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General introduction 

1.1 Research background 

Tremendous achievements have been made in the characterization and fabrication for diverse materials 

in the research field of materials science. However, experiments can be very challenging due to the 

expensive cost, and even be impossible at some extreme conditions. In addition to the necessary 

guidance for efficiently carrying out the experiments, the comprehensively understanding of the 

underlying mechanisms existing in variously interesting properties of the materials is also highly 

demanded. Thanks to the big leap in the computational algorithms and power, an abundant of the 

methodologies and numerical simulations have been established for the scientific research of the 

materials in parallel to the experiments. For example, the molecular dynamics (MD)-based calculations 

are widely used for understanding the movements of the atoms and molecules with an extra temperature 

or pressure condition given a classically dynamic evolution of a system [1]. Not only the computational 

complexity and cost but also the deficiency in describing the microscopic level of the electronic 

properties impede the applications of MD-based method to a large amount of complex and novel 

materials [2,3]. The first-principles based calculations within the framework of density functional 

theory (DFT) [4,5] are suitable for deriving the microscopic physical properties in the quantum 

mechanics principles, by which the accuracy of the calculated results is comparable to that of the 

experiment. The first-principles based methods are now practical in modern quantum physics fields 

such as the electronics [6,7], spintronics [8] and lattice dynamics [9], since they are straightforward 

and efficient for explaining the experimental results and very powerful for further designing the novel 

materials with desired physical properties. 

Phonons are quantum mechanical properties of the collective excitations in a crystal, which are 

responsible for many lattice dynamical and thermal properties involved events such as the phase 
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transitions, the thermal expansion and the resistance to the heat transport [10]. Since phonons are the 

major heat carriers in semiconductors and insulators, it is critical to describe the atomic vibrations 

accurately for understanding the interesting phonon-driven phenomena, which is useful for predicting 

the thermodynamic stability of the materials and for assessing the related performance of the 

applications and devices [11]. To date, the first-principles phonon calculations become universal in 

computational materials science [12–21], especially universally applied with a harmonic 

approximation, which is simply assumed that the Taylor series of the crystal potential surface up to 

just the second-order derivative regarding the equilibrium atomic positions. Despite this approximation 

is successful for describing the non-interacting phonons and obtaining the well-defined harmonic 

phonon spectra, it alone produces the imaginary phonon frequencies in some highly anharmonic 

materials [22], and fails to explain many thermodynamic phenomena such as the finite phonon 

lifetimes and thermal transport involves the phonon-phonon interactions, and the temperature-

dependent phonon properties originated from the lattice anharmonicity. The quasiharmonic 

approximation (QHA) is then adopted for calculating the thermodynamic properties depended on the 

crystal volume as a function of the temperature, which its implementations are generally based on the 

harmonic phonon properties. Even though QHA is well established and performed on many 

cases [15,23–25], it has limitations that a breakdown occur in those crystal structures dynamically 

unstable at 0 K since a lack of direct account for the temperature dependency, and moreover it is also 

inaccessible to any dynamical properties depended on the phonon scattering events [26–28].  

To enhance the ability of the phonon calculations beyond the harmonic level, many efforts have been 

made to improve the numerical method by including the high-order anharmonic terms in the crystal 

potential expansion and treating them with, in general, the perturbative [29–41] or the 

nonperturbative [42–50] way. The perturbative theory is based on the restriction that the anharmonic 

effects are small enough to be a perturbation of the harmonic terms, where the phonon scattering 

process is dominated by the three-phonon interactions by introducing the third-order term [51–54]. For 

those compounds of which the perturbative condition is not satisfied, the anharmonic effects are better 

to be treated in a non-perturbative way such as the MD-based approach [55–61], where the potential 

surface can be accurately sampled at finite temperatures. The disadvantages of this method are 

computationally expensive and time-consuming since the accuracy depends on the length of the time 

interval. Moreover, it is inaccurate when dealing with the quantum zero-point motion due to the 

classical feature of this method. For example, Souvatzis et al. proposed the self-consistent ab initio 

lattice dynamics approach (SCAILD), which the atomic forces are computed by several atomic 

displacements generated by the classical thermal mean-square displacement matrix with the fixed 

vibrational amplitudes [62,63]. Later, an improved approach based on SCAILD where then the atomic 

displacements are generated using the full quantum mean-square thermal displacement matrix [64]. 



3 

These approaches are conceptually based on the self-consistent phonon (SCP) theory formulated firstly 

and developed by Born and Hooton, where the anharmonic phonon frequencies are renormalized 

iteratively by computing the atomic forces generated by a collection of displaced configurations [65–

69]. In this way, the effective harmonic force constants are obtained and consequently the self-

consistent anharmonic phonon spectra are well defined. The temperature dependent effective potential 

(TDEP) constructed by Hellman et al., a fitting approach based on ab initio molecular dynamics 

(AIMD) simulations, provides a iterative way to extract the effective force constants at finite 

temperatures [57,58,70–74]. Furthermore, Errea et al. developed the stochastic self-consistent 

harmonic approximation (SSCHA) is also a SCP-based approach in which the free energy is minimized 

regarding an initially trial harmonic density matrix [46–48,75]. Recently, Tadano et al. proposed a 

SCP-based approach where the quartic-order force constants are included in the renormalized 

process [62,76,77] and can be accurately estimated through an efficient method of compressed sensing 

lattice dynamics (CSLD) [78–80]. The impact of the high-order anharmonic effects such as the quartic 

anharmonicity have been considered and incorporated into the lattice dynamics and thermal transport 

properties [81–88]. In spite of the formalism for the quartic anharmonicity has been well 

constructed [89–92], the issues of the accuracy and complexity of the numerical process still hinders 

the expansion to the anharmonic terms higher than the third order. Therefore, to develop a robust and 

efficient approach is a significant subject in lattice dynamical calculations especially when 

systematically investigating the numerous materials and thoroughly exploring the unknown materials 

with target properties.  

Over the past several decades, the rocksalt-type binary compounds, which are mostly semiconductors 

and insulators of the group I-VII and II-VI, have been attracted both scientific and technological 

attentions [92–107]. In a rocksalt structure, the cations and anions, which locate in their respective 

face-centered cubic lattice, form the octahedral blocks where each ion has a coordination number of 

six. These compounds with a simple structure display various mechanical, electronic, optical and 

thermal properties, which are widely utilized in many scientific and technical applications. Despite 

substantial achievements on the thermodynamics of the rocksalt binary structures, several questions 

still open. For example, according to the previous study [109,110], the conventional first-principles 

phonon calculations are insufficient to describe the phonon dispersion and related thermal properties 

of the rocksalt-type sodium chloride at room temperature, since the thermal expansion estimated by 

the quasiharmomic approximation is much larger than the measured one. The failure of the 

quasiharmonic approximation is mainly due to the improper treatment of the lattice anharmonicity 

arising from the high temperature. On the other hand, the prediction for the lattice thermal conductivity, 

which is crucial for evaluating the performance of the modern devices such as the thermoelectric 

generators and converters and the photovoltaic cells, should be improved with a higher precision [111–
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113]. Some theoretical studies proposed that the quartic and even higher anharmonicity should be 

considered into the phonon frequencies, lifetimes and lattice thermal conductivities for 

these [109,110,114]. These methods indeed lead to a good match between the calculated data and the 

measurements, which are useful for understating the impact of strong anharmonic on the lattice 

dynamical and thermal properties of the rocksalt binary compounds while the drawback is the 

apparently computational cost.   

The ABX3-type perovskite family has been extensively investigated owing to its outstanding physical 

and chemical properties such as distinguished photovoltaic effect, high dielectric constant, ferroelectric 

and ferromagnetic polarization, piezoelectricity and superconductivity, which possess shining 

prospects in diverse applications and devices such as memories, sensors, capacitors and other related 

energy converters [115–117]. The perovskite structure was firstly considered to draw many attentions 

in scientific field thanks to the discovery of calcium titanate (CaTiO3) by Perovski. Generally, the 

perovskite materials share a common chemical formula of ABX3, where A and B are the metal cations 

and X is the anion usually oxides or halogens, respectively. Each central cation B surrounded with six 

anions X in octahedral coordination forms the basic BX6 octahedral in the ABX3 structure. These BX6 

octahedral blocks are linked in a corner-sharing structural configuration, where the cation A is located 

in the space between two BX6 octahedrons to maintain the charge neutrality of the structure. Among 

the perovskites, the oxide-based compounds have attracted the huge attentions for the diversely novel 

devices benefited from their excellent ferroelectric, ferromagnetic, piezoelectric, thermoelectric and 

photocatalytic characteristics of these materials [118–120]. In the perovskite-type oxides ABO3, the 

cation A is usually an alkaline- or rare-earth element, and the cation B is 3d, 4d, and 5d transition metal 

elements, which indeed allows the development of various engineered materials by manipulate 

different cations embedded in the structure. A wide variety of distorted structural configurations in 

perovskite oxides can be observed regarding the combinations of elements and the phase transitions at 

finite temperatures [121,122]. Among these variants, the cubic phase of perovskite oxides is generally 

stable at high temperature. Some of the perovskite oxides with an ideal cubic structure undergo a phase 

transition away from the ideal one when the temperature decreases since the occurrence of the atomic 

displacements or the octahedral distortions, while some of the perovskite oxides remain the cubic 

stability without any structural distortions in spite of the low temperature.  

Taking barium titanate (BaTiO3) as an example, its bulk structure possess one of four crystal 

symmetries with a phase sequence of cubic, tetragonal, orthorhombic and rhombohedral crystal 

structure from the high to low temperature [123]. All of these phases except high temperature cubic 

phase exhibit the ferroelectricity. Another case is strontium titanate (SrTiO3) where the A cation of 

barium is then replaced with strontium, which consequently has a completely different phase diagram 
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regarding temperature. Previous research have shown that SrTiO3, an intrinsic quantum paraelectric, 

is stable with the cubic phase at high temperature [124–126]. With decreasing temperature below 105 

K, it undergoes a structural phase transition to a tetragonal structure due to the rotation of the oxygen 

octahedral block along the c-axis. However, the existence of zero-point quantum fluctuations at very 

low temperatures suppresses the long-range ferroelectric order temperatures and forces the structure 

remains paraelectric, which makes it so-called incipient ferroelectric.  

The phase transition characteristics with respect to the finite temperatures for the perovskite oxides 

distinctly vary by the compounds. It is of great importance to find the relationship between the 

structural stability and the temperature among different compounds. Up to now, with the development 

of the first-principles electronic and phonon calculations, the qualitatively and quantitatively 

descriptions of various properties become much easier, which indeed provides a guidance for the 

materials synthesis and fabrications. The first-principles calculations are considered accurate in 

describing the intrinsic properties of materials at ground state. When the structural configuration is 

stable at 0 K, there is no problem to directly utilize this ground-state calculation tool. However, in the 

first-principles phonon calculations, most of the cubic perovskite oxides such as BaTiO3 and SrTiO3, 

which are mechanically and dynamically unstable at 0 K, show the imaginary phonon branches in 

dispersion curves. In addition, the lattice thermal conductivity is essential for defining conversion 

efficiency of a thermoelectric device. Unfortunately, it is less well studied for the cubic perovskite 

structures due to the limited performance of the first-principles harmonic phonon calculations at high 

temperatures. Only a few of theoretically calculated data obstruct the comprehensive knowledge of the 

various thermodynamic properties observed experimentally. Therefore, for those materials whose 

room- or high-temperature phase is not the dynamically stable structure in the ground state, it is urgent 

to improve the numerical approach by incorporating the finite-temperature effects into the phonon 

calculations better to describe their lattice dynamical properties. Furthermore, it is useful to develop a 

robust and efficient way for a large amount of perovskite compounds, in order to access to their lattice 

thermal conductivities, which motivate us to explore the advanced materials with the tunable and 

desirable properties.    

1.2 Outline of thesis 

In Chapter 2, the theory of quantum mechanics such as the evolution of many-body Schrödinger 

equations to the single-particle equations are introduced. The theory of lattice dynamics are elaborated, 

including the harmonic and anharmonic phonon properties, and the thermal transport properties. For 

example, the concept of phonon, the phonon band structures and phonon density of states, the lattice 
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thermal expansion, Helmholtz free energy and the lattice thermal conductivity, etc. A series of related 

approximation for dealing the above problems are adopted such as the adiabatic approximation, single-

particle approximation, harmonic approximation, quasihamornic approximation and single-mode 

relaxation time approximation, etc. In terms of the numerical approach, one of a routine choice is 

solving the Kohn-Sham equations within the framework of density functional theory as implemented 

in Vienna ab initio simulation package (VASP) [127–130]. After obtaining the forces from the 

electronic calculations, the harmonic and anharmonic phonon properties, and the lattice thermal 

conductivity can be further obtained by first-principles lattice dynamics calculations as implemented 

in Phonopy [9] and Phono3py [40] packages, which are numerical approaches to solve the vibrational 

problems at the atomic scale. Apart from the fundamental theory of the phonon calculations, an 

improved method of temperature-dependent phonon calculations was developed since the conventional 

harmonic phonon calculations are inadequate for the highly anharmonic structures and the failure of 

correctly describing the phonon properties at finite temperatures to agree with the measured data. Not 

only the physical theory but also the mathematical process are introduced, and the whole workflow are 

presented in order to make a clear understanding about the process of this simple and accurate method. 

In Chapter 3, in order to test the validity and applicability of the temperature-dependent phonon 

approach as mentioned above, the calculations of the 32 rocksalt compounds, including the alkali 

halides comprised of the group I-VII elements and the alkaline-earth chalcogenides comprised of the 

group II-VI, are performed within the proposed method. To test the robustness of the phonon 

calculations, the calculations with different factors such as the lattice parameters, exchange correlation 

potentials and sampling mesh in Brillouin zone, which may influence the phonon calculations, are also 

conducted. After the determination of all calculated parameters, the phonon band structures and 

densities of states, and the lattice thermal conductivities of all these rocksalt compounds are predicted 

by the phonon calculations. In particular, the results of the lattice thermal conductivity are discussed 

through the frequency dependence of the mode-dependent lattice thermal conductivity, and the phonon 

lifetime and scattering rates due to the anharmonic phonon-phonon interactions. It is found that a good 

agreement between the calculated results and available experimental data, which identifies the validity 

of our temperature dependence of phonon calculations. The analyses of the high-throughput results 

provide a deep insight to investigate systematically the phonon and thermal transport properties of the 

materials, which thereby offer a powerful approach and fundamental guidance for experiment to 

explore more and more new thermal materials with desired properties. 

In Chapter 4, the temperature-dependent phonon calculations are performed on the cubic perovskite-

type oxides ABO3 compounds, where the cation A and B are alkaline earth and transition metals. It is 

urgent to systematically investigate their lattice dynamical and thermal properties, since the breakdown 
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of the harmonic calculations may happen when computing the phonon properties of the structure with 

a high-temperature cubic phase, which hinders the prediction of their thermodynamic properties. 

Through the temperature-dependent phonon approach introduced in this work, the effective force 

constants including the temperature information are generated, which as a consequent the self-

consistent phonon band structures and density of states are obtained. In particular, for those 

dynamically stable compounds at finite temperatures, their lattice thermal conductivities at finite 

temperatures can also be calculated with well-converged second- and third-order forces constants. The 

good match between calculated and measured phonon frequencies and lattice thermal conductivities 

further demonstrate the universal applicability of the temperature-dependent phonon calculations to a 

wide type of the structures for evaluating their lattice dynamical and thermodynamics properties at 

finite temperatures. 

In Chapter 5, a general conclusion is given for all the calculated results and discussions in this work.  

Finally, all the references and the final acknowledgement are presented in the end of this thesis. 
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Temperature-dependent phonon calculations  

2.1 Introduction 

2.1.1 Adiabatic approximation 

In a crystal, the motion of all ions and electrons in a large supercell can be studied within a unit cell by 

considering the periodic boundary conditions taking advantage of the translational lattice symmetry, 

which reduces the problem to the dynamics of atoms in a relatively small system. However, it should 

be further simplified by other approximations. In quantum mechanical theory [131,132], the 

Hamiltonian of a system of ions and electrons obtained from a many-body Schrödinger equation, 

contains the kinetic and potential energy due to interactions between particles,  

ℋ = −∑
ℏ2

2𝑀𝐼
𝐼

𝛻𝑹𝐼

2 − ∑
ℏ2

2𝑚𝑖
𝐼

𝛻𝒓𝑖
2 − ∑

𝑍𝐼 𝑒
2

|𝑹𝐼 − 𝒓𝑖|
+

1

2
∑

𝑒2

|𝒓𝑖 − 𝒓𝑗|𝑖𝑗(𝑖≠𝑗)

+ 
1

2
𝑖𝐼

∑
𝑍𝐼𝑍𝐽 𝑒

2

|𝑹𝐼 − 𝑹𝐽|𝐼𝐽(𝐼≠𝐽)

 (2. 1) 

In Eqn. (2.1), 𝑹𝐼 and 𝒓𝑖 are the positions of ions and electrons, e is the elementary charge, ℏ is Planck’s 

constant divided by 2π, 𝑀𝐼 and 𝑚𝑖 are the mass of ions and electrons. The first and second term are 

kinetic energy of the ions and electrons, respectively. The third, fourth and fifth term are the ionic 

potential experienced by every electron, the potential caused by repulsion between the electrons, and 

the potential caused by repulsion between the ions.  

Normally, the ions are moving slowly and the electrons are instantaneously responding to any moment 

of the ionic states due to the huge difference of the mass between these two kinds of particles, leading 

to the former behave like the classical particles. Therefore, it is available that the motion of the ions 

and the electrons can be separately considered, which is known as adiabatic approximation.  
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In fact, the motion of electrons is determined by the equilibrium state of the ions, meanwhile the motion 

of the ions is dependent of the potential field generated by surrounding electrons. With motionlessness 

of the ions, the kinetic energy of the ions can be omitted and the potential energy between ions can be 

a constant. Then, Eqn. (2.1) can be simplified as, 

ℋ = −∑
ℏ2

2𝑚𝑖
𝐼

𝛻𝒓𝑖
2  − ∑

𝑍𝐼 𝑒
2

|𝑹𝐼 − 𝒓𝑖|
 + 

1

2
∑

𝑒2

|𝒓𝑖 − 𝒓𝑗|𝑖𝑗(𝑖≠𝑗)𝑖𝐼

 =  𝒯 + 𝒱 (2. 2) 

where 𝒯 and 𝒱 are kinetic and potential energy of the system in this approximation, respectively. 

2.1.2 Single-particle description 

It is extremely hard to solve a many-body Schrödinger equation though it is simplified as shown in 

Eqn. (2.2), since the wavefunctions involving complex interactions between particles [131,132]. 

Hartree et al. proposed that the state of a system is assumed as a non-interacting way, which leads to 

the wavefunctions 𝛹 is separated into a series of the individual electronic states, 

𝛹(𝒓1, 𝒓2, … , 𝒓𝑁) =  𝜙1(𝒓1) 𝜙1(𝒓2) ⋯  𝜙1(𝒓𝑁) (2. 3) 

where 𝜙𝑖(𝒓𝑖) is the i-th single electronic state in site 𝒓𝑖 . The single-particle equations then can be 

constructed, which is called the Hartree approximation, 

[−
ℏ𝛻𝒓

2

2𝑚𝑖
+ 𝑉𝑖𝑜𝑛(𝒓) + 𝑒2 ∑ ⟨𝜙𝑗 | 

1
| 𝒓 − 𝒓′|

 | 𝜙𝑗⟩

𝑖𝑗 (𝑖≠𝑗)

  ]  𝜙𝑖(𝒓) = 𝜖𝑖 𝜙𝑖(𝒓) (2. 4) 

However, the simple treatment of wavefunctions expressed in Eqn. (2.3) is not appropriate for 

indistinguishable particles, for which the antisymmetry of the electronic wavefunctions in quantum 

mechanics is ignored by Hartree approximation. Therefore, representing the wavefunctions of system 

in a form of Slater determinant,  

𝛹(𝒓1, 𝒓2, … , 𝒓𝑁) =  
1

√𝑁!
 

|

|

𝜙1(𝒓1) 𝜙1(𝒓2) ⋯ 𝜙1(𝒓𝑁)

𝜙2(𝒓1) 𝜙2(𝒓2) ⋯ 𝜙2(𝒓𝑁)

⋮ ⋮ ⋱ ⋮

𝜙𝑁(𝒓1) 𝜙𝑁(𝒓2) ⋯ 𝜙𝑁(𝒓𝑁)

|

|

(2. 5) 
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By establishing the variational principle, the single-particle equations can be improved in the Hartree-

Fock approximation,  

[−
ℏ

2𝑚𝑖
𝛻𝒓

2 + 𝑉𝑖𝑜𝑛(𝒓) + 𝑉𝑖
𝐻𝐹(𝒓) ] 𝜙𝑖(𝒓) = 𝜖𝑖 𝜙𝑖(𝒓) (2. 6) 

where 𝑉𝑖
𝐻𝐹(𝒓) is consisted of Hartree potential 𝑉𝑖

𝐻(𝒓) and exchange potential 𝑉𝑖
𝑋(𝒓), 

𝑉𝑖
𝐻𝐹(𝒓) =  𝑉𝑖

𝐻(𝒓) + 𝑉𝑖
𝑋(𝒓) = 𝑒2 ∫

𝜌(𝒓′) − 𝜌𝑖(𝒓
′) 

| 𝒓 − 𝒓′|
𝑑𝒓′ − 𝑒2 ∫

𝜌𝑖
𝑋(𝒓, 𝒓′) 

| 𝒓 − 𝒓′|
𝑑𝒓′  (2. 7) 

with total densities 𝜌(𝒓), single electronic densities 𝜌𝑖(𝒓) and single electronic exchange densities 

𝜌𝑖
𝑋(𝒓, 𝒓′), 

𝜌𝑖(𝒓) =  |𝜙𝑖(𝒓)|2 

𝜌(𝒓) =  ∑𝜌𝑖

𝑖

(𝒓) 

𝜌𝑖
𝑋(𝒓, 𝒓′) =  ∑

𝜙𝑖(𝒓
′) 𝜙𝑖

∗(𝒓) 𝜙𝑗(𝒓) 𝜙𝑗
∗(𝒓′)

𝜙𝑖(𝒓) 𝜙𝑖
∗(𝒓)

𝑖≠𝑗

 (2. 8) 

In this way, the quantum mechanical exchange and correlation interactions between electrons are 

included.  

Furthermore, Kohn et al. developed a new approach exactly treating the single-particle equations 

instead of using the trial wavefunctions in Hartree-Fock approximations, namely Density Functional 

Theory (DFT) [4,5]. In this method, the total energy of a system can be defined as a function of the 

charge density 𝜌(𝒓) and the single-particle equations, so-called Kohn-Sham equations, written as 

[−
ℏ

2𝑚𝑖
𝛻𝒓

2 + 𝑉𝑒𝑓𝑓(𝒓, 𝜌(𝒓)) ] 𝜙𝑖(𝒓) = 𝜖𝑖 𝜙𝑖(𝒓) (2. 9) 

where 𝜖𝑖  is the orbital energy of the corresponding Kohn–Sham orbital 𝜙𝑖 . The effective potential 

energy 𝑉𝑒𝑓𝑓 consists of the external potential, the Coulomb interaction and the exchange-correlation 

potential, 

𝑉𝑒𝑓𝑓(𝒓, 𝜌(𝒓)) = 𝑉(𝒓) + 𝑒2 ∫
𝜌(𝒓′)

| 𝒓 − 𝒓′|
𝑑𝒓′ + 

𝛿 𝐸𝑋𝐶[𝜌(𝒓)]

𝛿 𝜌(𝒓)
 (2. 10) 
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By dealing with the unknown exchange-correlation functional within some approximations, the Kohn-

Sham equations are solved iteratively, which results in the self-consistent density, orbitals and the 

minimum of the total energy for the electronic ground state. 

2.2 Lattice dynamics 

2.2.1 Harmonic approximation 

Here, we restrict the discussion to a two-body interaction where the interatomic potential 𝑈(𝑹) is a 

function of the interatomic distance R between a pair as shown in Figure 2.1. Each atom in the ideal 

crystalline solid experiences the same potential due to the other atoms in the material. It is found that 

the location of the minimum of the potential well is the equilibrium position of the atom. In this 

potential, individual atoms will vibrate about their equilibrium positions with the amplitude of their 

vibration being determined by the total energy [133]. 

  

Figure 2.1. A schematic of interatomic potential U with respect to the interatomic distance R. R0 is the distance 

between two atoms in their equilibrium positions, which leads to the minimum of the potential energy. 

It is assumed that the atoms vibrate around their positions 𝑹0(𝒍𝜿)  with displacements  𝒖(𝒍𝜿) =

𝑹(𝒍𝜿) − 𝑹0(𝒍𝜿), where l and κ are the labels of the unit cells and the atoms in that unit cell. Then, the 

total potential energy 𝑉 can be demonstrated as an analytic function of the displacements 𝒖(𝒍𝜿) in a 

Taylor expansion, 

𝑉 = 𝑉0 + 𝑉1 + 𝑉2 + ⋯ 

= 𝑉0 + ∑∑Φ𝛼

𝛼

(𝒍𝜿) 𝑢𝛼(𝒍𝜿)

𝒍𝜿

+
1

2
∑ ∑Φ𝛼𝛽

𝛼𝛽

(𝒍𝜿, 𝒍′𝜿′) 𝑢𝛼(𝒍𝜿)

𝒍𝜿,𝒍′𝜿′

𝑢𝛽(𝒍′𝜿′) + ⋯ (2. 11)  



13 

where α, β, … denote the Cartesian indices. 𝑉0  is an arbitrary constant, which can be ignored in 

dynamical calculations for convenience. 𝑉1  vanishes because of the zero-value forces at the 

equilibrium state and the 0 K. Φ𝛼(𝒍𝜿) and Φ𝛼𝛽(𝒍𝜿, 𝒍′𝜿′) are the first and second order force constants, 

respectively, 

Φ𝛼𝛽(𝒍𝜿, 𝒍′𝜿′) =  
𝜕2𝑉

𝜕𝑢𝛼(𝒍𝜿) 𝜕𝑢𝛽(𝒍′𝜿′)
 |

0

  (2. 12) 

Furthermore, the potential energy can be defined as consists of the only second order term but higher 

order terms, which is known as harmonic approximation, and Eqn. (2.11) then can be simplified as 

𝑉ℎ𝑎𝑟𝑚 = 
1

2
∑ ∑Φ𝛼𝛽

𝛼𝛽

(𝒍𝜿, 𝒍′𝜿′) 𝑢𝛼(𝒍𝜿)

𝒍𝜿,𝒍′𝜿′

𝑢𝛽(𝒍′𝜿′)  (2. 13) 

Once the crystal potential is obtained, the dynamics of the atomic degrees of freedom are determined 

by the quantum Hamiltonian composed of kinetic energy 𝑇 and harmonic potential energy 𝑉ℎ𝑎𝑟𝑚, 

𝐻ℎ𝑎𝑟𝑚 =  𝑇 + 𝑉ℎ𝑎𝑟𝑚 = ∑∑
𝑝𝑖,𝑠

2

2𝑀𝑖

3

𝑠=1

𝑁

𝑖=1

 +
1

2
∑ ∑Φ𝛼𝛽

𝛼𝛽

(𝒍𝜿, 𝒍′𝜿′) 𝑢𝛼(𝒍𝜿)

𝒍𝜿,𝒍′𝜿′

𝑢𝛽(𝒍′𝜿′)  (2. 14) 

where Mi is the mass of i-th atom (𝒍, 𝜿) in the supercell containing N atoms, 𝑠 = {𝛼, 𝛽, γ} is the 

Cartesian index, and pi,s is the momentum operator of the i-th atom along the direction s. The equation 

of motion now can be written as 

𝑚𝜿 𝑢̈𝛼(𝒍𝜿) =  − ∑ Φ𝛼𝛽

𝒍′𝜿′𝛽

(𝒍𝜿, 𝒍′𝜿′) 𝑢𝛽(𝒍′𝜿′)  (2. 15) 

Consider that lattice translational symmetry and infinitesimal translational invariance of the force 

constants, Eqn. (2.15) can be rewritten as 

𝑚𝜿 𝑢̈𝛼(𝒍𝜿) =  − ∑ Φ𝛼𝛽

𝒍′𝜿′𝛽

(𝟎𝜿, 𝒍′𝜿′) 𝑢𝛽(𝒍′𝜿′)  (2. 16) 

The trial solution of Eqn. (2.16) can be set as  

𝑢𝛼(𝒍𝜿) =  
1

√𝑚𝜿

∑𝑈𝛼

𝒒

(𝜿, 𝒒) 𝑒𝑖[𝒒 ∙ 𝑹(𝒍) − 𝜔𝑡] (2. 17)  
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where q and 𝑹(𝒍𝜿) are the wave vector and the position vector of the unit cell l, respectively. Applying 

Eqn. (2.17) to Eqn. (2.16) leads to  

𝜔2𝑈𝛼(𝜿, 𝒒) =  ∑𝐷𝛼𝛽

𝜅′𝛽

(𝜿𝜿′, 𝒒) 𝑈𝛽(𝜿′, 𝒒) (2. 18) 

with 

𝐷𝛼𝛽(𝜿𝜿′, 𝒒) =  
1

√𝑚𝜿𝑚𝜿′

∑Φ𝛼𝛽

𝒍′

(𝟎𝜿, 𝒍′𝜿′) 𝑒𝑖𝒒 ∙ 𝑹(𝒍′)   (2. 19) 

Note that D is Hermitian and its eigenvalues 𝜔𝒒𝑗
2  are real. By solving Eqn. (2.18), we can get 3na 

eigenvalues 𝜔𝒒𝑗
2  with eigenvectors 𝒆𝒒𝑗, where na is the number of atoms in a unit cell and j = 1, 2, … , 

3na is the band index. The components of eigenvectors are orthonormal and complete as demonstrated 

in Eqn. (2.20) and Eqn. (2.21), respectively, 

 ∑𝑒𝒒𝑗
𝜿𝛼 ∗

𝜿𝛼

𝑒𝒒𝑗
𝜿𝛼 = 𝛿𝑗𝑗′  (2. 20) 

∑𝒆𝒒𝑗
𝜿′𝛽

 ∗

𝒆𝒒𝑗
𝜿𝛼

𝑗

= 𝛿𝛼𝛽𝛿𝜿𝜿′  (2. 21) 

Therefore, Eqn. (2.18) can be rewritten as 

𝜔𝒒𝑗
2  𝑒𝒒𝑗

𝜿𝛼 = ∑𝐷𝛼𝛽
𝜿𝜿′

(𝒒)

𝜿′𝛽

𝑒𝒒𝑗
𝜿′𝛽 (2. 22) 

Normally, 𝒆𝒒𝑗 denotes the vibration of the atom with the vibrational mode (𝒒, 𝑗), and it is normalized 

as ∑ |𝑒𝒒𝑗
𝜿𝛼|

2
𝛼𝜿 = 1, which represents the collective motion of all atoms. 

2.2.2 Phonon calculations 

Density functional theory gives one access to the crystal potential of a system, which the harmonic 

force constants from the second derivatives of the crystal energy with respect to atomic displacements 

can be easily obtained by the implementation force calculations [132,133]. Forces acting on the atoms 

are given by the expectation value of the gradient of the electronic Hamiltonian in the ground state,  
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𝒇𝐼 = − ⟨𝛹0 |
 𝜕ℋ 
𝜕𝑹𝐼

| 𝛹0⟩ (2. 23) 

This is so-called Hellmann-Feynman force. Consider that an atom is displaced and the force in 

harmonic approximation will act on this atom as followings, 

 𝑓𝛼(𝒍𝜿) =  −
𝜕𝑉

𝜕𝑢𝛼(𝒍𝜿)
= − ∑ Φ𝛼𝛽(𝒍𝜿, 𝒍′𝜿′) 𝑢𝛽(𝒍′𝜿′)

𝒍′𝜿′𝛽

 (2. 24) 

and Eqn. (2.4) becomes 

Φ𝛼𝛽(𝒍𝜿, 𝒍′𝜿′) =
𝜕2𝑉

𝜕𝑢𝛼(𝒍𝜿) 𝜕𝑢𝛽(𝒍′𝜿′)
  = −

𝜕𝑓𝛽(𝒍′𝜿′)

𝜕𝑢𝛼(𝒍𝜿)
 (2. 25) 

which represents the negative force on atom (𝒍, 𝜿) along the direction α is caused by the displacement 

of atom (𝒍′, 𝜿′) along the direction β.  Normally, the force on each atom in a unit cell will be zero when 

system in an equilibrium state, whereas the net force exists when atoms vibrate. Therefore, the phonon 

frequencies of different normal modes defined in Eqn. (2.22) can be obtained after the force constants 

and dynamical matrix are clearly understood.  

Typically, the periodicity of the system can be clearly demonstrated the Fourier space. It is appropriate 

for the displacement 𝒖 and momentum 𝒑 in Hamiltonian expressed in the Fourier transform to be 

represented as a function of the normal phonon modes with the wave vector 𝐪 instead of the real-space 

coordinates of atoms. The number of normal phonon modes is same as the number of particles.  

𝒖(𝒍𝜿) =  
1

√𝛺
 ∑ 𝒬𝒒(𝜿) 𝑒𝑖𝒒∙𝒍

𝒒

 (2. 26) 

𝒑(𝒍𝜿) =  
1

√𝛺
 ∑ 𝛱𝒒(𝜿) 𝑒−𝑖𝒒∙𝒍

𝒒

 (2. 27) 

where Ω, 𝒬 and 𝛱 are the volume of the crystal, normal coordinate operators of 𝒖 and 𝒑, respectively. 

Meanwhile, we can obtain the following derivations, 

𝒬𝒒
† (𝜿) =  𝒬−𝒒(𝜿) =

1

√𝛺
 ∑ 𝒖(𝒍𝜿) 𝑒𝑖𝒒∙𝑙

𝒍

 (2. 28) 
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𝛱𝒒
†(𝜿) = 𝛱−𝒒(𝜿) =

1

√𝛺
 ∑ 𝒑(𝒍𝜿) 𝑒−𝑖𝒒∙𝒍

𝒍

 (2. 29) 

In addition, by utilizing second quantization technique, the Hamiltonian in (2.14) can be rewritten as, 

𝐻ℎ𝑎𝑟𝑚 = ∑ℏ𝜔𝒒𝑗 ( 𝑏𝒒𝑗
†  𝑏𝒒𝑗 + 

1

2
 )

𝒒,𝑗

 (2. 30) 

where j, 𝑏𝒒𝑗 and 𝑏𝒒𝑗
†

 denotes the band index, boson creation and annihilation operator, respectively, 

𝑏𝒒𝒋 = √
𝑚𝜿𝜔𝒒𝑗

2ℏ
 (𝒬𝒒𝑗  +  

𝑖

𝑚𝜿𝜔𝒒𝑗
𝛱−𝒒𝑗) (2. 31) 

𝑏𝒒𝑗
† = √

𝑚𝜿𝜔𝒒𝑗

2ℏ
 (𝒬−𝒒𝑗  − 

𝑖

𝑚𝜿𝜔𝒒𝑗
𝛱𝒒𝑗 ) (2. 32) 

Note that the polarization vector 𝑒𝒒𝑗
𝜿  satisfies the orthonormality shown in Eqn. (2.20), is introduced in 

𝒬𝒒(𝜿) and 𝛱𝒒(𝜿) and the relationship between 𝒬𝒒(𝜿) and 𝒬𝒒𝑗 , 𝛱𝒒(𝜿) and 𝛱𝒒𝑗  are shown in Eqn. 

(2.33) and Eqn. (2.34), respectively, 

𝒬𝒒𝑗 = ∑√𝑚𝜿 𝑒𝒒𝑗
𝜿 ∗

∙

𝜿

𝒬𝒒(𝜿) (2. 33)  

𝛱𝒒𝑗 = ∑
1

√𝑚𝜿

 𝑒𝒒𝑗
𝜿 ∙

𝜿

𝛱𝒒(𝜿) (2. 34)  

From the quantum treatment of the Hamiltonian shown in Eqn. (2.30), we consequently obtain the 

eigenvalues, or phonon energy of the system as 

𝐸𝑝ℎ =  ∑  ℏ𝜔𝒒𝑗 ( 𝑛̅𝒒𝑗 + 
1

2
 )

𝒒,𝑗

 (2. 35) 

with phonon occupation number 𝑛̅𝒒𝑗 as 

𝑛̅𝒒𝑗 = 〈𝑏𝒒𝑗
†  𝑏𝒒𝑗〉 =

1

𝑒ℏ𝜔𝒒𝑗/𝑘𝐵𝑇 − 1
 (2. 36) 
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where 𝑘𝐵 and T is Boltzmann’s constant and temperature, respectively. Eqn. (2.36) is known as the 

Bose-Einstein distribution. It should be noticed that even the system is in the ground state without any 

vibration, the phonon energy still exists generated by the zero-point motion in quantum mechanics.   

Phonon density of states (DOS) is one of the important properties in lattice dynamics, which is defined 

as the number of the phonon modes between the frequencies 𝜔 and 𝜔 + 𝑑𝜔, or between 𝒒 and 𝒒 + 𝑑𝒒. 

With a linear tetrahedron method, phonon DOS is demonstrated as, 

𝑔(𝜔) =  
1

𝑁
 ∑𝛿(𝜔 − 𝜔𝒒𝑗)

𝒒,𝑗

 (2. 37) 

where N is the number of unit cells. The integral over the Brillouin zone goes over all 3na phonon 

bands with na the number of atoms in the unit cell. The partial (or projected) phonon density of states 

is defined as the contribution of a specified atom in cell to the total phonon DOS, which allows us to 

understand the origin of various branches in the phonon dispersion. The contribution to the partial 

density of states of an atom, from each phonon band j, is evaluated by 

𝑔𝜿(𝜔) =
1

𝑁
 ∑𝛿(𝜔 − 𝜔𝒒𝑗)

𝒒,𝑗

 |𝑒𝒒𝑗
𝜿𝑠|

2
 (2. 38) 

where 𝒆𝒒𝑗 is the polarization vector corresponding to the phonon frequency 𝜔𝒒𝑗. 

According to the statistical mechanics, as far as the phonon energy of a system is obtained, the 

thermodynamic properties can be determined. For example, the Helmholtz free energy can be 

calculated as, 

𝐹𝐻 = −𝑘𝐵𝑇 𝑙𝑛 𝛧 (2. 39) 

where the partition function of harmonic phonon is 

𝑍 = 𝑒
− 

𝑈
𝑘𝐵𝑇  ∏∑ 𝑒

− 
𝐸𝒒,𝑗,𝑖

𝑘𝐵𝑇  

𝒊 𝒒,𝑗

= 𝑒
− 

𝑈
𝑘𝐵𝑇 ∏𝑒

− 
ℏ𝜔𝒒𝑗

2𝑘𝐵𝑇 ∑(𝑒
− 

ℏ𝜔𝒒𝑗

𝑘𝐵𝑇 )

𝑛̅𝒒𝑗

𝑛̅𝒒𝑗𝒒,𝑗

 

= 𝑒
− 

𝑈
𝑘𝐵𝑇 ∏ 

𝑒
−

ℏ𝜔𝒒𝑗

2𝑘𝐵𝑇 

1 − 𝑒
−

ℏ𝜔𝒒𝑗

𝑘𝐵𝑇

= 𝑒
− 

𝑈
𝑘𝐵𝑇 𝑒

−
𝐸0

2𝑘𝐵𝑇  ∏  
1

1 − 𝑒
−

ℏ𝜔𝒒𝑗

𝑘𝐵𝑇𝒒,𝑗𝒒,𝑗

  (2. 40) 
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In Eqn. (2.40), 𝑈 is the static energy of the crystal equilibrium and 𝐸0 is the total vibrational zero point 

energy of the system, 

𝐸0 = 
1

2
 ∑ℏ𝜔𝒒𝑗

𝒒,𝑗

 (2. 41) 

Then Eqn. (2.39) can be rewritten as, 

𝐹 = 𝑈 + 
1

2
 ∑ℏ𝜔𝒒𝑗 + 𝑘𝐵𝑇 ∑𝑙𝑛 [1 − 𝑒

−
ℏ𝜔𝒒𝑗

𝑘𝐵𝑇 ]

𝒒,𝑗𝒒,𝑗

(2. 42) 

In conclusion, we show that the second order term in crystal potential is sufficient to describe the 

system accurately where the anharmonic effects are negligible. In many cases, the atomic 

displacements are small so that the harmonic approximation is valid and useful for obtaining the 

phonon properties. However, it fails to describe many important properties generated by the lattice 

anharmonicity such as the thermal expansion, the lattice thermal conductivity (LTC), and the 

temperature or volume dependences of the phonon frequencies, for which we must go beyond the 

harmonic approximation. 

2.2.3 Lattice anharmonicity 

It is obvious that the harmonic term in the Hamiltonian gives the description of the independent 

phonons without interactions. In fact, the phonons are coupling and the naïve harmonic picture of the 

crystal vibrations sometimes breaks down. Lattice anharmonicity will generate the intrinsic phonon-

phonon interactions and the lattice thermal expansion, which thereby plays an essential role in the 

thermal transport properties of system [10,133,134].  

Concerning the thermal expansion, it is typically treated with the quasiharmonic approximation (QHA), 

where the anharmonicity is considered as a weak effect. In QHA, both the static energy 𝑈 and phonon 

frequency 𝜔𝒒𝑗 are the functions of crystal volume 𝑉, which thus the Helmholtz free energy 𝐹 is a 

function of both temperature 𝑇 and volume 𝑉. The equation of state including state parameters 𝑝, 𝑉, 

and 𝑇 is 

𝑝 =  (
𝜕𝐹

𝜕𝑉
)

𝑇
 (2. 43) 

With the replacement of the free energy demonstrated in Eqn. (2.42), Eqn. (2.43) can be written as, 
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𝑝 = −
𝑑𝑈

𝑑𝑉
− ∑(

1

2
+

1

𝑒
ℏ𝜔𝒒𝑗

𝑘𝐵𝑇 − 1

)ℏ ∙
𝑑𝜔𝒒𝑗

𝑑𝑉
𝒒,𝑗

(2. 44) 

Furthermore, it is convenient to deal with the derivative of the phonon frequency as, 

𝛾 = −
𝑑𝜔𝒒𝑗

𝑑𝑉
= −

𝜔𝒒𝑗

𝑉

𝑑 𝑙𝑛 𝜔𝒒𝑗

𝑑 𝑙𝑛 𝑉
  (2. 45) 

where 𝛾  is the mode Grüneisen constant showing that phonon frequency increases as volume 

decreasing and the rate of inverse proportion is nearly a constant. To generalize the problem, the simple 

vibrational system of the diatomic linear chain is considered, which the eigenvalue is  

𝜔𝑞𝑗
2 = 𝐶 (

1

𝑚𝜅
+

1

𝑚𝜅′
) ± 𝐶 [(

1

𝑚𝜅
+

1

𝑚𝜅′
)
2

−
4

𝑚𝜅𝑚𝜅′
𝑠𝑖𝑛2 𝑞𝑎]

1
2

(2. 46) 

Eqn. (2.45) and (2.46) can be combined into a form of 

𝛾 = −
𝑎 𝑉(𝑎)

2 𝑉̈(𝑎)
 ,   (2. 47) 

where 𝑉(𝑎) is the potential energy of the lattice constant a, and 𝛾 is related to the third order term of 

the potential energy as shown in Eqn. (2.47). If the anharmonic effect does not exist in lattice vibration, 

𝛾 vanishes and there is no thermal expansion happen. From the above analyses, the anharmonicity 

indeed leads to the thermal expansion and can be treated with quasiharmonic approximation in which 

the thermal expansion is determined by the minimization of the 𝐹 as a function of the cell volume at 

each temperature. This is one of the root cause of the anharmonic crystal showing the non-linear change 

of the phonon dispersion regarding the crystal volume.  

Apart from the thermal expansion as discussed above, the anharmonicity also plays an important role 

in phonon scattering as the temperature changes, which results in the finite thermal conductivity, or 

equivalent, the thermal resistance. Phonons are the primary heat carriers for the nonmetallic crystalline 

solids where the heat is almost transferred by phonons. Generally, the phonon-phonon interactions can 

be considered as a perturbation to the harmonic system. For instance, the cubic and quartic term as in 

the first- and second-order perturbation leads to the three-phonon and four phonon interactions, 

respectively. The former is widely used for studying the phonon scattering events, which has large 

achievements in explaining the thermodynamic behavior of materials such as the lattice thermal 
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conductivity. The relaxation time approach solving the linearized phonon Boltzmann equation and the 

Green’s function approach based on the fundamental quantum statistical mechanics, are two pictures 

of the popular understanding of the lattice thermal conductivity. In this work, we mainly focus on the 

former way of solving the linearized phonon Boltzmann equation. The original phonon Boltzmann 

equation is in the form of 

𝜕𝑛𝒒𝑗

𝜕𝑡
|
𝑑𝑖𝑓𝑓

+ 
𝜕𝑛𝒒𝑗

𝜕𝑡
|
𝑠𝑐𝑎𝑡𝑡

= 0 (2. 48) 

where 𝑛𝒒𝑗 is the occupation function of the phonon wave vector q of band index j. The gradient of the 

spatial dependent temperature, i.e., 𝑇 = 𝑇(𝒓), gives rise to the diffusion at the rate of  

𝜕𝑛𝒒𝑗

𝜕𝑡
|
𝑑𝑖𝑓𝑓

= −𝒗𝒒𝑗 ∙ 𝛻𝑇 
𝜕𝑛𝒒𝑗

𝜕𝑇
 (2. 49) 

where 𝒗𝒒𝑗 is the phonon group velocity of mode 𝒒𝑗 definded as 𝒗𝒒𝑗 = ∇𝒒 𝜔𝒒𝑗. The Eqn. (2.49) shows 

that the total rate of change of 𝑛𝒒𝑗 involving phonon diffusion and scattering mechanisms will vanish 

during the steady state of heat flow through the solid. To simplify the complicated Eqn. (2.48), the 

linearized phonon Boltzmann equation can be derived from taking the Taylor expansion of 𝑛𝒒𝑗 around 

the equilibrium distribution 𝑛̅𝒒𝑗 into account. The single-mode relaxation-time approximation 

(abbreviate as SMRTA) provides the simplest description of the phonon interactions, where the 

relaxation rate of a phonon mode is on the assumption of all other phonon modes treated with their 

equilibrium states. In this approximation, the lattice thermal conductivity tensor is obtained from  

𝜅 =
1

𝑁𝑉0
∑𝐶𝒒𝑗𝒗𝒒𝑗 ⊗ 𝒗𝒒𝑗𝜏𝒒𝑗

𝑆𝑀𝑅𝑇𝐴

𝒒𝑗

 (2. 50) 

where 𝑉0 and 𝑁 are the volume of the each unit cell and the total number of the unit cells in crystal. 

The mode heat capacity 𝐶𝒒𝑗 depends only on the phonon frequency 𝜔𝒒𝑗 and the temperature 𝑇, which 

is given by 

𝐶𝒒𝑗 = 𝑘𝐵 (
ℏ𝜔𝒒𝑗

𝑘𝐵𝑇
)

2
𝑒

ℏ𝜔𝒒𝑗

𝑘𝐵𝑇

(𝑒
ℏ𝜔𝒒𝑗

𝑘𝐵𝑇 − 1)

2  (2. 51)
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In Eqn. (2.50), all these phonon properties except 𝜏𝒒𝑗
𝑆𝑀𝑅𝑇𝐴 can be calculated using harmonic phonon 

calculations, while 𝜏𝒒𝑗
𝑆𝑀𝑅𝑇𝐴  must go beyond harmonic approximation and take into account of the 

phonon-phonon interactions [22,52]. Here, an approximation of 𝜏𝒒𝑗
𝑆𝑀𝑅𝑇𝐴 = 𝜏𝒒𝑗 is used where the left- 

and right- side term are the single-mode relaxation time and phonon lifetime, respectively. By replacing 

the suffix 𝜆 = (𝒒, 𝑗) and thus −𝜆 = (−𝒒, 𝑗), the phonon lifetime 𝜏𝒒𝑗 = 𝜏𝜆 can be calculated by 

𝜏𝜆 = 
1

2 Γ𝜆(𝜔)
 (2. 52) 

with imaginary part of the self-energy in a form analogous to the Fermi’s golden rule as [52],  

Γ𝜆(𝜔) =  
18𝜋

ℏ2
 ∑∆(−𝒒 + 𝒒′ + 𝒒′′)

𝜆𝜆′

{(1 + 𝑛𝜆′ + 𝑛𝜆′′)𝛿(𝜔 − 𝜔𝜆′ − 𝜔𝜆′′)                           

                                  +(𝑛𝜆′ − 𝑛𝜆′′)[𝛿(𝜔 + 𝜔𝜆′ − 𝜔𝜆′′) − 𝛿(𝜔 − 𝜔𝜆′ + 𝜔𝜆′′)]} |𝛷−𝜆𝜆′𝜆′′|2  (2. 53)

 

where 𝑛𝜆  is the phonon occupation number at equilibrium state. Φ𝜆𝜆′𝜆′′ is the strength of the 

interaction among the three phonons in the scattering process. ∆(𝒒 + 𝒒′ + 𝒒′′) is a function whose 

value is one when 𝒒 + 𝒒′ + 𝒒′′ equals a reciprocal lattice vector G, and zero otherwise. From Eqn. 

(2.50) to (2.53), it is obvious that the lattice thermal conductivity directly affected by the phonon 

lifetime arising from the three-phonon scattering. Other methods such as directly solving the linearized 

phonon Boltzmann equation (LBTE) proposed by Chaput can be found in reference [135].  

In addition to the intrinsic phonon-phonon interactions, the phonon-isotope scattering is also crucial to 

the lattice thermal conductivity especially in some compounds its order of magnitude is same or even 

larger. The phonon-isotope scattering rate for a phonon mode λ is expressed as 

1

𝜏𝜆
𝑖𝑠𝑜(𝜔)

=  
𝜋

2𝑁
𝜔𝜆

2 ∑𝛿(𝜔𝜆 − 𝜔𝜆′)

𝜆′

∙ ∑𝑔𝜅 |∑𝑊𝛼(𝜅, 𝜆)𝑊𝛼
∗(𝜅, 𝜆′)

𝛼

|

2

𝜅

  (2. 54) 

where the mass variance parameter 𝑔𝜅 is  

𝑔𝜅 = ∑𝑓𝑖 ∙ (1 −
𝑚𝑖𝜅

𝑚̅𝜅
)

𝑖

  (2. 55) 

The variables 𝑚𝑖𝜅 being the mole fraction and the mass of the i-th isotope of the atom 𝜅 in the each 

unit cell. The total scattering rate including both phonon-isotope and intrinsic phonon-phonon 

scattering rates are given by 
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1

𝜏𝜆
𝑡𝑜𝑡(𝜔)

 =  
1

𝜏𝜆(𝜔)
 + 

1

𝜏𝜆
𝑖𝑠𝑜(𝜔)

 (2. 56) 

By this way, the calculated lattice thermal conductivity is naturally incorporated the isotopes if the 

contribution of the phonon isotopes is considered. 

In the above discussion, the lattice anharmonicity has the significant effects on the thermal expansion 

and lattice thermal conductivity at finite temperatures, and the temperature-dependent properties of 

anharmonic compounds can be treated with different approximations from low to high. In 

quasiharmonic approximations, the anharmonicity is considered as a weak effect and the phonon 

properties are computed considering only the thermal expansion effect. Generally, the calculations of 

the quasiharmonic approximation are simplified by using harmonic approximation at each crystal 

volume, which consequently obtains the volume dependence of the phonon properties. The self-

consistent phonon (SCPH), or equivalently self-consistent harmonic approximation (SCHA), is applied 

to the strong anharmonic materials, which the phonon frequency from the quartic anharomonicity at a 

given temperature is renormalized self-consistently according to the SCPH equations [66,67], 

Ω𝑞
2 = 𝜔𝑞

2 + 2Ω𝑞 ∑𝐼𝑞𝑞1

𝑞1

 (2. 57) 

where the 𝜔  and Ω  are the harmonic phonon frequency and renormalized frequency including 

temperature effects, respectively. 𝐼𝑞𝑞1
 is related to the 𝛺 and the quartic harmonic term Φ(4), 

𝐼𝑞𝑞1
=

ℏ

8𝑁

Φ(4)(𝑞, −𝑞, 𝑞1, −𝑞1)

Ω𝑞Ω𝑞1

 [1 + 2𝑛(𝛺𝑞1
)] (2. 58) 

It is apparent that 𝛺 and 𝐼 are mutually dependent, and the self-consistent results can be obtained by 

solving these two equations iteratively. Despite it is improve the accuracy of describing the strong 

phonon coupling system, the calculation of the quartic term is quite cumbersome and rarely be 

examined. 

As we know, if a crystal with displaced atoms is dynamically stable against the finite lattice vibrations, 

it is manifested by all phonons with real and positive frequencies, or positive phonon bands under the 

harmonic approximation. The appropriate atomic displacements can reduce the potential energy of the 

atomic positions nearby that of equilibrium state. However, the phonon frequency becomes imaginary 

value evidently reflected as the negative one appeared in phonon band structures, which indicates 

dynamical instability of the system due to the incensement of the potential energy of the displacive 
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system. A phonon mode of which the frequency is going down due to some extra conditions such as 

temperature and pressure, and eventually becoming zero, is called soft mode with the process called 

by “phonon softening”. This phenomenon describes the vibration of the corresponding phonon mode 

becomes "frozen" under that external conditions, which thereby deforms the original structure and 

produces a more stable one with another symmetry.  

Initially, the concept of the soft mode was proposed to describe the mechanism of the ferroelectric 

structural phase transitions. For instance, barium titanate (BaTiO3) exists four polymorphs depending 

on temperature. With the temperature decreasing, the crystal symmetry of the four polymorphs 

becomes cubic, tetragonal, orthorhombic and rhombohedral. All these structures exhibit the 

ferroelectricity except the cubic state (paraelectric structure). In particular, the frequency of the lowest 

transverse optical branch in the cubic phase becomes lower when the temperature decreases to the 

critical temperature, which eventually makes the compound change to the tetragonal structure as the 

soft mode frozen. Therefore, it is very useful to analyze the imaginary mode appeared in the displacive 

phase transition. As normal DFT and phonon calculations on the conditions of 0 K, the phonon results 

of some structures with a certain symmetry stable at extreme high temperatures will show imaginary 

phonon frequencies denoting the dynamical instability. Imaginary phonons should be treated with the 

self-consistent phonon method rather than simple perturbation approach, which explicitly incorporates 

the temperature effect on the harmonic force constants. Furthermore, some studies demonstrated that 

it is important to renormalize the phonons with the effects of higher-order term such as quartic 

anharmonicity, and even to use the molecular dynamics simulations including all orders of the 

anharmoncity. These approaches indeed improve the accuracy of the calculation results while they are 

too computationally costly to some degree, which it is thereby urgent to develop an efficient and 

accurate approach making a balance between the computational cost and accuracy. 

2.3 Temperature-dependent phonon calculations 

To address the failure of the harmonic phonon calculations in describing the lattice dynamical 

properties of the structures with strong vibrational anharmonicity, an improved numerical way of the 

temperature-dependent phonon calculations is introduced in this work, where the force constants can 

be accurately fitted by a large amount of the force-displacement datasets including the temperature 

information. In this way, the well-converged phonon properties and related thermal properties can be 

acquired after certain iterative steps. The present approach is conceptually similar to the stochastic self-

consistent harmonic approximation (SSCHA) [42] based on the self-consistent harmonic 

approximation (SCHA)  [66,67] or equivalently self-consistent phonon theory (SCPH). In SCHA, a 
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quantum variational principle in the free energy can be established by a trial (harmonic) density matrix 

𝜌ℋ  in which ℋis a trial Hamiltonian defined as ℋ = 𝑇 + 𝒱,   

𝐹𝐻  ≤  ℱ𝐻(𝒦) = 𝐹ℋ + 𝑡𝑟[𝜌ℋ(𝑉 − 𝒱)] (2. 59) 

where the equality is obtained if 𝐻 =  ℋ. The vibrational free energy can be calculated by minimizing 

the functional ℱ𝐻(𝒦)  with respect to the trial harmonic Hamiltonian 𝒦  containing the atomic 

configuration ℛ and the force constants matrix Φ(ℛ) satisfying the self-consistent equation as 

Φ𝑎𝑏(ℛ) = ⟨
𝜕2𝑉

𝜕𝑅𝑎𝜕𝑅𝑏⟩

𝜌̃ℛ,Φ(ℛ)

 (2. 60) 

When the gradient of the free energy vanishes, the best approximation of the free energy thus can be 

obtained and the corresponding ℋ is the final harmonic Hamiltonian that minimized it.  

More recently, another approach is based on the self-consistent ab initio lattice dynamics 

(SCAILD) [62] approach, so-called QSCAILD [64,136], where the thermal mean-square displacement 

matrix computed under a classical assumption is replaced by the SSCHA density matrix with quantum 

statistics. For each iteration and each atomic configuration, the atomic forces 𝑓 are fitted to a harmonic 

force-constants matrix Φ through solving the least squares minimization problem of 

𝑆 =  ∑(𝑠𝑘
(𝑛)

)
2

𝑘,𝑛

 (2. 61) 

with 

𝑠𝑘
(𝑛)

= 𝑓𝑘
(𝑛)

+  ∑Φ𝑘𝑙𝑢𝑙
(𝑛)

𝑙

 (2. 62) 

where 𝑘, 𝑙, 𝑛 are the atom, Cartesian and configuration indices, respectively. To minimize the atomic 

forces, it requires for each 𝑖, 𝑗, 
𝜕𝑆

𝜕Φ𝑖𝑗
= 0. Combined with the above three equations, it is obtained that 

∑(𝑓𝑖
(𝑛)

 − 𝑓
ℋ𝑖

𝑛𝑒𝑤
(𝑛)

)

𝑛

 𝑢𝑗
(𝑛)

= 0 (2. 63) 

where ℋ𝑛𝑒𝑤 is the effective harmonic Hamiltonian of the next iteration and 𝑓ℋ𝑖
𝑛𝑒𝑤 = −∑ Φ𝑖𝑗𝑢𝑗𝑖  is 

the new set of forces. In the limit of an infinite number of atomic configurations, it is acquired that 
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∫ [(𝑓𝑖 − 𝑓ℋ𝑖
𝑛𝑒𝑤)  𝑢𝑗]

ℝ3𝑁
𝜌ℋ(𝑢)𝑑𝑢 = 0 (2. 64) 

Eqn. (2.64) is the self-consistent equation needed to be solved in this approach. The converged results 

obtained by the QSCAILD and SSCHA method have been verified in the sense of equivalent [136]. 

Our temperature-dependent approach refers to the minimization of forces and quantum thermal mean-

square displacement matrix in QSCAILD. In particular, the calculation of the thermal mean square 

displacement matrix in temperature-dependent phonon calculations is using the method of random 

displacements from the canonical ensemble of harmonic oscillators, which the theoretical and 

numerical details are demonstrated as followings.  

The probability to find the system with the atomic displacements  𝒖  based on the harmonic 

approximation is given by [64], 

𝜌(𝒖) = 𝐶 ∙ 𝑒𝑥𝑝 (−
1

2
𝒖𝑇𝜮−1𝒖) (2. 65) 

where 𝐶 is a coefficient and 𝜮 is the quantum covariance matrix as, 

𝜮𝑢𝜿𝛼 𝑢
𝜿′𝛽

=
1

2√𝑚𝜿𝑚𝜿′  
∑𝜎𝒒𝑗

2 ∙ 𝑒𝒒𝑗
𝜿𝛼  𝑒𝒒𝑗

𝜿′𝛽
 ∗

𝒒,𝑗

 (2. 66) 

which represents the variance of any two elements, i.e., displacements of the atom 𝜿 and 𝜿′ along 

direction 𝛼 and 𝛽, respectively. 𝑚𝜿 and 𝑒𝒒𝑗
𝜿𝛼 are the atomic mass and the eigenvectors of the phonon 

mode (𝒒, 𝑗). 𝜎𝒒𝑗
2  is the square of the normal length of mode (𝒒, 𝑗) written as, 

𝜎𝒒𝑗
2 = 

ℏ

𝜔𝒒𝑗
(1 + 2𝑛𝒒𝑗) (2. 67) 

where 𝜔𝒒𝑗, and 𝑛𝒒𝑗 are the eigenvalues of the phonon mode (𝒒, 𝑗) and the Bose-Einstein distribution 

mentioned in Eqn. (2.36), respectively. Then we can obtain the probability distribution function, 

namely density matrix, by 

𝜌(𝒖) =  𝐶 ∙ 𝑒𝑥𝑝(− ∑
√𝑚𝜿𝑚𝜿′

2𝜎𝒒𝑗
2  𝑒𝒒𝑗

𝜿𝛼 𝑒𝒒𝑗
𝜿′𝛽

 𝑢𝛼(𝜿) 𝑢𝛽(𝜿′)

𝛼𝛽𝜿𝜿′𝑗

) (2. 68) 
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Therefore, the atomic configurations can be sampled according to the probability distribution function 

in Eqn. (2.68). In this work, the sampling of atomic displacements in present temperature-dependent 

phonon calculations is processed by a convenient numerical way. It is found that 𝒬𝒒𝑗 is complex with 

real and imaginary parts denoted by 𝑅𝑒[𝒬𝒒𝑗] and 𝐼𝑚[𝒬𝒒𝑗], respectively, and there exists the relations 

of the normal coordinates at 𝒒 and −𝒒 shown as followings, 

𝒬𝒒𝑗 + 𝒬𝒒𝑗
∗ = 2𝑅𝑒[𝒬𝒒𝑗] 

𝒬𝒒𝑗 − 𝒬𝒒𝑗
∗ = 2𝑖 𝐼𝑚[𝒬𝒒𝑗] 

𝑅𝑒[𝒬𝒒𝑗] = 𝑅𝑒[𝒬−𝒒𝑗] 

𝐼𝑚[𝒬𝒒𝑗] = −𝐼𝑚[𝒬−𝒒𝑗] (2. 69) 

where 𝑅𝑒[𝒬𝒒𝑗], 𝑅𝑒[𝒬−𝒒𝑗], 𝐼𝑚[𝒬𝒒𝑗] and 𝐼𝑚[𝒬−𝒒𝑗] are real. The atomic displacements expressed in 

Eqn. (2.26) with another phase convention is  

𝒖(𝒍𝜿) =  
1

√𝛺
 ∑ 𝒬𝒒𝑗(𝜿) 𝑒𝒒𝑗

𝜿 ∙ 𝑒𝑖𝒒∙𝑹(𝒍𝜿)

𝒒,𝑗

 (2. 70) 

The calculation of a certain configuration can be performed at two main regions where the set of wave 

vectors is separated as shown in figure 2.2. It is seen that the two sets of wave vectors in Brillouin zone 

are A region including 𝒒 =
𝑮

2
  (Brillouin zone boundary) and center (Г point), and B region including 

the half of the set of commensurate q-points (either 𝒒 or −𝒒) except that in A region. Note that 𝑮 is 

the reciprocal lattice of the crystal and the relations between it and direct lattice 𝑹 are constructed as, 

𝒂𝑖 ∙ 𝒃𝑗 = 𝜹𝑖𝑗  

𝑹 = 𝑛1𝒂1 + 𝑛2𝒂2 + 𝑛3𝒂3   

𝑮 = 𝑚1𝒃1 + 𝑚2𝒃2 + 𝑚3𝒃3  (2. 71) 

where the Kronecker delta 𝜹𝑖𝑗  equals one when 𝑖 = 𝑗 and is zero otherwise. The coefficients of 𝑛 

and 𝑚 are integers defining the vertex, and the three primitive translation vectors 𝒂𝑖 and 𝒃𝑗  of the 

direct and reciprocal lattice, respectively. 

If the wave vectors 𝒒 in Brillouin zone boundary of A region, the phase in Eqn. (2.70) is simplified as,  

𝑒𝑖𝒒 ∙ 𝑹 =  𝑒𝑖𝜋𝑛 = 𝑐𝑜𝑠(𝜋𝑛) + 𝑖 ∙ 𝑠𝑖𝑛(𝜋𝑛) =  𝑐𝑜𝑠(𝜋𝑛)   𝑛 = 1,2,… (2. 72) 
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Combined with the relations in Eqn. (2.69) and (2.72), the atomic displacements of the system, which 

is expressed in Eqn. (2.70), therefore can be given by, 

𝒖(𝒍𝜿) =
1

√𝛺
 {∑ 𝒬𝒒𝑗𝑒𝒒𝑗

𝜿 𝑐𝑜𝑠(𝒒 ∙ 𝑹(𝒍𝜿))

𝒒∈𝐴

+ 
1

√2
∑[(𝑅𝑒[𝒬𝒒𝑗] + 𝑖𝐼𝑚[𝒬𝒒𝑗])𝑒𝒒𝑗

𝜿 𝑒𝑖𝒒∙𝑹(𝒍𝜿)

𝒒∈𝐵

+ (𝑅𝑒[𝒬𝒒𝑗] − 𝑖𝐼𝑚[𝒬𝒒𝑗])𝑒𝒒𝑗
𝜿 ∗

𝑒−𝑖𝒒∙𝑹(𝒍𝜿)]} 

           =
1

√𝛺
 {∑ 𝒬𝒒𝑗𝑒𝒒𝑗

𝜿 𝑐𝑜𝑠(𝒒𝑹(𝒍𝜿))

𝒒∈𝐴

+ √2 ∑ 𝑅𝑒[𝒬𝒒𝑗]𝑅𝑒[𝑒𝒒𝑗
𝜿  𝑒𝑖𝒒∙𝑹(𝒍𝜿)] −  𝐼𝑚[𝒬𝒒𝑗]𝐼𝑚[𝑒𝒒𝑗

𝜿  𝑒𝑖𝒒∙𝑹(𝒍𝜿)]

𝒒∈𝐵

}  

(2. 73)

 

It should be noticed that the calculations in B region can be chosen at any regions B1 or B2 owing to 

the symmetry of B1 and B2 region.  Here, we restrict our attention to the q-space for the sampling of 

the harmonic oscillators and it is straightforward to obtain the normal distribution of 𝑅𝑒[𝒬𝒒𝑗] or 

𝐼𝑚[𝒬𝒒𝑗] from the following expression as, 

𝑃 (𝑅𝑒[𝒬
𝒒𝑗

]) = 𝑃 (𝐼𝑚[𝒬
𝒒𝑗

])  =
1

√2𝜋𝜎𝒒𝑗
2  

 𝑒
−

(𝑅𝑒[𝒬𝒒𝑗])
2

2𝜎𝒒𝑗
2

 (2. 74) 

where  

𝜎𝒒𝑗
2 = 〈| 𝒬𝒒𝑗|

2
〉 = 〈(𝑅𝑒[𝒬

𝒒𝑗
])

2
〉 = 〈(𝐼𝑚[𝒬

𝒒𝑗
])

2
〉 =  

ℏ

𝜔𝒒𝑗
(1 + 2𝑛𝒒𝑗) (2. 75) 

Obviously, Eqn. (2.75) and (2.67) are equivalent, which means the covariance matrix for real and 

imaginary part of the displacement are same. With the normal distribution expressed in Eqn. (2.71), 

the real and imaginary part of the displacements can be separately sampled from canonical ensemble 

of harmonic oscillators, and be combined as the random displacements, which allows for simultaneous 

update of both phonon frequencies and eigenvectors, mimicking well the real situation where a crystal 

system is thermally populated at the finite temperatures.    
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The workflow of the temperature-dependent phonon calculations in this work is sketched in figure 2.3. 

Initially, the phonon calculations without temperature are performed based on the set of the ground 

state forces acting on some displaced atoms obtained from the ab initio calculation engine. This is the 

usual and simple phonon calculations as before, so-called harmonic phonon calculations. Then, in next 

steps of the phonon calculations at finite temperatures, a new set of displaced configurations with 

random displacements are generated from the probability distribution of normal coordinates at 𝒒 space 

described by the phonon frequencies and eigenvectors computed at commensurate points. Once the 

atomic configurations with displacements are constructed, the forces calculations for all atoms in each 

configuration are performed with ab initio calculations. With the new set of force-displacement data, 

the force constants in current step can be constructed, which results in the eigenvalues and eigenvectors 

of the phonon modes. In this way, the anharmonicity is renormalized into the harmonic phonon 

frequencies and thus the effective harmonic force constants can be computed iteratively from the 

atomic forces and the corresponding atomic displacements. 

Phonopy [137] is an open source package for the phonon calculations within the harmonic and quasi-

harmonic approximations based on the finite-difference supercell approach [37,138,139]. In terms of 

the force constants calculator in Phonopy, only one atom is displaced in each supercell to obtain forces 

in the supercell and many supercells with different configurations of displacements are required to 

satisfy the degrees of freedom of force constants under the symmetry (see figure 2.4 (a)). The default 

value of the finite displacement for an atom is 0.01 Å in Phonopy. However, by using random 

displacements introduced in this work, all atoms can be displaced simultaneously in each supercell (see 

figure 2.4 (b)). With all these snapshots of atomic displacements, the sets of forces are then computed 

via first-principles calculations.  

For a better fitting of the force constants with a number of force-displacement datasets, an external 

fitting engine for the force constants based on the supercell approach, so-called ALM [140], is 

suggested to be utilized instead of the default force constants calculator used in Phonopy. Combined 

with the group theory, an irreducible set of force constants are extracted from the symmetrically 

independent elements in the force constants and the constraints of translational and rotational 

invariance between them. The fitting method of least squares in ALM is used to estimate the effective 

harmonic force constants by minimizing the atomic forces according to the Eqn. (2.58). Note that at 

each step, it is better to use as many force-displacement datasets as possible to improve the fitting 

ability. 

The total energy and force calculation can be performed at any external first-principles energy-force 

calculation engines, such as VASP package [127–130] used in this work. It should be emphasized that 

it is more difficult to fit the force constants since the lack of the crystal symmetry and seriously crystal 
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distortion. This is happened if there exists strongly random displacements at the extremely higher 

temperatures, which results in more calculation iterations and computationally expensive to obtain the 

converged phonon dispersions. Additionally, to release the computational stress, it is suggested that 

the force calculations can be started with less displaced configurations until the calculations are 

converged under the criteria [45]. Based on the initially converged results, the calculations are 

continued to be performed with more sets of the displaced configurations to improve the accuracy of 

the calculations. On the other hand, by using the reweighting technique, the calculations can be 

accelerated with the previous atomic configurations as mentioned in SSCHA approach. In present 

method, a simple way is adopted instead of using the reweighting one. The sets of forces-displacements 

in previous steps are introduced into that of the current step according to a mixing (memory) parameter, 

which results in a well-converged result by a quickly self-consistent process. 

Owing to the better treatment of the effective force constants and anharmonic phonon frequencies 

generated by the temperature effect, the temperature-dependent phonon calculations introduced in this 

work allows us to assess the structural stability at finite temperatures, which are expected to be an 

efficient and robust approach for systematical investigations of the lattice dynamics of abundant 

materials. Furthermore, the conventional approach for calculating the lattice thermal conductivity is 

accurate enough in terms of weakly anharmonic materials, whereas it collapses for those materials are 

dynamically unstable at 0 K. Therefore, it is necessary to develop the temperature-dependent phonon 

calculations, which is highly demanded for predicting the thermal transport properties at finite 

temperatures, especially for a high-efficiency high-throughput screening of materials, and for 

evaluating the related performance in potential applications and devices. 

 

Figure 2.2. A simple schematic of the Brillouin zone (left side) which can be separated into two regions, i.e., A 

and B regions (right side). In A region, the calculations would be performed with the wave vectors 𝒒 at the center 

point (black circle) or the Brillouin zone boundary (black borders). In B regions made of the equivalent B1 and 

B2 region, the calculations would be performed with the wave vectors 𝒒 at any half of the B regions (blue area) 

including the diagonal.  The reciprocal lattice denoted as 𝑮 represents the vector pointing from the Г center of a 

Brillouin zone to another one.  
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Figure 2.3. Sketch of the temperature-dependent phonon calculations in this work. The green, blue and red 

diamond box denote the different calculation tools, i.e., VASP, Phonopy and ALM. The steps in blue dashed box 

and green dashed box are the harmonic and temperature-dependent phonon calculations, respectively.   

 

Figure 2.4. Sketch of the displaced patterns where the atomic displacements generated by (a) finite-displacement 

supercell approach and (b) random displacement approach. In the former case, only one atomic displacement is 

generated in one displaced pattern illustrated as the red circle with an arrow denoting the displacement. In the 

latter case, multiple atomic displacements are occurred simultaneously due to the finite temperatures.  
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Lattice dynamics of rocksalt-type halides and 

chalcogenides 

3.1 Introduction 

Thanks to the development of computing power and advanced algorithms, the physical methodologies 

of ab initio calculations for electronic ground states and lattice vibrational states are improved rapidly, 

which is of great importance in its powerful prediction of electronic, optic, magnetic and dynamic 

properties of the target materials [1–21]. The rocksalt-type binary compounds are structurally simple 

and mostly semiconductors or insulators with large electronic band gaps, which are the desirable 

materials for fabricating the novel microelectronic and optical devices [92–107]. Meanwhile, they have 

been widely studied owing to their strikingly distinctive lattice thermal conductivities, which draws 

extensive research attentions to understand theoretically and experimentally the underlying 

mechanisms of the vibrational and the heat transfer phenomena.  

Most of the alkali halides, with the chemical formula MX where M-site elements are the monovalent 

alkali metals and X-site elements are the halogens, belong to the family of the rocksalt structures. In 

these bulk crystals, each ion is surrounded by six ions with the opposite charges, which forms the 

octahedral coordination geometry. Apart from the structural simplicity and shining prospects for the 

electronic devices, their thermodynamic properties and heat transport performance have gained a huge 

interest. As a representative, the sodium chloride, namely NaCl with the space group of Fm3
_

m, is well 

known for its high melting temperature of about 1074 K and stable phase up to a pressure of about 30 

GPa. A large number of the experimental and theoretical information have been collected for 

examining the thermodynamic behavior of NaCl-like structure. However, it still remains the challenge 
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of a comprehensive understanding of the microscopic mechanisms behind some thermodynamic 

phenomena. Previous studies have shown that NaCl is a strongly anharmonic crystal with weak ionic 

bonds and is usually stable at room temperature [109,110]. It has relatively large thermal expansion, 

which in turn results in the low thermal conductivity due to its light atomic mass. Unfortunately, both 

of the harmonic and quasiharmonic approximation are insufficient to describe the anharominicity of 

NaCl at finite temperatures, which is manifested by the large discrepancies between the measurements 

and the conventional phonon calculations of the phonon frequencies and the lattice thermal 

conductivities. On the other hand, vigorous attempts have been made to study the II-VI binary 

compounds MX with the simple rocksalt structure consisted of a chalcogen X and a divalent alkaline-

earth metal M. Most of these materials are potential candidates for the electronic, optic and thermal 

applications. For instance, the experimentally well-characterized magnesium oxide (MgO) which 

belongs to the rocksalt-type oxides, have been extensively studied for many applications on electric 

devices, catalysis and thin film depositions as a substrate [24,56,141]. However, the reports on the 

vibrational phenomena and the thermodynamics of the II-VI rocksalt structures are very scarce.   

Therefore, it is necessary to improve the phonon calculation tool for obtaining the accurate vibrational 

properties and the thermal properties. In this work, the temperature-dependent approach based on the 

first-principles phonon calculations is derived, which the mathematical details of the calculation 

procedure have been demonstrated in Chapter 2, and is adopted on NaCl compound firstly. Many 

efforts have been devoted to comprehensively understand the lattice dynamical properties of the simple 

and useful rocksalt structures, which a large amount of available data can be compared with that of the 

improved phonon calculations. Therefore, it is useful to conduct the high-throughput screening of the 

selected binary rocksalt compounds, not only for systematically investigating the thermodynamic 

behavior of these compounds at room temperature, but also for checking the validity and applicability 

of the temperature-dependent phonon calculations.  

In Chapter 3, a class of compounds for 32 binary rocksalt-type compounds of which the elements come 

from the group I, II, VI, and VII, are systematically investigated in order to study their lattice dynamics 

and thermal transport properties by means of our developed approach of temperature-dependent 

phonon calculations as mentioned in Chapter 2. The computational details such as the physical and 

mathematical theory and the setting parameters used in the calculations are introduced in section 3.2. 

To prove the robustness of the parameters chosen in first-principles and high-throughput calculations, 

an example of NaCl compound is carefully examined by a series of calculations using different 

potential factors and convergence criteria, such as the energy cutoff, exchange-correlation functional, 

supercell size and sampling points, etc. After the determination of all calculation parameters, the 

application of the improved first-principles phonon calculations are performed for all selected rocksalt-



33 

type compounds.  In section 3.3, the calculated results of the basic phonon properties, i.e. phonon band 

structures and phonon density of states, are discussed firstly. Furthermore, the lattice thermal 

conductivity of these compounds are computed based on the fitted force constants incorporating the 

temperature information. The numerical results are also compared with available experimental data 

and other calculation results. To find the common and distinctive features of the lattice thermal 

conductivities among all these compounds, the mode contributions of the lattice thermal conductivity 

and the distributions of phonon lifetime and scattering are analyzed in details. Finally, a conclusion of 

the work in this chapter will be presented. 

 

Figure 3.1. (a) Crystal structure model of the binary rocksalt compound MX, where the cation M and anion X 

are denoted as orange and green balls, respectively. (b) A simple periodic table. The elements selected for 

combinations of 32 rocksalt crystal structures MX are denoted by blue area. The element M is from group I and 

II, and element X is from group VII and VI.  
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3.2 Methods 

3.2.1 Computational details 

To compare with the available experimental data of the vibrational and thermal dynamical properties 

of the rocksalt structure, 32 binary compounds MX with rocksalt structure were examined, where the 

elements are chosen from the group I-VII (M = Li, Na, K, Rb; X = F, Cl, Br, I) and group II-VI (M = 

Mg, Ca, Sr, Ba; X = O, S, Se, Te), respectively. As shown in figure 3.1 (b), the crystal configuration 

of binary rocksalt-type structure can be considered easily as two interpenetrating face-centered cubic 

lattices, where each ion has a coordination number of six.  

The first-principles calculations were carried out within thee framework of density functional theory 

using the projector-augmented wave (PAW) [142] potentials as implemented in Vienna ab initio 

simulation package (VASP) [127–130]. The generalized gradient approximation (GGA) [143,144] of 

Perdew, Burke, and Ernzerhof revised for solids (PBEsol) [145] was employed in the treatment of the 

exchange correlation functional because of its excellent performance to predict the lattice constants for 

a wide class of materials, which is important for the accuracy of the next phonon calculations. In each 

force calculation, the total energy of each system was minimized until the energy difference between 

two consecutive electronic steps becomes less than 10-8 eV.  

In order to make a balance between the computational cost and accuracy, the related parameters, i.e., 

supercell size, k-point mesh and kinetic energy cutoff, used in force calculations were carefully 

evaluated. The details of the calculation parameters are in section 3.2.2. As the evaluation of the 

parameters, it is found that the 520 eV energy cutoff for the plane-wave basis set and the Brillouin 

zone was sampled by 2 × 2 × 2 k-point mesh centered at the Г point generated by Monkhorts-Pack 

scheme, predicted almost the same qualitative and quantitative phonon properties as the combinations 

of the other parameters. In addition, compared with the phonon band structures using other supercell 

sizes, 2 × 2 × 2 supercell size containing 64 atoms was sufficient to obtain the accurate results. It should 

be noticed that the lattice constant of the each compound was obtained from the experimental results 

(see Table 3.1 and 3.2) [146–154], which thereby incorporates the volume effect of the lattice thermal 

expansion regarding the temperature. However, it is necessary to examine the difference of the lattice 

constants from the calculations and experiments in case of the lack of the available experimental data. 

The examinations of the different lattice parameters optimized using different exchange correlation 

potentials are also presented in section 3.2.2. In this work, if the experimental date unfortunately were 

unavailable, the lattice constants were selected from that optimized by DFT calculations with the 

exchange correlation potential of PBEsol. In particular, the elastic constants and bulk modulus were 
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also calculated to examine the mechanical stability of compounds. For each structure with or without 

strain effect, it was fully relaxed until both of the force and energy reach their convergence thresholds 

of 10-3 eV/Å and 10-3 eV, respectively. The theory of elastic constants and bulk modulus are presented 

in section 3.2.3. 

In phonon calculations at 0 K, the second-order force constants were computed through the supercell 

approach with finite-displacement method as implemented in Phonopy [9]. Then the phonon 

calculations at ambient temperature were started from the second-order force constants at 0 K with the 

100 atomic configurations sampled by the random displacements approach, where the anharmonic 

effect of the temperature was incorporated. Both of the theoretical analyses and numerical workflow 

have been illustrated in section 2.3. The effective harmonic force constants were computed self-

consistently by rebuilding another new 100 displaced configurations in each iteration. These iterative 

calculations would be stopped until the free energy convergence becomes less than 1 meV/atom, which 

results in the well-converged phonon band structures and densities of states. The phonon band 

structures computed by different number of the displaced configurations per iteration have been tested. 

In figure 3.2 (d), it is evident that the phonon band structures are almost identical, which is independent 

of the number of sampled configurations. Considering the ionic polarization of the compounds, the 

non-analytical term correction to the harmonic dynamical matrix was included to treat the LO-TO 

splitting around the Γ point. In the ionic crystals, the dynamical matrix can be separated into two parts 

with and without analytic dependence of the wave vector q. The physical theory and technical details 

of the non-analytic correction are discussed in section 3.2.4.  

Furthermore, the lattice thermal conductivities (LTC) of these compounds were studied as 

implemented in the Phono3py package [40]. In this work, both the second- and the third-order force 

constants were estimated via the ALM interface in Phono3py using the force-displacement datasets. 

The LTC values were computed by solving the linearized phonon Boltzmann transport equation with 

single-mode relaxation time approximation (SMRTA). As a comparison, the calculated LTC values 

obtained from the fully direct solutions to the linearized phonon Boltzmann transport equation (LBTE) 

and from experiments in previous studies are also presented in this work. It should be noticed that the 

natural phonon-isotope scattering was also incorporated in the LTC calculations.  

The q-point mesh of 28 × 28 × 28 sampled in Brillouin zone were set for the LTC calculations for all 

the crystal structures. The lattice constants used for the calculations mentioned as before were selected 

from the experimental values if available, or from ones optimized by the PBEsol pseudopotential 

otherwise. The second- and third-order force constants were extracted from the force-displacement 

datasets by the ALM [77] interface after the temperature-dependent phonon calculations converged 

well. Here, the force constants fitting algorithm in ALM rather than the default one in Phonopy and 
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Phono3py was used because of the better fitting results with the less noise through the former way. 

Before these parameters were determined, a series of calculations were conducted to examine the 

impact of the different variables on thermal conductivity, which are demonstrated in section 3.2.2.     

 

Table 3.1. Lattice constants [146–149], volumes of the unit cells, calculated and experimental [155] bulk 

modulus of the rocksalt compounds in the group I-VII chosen in the present work.  

I-VII a (Å) V (Å3) 
B (GPa) 

This work Expt. 

LiF 4.030 16.36 70.18 67.10 

LiCl 5.056 32.31 36.17 29.80 

LiBr 5.490 41.37 24.73 23.80 

LiI 6.022 54.60 18.07 17.20 

NaF 4.620 24.65 51.29 46.50 

NaCl 5.645 44.97 24.00 24.00 

NaBr 5.961 52.95 20.40 19.90 

NaI 6.473 67.80 15.17 15.10 

KF 5.348 38.24 35.89 30.50 

KCl 6.292 62.29 17.23 17.50 

KBr 6.601 71.91 15.32 14.80 

KI 7.066 88.20 11.80 11.70 

RbF 5.657 45.26 29.63 26.30 

RbCl 6.577 71.14 16.81 15.60 

RbBr 6.889 81.72 13.77 13.00 

RbI 7.336 98.71 10.90 10.50 
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Table 3.2. Lattice constants [150–154], volumes of the unit cells, calculated and experimental [155] bulk 

modulus of the rocksalt compounds in the group II-VI chosen in the present work.  

II-VI a (Å) V (Å3) 
    B (GPa) 

This work Expt. 

MgO 4.210 18.65 162.66 165.00 

MgS 5.190 34.95 77.79  

MgSe 5.460 40.69 65.54  

MgTe 6.020 54.54 41.26  

CaO 4.811 27.84 104.83 114.00 

CaS 5.689 46.03 56.02  

CaSe 5.916 51.76 48.42  

CaTe 6.348 63.95 37.48  

SrO 5.160 34.35 89.17 88.00 

SrS 6.024 54.65 49.14  

SrSe 6.234 60.57 43.38  

SrTe 6.660 73.85 33.31  

BaO 5.540 42.51 76.25 61.00 

BaS 6.387 65.14 44.28  

BaSe 6.595 71.71 38.98  

BaTe 7.007 86.01 30.02   

 

3.2.2 Influence of the choices of the calculation parameters 

The first-principles phonon calculations may influenced by many factors such as the choices of the 

lattice parameter, supercell size, plane wave energy cutoff, exchange correlation potential and sampling 

mesh in reciprocal space. Therefore, it is necessary to check these potential factors before applied to 

all the other structures. Taking NaCl compound as an example, a 2 × 2 × 2 supercell was constructed 

and the atomic forces were calculated with atomic displacements of 0.01 Å at 0 K. For the different 

energy cutoff from 350 eV to 520 eV, the 2 × 2 × 2 k-point mesh was fixed, and for the different k-

point sampling meshes from 2 to 6, the energy cutoff of 520 eV was fixed in each calculation (600 eV 

for LiF compound), respectively. The results are illustrated in figure 3.2 (a) and (b). It is obvious that 

there are subtle changes of the phonon band structures among the force calculations with different k-
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grids and energy cutoff. It should be emphasized that the plane-wave energy cutoff was specified to be 

at least 20% higher than the recommended “ENMAX” values in PAW datasets according to the 

suggestions in previous study, which is considered as a significant impact on the LTC values. Here, 

the plane-wave cutoff energy of 520 eV was fixed for the DFT calculations for all of the compounds 

except LiF (600 eV was the default value in this work), since this value is high enough to obtain the 

accurate result.  

In terms of the supercell size, the 2 × 2 × 2 and 4 × 4 × 4 supercells were constructed, respectively, 

with the energy cutoff of 520 eV and 2 × 2 × 2 k-point mesh. From figure 3.2 (c), it is found that both 

of the phonon band structures with two sizes of the supercells are almost overlapped with only slight 

discrepancies happened during some symmetry paths. Therefore, in all of the force calculations, the 

compounds were enlarged as 2 × 2 × 2 supercells, the kinetic energy cutoff of 520 eV and Г-centered 

Monkhorst-Pack grids of 2 × 2 × 2 division of the reciprocal unit cell were set, which avoid the 

expensive computational costs while maintaining enough accuracy of the results. 

Furthermore, the different exchange correlation functionals, i.e., LDA, PBE and PBEsol, in force 

calculations using experimental lattice constants were evaluated with fixed settings as mentioned above. 

The phonon band structures computed by different potentials at 0 K and 300 K are displayed in figure 

3.2 (e) and (f). It is clearly seen that the phonon frequencies of LDA functional are systematically lower 

than that of PBE and PBEsol functionals. Beyond the above potentials, there are lots of accurate 

exchange-correlation functionals can be measured such as hybrid functional and van der Waals density 

functionals, which results in very expensive electronic calculations. Generally, the main purpose of 

choosing different exchange correlation potentials is to obtain the well-predicted lattice parameter of 

the given structure at ground state. Considering the structures were built with experimental lattice 

constants in this work, the exchange correlation functional of PBEsol was thereby chosen as it can 

average the effect of the other two estimation results, which leads to more accurate phonon properties 

with respect to that of the experiment. Comparing the figure 3.2 (e) and (f), for each calculated result 

within a certain functional, the occurred phonon frequency shifting from 0 K to 300 K demonstrates 

that the anharmonic phonon-phonon interactions play the critical role in temperature-dependent 

phonon calculations, which cannot be simply solved by the method for the volume-dependent phonon 

calculations such as quasiharmonic approximation. 

Although the lattice constants used for the first-principles phonon calculations were selected from the 

experimental values in this work, it is critical to see the differences of the results with different choices 

of the lattice parameters. In geometry optimization, using high-energy cutoff of 520 eV and 5 × 5 × 5 

k-point mesh samplings, all 2 × 2 × 2 supercell structures calculated with LDA, PBE and PBEsol 

functionals, were fully relaxed until the Hellmann–Feynman force on each atom was less than 10-5 
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eV/Å. The difference of the phonon band structures at finite temperatures between the calculated and 

the experimental results [156] are illustrated in figure 3.3 (a). It is apparent that phonon frequencies of 

the optical branches and that of the acoustic branches in the paths of Г–X and Г–L–W computed by 

LDA potential are generally higher than other calculated results, whereas phonon frequencies 

computed by PBE are the lowest during most of the high-symmetry paths. The phonon band structures 

computed by PBEsol potential are roughly in the middle of the other two band structures. At Г point, 

the experimental measurement of LO and TO branches are close to calculated results of PBEsol and 

of PBE potential, respectively. At X point, the optical branches calculated by the PBE functional rather 

than other functionals agrees well with measurement. Other phonon branches at high-symmetry points 

computed by PBE and PBEsol functionals are in a relatively good match with experimental data.  

In addition, the phonon band structures calculated using the experimental lattice constant with different 

exchange correlation functionals are also compared with experimental measurement. As presented in 

figure 3.3 (b), the band structures calculated by LDA and PBE functionals are different from those in 

panel (a) of which the phonon frequencies of LDA calculation become systematically higher than that 

of PBE calculation. It should be emphasized that the comparison between calculated and experimental 

data is mainly to verify the validity of this approach. In fact, the small discrepancies of the results using 

different functionals are not necessary if we using the same functional for all calculations where the 

effects are considered to be exerted on all results. Therefore, PBEsol functional was determined to use 

in this work for the next high-throughput investigations of all rocksalt-type compounds.  

In figure 3.3 (c), the available experimental data of 80 K [156] are shown as a comparison with 

calculated data using the experimental lattice constants with PBEsol functional. According to the 

experimental data of 80 K and few of 300 K at X, L and Г point, the phonon frequencies of NaCl 

compound show a small extent of softening as the temperature increases. Compared with the 

experimental data, it is obviously seen that both of the two calculated phonon band structures using 

PBEsol potential at 80 K and 300 K are in good agreement with the measurements, especially at L 

point in Brillouin zone, respectively.  

As mentioned before, the exchange correlation potential has an impact on the structural optimization, 

which further influences the phonon properties and the LTC. Here, all of the lattice constants optimized 

by different potentials are listed in table 3.3. As we found, the lattice constants and the static volumes 

of the unit cells optimized by the different exchange correlation functionals follow the trends of 𝑎𝐿𝐷𝐴 <

𝑎𝑃𝐵𝐸𝑠𝑜𝑙 < 𝑎𝐸𝑥𝑝𝑡. < 𝑎𝑃𝐵𝐸  and 𝑉𝐿𝐷𝐴 < 𝑉𝑃𝐵𝐸𝑠𝑜𝑙 < 𝑉𝐸𝑥𝑝𝑡. < 𝑉𝑃𝐵𝐸 , respectively. This is similar to the 

usual performance that the LDA functional underestimates the static volume of structure whereas the 

PBE functional overestimates it. The PBEsol functional, to some degree, makes a balance between 

these two kinds of functionals.  
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It is interesting to see how much difference of the LTC values using the different lattice constants. In 

order to improve the accuracy of the calculations, the number of the sampling q-point mesh in 

reciprocal space should be carefully checked at first. For the rocksalt structures considered here, the 

thermal conductivity tensor can be described by a single component, i.e., 𝜅𝑥𝑥 = 𝜅𝑦𝑦 = 𝜅𝑧𝑧 = 𝜅 and 

the off-diagonal terms are zero. In figure 3.4, the LTC values of the NaCl compound with respect to 

the number of sampled q-points are illustrated. As seen from the figure, the trend of these two well-

converged curves is identical and the values of SMRTA method are lower than that from LBTE method. 

Since both of the two curves become flatten with more than 2×104 samplings, it is appropriate and 

enough to choose 28 × 28 × 28 q-point mesh denoted as red circles in both of the two curves, for 

obtaining the well-converged LTC values. 

Then, the calculated LTC values at room temperature using the lattice constants from the first-

principles calculations and from the experimental data are presented in table 3.3 from comparison. It 

is evident that the larger LTC values are obtained by the exchange correlation potentials given smaller 

lattice constants, i.e., 𝜅𝑃𝐵𝐸 < 𝜅𝐸𝑥𝑝𝑡. < 𝜅𝑃𝐵𝐸𝑠𝑜𝑙 < 𝜅𝐿𝐷𝐴 as  𝑎𝐿𝐷𝐴 < 𝑎𝑃𝐵𝐸𝑠𝑜𝑙 < 𝑎𝐸𝑥𝑝𝑡. < 𝑎𝑃𝐵𝐸 . 

However, if using the experimental lattice constants, the trend of the calculated LTC values becomes 

𝜅𝐿𝐷𝐴 < 𝜅𝑃𝐵𝐸𝑠𝑜𝑙 < 𝜅𝑃𝐵𝐸  as 𝑎𝐿𝐷𝐴 < 𝑎𝑃𝐵𝐸𝑠𝑜𝑙 < 𝑎𝑃𝐵𝐸 . For NaCl coumpound, the calculated LTC using 

SMRTA method with PBEsol potentials are in a very good agreement with the experimental data. 

Therefore, all the calculations in this work were performed with their experimental lattice constants 

and the PBEsol functional to be expected to obtain the LTC values comparable to the measurements. 

Table 3.3. Experimental and calculated lattice constants using different exchange correlation potentials, volumes 

of each unit cells, and the LTC values at room temperature with the different lattice constants and the exchange 

correlation potentials. The experimental data are also presented in the parentheses.  

  a (Å) V (Å3) 
κxx (W/m-K) 

SMRTA LBTE 

Calc. / LDA 5.465 163.26 10.68 11.91 

Calc. / PBE 5.693 184.46 6.97 7.96 

Calc. / PBEsol 5.604 175.99 8.34 9.35 

Expt. / LDA 5.645 179.88 6.21 6.95 

Expt. / PBE - - 8.09 9.17 

Expt. / PBEsol - - 7.12 8.00 

      ( 7.10 ) 
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Figure 3.2. Phonon band structures of NaCl compound at 0 K where the force calculations are using different (a) 

k-point mesh samplings in Brillouin zone, (b) energy cutoff values, and (c) supercell sizes, respectively. (d) 

Phonon band structures of NaCl at 300 K with respect to the different atomic configurations. Phonon band 

structures computed using different exchange correlation functionals, i.e. LDA, PBE, PBEsol denoted as solid 

red, blue lines and dot black lines with the room-temperature experimental lattice constants at (e) 0 K and (f) 300 

K, respectively. 



42 

 

Figure 3.3. Phonon band structures of NaCl compound (a) at room temperature calculated using the different 

lattice constants optimized by different exchange correlation functionals, (b) at room temperature calculated 

using the room-temperature experimental lattice constants but different exchange correlation functionals, and (c) 

at 80 K calculated using the experimental lattice constants with PBEsol functional. The different exchange 

correlation functionals are LDA, PBE and PBEsol which are denoted as light grey, grey and black lines, 

respectively. The experimental data measured at 80 K marked in panel (c), and at 300 K marked in panel (a) and 

(b), are denoted as cross (+) and cross () marks, respectively [156]. 
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Figure 3.4. Calculated LTC values of NaCl compound at room temperature with respect to the number of sampled 

q-point samplings in Brillouin zone. Experimental lattice constants and exchange correlation functional of 

PBEsol were employed in the calculations.  

3.2.3 Elastic constants and bulk modulus 

The elastic constants are significant for evaluating the mechanical stability of a bulk crystal and the 

thermodynamic behaviors of materials at finite temperature or pressure [157]. According to the theory, 

the homogeneous stresses can be expressed in terms of the strains in a linear form as  

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙 𝜖𝑘𝑙           (𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3) (3. 1) 

where σ𝑖𝑗 and 𝜖𝑘𝑙 are the components of the 3  3 stress and strain matrix, respectively. 𝑐𝑖𝑗𝑘𝑙 are the 

components of the 3  3  3  3 elastic stiffness constants tensor of the bulk. By using the Voigt 

notation, it is possible to write Eqn. (3.1) in a compact form as  

𝜎𝑖 = 𝐶𝑖𝑗 𝜖𝑗           (𝑖, 𝑗 = 1, 2, … , 6) (3. 2) 

where now 𝐶𝑖𝑗 are the components of the second order elastic stiffness tensor expressed by a 6 × 6 

symmetric matrix. The stress and strain components are abbreviated into a single suffix given by 

[

𝜎11 𝜎12 𝜎13 

𝜎21 𝜎22 𝜎23 

𝜎31 𝜎32 𝜎33 

]   →  [

𝜎1 𝜎6 𝜎5 

𝜎6 𝜎2 𝜎4 

𝜎5 𝜎4 𝜎3 

]  
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[

𝜖11 𝜖12 𝜖13 

𝜖21 𝜖22 𝜖23 

𝜖31 𝜖32 𝜖33 

]   →  

[
 
 
 
 
 

 

𝜖1 

1

2
𝜖6 

1

2
𝜖5 

1

2
𝜖6 𝜖2 

1

2
𝜖4 

1

2
𝜖5 

1

2
𝜖4 𝜖3 ]

 
 
 
 
 

 (3. 3)  

Elastic stiffness tensor is derived from the second-order derivative of the total energies versus strain, 

which the elastic energy ∆𝐸 of a bulk under strain in the harmonic approximation is given as  

∆𝐸(𝑉, 𝜖) = 𝐸(𝑉, 𝜖) − 𝐸(𝑉0, 0) =
𝑉0

2
 ∑ 𝐶𝑖𝑗 𝜖𝑖𝜖𝑗

6

𝑖,𝑗=1

 (3. 4) 

where 𝐸(𝑉, 𝜖) and  𝐸(𝑉0, 0)  are the total energies of the lattice cells with and without strain, 

respectively. In fact, the number of independent elastic constants, to some degree, can be reduced by 

considering the crystal symmetry. Taking face-centered cubic structure as an example, there are only 

three independent elastic constants components, i.e., 𝐶11, 𝐶12 and 𝐶44, and the corresponding elastic 

energy can be calculated as, 

∆𝐸(𝑉, 𝜖) = 

𝑉0

2
[𝜖1 𝜖2 𝜖3 𝜖4 𝜖5 𝜖6]

[
 
 
 
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0

𝐶12 𝐶11 𝐶12 0 0 0

𝐶12 𝐶12 𝐶11 0 0 0

0 0 0 𝐶44 0 0

0 0 0 0 𝐶44 0

0 0 0 0 0 𝐶44 ]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
𝜖1

𝜖2

𝜖3

𝜖4

𝜖5

𝜖6]
 
 
 
 
 
 
 

 (3. 5) 

By applying strain 𝜀 = (0, 0, 0, 𝛿, 𝛿, 𝛿), (𝛿, −0.5𝛿,−0.5𝛿, 0, 0, 0) and (𝛿, 𝛿, 𝛿, 0, 0, 0) to the structure, 

respectively, the elastic energy can be rewritten as  

∆𝐸1(𝑉, 𝜖) =  
3

2
 𝑉0 𝐶44 𝛿

2 

∆𝐸2(𝑉, 𝜖) =  
3

2
  𝑉0 (𝐶11 − 𝐶12 ) 𝛿

2  

∆𝐸3(𝑉, 𝜖) =  
3

2
𝑉0 (𝐶11 + 2𝐶12 ) 𝛿

2 (3. 6) 
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By solving Eqn. (3.6), the elastic constants 𝐶11, 𝐶12 and 𝐶44 can be obtained, which thereby the bulk 

modulus can be computed by  

𝐵 =
1

3
( 𝐶11 +  2𝐶12) (3. 7) 

For each rocksalt structure in this work, the lattice parameters were set to be changed from the -0.03 

to 0.03 Å with an increment of 0.005 Å along the strain axis mentioned as above. The second-order 

polynomial was used to fit the elastic energy and thus the elastic constants and bulk modulus can be 

consequently obtained. 

3.2.4 LO-TO splitting and non-analytical term correction 

The LO-TO splitting is a phenomenon that the degeneracy between the longitudinal optical mode (LO) 

and the transverse optical mode (TO) branched at the Brillouin zone center are lifted. This is happened 

in most of the ionic crystal structures, such as NaCl compound, for which the long-range electric fields 

associated with long wavelength phonons are responsible. It is known that the long wavelength optical 

mode is related to the opposite direction of the atomic motion in the unit cell. For the ionic crystal with 

different charges of the elements, this long wavelength limit will generate the different local electric 

field experienced by LO and TO mode due to the long-range character of the Coulomb interaction, 

which consequently leads to a gap between LO and TO branches in the phonon band structures.  

In ionic crystal, the behavior of the dynamical matrix as 𝒒 → 𝟎 is better to be treated with LO-TO 

splitting in ionic structures. In the 𝒒 → 𝟎 limit, the dynamical matrix can be decomposed into the 

analytic and non-analytic contributions [141,158–162], 

𝐷𝛼𝛽
𝑁𝐴𝐶(𝜿𝜿′, 𝒒 → 𝟎) = 𝐷𝛼𝛽(𝜿𝜿′, 𝒒 = 𝟎) + 𝐷𝛼𝛽

𝑁𝐴(𝜿𝜿′, 𝒒 → 𝟎) 

= 𝐷𝛼𝛽(𝜿𝜿′, 𝒒 = 𝟎) + 
4𝜋𝑒2

𝑉0
 
∑ 𝑞𝛾𝛧𝜿,𝛾𝛼

∗
𝛾  ∑ 𝑞𝛾′𝛧𝜿,𝛾′𝛽  

∗
𝛾′

∑ 𝑞𝛼  𝜖𝛼𝛽
∞  𝑞𝛽 𝛼𝛽

 (3. 8) 

where 𝜖𝛼𝛽
∞  is the high-frequency static dielectric tensor, and 𝛧𝜿,𝛾𝛼

∗  is the Born effective charge tensor 

of the atom 𝜿. Note that the splitting depends on the direction where one approaches the Г point.  

Therefore, nonanalytic component of the solution to the dynamical matrix is associated with the Born 

effective charges and the LO/TO splitting phenomenon. As a prerequisite, the static dielectric constant 

tensors and Born effective charge tensors should be calculated by density functional perturbation 

theory as implemented in VASP package, which these tensors are symmetrized by their space- and 
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point-group operations and a sum rule was employed in the Born effective charge tensors [163,164]. 

To obtain the Born effective charge tensors, the plane-wave cutoff energy of 400 eV was set and the 

Brillouin zones were sampled by 8 × 8 × 8 k-point mesh in reciprocal spaces of the unit cells of the 

rocksalt-type structures in calculations. 

3.3 Results and discussion 

3.3.1 Phonons  

In this section, the phonon properties of the 32 binary compounds as mentioned in 3.2 obtaining by the 

temperature-dependent phonon calculations will be discussed. Before talking to the phonon results, the 

cation-anion radius ratios for these compounds are illustrated in figure 3.5 as a supplementary for 

simply determining the structural stability. Additionally, the mechanical stabilities for these rocksalt-

type compounds were also examined through calculating the elastic constants and bulk moduli 

presented in table 3.1 and 3.2. It is obvious that the calculated bulk moduli are in good agreements with 

the experimental data at room temperature, which demonstrates the cells used in this work are 

mechanically stable.  

All of the calculated phonon band structures along high-symmetry points and density of states are 

plotted in figure 3.6 - 3.9. In the periodic table shown in figure 3.1 (a), the atomic mass of the element 

from the top to the bottom of each group and that of the element from the left to the right of group 

becomes heavier. According to the Eqn. (2.19), for compounds in the group I-VII or II-VI, the phonon 

frequencies of the compound consisted of heavier cation and anion become systematically lower. It is 

also expected the phonon frequencies of compounds in the group I-VII become systematically lower 

than that in the group II-VI. For each compound, its phonon band structures consist of six branches, 

which are three acoustic and three optical branches, due to the primitive cell of each compound 

containing two atoms. From the figures, it is obvious that the longitudinal optic and transverse optic 

phonon modes are split at Г center point, which is the feature of the ionic crystals. Note that at room 

temperature, all these rocksalt-type structures are dynamically stable without any imaginary 

frequencies shown in phonon band structures. 

According to the lattice dynamical theory, the phonon band gap between the high and low frequency 

zones will be formed because of the large atomic mass difference. Here, we take LiX (X = F, Cl, Br, I) 

structures as the examples. For LiCl, LiBr and LiI compounds, there exists obvious band gaps between 

the acoustic and optic branches due to the larger atomic mass differences of 29, 73 and 120, whereas 
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for LiF compound there is no clear band gap due to the only small atomic mass difference of 12 between 

Li and F element. This can be clearly understood by the partial phonon density of states (PDOS), which 

describes the contributions of different atoms to the total PDOS. It is seen that, for LiF compound, the 

high-frequency optic phonons higher than 12 THz and the low-frequency acoustic phonons lower than 

10 THz are dominated by the motion of Li and F atoms, respectively. At the frequency of 10 ~ 12 THz, 

there are mixed vibrational modes generated by Li and F atoms. However, the atomic mass differences, 

or equivalently, the mass ratios of LiCl, LiBr and LiI compounds larger than that of LiF compound 

lead to a separation between the high- and low-frequency branches. In general, the band gap becomes 

larger (smaller) as the absolute mass difference increases (decreases). Equivalently, the band gap is 

larger (smaller) as the atomic mass ratio increases (decreases). It should be reminded here that the 

atomic mass ratio is the cation and the anion mass ratio if the former is larger than the latter or the 

anion and the cation mass ratio otherwise. In addition, for LiCl, LiBr and LiI compounds, the high-

frequency optic phonons and the low-frequency acoustic phonons are attributed to the motion of the 

cations and the anions, respectively. In fact, the light and heavy atoms mainly contribute to the high- 

and low-frequency branches, respectively. Apart from LiCl, LiBr and LiI, this is apparently observed 

in those compounds with an explicit band gap such as I-VII compounds of NaBr, NaI, KBr, KI, RbF, 

RbCl, and II-VI compounds of MgSe, MgTe, CaTe, SrO, BaO, BaS. The rest of the compounds without 

a band gap, the mixing contributions to the branches are quite complex.  

Furthermore, the flatness of the TO branches along all of the symmetry paths of LiBr and LiI 

compounds are illustrated as the clearly sharpest peaks at the frequency around 6 THz in their phonon 

densities of states. The nearly flat TO branches can also be found in phono band structures of NaI, RbF, 

MgTe, SrS and BaS compounds, which the atomic mass differences of these compounds are relatively 

larger than that of the remaining compounds. In addition, it is found that there is an intersection of the 

LA and TO branches along the symmetry path of Г-X in the phonon band structures of LiF compound. 

This leads to the phenomenon that for the small q vectors approaching to the Г point, the frequencies 

of the TO branches should be higher than that of the LA branches, whereas for the large q vectors the 

LA branches are above the TO branches. For the remaining three compounds, the relationship among 

the four kinds of phonon branches can be observed as LO > TO > LA > TA. The LO phonon branches 

of all these compounds show relatively large dispersion extent along the symmetry path of Г-X, which 

is explained as the atomic arrangement and bonding of the rocksalt structure.  

In order to further understand the temperature dependence of the phonon properties, the phonon band 

structures at different temperatures are investigated. Here, still taking NaCl as an example, the phonon 

band structures and densities of states at 80, 300, 500, 800 and 1000 K are calculated. The phonon 

band structures where the lattice thermal expansion [165] is also taken into account are plotted in figure 
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3.10 (a). The phonon band structures soften slowly as the temperature increases from 80 to 300 K and 

the softening extent becomes stronger as the temperature increases from 300 K. The phonon 

frequencies of TO and LO branches at Г point are changed within about 0.5 and 0.4 THz, respectively, 

and the phonon densities of states are slightly moved to lower frequencies as the temperature increases. 

On the contrary, the temperature dependence of the phonon band structures harden dramatically as the 

temperature increases without considering the lattice thermal expansion effect, and the phonon 

densities of states are moved in an opposite direction to the higher frequencies compared with those in 

figure 3.10 (a). From the figure 3.10 (b), it is seen that the hardening extent of TO and LO branches at 

Г point are about 0.8 and 0.5 THz, respectively. As a comparison, the phonon band structures with 

only the lattice thermal expansion effect considered are also plotted as shown in figure 3.10 (c). The 

phonon band structures soften quickly as the temperature increases, which is evidently seen that the 

phonon frequencies of TO and LO branches at Г point change with about 1.7 and 1 THz, respectively.  

Although the trend of the phonon dispersion curves with increased temperature are same as those 

considered with both the temperature and thermal expansion effects, the rate of phonon softening are 

different, which the former show a stronger temperature dependence than the latter.  

The calculated temperature-dependent phonon frequencies of TO and LO branches at Г point in 

Brillouin zone are illustrated in figure 3.11 (a). As a comparison, some available experimental [166]  

and theoretical [109] data are also presented. It is found that the calculated TO branches by including 

the temperature and lattice expansion effects in this work are in both qualitatively and quantitatively 

good match with that of the available measurements and previous phonon calculations including the 

4th order anharmonicity from 100 to 600 K, which all of them show the weak temperature dependence. 

The calculated phonon frequencies of LO braches soften by 0.2 THz from 100 to 600 K and 0.4 THz 

from 100 to 1000 K, respectively, and unfortunately there is no direct data to refer. It should be 

emphasized that despite the calculated results of the previous and present theoretical work are precisely 

close, the computational cost of the latter is much cheaper due to the fourth-order anharmonic term is 

not considered. Additionally, in the previous study, the phonon frequencies computed by phonon 

calculations in quasiharmonic approximation (QHA) change significantly as the temperature increases. 

In particular, the TO branches mostly soften by more than 1 THz from 100 to 600 K. Contrary to the 

poor performance of QHA calculations, our approach of the temperature-dependent phonon 

calculations including both of the temperature and thermal expansion effects is valid and accurate for 

the rocksalt-type structures at finite temperatures. This is also expected to be useful for understanding 

the lattice dynamical properties of those strongly anharominc materials while the conventional phonon 

calculations are inadequate for predicting that. 
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The distributions of randomly atomic displacements generated at different temperatures are displayed 

in figure 3.11 (b). Each sample corresponds to the displacement of one atom deviated from its 

equilibrium position at the current self-consistent step. The total number of one atomic configuration 

at each step are same, i.e., 100 atomic configurations per step, which then the total number of samples 

for displacements are 6400 per iteration. The probability density function of the normal distributions 

of the first and final step are almost overlapped at 80 and 300 K whereas those curves are different 

from 500 to 1000 K, which means that it is easier to obtain the convergence of the calculations at lower 

temperatures. As the temperature increases, the mean displacement of the samples at the finally 

converged step becomes larger, which is about 0.13, 0.21, 0.28, 0.33, and 0.4 Å, respectively. The 

variance value of the samples becomes larger manifested by that the distribution curve becomes wider 

and the central peak becomes shorter, which means the more randomly atomic configurations are 

generated by the higher temperatures. Noticed that it is more difficult to obtain the converged force 

constants if there exists strongly random displacements, since the lack of the crystal symmetry and 

even seriously distorted cell and results in more calculation iterations and computationally costs. 

Therefore, by the random displacements method, a number of the atomic configurations are suitably 

chosen per iteration, which well mimics the variously vibrations in a thermally populated supercell 

with the temperature-affected displacements rather than the fixed small ones. 

 

Figure 3.5. Ionic radii of cations and anions defined by (a) Pauling and (b) Shannon, respectively. Here, 32 

rocksalt-type compounds of the group I-VII and II-VI compounds are denoted as blue circles and red diamonds, 

respectively. The dashed grey lines represent the minimum radius ratio of a stable ionic geometry of octahedron 

and cube, respectively. 
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Figure 3.6. Phonon band structures and phonon densities of states (PDOS) of (a) LiF, (b) LiCl, (c) LiBr, (d) LiI, 

(e) NaF, (f) NaCl, (g) NaBr and (h) NaI. Each PDOS curve is plotted on the right hand side of the corresponding 

phonon band structure. In PDOS, contributions of cation and anion of each compound to the total PDOS (shaded 

area) are denoted as solid and dashed black lines, respectively.  
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Figure 3.7. Phonon band structures and phonon densities of states (PDOS) of (a) KF, (b) KCl, (c) KBr, (d) KI, 

(e) RbF, (f) RbCl, (g) RbBr and (h) RbI. Each PDOS curve is plotted on the right hand side of the corresponding 

phonon band structure. In PDOS, contributions of cation and anion of each compound to the total PDOS (shaded 

area) are denoted as solid and dashed black lines, respectively. 
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Figure 3.8. Phonon band structures and phonon densities of states (PDOS) of (a) MgO, (b) MgS, (c) MgSe, (d) 

MgTe, (e) CaO, (f) CaS, (g) CaSe and (h) CaTe. Each PDOS curve is plotted on the right hand side of the 

corresponding phonon band structure. In PDOS, contributions of cation and anion of each compound to the total 

PDOS (shaded area) are denoted as solid and dashed black lines, respectively. 
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Figure 3.9. Phonon band structures and phonon densities of states (PDOS) of (a) SrO, (b) SrS, (c) SrSe, (d) SrTe, 

(e) BaO, (f) BaS, (g) BaSe and (h) BaTe. Each PDOS curve is plotted on the right hand side of the corresponding 

phonon band structure. In PDOS, contributions of cation and anion of each compound to the total PDOS (shaded 

area) are denoted as solid and dashed black lines, respectively. 
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Figure 3.10. Phonon band structures and phonon densities of states of NaCl compound at 80, 300, 500, 700 and 

1000 K by considering (a) temperature and lattice thermal expansion effects, (b) temperature effect, and (c) lattice 

thermal expansion effect. In phonon band structures, the temperature changes from low to high denoted by solid 

lines with the color from light to dark. In phonon densities of states, the contributions of Na and Cl atoms to the 

total PDOS (shaded area) are denoted as solid and dashed black lines, respectively. 
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Figure 3.11. Temperature-dependent (a) phonon frequencies of the TO and LO branches at Г point in the Brillouin 

zone and (b) distributions of atomic displacements generated by random displacements method. In panel (a), all 

the data are calculated in this work except the renormalization and QHA calculations [109] denoted as Ref. a and 

the measurements [166] denoted as Ref. b. In panel (b), the solid blue and black lines are the probability density 

function of the normal distribution to which the data fit. 
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3.3.2 Lattice thermal conductivity 

From the previous discussion, it is known that using temperature-dependent phonon calculations, the 

second-order force constants can be well estimated by a large number of force-displacement datasets. 

In terms of the lattice thermal conductivity (LTC), it is required to estimate at least the third-order force 

constants for calculating the phonon-phonon interactions. In present work, the calculated LTC values 

of 32 rocksalt-type compounds are listed in table 3.4. As a comparison, the calculated LTC without the 

phonon-isotope scattering are also presented in table 3.5. It is found that for some compounds the 

phonon-isotope scattering effect significantly reduces the LTC value whereas for some compounds it 

has negligible impact. The maximum and minimum of the reductions when considering phonon-

isotope scattering are about 18 % and 0.1 %, respectively. Notice that the all the LTC values in this 

work implicitly comprise the phonon-isotope scattering effect, since it is a natural phenomenon and 

generally considered by the measurements and other calculations. Additionally, in the next discussion 

the calculated LTC values in this work are default as the results calculated by SMRTA method, since 

they are much closer to the experimental data compared with that of the LBTE method. 

To have a direct look of these results, the calculated LTC are shown in figure 3.12 with respect to the 

available measurements [167,168]. In figure 3.12 (a), 18 rocksalt compounds are shown and their 

calculated and experimental LTC are very close. Among them, 14 compounds are also compared with 

previous theoretical LTC values [110]. In figure 3.12 (b), the LTC values obtained by the conventional 

calculation based on the harmonic phonon calculation including the three phonon scattering as 

perturbation (simply called HA + 3ph) are denoted as red triangles. The LTC values calculated by 

solving self-consistent phonon equation considering the first-order correction from quartic-order 

anharmonic term (simply called SCP 3 + 4ph) are denoted as grey diamonds. It is obvious that the LTC 

computed by the HA + 3ph calculations tend to generally underestimate the experimental values, which 

is confirmed as in the same trend as the other theoretical work. By including up to four-phonon 

interactions into self-consistent phonon equation, the calculated LTC values tend to be lower than that 

of the HA+3ph calculations. Note that the LTC of NaF and BaO calculated in this work are higher than 

experimental values whereas they are to be largely reduced and close to the measurements in both of 

the HA + 3ph and SCP 3 + 4ph calculations. This is mainly due to the different lattice parameters used 

in calculations, which is known to all that the inclusion of the lattice thermal expansion will more or 

less influence the phonon frequencies. In this work, the lattice parameters are chosen to be the room 

temperature experimental data, which are generally smaller than those parameters optimized by PBE 

functional in the theoretical study. Moreover, the error of measurements and the different models of 

LTC may results in the discrepancies. Despite the difference exists, all these calculated LTC values 

are in the same order of magnitude as the experimental ones. 
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The calculated LTC are also shown as a function of the primitive cell volume per atom (figure 3.12 (c)) 

and the mass ratio of cation and anion in each compound (figure 3.12 (d)), respectively. The trend of 

distribution in the former scatter is similar to the previous theoretical study [169]. From the latter 

scatter, it is found that the LTC value tend to be lower when the discrepancy of the cation and anion 

mass becomes larger. From the above analyses, the high-throughput LTC values for rocksalt-type 

compounds calculated in this work are comparable to the experimental measurements, which verifies 

that this temperature-dependent phonon approach is universally applicable to the rocksalt-type 

structure and is important to accurately predict their heat transfer properties. 

To understand the underlying mechanisms of the LTC for these rocksalt-type compounds, the (𝒒𝑗) 

mode-contribution 𝜅𝒒𝑗 to the LTC are analyzed, which is defined [40] based on the Eqn. (2.50) as  

𝜅𝒒𝑗 =
1

𝑉0
 𝐶𝒒𝑗𝒗𝒒𝑗 ⊗ 𝒗𝒒𝑗𝜏𝒒𝑗

  (3. 9) 

The corresponding cumulative LTC is defined as  

𝜅𝑐(𝜔) = ∫
1

𝑁
∑𝜅𝒒𝑗𝛿(𝜔′ − 𝜔𝒒𝑗)

𝒒𝑗

𝑑𝜔′
𝜔

0

 (3. 10) 

Then the mode-contribution of LTC for each compound as a function of the phonon frequency are 

plotted. From the figure 3.13-3.20 (a), it is found that the high- and low-frequency phonon modes play 

the different roles in the LTC, since the former and the later make little and much contributions to the 

total LTC values, respectively. As shown in Eqn. (3.9), the mode-contribution LTC is consisted of the 

mode-heat capacity, group velocity and lifetime. To clearly understand how each component influence 

the LTC, the lifetimes and heat capacities with respect to the phonon frequencies are also displayed in 

figure 3.13-3.20 (b) and (c), respectively. Here, taking NaCl compound as an example to discuss. In 

figure 3.21 (a), as the phonon frequency increases from the 2 THz, the cumulative LTC increases 

rapidly, while it becomes stable as almost a constant when the frequency is higher than 5.5 THz. The 

cumulative LTC values are dominated up to almost 79 % by those phonon modes whose frequencies 

are between 2 and 5.5 THz. The distribution of the outer-product of the group velocities as a function 

of the phonon frequency is defined as [40],  

𝑤(𝜔) =
1

𝑁𝑉0
∑𝒗𝒒𝑗 ⊗ 𝒗𝒒𝑗 𝛿(𝜔 − 𝜔𝒒𝑗)

𝒒𝑗

 (3. 11) 
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As shown in figure 3.21 (b), 𝑤(𝜔) curve shows a similar contour as the mode-contribution LTC curve, 

which in the former the major distribution of the phonon modes in 𝑤(𝜔) is assembled when the phonon 

frequencies are between 2 and 5.5 THz. It is evidently that the distribution still exists when the 

frequencies are higher than 5.5 THz while the mode-contribution LTC value is almost vanished. As a 

comparison, in figure 3.21 (c), most of the phonon modes whose frequencies are lower than 5.5 THz 

have relatively larger lifetimes while those whose frequencies higher than 5.5 THz have constantly 

small lifetimes. Some of the phonon modes whose frequencies are lower than 2 THz have very long 

lifetimes. Furthermore, the mode heat capacity of overall the phonon frequency is almost a constant. 

Therefore, the mode-contribution LTC of the phonon modes whose frequencies are higher than 5.5 

THz, is mainly influenced by those almost vanished phonon lifetimes in spite of the nonzero 

distribution of 𝑤(𝜔) at higher frequencies. 

Furthermore, the three-phonon scattering rates (inverse of phonon lifetimes) of 32 rocksalt-type 

compounds are illustrated in figure 3.22 (I-VII) and 3.23 (II-VI). The phonon scattering rates are found 

to relate to the phonon densities of states. When there are sharper peaks shown in the PDOS at a certain 

phonon frequency range, the corresponding phonon modes have higher phonon scattering rates. On the 

contrary, when the PDOS at a certain frequency range are more flatten, the corresponding phonon 

scattering are relatively lower. In particular, this phenomenon is apparent for the decay processes where 

the distributions of the phonon scattering rates at a certain frequency range are generally larger than 

that for the collision processes. In addition, the phonon scattering rates arising from the collision 

processes are generally larger than that arising from the decay processes. As discussed in section 3.3.1, 

the sharp peaks shown in PDOS owing to the small extent of the dispersion of the phonon branches, 

which is further related to the large mass differences between the cations and anions. For those 

compounds whose atomic mass differences are small, their PDOS curves are flatten and less sharp 

peaks, which thereby the phonon scattering rates over all phonon frequencies are stable. Hence, it is 

considered that the atomic mass difference of the cation and anion in the rocksalt structure has an 

important impact on the phonon scattering rates. 
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Table 3.4. Calculated LTC values at room temperature of 32 rocksalt-type compounds. The available 

experimental values [167,168] are also presented in this table. 

I-VII SMRTA LBTE Expt. II-VI SMRTA LBTE Expt. 

LiF 17.92 19.68 17.6 MgO 60.46 68.53 60.0 

LiCl 7.21 7.51  MgS 22.08 23.57  

LiBr 2.90 3.05 2.3 MgSe 9.40 9.83  

LiI 2.10 2.25  MgTe 3.11 3.15  

NaF 28.19 34.58 18.4 CaO 23.16 24.85 27.0 

NaCl 7.12 8.00 7.1 CaS 26.11 29.69  

NaBr 3.33 3.49 2.8 CaSe 14.95 15.37  

NaI 1.92 2.05 1.8 CaTe 9.13 9.31  

KF 8.68 9.39 7.8 SrO 10.87 11.15 12.0 

KCl 7.38 8.85 7.1 SrS 10.13 10.51  

KBr 3.32 3.41 3.4 SrSe 16.76 19.01  

KI 2.63 2.79 2.6 SrTe 10.25 10.63  

RbF 3.29 3.42 2.9 BaO 4.04 4.43 2.3 

RbCl 3.15 3.23 2.8 BaS 5.95 6.22  

RbBr 3.75 4.45 3.8 BaSe 10.30 11.10  

RbI 2.27 2.41 2.3 BaTe 9.43 10.53  

 

Table 3.5. Calculated LTC values without the phonon-isotope scattering at room temperature. 

I-VII SMRTA LBTE II-VI SMRTA LBTE 

LiF 18.27 20.30 MgO 74.104 88.25 

LiCl 7.61 7.99 MgS 24.40 26.41 

LiBr 2.99 3.16 MgSe 9.91 10.45 

LiI 2.11 2.26 MgTe 3.19 3.24 

NaF 28.19 34.58 CaO 24.46 26.52 

NaCl 7.47 8.45 CaS 29.51 34.39 

NaBr 3.37 3.53 CaSe 16.99 17.65 

NaI 1.92 2.05 CaTe 9.60 9.83 

KF 8.82 9.56 SrO 10.91 11.19 

KCl 7.66 9.35 SrS 10.26 10.68 

KBr 3.35 3.45 SrSe 18.79 22.12 

KI 2.63 2.79 SrTe 10.74 11.22 

RbF 3.30 3.44 BaO 4.05 4.44 

RbCl 3.19 3.28 BaS 6.00 6.30 

RbBr 3.79 4.53 BaSe 10.81 11.78 

RbI 2.28 2.41 BaTe 9.93 11.26 
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Figure 3.12. Calculated LTC values of the selected rocksalt-type compounds at 300 K with respect to (a) and (b) 

available experimental lattice thermal conductivities, (c) volume of the compounds, and (d) atomic mass ratio of 

cation and anion. All the calculated data using present approach are marked as blue circles. In panel (a) 18 

rocksalt-type compounds are plotted regarding the experimental data [167,168]. In panel (b), 14 rocksalt-type 

compounds are shown as comparison, and the theoretical data [110] calculated considering 3-phonon and 3+4-

phonon interactions in panel  are marked as red triangles and grey diamonds, respectively. 
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Figure 3.13. Thermodynamic properties of LiX (X = F, Cl, Br, I) compounds. (a) Cumulative (solid black lines) 

and mode contributions (dashed black lines) of the calculated LTC values 𝜅(𝜔) at 300 K, respectively. (b) 

Phonon lifetimes at 300 K. Each dot corresponds to a phonon mode sampled in the Brillouin zones. (c) Mode 

heat capacities at 300 K. Each circle corresponds to a phonon mode sampled in the Brillouin zones.   
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Figure 3.14. Thermodynamic properties of NaX (X = F, Cl, Br, I) compounds. (a) Cumulative (solid black lines) 

and mode contributions (dashed black lines) of the calculated LTC values 𝜅(𝜔) at 300 K, respectively. (b) 

Phonon lifetimes at 300 K. Each dot corresponds to a phonon mode sampled in the Brillouin zones. (c) Mode 

heat capacities at 300 K. Each circle corresponds to a phonon mode sampled in the Brillouin zones.   
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Figure 3.15. Thermodynamic properties of KX (X = F, Cl, Br, I) compounds. (a) Cumulative (solid black lines) 

and mode contributions (dashed black lines) of the calculated LTC values 𝜅(𝜔) at 300 K, respectively. (b) 

Phonon lifetimes at 300 K. Each dot corresponds to a phonon mode sampled in the Brillouin zones. (c) Mode 

heat capacities at 300 K. Each circle corresponds to a phonon mode sampled in the Brillouin zones.   
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Figure 3.16. Thermodynamic properties of RbX (X = F, Cl, Br, I) compounds. (a) Cumulative (solid black lines) 

and mode contributions (dashed black lines) of the calculated LTC values 𝜅(𝜔) at 300 K, respectively. (b) 

Phonon lifetimes at 300 K. Each dot corresponds to a phonon mode sampled in the Brillouin zones. (c) Mode 

heat capacities at 300 K. Each circle corresponds to a phonon mode sampled in the Brillouin zones.   
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Figure 3.17. Thermodynamic properties of MgX (X = O, S, Se, Te) compounds. (a) Cumulative (solid black lines) 

and mode contributions (dashed black lines) of the calculated LTC values 𝜅(𝜔) at 300 K, respectively. (b) 

Phonon lifetimes at 300 K. Each dot corresponds to a phonon mode sampled in the Brillouin zones. (c) Mode 

heat capacities at 300 K. Each circle corresponds to a phonon mode sampled in the Brillouin zones.   
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Figure 3.18. Thermodynamic properties of CaX (X = O, S, Se, Te) compounds. (a) Cumulative (solid black lines) 

and mode contributions (dashed black lines) of the calculated LTC values 𝜅(𝜔) at 300 K, respectively. (b) 

Phonon lifetimes at 300 K. Each dot corresponds to a phonon mode sampled in the Brillouin zones. (c) Mode 

heat capacities at 300 K. Each circle corresponds to a phonon mode sampled in the Brillouin zones.   
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Figure 3.19. Thermodynamic properties of SrX (X = O, S, Se, Te) compounds. (a) Cumulative (solid black lines) 

and mode contributions (dashed black lines) of the calculated LTC values 𝜅(𝜔) at 300 K, respectively. (b) 

Phonon lifetimes at 300 K. Each dot corresponds to a phonon mode sampled in the Brillouin zones. (c) Mode 

heat capacities at 300 K. Each circle corresponds to a phonon mode sampled in the Brillouin zones.   



68 

 

Figure 3.20. Thermodynamic properties of BaX (X = O, S, Se, Te) compounds. (a) Cumulative (solid black lines) 

and mode contributions (dashed black lines) of the calculated LTC values 𝜅(𝜔) at 300 K, respectively. (b) 

Phonon lifetimes at 300 K. Each dot corresponds to a phonon mode sampled in the Brillouin zones. (c) Mode 

heat capacities at 300 K. Each circle corresponds to a phonon mode sampled in the Brillouin zones.   
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Figure 3.21. Thermodynamic properties of NaCl compound with respect to the phonon frequency at 300 K. (a) 

Cumulative (solid grey lines) and mode contributions (solid black lines) of the calculated LTC values 𝜅(𝜔), 

respectively. (b) Distribution of the outer-product of the group velocities divided by primitive cell volume. (c) 

Phonon lifetime. Each dot corresponds to a phonon mode sampled in the Brillouin zones. (c) Mode heat capacity. 

Each circle corresponds to a phonon mode sampled in the Brillouin zones.   
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3.4 Conclusion 

In this chapter, a series of calculations of lattice dynamics and thermal properties for the rocksalt-type 

compounds were conducted at finite temperatures based on our developed temperature-dependent 

phonon calculations. Firstly, taking NaCl compound as an example, all the potential factors may 

influence the calculations were carefully examined. Then, 32 rocksalt-type compounds were 

systematically investigated in detail by the first-principles based phonon calculations at room 

temperature, which give rise to the temperature dependence of the phonon band structures and densities 

of states. The phonon frequencies of phonon band structures at room temperature are dramatically 

different from that of 0 K, which can be attributed to the strong anharmonic effects in rocksalt structures.  

Furthermore, the LTC values of all compounds were calculated by the SMRTA method and the LBTE 

method implemented within Phono3py framework, which the temperature effect was incorporated into 

the second- and third-order force constants. The detailed analyses of the phonon frequency 

dependencies of the phonon properties, such as the mode-contribution LTC, the mode heat capacity, 

the phonon lifetime and scattering rate were discussed, which demonstrated the relationship among 

these properties in the anharmonic rocksalt-type compounds. In addition, the LTC values computed by 

our improved first-principles anharmonic phonon calculations are accurate and in a better agreement 

with the measurements compared to other theoretical approaches in previous study.  

In summary, the temperature-dependent phonon approach in present work provides a relatively simple 

and accurate way to compute the lattice anharmonic phonon and thermal transport properties at finite 

temperatures based on the first-principles phonon calculations instead of using the harmonic 

approximation where the breakdown may happen because of the strong anharmonicity. The application 

of this approach to a series of the rocksalt-type compounds shows useful information of the phonon 

band structures and LTC values. The good agreement between the calculated and experimental results 

demonstrates the validity of our developed approach and the universal applicability for studying the 

thermal properties of the materials. 
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Lattice dynamics of cubic perovskite-type 

oxides ABO3 (A = Ca, Sr, Ba; B = Ti, Zr, Hf) 

4.1 Introduction 

The perovskite oxides with a chemical formula ABO3 have been extensively studied from both the 

experimental and theoretical viewpoints for a few decades. In perovskite-type oxide structure, A is the 

rare- or the alkaline-earth metal which have a coordination number of twelve, whereas the transition 

metal located at the B-site which have a coordination number of six. The configuration of cubic 

perovskite-type oxide ABO3 is shown in figure 4.1. The A, B and O atoms are placed at the corner, 

body center and face center of a cubic lattice, respectively, which thereby forms the space group of Pm

3
_

m. A large amount of the research of the perovskite materials focus on the applications to electronic, 

magnetic and energy-related devices owing to their unique piezoelectric, ferroelectric and optical 

properties. For example, the capacitors, ferroelectric and magnetic memories, photoelectric sensors 

and photovoltaics are the well-known popular utilizations of perovskite oxides. In addition, the 

perovskite oxides have a variety of the structural configurations. For instance, at ambient temperature 

and pressure, calcium titanate (CaTiO3) has the orthorhombic structure and exhibits a phase sequence 

from orthorhombic to tetragonal and finally to high symmetry cubic structure with the increasing 

temperature of 1380 K, 1500 K and 1580 K, respectively [170]. Similar to CaTiO3, barium titanate 

(BaTiO3) also has a complicated phase diagram, where the symmetry changes from rhombohedral to 

orthorhombic to tetragonal and finally to cubic with the increasing temperature of 183 K, 278 K and 

393 K, respectively [170]. The strontium titanate (SrTiO3) is distinct from the above two compounds, 

which it undergoes a structural phase transition from the tetragonal structure with the low-symmetry 

to the cubic structure with the high-symmetry at about 105 K [124].  
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From the previous experimental and theoretical studies, it is found that the phase diagrams of the 

perovskite oxides are rich regarding different temperatures, which the ideal cubic structure is distorted 

due to many possible factors such as the rotations of octahedron, changes in atomic angles, defects and 

vacancies, and charge differences between A and B cations [121,122]. According to the lattice 

dynamical theory, when the structure is unstable the imaginary eigenvalues would be obtained as the 

solutions to the dynamical equation. The conventional method of the harmonic phonon calculations 

using the atomic forces computed through the density functional theory (DFT) and the finite 

displacement method breaks down when the target structure is unstable at a range of low temperatures, 

since the DFT calculations are defined as the computations for the electronic properties at 0 K. This is 

evidently manifested by the phonon band structures with occurred imaginary frequencies. Therefore, 

it is urgent to improve the current approaches of the phonon calculations by comprising the finite-

temperature impact into the calculations. Once the tool of temperature-dependent phonon calculations 

is developed, the more accurate phonon properties including the temperature effects are acquired, 

which further improving the ability of predicting and evaluating the thermodynamic properties of the 

target structure. 

Although much progress has been made in the experimental synthesis and characterization for the 

perovskite oxide compounds, the theoretical calculations of the thermodynamics are only accurate in 

the descriptions of the ground state properties, which impedes the sophisticated prediction of the 

phonon and thermal properties of these compounds. Only a few experimental and calculated data of 

the lattice thermal conductivity for the cubic perovskite structures are available in the related literatures. 

Hence, it is of great interest to study the lattice dynamics and thermal conductivities of these perovskite 

oxides at finite temperatures. In Chapter 4, the lattice dynamics investigations are given for the cubic 

perovskite-type oxides ABO3 where cation A is and alkaline-earth metal Ca, Sr and Ba, and cation B 

is a tetravalent transition metal Ti, Zr and Hf. By performing the temperature-dependent phonon 

calculations based on the first principles phonon calculations introduced in Chapter 2, the well-

converged phonon properties for all the stable compounds at both of the 300 K and 1000 K are obtained. 

The computational details used in the force and phonon calculations are introduced in section 4.2. Then, 

the phonon band structures and partial phonon densities of states of 300 K and 1000 K are plotted, 

respectively, and are compared with that of 0 K, in order to see the influence of the finite temperatures 

on their vibrational states at extreme high temperature. The vibrational phenomena for different 

compounds are analyzed and discussed in section 4.3. Furthermore, the lattice thermal conductivities 

of the compounds are calculated, whose cubic structure is dynamically stable without imaginary 

frequencies in phonon band structures at finite temperatures, and the changes with respect to the 

temperature are also presented in this section. Finally, a conclusion of the work in this chapter is 

presented.   
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Figure 4.1. The crystal structure model of the cubic perovskite-type oxides ABO3, where the A, B and O atoms 

are denoted as green, blue and grey balls, respectively.  

4.2 Computational details 

All of the first-principles calculations in the present work were performed within the framework of 

density functional theory using the projector-augmented wave (PAW) [142] potentials as implemented 

in Vienna ab initio simulation package (VASP) [127–130]. The generalized gradient approximation 

(GGA) [143,144] of Perdew, Burke, and Ernzerhof revised for solids (PBEsol) [145] was employed in 

the treatment of the exchange correlation functional because of its excellent performance to predict the 

lattice constants for a wide class of materials, which is important for the accuracy of the phonon 

calculations. In each force calculation, the total energy of each system was minimized until the energy 

difference between two consecutive electronic steps become less than 10-8 eV.  

The compounds of the cubic ABO3 structure were investigated, where the A and B elements were 

selected from Ca, Sr, Ba and Ti, Zr, Hf, respectively. All structures were constructed with 2 × 2 × 2 

supercell size including 40 atoms, which was sufficient to obtain the accurate phonon band structures. 

It should be noticed that the lattice constant (see Table 4.1) of the each compound was optimized by 

DFT calculations using the exchange correlation functional of PBEsol due to the experimental data of 

most compounds at high temperature are not available. In addition, PBEsol functional has been widely 

used for well predicting the cell volume and phonon dispersion at 0 K. All the structures were fully 

relaxed until the Hellmann–Feynman force on each atom become less than 10-5 eV Å−1. After 

evaluating the calculated parameters, the 500 eV kinetic energy cutoff was used for the plane-wave 
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basis set, the Brillouin zone was sampled by 2 × 2 × 2 k-point mesh centered at the Г point generated 

by Monkhorts-Pack scheme. 

The phonon calculations for all selected compounds at high temperature of 300 K and 1000 K were 

carried out as implemented in Phonopy package [9]. The effective harmonic force constants were 

computed self-consistently by a new set of 100 displaced configurations per iteration generated by the 

random displacements method. These iterative calculations would be stopped until the free energy 

convergence become less than 1 meV/atom, which leads to the well-converged phonon band structures 

and density of states. Considering the ionic polarization of the compounds, the non-analytical term 

correction to the harmonic dynamical matrix was included to treat the LO-TO splitting around the Γ 

point. The physical theory and technical details of the non-analytic correction have been discussed in 

section 3.2.4.  

The lattice thermal conductivities of these compounds were calculated through Phonon3py 

package [40]. In present work, the second- and third-order force constants were estimated via ALM [77]  

interface in Phono3py from the force-displacement datasets after the temperature-dependent phonon 

calculations converged well. The lattice thermal conductivities were computed by solving the 

linearized phonon Boltzmann transport equation with single-mode relaxation time approximation 

(SMRTA), which are also compared with those obtained from the fully direct solutions of the linearized 

phonon Boltzmann transport equation (LBTE) and from experiments in previous studies. The q-point 

mesh of 28 × 28 × 28 sampled in Brillouin zone was set for the lattice thermal conductivity calculations 

of all the crystal compounds.  

4.3 Results and discussion 

The optimized lattice constants for 9 cubic perovskite-type oxides compounds are presented in table 

4.1. Compared with the experimental values, the PBEsol indeed works remarkably well of predicting 

the lattice constants of the perovskite oxides. Here, the thermal expansion is not taken into account, 

since it has small effect on these compounds as temperature changes [171]. Additionally, most of their 

cubic phases are stable at the extremely high temperature close to 1000 K, which the correspondingly 

experimental data of the cubic phase are close to 1000 K.  

Next, the phonon band structures at 0 and 1000 K for all these cubic structural compounds are plotted 

in figure 4.2. All these compounds except BaHfO3 are dynamically unstable at 0 K. At 1000 K, only 4 

compounds, i.e., SrTiO3, BaTiO3, BaZrO3 and BaHfO3, are dynamically stable without imaginary 
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frequencies. The compounds including calcium are not stable even at extremely high temperature. The 

phonon band structures in present work are in good agreement with previous theoretical results [172], 

except SrHfO3 are dynamically unstable and stable at 1000 K in present and previous work, 

respectively, In fact, the experimental work [173] has been observed that the cubic phase exists at 1353 

K, which our calculation of SrHfO3 are consistent with this observation. It should be emphasized that 

there may exist a problem when calculating the thermal displacement matrix in Eqn. (2.67) since the 

negative value of σ2 arises from the phonon modes with imaginary frequencies demonstrated in Eqn. 

(2.64). To deal with this problem, the imaginary eigenvalues are suggested to be fixed to an arbitrarily 

finite real value. In particular, those imaginary frequencies are treated as the corresponding absolute 

eigenvalues in this introduced approach. In addition, the phonon modes having absolute value smaller 

than the cutoff frequency of 0.01 THz are ignored here. In this way, the phonon frequencies are 

renormalized after some iterations and consequently a well-converged phonon dispersion without any 

imaginary frequencies can be obtained. Otherwise, if the structure is unstable at certain temperature, 

the imaginary frequencies will still exist in the results of the phonon band structures.   

To understand the temperature dependencies of the phonon properties, the phono band structures and 

densities of states for the cubic SrTiO3, BaTiO3, BaZrO3 and BaHfO3 at 300 and 1000 K are computed. 

From figure 4.3, it is seen that lowest and highest phonon branches at 300 and 1000 K are mostly 

overlapped, whereas the lower frequencies especially at the high-symmetry points such as R, Г and M 

point in Brillouin zone are hardening as the temperature increases. In addition, the first peak in phonon 

densities of states for each compound are slightly moved up, which is attributed to those hardening 

phonon branches. Taking cubic SrTiO3 compound as an example, there are two apparent soft modes, 

which have been observed by previous experimental studies. One is arising from the antiferrodistortive 

(AFD) transition with the temperature lower than 105 K, which results in the cubic high symmetry 

changing to the tetragonal low symmetry by rotating the neighboring oxygen octahedra in opposite 

directions [125,126]. From the phonon band structures, this soft mode is centered at R point in the 

Brillouin zone, namely R25. Apart from the R25 soft mode, it is found that another soft mode appears at 

Г point in the Brillouin zone, namely Г15, which is associated with the loss of the ferroelectricity. By 

using temperature-dependent approach, both of these two soft modes existing at ground state disappear 

with elevated temperature. The available experimental measurements of the phonon frequencies for 

SrTiO3 are also presented as a comparison with the calculated phonon band structures. It is seen that 

Г15 branch is overestimated whereas R25 branch is slightly underestimated by the calculations. These 

small discrepancies maybe caused by the lattice constants, the exchange correlation functionals, and 

the measurement errors. Generally, the calculated phonon band structure is in a quite good agreement 

with the available measurements, which demonstrated that the temperature-dependent approach is 

applicable to the perovskite oxides for obtaining the well-converged stable phonon band structures. 
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As mentioned in the introduction (section 4.1), in the conventional phonon calculations of the LTC, 

the lowest-order anharmonicity is considered as a perturbation to the harmonic potential. In this 

assumption, the LTC must be calculated when the harmonic phonon frequencies are completely stable 

without any imaginary frequencies. Thus, it is inaccessible to the LTC of SrTiO3, BaTiO3, BaZrO3 and 

BaHfO3 at 300 and 1000 K, since the imaginary frequencies appear in their phonon band structures at 

0 K. By using the temperature-dependent approach, the renormalized phonon frequencies of each 

compounds at finite temperatures are obtained, which thereby can be further used to calculate their 

LTC values. The calculated LTC values are presented in table 4.2. It is found that the calculated LTC 

values in this work are in consistent match with the experimental LTC data. For BaZrO3 and BaHfO3 

compounds at 300 K, although the LTC values are relatively overestimated by the calculations, they 

are still in the same order of magnitude. Compared with the LTC values calculated by QSCAILD 

approach in previous study, the overall results of this work except BaZrO3 and BaHfO3 at 300 K are in 

better agreement with measurements. Therefore, the temperature-dependent approach is significant for 

the LTC calculations of a given structure with a stable phase at finite temperatures whereas it is 

dynamically unstable at ground state.  

Finally, the calculated LTC values with respect to the temperature for SrTiO3 are illustrated in figure 

4.4 (a). It is clearly seen that the calculated LTC values in this work are systematically lower than the 

previously experimental data [174,175]. Although the discrepancy of the LTC between the calculation 

and the measurements are about 3 W/(m·K), the temperature dependence index of the LTC 𝛼 = 0.7 in 

𝜅 ∝  𝑇−𝛼  in the present study is in a satisfactory agreement with that of the experimental data. 

According to the previous studies [172], the LTC values of the cubic perovskites generally decrease 

more slowly than 𝜅 ∝  𝑇−1 at high temperatures while that of Si and Ge decreases more quickly than 

the same model. The behavior of the present temperature-dependent LTC results is consistent with the 

those in references [76,77,172].  

Furthermore, the mode-contribution of LTC 𝜅(𝜔), the outer product of group velocity 𝑤(𝜔) and the 

lifetimes for SrTiO3 at different temperatures with respect to the phonon frequency are shown in figure 

4.4 (b)-(d). The major contributions to the LTC values are TO modes whereas the highest-frequency 

LO modes have almost no impact on the LTC. When the phonon frequencies are lower than 5 THz, 

the corresponding phonon modes have relatively larger lifetimes, which decrease rapidly as the phonon 

frequencies increase. Between 5 THz and 10 THz, 𝜅(𝜔) are mainly influenced by 𝑤(𝜔) and lifetimes 

when the phonon frequencies are lower and higher than around 7 THz, respectively. Besides, it is 

apparent that as the temperature increases, 𝜅(𝜔), 𝑤(𝜔) and the lifetimes become lower, which thus 

the LTC value become lower. Hence, by deeply investigating SrTiO3 compound, the temperature-

dependent phonon approach introduced in this work is demonstrated to be accurate for predicting the 
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LTC calculations at finite temperatures, which is expected to be applied on more perovskite compounds 

and even other different structures. 

Table 4.1. Lattice constants of 9 cubic perovskite-type oxides compounds optimized by exchange correlation 

functional of PBEsol. The experimental data are also presented. 

Compounds This work (Å) Expt. (Å) 

CaTiO3 3.848 3.890 

CaZrO3 4.100 4.138 

CaHfO3 4.062 3.990 

SrTiO3 3.899 3.905 

SrZrO3 4.134 4.140 

SrHfO3 4.096 4.060 

BaTiO3 3.986 3.996 

BaZrO3 4.191 4.194 

BaHfO3 4.155 4.170 

 

Table 4.2. Calculated LTC values (in unit of W/m-K) at 300 K and 1000 K of 9 cubic perovskite-type oxides 

compounds. The available experimental [173,174,176–178] and other theoretical [172] values are also presented 

in this table. Some measurements in parentheses represent those structures are not in cubic phase. 

Compounds 300 K Calc. Expt. 1000 K Calc. Expt. 

CaTiO3 - - - - - - 

CaZrO3 - - - - - - 

CaHfO3 - - - - - - 

SrTiO3 7.95 6.44 10.5 3.95 2.36 4.0 

SrZrO3 - - - - - - 

SrHfO3 - - (5.2) - 2.20 (2.7) 

BaTiO3 5.07 4.99 (4 – 5) 2.95 2.51 - 

BaZrO3 8.10 5.61 5.2 3.39 2.13 2.9 

BaHfO3 11.91 8.26 10.4 4.48 3.04 4.5 
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Figure 4.2. Phonon band structures of 9 cubic perovskite-type oxides ABO3 (A = Ca, Sr, Ba; B = Ti, Zr, Hf) 

compounds. The phonon band structures at 0 and 1000 K are denoted as solid and dashed black lines, respectively. 
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Figure 4.3. Phonon band structures and phonon densities of states (PDOS) of the cubic (a) SrTiO3, (b) BaTiO3, 

(c) BaZrO3 and (d) BaHfO3. The phonon band structures of 300 and 1000 K are denoted as grey and black solid 

lines, respectively. In PDOS, contributions of A, B and O atoms of each compound to the total PDOS (shaded 

area) are denoted as dashed red, blue and black dashed lines, respectively.  
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Figure 4.4. Temperature dependence of the (a) calculated lattice thermal conductivities (blue circles), (b) mode-

contribution of LTC, (c) outer product of the group velocities and (d) phonon lifetimes with respect to the 

temperature for the cubic SrTiO3. The experimental (red diamonds and black triangles) data are also presented 

for comparison. The dashed grey and blue lines represent the model of 𝜅 ∝  𝑇−𝛼 where 𝛼 = 0.7. 
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4.4 Conclusion 

In this chapter, the lattice dynamics of the cubic perovskite-type oxides ABO3 compounds have been 

systematically investigated where A and B cations are selected from Ca, Sr, Ba and Ti, Zr, Hf, 

respectively. In particular, it is interested to explore the thermodynamic properties of these compounds 

whose the given phases are dynamically stable at finite temperatures while they are unstable at the 0 

K. By using the temperature-dependent phonon approach, the phonon frequencies including the 

temperature information are renormalized iteratively, which consequently the self-consistent phonon 

band structures and densities of states are obtained. For some of the compounds dynamically unstable 

at 0 K through the harmonic phonon calculations, it is found that their structure are dynamically stable 

by incorporating the temperature effect, and thereby the imaginary frequencies in the phonon band 

structures vanish. 

Based on the well-converged and stable phonon properties at finite temperatures, the lattice thermal 

conductivities then can be calculated using anharmonic phonon calculations including the three-

phonon interactions. Compared with the previously experimental and theoretical data, the LTC values 

calculated in present work show a quite good agreement with references, which thus the proposed 

approach is proved to be valid on predicting the related thermal properties for the perovskite-type 

oxides structure. In conclusion, this temperature-dependent phonon approach is certified to be 

sufficient enough for the cubic perovskite oxides at the high temperatures. It overcomes the limitations 

arising from the conventional phonon calculations that cannot compute the LTC without the completely 

dynamically stable harmonic phonon band structures, which is expected to be universally applicable 

to the a wide of the perovskite-type compounds for a high-throughput estimation of their 

thermodynamics properties at finite temperatures.  
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General conclusion 

In this thesis, the temperature-dependent phonon approach based on the first-principles phonon 

calculations is introduced and demonstrated from the perspective of the background of the theory and 

methodology, and the applications to some different types of the structures, i.e., the rocksalt-type and 

perovskite-type compounds.  

In Chapter 2, the background and evolution of the lattice dynamical calculations based on the first-

principles calculations are introduced, which are stem from the solution to the single-particle Kohn–

Sham equations in quantum mechanics. The theory of the lattice dynamics are elaborated including 

some approximations such as the harmonic and quasiharmonic approximations, and the 

thermodynamic and heat transfer phenomena such as the thermal expansion and lattice thermal 

conductivity. Then, the evolution of the temperature-dependent phonon methods in previous studies 

are discussed, especially the SCP-related approaches where the phonon frequencies are renormalized 

iteratively for incorporating the anharomonic effect. Furthermore, the introduced phonon approach is 

demonstrated by its physical theory and numerical process. The workflow of this approach is explicitly 

exhibited combing the VASP, Phonopy and ALM packages for the force calculations, phonon 

calculations and fitting of the effective harmonic force constants, respectively. The effective force 

constants are fitted to the force-displacement datasets in each iteration where the atomic displacements 

are generated by the random displacements with the canonical ensemble. After some iterations, the 

corresponding phonon band structures are self-consistent at the given temperature, which consequently 

the related thermodynamic properties are obtained.   

In Chapter 3, the application of the temperature-dependent phonon approach to the rocksalt-type 

compounds are shown in order to test the validity and applicability of this present method. The 

calculations of 32 rocksalt-type compounds including the alkali halides and the alkaline earth 

chalcogenides consisted of the group I-VII and II-VI, respectively, are conducted by using the proposed 

approach. To test the robustness and precision of the phonon calculations, different choices of the 
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different factors such as the lattice parameters and exchange correlation functionals that may influence 

the results are urgent to be examined. After the determination of all calculated parameters, the phonon 

band structures and densities of states and the lattice thermal conductivities of all these rocksalt-type 

compounds are predicted by the phonon calculations beyond harmonic approximation. In particular, 

the calculated lattice thermal conductivities for these rocksalt-type compounds are discussed through 

the frequency dependence of the mode-contribution of the lattice thermal conductivities and the phonon 

lifetimes, which are generated by the anharmonic phonon-phonon interactions. It is found a good 

agreement between the calculated results and available experimental data, which identifies the validity 

of the temperature dependence of the phonon calculations. The analyses of the high-throughput phonon 

band structures and LTC values provide a deep insight to investigate systematically the phonon and 

thermal transport properties of the materials, which verifies that the temperature-dependent phonon 

approach offers a powerful and fundamental guidance for experiment to explore more and more new 

thermal materials with desired properties. 

In Chapter 4, the temperature-dependent phonon calculations are performed on the cubic perovskite-

type oxides ABO3 compounds where the cation A and B are alkaline earth (Ca, Sr, Ba) and transition 

metals (Ti, Zr, Hf)), respectively. Taking strontium titanate (SrTiO3) as an example, it undergoes a 

structural phase transition from the low-symmetry tetragonal structure to the high-symmetry cubic 

structure at about 105 K. However, the imaginary frequencies appear in the phonon band structures of 

its cubic phase by the harmonic phonon calculations, which is consequently inaccessible to the lattice 

thermal conductivity due to the dynamically unstable phonon properties. The breakdown of the 

harmonic phonon calculations impede the accurate description of the finite-temperature phonon 

properties, and the evaluation of the performance of the thermal properties such as the lattice thermal 

conductivity. In addition, the comprehensive evaluation of the thermal performance is highly 

demanded. Therefore, it is crucial to systematically investigate the LTC for the perovskite-type oxides, 

which in turn can be a useful guidance for the future experiment. By using the temperature-dependent 

phonon calculations, the phonon band structures of some cubic perovskite oxides such as SrTiO3 at 

finite temperatures are dynamically stable without any softening modes. Furthermore, the 

experimentally comparable LTC values for those dynamically stable ABO3 compounds are also 

obtained owing to the accurate descriptions of the phonon interactions involving the well-converged 

second- and third-order force constants. The good match between calculated and measured phonon 

band structures and LTC values demonstrate the necessity of the inclusion of the temperature effect 

for the perovskite-type oxides compounds. Moreover, the temperature-dependent phonon approach 

introduced in this work is certified to be powerful for predicting the thermodynamics properties of the 

perovskite structures. 
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In conclusion, the temperature-dependent phonon approach is significant for future phonon 

calculations. For those highly anharmonic crystals the harmonic and quasiharmonic approximations 

are insufficient to describe the phonon states, which may lead to a large discrepancy of the dynamical 

or thermal transport properties between the measurements and calculations. Furthermore, it is found 

that the conventional phonon calculations fail to accurately describe the phonon interactions for some 

compounds at high temperatures. These crystals with a finite-temperature structural phase are 

dynamically unstable at 0 K manifested by the appearance of the imaginary frequencies in phonon 

band structures, for which it should be considered with the temperature effect. In this way, it is 

impossible to access to the dynamical properties depended on the phonon scattering events such as the 

phonon lifetime and lattice thermal conductivity. Both of the above two issues can be dealt with the 

temperature-dependent phonon approach introduced in this work in spite of some limitations exist such 

as the computational cost and only the lowest-order phonon-phonon couplings included. Overall, it is 

expected to be a powerful numerical way for predicting the thermodynamic properties, which are useful 

for exploring more advanced materials with desired thermal properties in future materials scientific 

research. 
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