of the mesh size was confirmed. The

model was validated by comparing the present simulation results with experimental

results. The main results obtained in this chapter are summarized as follows.

1. Mesh size ∆ = 32 µm and a computational domain size of (5D0)3 are adequate in

the following study based on a trade-off between the accuracy and computational

cost.

2. Using the CLSVOF method, a contact angle model, and an implementation scheme

of the contact angle, numerical results show good agreements with the experiments.

This suggests that the current numerical method is applicable to the following main

tasks.
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Nomenclature

C : VOF function [ - ] β : Spreading factor [ - ]

Ca : Capillary number [ - ] βmax : Maximum spreading factor [ - ]

D0 : Initial droplet diameter [ m ] Γ : Half-thickness of the interface [ - ]

Em : Mass error [ - ] ∆ : Mesh size [ - ]

F : Advection flux [ - ] δΓ : Delta function [ - ]

F σ : Surface tension [ N/m ] θapp : Apparent contact angle [ ◦ ]

FH : Surface tension [ N/m ] θnum : Numeric contact angle [ ◦ ]

g : Gravitational acceleration [ m/s2 ] θY : Young’s contact angle [ ◦ ]

K : Microscopic length scale [ m ] κ : Surface curvature [ 1/m ]

HΓ : Heaviside function [ - ] µ : Viscosity [ mPa · s ]

m0 : Initial mass [ kg ] ρ : Density [ kg/m3 ]

mt : Mass at time t [ kg ] σ : Surface tension coefficient [ N/m ]

n : Normal vector [ - ] τ : Time step [ s ]

P : Pressure [ Pa ] ϕ : Level-set function [ - ]

r : Characteristic length [ m ] ω : Weight function [ - ]

S(ϕ) : Sign function [ - ] Subscripts

t : Time [ s ] a Air

u : Velocity in x- direction [ m/s ] l Liquid

ucl : Contact line velocity [ m/s ] ‖ Parallel direction of groove

uex : Extension velocity [ m/s ] ⊥ Perpendicular direction of groove

v : Velocity in y- direction [ m/s ]

We : Weber number [ - ]
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Chapter 3

Enhancing the surface

hydrophobicity by introducing

micro-scale structures

3.1 Introduction

In this chapter, the effect of micro-scale structures on the hydrophobicity of a surface is

investigated using direct numerical simulation (DNS). The dynamcis of the air−liquid

interface is captured by the coupled level-set and volume of fluid (CLSVOF) method

proposed in chapter 2.

Hydrophobic surfaces have a wide range of applications, including self-cleaning [1],

anti-icing [2, 3], and drag reduction [4]. By covering surfaces with chemical coatings hav-

ing a low surface−free energy, artificial hydrophobic surfaces are fabricated [5]. However,

these chemical layers are inevitably damaged in engineering projects and thus lead to

the loss of surface hydrophobicity [5–7].

Hydrophobicity can also be amplified by masking surfaces with micro-scale pillars

[8, 9] and grooves [10, 11]. For example, Patil et al. [12] found droplets undergo complete

bouncing by masking a flat with pillars (pillar interval of between 0 µm and 76 µm). Liu

et al. [13] reported the impinging droplet show a pancake bouncing behavior (behave
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as superhydrophobic) on surfaces with micro-scale pillars (diameter of between 20 µm

and 90 µm). This surface brings a fourfold reduction in the droplet-wall contact time

compared with a conventional complete rebound. Malla et al. [14] showed the behavior

of droplets changes from a non-bouncing to a complete bouncing when masking a flat

with grooves (groove interval of between 0 µm and 76 µm). Guo et al. [15] observed that

impacting droplets bounce off the surface (with 100 µm ridges and grooves) immediately

in a petal-like shape, and the absence of a horizontal retraction process leads to ∼70%

reduction in the contact time. These studies show that the surface hydrophobicity is

largely enhanced by decorating with micro-scale pillars and grooves.

Some recent experimental studies demonstrate that larger rough structures enhance

not only the hydrophobicity but also the robustness of surfaces. For example, Liu et

al. [16] experimentally showed the robustness of the superhydrophobic surface with large

pillars (pillar diameter of 150 µm ∼ 350 µm, and pillar interval of between 100 µm and

500 µm). Song et al. [17] also proved the robustness of surfaces masked with larger

pillars (pillar diameter of between 200 µm and 1200 µm, and pillar space of between 100

µm and 500 µm). On these surface, liquid tends to impale the rough structures [12, 14],

forming the Wenzel states [18] because of the large structures. It is generally agreed

that the wetting in the Wenzel state weakens the water repellency of a textured surface.

A better understanding of the factors (e.g., structure shape, structure size, and impact

velocity) involved in the wetting state will enable the researchers and manufacturers to

develop more robust hydrophobic surfaces with a broader range of emerging applications

in the future.

In this chapter, therefore, the droplet dynamics on textured surfaces with micro-scale

grooves are studied through a three-dimensional DNS. We aims to investigate the effect

of the groove width (between 0µm and 400µm) and the impacting velocity (between

0m/s and 0.8m/s) on the surface hydrophobicity and the wetting state on a surface

masked with larger micro-scale grooves. The results provide information for the study

in the following chapters.
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3.2 Problem statement

A schematic of the computational domain is shown in Fig. 3.1. A spherical water droplet

with an initial diameter of D0 = 2 mm is released on top of the substrate center with a

droplet−wall distance of D0/2 (release height) to make the droplet develop in a physical

manner prior to touching the solid [19]. In the section of the substrate considered, WG

is the groove width ranging from 0 to 400 µm. The ridge width and groove depth are

fixed at WR = 200 µm and DG = 600 µm, respectively. In addition, γ = WG/WR is

defined as the ratio of groove width. Thus, γ = 0 denotes the plain substrate with no

groove decorations. The initial velocity (u0) of the droplet varies between 0 to 0.8 m/s.

Considering the large structure size and computational cost, the DNS is conducted on a

uniform staggered Cartesian grid (grid size of ∆ = 50 µm) consisting of 320×240×320

grid points in the x-, y- and z- directions, respectively. In addition, the bottom boundary,

which is regarded as the substrate, is set as a wall, and the surroundings are considered

as shear-free surfaces. The gravitational force is considered as g = − 9.8 m/s2 in the y-

direction. Other physical properties [20] used are listed in Table 3.1.

x 
z 

y 

Ly 

Lz Lx 

u0 
g

Air

D0/2 

DG WG WR

Figure 3.1: Schematic of computational domain and groove section.

Table 3.1: Physical properties of the droplet, surrounding air and the substrate.

D0 (mm) ρl (kg/m3) µl (mPa·s) ρa (kg/m3) µa (mPa·s) θY (◦) σ (N/m)

2.0 1000 1.0 30 0.0183 π/2 0.0728
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3.3 Results and discussion

3.3.1 Droplet shape comparison

The evolution of the droplet on surfaces with different values of γ is shown in Fig. 3.2.

The first image for all cases is chosen at 2 ms owing to the release height. With an

impact velocity of u0 = 0.6m/s, the first touch between the droplet and the wall is at

approximately D0/(2u0) = 1.677 ms. Hence, the images commence from 2 ms. From 2

to 13.5 ms, all droplets show impacting, spreading, retracting and bouncing behaviors.

At the initial impacting and spreading stage from 2 to 5ms, the liquid expands radially

and forms a droplet in a donut-like shape (see Fig. 3.3), reaching its maximum spreading

state, when the maximum spreading diameter (Dm) is achieved. From 5 to 8 ms, the

expanded liquid retracts to the impact center and tends to bounce off the surface after

8ms. At 13.5 ms, the droplets on surfaces with γ = 1.5 and γ = 2.0 have already left

the substrate, whereas the liquid still touches the wall for surfaces with small grooves

(γ = 0.5 and 1.0) and no grooves (plane surface with γ = 0). On surfaces with θY ≥

� 
t 2ms 3ms 5ms 6ms 8ms 10ms 12.5ms 13.5ms

0.0

0.5

1.0

1.5

2.0

Figure 3.2: Comparison of time-elapsed droplet shape with different groove width ratios

from γ = 0.0 to γ = 2.0 at a fixed initial impact velocity of u0=0.6 m/s.
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90◦, theoretically, the Cassie model [21] (see Eq. (6.1)) shows that the apparent contact

angle (θapp) can be amplified by minimizing the solid fraction (increasing to γ in this

work),

cosθapp = fs(1 + cosθY)− 1 (3.1)

where fs is the liquid-solid fraction in the contact area. However, if fs decreases ex-

cessively to zero, it will result in liquid penetration into the grooves, leading to a fully

wet Wenzel state [18] on the textured surfaces. At 13.5 ms, compared with the droplet

impinging on a surface with γ = 1.5, a larger tail is observed for a droplet on a surface

with γ = 2.0. This is because, on a surface with large groove width (γ = 2.0), liquid

penetrates into grooves and wets the surface completely (the Wenzel state [18]). The tail

is formed when the submerged liquid leaves the surface. In summary, the hydrophobicity

is enhanced with the increase in the groove width, but it is suppressed with a further

increase in the groove width owing to the forming of the Wenzel state.

Symmetric spreading on a flat surface and asymmetric spreading on a groove struc-

ture are shown in Fig. 3.3. To characterize the spreading behavior of the droplet, we

define β as the spreading factor, which is estimated by β = D/D0, where D is the

instantaneous spreading diameter. The maximum spreading factor (βmax) is obtained

when liquid is at the maximum spreading stage with D = Dmax. Here, β‖ represents

the spreading factor in the parallel groove direction, and β⊥ is the spreading factor in

�∥ �⊥ �∥ = �⊥ 

�∥ 

�⊥ 

x 

z 

y 

Figure 3.3: Comparison of the top view of droplets impinging on a flat surface (left, γ =

0.0) and the textured surface (right, γ = 1.0). Both surfaces exhibit a donut-like shape

at approximately 6ms with initial velocity u0 = 0.6 m/s.
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x 

z 

Figure 3.4: “Jump-stick” behavior of the droplet in the perpendicular groove direction

with γ = 1.0 and u0 = 0.6 m/s.

the perpendicular groove direction. On a flat surface (γ = 0.0), the appearance of the

droplet is close to a perfect circle (β‖ = β⊥). On the surface with groove structures (γ

= 1.0), however, the droplet exhibits an elliptical shape, wherein the spreading factor

in the parallel groove direction exceeds that in the perpendicular direction (β‖ > β⊥).

This occurs because the liquid spreads freely on solid ridges and grooves, whereas the

spreading is hindered by the ridges in the perpendicular direction. The behavior of a

liquid in the perpendicular direction is called a “jump-stick” [10] as shown in Fig.3.4.

Three-phase contact line (TPCL) jumps from the touching ridge Rn to the next ridge

Rn+1 in the perpendicular direction from 6.5 ms (in red) to 7.0 ms (in blue) within only

0.5 ms. However, from the state in blue to the state in black (at 8.5 ms), much more

time (1.5 ms) is needed, although the groove width WG is equal to the ridge width WR.

3.3.2 Wetting state

To study the effect of groove width on the wetting state of a droplet, the sectional

images shown in Fig. 3.5 are compared, in which the Cassie state [21], the transition

state (partially impaled state [22, 23]), and the Wenzel state [18] can be observed. For

cases with γ ≤ 1.0, a droplet simply spreads on the solid ridges with no liquid going into
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Figure 3.5: Cross-sectional view of droplet wetting states on textured substrates with

0.5≤ γ ≤2.0 and u0 = 0.6 m/s.

the grooves, exhibiting a Cassie state. When γ = 1.5, liquid penetrates into grooves and

a transition state is formed at 3 and 4 ms. When the groove width ratio (γ) increases to

2.0, a significant amount of liquid falls into the groove and wets the structure completely,

thereby leading to a Wenzel sate. This suggests that wetting states change gradually

with an increase in the groove width. In particular, from 7 to 9 ms, the entrapment

of a small air bubble is observed, which is caused by a retraction and convergence of

an expanded liquid. This mechanism has been experimentally demonstrated [24], in

which two compulsory conditions are proposed when achieving a bubble entrapment:

formation of a deep air cavity close to the surface, and a fast recoiling of the liquid to

seal the cavity at its center or top.

Figure 3.6 illustrates the two bubble entrapment mechanisms found in the present

work. Prior to the bubble entrapment, at the maximum spreading stage, a deep air

cavity in the center of the droplet is formed (see Fig. 3.5, at 6ms), and the liquid then

starts to retract to the impact center. For the droplet impinging on the surface with γ =

1.0, the fast-retracting flows located at the top (1) and bottom (2) of the cavity entrap

the air bubble in the cavity center. However, on the surface with γ = 2.0, the liquid

(2) in grooves is arrested by structures. The fast-retracting flow (1) on the top captures
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=1.0

=2.0

Figure 3.6: Different bubble trapping mechanisms on groove textured surfaces. (1) and

(2) represent the upward and downward retracting flows, respectively.

an air bubble in the droplet center. In summary, two bubble entrapment mechanisms

are found in this study, which is influenced by the droplet wetting state and the groove

structure.

3.3.3 Spreading factor

3.3.3.1 Groove width effect

As mentioned above, asymmetric spreading on groove textured surfaces is demonstrated.

To quantitatively show the droplet spreading behavior on textured surfaces, the spread-

ing factor (β) in the parallel (β‖) and perpendicular (β⊥) groove directions are plotted

as a function of time in Fig. 3.7. Both line charts are clearly divided into two parts,

namely the impacting stage for the droplet quickly wetting the solid (a increase in β)

and the bouncing stage for the liquid slowly leaving the substrate (a decrease in β). In

detail, it takes approximately 4.5 ms for the droplet to reach its maximum spreading

stage (βmax is obtained), and almost 10 ms is required to bounce and leave the surface.
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Figure 3.7: Spreading factor (β) against time with different γ and constant u0=0.6m/s:

(a) β in groove parallel direction (β‖); (b) β in groove perpendicular direction (β⊥).

In both directions, in addition, the smallest βmax is obtained on a surface with γ =

2.0. Differences are also shown in parallel and perpendicular groove directions. First,

β‖ > β⊥ is demonstrated because of the asymmetric spreading. Second, the smooth

increase and decrease of β are illustrated in the parallel groove direction, whereas lines

in the bouncing stage exhibit a stepwise decrease behavior in the groove perpendicular

direction. In particular, on the surface with a larger groove width ratio such as γ = 2,

the clear stepwise decrease behavior corresponds to the “jump-stick” behavior shown in

Fig. 3.4.

3.3.3.2 Impact velocity effect

Figure 3.8 shows the spreading factor (β) in the parallel (β‖) and perpendicular (β⊥)

groove directions with the impact velocity varying from 0.0 to 0.8 m/s and a fixed γ =

1.0. The spreading factor is highly influenced by the impact velocity. A larger impact

velocity leads to an early contact between the liquid and wall. In addition, the spreading

factor increases with an increase in the impact velocity. Similar to the line shape in Fig.

3.3, the spreading factor in the parallel direction increases and decreases more smoothly

than that in the perpendicular direction, thereby further confirming the “jump-stick”
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Figure 3.8: Spreading factor (β) against time with different impinging velocity u0 and

constant γ = 1.0: (a) β in parallel groove direction (β‖); (b) β in perpendicular groove

direction (β⊥).

behavior of droplets in the perpendicular direction.

3.3.4 Contact time

Figure 3.9 shows the contact time (tc) between the liquid and wall, which is the time

period from when the droplet first touches the surface to that when it bounces off the

surface. Note that the cases of no liquid bouncing off the wall are not included. It is clear

that the contact time decreases with an increase in the groove width ratio (γ) from 0.0

to 2.0. This result shows that the surface hydrophobicity is enhanced with the increase

in γ. However, tc increases with γ from 2.0 to 2.5. This occurs because, on a surface with

large grooves, a liquid penetration takes place and forms a Wenzel state, thus weakening

the surface hydrophobicity. In addition, no significant difference is found for droplets

with different velocities. This behavior was also proposed by richard et al. [25], who

revealed that, on a specific uniform surface, tc is not dependent on the impact velocity

u0 but is a function of D0, ρ, and σ [25]. Therefore, decorating the surface with grooves

can improve the surface hydrophobicity, but it is weakened by a further increase in the
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Figure 3.9: Contact time (tc) between liquid and solid.

groove width.

We suggest that when developing hydrophobic surfaces by decorating them with

grooved structures, both the solid fraction (fs) and the wetting state should be consid-

ered. As the reason for this, although the contact time is smaller on surfaces with a

larger groove width ratio such as γ = 2.0 and γ = 2.5, the liquid is entrapped in the

grooves in a Wenzel state, leading to a loss of surface hydrophobicity. Hence, surfaces

with γ = 1.0 and γ = 1.5 in the present work are good candidates when developing

hydrophobic surfaces.

3.3.5 Phase diagram

Figure 3.10 summarizes the droplet bouncing states, where the bouncing (red circle)

represents a droplet leaves on the surface, and no bouncing (black squares) describes the

droplet pinned onto a substrate. The figure clearly shows the regions of bouncing and no

bouncing cases. The diagram indicates that the bouncing behavior considerably depends

on the initial velocity. No bouncing behavior is obtained for cases with u0 = 0.0m/s,
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Figure 3.10: Bouncing states classified by bouncing (red circle) and no bouncing (black

squares) behaviors.
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Figure 3.11: Wetting states classified by the Cassis state (red circle), transition state

(black square), and Wenzel states.

whereas all droplets leave the surface when u0 ≥ 0.4 m/s. The bouncing behavior is also

slightly affected by the groove width, i.e., bouncing occurs with an increase in γ when

u0 = 0.2 m/s.
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In Fig. 3.11, the wetting states of droplets on a textured surface are classified by the

Wenzel, transition, and Cassie states. The Cassis state (red circle) represents a droplet

spreading on the ridges and not entering the groove. The Wenzel state (blue pentagon)

indicates the liquid filling in the groove, and the transition state (black square) depicts

air in the grooves partially replaced by the liquid. As shown in Fig. 3.11, a small

groove width and small initial velocity lead to the Cassis state, whereas a large groove

width and large impact velocity induce a droplet forming the Wenzel state. The present

study provides an example, where hydrophobic surfaces are developed by masking with

micro-scale grooves.
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3.4 Conclusions

In this chapter, CLSVOF/DNS was applied to study the effect of micro-scale structures

on the surface hydrophobicity and the wetting state. A total of 25 cases were setup and

investigated by changing the groove width and the impinging velocity. The main results

obtained in this chapter are summarized as follows.

1. Droplet spreads freely in the parallel groove direction, but it jumps from the at-

taching ridge to the next ridge in the perpendicular groove direction (called a

“jump-stick”), leading to an elliptical droplet in the top-view.

2. Compared with the non-bouncing behavior of a droplet impinging on a flat surface,

droplets completely bounce off when impinging on surfaces with a large groove

width, revealing a enhanced surface hydrophobicity.

3. As the groove width increases, the droplet exhibits a shorter spreading factor

and shorter contact time, meaning that the surface hydrophobicity is gradually

enhanced. However, it is suppressed with a further increase in the groove width

and the impact velocity, because the wetting transition from the Cassie state to

the Wenzel state is obtained. This result demonstrates the surface hydrophobicity

is weakened in the Wenzel state.

4. The wetting state of the droplet on a textured surface is determined based on the

combined effect of the groove width and impact velocity. This finding provides

information for following studies.
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Nomenclature

D : Instantaneous spreading diameter [ m ] β : Spreading factor [ - ]

D0 : Initial droplet diameter [ m ] γ : Groove width ratio [ - ]

DG : Groove depth [ m ] ∆ : Mesh size [ - ]

fs : Solid fraction [ - ] θapp : Apparent contact angle [ ◦ ]

g : Gravitational acceleration [ m/s2 ] θY : Young’s contact angle [ ◦ ]

t : Time [ s ] µ : Viscosity [ mPa · s ]

tc : Contact time [ s ] ρ : Density [ kg/m3 ]

u0 : Initial velocity [ m/s ] σ : Surface tension coefficient [ N/m ]

We : Weber number [ - ] Subscripts

WG : Groove width [ m ] a Air

WR : Ridge width [ m ] l Liquid

max Maximum value

‖ Parallel direction of groove

⊥ Perpendicular direction of groove
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Chapter 4

Manipulating the rebound direction

of a droplet by surfaces with

roughness gradient

4.1 Introduction

In chapter 3, it was found that the surface hydrophobicity is enhanced by masking

with uniform micro-scale grooves, and a larger groove width leads to a greater surface

hydrophobicity. However, it is suppressed with further increasing the groove width

because of the liquid penetration and the obtaining of the Wenzel state. If the surface

is decorated with nonuniform grooves, how will the droplet behave? In this chapter,

we focus on a surface with nonuniform grooves, and the effects of the Weber number,

groove depth, and groove width on the droplet dynamics are investigated using direct

numerical simulation (DNS).

In contrast to their symmetrical response on homogeneous surfaces (with uniform

decorations), droplets on heterogeneous surfaces (with nonuniform decorations) may

exhibit asymmetric spreading and directional migration behaviors [1]. This technology is

useful in areas including the fabrication of microfluidic devices [2, 3], water harvesting [4],

anti-icing [5], and self-cleaning [6]. Heterogeneous surfaces are usually fabricated by
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masking with nonuniform micro-scale structures [7, 8] and the chemical coatings [9].

Because the chemical layer is easily damaged by abrasion or erosion during long-term

operation, masking with micro-scale structures is a better approach to the design of

heterogeneous surfaces. [7, 10–12].

Some researchers have found that a gently released droplet (not impinging droplets)

spontaneously transports to an area with dense structures. For instance, Fang et al. [13]

showed that, on a surface with nonuniform pillars, the motion of the droplet is controlled

in the desired direction. Shastry et al. [14] demonstrated that droplets are propelled

down gradients fabricated by micropillars. Yang et al. [15] constructed textured surfaces

with nonuniform grooves, upon which the spontaneous transport of a single droplet along

the groove direction was found. Liu et al. [7] also designed several nonuniform groove

textured surfaces, which afforded the directional and long-range transport of droplets

following the roughness gradient. By controlling the groove density and orientation, Wu

et al. [16] found that the rapid transport of droplets are realized without the use of an

external power sources. These studies demonstrate that the motion of a gently released

droplet is controllable by nonuniform structures, and the direction of the self-motion is

from the area with sparse structures toward an area with dense structures (following the

roughness gradient).

For an impinging droplet, however, does it always move following the roughness

gradient? This question was experimentally explored by Wu et al. [17], who masked

the surface with micropillars, upon which two types of movement were found, namely,

following and against the roughness gradient. The droplet moved in the direction of

increasing pillar density in a perfect Wenzel [18] or Cassie [19] states, whereas an opposite

self-migration behavior was observed for droplets in a partial Wenzel state. Reyssat et

al. [20] also found that droplets rebounded obliquely when impinged on a substrate with

a roughness gradient. Malouin et al. [21] proposed a surface with nonuniform pillars,

which was able to control the placement and trajectory of the impinging droplets. To

the best of our knowledge, however, the droplet rebound behavior on a substrate with a

roughness gradient has yet to be fully studied, particularly on surfaces with micro-scale
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grooves, which can easily be fabricated over large areas [22].

Because the droplet deformation on a surface with a roughness gradient is a highly

transient process, and its mechanism is difficult to probe through experimental observa-

tions alone, several numerical investigations have been reported. Using a particle-based

numerical method, Zhao et al. [24] showed two possible types of droplet motion on a

pillar-decorated surface: movement along the roughness gradient in a Cassie state, and

movement against a roughness gradient in a partial Wenzel state. Wang et al. [25]

numerically found that the main reason for the different motions is the asymmetric pen-

etration of the liquid into the grooves. Using a lattice Boltzmann simulation, Zhang

et al. [26] demonstrated that the rebound trajectory of droplets is determined by the

competition of the lateral recoil of the liquid, as well as the asymmetric penetration into

and the asymmetric capillary emptying from grooves. However, the above studies only

consider a fictitious liquid droplet.

In this study, therefore, a droplet at a real scale is employed, and its dynamics are

tracked using a coupled level-set and volume of fluid (CLSVOF) method based a three

dimensional DNS. The effect of the impingement velocity (u0), groove width (WG),

and groove depth (DG) on its rebounding directions is studied when impinging on a

surface with a roughness gradient. The roughness gradient is developed by gradually

varying the groove width (WG). We first examine the effect of the impingement velocity

or Weber number, We = (ρD0u
2
0)/σ, where ρ represents the density, D0 is the initial

droplet diameter, and σ is the surface tension coefficient at the liquid−air interface

(σ=72.8×10−3 Nm−1). Further simulations are conducted to study the effect of the

groove width (WG). Finally, the influence of the groove depth (DG) is examined.
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4.2 Problem statement

A schematic of the computational domain, constructed using a uniform staggered 320 ×

300 × 320 grid with grid size of ∆ = 32 µm in all three directions, is shown in Fig. 4.1(a).

A spherical water droplet with D0 = 63∆ (approximately 2 mm) is located above the

center of the substrate. The distance (d) between the top of the ridges and the droplet

in Fig. 4.1(b) is set to 10∆ (0.32mm), and thus the droplet evolves physically before

touching the solid.

A surface with nonuniform grooves is placed on the bottom, where the ridge width

(WR) is fixed at 160 µm, and the roughness gradient is characterized by the varying

groove width (WG) as n·∆, where n is a natural number. The cross-sectional view in

Fig. 4.1(b) shows the groove widths WG1 and WG2 on the left and right sides of the

impingement center. According to the results described in Chapter 3, three droplet

wetting states were obtained for We ranging from 0.0 to 30.0 and a groove width ratio

of between 1.0 and 2.0. Here, the groove width ratio (γ) is redefined as γ = WG2/WR,

varying from 1.4 to 2.2 to investigate the effect of the groove width on the droplet
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Figure 4.1: Schematic of the computational domain: (a) computational domain, where

WR, WG, and DG are the ridge width, the groove width (varying), and the groove depth,

respectively; (b) cross-sectional view of the impingement, where WG1 and WG2 are the

groove width in the left and right sides of the impingement center (WG2 = WG1 + ∆),

respectively. The black dashed line in (b) represents the impingement center.
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Table 4.1: Parameters used in the simulations.

Parameter Symbol Value

Intrinsic contact angle (◦) θY 100

Ridge width (µm) WR 160

Groove width (µm) WG n·∆

Groove width ratio γ 1.4/1.8/2.2

Groove depth ratio α 2.4/3.6/5.0

Weber number We 1-30

Impact velocity (m/s) u0 0.19-1.04

movement direction. To investigate the influence of groove depth, the groove depth

ratio α = DG/WR is varied from 2.4 to 5.0. The detailed simulation parameters are

shown in Table 4.1, where the intrinsic contact angle is adopted as 100◦, which is close

to the value (101◦) of the static contact angle for water on a uniform fluorocarbon

substrate [17]. In addition, a gravitational acceleration |g| of 9.8 m/s2 is imposed.
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4.3 Results and discussion

Simulations are first conducted to examine the effect of the Weber number, in which

the detailed physical insights into directional rebounding are presented. Groove depth

influences are then discussed, and further simulations are conducted to understand how

the groove width affects the droplet transportation directions.

4.3.1 Effect of Weber number

On textured surfaces, the wetting state has a significant effect on the transport direc-

tion of droplets [17, 21, 22]. For an impinging droplet, its wetting state depends on the

combined effects of the dynamic pressure (wetting pressure), PD=ρlu
2
0/2; the capillary

effect (antiwetting pressure), PC=−2σcosθa/WG; and the effective water hammer pres-

sure, PWH=kρlCsu0 (see Fig. 4.2). Here, θa is the advancing contact angle that can be

estimated every time step by the apparent contact angle model described in Chapter 2,

k represents the water hammer pressure coefficient, which is fixed at 5× 10−4 according

to [27] owing to the small u0, and Cs is the speed of sound in water, i.e., Cs=1480 m/s.

Figure 4.3 shows the effects ofWe and the groove width (WG)on the dynamic pressure

Air

Solid

Liquid

x 

y 

WG
 

DG
 

WR
 

PC 

PWH 

PD 

Figure 4.2: Schematic of the air−liquid meniscus on a groove. The shape of the meniscus

is determined by the combined effects of the wetting pressure (PD), capillary pressure

(PC), and water hammer pressure (PWH).
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Figure 4.3: Comparison of dynamic pressure (PD), capillary pressure (PC), and effective

water hammer pressure (PWH) against the Weber number (We). The grey region repre-

sents the PC owing to the roughness gradient. In addition, PC−max and PC−min are the

maximum and maximum values of PC.

(PD), the capillary pressure (PC), and the effective water hammer pressure (PWH). On

the surface with a roughness gradient, the capillary pressure is not uniform but decreases

with an increase in groove width. In Fig. 4.3, the maximum (PC−max) and minimum

(PC−min) capillary pressures are estimated based on the wetted groove width, which

corresponds to a minimum WG of 160 µm and a maximum WG of 352 µm. Based on

a comparison of PD, PC, and PWH, the condition is roughly divided into three regions

against We, and we expect to observe the corresponding wetting state and the motion

direction for each region.

According to the snapshots shown in Fig. 4.4, three types of droplet rebounding

behavior (vertical rebound and rebound following or against the roughness gradient) are

observed with 1≤ We ≤15, α = 3.6, and γ = 1.6. First, we present the unbalanced

Young’s force [17, 28], dFY = σ(cosθL − cosθR)dz, where dz is the length of the TPCL,
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Figure 4.4: Time evolution of impinging water droplet with We ranging from 1 to 15,

α = 3.6, and γ = 1.8. The black arrows, white arrows, and red arrows indicate the

local motion direction, the head motion direction, and the final rebound direction of the

droplets, respectively. The black dashed lines represent the droplet impact center.

θL and θR are the receding contact angles on the left and right side of the impingement

center, respectively. From this equation, an unbalanced Young’s force is obtained on the
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surface with roughness gradient (leading to θL 6= θR), which drives the droplet to move

spontaneously. At a smaller We of 1, the droplet tends to rebound vertically owing to

the small difference in the contact angle (θL − θR). For We = 5 and 10, the droplet

rebounds leftward following the roughness gradient because of θL < θR. Therefore,

in a perfect Cassie state (PC > PWH > PD) and a transition state (partially impaled

state [29, 30]) (PWH > PC > PD), a larger groove width on the right side leads to a

larger contact angle difference (θR > θL); thus, the net force toward the left drives the

droplet to rebound following the roughness gradient. However, the droplet rebounds in

the opposite direction, against the roughness gradient, when We≥ 15. For a larger We,

the right side of the droplet penetrates the groove space, showing a partial Wenzel state

(PWH > PD > PC), whereas the left side remains in a Cassie state as a result of the

small WG. The different wetting states result in different contact angles on the left and

right, and thus an unbalanced Young’s force. In addition, the liquid in a Cassie state

easily detaches from the substrate, whereas much of the liquid on the right side remains

in the grooves. The mobility of the liquid on the right side is slower than that on the

left, indicating that the droplet is arrested by the grooves (capillary emptying force) and

cannot move further [23]. Hence, the unbalanced Young’s force and the coexistence of the

Cassie and Wenzel states induce the droplet to rebound against the roughness gradient

(to the right side) at 10.4 ms. Interestingly, the droplet shows no clear rebounding

direction at the critical We value of 12.5. This manner is caused by the balanced forces

between the Young’s force and the capillary emptying force. In addition, the rebound

height of droplets at 12 ms increases with an increase in We from 1 to 12.5. In summary,

on surfaces with a roughness gradient, the direction of the droplet movement depends

on the combined effects of the unbalanced Young’s force and the wetting state, which

differs from those of a gently released droplet or a droplet impinging on a chemically

heterogeneous surface, where only the unbalanced Young’s force is relevant.

The Cassie state is obtained when a droplet impinges on textured surfaces with a

small We, meaning a small PWH, whereas a partial Wenzel state appears on the right

side of the droplet for a larger We. To thoroughly investigate the relationship between
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Figure 4.5: Cross-sectional view of the velocity field inside rebounding droplets following

(We = 5) and against (We = 15) the roughness gradient. The color of the arrows in

the droplets indicate the velocity magnitude ranging from 0 m/s to 2 u0.

We and the droplet rebound behaviors, the velocity fields at the maximum spreading

stage, recoil stage, and rebound stage are shown in Fig. 4.5. Although the maximum

velocity inside the droplet can be several times the initial impinging velocity owing to

the jet ejection [31], here we limit the range between 0 m/s and 2 u0 in Fig. 4.5. For

a small We, the recoiling flow is directed to the left owing to the unbalanced Young’s

force in the lateral direction, which drives the rebounding liquid to migrate along the

roughness gradient. For a larger We, the partial Wenzel state is obtained. Although the

top of the retracting liquid tends to rebound following the roughness gradient, much of

the liquid in the red circle is transported rightward against the roughness gradient at 5.4

ms owing to the capillary emptying force of the liquid in the grooves; thus, the droplet

finally rebounds against the roughness gradient.

Figure 4.6 shows the lateral displacement of the impinging droplet for various values

of We. The displacement is evaluated using the contact line position on the top of the

ridges in the cross-sectional view, which is positive toward the right (R.) and negative

toward the left (L.) of the impinging center. The lines in Fig. 4.6 are roughly divided

against time based on the three phases of spreading, retracting, and rebounding [32]. In
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Figure 4.6: Contact line position (x− axis) of the impinging droplet on the ridges. The

black dashed line represents the impingement center in Fig. 4.1(b).

addition, three types of rebounding behaviors are observed according to the impinge-

ment center. For We values of 5 and 10, the droplet rebounds leftward following the

roughness gradient owing to the unbalanced Young’s force in the lateral direction. For

the critical We of 12.5, no obvious displacement is observed because the Young’s force

and the capillary emptying process are balanced, and thus the droplet leaves the surface

vertically. For a larger We, a rebounding against the roughness gradient occurs because

of the combined effects of the unbalanced Young’s force and the coexistence of the Cassie

and Wenzel states. In addition, a larger We results in a much larger displacement of a

droplet from its initial impact position.

To rationalize these observations, in Fig. 4.7 we estimate the translational momen-

tum (Px) of the departing droplet (at the moment it leaves the surface) along the x−

axis, Px =
∑320×240×320

i,j,k mi,j,kux,i,j,k, where mi,j,k is the mass value in each cell computed

based on the VOF function (C), and ux,i,j,k is the velocity in the x− direction at the cell

(i, j, k). The negative Px within a small range of We suggests that the droplet tends

75



0 5 10 15 20 25 30

-20

0

20

40

60

Translational Momentum:
Tr

an
sla

tio
na

l M
om

en
tu

m
 P

x 
(k

g·
m

/s)

Weber number We

Against the 
roughness gradient

Following the 
roughness gradient

×10-8

Px =  mi,j,kui,j,k
i,j,k

320 300 320

Figure 4.7: Translational momentum (Px) of the departing droplet under a different We.

to move leftward following the roughness gradient. By contrast, the positive Px illus-

trates an opposite rebound tendency against the roughness gradient, but no significant

difference of Px can be observed for We ranging from 15 to 30, which is caused by the

wetting transition from a Cassie state to a Wenzel state even for areas with a small

groove spacing. For We = 1 and 12.5, |Px| is extremely small and the droplet shows no

clear rebounding directions shown in Fig. 4.4.

In addition, apart from the lateral transportation of droplets induced by the combined

effects of an unbalanced Young’s force and a dynamic wetting state, a rotating motion

is also observed by computing the angular momentum (Lz) with respect to the z-axis

rotation shown in Fig. 4.8. Here, Lz is estimated by the cross product of the cell position

(such as the cell (i, j, k)) vector ri,j,k (with respect to the z-axis passing through the

droplet center of mass O) and its linear momentum vector P i,j,k = mi,j,kui,j,k; thus,

Lz =
∑320×300×320

i,j,k ri,j,kP x,i,j,k for the 3-D droplet. Based on the right-hand rule, the

negative Lz in Fig.8 indicates counterclockwise rotating behavior of the droplets. For a
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Figure 4.8: Z component (Lz) of angular momentum of the leaving droplet under a
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We of 1 to 20, a significant amount of liquid floating on the patterns spreads around and

wets an increasing number of ridges. Because the surface tension tends to minimize the

free surface of the droplet, the asymmetric retracting flow triggers an increase in |Lz|. For

a We ranging between 20 and 30, however, much of the liquid infiltrates into the grooves,

and the liquid is arrested by the ridges. Hence, |Lz| shows a decreasing tendency owing

to the Cassie-to-Wenzel wetting transition, illustrating a weakened rotating motion.

4.3.2 Effect of groove depth

As mentioned above, the coexistence of the Cassie and Wenzel states plays a critical

role in the rebound direction of an impinging droplet. On a surface with micro-scale

structures, therefore, the groove depth (DG) is a non-negligible factor in the droplet

wetting state. The effect of DG can be described using a touch-down scenario [33]. A

droplet undergoes an impalement transition such as the transition from a Cassie to a

Wenzel state if the pressure in the droplet exceeds the critical impalement pressure,
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min(PT
imp, P S

imp), where PT
imp is the touch-down pressure, PT

imp∼ σDG

(WG+WR)2
, and P S

imp is

the sliding pressure, P S
imp= 2fs

1−fs |cos(θa)| 2σ
WR

, where fs=
WR

WG+WR
is the solid fraction. The

relationship between the critical impalement pressure and the micro-scale structures

was plotted by Bartolo et al. [33]. For surfaces with a roughness gradient, both the

touch-down pressure (PT
imp) and sliding pressure (P S

imp) are not constant because of the

nonuniform groove width WG. For instance, P S
imp varies between 912.5 and 414.8 Pa,

which correspond to minimum and maximum groove spacings of 160 and 352 µm, and

PT
imp ranges from approximately 273.9 to 106.9 Pa, respectively, with a groove depth

ratio α of 3.6. The above equations also show that a larger DG results in a higher

critical impalement pressure and somewhat enhances the robustness against a liquid

impalement for the surviving Cassie state [24].

Figure 4.9 shows the effect of the groove depth (DG) on the droplet rebound direction

(shown by the contact line position along the x-axis). As shown in Fig. 4.9(a), for

small We, the droplet wets the surface in the transition state at 2.2 ms and rebounds

following the roughness gradient for a larger α of 3.6, whereas the partial Wenzel state

and rebounding in the opposite direction occur for a small α of 2.4. The smaller α
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Figure 4.9: Groove depth effect on the droplet wetting state and the rebound direction

for γ= 1.8 and different groove depth ratios (α), shown by the contact line position along

the x-axis: (a) droplet impinging with We=10; (b) droplet impinging with We=20.
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lowers the critical impalement pressure, min (PT
imp, P S

imp); thus, the droplet wets the

grooves completely, thus leading to a different rebound direction. However, for a larger

We, as shown in Fig. 4.9(b), although increasing α from 3.6 to 5.0 increases the critical

impalement pressure, both droplets rebound against the roughness gradient owing to

the presence of the partial Wenzel state at 2.4 ms. In addition, the contact time for α

= 3.6, where more parts of the droplet are in a Wenzel state at 2.4 ms, is larger than

that for a larger α. Therefore, for a high We, the liquid penetrates the groove owing to

a larger PWH even with a larger α, and forms a partial Wenzel state on the right side of

the impingement center, causing the droplet to rebound against the roughness gradient.

4.3.3 Effect of groove width

The capillary pressure (PC), which is related to the groove width, plays a vital role in

the antiwetting and emptying of the liquid within the grooves. The comparison in Fig.

4.10 illustrates the effect of the groove width on the droplet rebound direction. For a
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Figure 4.10: Groove width effect on the droplet wetting state and the rebound direction

for γ ranging between 1.4 and 2.2, We = 10, and α = 3.6, as shown by the contact line

position along the x-axis.
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small groove width ratio γ of 1.4, the perfect Cassie state appears at 2.2 ms, whereas

the transition state (see Fig. 4.4) and the partial Wenzel state are observed for γ =

1.8 and γ = 2.2, respectively. According to the equation of PC, a larger WG results

in a smaller capillary pressure, and the partial Wenzel state is more easily obtained.

Therefore, droplets rebound following the roughness gradient for γ = 1.4 and γ = 1.8,

whereas the opposite behavior is observed for a larger γ. In addition, the contact time

at γ = 2.2 is larger than that for a small groove width owing to the combined effects of

the Wenzel state and the smaller capillary pressure.

Because the surface roughness influences the apparent contact angle of droplets on
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Figure 4.11: Time evolution of apparent contact angle in the left (L.) and right (R.)

sides for a droplet impinging on surfaces with γ varying between 1.4 and 2.2, We = 10,

and α = 3.6. The dotted lines roughly divide the advancing and receding stages of the

droplets.
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solid surfaces [18, 19], the roughness gradient in this work leads to an unbalanced Young’s

force in the lateral direction. The time evolution of the apparent contact angle under

different values of γ is shown in Fig. 4.11, which is measured using the geometric method

from the drop-images generated from the simulations results, applying image processing

software (ImageJ software [34]). From 0 to approximately 2.5 ms, the droplet heads to

the wall and spreads. The advancing contact angle increases slightly. A clear decreasing

behavior of the receding contact angle can then be observed from 2.5 to approximately 6.0

ms, which happens at the so-called retracting stage [32]. Finally, the receding contact

angle decreases again at the rebound stage after approximately 9 ms. Although the

apparent contact angle quickly jumps up and down owing to the varying fraction of the

droplet−wall and droplet−air interfaces, the value on the right-hand side (R.) is often

larger than that on the left-hand side (L.). Hence, the unbalanced Young’s force points

toward the left-hand side, driving the droplet to move following the roughness gradient

for cases with a small γ at 1.4 and 1.8. In contrast, a larger value of γ = 2.2 results in

rebounding in the opposite direction.

4.3.4 Phase diagram

The above results demonstrate that the Weber number (We), the groove width (WG),

and the groove depth (DG) play vital roles in determining the rebound direction of

droplets dominated by the unbalanced Young’s force and the wetting state. The wet-

ting state is based on the relationship among the dynamic pressure (PD), the capillary

pressure (PC), and the effective water hammer pressure (PWH) in Fig. 4.3. Here, the

combined effects of We and a groove width ratio of γ on the droplet rebound direc-

tions are summarized in Fig. 4.12 with a constant of α= 3.6. The figure shows that a

droplet with a small impingement velocity (corresponding to PC > PWH > PD in Fig.

4.3) reaching a rough surface with dense ridge arrays (blue region with blue triangles)

tends to rebound following the roughness gradient, the reason for which is the unbal-

anced Young’s force in a Cassie state or a transition state owing to the small PWH and

larger PC. By contrast, for larger We (corresponding to PWH > PD > PC) and sparse
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Figure 4.12: Phase diagram of the rebound directions as a function of groove width ratio

(γ) and Weber number (We), where α is fixed at 3.6.

surface roughness (gray region with black triangles), the rebound directions are opposed

because of the combined effects of the unbalanced Young’s force and the wetting state.

The third behavior, a vertical bouncing of the droplet (pink region with red triangles),

can be obtained at an extremely small We or a critical We. Therefore, We and γ are

two important factors that determine PWH, PC, PD, the wetting state, and the rebound

direction when droplets impinge on surfaces with a roughness gradient.

From the above results, droplets in a Wenzel state are arrested by the roughness

structure and fail to move further. Hence, the hydrophobicity of textured surfaces

is weakened. In addition, it is generally agreed that droplets in a Cassie state are

characterized as rapid rebounding or rolling off the surface. Therefore, approaches to

prevent the wetting transition from a Cassie state to a Wenzel state should be proposed,

which are subjects for following studies.
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4.4 Conclusions

On surfaces with a roughness gradient, the effects of the Weber number (We), the

groove depth (DG), and the groove width (WG) on the droplet transport directions were

explored using CLSVOF/DNS. The main results of this exploration are summarized as

follows.

1. Three types of rebound behaviors (vertical rebound, following, or against the

roughness gradient) are observed when droplets impinge on a surface with a rough-

ness gradient. The rebound behavior depends strongly on We, DG, and WG.

2. For an extremely small We, the small difference in contact angles on the left

and right sides of the impingement center results in a vertical rebounding of the

droplet. When We increases, the water hammer pressure increases, and the droplet

rebounds following the roughness gradient owing to the unbalanced Young’s force

in a Cassie state. However, rebounding in the opposite direction is observed for a

larger We due to the coexistence of the Cassie and Wenzel states.

3. The groove depth determines the critical impalement pressure and robustness

against a liquid penetration. A larger groove depth and small We result in re-

bounding following the roughness gradient, whereas the droplet tends to rebound

against the roughness gradient for a small groove depth and larger We due to an

achievement of the partial Wenzel state.

4. A droplet impingement at a large groove width, that is, a small antiwetting pres-

sure, tends to generate both Cassie and Wenzel states, resulting in rebounding

against the roughness gradient.
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Nomenclature

C : VOF function [ - ] α : Groove depth ratio [ - ]

Cs : Speed of sound in water [ - ] γ : Groove width ratio [ - ]

D0 : Initial droplet diameter [ m ] ∆ : Mesh size [ - ]

DG : Groove depth [ m ] θa : Advancing contact angle [ ◦ ]

fs : Solid fraction [ - ] θY : Intrinsic contact angle [ ◦ ]

FY : Young’s force [ N ] ρ : Density [ kg/m3 ]

g : Gravitational acceleration [ m/s2 ] µ : Viscosity [ mPa · s ]

k : Water hammer pressure coefficient [ - ] σ : Surface tension coefficient [ N/m ]

Lz : Angular momentum [ kg·m3/s ] Subscripts

m : Mass [ kg ] a : Air

n : Natural number [ - ] l : Liquid

P : Translational momentum [ kg·m/s ] R : Right side

PC : Capillary pressure [ Pa ] L : Left side

PD : Dynamic pressure [ Pa ] max : Maximum

P S
imp : Sliding pressure [ Pa ] min : Minimum

PT
imp : Touch-down pressure [ Pa ]

PWH : Water hammer pressure [ Pa ]

r : Position vector [ m ]

u0 : Initial velocity [ m/s ]

We : Weber number [ - ]

WG : Groove width [ m ]

WR : Ridge width [ m ]
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Chapter 5

Suppressing the Cassie-to-Wenzel

transition using surfaces with

hierarchical structures

5.1 Introduction

As described in Chapters 3 and 4, a larger groove width leads to a greater surface

hydrophobicity, which is suppressed with a further increase in the groove width because

a Wenzel state is obtained. It is generally agreed upon that the wetting in a Wenzel

state weakens the hydrophobicity of a textured surface, and a stable Cassie state is

preferred in practical applications. To both enhance the surface hydrophobicity and

suppress the Cassie-to-Wenzel state transition, in this chapter, a novel hydrophobic

surface with primary structures (taller) to improve the hydrophobicity and secondary

structures (shorter) to stabilize the Cassie state, is proposed.

Hydrophobic surfaces are designed to prevent the sticking, icing, and corrosion of

water droplets on the surface of industrial equipment. One widely used strategy is to

texture the surface by pillars or grooves [1, 2]. On low-energy surfaces, the Cassie model

[3] demonstrates that the contact angle (θC) is amplified by minimizing the solid fraction

(fs), cosθC = fs(1+cosθY)−1, where θY is the Young’s angle (the intrinsic contact angle)
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of a droplet on the ideal surface. However, if fs decreases to zero, it will result in a fragile

surface structure or a fully wet Wenzel state [4]. In general, droplets in a Cassie state are

characterized as a large apparent contact angle (θapp) and small roll-off angle, revealing

behaviors such as a rapid rebounding off and rolling off of textured surfaces. Wetting

transition from a Cassie state to a Wenzel state induced by impingement or vibration [5],

however, causes the liquid to be arrested by the rough structures and fail to move further,

thereby weakening the water-repellency of a hydrophobic surface [6].

The wetting transition typically results from two scenarios: a depinning mechanism

and a sag mechanism [7, 8]. Because the sag mechanism is irrelevant if the designed struc-

tures prevent the sagging liquid−air interface from touching the bottom of the substrate,

a number of studies have concerned the effect of roughness structures on the energy

barrier of the depinning mechanism. Inspired by the lotus leaf (see Chapter 1), artifi-

cial surfaces with a hierarchical roughness exhibit a metastable Cassie state of droplets

owing to the multi-level energy barrier for the Cassie-to-Wenzel transition [6, 9–12].

Nosonovsky [6] theoretically demonstrated that multiscale roughness can help resist the

destabilization, thus preventing the liquid penetration even in the case with hydrophilic

materials. Pan et al. [12] experimentally demonstrated that the critical Laplace pressure

needed for losing the Cassie state increases due to the increase in hierarchical level and

structural complexity. Nosonovsky further [13] discussed the effect of the re-entrant sur-

face topography on the wetting state, which was beyond the standard Wenzel and Cassie

models. Whyman and Bormashenko [14, 15] analyzed various surfaces with re-entrant

topographies from the viewpoint of the stability of a Cassie state by considering the

tension of the three-phase contact line (TPCL). They found that the potential barrier,

separating the Cassie and Wenzel states, sufficiently increased as the liquid penetrated

into the structures. Inspired by the body skin of Springtails or Collembola (wingless

arthropods), Hensel et al. [16] analytically and numerically indicated that a robust wet-

ting resistance even for low-surface-tension liquids (such as hexane) can be obtained

on surfaces with T-shaped profiles, paving the way for fabricating omniphobic surfaces

with a high repellency irrespective of a solid surface chemistry. Furthermore, they [17]
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proposed a theoretical model to predict the barrier of the wetting transition. Other

approaches, such as masking surfaces with non-communicating holes [18, 19] and mush-

room pillars [20], have also proven to be effective; however, the need to explore alternate

methods becomes imperative when considering the fabrication processes, fabrication over

large areas [21], and the robustness and durability of such tiny structures [22]. To both

maximize the surface hydrophobicity and stabilize the Cassie state, we propose a novel

surface with sparse and taller primary structures (small fs) to repel water, and shorter

secondary structures to suppress the Cassie-to-Wenzel wetting transition, which can be

a one-step fabrication surface through laser processing [23, 24] based on a simple and

regular structures.

In this chapter, we therefore conduct a computational study on the effect of sec-

ondary structures on the droplet deformation, penetration, and wetting state on the

novel surface. We first describe a study on the wetting behavior of droplets on surfaces

with various secondary structures. We further extend our analysis to different impinge-

ment centers. Furthermore, we focus on the influence of the Weber number (We); i.e.,

We = ρlD0u
2
0/σ, where D0 is the droplet diameter, u0 is the initial impinging velocity,

and σ is the surface tension coefficient of the water−air interface (σ = 72.8×10−3Nm−1).

The two-step wetting transition of droplets on the novel surface is theoretically discussed

based on the Laplace’s law, the Young’s equation, and the Gibbs extension. Finally, some

concluding remarks are provided.
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5.2 Problem statement

A schematic of the computational domain is shown in Fig. 6.1(a). All 3D simulations

are conducted on a staggered Cartesian grid consisting of 320×300×320 grid points (a

total of 30.72 million grid points) in the x-, y- and z- directions, respectively, and the

grid size ∆ is equal to 32 µm in all three directions. A spherical water droplet with

diameter D0=62∆ is placed above the center of the substrate. The distance between

the wall and droplet center is set as 0.55D0 to make the droplet evolve in a physical

manner before touching the solid. A textured surface with primary and secondary ridges

is located at the bottom, and the ridge width, the groove width, and the ridge height

of the primary and secondary structures are WR1 and WR2 , WG1 and WG2, and HR1

and HR2 as shown in the cross-sectional view in Fig. 6.1(b), respectively. According

to the results in Chapter 3, the perfect Wenzel state was obtained at a groove width

ratio of γ ≥ 2.0. Hence, the redefined γ=WG1/WR1 is fixed at 15∆/7∆, whereas the

secondary ridges are placed in the middle of the primary grooves and thus the secondary
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Droplet

(b)

HR1
 

HR2
 

WG1
 WR1
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Ly = 4.8 D0

(300 grid poin

Figure 5.1: Schematic of the computational domain and conditions: (a) computational

domain; (b) cross-sectional view of the structure, where the black dashed-dotted line in

(b) represents the impingement center.
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Table 5.1: Parameters used in numerical simulations.

Parameter Symbol Value

Mesh size ∆ 32µm

Droplet diameter D0 62∆

Intrinsic contact angle θY 100◦

Primary ridge width WR1 7∆

Primary groove width WG1 15∆

Primary groove width ratio γ 15/7

Secondary ridge width WR2 5∆

Primary ridge height HR1 18∆

Secondary ridge height ratio H∗ 0.0, 2/9, 0.5, 7/9, 1.0

Weber number We 1–30

Impinging velocity u0 0.19–1.04 m/s

groove width is WG2 = (WG1 −WR2) /2. In addition, the ratio of the secondary ridge

height H∗ = HR2/HR1 ranges from 0.0 to 1.0 to investigate the influence of the relevant

height on the droplet wetting state. The detailed simulation parameters are shown in

Table 6.2. The liquid and air phase properties are the same as those in Chapters 3 and

4. The boundary condition of the substrate is set as a wall, whereas the surroundings

are considered as shear free surfaces. In addition, a gravitational acceleration |g| of 9.8

m/s2 is imposed.
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5.3 Results and discussion

5.3.1 Effect of secondary structure

The images compared in Fig. 5.2 illustrate the effect of the secondary ridge on the droplet

wetting states. We note here that the slight asymmetric behavior of the droplets is caused

by a mismatch between the droplet center and the impingement ridge center, whose effect

on the wetting, penetrating, and rebounding behavior of droplets is negligible in this

study. Roughly, the droplet undergoes the spreading and retracting stages on three

types of substrates. At the end of the spreading phase at approximately 3.2ms, the

inertia, viscosity, and surface tension compete toward the stop of the contact line [25]

and droplets reach their so-called maximum spreading phase. Then, the liquid starts

retracting and goes back to the impingement center. For the surface with H∗ = 0.0,

liquid penetration occurs when the liquid breaks through the primary ridge. A part of

the liquid quickly penetrates into the grooves, forming a Wenzel state at 2.0 ms because

of the downward momentum of the droplet. In contrast, although the first penetration

occurs, the secondary penetration, defined as the liquid breaking through the secondary

groove, is hindered by secondary ridges in which a stable Cassie state is obtained on the

1.4 ms 2.0 3.2 4.4 5.8 6.6 7.4

0.0

0.5

1.0

x

y

z

H
*

Figure 5.2: Time evolution of impinging water droplet on surfaces with different sec-

ondary ridges (H∗=0.0, 0.5, and 1.0, respectively). Here, We and γ are fixed at 10

(u0 = 0.6m/s) and 15/7, respectively.
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surfaces with H∗ = 0.5. The droplet undergoes viscous dissipation and retracts toward

the impingement center due to the surface tension. At 5.8 ms, although the impregnated

liquid is sustained in the groove for the case of H∗ = 0.0, the droplet is already detached

from the secondary ridge and tends to leave the surface with H∗ = 0.5. For the droplet

impinging on surface with H∗ = 1.0, although the Wenzel state is not observed, the water

repellency of the surface is not greatly improved based on the Cassie model. Therefore,

to improve both the hydrophobicity of textured surfaces and the stability of the Cassie

state, decorating the surface with secondary structures (H∗ = 0.5) can be a promising

approach for impinging droplets.

To analyze the effect of a secondary ridge on the droplet wetting behavior, we define

the spreading factor (β = D/D0) and the penetration factor (η = H/HR1), where D

is the instantaneous diameter of a wetted area along the x-axis, and the maximum

spreading factor (βmax) is obtained when D = Dmax at the maximum spreading stage
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Figure 5.3: Variations of maximum spreading factor (βmax) and penetration factor (ηmax)

of droplets impinging on surfaces with different secondary structures. Here, We and γ

are fixed at 10 (u0 = 0.6m/s) and 15/7, respectively. The dashed-dotted line in the

snapshots indicates the centerline.
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(see the images at 3.2ms in Fig. 5.2). Similarly, H is the instantaneous penetration

depth of a liquid estimated by the distance between three-phase contact point (on the

cross-sectional view) and the top of primary ridges, and the maximum penetration factor

(ηmax) is achieved with H = Hmax at the maximum penetration stage (see the images at

2.0ms in Fig. 5.2). The maximum spreading factor (βmax) and the maximum penetration

factor (ηmax) are plotted against the secondary ridge height ratio (H∗ ) in Fig. 5.3. Here,

H∗ = 0.0 means the surface with only primary ridges, whereas H∗ = 1.0 represents the

heights are same at 576 µm between the primary and secondary ridges. From Fig. 5.3,

both ηmax and βmax change nearly linearly with an increase in the secondary ridge height.

ηmax decreases from approximately 1.0 to 0.2 as H∗ increases from 0.0 to 1.0. This occurs

because the increase in secondary ridge height prevents the liquid from penetrating into

small grooves with a spacing of WG2. As for the inflection with H∗ ≥7/9, this is because

the larger kinetic energy at the early impacting stage triggers the secondary penetration

as shown in Fig. 5.3. Here, βmax slightly increases from approximately 1.4 to 1.5 as H∗

increases from 0.0 to 1.0, suggesting that liquid tends to spread and float on the patterns

rather than fall into grooves.

Subsequently, the time scales, as analyzed in Fig. 5.4 are the spreading time (ts),

emptying time (te), and contact time (tc), where ts is the time at which the droplet

spreads and reaches its maximum spreading stage, te is the time interval between the

moments when the droplet first infiltrates into the primary groove and when the groove

is completely emptied, during which the droplet undergoes downward penetrating and

upward capillary emptying processes, and tc is the so-called contact time during which

the time period from when the drop first touches the surface to that when it bounces

off the surface [27]. As shown in Fig. 5.4, H∗ exerts a significant effect on te but only a

small influence on ts and tc.

Specifically, ts experiences a slight increase with H∗ ranging from 0.0 to 1.0. This

is because, at a larger H∗ (taller secondary ridge), liquid can easily reach and touch

the secondary ridge, meaning a decrease in the fraction of liquid−air interface, leading

to a decrease in the contact angle based on the Cassie model [3]. Shen et al. [28]
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Figure 5.4: Variations of ts, te, and tc with H∗ ranging from 0.0 to 1.0. Here, We and

γ are fixed at 10 and 15/7, respectively.

proposed an equation to estimate ts based on the energy conservation law, but there is

something wrong in this equation, because it is not homogeneous to a time according to

the dimensionality check. We re-derived this equation, and ts can be estimated by

ts ∼
2

3

√
D0

ρlµu0

(
ρlD

3
0u

2
0 + 12σD2

0 − 3σD2
max(1− cos(θapp))

D2
maxu2

0

)
(5.1)

Here, θapp is the apparent contact angle, which is a function of the Capillary number

(Ca = µlu0/σ) and the intrinsic contact angle (θY) of surfaces, θapp = f (Ca, θY), Re

the Reynolds number, Re = ρu0D0/µl. When we combine Eqs. (5.2) [29] and (6.5), a

decrease in θapp leads to an increase in ts.

βmax =
Dmax

D0

=

√
We+ 12

3 (1− cos (θapp)) + 4We/
√
Re

(5.2)

Figure 5.4 shows that te decreases with an increase in H∗, because the increase in this

value prevents the liquid penetration into the grooves, as shown in Fig. 5.3. Theoreti-

cally, because te involves the processes of liquid penetration and capillary emptying [27],

when the liquid does not touch the bottom of the surface, the timescale can be expressed
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as

te ∼ −
u0ρD0(WG +WR)

2σ cos θY

(5.3)

where WG and WR are the width of the wetted groove and the ridge, respectively.

The interval of the roughness structure WG+WR = WG1 + WR1 when only the first

penetration occurs, whereas it equals WG2+WR2 under the secondary penetration. Based

on Eq.(5.2), the increase in H∗, meaning a decrease in WG and WR, leading to a decline

of te.

tr ∝

√
ρlD3

0

2σπ [1− cos (θapp)]
(5.4)

For the contact time (tc ≈ ts + tr), on a specific uniform surface, tc is not dependent

on the impact velocity u0 but is a function of D0, ρ, and σ [30]. However, the increase in

H∗ in this study brings about an increase in the solid fraction (fs) and thus lowers the

apparent contact angle. During the retracting stage, liquid in the grooves returns to the

mother droplet, and liquid floating on the ridges recoils back to the center. According

to Eq. (6.4) for We � 1 [30], the retracting time tr is related to θapp and D0 . It can

be seen that a decrease in θY brings about an increase in tr. Based on Eqs.(6.5)−(6.6),

a slight increase in tc is found with H∗ ranging from 0.0 to 1.0.

5.3.2 Effect of impingement center

To analyze the influence of the impact position, two cases with different impinging

centers are studied. The spreading factor of droplets with an impingement centered at

the primary ridge (βridge) and the primary groove (βgroove) are compared in Fig. 5.5.

It can be seen that both values increase rapidly up to the peak (βmax) and then slowly

decreases to zero, which correspond to the spreading (before 2.0 ms) and the recoiling

stage (after 4.0 ms) of a droplet−wall interaction, respectively [25]. As the images shown

in Fig. 5.5 indicate, the first penetration occurs in three grooves for the droplet with the

impinging center at the primary groove, whereas only two primary grooves are filled with

liquid for impingement centered at the primary ridge. When the droplet touches the

ridge first, it spreads out and the kinetic energy rapidly converts into the surface energy.
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Figure 5.5: Variation of the spreading factor (β) against time. We, H∗, and γ are fixed

at 10, 0.5, and 2.1, respectively. The dashed-dotted line in the snapshots indicates the

centerline.

When the droplet contacts the groove first, it tends to infiltrate into grooves that limit

the spreading behavior. Hence, the maximum βgroove is smaller than the maximum βridge.

Then, the surface energy transfers into kinetic energy at the retracting stage, leading

to a rebound of the droplet. The contact time of the droplets with the substrate, from

first touch to finally leave off, shows no significant difference due to the same surface

roughness. The lines in Fig. 5.5 exhibit a staged increase and decrease in behavior,

which is induced by the ”jump-stick” of three-phase contact line on the rough surfaces,

revealing a jump from the current to the following contact pillar [31, 32].

Figure 5.6 shows the penetration depth factor of a droplet with the impingement

centered at the primary ridge (ηridge) and primary groove (ηgroove). It is clear that

the maximum ηridge is approximately 0.5, which illustrates that the first penetration

occurs but the secondary penetration is prevented well by the secondary ridge. For a

droplet heading to the groove, the maximum ηgroove is approximately 0.6 owing to the

occurrence of a secondary penetration. This occurs because of the different conversion
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Figure 5.6: Variation of the penetration factor (η) against time. We, H∗, and γ are

fixed at 10, 0.5, and 2.1, respectively. The dashed-dotted line in the snapshots indicates

the centerline.

of the kinetic energy when the droplets touch the ridge and groove. Furthermore, ηridge

starts to decrease at approximately 5.8 ms, whereas the decreasing behavior occurs at 7.2

ms for ηgroove. In addition, the groove is early emptied with the impingement centered

at the primary ridge, which is reduced by approximately 1.5 ms compared to that of the

droplet impinging on the primary groove first.

5.3.3 Effect of Weber number

The Weber number (We) characterizes the relative magnitude of the kinetic energy to

the surface tension energy. Figure 5.7 plots the maximum droplet penetrating factor

ηmax against We on a surface with (H∗ = 0.5) and without (H∗ = 0.0) secondary ridges.

On the surface with only primary ridges, ηmax increases rapidly to its maximum value of

1.0 with We ranging from 1 to 10, because a greater impinging inertia induces a larger

deformation of the droplet. Then, ηmax+ remains constant with a further increase in

We owing to the Wenzel state. In contrast, ηmax shows a slow growth behavior on a
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Figure 5.7: Comparison of maximum droplet penetration factor (ηmax) between surfaces

without (H∗ = 0.0) and with (H∗ = 0.5) secondary ridges.
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Figure 5.8: We dependence at time scales of ts, te, and tc. The variations of ts, te, and

tc with H∗ = 0.5 are plotted by solid lines, whereas the red dash line shows the effect of

We on te for surfaces without secondary ridges (H∗ = 0.0).
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surface with primary and secondary ridges, and the value is always smaller than 1.0 with

We between 1 and 30. In detail, ηmax increases to 0.5 with We from of 1 to 5, when

the droplet touches the secondary ridges. Then ηmax increases slowly because secondary

ridges weaken the penetration of liquid into the secondary grooves. From the image in

Fig. 5.7, no liquid touches the bottom of the substrate even under large We conditions

with H∗ = 0.5. We again emphasize here that the secondary ridges prevent the wetting

transition.

Next, the effect of We on the time scales of ts, te, and tc are plotted in Fig. 5.8.

First, we compare the emptying time (te) of droplets impinging on surfaces with (H∗

= 0.5) and without (H∗ = 0.0) secondary ridges. For H∗ = 0.0, te increases rapidly

for We smaller than 10, and no significant change can be observed with a continuously

increasing We. This is because, at a small We, the maximum penetration factor (ηmax)

of the liquid increases rapidly with an increase in We, thus leading to a sharp increase

in te. This tendency is also explained based on Eq. (6.4), from which the increase in

We or u0 brings about an increase in te on a specific surface. However, a Wenzel state

is obtained in which te almost remains constant with We between 10 and 30. On the

surface with H∗ = 0.5, te quickly increases to approximately 6.2 ms with We ranging

from 1 to 5 owing to the abrupt change in the surface roughness. Then, te undergoes

no significant change with We between 5 and 30, during which secondary ridges prevent

the droplet from completely wetting the pattern structure. Interestingly, with We=5,

te for a case in which H∗ = 0.5 is larger than that with H∗ = 0.0. This is because, at

a small We, the liquid dose not touches the bottom of the grooves on the surface with

H∗ = 0.0, whereas the liquid touches the secondary ridges on the surface with H∗ =

0.5. For the contact time on the surface with H∗ = 0.0, tc increases rapidly with We

ranging from 1 to 10, and it undergoes small change with further increasing We due to

the achievement of a Wenzel state. When H∗ = 0.5, tc experiences small increase with

We from 1 to 5 owing to the abrupt change in the surface roughness, and no significant

variation can be found with We from 10 to 30. Furthermore, on a specific surface with

H∗ = 0.5, ts is almost constant with the increase in We.
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5.3.4 Theoretical analysis

The above penetration of an expanding droplet into the groove can be analytically

investigated based on the pressure. For a sagging liquid surface, the theoretical model

of the transition barrier is derived based on the correlation of Laplace’s law, Young’s

equation, and Gibbs extension [16, 17, 33, 34]. Laplace’s law describes the relationship

among the pressure difference (∆P ), the surface tension coefficient (σ), and the interface

radius:

∆P = σ

(
1

R‖
+

1

R⊥

)
(5.5)

where R‖ and R⊥ are the radii of the semi-cylinder interface in the groove parallel and

perpendicular directions. For the primary and secondary ridge textured surfaces shown

in Fig. 5.9, we suppose that R‖=∞ and R⊥=Rmin, where Rmin is estimated as

Rmin =
d

sin (θapp − π)
(5.6)

Here d represents the distance between the three-phase contact point at the edge and

the symmetry center of the sagging interface on the cross-section. In addition, d1 and d2

in Fig. 5.9 are for liquid wetting of the primary and secondary ridges, when d1 = WG1

and d2 = WG2, respectively.

For an ideally flat surface with intrinsic contact angle θY, Young’s equation describes

the force balance acting on the TPCL:

σsa = σsl + σ cos θY (5.7)

where σsa and σsl are the surface tension coefficient of solid−air and solid−liquid, re-

spectively. The inhibition of liquid penetration by a sharp edge was described well by

the Gibbs inequality condition [16, 17]:

θY ≤ θapp ≤ θY + (π + Ψ) (5.8)

where θapp is the apparent contact angle at a given position, and Ψ is the geometrical

edge angle (Ψ = π/2 in our system), i.e., Ψ1 and Ψ2 in Fig. 5.9 are the geometrical edge

angles for the primary and secondary ridges, respectively.
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Differing from the stationary droplet in previous articles [16, 17, 34, 35], an impinging

droplet is studied in this study. Both the hydrodynamic and hydrostatic pressures should

be considered when calculating the pressure difference. Given that the ∆P between the

total pressure (Pt) inside the liquid phase and the atmospheric pressure (P0) can be

calculated by

∆P = Pt − P0 =
σ sin (θapp − π)

d
(5.9)

For the pressure triggering the penetration of the liquid, if θY ≤ Ψ + π/2, the

canthotaxis effect dominates the penetration [36]. Hence, based on Eqs.(5.5)−(5.9), the

critical pressure (breakthrough pressure) can be estimated by

Pb =
σ sin (θY −Ψ)

d
(5.10)

If θY > Ψ + π/2, a Laplace breakup occurs [36]. The breakthrough pressure is

determined by the Laplace law with R = d:

Pb =
σ

d
(5.11)

Penetration occurs when the pressure difference exceeds the breakthrough pressure

(∆P > Pb). According to the topographic structure and intrinsic contact angle in

this study, the canthotaxis effect takes place first due to θY ≤ Ψ + π/2. Both Eqs.

(5.10) and (5.11) illustrate that Pb increases with a decrease ind. Therefore, on surfaces

with primary and secondary structures, a two-step wetting transition is induced by the

canthotaxis effect, as shown in Fig. 5.9. In addition, Pb,1 and Pb,2 in Fig. 5.9 are

the breakthrough pressures for the first and second penetration, respectively. In the

initial situation shown in Fig. 5.9(a), liquid is considered to float on the ridges, and

the total pressure Pt inside the liquid phase equals the atmospheric pressure P0 (Pt,0

= P0) when a perfect Cassie state is obtained. The liquid−air interface will sag into

the groove (without penetration) if Pt increases. A further increase in Pt results in the

first penetration scenario in Fig. 5.9(b), when the pressure difference exceeds the first

breakthrough pressure (∆P > Pb,1), resulting in a downward sliding of the TPCL along

the groove sidewall (red arrows). The secondary penetration, however, is hindered by
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Figure 5.9: Schematic (sectional view) of the liquid penetration mechanisms of an im-

pinging droplet: (a) Perfect Cassie state with Pt,0 = P0, curvature radius R0, apparent

contact angle θapp,0 and the edge angle of primary ridge Ψ1; (b) First penetration takes

place when ∆P > Pb,1 with curvature radius Rmin,1, apparent contact angle θapp,1 and

the edge angle of secondary ridge Ψ2; (c) Second penetration happens when ∆P > Pb,2

with apparent contact angle θapp,2, curvature radius Rmin,2; (d) Wenzel state: liquid com-

pletely wets the grooves. The dash-dotted line in the snapshots indicates the centerline.

secondary ridges owing to a smaller d2, which leads to a higher breakthrough pressure

Pb,2 in Fig. 5.9(c). For this reason, the secondary ridge in this work can prevent the

wetting transition from the Cassie to the Wenzel state. The secondary penetration

takes places when ∆P > Pb,2. Finally, the Wenzel state is obtained when the grooves

are completely wetted, as shown in Fig. 5.9(d).

Figure 5.10 plots the relation between the breakthrough pressures (Pb) and the groove

width ratio (γ), considering the significant effect of the groove width on the wetting

transition of droplets impinging on a textured surface. It can be seen that Pb decreases

sharply with the increase in γ, because a large value of γ corresponds to a larger d,

leading to a small Pb according to Eq. (5.10). A penetration, may not occur even if

∆P slightly exceeds Pb, and the penetration can be triggered with Pb within a certain

range [17].

To quantitatively judge the effect of the initial impacting conditions on the occurrence

of a wetting transition, we define Pt as the total pressure in the liquid, which is the sum of

the hydrodynamic pressure (Phd), hydrostatic pressure (Phs), and atmospheric pressure
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Figure 5.10: Variation in the breakthrough pressure (Pb) against the groove width ratio

(γ). Pb is estimated using Eq. (5.10). The green points represent the breakthrough

pressures at the primary (Pb,1) and secondary (Pb,2) roughness , when d equals WG1 and

WG2, respectively.

(P0) based on Bernoulli’s equation. Thus, according to Eq. (5.9), ∆P can be rewritten

as

∆P = Phd + Phs =
1

2
ρu0

2 + ρgh (5.12)

Here, h is the thickness of the fluid, which we assume equals D0 initially. Although

∆P > Pb,2 is satisfied when We=10, the secondary penetration is not observed according

to the images in Fig. 5.2. Two reasons induce this behavior. One is the conversion from

kinetic energy to surface tension energy during the droplet spreading stage. As the

other reason, the critical We value has a certain range, only within which the wetting

transition can be triggered as mentioned above [17].

The phase diagram of the wetting transition based on the simulation results is shown

in Fig. 5.11. To compare the simulation results with a theoretical estimation, ∆P esti-

mated using Eq. (5.12) and Pb estimated using Eq. (5.10) are presented. It can be seen

that the region of no penetration, the first penetration, and the secondary penetration

is obtained with an increase in We, which is roughly divided by the theoretically esti-
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Figure 5.11: Phase diagram of the liquid penetration based on the simulation results,

and the variation of in pressure difference (∆P ) against We of between 1 and 30, and

H∗=0.5. The black dashed lines represent the value of the breakthrough pressure at

the primary (Pb,1) and secondary (Pb,2) structures when d equals d1=WG1=15∆ and

d2=WG2=5∆, respectively. The blue, red, and gray regions represent the area, in which

no penetration, the first penetration, and the secondary penetration take place based on

our numerical results.

mated Pb,1 and Pb,1. We here again suggest that a secondary penetration is not triggered

even though the initial ∆P exceeds Pb,2 with We=10. At a large We, the secondary

penetration in Fig. 5.7 occurs when We = 20.

Inspired by the above penetration theory of droplets impinging on surfaces with pri-

mary and secondary ridges, a fractal-structured surface is conceived in Fig.5.12. It is

predicted that the surface with multi-level structures can ensure a more stable Cassie

wetting than that in Fig. 5.9, because the fractal surface is demonstrated to be super-

water-repellent with a contact angle of as large as 174◦ [37]. Fractal models were devel-

oped by Onda et al. [37] and more recently by Jain et al. [38] to predict the apparent

contact angle on surfaces with multi-level structures. Therefore, this study provides

a new fabrication strategy of robust hydrophobic or superhydrophobic surfaces with a
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Figure 5.12: A fractal surface characterized by four-level ridges. The liquid penetration

can be prevented well by a multi-level structure, corresponding to a breaking through

pressures of Pb,1, Pb,2, Pb,3, and Pb,4.

stable Cassie state, which can be extended to a large-scale generation of superhydropho-

bic surfaces with simple, regular, and micro-scale structures. Future studies should

pay closer attention to the fractal surface and Cassie-to-Wenzel transition of impinging

droplets on textured surfaces.
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5.4 Conclusions

To amplify the surface hydrophobicity as much as possible and simultaneously enhance

the stability of the Cassie state on the textured surfaces, a novel surface decorated with

primary and secondary structures was proposed and examined numerically. The results

obtained in this chapter are summarized as follows.

1. When compared with the droplet behavior on surfaces masked with only primary

structures, the secondary penetration is suppressed such that a stable Cassie state

is obtained on surfaces with both primary and secondary ridges.

2. The liquid penetration factor and the emptying time decrease with an increase in

the secondary ridge height. The impingement position, at the primary groove or

the primary ridge, also plays a vital role in the wetting transition.

3. The increase in the Weber number (We), meaning a larger kinetic energy, leads

to the occurrence of a secondary penetration. The value of We also influences the

time scales owing to the abrupt change in the solid fraction when a liquid slides

down the sidewall of the primary groove and then touches the secondary ridge.

4. The two-step wetting transition found in the numerical results is explained well

by theoretical models based on the correlation of Laplace’s law, Young’s equation,

and Gibbs extension.

5. This study provides developing guidelines of superhydrophobic surfaces when con-

sidering the stability of a Cassie state, one-step fabrication processes, and fabrica-

tion over large areas.
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Nomenclature

D : Instantaneous droplet diameter [ m ] β : Spreading factor [ - ]

d : Distance of contact points [ m ] γ : Primary groove width ratio [ - ]

D0 : Initial droplet diameter [ m ] ∆ : Mesh size [ - ]

fs : Solid fraction [ - ] η : Penetration factor [ - ]

g : Gravitational acceleration [ m/s2 ] θapp : Apparent contact angle [ ◦ ]

H : Instantaneous penetration depth [ m ] θY : Intrinsic contact angle [ ◦ ]

HR : Ridge height [ m ] µ : Viscosity [ mPa · s ]

H∗ : Secondary right height ratio [ - ] ρ : Density [ kg/m3 ]

h : Thickness of the liquid [ m ] σ : Apparent contact angle [ ◦ ]

P0 : Ambient pressure [ Pa ] Ψ : Intrinsic contact angle [ ◦ ]

Pb : Breakthrough pressure [ Pa ] Subscripts

Phd : Hydrodynamic pressure [ Pa ] 1 : Primary

Phs : Hydrostatic pressure [ Pa ] 2 : Secondary

Pt : Total pressure [ Pa ] a : Air

∆P : Pressure difference [ Pa ] l : Liquid

R : Interface radius [ m ] s : Solid

Re : Reynolds number [ - ] max : Maximum

t : Time [ s ] min : Minimum

tc : Contact time [ s ] ‖ : Parallel direction of groove

te : Emptying time [ s ] ⊥ : Perpendicular direction of groove

tr : Receding time [ s ]

ts : Spreading time [ s ]

u0 : Initial velocity [ m/s ]

We : Weber number [ - ]

WG : Groove width [ m ]

WR : Ridge width [ m ]
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Chapter 6

Stabilizing the Cassie state using

surfaces with multiple holes

6.1 Introduction

In Chapter 5, a novel surface is proposed to suppress the Cassie-to-Wenzel transition.

However, liquid penetration occurs inevitably at large Weber number (We) conditions.

In this chapter, we study the wetting stability of a droplet impinging on surfaces with

multiple holes, where a robust air pocket is formed during the droplet-wall interaction.

Hydrophobic surfaces can be fabricated by introducing micro-scale structures [1, 2].

Common structures are pillars [3–5], grooves [6, 7], and holes [8, 9]. For instance, Liu

et al. [5] reported a robust superhydrophobic surface manufactured by masking with

a regular array of square pillars on a substrate of 304 stainless steel (intrinsic contact

angle θY=88◦). On this textured surface, the equilibrium contact angle and the roll-off

angle of a water droplet are ∼162.5◦ and ∼2.3◦, respectively. Guo et al. [6] proposed a

groove textured surface, upon which the contact time between an impingement droplet

and the surface was reduced by ∼70%. These above textured surfaces, however, are

subject to the wetting transition from a Cassie state to a Wenzel state (the surface is

fully wetted) [10] induced by impingement or vibration [11]. It is generally agreed that

the wetting in the Wenzel state weakens the hydrophobicity of a textured surface, and
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a stable Cassie state is preferred in practical applications. Hence, how to enhance the

stability of the Cassie state on textured surfaces has aroused extensive research interest.

Inspired by natural superhydrophobic surfaces (such as the lotus leaf and insect

wing in Chapter 1), artificial surfaces with a hierarchical multiscale roughness exhibit

a metastable Cassie state because of the multi-level energy barrier for the Cassie-to-

Wenzel transition [12–16]. Nosonovsky [12] theoretically suggested the stability of the

liquid−air interface on surfaces with hierarchical roughness. Pan et al. [16] experimen-

tally demonstrated that the critical pressure needed for eliminating the Cassie state

increased due to the increase in the hierarchical level and structural complexity. How-

ever, these tiny dual- and triple-scale structures are vulnerable to mechanical damage,

leading to a loss of superhydrophobicity. Other approaches, such as re-entrant structures

and T-shaped structures, have also been proved effective in enhancing the stability of

the Cassie state [17–23]. This is because, on these surfaces, the energy barrier sepa-

rating the Cassie and Wenzel states increases due to the increase in liquid-air interface

when liquid penetrates into the re-entrant structures [19]. For example, Nosonovsky and

Bhushan [18] proposed that the re-entrant surface topography is crucial for the resistance

to wetting by liquids, because it is capable of pinning the liquid−air interface. Using

T-shaped structures, Wang et al. [22] obtained superhydrophobic (θY >150◦) behaviors

of droplets after they masked a hydrophilic substrate with T-shaped micropillars coated

with diamond-like carbon. Hensel et al. [23] also found that a robust wetting resistance

even for low-surface-tension liquids (such as hexane) was achieved on surfaces with mush-

room and T-shaped structures. However, these re-entrant and T-shaped structures are

facing challenges in manufacturing owing to the complex profiles. In addition, the Wen-

zel state is obtained at larger impingement velocities due to the air escaping from the

structural space.

Multi-hole [8] or noncommunicating structures [9], by contrast, have paved a way to

fabricate surfaces with a super stable Cassie state because of the robust air pockets in

holes or pores. Bahadur et al. [9] used electrowetting to control the droplet morphology

and wetting states on rough surfaces, and they found that surfaces with noncommuni-
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cating roughness structures (holes) required significantly higher voltages to trigger the

Cassie-to-Wenzel transition than corresponding surfaces with communicating roughness

elements (pillars). Mayama et al. [8] theoretically predicted that a multi-hole surface

easily generates a higher Laplace pressure than a multi-pillar surface making it easy to

prevent liquid penetration. Various researchers [24–26] also proved the stability of the

Cassie state by comparing the dynamics of the liquid−air interface when surfaces with

holes and pillars are submerged in water. For an impinging droplet, however, it remains

elusive how and to what extent the surface with multiple holes can modulate the wetting

stability, which is the scope of this chapter.

To capture the physics behind the wetting on multi-hole surfaces, a three-dimensional

direct numerical simulation (DNS) is employed, which is based on the coupled level-set

and volume of fluid (CLSVOF) method [27–29]. The wetting behavior of droplets on

surfaces with multi-hole and multi-pillar structures are first compared. A pressure anal-

ysis conducted to show the fundamental reason of the wetting behavior is subsequently

shown. To test the stability of the wetting state, we further extend our analysis to larger

impingement velocities. A theoretical model to predict the maximum spreading factor

of an impinging droplet is presented. Finally, some concluding remarks are given.
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6.2 Problem statement

Two textured substrates are modelled: a multi-pillar surface (MPS) shown in Fig. 6.1(a)

and another multi-hole surface (MHS) shown in Fig. 6.1(b). The front views of the MPS

and the MHS are shown in Figs. 6.1(c) and 6.1(d), respectively. We use the same symbols

in the MPS and MHS for the surface structure parameters, i.e., h, the pillar height or

hole depth; a, the side length of square pillars or hole space; and b, the pillar or hole

intervals, respectively.

For the Cassie wetting state on a textured surface [30], the contact angle θC of a

droplet is defined by

cosθC = fscosθs + facosθa (6.1)

where fs and fa are the area fraction the solid and air occupy in the apparent wetting

(a) Multi-pillar surface (MPS)

(b) Multi-hole surface (MHS)

Pillar space

Hole

h

h

(c) Front view of MPS

(d) Front view of MHS

ab

x 

z 
y 

x 

z 
y 

x z 

y 

x z 

y 

Pillar

Figure 6.1: Schematic of surfaces characterized by multiple pillars and the multiple holes:

(a) 3-D model of multi-pillar surface (MPS) masked by square pillars; (b) 3-D model of

multi-hole surface (MHS) masked by square holes; (c) front view of the MPS with pillar

height h, the side length of square pillars a, and the pillar interval b; (d) front view of

the MHS with hole depth h, the side length of square holes a, and the hole interval b.

118



area, θs and θa are the equilibrium contact angle of a droplet sitting on a solid and in

air, respectively, θs = θY, θa = π, and fs + fa = 1. In this chapter, fs and fa for the

MPS and MHS can be described by

fMPS
s = fMHS

a =
a2

b2
(6.2)

fMPS
a = fMHS

s = 1− a2

b2
(6.3)

Theoretical study on the Laplace pressure of surfaces with cylindrical pillars or holes

was proposed by Mayama et al. [8]. Prior to the numerical simulation, we first compare

the difference between the MPS and MHS on fs, fa, and pressures against a/b. Figure

6.2(a) plots the dependences of fs and fa on a/b based on Eq. (6.2) and Eq. (6.3).

It is clear that fs = fa is obtained when a/b is equal to the critical value of
√

2/2.

Table 6.1: Structures studied in this chapter

Structure a b a/b fMPS
s fMPS

a fMHS
s fMHS

a

S-MPS/MHS 5∆ 20∆ 0.25 0.0625 0.9375 0.9375 0.0625

M-MPS/MHS 10∆ 20∆ 0.50 0.25 0.75 0.75 0.25

C-MPS/MHS 14∆ 20∆ 0.70 0.49 0.51 0.51 0.49

L-MPS/MHS 16∆ 20∆ 0.80 0.64 0.46 0.46 0.64

Table 6.2: Parameters for numerical simulations.

Parameter Symbol Value

Initial droplet diameter D0 62∆

Intrinsic contact angle θY (◦) 100

Initial pressure P0 (kPa) 100

Hole depth or pillar height h 18∆

Weber number We 10

Initial velocity u0 0.603
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Figure 6.2: Effect of a/b on fs, fa, and pressures: (a) dependences of fs and fa on a/b,

and fs = fa is obtained at the critical a/b =
√

2/2; (b) variation of PD, PC, and PWH

against a/b, and three regions are roughly divided by green dashed lines. Black arrows

point out the cases studied in this chapter.

In addition, the wetting state of an impinging droplet on a textured surface [31, 32]

depends on the combined effects of the dynamic pressure (wetting pressure), PD =

ρlu
2
0/2, the capillary effect (antiwetting pressure), PC = −2σcosθa/Ws , and the effective

water hammer pressure, PWH = kρlCsu0, where ρl is the water density, u0 is the initial

velocity, θa is the advancing contact angle predicted every time step by apparent contact

angle model (see Chapter 2), which is as large as 120◦ in this chapter, Ws the width of

the pillar space or the hole, and thus Ws = b− a on the MPS and Ws = a on the MHS,

k represents the water hammer pressure coefficient, which is fixed at 5×10−4 owing to

the large structural interval and the small u0 [33], and Cs is the speed of sound in water,

i.e., Cs = 1480 m/s. Figure 6.2(b) shows the effects of a/b on the three pressures of

PD, PC, and PWH, where We is the Weber number, i.e., We = ρlD0u
2
0/σ, in which D0

is the initial droplet diameter, and σ is the surface tension coefficient of the water−air

interface (σ = 72.8 × 10−3Nm−1). With the increase in a/b, PD and PWH are constant,

but PC−MHS decreases and PC−MPS increases because of the change of Ws. In general,
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the Cassie state, the transition state (partially impaled state [31, 32]), and the Wenzel

state are obtained with PC > PWH > PD, PWH > PC > PD, and PWH > PD > PC,

respectively. Based on the comparison of PD, PC, and PWH in Fig. 6.2(b), we expect to

observe the corresponding wetting state of an impinging droplet in these three regions

(roughly classified by the green dashed lines in Fig. 6.2(b)). Eight cases with different

structures (a/b = 0.25, 0.50, 0.70, and 0.80 for both the MPS and MHS) are studied.

The details of these cases are shown in Table 6.1. Other parameters utilized in the

simulation are shown in Table 6.2.

All cases are conducted on a uniform staggered grid consisting of 320×300×320 grid

points (a total of 30.72 million grid points with grid size ∆=32 µm) in the x-, y- and z-

directions, respectively. In the computational domain with initial pressure P0, a spher-

ical water droplet with diameter D0 heads to the center of the substrate with initial

impingement velocity u0. Other parameters such as the water viscosity (µl), air density

(ρa) and viscosity (µa) are the same as those in Chapter 2. In this chapter, liquid is

assumed incompressible, but air is a compressible fluid, obeying the ideal gas law: PV =

constant. In addition, an isothermal simulation is conducted. The boundary condition

of the substrate is set as a wall, whereas the surroundings are considered as shear free

surfaces. A gravitational acceleration |g| of 9.8 m/s2 is imposed
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6.3 Results and discussion

First, the wetting state of an impinging droplet on the MPS and the MHS is investi-

gated by comparing snapshots, the maximum penetration depth, and the contact time.

Subsequently, the reason for the penetration and sagging of the liquid into structures

is explored from the viewpoint of pressure. In addition, the stable non-wetting feature

of the MHS is demonstrated under an extremely larger Weber number (We). Finally,

a new prediction model for the maximum spreading factor is constructed based on the

law of energy conservation.

6.3.1 Wetting state

Rioboo et al. [34] classified the evolution into four phases: a kinematic phase, spreading

phase, relaxation phase (or recoiling phase), and wetting or equilibrium phase when a

droplet impinges on a flat substrate. On a textured surface, liquid penetration occurs

simultaneously during the spreading phase, and emptying of the liquid from the struc-

tural space is also seen during the recoiling phase. To better illustrate the wetting state

of a droplet, both the front view and bird’s-eye view of a droplet at 1.8ms on the MPS

and MHS are presented in Fig. 6.3. Because PC−MPS increases rapidly with an increase

in a/b, the Wenzel state, transition state, and Cassie state are obtained on the S-MPS,

M-MPS, and L-MPS, respectively. Liquid replaces the air in the pillar space and wets

the S-MPS completely, forming a Wenzel state, whereas liquid penetration is inhibited

on the L-MPS due to the larger pillar size and smaller pillar space, forming the Cassie

state. To design a superhydrophobic surface, a small fs is needed according to Eq.(6.2).

Hence, decorating surfaces with multiple pillars faces a contradiction between improving

the surface hydrophobicity and the wetting stability. On all MHSs, liquid contacts only

the outermost tops of the structures, forming a stable Cassie state, because, in the hole,

the air is not replaced by the liquid, but is entrapped underneath forming an air pocket.

The existence of air pockets can withstand the deformation of droplets on the structure,
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Figure 6.3: Wetting states at 1.8ms of a droplet impinging on the MPS and MHS.

thus leading to a stable Cassie state even under an impinging condition.

To understand how the surface structure affects the liquid penetration, the schematics

shown in Fig. 6.4 indicating the deformation of droplets on the MPS and the MHS.

During the spreading and penetration process, on the MPS, the deformation of the

liquid induces a depinning of the TPCL at the edge of the pillars. With the sliding of

the TPCL on the sidewall of the pillars, the Cassie-to-Wenzel transition takes place when

the surface is completely wetted. On the MHS, however, the TPCL is always pinned

on the top edge of the holes. The deformation of the liquid only leads to a sagging

of the interface. Thus, the MHS prevents a rough structure from completely wetting

during the spreading phase. In the recoiling phase, the liquid in the Wenzel state in Fig.

6.4(a) may not leave the surface because of the arresting state by the pillars, whereas

the interface in Fig. 6.4(b) can withdraw from the holes and bounce off the surface.

To characterize the wetting behavior of a droplet, we measure the maximum pen-
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(a) Cassie-to-Wenzel transition on the MPS

(b) Superstable Cassie state on the MHS

Figure 6.4: Schematics describing the evolution of a curved interface (in pink) when a

droplet impinges on a structural substrate: (a) Cassie-to-Wenzel transition of a droplet

impinging on the S-MPS; (b) Superstable Cassie state of a droplet impinging on the

L-MHS, with the red lines indicating the cutting position to show the shape of the

interface.

etration factor (ηmax) and the contact time (tc). The maximum penetration factor is

defined as ηmax = Hmax/h, where Hmax is the maximum penetration depth, referring to

the distance between the bottom of the liquid−air interface and the outermost top of the

structures. The contact time (tc) is the the time period from when the drop first touches

the surface to when it bounces off. Figure 6.5 plots ηmax and tc against a/b. The starting

time is noted when the droplet starts contacting the solid. On the MPS, ηmax decreases

with an increase in a/b, which is caused by an increase in the Capillary pressure (PC).

On the MHS, however, ηmax is a constant of close to zero over a range of a/b of 0.25 to

0.7, when the perfect Cassie state is obtained. A sharp increase is observed with a/b

ranging from 0.7 to 0.8 because of the sagging of the interface as shown in Fig.6.4(b).

As for the contact time, tc on a flat surface is yielded by balancing the inertia (on the
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order of ρlD0/2t
2
c) with capillarity (4σ/D0

2), and scaled as tc ≈ (ρlD0
3/8σ)1/2 [35]. The

value of tc in this study, however, is also influenced by the wetting state of the droplet.

During the droplet−wall interaction, the spreading, emptying, and retracting behaviors

of a droplet are observed on textured surfaces. The emptying time (te) indicates the

time interval between the moments when the droplet first touches the solid structure and

when the liquid in the pattern space is completely emptied, during which the droplet

undergoes downward penetration and upward capillary emptying processes [3]. The

penetration of the liquid, particularly in a visible Wenzel state on the S-MPS and the

M-MPS, happens with a/b ranging from 0.25 to 0.7. Under this situation, the dominant
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Figure 6.5: Variations of the maximum penetration factor (ηmax) and the contact time

(tc) with a/b between 0.25 and 0.8 on the MPS and MHS. Hmax is the maximum pene-

tration depth, and ηmax is the maximum penetration factor.
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part of the contact is the liquid penetration and surface emptying, and thus tc ∼ te,

te ∼ −
u0ρlD0b

2

2aσ cos θY

(6.4)

From Eq. (6.4), the increase in a/b leads to the decline of te. Hence, a decreasing tc is

shown in Fig. 6.5. However, tc increases with a/b between 0.7 and 0.8, demonstrating the

decrease in surface hydrophobicity according to Eq. (6.1). On the L-MPS, a Cassie state

is obtained, and the droplet undergoes spreading and recoiling phases on the outermost of

pillars. In this case, tc can be approximately scaled as tc ≈ ts+tr, where, ts represents the

spreading time, at which the droplet spreads and reaches its maximum spreading stage.

Shen et al. [36] proposed an equation to estimate ts based on the energy conservation

law, but such an equation is incorrect, because it is not homogeneous to a time according

to the dimensionality check. We re-derived this equation, and ts can be estimated by

Eq. (6.5). In addition, tr is the recoiling time estimated by Eq. (6.6) for We � 1 [35],

meaning the time interval from when the droplet starts to recoil to when it bounces off

the surface.

ts ∼
2

3

√
D0

ρlµu0

(
ρlD

3
0u

2
0 + 12σD2

0 − 3σD2
max(1− cos(θapp))

D2
maxu2

0

)
(6.5)

tr ∝

√
ρlD3

0

2σπ [1− cos (θapp)]
(6.6)

where Dmax is the maximum spreading diameter [37] that can be estimated by,

Dmax

D0

=

√
We+ 12

3 (1− cos (θapp)) + 4We/
√
Re

(6.7)

The increase in a/b brings an increase in the solid fraction (fMPS
s ) and thus lowers

the apparent contact angle θapp according to Eq. (6.1). When we insert Eq.(6.7) into

Eqs. (6.5) and (6.6), an increase in tc is found with a/b increasing from 0.7 to 0.8 in a

Cassie state.

For a droplet impinging on the MHS, tc decreases almost linearly. This is because,

with an increase in a/b, θapp increases due to the decrease in fMHS
s . Because a stable
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Cassie state is achieved from the S-MHS to the L-MHS, the decrease in tc is shown in

Fig. 6.5 when we combine Eqs. (6.5) and (6.6).

6.3.2 Pressure analysis

To elucidate the origin of the penetration on the S-MPS and the sagging on the L-MHS,

we show the variation of the local pressure and velocity in the cross-sectional plan in

Fig. 6.6. The left panel of each image is colored based on the pressure ranging between

100kPa and 101kPa, and the arrows in the right panel are colored based on the velocity

from 0 to 2u0. On the S-MPS, a large pressure can be seen at the liquid−solid contact

S-MPS

L-MHS

L-MPS

0.8ms 5.8ms2.2ms 7.2ms

100 kPa 101 kPa 0 2u0

Figure 6.6: Pressure contour (left panel, colored based on pressure) and the velocity

field (right panel, colored based on velocity) at the cross-sectional plane on the S-MPS,

L-MPS, and L-MHS. The liquid−air interface (VOF function: C=0.5) is represented by

the black lines.
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area, and the liquid penetrates into the pillar space from 0.8 to 5.8ms, because the air in

the pillar space flows freely, and is easily pushed out by the liquid. Thus, the surface is

completely wetted, forming a Wenzel state. On the L-MPS, although the free-flowing air

exists in the pillar space, a large a/b brings about a larger PC−MPS, leading to a Cassie

state when PC > PWH > PD is satisfied. For the case with the L-MHS, air pockets

are formed in the holes, and the air pressure in the holes varies with a deformation

of the droplet. At 0.8ms in the impact stage, high-pressure areas appear in the hole,

which is totally different from that on the S-MHS and L-MPS. At 5.8ms, subsequently,

high-pressure areas appear again in the hole due to a compressing of the recoiling liquid.

Therefore, the robust air pocket in the holes prevents the liquid from penetration.
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Figure 6.7: Pressure variation in the pillar space for the L-MPS and in the holes for

the L-MHS. Here, Ph1 and Ph2 are the pressures measured in the hole 1 (close to the

impingement center) and hole 2 (far from the impingement center) in the image (colored

by the pressure as the left panel in Fig. 6.6), respectively. White arrows show the

direction of the recoiling flows.

128



Figure 6.7 provides statistical information on the pressure in the pillar space for the

L-MPS and in the holes for the L-MHS. On the L-MPS, it is clear that the pressure

in the pillar space is nearly constant at approximately P0=100kPa. On the L-MHS,

however, the pressure varies rapidly in both the spreading and recoiling phases. In the

spreading phase, Ph1 increases sharply, and then decreases with a spreading of the center

liquid. Here, Ph1 returns to near P0 at the maximum spreading stage. The liquid then

starts recoiling, and the air in the center is trapped as shown in the image at 4.8ms.

Owing to the compression of the recoiling liquid, a high Ph1 appears again. The value

of Ph1 decreases to near P0, when the droplet bounces off the substrate. In addition,

Ph2 shows a slight increase when the maximum spreading stage is reached. Then, Ph2

decreases to near P0 with a retracting of the liquid.

To better understand the effect of the pressure change on the stability of the liquid-air

(b) Sagging penetration(a) Depinning penetration

Figure 6.8: Schematic diagram (sectional view) of the penetration mechanisms: (a)

depinning penetration on the S-MPS; (b) sagging penetration on the L-MHS. Solid lines

and arrows represent state 1, and the dash lines and arrows represent state 2. Here, R,

θapp, and P are the radius of the interface, the apparent contact angle, and the pressure

in the air region, respectively. Subscripts 1 and 2 indicate the value of the parameter

under states 1 and 2.
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interface, we next turn to the theoretical analysis shown in Fig.6.8. The liquid pene-

tration occurs when the energy of the droplet exceeds the potential barrier separating

the Cassie and the Wenzel states. The energy barrier, represented by the breakthrough

pressure (Pb) in this study, is derived based on the correlation of Laplace’s law, Young’s

equation, and a Gibbs extension [23, 38–40],

Pb =
4σ sin (θY −Ψ)

Ws

(6.8)

Here, Ψ the geometrical edge angle (Ψ = π/2 in our system). This equation illustrates

that Pb increases with a decrease in Ws. In Fig. 6.3, therefore, the Wenzel, transition,

and Cassie states are observed on the MPS with an increase in a.

Laplace’s law describes the relationship among the pressure difference (∆P , on both

sides of the interface), the surface tension coefficient (σ), and the interface curvature

(κ):

∆P = 2σκ (6.9)

We assume that the interface has the profile of a spherical cap with a curvature radius

R, in which R can be estimated by

R =
1

κ
=

Ws

2 sin (θapp − π)
(6.10)

When we combine Eqs. (6.9) and (6.10), the ∆P is expressed as

∆P = Pt − Pa =
4σ sin (θapp − π)

Ws

(6.11)

where Pa is the air pressure in the pillar space or holes, which is represented by P1 and

P2 under states 1 and 2, as shown in Fig. 6.8. In addition, Pt is the total pressure inside

the liquid phase, and is estimated by

Pt = P0 + Phd + Phs = P0 +
1

2
ρlu0

2 + ρlgD0 (6.12)

where Phd is the hydrodynamic pressure, and Phs the hydrostatic pressure.

A stable Cassie state is obtained when ∆P < Pb. Conversely, the penetration occurs

with ∆P > Pb. The schematics in Fig. 6.8 describe the penetration mechanism of the
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liquid on the MPS and MHS. At state 1, droplets on the MPS and MHS have the same

radius (R1) and apparent contact angle (θapp,1) but different air pressure (P1). On the

MPS, because the air in the pillar space can flow freely, the interface slides down the

side of the pillar with R2=R1, θapp,2=θapp,1, and P2=P1=P0. On the MHS, however,

the sagging of the interface brings θapp,2 > θapp,1, R2 < R1, and P2 > P1 according to

Eqs. (6.9)−(6.12). Hence, the greater the sagging is, the greater the value of Pa and

the smaller the value of ∆P . When ∆P ≤ Pb is satisfied, the sagging penetration stops.

We again emphasize that the robust air pocket in the MHS is the fundamental reason

for inhibiting the depinning of the TPCL.

6.3.3 Larger We effect

A stable Cassie state is obtained on all MHSs above with We = 10. Eq. (6.12) illustrates

the total pressure (Pt) increases with an increase in the initial impingement velocity

(u0). Can the Cassie state survive if the droplet heads to an MHS with large impinging

velocities?

Figure 6.9 presents the maximum pressure in holes 1 and 2 (Ph1,m and Ph2,m, respec-

tively) as a function of We on an L-MHS. Both Ph1,m and Ph2,m increase nearly linearly

with approximate slope of 50:1 for a different We. For a small We at 10, Ph2,m is slightly

larger than P0. As We increases, both Ph1,m and Ph2,m increase rapidly. Owing to the

change in pressure in the air pocket, the pressure difference ∆P at the sagging inter-

face is insufficiently high to trigger a liquid penetration. Hence, a Wenzel state is not

observed even under an extremely large We at 100.

The maximum penetration factor (ηmax) is plotted against We in Fig. 6.10. The

sequence of cut droplets is indicated to clearly show the penetration in holes 1 and 2.

Under a small We condition, the liquid penetration is inhibited due to the variation in

Ph1,m and Ph2,m. With an increase in We, liquid penetration is vividly observed at hole

2, and the line slope for We <60 is relatively smaller than that for 60≤ We ≤80. In

addition, ηmax is achieved in hole 1 when We < 60, whereas the liquid slides down and
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Figure 6.9: Maximum pressure (Ph1,m and Ph2,m in holes 1 and 2, respectively) in the

air pocket on the L-MHS as a function of We from 10 to 100, or u0 from 0.603 to 1.908

m/s.
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Figure 6.10: Variation of the maximum penetration factor (ηmax) of a droplet under We

from 10 to 100, or u0 from 0.603 m/s to 1.908 m/s.
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Figure 6.11: Velocity field describing the liquid penetration in hole 2 on the L-MHS with

large We=60, or u0=1.48m/s. The left panel shows the velocity field at the liquid−air

interface, and the right panel presents the velocity field on the cross-sectional plane. The

red and black arrows show the flow direction of the interface and air, respectively. The

small arrows are colored based on a velocity of 0 to 2u0.

touches the hole bottom with We from 60 to 100, leading to ηmax=1.0.

The velocity field in Fig. 6.11 is employed to complement the statistical information

in Fig. 6.10 and investigate the penetration mechanism under a large We. The droplet

(represented by VOF function C=0.5) is colored in grey. The left panel shows the veloc-

ity field at the liquid-air interface, and the right panel presents the velocity field on the

cross-sectional plane. At 0.6 ms, the liquid rim indicated by the red circle tends to infil-

trate into the hole owing to the large impinging velocity, and simultaneously, the portion

of air shown in the black circle is rapidly squeezed out of the hole. Owing to the weak air

pocket in hole 2, at 0.8 ms, the liquid slides down the sidewall of hole 2. As a result, the

liquid will wet the bottom of the hole, leading to ηmax=1.0 with a further increase in We.

6.3.4 Theoretical formulation of the maximum spreading factor

The maximum spreading factor (βmax), defined as βmax = Dmax/D0, depends on the

liquid properties such as the density (ρl), viscosity (µl), surface tension (σ), intrinsic
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Figure 6.12: Donut-like droplet (50% transparent) at the maximum spreading stage.

Here, Dmax and hd are the maximum spreading diameter and the thickness of the rim,

respectively. The green dashed line outlines a donut-like droplet.

contact angle (θY), and surface roughness, where Dmax is the maximum spreading di-

ameter shown in Fig. 6.12. Accurately predicting the maximum spreading factor is

important for understanding the deformation of an impinging droplet. Most theoret-

ical models based on the energy conservation principle have been proposed to predict

βmax on smooth and rough substrates. However, these models take many assumptions.

For instance, the drop shape at the maximum spreading stage is usually assumed as a

cylinder [37, 41] or a central cylinder wrapped by another semi-cylinder [7]; however,

experimental [42–44] and numerical [44, 45] evidence shows that the top surface of the

droplet is not flat. With the deformation of the droplet, an air cavity is present at the

center of the droplet, forming a donut- or ring-like profile. In addition, little consid-

eration has been given to the influence of energy loss of the TPCL depinning when a

droplet spreads on a textured surface.

Here, a donut-like droplet is selected to deduce the new theoretical model. Its profile

can be roughly represented by the green dashed line in Fig. 6.12, and we assume that

the width of the rim is equal to its height, leading to the diameter of the cavity at

(Dmax − 2hd), where hd is the thickness of the rim, and its value (relevant to Dmax) can

be estimated based on the volume conservation law.

Beginning with the energy conservation principle, at the initial and the maximum
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spreading states, if we neglect the possible contributions to the momentum given by

internal motions of particles with respect to the total droplet momentum, we have

Es0 + Ek0 = Esm +Wvis +Wpin (6.13)

where Es0 and Ek0 are the surface energy and kinetic energy prior to impact, and Esm,

Wvis, and Wpin at the maximum spreading state are the surface energy, viscous dissipa-

tion, and energy loss due to the pinning of the TPCL during the spreading across the

hole edges, respectively.

For the impact droplet with the initial impinging velocity u0, the energy terms at

the initial stage can be estimated by

Es0 = πD2
0σ (6.14)

Ek0 =
π

12
ρlu

2
0D

3
0 (6.15)

Considering the stable Cassie state on the MHS, the surface energy at the maximum

spreading stage [7] is obtained by

Esm ≈ σ
[
πDmaxhd +

π

4
D2

max

(
ξ + fMHS

a

)]
+
π

4
D2

maxf
MHS
s σcosθY (6.16)

where ξ is the factor introduced in this study and is estimated by

ξ =
Ad

Ac

= 1 +
4(Dmax − 2hd)hd

D2
max

(6.17)

Here, Ad is the area of the top surface when the droplet is assumed to take a donut-like

shape, and Ac is the area of the top surface for a cylinder-like droplet. In addition,

ξ = 1.0 is satisfied if a cylinder-like shape is employed. Considering the real droplet

shape, its value is often greater than 1.0 and ranges between 1.1 and 1.5 in the present

cases.

The energy lost in deforming the droplet against the viscosity is expressed approxi-

mately as follows [37]:

Wvis =
π

3
√
Re

ρlu
2
0D

2
maxD0 (6.18)
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Table 6.3: Comparison of theoretical models with our new model in Eq. (6.20) for the

maximum spreading factor.

Reference Target surface Equation

Fard et al. [37] Flat βmax =
√

We+12
3(1−cos(θapp))+4We/

√
Re

Lee et al. [41] MHS (We+ 12)βmax = 8 + β3
max

[
4 We√

Re
− 3ψ

]
New model MHS Eq. (6.20)

* ψ is a roughness and wetting state related factor [41].

When liquid encounters the hole edge, energy loss takes places to overcome the

contact line pinning force. Vaikuntanathan et al. [7] proposed a model to calculate the

energy loss in the perpendicular groove direction on groove-textured surfaces. Here, we

extend the model to predict the energy loss on surfaces with pillars or holes, which is

written as

Wpin = Nh(
FYDmax

2
) ≈ π2D4

max

4b2
σ (cos θY − cos θapp) (6.19)

Here, FY is Young’s force, Nh is the number of hole edges encountered during spreading,

and Nh = πD2
max

2b2
.

By substituting Eqs. (6.14) − (6.19) into Eq. (6.13), a final form for the maximum

spreading factor (βmax = Dmax/D0) is derived as follows

[
3πD2

0

b2
(cos θY − cos θapp)

]
β5

max

+

[
3
[(
ξ + fMHS

a

)
+ (fMHS

s cos θY

)
] +

4We√
Re

]
β3

max

− (We+ 12)βmax + 8 = 0

(6.20)

To validate the new model, we conduct comparisons between Eq. (6.20) and the

models in articles as shown in Table 6.3. The widely used model proposed by Fard et

al. [37] matches the experimental results well on a flat surface but cannot be employed
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Figure 6.13: Comparison of the maximum spreading factor (βmax) predicated by theo-

retical models and numerical results against We from 10 to 100, for u0 from 0.603 to

1.908 m/s.

to predict βmax on a textured surface. Lee et al. [41] derived a model for predicting βmax

on a MHS; however, compared with the experimental results, their model illustrates an

over-predictive result because Wpin is not considered.

Figure 6.13 shows a comparison among the experiment [41], our simulation, and the-

oretical predications by Fard et al. [37], Lee et al. [41], and our new models with ξ = 1.0

and ξ = 1.2. First, compared with the experimental results, βmax is over−estimated us-

ing the model proposed by Fard et al. [37] and Lee et al. [41]. In contrast, βmax predicted

by the new model shows an extremely good agreement with experimental results when

ξ = 1.2. Second, at a small We, no significant difference in βmax is observed between the

theoretical and simulation results. Under large We conditions, the simulation results

are smaller than the experimental results and theoretical predications. This difference

is caused by the liquid penetration, as shown in Figs. 6.10 and 6.11.
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6.4 Conclusions

DNS was conducted to capture the rapid transient interaction between impinging droplets

and surfaces with multiple pillars (MPS) and multiple holes (MHS). The pressure anal-

ysis clearly showed the fundamental reason for the liquid penetration and wetting tran-

sition. The robustness of the air pocket in the MHS was examined by releasing a droplet

with an extremely large We. A new model for the maximum spreading factor (βmax)

was derived. The main results obtained in this chapter are summarized as follows.

1. Compared with the MPS, the MHS not only enhances the surface hydrophobicity

but also greatly stabilizes the Cassie state of an impinging droplet.

2. The varying pressure in the air pocket inhibits the depinning of the TPCL. This

is the fundamental reason for obtaining a superstable Cassie state on the MHS.

3. Although a large We triggers the depinning of the TPCL in some holes, a signifi-

cant number of liquid−air interfaces hang between structures, and a Wenzel state

is not obtained on the MHS.

4. The new model for the maximum spreading factor (βmax), considering the air cavity

at center of the droplet and the energy loss of the TPCL depinning, is derived

based on the law of energy conservation. The new model is in better agreement

with experimental and simulation results than previously proposed models.
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of surface tension implementation in volume of fluid and coupled volume of fluid

with level set methods for bubble growth and detachment. Int. J. Multiph. Flow,

53:11–28, 2013.

[28] K. Yokoi. A practical numerical framework for free surface flows based on CLSVOF

method, multi-moment methods and density-scaled CSF model: Numerical simu-

lations of droplet splashing. J. Comput. Phys., 232(1):252–271, 2013.

[29] J. Wen, Y. Hu, A. Nakanishi, and R. Kurose. Atomization and evaporation pro-

cess of liquid fuel jets in crossflows: A numerical study using Eulerian/Lagrangian

method. Int. J. Multiph. Flow, 129:103331, 2020.

141



[30] A. Cassie and S. Baxter. Wettability of porous surfaces. Trans. Faraday Soc.,

40:546–551, 1944.

[31] T. Deng, K. K. Varanasi, M. Hsu, N. Bhate, C. Keimel, J. Stein, and M. Blohm.

Nonwetting of impinging droplets on textured surfaces. Appl. Phys. Lett.,

94(13):133109, 2009.

[32] D. Hee Kwon and S. Joon Lee. Impact and wetting behaviors of impinging micro-

droplets on superhydrophobic textured surfaces. Appl. Phys. Lett., 100(17):171601,

2012.

[33] T. Bobinski, G. Sobieraj, M. Psarski, G. Celichowski, and J. Rokicki. Droplet

bouncing on the surface with micro-structure. Arch. Mech, 69:177–193, 2017.

[34] R. Rioboo, M. Marengo, and C. Tropea. Time evolution of liquid drop impact onto

solid, dry surfaces. Exp. Fluids, 33(1):112–124, 2002.
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Nomenclature

Ac : Top area of the cylinder-like shape [ m2 ] β : Spreading factor [ - ]

Ad : Top area of the donut-like shape [ m2 ] ∆ : Mesh size [ - ]

a : Pillar width or hole width [ m ] η : Penetration factor [ - ]

b : Interval of the pillar or hole [ m ] θ : Contact angle [ ◦ ]

C : VOF function [ - ] θa : Advancing contact angle [ ◦ ]

Cs : Sound speed in water [ m/s ] θapp : Apparent contact angle [ ◦ ]

D : Instantaneous spreading diameter [ m ] θC : Contact angle in Cassie state [ ◦ ]

D0 : Initial droplet diameter [ m ] θY : Intrinsic contact angle [ ◦ ]

Ek0 : Initial kinetic energy [ J ] κ : Curvature [ 1/m ]

Es0 : Initial surface energy [ J ] µ : Viscosity [ mPa · s ]

Esm : Surface energy at maximum stage [ J ] ξ : Ratio of top areas [ - ]

FY : Young’s force [ N ] ρ : Density [ kg/m3 ]

fa : Air fraction [ - ] σ : Apparent contact angle [ ◦ ]

fs : Solid fraction [ - ] Ψ : Intrinsic contact angle [ ◦ ]

g : Gravitational acceleration [ m/s2 ] Subscripts

Hmax : Maximum penetration depth [ m ] 1 : State 1

h : Pillar height or hole depth [ m ] 2 : State 2

hd : Thickness of the rim [ m ] a : Air

k : Water hammer coefficient [ - ] l : Liquid

Nh : Number of wetted holes [ - ] s : Solid

P : Pressure [ Pa ] h1 : Hole 1

P0 : Ambient pressure [ Pa ] h2 : Hole 2

Pa : Air pressure [ Pa ] max : Maximum

Pb : Breakthrough pressure [ Pa ] MPS : Multi pillar surface

PC : Capillary pressure [ Pa ] MHS : Multi hole surface

PD : Dynamic pressure [ Pa ]

Phd : Hydrodynamic pressure [ Pa ]

Phs : Hydrostatic pressure [ Pa ]
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Pt : Total pressure [ Pa ] 1111111111111111111111111111111111111111

PWH : Water hammer pressure [ Pa ]

∆P : Pressure difference [ Pa ]

R : Interface radius [ m ]

Re : Reynolds number [ - ]

tc : Contact time [ s ]

te : Emptying time [ s ]

tr : Receding time [ s ]

ts : Spreading time [ s ]

u0 : Initial velocity [ m/s ]

V : Volume [ m3 ]

We : Weber number [ - ]

Wpin : Energy loss of depinning [ J ]

Ws : Width of the structure [ m ]

Wvis : Viscous dissipation [ J ]
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Chapter 7

Conclusions

7.1 Summary

To investigate the effect of micro-scale structures on the surface hydrophobicity and

droplet wetting state, a coupled level-set and volume of fluid (CLSVOF) method based

directional numerical simulation (DNS) was applied. The effectiveness of our numerical

method was validated by comparing the numerical results with experimental results.

The current numerical models were then extend to the following main tasks.

In Chapter 3, a uniform groove-textured surface was studied. Cases were conducted

to evaluate the effect of the groove width and impinging velocity on the surface hy-

drophobicity and droplet wetting states. Numerical results reveal the following:

1. Droplet spreads freely in the parallel groove direction, but it jumps from the at-

taching ridge to the next ridge in the perpendicular groove direction (called a

“jump-stick”), leading to an elliptical droplet in the top-view.

2. Compared with the non-bouncing behavior of a droplet impinging on a flat surface,

droplets completely bounce off when impinging on surfaces with a large groove

width, revealing a enhanced surface hydrophobicity.

3. As the groove width increases, the droplet exhibits a shorter spreading factor

and shorter contact time, meaning that the surface hydrophobicity is gradually
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enhanced. However, it is suppressed with a further increase in the groove width

and the impact velocity, because the wetting transition from the Cassie state to

the Wenzel state is obtained. This result demonstrates the surface hydrophobicity

is weakened in the Wenzel state.

4. The wetting state of the droplet on a textured surface is determined based on the

combined effect of the groove width and impact velocity. This finding provides

information for following studies.

In Chapter 4, the behavior of an impinging droplet on a surface with a roughness

gradient was investigated. The roughness gradient was created by gradually varying

the groove width. Simulations were conducted to study the effect of the Weber number

(We), the groove depth (DG), and the groove width (WG) on the rebound direction of

a droplet. The results obtained from the simulation are summarized as follows.

1. Three types of rebound behaviors (vertical rebound, following, or against the

roughness gradient) are observed when droplets impinge on a surface with a rough-

ness gradient. The rebound behavior depends strongly on We, DG, and WG.

2. For an extremely small We, the small difference in contact angles on the left

and right sides of the impingement center results in a vertical rebounding of the

droplet. When We increases, the water hammer pressure increases, and the droplet

rebounds following the roughness gradient owing to the unbalanced Young’s force

in a Cassie state. However, rebounding in the opposite direction is observed for a

larger We due to the coexistence of the Cassie and Wenzel states.

3. The groove depth determines the critical impalement pressure and robustness

against a liquid penetration. A larger groove depth and small We result in re-

bounding following the roughness gradient, whereas the droplet tends to rebound

against the roughness gradient for a small groove depth and larger We due to an

achievement of the partial Wenzel state.
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4. A droplet impingement at a large groove width, that is, a small antiwetting pres-

sure, tends to generate both Cassie and Wenzel states, resulting in rebounding

against the roughness gradient.

In Chapter 5, a novel textured surface, with primary structures (higher) used to

enhance the hydrophobicity and secondary structures (shorter) to prevent a wetting

transition, was proposed. The deformation, penetration, and wetting transition of an

impinging droplet on the novel surface were investigated. In addition, the wetting transi-

tion mechanism was studied based on the correlation of Laplace’s law, Young’s equation,

and Gibbs extension. The main results are as follows.

1. When compared with the droplet behavior on surfaces masked with only primary

structures, the secondary penetration is suppressed such that a stable Cassie state

is obtained on surfaces with both primary and secondary ridges.

2. The liquid penetration factor and the emptying time decrease with an increase in

the secondary ridge height. The impingement position, at the primary groove or

the primary ridge, also plays a vital role in the wetting transition.

3. The increase in the Weber number (We), meaning a larger kinetic energy, leads

to the occurrence of a secondary penetration. The value of We also influences the

time scales owing to the abrupt change in the solid fraction when a liquid slides

down the sidewall of the primary groove and then touches the secondary ridge.

4. The two-step wetting transition found in the numerical results is explained well

by theoretical models based on the correlation of Laplace’s law, Young’s equation,

and Gibbs extension.

5. This study provides developing guidelines of superhydrophobic surfaces when con-

sidering the stability of a Cassie state, one-step fabrication processes, and fabrica-

tion over large areas.

In Chapter 6, the stability of the Cassie state was studied on surfaces with multiple

pillars (MPS) and multiple holes (MHS). A pressure analysis was presented to show the
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fundamental reason for the liquid penetration and wetting transition. The robustness

of the air pocket on the MHS was examined by releasing a droplet with an extremely

large Weber number (We). A new model for predicting the maximum spreading factor

(βmax) was derived. The main results obtained are summarized as follows.

1. Compared with the MPS, the MHS not only enhances the surface hydrophobicity

but also greatly stabilizes the Cassie state of an impinging droplet.

2. The varying pressure in the air pocket inhibits the depinning of the TPCL. This

is the fundamental reason for obtaining a superstable Cassie state on the MHS.

3. Although a large We triggers the depinning of the TPCL in some holes, a signifi-

cant number of liquid−air interfaces hang between structures, and a Wenzel state

is not obtained on the MHS.

4. The new model for the maximum spreading factor (βmax), considering the air cavity

at center of the droplet and the energy loss of the TPCL depinning, is derived

based on the law of energy conservation. The new model is in better agreement

with experimental and simulation results than previously proposed models.

The findings in this thesis provide insight into the development of smart surfaces to

repel water, manipulate the transportation of droplets, and stabilize the Cassie wetting

state. Especially, the wetting stability of an impinging droplet on the navel surface and

the surface with multi holes is well studied. The robust air pocket in the holes greatly

prevents the liquid penetration, leading to a superstable Cassie state on the multi-hole

surface, which would be a promising decoration to fabricate robust hydrophobic surfaces.

150



7.2 Suggestions for future research

Based on the findings in this thesis, we propose the following research to further advance

this field.

1. In Chapter 2, we proposed three methods for imposing the contact angle into the

boundary condition. Although one of the models was successfully adopted in this

thesis, the effectiveness of the other two methods remains unclear. Efforts should

be made to compare these three models to find the optimal one.

2. In Chapter 3, the effect of groove width on the surface hydrophobicity was inves-

tigated. However, the groove depth also influences the wetting state due to the

liquid penetration. To fully understand the liquid behavior on textured surfaces,

the depth of the groove or the height of the ridges should be studied further.

3. As described in Chapter 6, although a superstable Cassie state was obtained on

surfaces with multiple holes, simulation results show that the droplet rim pene-

trates into the holes under large impinging velocities, which may induce a loss

of the surface hydrophobicity. Future studies should pay closer attention to the

robustness and durability of multi-hole surfaces under large impinging velocities.

4. In this thesis, the density ratio between liquid and air is approximately 30, which

is much smaller than the real condition of approximately 1000. Because a realistic

density ratio is preferable, this limitation should be taken away. Owning to the

coarse mesh, the liquid film rupture near the solid surface is observed. To enhance

the simulation efficiency, an adaptive mesh refinement scheme is promising.

5. In this thesis, the dynamics and wetting state of a droplet on surfaces with different

micro-scale structures were investigated. In practical areas of application, heat

transfer often takes place during the liquid-wall interaction, such as a dropwise

condensation, evaporation, de-icing, and spray cooling. Hence, future work can

focus on a combination of surface wettability and heat transfer.
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