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Abstract

In this thesis, the energetic-particle (EP) driven magnetohydrodynamics (MHD)

instabilities and their interactions with the EPs in Heliotron J, a low magnetic

shear helical-axis heliotron, were numerically investigated and clarified with MEGA,

the hybrid MHD-EP simulation code. A thorough understanding of the interplay

between EP and shear Alfvén wave (SAW) is indispensable for the development

of the suppression mechanism of the EP-driven MHD instabilities in the mag-

netic confinement fusion device. This can also be used in the optimization of the

magnetic field. In the stellarator and heliotron magnetic configurations (toroidally

asymmetric device), the continuous (steady-state) operation is inherently achieved;

however, the additional toroidally asymmetric magnetic components (e.g. helicity

and bumpy) create additional EP-SAW and SAW-SAW interactions. This poten-

tially leads to more energy channels between EP and SAW and new coupling-type

gap modes (e.g. helicity-induced Alfvén eigenmode). Heliotron J is the quasi-

isodynamic optimized low magnetic shear helical-axis heliotron in Kyoto Univer-

sity. The quasi-isodynamic optimization is partially achieved in the corner section

of Heliotron J. Heliotron J has the flexibility to adjust the magnetic field configu-

ration by varying the current in the external coils. It was designed to obtain the

compatibility between MHD stability and particle transport. In terms of MHD

stability, the magnetic well is produced in the whole plasma region. This is suf-

ficient to suppress the pressure-driven MHD instabilities up to < βb >≥ 3%. For

the particle transport, the particle transport by neoclassical (NC) ripple is ame-

liorated by the external control of the bumpy magnetic field component that has

an opposite sign to the toroidicity component. Heliotron J shares similar prop-

erties to other new-generation optimized stellarator devices such as low magnetic

shear, helical-axis, and the vacuum magnetic well. Due to its low magnetic shear,

the commonly observed EP-driven MHD instabilities in Heliotron J are energetic-

particle mode (EPM) and global Alfvén eigenmode (GAE). The investigated MHD

equilibria in this thesis are based on the experimental parameters of the control

of EP-driven MHD instability by ECH/ECCD experiment in Heliotron J. In this

experiment, the n/m=1/2 EPM and the n/m=2/4 GAE were destabilized and

experimentally observed at r/a ≈ 0.8 and 0.6, respectively. The n/m=1/2 EPM



was found to have a much higher amplitude than the n/m=2/4 GAE. The main

objectives of this thesis are to reproduce these experimentally observed modes and

numerically clarify the EP-SAW interaction in Heliotron J. This also includes the

calculation of the EP transport in Heliotron J.

This thesis consists of seven chapters.

In chapter 1, the criteria for achieving the continuous self-sustainable fusion

plasma are discussed. The importance of the EP confinement and the suppression

of the EP-driven MHD instabilities in the magnetic confinement fusion device are

introduced. The experimental reports of the EP-driven MHD instabilities and

their impacts on the EP transports are reviewed to emphasize the importance of

the mitigation and suppression of EP-driven MHD instabilities. In the last part,

the interaction of the EP-SAW and SAW-SAW interactions in the stellarator and

heliotron configurations are summarized.

In chapter 2, the basic physics of EP-driven MHD instability in the toroidal

magnetic confinement fusion device are summarized. In the first section of this

chapter, the fundamental plasma descriptions are discussed. It is followed by the

description of Alfvén eigenmode and energetic particle mode. In the last section,

the interactions between EP and shear Alfvén wave are summarized.

In chapter 3, the properties of the Heliotron J magnetic field are presented.

These include (1) low magnetic shear, (2) vacuum magnetic well, and (3) the role

of the bumpy component. The neutral beam injection (NBI) system of Heliotron J

and the properties of NBI-generated EPs are summarized. The EP energy distri-

bution measured with a charge exchange neutral particle analyzer (CX-NPA) has

a bump-on-tail structure. This will be used as the basis for the MEGA simulation

in chapters 5 and 6. Lastly, the experimentally observed EP-driven MHD insta-

bilities are summarized and compared with the calculated shear Alfvén continua

by STELLGAP.

In chapter 4, the MEGA code is summarized. These include the single-fluid

MHD equations coupled with the EP current density and the EP drift kinetic

equations. The limitation and imposed assumptions of MEGA are presented.

In chapter 5, the EP-driven MHD modes were simulated in the currentless

equilibrium. The n/m=2/4 GAE was reproduced as the dominant mode; however,

the weak n/m=1/2 GAE was destabilized instead of the n/m=1/2 EPM. This

contradicts the experiment in terms of the relative stability between the n/m=1/2

and 2/4 modes. The bump-on-tail and slowing-down EP velocity distributions

were considered. The bump-on-tail case represents the experimentally observed

EP energy distribution, while the slowing-down case represents the ideal scenario

where τcx << τsd, where τcx and τsd are the charge-exchange time and the slowing-



down time, respectively. The calculation results showed no significant difference

in the linear growth rates between these two distributions. For the bump-on-tail

case, the majority of the EP-drive is due to the high-velocity toroidicity-induced

resonance. The helicity-induced resonances are much weaker because they are

localized in the low-velocity region. These helicity-induced resonances are more

significant in the slowing-down distribution. The differences in the initial EP

distribution also cause differences in the redistributed EP pressure profile. The

hollow (flat) EP pressure profile is formed after the saturation of the EP-driven

MHD modes in the bump-on-tail (slowing-down) distribution. This is caused by

the convective transport of the high velocity resonant co-passing EPs. These high

velocity resonant co-passing EPs transit the core region during the linear phase;

therefore, their transports significantly cause a finite reduction in the core region.

In chapter 6, the discrepancy between the simulation and experiment was tack-

led by introducing the free boundary simulation. Due to the low magnetic shear,

any low-n MHD instabilities can potentially cause finite plasma displacement at

the last closed flux surface (LCFS). The experimentally observed n/m=1/2 EPM

and n/m=2/4 GAE were successfully reproduced by MEGA with the free bound-

ary simulation. The effects on the MHD part of the equations are weak but

stronger for the kinetic part (EP-SAW interaction). In the free boundary simu-

lation, the spatial profiles of the n/m=1/2 and n/m=2/4 modes are broadened

and shifted radially outward. This enhances the EP-SAW interaction when the

EP spatial gradient is finite in the edge region, and thus the linear growth rates

of both the n/m=1/2 EPM and the n/m=2/4 GAE increase. From the kinetic

analysis of the resonant EPs, the EP-SAW interactions are intense in the plasma

edge region. The major contribution is from the high velocity co-passing resonant

EPs that transit the core region. These resonant EPs have sufficiently large or-

bit widths such that they can effectively interact with the n/m=1/2 EPM at the

plasma edge. It was also shown that the linear growth rate of the n/m=1/2 mode

is significantly underestimated in the fixed boundary simulation. The n/m=1/2

EPM at the plasma edge cannot be destabilized in the fixed boundary simulation

even if the initial EP pressure is doubled.

Chapter 7 is devoted to the conclusion. The findings and the simulation results

are summarized. The prospective research topics and the extensions of this study

are also presented.

The main achievements of the presented thesis are as follows:

• The EP-driven MHD instabilities in Heliotron J, a low magnetic shear helical-

axis heliotron has been successfully reproduced with MEGA, an EP-MHD

hybrid simulation code. This is the first time that MEGA code has been



experimentally validated in the helical-axis heliotron and stellarator config-

urations.

• The importance of the boundary condition on the simulation of the EP-

driven MHD instability in Heliotron J has been revealed. The results also

reflect the invalidity of the fixed boundary assumption in the simulation of

the EP-driven MHD in Heliotron J.

• The roles of EP in each particular phase space region were clarified in He-

liotron J. This information also allows us to understand the AE-induced EP

transport in Heliotron J.

These achievements are beneficial for the study of the EP-driven MHD insta-

bility in Heliotron J. The validity of the free boundary condition can potentially

be applied to other advanced helical-axis stellarator and heliotron configurations

with low magnetic shear. It can also be extended to the stellarator/heliotron

optimization and the alpha channeling through toroidal asymmetric resonance.
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Chapter 1

Introduction

1.1 Background

Indispensably, mankind harnesses energy from the nature to perform daily ac-

tivities. The earliest utilization of fire by prehistoric humans can be traced back

since 1.5 million years ago[1]. It was used for hunting, defense, cooking, source of

warmth, light source, and etc. With the accumulated knowledge and experiences

through time, mankind started to utilize energy in more complex manners: cop-

per metallurgy (∼ 5000 BC.), steam engine (1760-1840), electricity (1870-1914),

and etc. To account for the increasing demand, the main energy sources shifted

from low energy density and inefficient energy sources (e.g. firewood) to higher

one (e.g. coal, oil and natural gas). Since the 1st and 2nd industrial revolutions,

the global energy consumption continuously increased, and inevitably led to the

increase in the greenhouse gas emission (e.g. CO2). The history of the global

primary energy consumption and CO2 emission are shown in figures 1.1 and 1.2,

respectively[2, 3, 4]. These gradually raise the concern on the environmental issues

and the depletion of the global fossil fuel supply. As a countermeasure, renewable

energy such as wind power and solar energy were purposed. However, their issues

on intermittency and energy density have not yet been resolved. Nuclear energy is

the feasible alternative for the clean energy source. The first demonstration of the

possibility of electricity generation by nuclear fission energy started in 1942 when

Enrico Fermi successfully created the first self-sustainable nuclear fusion reactor.

Number of nuclear fission power plant rapidly emerged between 1970 and 1985

due to the significant increase of the petroleum price. However the credibility of

the nuclear energy was damaged by the reactor meltdown event in Three Miles

Island, Pennsylvania in 1979 and the Chernobyl catastrophe in 1986. Since then

the growth of the nuclear energy (fission) power plant and the development of the

nuclear fission technology were halted. These histories suggest that the suitable
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energy source and technology must satisfies 4 criteria:

1. The fuel supply should be sufficient, sustainable, and high in energy density.

2. Electricity generation must be continuous.

3. The CO2 emission and hazardous wastes should be minimized.

4. The possibility of major catastrophic event should be minimized.

One of the potential candidate that is capable to satisfy these criteria is nuclear

fusion energy.

Figure 1.1: The global primary energy consumption from 1800-2019.

Figure 1.2: The global energy-related CO2 emissions and annual change from

1900-2020.
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Nuclear fusion is a nuclear reaction in which 2 or more nuclei fuse into heav-

ier nuclei by a strong nuclear force. If the products of the nuclear fusion reaction

have lower potential energy than the summation of their former nuclei, the energy

deficit is released (E = mc2). This is true for the fusing of the light nuclei (See the

nuclear binding energy with respect to the atomic number shown in figure 1.3).

The fuels for nuclear fusion reactions are the light elements, mainly hydrogen. The

nuclear fusion reaction naturally occurs in the sun which is the primary energy

source of our solar system. In the sun, the temperature is so high such that the

hydrogen atoms are in the plasma state. These high energy hydrogen nuclei must

be confined sufficiently long until the nuclear fusion reaction occur. These high

temperature plasmas are confined by mean of the massive gravitational force of

the sun; therefore, it is not feasible to apply the similar approach to the nuclear

fusion reaction on the earth.

Figure 1.3: The nuclear binding energy with respect to the atomic number.

Magnetic confinement fusion is one of the approach to confine the high tem-

perature plasmas on the earth. In the magnetic confinement, high energy plasma is

confined inside a closed magnetic field by the Lorentz force. In this concept, both

toroidal and poloidal magnetic fields are requisite to average out resulted ~E × ~B

drift from the ∇B drift of ion and electron. Tokamak and stellarator/heliotron are

the two main concepts for producing poloidal magnetic field. In tokamak, central

solenoid is utilized to induce toroidal plasma current. Poloidal magnetic field is

created by this induced toroidal plasma current. For stellarator/heliotron[5], both

toroidal and poloidal magnetic fields are generated by either continuously helical

magnetic coils or modular coils. The most feasible nuclear fusion reaction on the

earth is deuterium (D) and tritium (T) fusion reaction (eq.1.1). The D-T reaction

is selected because it has a high efficiency in term of the reaction rate. Secondly,
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the potential fuel supplies are near limitless. Deuterium can be extracted from

seawater, while tritium can be obtained from lithium (Li) (eq.1.2).

D + T → He4(3.5MeV ) + n(14.1MeV ) (1.1)

Li6 + n→ T +He4(4.8MeV ) (1.2)

Li7 + n→ T +He4 + n(−2.5MeV ) (1.3)

The magnetic confinement fusion concept was revealed to the public at the

2nd United Nations Conference on the Peaceful Uses of Atomic Energy in 1958. In

the following years, it was founded that several instabilities can evolve in the mag-

netically confined plasma. These instabilities cause additional particle and energy

transports and even disrupt the confinement. Tokamak, a toroidally symmetric

magnetic confinement fusion, emerged as the mainstream of the thermonuclear

fusion research after the international thermonuclear fusion conference in 1968

in Novosibirsk. In this meeting, T-3 tokamak successfully achieved the electron

temperature of 1.00 keV. After that several new tokamaks were designed and op-

erated: Joint European Torus (JET), Japan Torus-60 Upgrade (JT-60U), DIII-D,

Experimental Advanced Superconducting Tokamak (EAST), K-STAR, and etc.

Yet none of these tokamaks has achieved the break-even point. The current world

record of the ratio of output power to input power (Q value) is 0.67 by JET in

1997. To surpass the break-even point, International thermonuclear experimental

reactor (ITER) project, the world’s largest toroidal magnetic confinement fusion

device, is initiated. It is currently under construction in France. The first plasma

is planned to initiate in December 2025. The goals of ITER are:

1. Achieve a self-sustainable deuterium-tritium fusion plasma by the released

energy from nuclear fusion reaction.

2. Achieve 500 MW of fusion power for 400 s.

3. Testing the integrated plasma controlled and diagnostic systems in the fusion

plasma condition.

4. Verifying the tritium breeding blanket.

5. Demonstrate the safety of the nuclear fusion reactor, reliability, and minus-

cule impact to the environment.
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To achieve the first objective, the thermonuclear fusion condition must be

maintained for the bulk plasma, and the D-T fusion-born energetic alpha par-

ticles (EPs) must be confined sufficiently long until they are thermalized with

the bulk plasma. However, the magnetically confined fusion plasma is not in the

thermodynamic equilibrium; therefore, several driving forces exist. As a result,

several macro (MHD) and micro (turbulence) instabilities can be destabilized.

These instabilities worsen the confinement by increasing the particle and energy

transports of the bulk plasma and the energetic particles. Some of the major

macro-instabilities (MHD) are the current-driven MHD instability, pressure-driven

MHD instability, and energetic particle (EP) driven MHD instability. All of these

3 MHD instabilities exist in the tokamak configuration; however, current-driven

MHD instability can be mitigated in the stellarator/heliotron configuration since

the toroidal plasma current is not required to generate the poloidal magnetic field.

The pressure-driven MHD instability can also be mitigated if the vacuum mag-

netic well exists throughout the confinement region[6, 7]. For the EP-driven MHD

instability, it cannot be easily mitigated since the driving force is the fusion-born

EPs that are necessary to maintain the self-sustainable fusion plasma. It is the

major impediment of confining EPs.

EP-driven MHD instability is mainly destabilized shear Alfvén wave (SAW)

by EPs. These high-energy particles can interact with the SAW through the

fundamental and sideband resonances during the slowing-down process. These

instabilities can increase the EP transport via the ~E × ~B drift and the perturbed

magnetic field (δ ~B) of SAW. Lost EPs can potentially damage the first wall and

the plasma-facing components (PFCs), and reducing the alpha particle heating

efficiency. In other words, the D-T fusion-born EPs must be confined sufficiently

long; however, these EPs can cause instability. The numerical investigation of

EP-driven MHD instability will be investigated in this thesis.

1.2 Previous Study of EP-driven MHD instabil-

ities

Various types of EP-driven MHD instabilities were reported. They are classified

into the eigenmode of the bulk plasma and the energetic-particle mode (EPM).

The first type, an eigenmode, is a weakly damped wave because the continuum

damping is minimized within the frequency gaps in the continuous spectrum. The

second type, an EPM, can exist within the shear Alfvén continuum with strong

continuum damping. EPM can be destabilized when the EP pressure is compa-
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rable to the bulk plasma pressure. EPM is not an eigenmode of the bulk plasma.

The frequency of the EPM strongly depends on the EP resonance and EP distri-

bution function.

The electrical field and the perturbed magnetic field caused by these insta-

bilities can cause significant EP transport. The growth of the EP-driven MHD

mode correlates with the loss of EPs where the loss of EPs is measured with the

reduction in the neutron diagnostics[8], lost ion probe[9, 10, 11], and the fast ion

D-alpha. (FIDA) density[12]. The effect of the EP-driven MHD instabilities on

the EP confinement is shown in figure 1.4. In this figure, the Alfvénic activities of

the RSAE and TAE in the DIII-D plasma with the reversed q-profile are shown

in panel (a). Panels (b) and (c) show their impacts on the EP density profile[13].

Panels (b) and (c) show the stiffness of the EP density profile where the further

increment in NBI power does not cause a change in the EP density profile.

The behavior of the EP-driven MHD mode and the EP-SAW interaction are

different between tokamak and stellarator/heliotron configurations. In the stel-

larator/heliotron configuration, the equilibrium magnetic field Fourier components

are composed not only the toroidally symmetric components (νB = 0) but also the

toroidally asymmetric components (νB 6= 0), such as helicity (µB/νB = 1/1) and

bumpy (µB/νB = 0/1) components. These additional magnetic Fourier compo-

nents cause change in the EP-SAW and SAW-SAW interactions. For the EP-

SAW interaction, more EP-SAW energy channels exist. The EPs in stellara-

tor/heliotron magnetic configuration can resonate not only with the toroidicity-

induced resonance but also other toroidally asymmetric-induced resonances, such

as the helicity-induced resonance[14, 15]. These additional resonances can po-

tentially increase the linear growth rate (γ/ωA) of the EP-driven MHD mode;

however, it can also be compensated by the thermal ion Landau damping if these

additional resonances exist in the low velocity region[16]. For the interaction be-

tween shear Alfvén waves (SAW-SAW), more shear Alfvén continuum (SAC) gaps

are formed, such as the HAEs[17, 18] and the mirror-induced Alfvén eigenmode

(MAE). The SAC gap width can also be reduced and even annihilated at a certain

rational surface[15]. Both the toroidal asymmetric-induced eigenmodes and the

reduction of the SAC gap width can be significant in the high magnetic shear

stellarator/heliotron with the small number of toroidal field periods.
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Figure 1.4: The Alfvénic activities and its effect of the EP confinement measured
with the electron cyclotron emission (ECE) and fast-ion deuterium alpha (FIDA)
diagnostics from the DIII-D discharge with the reversed q-profile[13]. (a) Radial
profile and the frequency of the ECE power spectra at t=790.2 ms. (b) The radial
profile of the averaged EP flux. (c) The comparison of the FIDA density profiles
at t = 1035 ms between different beam power.
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1.3 Research Motivations and Objectives

The low magnetic shear stellarator/heliotron configuration is currently one of

the main concepts in the design of the modern optimized stellarator/heliotron

configuration. In this concept, the radial variation of the local rotational trans-

form value (ι/2π) is negligible; therefore, the formation of the coupling-type shear

Alfvén gap is unlikely. The most commonly observed EP-driven MHD instabilities

in the low magnetic shear stellarator/heliotron are GAE, non-conventional GAE

(NGAE), and EPM. The deterioration of the plasma confinement by the low order

magnetic islands can also be mitigated; however, the Pfirsch-Schlüter and boot-

strap current should be minimized in the high plasma beta MHD equilibrium. The

low magnetic shear concept has been applied in Heliotron J[19], TJ-II, Wendel-

stein 7-X (W-7x)[20], and recently in China First Quasi-Axisymmetric Stellarator

(CFQS)[21].

The EP-driven MHD instability[22, 23, 24, 25, 26] and the EP dynamic[27,

28, 29, 11] in Heliotron J have been mainly investigated with the experimental ap-

proach. These studies have already identified the types of the observed EP-driven

MHD modes (EPM and GAE), and their effects on the EP transport. Recently,

the stabilization of the EP-driven MHD mode by electron cyclotron resonance

heating (ECRH) and electron cyclotron current drive (ECCD) was focused. The

prospective suppression mechanism for the ECRH is the change in the collisional

damping rate of the trapped electron[30, 25]. For the ECCD, the EP-driven MHD

mode is suppressed in Heliotron J by the increase in the local magnetic shear. The

stabilization by the increase in magnetic shear has also been reproduced by FAR-

3D simulation, a Landau closure model[31]. However, the interaction between the

EPs and the EP-driven MHD modes (EPM and GAE) has not yet been clarified.

The clarification of these interactions can provide information on the role of each

existing EP-SAW energy channel in Heliotron J. This information also links to the

AE-induced transport behavior and the resulted EP pressure profile. In addition,

the control of the EP-driven MHD instability by ECCD can also alter the EP-SAW

resonance condition through the change in the rotational transform profile. The

EP-SAW and SAW-SAW interactions in Heliotron J will be analyzed in this thesis.

Computer simulation is a powerful tool to investigate the EP-SAW and SAW-

SAW interactions in the 3-dimensional plasma. Several simulation codes have been

developed for these purposes: MEGA[32, 33, 34] (full-MHD hybrid simulation

model), EUTERPE[35], and GTC[36] (gyrokinetic PIC code), NIMROD[37, 38]

(a finite element hybrid MHD code), and FAR3D[39, 31] (a reduced-MHD equation
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with Landau closure model for energetic particle). They have already been uti-

lized in both tokamak and stellarator/heliotron configurations. MEGA, a hybrid

EP-MHD simulation code, is used to analyze the linear and nonlinear dynamics

of the EP-driven MHD instabilities. MEGA employs a cylindrical coordinate for

the bulk plasma; therefore, it does not restrict to the nested flux surface assump-

tion. This code has been successfully validated to the DIII-D[40], JT-60U[41],

and LHD[33, 42] experimental results. All of these devices are planar axis devices.

It has not yet been applied to the helical-axis and low magnetic shear stellara-

tor/heliotron configuration. Previously, the EP-driven MHD modes in Heliotron

J during the linear growth phase were simulated by FAR3D, a Landau-closure

model[31]; however, inconsistencies between the experiment and simulation were

found. The major inconsistency is the amplitude of the n/m = 1/2 EPM and

n/m = 2/4 GAE. In the experiment, the n/m = 1/2 EPM has a much higher

amplitude than the n/m = 2/4 GAE; however, the n/m = 2/4 GAE was found

to be more unstable than the n/m = 1/2 EPM in the FAR3D simulation. These

inconsistencies need to be resolved with a more realistic model. One of the po-

tential causes is the boundary condition. Normally, the internal mode like AE is

simulated with the fixed boundary condition, where plasma is surrounded by the

perfectly conducting wall. However, this assumption can have a stronger effect on

the low-n MHD mode.[43, 44] due to larger mode width. The validity of this as-

sumption can be worsened in Heliotron J due to its low magnetic shear. Therefore,

the EP-driven MHD mode in Heliotron J can cause a finite plasma displacement

at the LCFS even if the mode is localized in the middle of plasma (r/a ≈ 0.50).

Since the current mainstream of the optimized stellarator/heliotron has a he-

lical magnetic axis and also low magnetic shear, the success in the experimental

validation provides the opportunity to reproduce the experimental observations

and clarify the EP-SAW and SAW-SAW interactions in another low magnetic

shear stellarator/heliotrons (e.g. W7-X and CFQS). This study will also equips

us with the validity of the assumption and the simulation setup for the low mag-

netic shear stellarator/heliotron.

The objectives of this thesis are listed as follows:

1. To reproduce the experimentally observed EP-driven MHD mode in He-

liotron J, a low shear helical-axis heliotron.

2. To analyze the role of the bulk plasma boundary condition on the modeling

of the EP-driven MHD mode in Heliotron J.

3. To clarify the interaction between EP and shear Alfvén wave in Heliotron J.
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4. To calculate the AE-induced EP transport in Heliotron J.

1.4 Thesis Framework

This thesis is organized as follows:

• Chapter 2 summarizes the basic physics of the EP-driven MHD instability

in a toroidal magnetic confinement fusion device. This includes the plasma

description, MHD wave, Alfvén eigenmode, EP-SAW interaction, and EP

transport by instability.

• Chapter 3 provides a brief summary of Heliotron J. The parameters of the

neutral beam injection (NBI) system in Heliotron J are presented along with

the energy spectra of the EP energy distribution measured with CX-NPA.

Lastly, the experimentally observed EP-driven MHD modes in Heliotron J

are discussed.

• Chapter 4 describes a brief summary of the plasma simulation code for the

EP-driven MHD instability simulation. The model utilized in the MEGA

code will be presented.

• Chapter 5 shows the simulated EP-driven MHD modes in Heliotron J with

MEGA. The EP redistributions in velocity and real spaces are discussed.

The dependency of the mode properties on the initial EP velocity distribu-

tion is discussed. The discrepancies between the simulation results are also

reported.

• Chapter 6 analyzes the role of the boundary condition on the modeling

of the EP-driven MHD mode in Heliotron J. The discrepancy between the

simulation and the experiment is resolved in this section. The interaction

between the n/m = 1/2 EPM and the resonant EPs is analyzed.

• Chapter 7 is devoted to summary.
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Chapter 2

Energetic Particle Driven

Magneto-hydrodynamics

Instabilities

The basic physics of the energetic particle (EP) driven MHD instability are

discussed in this section. In section 2.1, the basic of plasma models are described.

It starts from the kinetic description of the plasma to the fluid model. In section

2.2, the physics of the shear Alfvén wave in a uniform plasma are summarized. In

section 2.3, the differences between the shear Alfvén gap mode and the energetic

particle mode are introduced. In the last section, the interaction between energetic

particle and shear Alfvén wave in tokamak and heliotron/stellarator configurations

is discussed.

2.1 Plasma Description

The most fundamental description of the plasma is the Klimontovich and

Liouville equations (Eq.2.1). They include the motion of each particle and their

interactions in the 6t̂h dimensional configuration and velocity spaces (~r,~v). The

Klimontovich equation describes the time evolution of the particle density, while

the Liouville equation describes the time of the system density. Due to the zero

convective derivative, the particle (or system) density is conserved along the par-

ticle orbit.

dN(~r,~v, t)

dt
= { ∂

∂t
+ ~v · ∂

∂~r
+

e

m
( ~E + (~v × ~B) · ∂

∂~v
}N(~r,~v, t) = 0 (2.1)

(2.2)
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Figure 2.1: Summary of the plasma kinetic and fluid models.

The Klimontovich and Liouville equation contain a significant amount of in-

formation, and they are impractical to be solved. It can be simplified by perform-

ing an ensemble average over the large amount of the particles. This procedure

introduces a distribution function f(~r,~v, t). The distribution function f(~r,~v, t)

represents the number of particles within a phase space volume. The Boltzmann

equation is obtained, where the LHS and RHS of eq.2.3 represent the collective

behavior of the plasma and the collisional effects, respectively. If collision term is

neglected (e.g. high temperature plasma), eq.(2.3) is called Vlasov equation.

{ ∂
∂t

+ ~v · ∂
∂~r

+
e

m
( ~E + (~v × ~B) · ∂

∂~v
}f(~r,~v, t) = (

∂f

∂t
)c (2.3)

The plasma kinetic model (eq.2.3) can be further simplified by taking moments

of the ion and electron distribution functions. The obtained results are called two

fluid MHD equations. In the typical fusion plasma parameters, the length scale of

the MHD mode is much longer than the Debye length, while the time scale of the

MHD mode is much slower than the time scale of the plasma frequency. In this

limit, the local charge imbalance between the ions and electrons can be neglected

because electrons have sufficient time to follow ions. This allows us to assume the

equivalent in the local ion and electron number densities (n = ni = ne). This

condition is called the quasi-neutrality condition. Lastly, the displacement current

in the Maxwell equation can also be neglected because of the quasi-neutrality con-

dition (low frequency). By applying these approximations to the two fluid MHD
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equations, the contribution of the high-frequency and short-wavelength mode can

be eliminated. The resulted equations are called ideal MHD equations. Ideal MHD

equations are shown in Eqs.2.4-2.10.

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.4)

ρ(
∂~v

∂t
+ ~v · ∇~v) = −∇P + ~J × ~B (2.5)

∂P

∂t
+~·∇P + γP∇ · ~v = 0 (2.6)

~E + ~v × ~B = 0 (2.7)

∇ · ~B = 0 (2.8)

∇× ~B = µ0
~J (2.9)

∂ ~B

∂t
= −∇× ~E (2.10)

• Continuity equation (Eq.2.4) implies mass conservation. In real experiment,

source and loss terms, such as ionization, recombination, charge exchange,

and diffusion can be incorporated at the right-hand-side (RHS) of the equa-

tion.

• Momentum equation (Eq.2.5) represents the 2 forces, which act on the plas-

mas: (1) pressure gradient and (2) electromagnetic force.

• Adiabatic equation (Eq.2.6) describes the time evolution of the plasma state

with no heat loss. This is equivalent to the conservation of energy. Loss

term, such as viscous loss, diffusion, and Ohmic heating can be introduced

at the RHS of the equations.

• Generalized Ohms law is reduced to the form in Eq.2.7. Hall effect, electron

diamagnetic effect and resistivity terms are neglected. Neglecting resistivity
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implies that the electric field parallel to the plasma current is zero.

• The last 3 equations (Eqs. 2.8-2.10) are the low-frequency approximation of

the Maxwell equations. Eqs.2.8, 2.9, and 2.10 are the Gauss’s law of magnetic

field, Ampere circulation law, and Faraday’s law of induction, respectively.

2.2 Magnetohydrodynamic wave

The low frequency waves described by the ideal MHD equations are (1) shear

Alfvén wave, (2) fast magnetosonic wave, and (3) slow magnetosonic wave. The

dispersion relation of these waves can be derived from the ideal MHD equations

(Eqs.2.4-2.10) in an infinite homogeneous plasma with a uni-directional magnetic

field. In this derivation, the magnetic field is represented by ~B = B0k̂. To obtain

the dispersion relation of these waves, the MHD plasma velocity (~v1), density (ρ1),

pressure (p1), electric field ( ~E1) and magnetic field ( ~B1) fluctuations are linearized.

These field quantities are expanded to the first order as x(~r, t) = x0(~r) + x(~r, t)1

where the perturbed quantity is expressed by Eq.2.11. ω and ~k are angular mode

frequency and angular wave number, respectively. The higher order terms (e.g.

δx2) are neglected. Due to the infinite homogeneous plasma assumption, the MHD

equilibrium field quantities ( ~J0, ~v0, ~E0, ∇ρ0, and ∇P0) are zero. The linearized

ideal MHD equations are shown in Eqs.2.12-2.18.

X1(~r, t) = Xexp[−i(ωt− ~k · ~r)] (2.11)

∂ρ1

∂t
+ ρ0∇ · ~v1 = 0 (2.12)

ρ0
∂~v1

∂t
= −∇P1 + ~J1 × ~B0 (2.13)

∂P1

∂t
+ γP0∇ · ~v1 = 0 (2.14)

~E1 + ~v1 × ~B0 = 0 (2.15)

∇ · ~B1 = 0 (2.16)

∇× ~B1 = µ0
~J1 (2.17)
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∂ ~B1

∂t
= −∇× ~E1 = 0 (2.18)

This expression is substituted into the linearized continuity (Eq.2.12), energy

(Eq.2.14), Ampere Circulation’s Law (Eq.2.17), and Faraday’s law (Eq.2.18). The

substituted linear equations are shown in Eqs.2.19-2.22.

ωρ1 = ρ0(~k · ~v1) (2.19)

ωP1 = γP0(~k · ~v1) (2.20)

ω ~B1 = −~k × (~v1 × ~B0) (2.21)

ωµ0
~J1 = −i~k × [~k × (~v1 × ~B0)] (2.22)

By eliminating ρ1, P1, ~B1, and ~J1 terms from the linearized momentum equa-

tion (Eq.2.5) with the expressions given in Eqs.2.19-2.22. The set of the linear

equations with three velocity vector components are obtained (Eq.2.23).

(ω2 − k2
‖V

2
A)v1x = 0

(ω2 − k2
⊥V

2
S − k2V 2

A)v1y − (k⊥k‖V
2
S )v1z) = 0

−(k⊥k‖V
2
S )v1y + (ω2 − k2

‖V
2
S )v1z = 0

(2.23)

By setting the determinant of the system of linear equations (Eq.2.23) to zero,

three branches of the dispersion relation of the ideal MHD waves are obtained

(Eq.2.24-2.25). Eq.2.24 is the dispersion relation for the shear Alfvén wave, while

Eq.2.25 is the dispersion relation for the fast and slow magnetosonic waves. It is

clear both the dispersion relations shown in Eqs.2.24-2.25 have a purely oscillation

solution since the imaginary part of ω is zero. For Eq.2.25, α2 term only exists

within the 0 ≥ α2 ≥ 1.

ω2 = k2
‖V

2
A (2.24)

ω2 = 1
2
k2(V 2

A + V 2
S )[1± (1− α2)1/2]

α2 = 4
k2‖
k2

V 2
S V

2
A

(V 2
S+V 2

A)2

(2.25)
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Shear Alfvén wave (SAW) is a low frequency transverse electromagnetic wave

(Eq.2.24). This wave propagates parallel to the magnetic field. According to

Eq.2.23, ~B1 and ~v1 are both perpendicular to the equilibrium magnetic field (also
~k). Lastly, the SAW is incompressible (∇ · ~v1 = 0). The restoring force of this

wave is the magnetic tension due to the perturbation part of the perpendicular

magnetic field. Differ from the SAW, the fast and slow magnetosonic waves are the

compressible waves (∇·~v1 6= 0). The fast and slow magnetosonic waves are differ-

entiated by the plus and minus signs in Eq.2.25, respectively. The major difference

between the fast and slow magnetoacoustic waves is the compression character-

istics. The compression by the fast magnetoacoustic wave is mainly due to the

magnetic field. In contrast, the compression caused by the slow magnetoacoustic

wave is primarily due to the plasma compression.

2.3 Alfvén Eigenmode & Energetic Particle Mode

In the context of EP-driven MHD instability, the most common EP-driven MHD

instability is the SAW that is driven unstable by resonant EPs. This instability can

be observed in the magnetic confinement fusion plasma with energetic species (e.g.

neutral beam injected particle and fusion-born alpha particle). In the toroidally

magnetic confinement device, these EPs can resonate with the shear Alfvén wave

through the fundamental and sideband resonances. The destabilization of the EP-

driven MHD instability can enhance the EP transport which can reduce the EP

heating efficiency. The transported EP can also damage the plasma-facing com-

ponents. In the toroidally magnetic confinement fusion device, the periodicity

constraints in the toroidal and poloidal directions limit the parallel wavenumber in

the toroidal and poloidal directions to integers (“m” and “n” are for poloidal and

toroidal mode numbers, respectively). To account for the poloidal and toroidal

rotations of the magnetic field, the parallel wavenumber (k‖) is represented by

(n−mι)/R, where ι is a local rotational transform value. Any waves that follow

the SAW dispersion relation (Eq.2.24) belong to the shear Alfvén continua.

In the magnetic confinement fusion plasma, there are radial variations in the

rotational transform (ι/2π), bulk plasma density (ρ0), and magnetic field. This

leads to the radial variation in the shear Alfvén continuum (SAC). The shear

Alfvén wave at a different radial location has different phase velocities; therefore,

the wave structure is dispersed and damped by this process. This damping is called

continuum damping. Continuum damping is proportional to the radial derivative

of the shear Alfvén continuum (γd ∝ dω/dr). In the normal circumstance, the

continuum damping rate exceeds the EP-driving rate (γd > γh). From this infor-

mation, the destabilization of EP-driven MHD instability is possible if the shear
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Figure 2.2: The simulation of the Alfvénic activity in the JT-60U beam injected
discharge. Panel (a) shows the measured magnetic fluctuation that indicate the
burst of the Alfvénic mode. Panels (b) and (c) show the simulation results of the
EPM and TAE, respectively. The n = 1 shear Alfvén continua is plotted by the
black solid line[45].

Alfvén continuum damping is minimized. The minimization of the continuum

damping occurs within the shear Alfvén gap. It will be discussed in subsection

2.3.1. In addition to the shear Alfvén gap mode, the EP-driven MHD instabil-

ity can also be excited in the region with finite continuum damping if the EP

driving rate exceeds the continuum damping rate (γh > γd). This type of EP-

driven MHD instability is called energetic particle mode (EPM)[46]. Differ from

the shear Alfvén gap mode, EPM is not an eigenmode of the MHD plasma. In-

stead, it has a distinctive dispersion relation. This will be discussed in subsection

2.3.2. The example of the shear Alfvén gap mode (toroidal Alfvén eigenmode)

and energetic-particle mode (EPM) is shown in figure 2.2. This figure shows the

magnetic fluctuation caused by toroidal Alfvén eigenmode (TAE) and energetic-

particle mode (EPM) in the JT-60U discharge[45]. In this discharge, the TAE

and EPM frequencies are approximately 57.5 kHz and 45 kHz, respectively. The

simulation results calculated by HMGC, the hybrid MHD gyro-kinetic code of

this discharge are shown in panels (b) and (c). In panel (b), the TAE is located

within the shear Alfvén continuum gap produced by the toroidal coupling, while
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the EPM lies in the shear Alfvén continuum.

2.3.1 Gap Mode

The minimization of the continuum damping exists within the SAC gap where

dω/dr ≈ 0. The destabilized EP-driven MHD mode within the SAC gap is also

called as shear Alfvén gap mode. The shear Alfvén gap mode is the eigenmode of

the MHD plasma (weakly damped wave). The SAC gap can cause by (1) the radial

variation of the rotational transform profile, bulk plasma density, and magnetic

field, and (2) the destructive interference between co-propagating and counter-

propagating waves due to the periodic modulations in the shear Alfvén velocity

through the toroidicity, ellipticity, and helicity of the equilibrium magnetic field.

The former and the latter types are called coupling-type gap mode and extremum-

type gap mode, respectively. The examples of the coupling-type gap mode are

toroidicity-induced Alfvén eigenmode (TAE)[32, 47], ellipticity-induced Alfvén

eigenmode (EAE), and helicity-induced Alfvén eigenmode (HAE)[48, 17, 49]. The

examples of the extremum-type gap mode are the global Alfvén eigenmode (GAE)

and reversed shear Alfvén eigenmode (RSAE). Some of the examples of the shear

Alfvén gap modes are listed in Table 2.1.

Coupling Type Gap

Shear Alfvén can be induced by coupling between co- and counter-propagating

waves. This coupling results from the periodic variation of shear Alfvén velocity

along the magnetic field line. In the case of toroidal geometry, one revolution

of the magnetic field line in poloidal direction experiences variation of magnetic

field strength from high field side and low field side. In the toroidally asymmetric

device (e.g. heliotron and stellarator), both toroidal and poloidal couplings ex-

ist. The destructive interference at the frequency crossing point between co- and

counter-propagating waves with different poloidal and toroidal mode numbers are

described by Eqs.2.26-2.27, respectively. At the frequency crossing point, ω+ and

ω− are equal at the same radial location. In Eqs.2.26 and 2.27, n, m, ι, νB, µB, and

Nfp are poloidal mode number, toroidal mode number, local rotational transform

value, toroidal Fourier component of the magnetic field, poloidal Fourier compo-

nent of the magnetic field, and number of equilibrium field period. By equating

these two questions (ω+ = ω−), the required rotational transform value for the

coupling of these two waves is obtained (Eq.2.28)[14, 50, 15]. For example, the

toroidicity-induced shear Alfvén gap (µB/νB = 1/0) for the n/m mode will exists

at the flux surface with ι = 2n/(2m+ 1). This suggests that the formation of the

coupling type gap is more likely in the magnetic configuration with higher mag-
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netic shear (high variation in the rotational transform in the radial direction). In

figure 2.3, the rotational transform profiles of Heliotron J magnetic fields with and

without counter-inductive current drive are shown. In the currentless equilibrium,

Heliotron J magnetic field has a near zero magnetic shear. The difference in the

variation in the magnetic shear has a strong influence of the shear Alfvén continua.

The Nf = +2 shear Alfvén continua for the currentless and Ip = −2.00 kA MHD

equilibria are shown in figures 2.4(a) and (b), respectively. In this figure, only

the n = 2 shear Alfvén continua are labeled. It is apparent that the frequency

crossings are apparent for the Ip = −2.00 kA. In figure 2.4(b), the n/m = 2/4

& 2/5 TAE gap, n/m = 2/3 & 2/5 EAE gap, n/m = 2/3 & 2/6 NAE gap, and

n/m = 2/2 & 2/6 NAE gap are coupled at the flux surface with ι/2π of 0.444,

0.500, 0.444, and 0.500, respectively. These ι/2π values correspond to the ι/2π

profile of the Ip = −2.00kA shown in figure 2.3. The widths of the NAE gaps

are narrower because the νB/µB = 0/3 and νB/µB = 0/4 Fourier components

are infinitesimal when compared to the toroidicity (νB/µB = 0/1) and ellipticity

(νB/µB = 0/2).

ω+ =
n−mι
R

vA (2.26)

ω− = −(n+ νBNfp)− (m+ µB)ι

R
vA (2.27)

ι =
2n+ νBNfp

2m+ µB
(2.28)

Extremum type gap

For the extremum type gap mode, the minimization of the continuum damping

(dω/dr ≈ 0) occurs due to the radial variation of the rotational transform value

and MHD plasma density. The most common extremum type gap modes are

global Alfvén eigenmode (GAE) and reversed-shear Alfvén eigenmode (RSAE).

GAE is commonly observed in the low magnetic shear where the variation in the

rotational transform is small; therefore, the formation of the coupling type gap

mode is limited. Since extremum type gap mode does not require the coupling

between two waves, the mode structure usually has a single toroidal and poloidal

dominant harmonics.
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Figure 2.3: The comparison of the rotational transform (ι/2π) profiles between
the currentless and Ip = −2.00 kA MHD equilibria of Heliotron J.

Figure 2.4: The comparison of the Nf = +2 shear Alfvén continua between the
(a) currentless and (b) Ip = −2.00 kA MHD equilibria of Heliotron J.

2.3.2 Energetic Particle Mode (EPM)

From section 2.3, EPM is not an eigenmode of the MHD plasma. EPM can be

destabilized in the region with finite continuum damping if the EP-driving rate

is large. They are commonly observed in the plasma discharge with comparable

EP pressure and bulk plasma pressure. The real frequency and the linear growth

rate of the EPM strongly depend on the kinetic part of the EP distribution. In

the experiment, EPM normally experiences strong frequency chirping during the

nonlinear phase. This is due to a strong modification of the EP distribution by

instability[51].
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Name Cause

Toroidicity-induced Alfvén
eigenmode (TAE)

• Toroidicity (Coupling Type)
• Poloidal coupling between “m” and “m+1.”

Ellipticity-induced Alfvén
eigenmode (EAE)

• Ellipticity (Coupling Type)
• Poloidal coupling between “m” and “m+2.”

Non-circularity-induced
Alfvén eigenmode (NAE)

• Coupling Type Poloidal coupling between m
and m + 3 and above.

Helicity-induced Alfvén
eigenmode (HAE)

• Helicity (Coupling Type)
• Coupling between two mode with different

toroidal and poloidal mode numbers but be-
long to the same toroidal mode family.

Beta-induced Alfvén
eigenmode (BAE)

• Compressibility (Coupling Type)
• Upshift of continuum by acoustic wave cou-

pling.

Global Alfvén eigenmode
(GAE)

• Extremum type
• Radial variation in the rotational transform

profile and the density of MHD plasma.

Reversed-shear Alfvén
eigenmode (RSAE)

• Extremum type
• Exists at the extremum of the safe factor pro-

file (q = 1/ι).

Table 2.1: Brief summary of the shear Alfvén gap mode

2.4 Energetic Particle Dynamics and Interaction

with Shear Alfvén Wave

2.4.1 Collisionless EP Guiding Center Drift Orbit

EP orbit does not localize on a single magnetic flux surface. Due to its high

energy, the curvature drift and B drift of the EP can be sufficiently large. These

two drifts cause EP to drift away from its initial flux surface. In addition, these

21



guiding center drifts have a strong dependence on the EP velocity (square to the

EP velocity). This drift is compensated by the rotational transform. There are

many types of EP orbits (e.g. stagnation, potato, passing orbit, and trapped

orbit). The most common types are the passing and trapped orbits. The guiding

center orbits of the co-passing and counter-passing test particles with different

kinetic energies are shown in figure 2.5. From this figure, all of the test particles

are initially placed at R = 1.3 m and Z = 0.0 m. For the low velocity test particle

(vh/vA = 0.10), the test particle is localized on the initial flux surface. As the

velocity of the test particle increases, the deviation from the initial flux surface

increases.

Figure 2.5: The orbits of the co-passing test particle in Heliotron J magnetic field.
The test particles have velocities of 0.10vA0, 0.20vA0, 0.30vA0, and 0.40vA0. v‖/v
ratio of these test particles are 0.80.

2.4.2 EP-SAW Interaction

The effectiveness of the EP-SAW interaction needs to be analyzed in both the

view of the resonant particle orbit and the shape of the spatial and energy distri-

bution function. In the view of the single particle orbit, EP mainly transfers

energy to the SAW by interacting with the wave electric field. The EP-SAW

energy transfer can be expressed by Eq.2.29. In the context of the SAW, the ma-

jority of the EP energy transfer is due to the interaction between the EP guiding

center drift velocity and the perpendicular electric field of the SAW. Firstly, the
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EP energy transfer through its gyromotion is averaged to zero because the EP

gyrofrequency is much higher than the frequency of the SAW. Secondly, the par-

allel electric and magnetic fields are small. The dominant term for the EP-SAW

interaction shown in Eq.2.29 is e~vd · ~E⊥.

dW

dt
= e~v · ~E + µ

∂B‖
∂t
≈ e~vd · ~E⊥ + ev‖E‖ + µ

∂B‖
∂t
≈= e~vd · ~E⊥ (2.29)

To have a non-zero net EP energy transfer, the EP needs to resonate with

the SAW. This means that the resonant EP should periodically perceive the same

phase of the SAW at the intersection point. The generalized EP-SAW resonance

condition in stellarator/heliotron is shown in Eq.2.30[14, 15]. ω, m, j, µB, ωθ, n,

νB, Nfp, and ωφ are mode frequency, poloidal mode number, order of resonance,

poloidal mode number of the equilibrium magnetic field, poloidal orbit frequency,

toroidal mode number, toroidal mode number of the equilibrium magnetic field,

number of the equilibrium field period, and toroidal orbit frequency, respectively.

From Eq.2.30, more EP-SAW resonances emerge as the number of the Fourier

component of the equilibrium magnetic field increases. This suggests that the

number of the EP-SAW energy channels is higher in the stellarator/heliotron than

in the tokamak.

ω − (m+ jµB)ωθ − (n+ jνBNfp)ωφ = 0, (2.30)

In the realistic plasma, EPs with different values of kinetic energy, pitch angle,

and spatial location exist. These EP population with different kinetic energy,

pitch angle, and spatial location can be expressed by the distribution function.

In the view of the kinetic effect, the EPs drive and damp instability through the

inverse Landau damping and Landau damping effects, respectively. The instability

driving and damping effects depend on the EP spatial (∂fh/∂r), velocity (∂fh/∂v)

and pitch angle (∂fh/∂Λ) gradient in the distribution function. In the spatially

uniform EP profile, the EP can drive instability through the velocity gradient. If

the EP-SAW resonance velocity is located in the region with ∂fh
∂v

> 0 and ∂fh
∂v

< 0,

the EP-SAW resonance occurs at this resonance velocity will have a destabilization

and stabilizing effects, respectively[52].

In the toroidal plasma experiment, the EP velocity distribution tends to have

a slowing-down distribution function where ∂fh/∂v < 0; however, the destabiliza-

tion of EP-driven MHD instability can be observed. This contradiction can be

resolved by account the effect of the spatial gradient of EP distribution function.
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The role of the EP spatial gradient can be explained through the conservation of

E
′

of the EP in the toroidal axisymmetric magnetic configuration (e.g. tokamak).

The particle energy (E) and the toroidal momentum (Pφ) are not conserved in

a wave with ω and toroidal mode number n; however, the combination of these

terms are conserved (E
′

= E − ωPφ/n = Constant)[53, 54]. Since particle inter-

acting with a wave will move along the E
′

= Constant line, the energy gradient

of the partial distribution function along this line can be expressed by Eq.2.31.

The second term on the RHS of Eq.2.31 can be simplified to Eq.2.32. In case of

the slowing-down EP velocity distribution, the first term of the RHS of Eq.2.31

will have a stabilizing effect (∂f/∂v < 0). The second term can have a destabi-

lizing effect if n∂f
ω∂Pφ

> 0. If 1
e

1
Bθ

∂f
∂r
> 0, the destabilized mode will have n/ω > 0.

This suggests that the sign of electric charge of resonant particle (e), the sign of

poloidal magnetic field (Bφ), and the sign of the spatial gradient of distribution

function (∂f/∂r) determine the propagation direction of the mode. The perceived

EP energy gradient by the n = 4 mode with frequency of 70 kHz is shown in figure

2.6. In the panels (a) and (b) of figure 2.6, the co-passing and cntr-passing EP

distribution functions in E and Pφ spaces are shown. The EP spatial distribution

is expressed in Pφ. The E
′

= Constant lines for n = 4 and f = 70 kHz mode are

represented by white solid line. The perceived EP energy gradient by the n = 4

and f = 70 kHz mode for the co-passing and counter-passing EPs are shown in

panel (c). The perceived EP energy gradient by the mode has a positive energy

gradient ∂f/∂E > 0[54].

∂f

∂E

∣∣∣∣∣
E′

=
∂f

∂E

∣∣∣∣∣
Pφ

+
n

ω

∂f

∂Pφ

∣∣∣∣∣
E

(2.31)

n

ω

∂f

∂Pφ
≈ n

Rω
(
1

e
)(

1

Bθ

)(
∂f

∂r
) (2.32)

In addition to the velocity gradient and spatial gradient of the EP distri-

bution function, the pitch angle gradient can also has an effect on the instability

drive. The role of the pitch angle gradient (∂f/∂Λ) can be significant when the

anisotropy in EP velocity distribution is large. The example of the plasma experi-

ment with strong anisotropic EP velocity distribution is the plasma discharge with

heated by parallel neutral beam injection (NBI). In this example, the majority of

the EP population will have a low pitch angle value (Λ = µ0B0/E). The role of

the EP pitch angle distribution function can be expressed by Eq.2.33. Assuming

that the EP pitch angle distribution function has a Maxwellian-like distribution
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Figure 2.6: The EP velocity and spatial distribution functions for the (a) co-
passing EP and (b) cntr-passing EP. The E

′
= Constant lines for the 70kHz for

n = 4 mode are drawn in white in panels (a-b). The perceived EP distribution
function by E

′
= Constant line for the co-passing and counter-passing EPs are

shown in panel (c)[54]

(Eq.2.33), the energy gradient of the EP distribution function is represented by

Eq.2.35. Λ0 and ∆Λ are the center and the width of the pitch angle distribution

function. Eq.2.35 suggests that the EP in the region with Λ > Λ0 (Λ < Λ0) will

have a destabilization (stabilization) effect. The effect of pitch angle gradient is

apparent for the n = 0 MHD mode such as energetic particle geodesic acous-

tic mode (EGAM). Since EGAM has n = 0, the instability drive by the spatial

gradient in EP distribution function is zero (See Eq.2.31. Figure 2.7 shows the

nonlinear simulation of EGAM calculated with MEGA[34]. Figure 2.7(a) shows

the initial EP distribution in (E,Λ) space. “Area A” and “Area B” are the region

in (E,Λ) phase space with Λ > Λ0 and Λ < Λ0, respectively. This suggests that

the pitch angle gradient in “Area A” should be a destabilizing effect. The effect

of pitch angle gradient is shown in panel (b). The EP energy transfer in “Area

A” and “Area B” have negative (destabilizing) and positive (stabilizing) value,

respectively. The positive energy transfer in the upper region of “Area A” can be

explained by the weaker pitch angle gradient along the constant µ line. The role

of ∂f
∂E

∣∣∣
Λ

becomes more dominant in this region.

∂f

∂E
=

∂f

∂E

∣∣∣∣∣
Λ

+
∂f

∂Λ

∣∣∣∣∣
E

∂Λ

∂E
(2.33)

f(E,Λ) = fEfΛ = fEexp[−
(Λ− Λ0)2

(∆Λ)2
] (2.34)

∂f

∂E
= fΛ

∂fE
∂E

+
2(Λ− Λ0)

∆Λ2
(
µB0

E2
)fvfΛ (2.35)
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Figure 2.7: The simulation result of the EP energy redistribution by EGAM. Panel
(a) shows the initial EP distribution function in (E,Λ) space. Panel (b) show the
EP energy redistribution by EGAM in (E,Λ) space. The black dashed lines in
panels (a-b) represent the constant magnetic moment (µ)[34].
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Chapter 3

Heliotron J

3.1 Introduction

Heliotron J (L=1) is an advanced helical axis heliotron in Kyoto University,

where L is the number of helical coil[19, 55]. It is designed based on quasi-

isodynamic optimization. It has 4 toroidal field periods. The schematic view

of Heliotron J device is shown in figures 3.1(a-b). The basic plasma and device

parameters are shown on table 3.1. It was purposed to improve the compati-

bility between particle confinement and sufficient MHD stability. This was not

achieved in Heliotron E (L=2)[56], its predecessor. In Heliotron E, the energy

confinement time (τE) can be improved in the inward shift magnetic axis (2 cm)

configuration[57]; however, this magnetic configuration experiences a wide mag-

netic hill region. Therefore, the plasma experiences stronger pressure-driven MHD

instabilities in the high beta plasma. The magnetic well can be obtained in the out-

ward magnetic axis shift configuration, but a higher transport-level was observed.

In Heliotron J, this incompatibility is tackled by forming the vacuum magnetic well

throughout the entire plasma volume and provide the external mean to minimize

the |B| ripple bottom[58]. The objectives of Heliotron J are [55]:

1. To achieve the compatibility between a good particle confinement and MHD

stability.

2. To optimize the helical-axis heliotron configuration.

3. A controllable particle and power-handling scheme.

In this chapter, the Heliotron J magnetic field will be introduced in section

3.2. Section 3.3 will discuss about the EP dynamic in Heliotron J. Section 3.4

will summarize the identified EP driven MHD instabilities in the Heliotron J

experiments.
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Parameters Values
Major Radius (R) 1.2 m
Minor Radius (a) 0.15-0.25 m
Plasma Volume < 1.0m3

Magnetic Field strength at the magnetic axis ¡ 1.5 T
Rotational Transform ι/2π 0.5-0.6

Working Gas Hydrogen and Deuterium

Table 3.1: Heliotron J plasma parameters

3.2 Magnetic Field of Heliotron J

The Heliotron J (HJ) magnetic field is divided into 2 sections: straight and cor-

ner sections. The corner and straight sections are indicated by the red and yellow

circles in figure 3.1(b), respectively. The poloidal cross-section of the magnetic

field intensity of the corner and straight section are shown in figures 3.1(c-d), re-

spectively. The outer and inner black dotted lines represent the HJ vacuum vessel

and the magnetic flux surfaces, respectively. The magnetic field of Heliotron J is

optimized based on the quasi-isodynamic optimization concept. In this concept,

the grad B and curvature drifts are minimized in the straight section of Heliotron

J. In this section, the magnetic field line is almost straight (minimize curvature

drift), and the magnetic field gradient in the major radius direction is almost

constant (see figure 3.1(d)). The magnetic field of Heliotron J possesses 3 main

properties: (1) vacuum magnetic well, (2) low magnetic shear, and (3) bumpy

field. The profiles of these quantities are shown in figure 3.2. As already men-

tioned in chapter 1, the magnetic well is necessary to stabilize the pressure-driven

MHD instabilities in the high beta plasma. Low magnetic shear is one of the con-

cepts to mitigate the formation of the low order rational magnetic islands which

can deteriorate the plasma confinement. Lastly, the bumpy field component is the

external mean for controlling the mod Bmin structure and poloidal drift. These 3

properties will be discussed in detail in the following subsections.

The dominant Fourier magnetic components (εµBνB) of Heliotron J are helic-

ity (ε11), toroidicity (ε10), and bumpy (ε01), where µB, νB, and εµBνB are poloidal

mode number, toroidal mode number, and the ratio between BµBνB/B00, respec-

tively. These magnetic Fourier components are produced by the single helical coil

(L = 1), the toroidal field coil A, the toroidal field coil B, and the three sets of

poloidal field coils (PF). The L = 1 helical coil is utilized in Heliotron J because a

vacuum magnetic well is difficult to achieve in the L = 2 helical coils system. The

helical coil of Heliotron J was designed based on the helical coil winding law with
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Figure 3.1: Schematic view of Heliotron J. The magnetic coils of Heliotron J
consist of a helical continuous helical coil, toroidal field coil A, toroidal field coil B,
inner poloidal coil, and outer poloidal coil. Panels (a) and (b) show the magnetic
coils system and bird’s-eye view, respectively. A schematic view of the neutral
beam injection (NBI) system in Heliotron J is also shown in panel (b). In the
normal (reversed) magnetic field configuration, the toroidal magnetic field is in the
clockwise (counterclockwise) direction; therefore, the BL1 and BL2 are counter-
and co-injections, respectively. The poloidal cross-section of the vacuum magnetic
field strength at the corner and straight sections of Heliotron J for the standard
(medium bumpiness) configuration is shown in panels (c-d), respectively. The
corner and straight sections of Heliotron J are marked in panel (b) by the red
and yellow circles, respectively. The Poincaré plot of the vacuum magnetic field
is represented by the black markers.

the negative pitch modulation (α = −0.4). The helical coil winding law is given by

Eq.3.1[59]. The negative pitch modulation is selected (1) to generate the vacuum

magnetic well throughout the confinement region and (2) to minimize the unfa-

vorable bumpy component. The toroidal field coils A and B are used to control

the bumpy component and the rotational transform (ι/2π). Lastly, the poloidal

field coils are utilized to control the plasma shape and position. Various magnetic
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Figure 3.2: The rotational transform (ι/2π), the vacuum magnetic well profiles,
and the Fourier components of the Heliotron J vacuum magnetic field are shown
in panels (a-c), respectively. These quantities are shown for the low (ε01 = 0.01),
standard (ε01 = 0.06), and high bumpiness (ε01 = 0.15) configurations. ε01 is
the ratio between the bumpy Fourier component and the DC component of the
magnetic field. The major difference is the bumpy component, which has the
highest value in the high bumpiness configuration.

configurations can be created by adjusting the magnetic coil current. There are 3

main magnetic configurations of Heliotron J: low bumpiness (ε01 = 0.01), medium

bumpiness (ε01 = 0.06), and high bumpiness (ε01 = 0.15) configurations. The

major differences between these configurations are the amplitude of the bumpy

component.

θ = π + (M/L)φ− αsin(M/L)φ (3.1)
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Low Magnetic Shear

Magnetic shear is defined by a radial variation of rotational transform profile.

Low magnetic shear is purposed to minimize the deterioration of the plasma con-

finement by low order rational magnetic surface. Low order rational surface is

avoided by localizing rotational transform value in a region without low order ra-

tional surface. The rotational transform profiles of the vacuum magnetic field of

Heliotron J for each magnetic configuration are shown in figure 3.2(a). In terms

of MHD instability, the avoidance of low order rational surfaces can mitigate the

destabilization of interchange mode[22]. For the EP-driven MHD instability, the

formation of the coupling type gap modes, such as toroidal Alfvén eigenmode

(TAE), ellipticity-induced Alfvén eigenmode (EAE), and helicity-induced Alfvén

eigenmode (HAE) are unlikely because the limited range of rotational transform is

unlikely to satisfy the coupling criteria. The commonly observed EP-driven MHD

instabilities in low shear device is global Alfvén eigenmode (GAE) and energetic

particle mode (EPM). Lastly, the radial width of the MHD instability in low shear

stellarator/heliotron is relatively large.

Vacuum Magnetic Well

Due to the absence of the shear stabilization, the MHD stability against the

pressure-driven MHD instability in Heliotron J is brought about by the vacuum

magnetic well. The spatial profiles of the vacuum magnetic well for each magnetic

configuration are shown in figure 3.2(b). The depths of the vacuum magnetic well

of the low bumpiness, standard, and high bumpiness magnetic configurations are

roughly 0.5%, 1.0%, and 1.5%, respectively.

Bumpiness

Bumpy field allows external control of the mod Bmin structure and the radial

magnetic field gradient. It is useful to improve trapped particle confinement by

externally control the

1. Radial location and size of the mod Bmin

2. Toroidal location of the mod Bmin

3. Poloidal drift velocity.

This can be understood by investigating the orbit of deeply trapped particles.

The mod Bmin structure is utilized because it represents the orbit of the deeply
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trapped particle. It is derived from the conservation of longitudinal adiabatic

invariant (J‖). In the absence of the electric field, the J‖ is represented by equation

3.2, wherem, v‖, ds, E, µ, and Bmin are particle mass, parallel velocity, spatial step

length along particle trajectory, particle energy, magnetic moment, and minimum

magnetic field strength along magnetic field line. Since the energy is conserved,

deeply trapped particle will follow Bmin path (E = µBmin). To confine this deeply

trapped particle, the mod Bmin contour must be closed.

J‖ = m
∮
v‖ds ∝ (E − µBmin)

1
2 (3.2)

The closed mod Bmin contour condition was studied by M. Yokoyama et al,

2000 [59] in the helical axis heliotron configuration with the helicity (εh), toroidicity

(εt), and bumpy (εb) field components. The radial dependence of the helicity and

toroidicity are assumed by εh = εha(r/a) and εt = εta(r/a), respectively. εha, εta,

and r/a are the helicity at the LCFS, toroidicity at the LCFS, and normalized

radius, respectively. The expressions of mod Bmin structure are shown in equations

3.3-3.6. Equation 3.3 describes the poloidal cross section of the mod Bmin contour,

where x and y are mod Bmin horizontal position and mod Bmin vertical position,

respectively. This equation turns into elliptic equation if and only if the e2, a

square of elongation, term is positive. This implies εha > εta. The Xdtp and

ρ2
dtp determine the center of the mod Bmin contour and its size, respectively. The

mod Bmin contour breaks if it intersects with the LCFS (r/a = 0) or ρdtp = 0.

These two terms are affected by εha, εta, and εb; therefore, it can be externally

adjusted through εb. The appropriate εb range for the closed mod Bmin contour was

derived based on the above conditions. As εta/εha approaches 1, more negative εb

is required to close the mod Bmin contour. The introduction of the negative bumpy

field (εb < 0) can minimize the variation of the magnetic field ripple bottom. This

process is also known as σ optimization[58].

(x−Xdtp)
2 + e2y2 = ρ2

dtp (3.3)

Xdtp = −
εhaεb + εta(1− E

µB00)

ε2ha − ε2ta
a (3.4)

e2 =
ε2ha

ε2ha − ε2ta
(3.5)
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ρ2
dtp =

[(1− E
µB00

)εha + εbεta]
2

(ε2ha − ε2ta)2
a (3.6)

If the radial dependence of the bumpy field is included in the analysis, the mod

Bmin contour will not extend throughout the torus. Instead, it will be toroidally

localized in a toroidal field period. The collisionless particle confinement signifi-

cantly improves by the toroidally localized mod Bmin contour. This is caused by

the enhancement of the poloidal drift of particle in the closed mod Bmin contour

region, while the radial drift is unchanged.

3.3 Energetic Particles in Heliotron J

In Heliotron J, the EP is produced by the parallel neutral beam injection (NBI).

The schematic view of the NBI system in Heliotron J is also shown in figure 3.1(b).

There are two hydrogen NBI systems in Heliotron J (BL1 and BL2). In the normal

magnetic field direction, the first NBI (BL1) is in the counter-injection, while the

second NBI (BL2) is in the co-injection. In this context, the co-direction is defined

as the direction of plasma current that increases the rotational transform (ι/2π).

The injected energy of the neutral beam in Heliotron J is 28 keV, which has the

velocity of ≈ 0.38vA0 for the deuterium plasma with the density and magnetic

field strength of 1.0 × 1019m−3 and 1.25 T, respectively. Due to the helical axis,

the pitch angle between the BL1 and BL2 beam lines and the local magnetic axis

has a wide range. The injected EP pitch angles between the BL1 and BL2 beam

lines and the local magnetic axis vary from 145◦ to 175◦ and 5◦ to 40◦, respectively.

The EP velocity distribution in Heliotron J in the low beta plasma has been

investigated by the charge-exchange neutral particle analyzer (CX-NPA). The deu-

terium plasma was heated by the combination of electron cyclotron heating (ECH)

and neutral beam injection (NBI). The EP energy spectra in the standard configu-

ration with the electron density (n0) of 0.3×1019m−3 and 0.8×1019m−3 are shown

in figure 3.3[60]. The unfilled markers represent the experimental measurement,

while the solid lines represent the Fokker-Planck calculation results. According

to the experimental results, the bump-on-tail structure were observed at the E,

E/2, and E/3 components of the maximum neutral beam energy. The Fokker

Planck calculation with τs � τcx can reproduce the experimental observation,

where τs and τcx are the slowing-down and charge exchange times, respectively.

This indicates that the charge exchange loss rate is higher than the slowing down

rate in the low beta plasma. The causes of the high charge exchange loss rate
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are the Heliotron J plasma size and the finite neutral particle penetration in the

core region. The slowing-down time (τs) is reduced as the plasma density increases.

Figure 3.3: The measured EP energy spectra in the low beta ECH and NBI heated
plasma discharge in the standard magnetic configuration[28, 60]

Figure 3.4: CX-NPA system in Heliotron J. Panel (a) shows the top view of the
CX-NPA system, while panel (b) shows the detected particle pitch angle with re-
spect to the poloidal (θNPA) and toroidal (φNPA) measuring angles, respectively.
The measured CX-flux for low beta plasma in the low, standard, and high bumpi-
ness configurations are shown in panels (c-e), respectively.[28].

The role of the bumpy component on the EP collisionless confinement was

investigated by the charge exchange neutral participle analyzer (CX-NPA)[27, 28].

The CX-NPA system of Heliotron J is shown in figures 3.4(a-b). The detected EP

pitch angle can be altered by varying the toroidal (φNPA) and poloidal (θNPA)

measuring angles of the CX-NPA. The EP energy distributions measured with
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CX-NPA for the low, standard, and high bumpiness configurations are shown in

figures 3.4(c-e). This experiment was conducted in the low beta plasma condition

(n0 = 0.8 × 1019m−3). The plasma was heated by ECH and co-injected NBI.

From figures 3.4(c-e), the measured CX-flux at the φNPA = 3◦ and 6◦ measuring

angles (equivalent to 115◦ and 125◦ pitch angles) are lower for the high bumpiness

configuration. This was explained by the change in the loss cone shape due to the

bumpy field. The decay times of the CX flux from these magnetic configurations

were compared. The compared CX fluxes were measured at the φNPA = 12◦ angle

because the CX flux at this angle is almost the same in all 3 magnetic config-

urations. The results showed that the decay time of the measured CX flux at

the φNPA = 12◦ angle increases as the bumpy field intensity increases. The time

evolution of the measured CX flux at the φNPA = 12◦ measuring angle for each

magnetic configuration is shown in figure 3.5.

Figure 3.5: Time evolution of the measured CX flux for 20keV at the φNPA =
12◦ measuring angle for each magnetic configuration[28]. The blue, green, and
red markers represent the measured results from the low bumpiness (εb = 0.01),
standard (εb = 0.06), and high bumpiness (εb = 0.15) configurations, respectively.

3.4 EP-driven MHD instabilities in Heliotron J

As mentioned above, the commonly observed EP-driven MHD modes in He-

liotron J are EPM and GAE. These modes are destabilized by the NBI generated

EPs. The destabilization by other species, such as energetic electrons, has not yet

been observed and identified. For the low beta currentless MHD equilibria, the

commonly observed EP-driven MHD modes are

1. n/m=1/2 Energetic particle mode (EPM)
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2. n/m=2/4 Global Alfvén eigenmode (GAE).

These modes can be destabilized either by co- or counter-injected NBIs. The

experimentally results for the low beta currentless plasma are presented in this

section. The selected discharge is #61569[25]. This discharge was heated by both

the ECH and the balanced NBIs where the plasma beta (β0) at the magnetic

axis is averagely around 0.37%. The magnetic configuration for this discharge

is the low bumpiness (εb = 0.01) configuration. The cross power spectrum den-

sity between the toroidal and poloidal magnetic probe signals of the#61569 dis-

charge is shown in figure 3.6(a). Two coherent modes can be observed within

the 83.4kHz < f < 95.0kHz and 136.7kHz < f < 148.4kHz ranges. Ac-

cording to the mode identification in Ref.[25], the coherent modes within the

83.4kHz < f < 95.0kHz and 136.7kHz < f < 148.4kHz frequency ranges are

the n/m = 1/2 EPM and the n/m = 2/4 GAE, respectively. The n/m = 1/2 EPM

has a chirping behavior which indicates a strong interaction with the shear Alfvén

continuum (The linear growth rate and the damping rate are comparable). The

time evolution of the line averaged density (n0), the plasma store energy (Wp), the

net plasma current (Ip), the ECH signal, and the NBI signal are shown in figures

3.6(b-e), respectively. The net toroidal plasma current (|Ip|) is near zero. The

line averaged density slowly increases until 260 ms. From 260 ms onward, the line

averaged density remains constant. It can be seen that both the n/m = 1/2 EPM

and the n/m = 2/4 GAE have a weak dependence on the line averaged density.

This suggests that these two modes are located near the plasma edge because the

change in the local density value in the edge region is much lower than the core

region.

The spatial profiles of the n/m = 1/2 EPM and the n/m = 2/4 GAE

are obtained from the density fluctuation profiles measured with the beam emis-

sion spectroscopy (BES) signal. The averaged density fluctuation (solid line

with circular marker) within the 83.4kHz < f < 95.0kHz (n/m = 1/2) and

136.7kHz < f < 148.4kHz (n/m = 2/4) frequency ranges are shown in fig-

ures 3.7(a-b), respectively. The averaged density fluctuation is deducted by the

background noise level. The coherence (purple dashed line) between the BES

and the toroidal magnetic probe signals are also shown in these figures. In the

83.4kHz < f < 95.0kHz frequency range, two coherent modes are formed around

0.20 < r/a < 0.40 and 0.60 < r/a < 0.80. The later has a higher density fluctua-

tion amplitude. For the 136.7kHz < f < 148.4kHz frequency range, the coherent

mode has a much lower amplitude. The deficit between the averaged density fluc-

tuation amplitude and the noise level is maximized around r/a = 0.675. This

radial location also has a maximum coherence with the toroidal magnetic probe
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Figure 3.6: The time evolution of (a) the cross power spectrum density between
toroidal and poloidal magnetic probes, (b) the line averaged density (n0), plasma
store energy (Wp), the net plasma current (Ip), the ECH signal, and the NBI signal.
These signals are from the #61569 Heliotron J experiment discharge, where the
low bumpiness configuration is utilized[25, 61]

signal. The estimated toroidal mode numbers of the coherent modes within these

frequency ranges is calculated from the phase difference between each toroidal

Mirnov coil (figure 3.8). The toroidal mode number of the coherent modes within

the 83.4kHz < f < 95.0kHz and 136.7kHz < f < 148.4kHz frequency ranges

are 1 + i ∗ Nfp and 2 + i ∗ Nfp, respectively, where i and Nfp are any arbitrary

integer and Heliotron J toroidal field period, respectively. The radial location and

the frequency of these coherent modes are compared to the calculated Nf = 1

and Nf = 2 shear Alfvén continua (see figure 3.9), where Nf is a toroidal mode

family. These shear Alfvén continua are solved with the STELLGAP[18] code.

The measured coherent modes agree with the n/m = 1/2 and n/m = 2/4 shear

Alfvén continua.

In addition to the EPM and GAE, other EP-driven MHD modes were also

observed and reported in the MHD equilibrium with finite plasma current. For

example, the low frequency Alfvénic mode was observed in the MHD equilibrium

with the finite plasma current driven by co-NBI injection (NBCD)[26]. This mode

can only be observed when the plasma current exceeds Ip > 1.00kA. The candidate
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Figure 3.7: The average density fluctuation profile (solid line with unfilled circles)
measured with the beam emission spectroscopy (BES) signal and the coherence
(purple dashed line) of BES and the toroidal magnetic probe signals. The den-
sity fluctuation amplitude for the coherent mode is deducted by its noise level
and then multiplied by its magnitude squared coherence. The density fluctuation
amplitude for the coherent mode is referred to the left vertical axis, while the
coherence is referred to the right vertical axis. The average density fluctuation
profile and coherence are calculated within the (a) 83.4kHz < f < 95.0kHz and
(b) 136.7kHz < f < 148.4kHz frequency ranges.

of the low frequency Alfvénic mode is the beta-induced Alfvén eigenmode (BAE);

however, it is not in the scope of the thesis.
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Figure 3.8: The estimated toroidal mode number “n” from the four toroidal Mirnov
coils array. Any fluctuation that has a lower coherence than the threshold value
is neglected.

Figure 3.9: The shear Alfvén continua for (a) n = +1 and (b) n = +2 mode
families for the β0 = 0.36% currentless #61569 discharge of Heliotron J. The
coherent modes within the 83.4kHz < f < 95.0kHz and 0.171 < r/a < 0.522,
the 83.4kHz < f < 95.0kHz and 0.585 < r/a < 0.891, and the 136.7kHz < f <
148.4kHz and 0.45 < r/a < 0.774 ranges are represented by the red circular, red
triangular, and blue circular markers, respectively.
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Chapter 4

Simulation Model

Plasma simulation is a powerful methodology to investigate complex physical

phenomena that are arduous to be experimentally observed or explained by the-

ory. In the field of the EP-driven MHD instability, plasma simulation has been

proven to be effective for investigating the linear properties of Alfvén eigenmode,

a saturation of Alfvén eigenmodes, nonlinear interaction of multiple modes, EP

transport by AEs, and EP-SAW interaction in the three-dimensional toroidal fu-

sion plasma geometry[31, 34, 47, 62, 63, 64, 65, 66, 67, 68, 69].

Plasma physical phenomena in magnetic confinement fusion plasma have wide

ranges of characteristic time and length scales. Selecting an appropriate plasma

model is essential to obtain good compatibility between the computational re-

source consumption and the theoretical representation. These can be achieved

by neglecting excessive plasma information. Generally, the plasma model can be

described by either kinetic or fluid models. The kinetic model contains much more

plasma information than the fluid model; however, substantially larger computa-

tional resources are required. In contrast, the fluid model requires much lower

computational resources, but at the expense of some plasma information. The

brief summary of the plasma model has been given in figure 2.1. In this chapter,

the existing computational codes for EP-driven MHD instability simulation are

briefly summarized in section 4.1. MEGA, an EP-MHD hybrid simulation code,

will be introduced in the section 4.2.

4.1 Computational Codes for EP-driven MHD

Instability Simulation

Several computational codes have been developed to study the EP-driven MHD

instability in a toroidal magnetic confinement fusion device. Depending on the
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targeted physics, the utilized models for bulk ion, bulk electron, and EP are var-

ied. The summary of the existing computational codes for the study of EP-driven

MHD mode is shown in Table 4.1 In this area, the hybrid simulation code, a combi-

nation of both kinetic and fluid models, is often utilized. In the hybrid simulation

code, EPs (e.g. fusion produced α particle) are treated by the kinetic equations,

while the bulk plasmas (thermal ion and electron) are treated by the fluid model.

This means that the bulk plasma kinetic effects (e.g. thermal ion and electron

Landau damping) are neglected. In some of the model, the thermal ion can also

be treated kinetically. The energetic particle and the bulk plasma are coupled by

the pressure or by the current density terms in the momentum equations. In this

thesis, MEGA[32], a hybrid simulation code, is used. This code will be discussed

more in detail in the following section.

Simulation
Code

Ion Electron EP

MEGA[47] Nonlinear single
fluid MHD

Nonlinear single
fluid MHD

Drift Kinetic

GTC[36] Gyrokinetic Adiabatic fluid
electron

Gyrokinetic

FAR3D[39, 31] Reduced MHD Reduced MHD Landau Closure
Model

Table 4.1: Brief summary of the simulation codes and the utilized equations for
bulk ion, bulk electron, and EP species.

4.2 MEGA Code

MEGA is an EP-MHD hybrid simulation code that uses nonlinear magnetohy-

drodynamic (MHD) equations for bulk plasma and drift kinetic equation for EP

[32, 40]. The bulk plasmas and the EPs are coupled through the plasma current

density. These equations are solved as an initial value problem where the initial

condition is MHD equilibrium. Since MEGA lacks the kinetic description of the

bulk ion and electron, the bulk plasma kinetic effects (e.g. ion and electron Landau

dampings) are excluded. The time integration is carried out by 4th order Runge-

Kutta, which is an explicit method. The time evolution of the marker weight can

be described either by the δf or full − f method. This depends on the choice of

the EP particle source and sink. In the simulation without the consideration of

the EP particle source and sink, the δf method is preferred since numerical noise

is lower. The full− f method has a higher numerical noise; therefore, it will only
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be used when the particle source and sink are considered in the simulation.

4.2.1 MHD equations

The single fluid MHD equations in MEGA are shown as follows:

∂ρ

∂t
= −∇ · (ρ~v) + νn∆(ρ− ρeq) . (4.1)

ρ
∂~v

∂t
= −ρ(~v · ∇)~v −∇P + ( ~J − ~Jh)× ~B

−∇× (νρ(∇× ~v)) + 4
3
∇(νρ∇ · ~v) . (4.2)

∂P

∂t
= −∇ · (P~v)− (γ − 1)P∇ · ~v

+(γ − 1)[νρω2 + 4
3
νρ(∇ · ~v)2

+η ~J · ( ~J − ~Jeq)] + νn∆(P − Peq) . (4.3)

∂ ~B

∂t
= −∇× ~E , (4.4)

µ0
~J = ∇× ~B , (4.5)

~E = −~v × ~B + η( ~J − ~J0) . (4.6)

~ω = ∇× ~v . (4.7)

Eqs.4.1-4.6 are the continuity, momentum, energy, Maxwell-Faraday, Ampére’s

circulation law, and generalized Ohm’s law equations, respectively. The µ0, γ, η,

ν, νn, and ~ω in these equations are vacuum magnetic permeability, adiabatic con-

stant, resistivity, artificial viscosity coefficient, artificial diffusion coefficients, and

vorticity respectively. The subscript ”eq” represents equilibrium variable. These

dissipation coefficients are used to maintain numerical stability by dissipating the

small-scale structures into heat through Eq.(4.3)[70]. They are assumed to be

constant throughout the plasma.
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The contribution of EPs to the bulk plasma can be found in the third term

on the RHS of the momentum equation [Eq.(4.2)] in terms of EP current density

( ~Jh). The deduction of the EP current density ( ~Jh) from the total plasma current

density ( ~J) is equivalent to the bulk plasma current density. The EP current

density ( ~Jh) is obtained through the first-order velocity moment integration of the

EP distribution [Eq.(4.15)]. In this equation, the contribution from the EP E×B
drift is neglected due to the quasi-neutrality condition. This model is valid only

if the EP density is negligible when compared to the bulk plasma density.

4.3 EP drift kinetic equations

EP dynamic is described by the drift kinetic approximation[71] where the con-

tribution from the fast gyration is neglected. The guiding center drift equations

for EP are given by

~vh = ~v∗‖ + ~v∇B + ~vE , (4.8)

~v∗‖ =
v‖
b∗‖

[~b+ ρ‖∇×~b] , (4.9)

~v∇B = −µ∇B ×
~B

ZheB2b∗‖
, (4.10)

~vE =
~E × ~B

B2b∗‖
, (4.11)

b∗‖ = 1 + ρ‖~b · (∇×~b) , (4.12)

ρ‖ =
mhv‖
ZheB

, (4.13)

mh

dv‖
dt

= (~b+ ρ‖∇×~b) · (Zhe ~E − µ∇B) , (4.14)

where v‖, µ,mh, and Zhe are EP’s parallel velocity, magnetic moment (adiabatic

invariant), mass, and electric charge, respectively. The guiding center drift of

EP includes parallel velocity, curvature drift, grad-B drift, and E × B drift. In

this model, the inertia drift (polarization drift) is neglected, since the variation of

the electric field with respect to time is negligible for the particle dynamics when

compared to the other terms. The EP current density ~Jh is obtained from the 1st

order velocity moment integration of guiding center velocity

~Jh = Zhe
∫

(~v∗‖ + ~v∇B)fh(~r, v,Λ, t)d
3v
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−∇×
∫
µ~bfh(~r, v,Λ, t)d

3v , (4.15)

where v =
√
v2
‖ + 2µB/mh, Λ = 2µB0/mhv

2, and B0 is the magnetic field strength

at the plasma center. In Eq.(4.15), E×B drift is neglected due to quasi-neutrality,

and the second term on the RHS represents the magnetization current.

The δf method is employed in this thesis. The equilibrium marker distribu-

tion is initially distributed uniformly in phase space (R, φ, z, v, v‖/v), where R, φ, z

are cylindrical coordinates. Under this condition, the number of physical particles

that are presented by a single marker is proportional to the product of the equi-

librium distribution function and the Jacobian of phase space J = 2πRv2. The

normalization factor α can be obtained from Eq.(4.16) while the time evolution

of the marker weight (wi) is calculated by Eq.(4.16).

1

2

∫
(Ph‖0 + 2Ph⊥0)dV = α

N∑
i=1

Ji(
1

2
mhv

2
i‖ + µiB(~ri))fh0(~r, v,Λ, t)

dwi
dt

= −αJi
[
δ~vh · ∇fh0 +

(
d~v
dt

)(
∂fh0
∂v

)
+
(
dΛ
dv

)(
∂fh0
∂Λ

)]
Lastly, Ph‖ and Ph⊥ are calculated from 2nd velocity moment integration and

particle weight,

Ph‖ = Ph‖0 +
N∑
i=1

wimhv
2
‖i, (4.16)

Ph⊥ = Ph⊥0 +
N∑
i=1

wiµiB(~ri). (4.17)

The initial EP distribution (fh0) is assumed to be separable and given by

fh0 = fhs(~r)fhv(v)fhΛ(Λ) , (4.18)

where fhs(~r), fhv(v), and fhΛ(Λ) are the equilibrium spatial, velocity, and pitch-

angle EP distribution functions. In this simulation, the EP spatial distribution

term fhs(~r) is proportional to the EP equilibrium pressure profile. The velocity

and pitch-angle distribution terms fhv(v) and fhΛ(Λ) are given by
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fhv(v) = (v3 + v3
c )

( τsd
3τcx
−1)erfc

(
v − v0

∆v

)
, (4.19)

fhΛ(Λ) = exp

[
−(Λ− Λ0)2

∆Λ2

]
, (4.20)

where vc, v0, τsd, τcx, Λ0, and ∆Λ are critical velocity, neutral beam injection

(NBI) velocity, slowing-down time and charge exchange time, center and width

of pitch angle distribution, respectively. The velocity distribution term can be

controlled by adjusting the τsd
τcx

ratio[72]. As τcx approaches infinity, the velocity

distribution term is reduced to the slowing-down distribution.

4.4 Computational and Numerical Methods

In MEGA code, the particle-in-cell (PIC) method[73, 74, 75] is utilized for sim-

ulating the EP contributions. In this method, the particle position and velocity

are continuous in phase space, while their macroscopic quantities (e.g. density,

pressure, and current density) are calculated on the stationary grids. In MEGA,

the EP guiding center motion is treated individually by Eqs.4.8-4.14. The electric

and magnetic fields acting on the energetic particle are obtained from the MHD

equations (Eqs. 4.4 and 4.6). The EP density, pressure, and current density are

calculated from the moment integration.

The selection of the numerical method is important to compatibility between

the numerical accuracy and the computational resources consumption. The time

integration of both EP guiding center and MHD equations are calculated explicitly

by the 4th Runge-Kutta method. The calculation scheme of the 4th Runge Kutta

method is shown in Eqs.4.21 and 4.22. The right hand side of the MHD equations

(Eqs.4.1-4.4) and the EP guiding center orbit equations (Eqs.4.8 and 4.12) are

equivalent to “y” in Eqs.4.21. The δt is the time integration step size.

yn+1 = yn + 1
6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + dt
(4.21)
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k1 = f(tn, yn)dt

k2 = f(tn + 1
2
∆t, yn + 1

2
k1)∆t

k3 = f(tn + 1
2
∆t, yn + 1

2
k2)∆t

k4 = f(tn + dt, yn + k3)dt

(4.22)

The spatial derivative terms in the MHD equations and the energetic parti-

cle guiding center orbit equations are approximated by the 4th finite difference

method. Let the field quantity (e.g. magnetic field) and grid width denote by “f”

and “∆x”, respectively, the 1st and 2nd order spatial derivatives at the i− th grid

point are represented by Eq.4.23.

f
′
i = 1

12∆x
(−fi+2 + 8fi+1 − 8fi−1 + fi−2)

f
′′
i = 1

12∆x2
(−fi+2 + 16fi+1 − 30fi + 16fi−1 − fi−2)

(4.23)

To obtain the converged results, the integration time step width (∆t), the

spatial grid size (∆x), and the wave phase velocity (u) must satisfy the Courant-

Friedrichs-Lewy condition[76]. The Courant-Friedrichs-Lewy condition is given by

Eq.4.24. The constant “C” is a constant with an order of units. It depends on

the used numerical method.

C � v
∆t

∆u
(4.24)

(4.25)
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Chapter 5

Hybrid Simulation of Alfvén

eigenmode in Heliotron J Plasma

5.1 Introduction

The EP-driven MHD instabilities in Heliotron J, a low magnetic shear helical-

axis heliotron, has been experimentally investigated and clarified[22, 77, 23, 24,

78, 25, 79]. These studies were mainly based on the experimental measurement

by the magnetic probe, density fluctuation, and scintillator lost ion probe sig-

nals. The simulation results such as MHD equilibrium, shear Alfvén continua,

and electron cyclotron heating (ECH) deposition profile were utilized to support

the experimental observation. These results have clarified the radial structure,

time evolution, and the EP transport behaviors of the observed EP-driven MHD

modes. Due to the low magnetic shear, the spatial structures of the EP-driven

MHD modes in Heliotron J have a global structure. They showed that the EP-

driven MHD instabilities in Heliotron J can be suppressed by the application of

the electron cyclotron resonance heating (ECRH) and the non-inductive electron

cyclotron current drive (ECCD). The main suppression mechanism by the appli-

cation of ECCD is the increase in the local magnetic shear. The suppression of

the EP-driven MHD instability by the increase in the local magnetic shear is also

reproduced by FAR-3D code[39], the Landau closure model; however, the incon-

sistency between the experimental and simulation results in terms of the linear

growth rate was observed. In addition, the EP finite orbit width effect is also

neglected. This can be a potential problem in Heliotron J since the EP velocity

distribution function in Heliotron J has a bump-on-tail tail structure.

Previously, the interaction between EPs and the EP-driven MHD modes in

Heliotron J has not yet been thoroughly investigated. Since Heliotron J mag-
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netic field consists of the helicity (µB/νB = 1/1), toroidicity (µB/νB = 1/0), and

bumpy (µB/νB = 0/1) Fourier components, the additional resonances can poten-

tially increase the energy transfer between EPs and MHD instabilities in Heliotron

J[14, 15] and cause the formation of new toroidally asymmetric gap modes[17, 18].

The clarifications of the role of each resonance, the EP redistribution, and the in-

teraction between shear Alfvén waves are indispensable for the development of the

EP-driven MHD instability mitigation methods. The interaction between the EPs

and the EP-driven MHD modes in Heliotron J will be investigated by MEGA,

an EP-MHD hybrid simulation code. In this chapter, the low beta currentless

discharge of Heliotron J is selected in order to simplify the calculation since the

plasma current profile (Ip) cannot be measured in Heliotron J. In the high beta

plasma and non-zero plasma current discharge, the formation of the lower order

magnetic islands is possible. This can increase the calculation complexity because

the width of the magnetic island in a lower magnetic shear device is relatively

large[80, 81, 82]. The rotational transform of the Heliotron J vacuum magnetic

for the low bumpiness, standard, and high bumpiness configurations are averagely

around ι = 0.55; therefore, the potential low order rational surfaces in the co- and

counter-directions are n/m = 1/2 and n/m = 4/7, respectively.

5.2 Experimental Data

The selected discharge is #61569[25]. The information about this discharge was

shown in section 3.4. This discharge was selected because the bootstrap current

was minimized. In addition to the low plasma beta, the bootstrap current was

found to be minimized in the low bumpiness magnetic configuration[83]. Due to

the minimization of the bootstrap current, the net toroidal plasma current around

the 260ms < t < 300ms time range is near zero. This simplifies the MHD equilib-

rium calculation because the net-zero flat plasma current profile assumption can

be utilized. The MHD equilibrium results will be discussed in section 5.3.1.

5.3 Simulation setups

5.3.1 MHD equilibrium

The bulk plasma density and temperature profiles for #61569 discharge at

t = 280 ms are shown in figure 5.1. This timing was selected because the net

plasma current exhibited the minimum value (See figure 3.6c). The electron den-
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sity and temperature were measured with Thomson scattering, while the bulk

ion temperature was measured with change exchange recombination spectroscopy

(CXRS). The ion density is assumed from the quasi-neutrality condition. The

plasma beta (β0) at the magnetic axis was 0.36%. The MHD equilibrium is cal-

culated from the bulk plasma pressure profile, where the contribution of the EP

anisotropic pressure is neglected. With the balanced NBI, low bootstrap current,

and low plasma beta, zero net plasma current is an appropriate assumption for

the MHD equilibrium calculation. Toroidal plasma rotation was neglected in this

calculation, which is regarded as reasonable for the balanced beam injection case.

The Poincaré plot, the rotational transform profile, and the magnetic field Fourier

components of the MHD equilibrium are shown in figures 5.2(a-c), respectively.

From the Poincaré plot and the rotational transform profile, no formation of low-

order magnetic islands is observed.

Figure 5.1: The fitted equilibrium bulk plasma density, temperature, and pressure
profiles at t = 280 ms for the Heliotron J experiment #61569.

5.3.2 EP initial distribution function

In section 3.3, the EP velocity distribution function in the low density plasma

was found to be a bump-on-tail distribution function[28]. This is caused by the

substantial charge exchange loss (τsd/τcx > 1) between EPs and neutral particles,

where τsd and τcx are slowing-down time and charge-exchange times, respectively.

Slowing-down (τsd) and charge-exchange times (τcx) depend on both plasma den-

sity and temperature. In a higher density plasma, τcx will be longer, and the
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Figure 5.2: (a) Poincaré plot of the MHD equilibrium magnetic field for Heliotron
J low bumpiness configuration with β0 = 0.36% and (b) equilibrium rotational
transform profile. The magnetic Fourier components of the equilibrium magnetic
field are shown in panel (c).

transient from a bump-on-tail velocity distribution function to a slowing-down ve-

locity distribution function can be observed. In this study, the bump-on-tail and

slowing-down anisotropic velocity distribution functions are utilized to investigate

the dependency of the EP-driven MHD instability on the EP velocity distribu-

tion function. The ratio of slowing-down time to charge-exchange time τsd/τcx in

Eq.(4.19) is assumed to be 0 and 4 for the slowing-down and the bump-on-tail

velocity distribution functions, respectively. Following the parallel neutral beam

injection, the majority of the EPs are passing particles; therefore, Λ0 = 0.05 is

utilized in eq.4.20. ∆Λ = 0.25 is assumed in order to maintain a wide distribu-

tion function. The assumed EP initial velocity distribution functions are shown

in figures 5.3(a-b). The white solid lines in these figures represent constant mag-
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netic moment (µ). Since magnetic moment is an adiabatic invariant, the EP that

interacts with shear Alfvén wave will moves along the constant magnetic moment

line. The effective ∂fh0
∂v

and ∂fh0
∂Λ

for EP are evaluated by ∂fh0
∂v

and ∂fh0
∂Λ

along

the constant µ line. For the initial EP spatial distribution function, it is set by

complementary error function, such that the spatial gradient is finite at the mode

location measured with the beam emission spectroscopy[25] (0.45 ≤ r/a ≤ 0.95).

The EP pressure (βh0) at the magnetic axis is assumed to be 0.18%, which is half

the bulk plasma beta.

Figure 5.3: Equilibrium EP distribution function in (v,Λ) space for (a) bump-on-
tail distribution function ( τsd

τcx
= ∞) and (b) slowing-down distribution function

( τsd
τcx

= 4) with Λ0 = 0.05 and ∆Λ = 0.25. White lines represent µ =constant.

5.3.3 Simulation parameters

In this calculation, two sets of grid resolution (R, φ, Z) are utilized in this study,

which are (160,640,160) and (256,640,256), respectively. The finer grid is for the

convergence test in section 5.4.5. The coarse grid resolution (160,640,160) is higher

than the utilized value in LHD case[33] because many grids are located outside

the Heliotron J vacuum vessel. The dimensions of the simulation domain are set

such that the entire vacuum vessel is included. The simulation domain is (0.818 m

< R < 1.582 m, 0 < φ < 2π, 0 m < Z < 0.762 m). The dissipation coefficients in

eq.4.1-4.6 are introduced to maintain numerical stability. These coefficients allow

small-scale incoherent structures to be realistically dissipated as heat[70]. For the
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dissipation coefficients, 5×10−7vA0R0 is used for viscosity and diffusion coefficients,

and 5×10−7µ0vA0R0 for resistivity. The values of these dissipation coefficients are

higher than the experimental values to maintain numerical stability. For example,

the calculated Spitzer resistivity in the core region is 4.65 × 10−9µ0vA0R0. It is

lower than the assumed value by roughly 102. The number of utilized computa-

tional markers in the simulations is 1.8483× 107, which is equivalent to 2 markers

per cell on average.

5.4 Simulation Results

The MEGA was conducted for both the slowing-down and the bump-on-tail

EP velocity distribution functions. For both cases, Alfvén eigenmodes (AEs) with

n/m = 2/4 and n/m = 1/2 mode numbers are observed. The n/m = 2/4 and

n/m = 1/2 modes are the dominant and recessive modes, respectively. From the

kinetic analysis of the EP redistribution in velocity space, these modes are driven

by the sideband resonances between EP and the shear Alfvén wave through the

toroidicity-induced resonances. According to the n/m = 1/2 and n/m = 2/4

shear Alfvén continua, these modes are located near the extremum of the shear

Alfvén continua; therefore, both simulated modes are global Alfvén eigenmodes

(GAEs). These modes correspond to the peak of the calculated coherence between

BES and toroidal Mirnov coil near r/a ≈ 0.4 shown in figures 3.7(a-b). The only

major difference between these two EP velocity distribution functions is the linear

growth rate; therefore, only the spatial profile and time evolution of the coherent

modes of the bump-on-tail velocity redistribution are discussed in sections 5.4.1-

5.4.2. The EP redistribution in velocity and spatial spaces will be discussed in

section 5.4.3.

5.4.1 Spatial profile and time evolution and of Alfvén eigen-

modes

n/m = 2/4 Mode

The spatial structure of the radial MHD velocity of the EP-driven MHD

modes in real space is shown in figure 5.4. The poloidal cross-section of the radial

MHD velocity at the corner (φ = 0◦) and straight (φ = 90◦) sections are shown

in panels (b) and (c), respectively. The poloidal structure of the EP-driven MHD
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Figure 5.4: (a) Three dimensional profile of radial MHD velocity of Alfvén eigen-
mode at t = 0.178 ms in the Heliotron J plasma. Panels (b) and (c) show radial
MHD velocity on poloidal cross-sections at (b) corner section and (c) straight
section.

mode between the corner and straight sections are significantly different from each

other. The spatial profile of the EP-driven MHD mode is complex in real space;

therefore, it is efficient to analyze the spatial profile and the time evolution of the

EP-driven MHD mode in the Boozer coordinates[84] system. The radial MHD

velocity spatial profiles were analyzed during the linear growth phase (t = 0.193

ms). Only the top eight dominant harmonics are shown in figures 5.5(a-b). Only

the top 3 components are labeled for clarity. From both figures 5.4 and 5.5, the

most dominant harmonic is the n/m = 2/4 mode. The n/m = 2/4 mode has

a single dominant harmonic, which is expected for GAE. Due to the low mag-

netic shear, the n/m = 2/4 GAE spatial profile extends from the core to the

edge region. The second and third dominant harmonics are the n/m = 2/3 and

n/m = 2/5. The amplitude of other toroidal mode numbers which belong to the

n = +2 toroidal mode family are negligibly small (e.g. n = −6,−2, 6, 10). This
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indicates that the coupling of the harmonics with the same toroidal mode number

through the toroidicity Fourier component (µB/νB = 0/1). The coupling with the

different toroidal mode numbers through helicity (µB/νB = 1/1) and bumpiness

(µB/νB = 0/1) have minor effects. The time evolution of the n/m = 2/4 radial

MHD velocity harmonic at the location of maximum amplitude (r/a = 0.50) is

shown in figure 5.6(a). Dark solid line, blue solid line, and dashed solid line are

denoted by logarithmic, cosine, sine components, respectively. The cosine and

sine components are referred to the left y-axis, while the logarithmic amplitude

is referred to the right y-axis. The linear growth and the saturation of the in-

stability can be seen. The measured linear growth rate (γ/ωA) is 1.823 × 10−2.

Figure 5.6(b) shows the frequency evolution of n/m = 2/4 harmonic. The average

frequency during the linear growth phase is 165 kHz, which is closed to the GAE

frequency 140kHz observed in the experiment.

Figure 5.5: Spatial profiles of the (a) cosine and (b) sine components of radial
MHD velocity harmonics at t = 0.193 ms. The first 3 dominant harmonics were
drawn with bold solid line, and only the first 3 dominant harmonics were labeled.
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Figure 5.6: An overview of the time evolution of n/m = 2/4 radial velocity har-
monics at r/a = 0.5. The upper row (a) shows the logarithmic amplitude, sine
and cosine components of the mode, while the bottom row (b) shows the frequency
evolution.

n/m = 1/2 Mode

From the cross power spectral density and the beam emission spectroscopy

signals in figures 3.6(a) and 3.7(a), the n/m = 1/2 EPM at 0.30 < r/a < 0.40

and 0.60 < r/a < 0.70 ranges are observed. The structure of the n/m = 1/2

mode is apparent when considering only the n = +1 toroidal mode family. The

spatial profile of radial velocity for n = +1 toroidal mode family and the time

evolution of n/m = 1/2 mode are shown in figure 5.7. In figure 5.7(a-b), the

n/m = 1/2 mode showed linear growth with the frequency of around f = 100.3

kHz during 0.02− 0.06 ms (indicated by black dashed rectangle). The frequency

of this n/m = 1/2 mode is closed to the experimental results in figure 3.6(a).

After 0.06 ms, the n/m = 1/2 mode was obscured by the numerical noise from

n/m = 2/4 GAE. The linear growth rate (γ/ωA) of this n/m = 1/2 mode is

6.993 × 10−3, which is lower than the linear growth rate for n/m = 2/4 GAE

by roughly 2.6 times for the bump-on-tail velocity distribution function. Due to

the significant difference in the linear growth rate between n/m = 1/2 mode and

n/m = 2/4 GAE, it is difficult to analyse n/m = 1/2 mode. The spatial profile

of the n/m = 1/2 mode shown in figure 5.7(c) has a single dominant poloidal

harmonic. To improve the clarity of the n/m = 1/2 mode, the n = +1 toroidal

mode filter is applied on the calculated δPh‖ and δPh⊥. In this filter, only the per-

turbations within the n = +1 toroidal mode family (e.g. n = +13, +9, +5, +1,

−3, −5, and −9) are considered. Due to the helical geometry of Heliotron J, this

filter performs Fourier decomposition along the toroidal and poloidal directions
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Figure 5.7: Time evolution of (a) the logarithmic amplitude and (b) frequency
of n/m = 1/2 radial velocity harmonic at r/a = 0.5, and (c) the amplitude of
the radial MHD velocity spatial profile for n = +1 toroidal mode family at t =
4.46× 10−2 ms. The black dashed rectangle on (a-b) indicate t = 4.46× 10−2 ms
and also the interval where linear growth can be clear observed.

of Boozer coordinate. The utilization of this filter consumes high computational

resources because perturbed EP pressure must be interpolated from cylindrical

to Boozer grid and vice versa. The filter results are shown in figures 5.8-5.9.

The peak location of the mode is at r/a = 0.50 or radial velocity harmonic pro-

file in figure 5.9, while the frequency of this mode is in f = 86.8−106.8 kHz range.

5.4.2 Identification of the Alfvén eigenmodes

In this subsection, the spatial profile and the frequency of the calculated n/m =

2/4 and n/m = 1/2 modes during their linear growth phases are compared with

the shear Alfvén continua. The frequency and spatial width of the n/m = 1/2

and n/m = 2/4 modes are plotted as the black horizontal line in figures 5.10(a-b),

respectively. For both the n/m = 2/4 and n/m = 1/2 modes, their frequencies are

close to the extremum of the n/m = 2/4 and the n/m = 1/2 continua, respectively.

Along with their single poloidal dominant harmonics and global structures, it is
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Figure 5.8: An overview of the time evolution of n/m = 1/2 radial velocity har-
monics at r/a = 0.5175. The upper row (a) shows the logarithmic amplitude, sine
and cosine components of the mode, while the bottom row (b) shows the frequency
evolution.

Figure 5.9: Spatial profiles of the (a) cosine and (b) sine components of radial
MHD velocity harmonics at t = 0.134 ms for n = +1 toroidal mode family. The
first 3 dominant harmonics were drawn with bold solid line, and only the first 3
dominant harmonics were labeled.
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Figure 5.10: The shear Alfvén continua for (a) n = +1 and (b) n = +2 mode
families for the β0 = 0.36% currentless MHD equilibrium of Heliotron J in the
low bumpiness configuration. The black horizontal lines in (a-b) indicate the
average n/m = 1/2 and n/m = 2/4 Alfvén eigenmode frequencies in the MEGA
simulation.

reasonable to conclude that these modes are GAE. From the results, the frequency

in the MEGA simulation is located just above the minimum of the continua. Ac-

cording to the theoretical prediction, GAE (NGAE) is expected to be observed

below (above) the minimum (maximum) of the shear Alfvén continuum[50]. This

discrepancy might arise from the grid conversion from cylindrical coordinates to

Boozer coordinates.

For the comparison with the experiment, the radial location r/a = 0.50 and

frequency 165kHz of the n/m = 2/4 GAE in the simulation are close to that ob-

served in the experiment (See figure 3.6, r/a = 0.55− 0.65 and f = 140kHz)[25].

Good agreement is found for the power spectrum density of the magnetic probes

signal and density fluctuation signal from beam emission spectroscopy[25](figures
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3.6 and 3.7(b)). For the n/m = 1/2 GAE, this mode corresponds to the weak

density fluctuation at r/a ≈= 0.4 within the 83.4kHz < f < 95.0kHz fre-

quency range as shown in figure 3.7(a). The strong density fluctuation of the

n/m = 1/2 EPM at r/a ≈= 0.70 is not reproduced in this calculation. To re-

produce the n/m = 1/2 EPM at r/a ≈= 0.70, the EP spatial gradient at the

plasma edge (0.60 < r/a < 0.80) and beta were increased to significantly higher

values (βh0 = 0.36%), but no destabilization of the n/m = 1/2 EPM at the plasma

edge was observed. This indicates that the n/m = 1/2 EPM at the plasma edge

requires more realistic model.

5.4.3 EP Velocity Redistribution by GAEs in Heliotron J

plasma

Since Heliotron J magnetic field is composed of both the toroidal symmetric and

toroidal asymmetric Fourier components, the number of available EP and shear

Alfvén wave energy channels is higher than the tokamak. In this analysis, the

simulated EP perturbed distribution function (|δfh|) in velocity space is compared

with the calculated EP-SAW resonant velocity from the generalized resonance

condition (Eq. 5.1) for stellarator/heliotron[14, 15]. ω, m, j, µB, ωθ, n, νB, Nfp,

and ωφ are mode frequency, poloidal mode number, order of resonance, poloidal

mode number of the equilibrium magnetic field, poloidal orbit frequency, toroidal

mode number, toroidal mode number of the equilibrium magnetic field, number of

the equilibrium field period, and toroidal orbit frequency, respectively. Eq.(5.1) is

simplified with the far-passing particle approximation (ωφ =
vφ
R0

and ωθ =
vφι

R0
) and

v =
v||√
1−Λ

relation, where Λ is the ratio of EP perpendicular kinetic energy to total

EP kinetic energy. The considered magnetic Fourier components are toroidicity,

helicity, and bumpy. The simulated EP perturbed distribution function for the

bump-on-tail and slowing distribution functions are shown in figures 5.11(a-b) and

(c-d), respectively. The calculated resonant velocities for the toroidicity, helicity,

and bumpy-induced resonances are represented by the orange, blue, and green

dashed lines, respectively. The gray solid lines are the constant magnetic moment.

ω − (m+ jµB)ωθ − (n+ jνBNfp)ωφ = 0, (5.1)

For the bump-on-tail velocity distribution function (figure 5.11(a-b)), the

redistributions are stronger in the high velocity region. The majority of the redis-

tributions (resonant layers) correspond to the EP-SAW interactions via the high

velocity toroidicity-induced resonances. In the vh/vA0 < 0.40 range, the positive

∂fh0/∂v exists and can potentially increase the EP drive. For the Landau damping,
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Figure 5.11: The EP velocity redistribution by the n/m = 2/4 GAE. The EP
velocity redistribution is divided into co-passing (a and c) and counter-passing (b
and d) particles. The EP velocity redistributions for the bump-on-tail and slowing-
down distribution functions cases are shown in panels (a-b) and (c-d), respectively.
The n/m = 2/4 helicity and toroidicity and bumpy-induced resonant velocity
curves are plotted by the orange, blue, and green dashed lines, respectively. The
white solid lines represent the constant magnetic moment lines.

it can be observed in the vh/vA0 > 0.40 range. This is due to the sharp negative

∂fh0/∂v. The effect of the toroidally asymmetric resonances can be observed in

the low velocity region. They are densely packed in the 0.00 < vh/vA0 < 0.10

range. Their effect is apparent in the 0.05 < vh/vA0 < 0.10 ranges for both

co-passing and counter passing particles. In this range, the toroidicity, helicity,

and bumpy-induced resonance layers are adjacently located. This results in the

stronger redistribution than the 0.10 < vh/vA0 < 0.15 range, where only there is

only a toroidicity-induced resonance.

For the slowing-down velocity distribution function (figure 5.11(c-d)), the

majority of the redistributions (resonant layers) occur in the low velocity region.

In this case, the role of the low velocity toroidal asymmetric resonances becomes
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more significant. Their additional contribution can potentially balance the nega-

tive ∂fh0/∂v in the slowing-down distribution function.

Figure 5.12: The perturbed EP parallel pressure (δPh,‖) by the n/m = 2/4 GAE
for the (a) bump-on-tail and the (b) slowing-down velocity distributions. The
purple-filled circles represent the orbit of the resonant EP during the linear phase.
The picked resonant particles are the EP with the largest value of |δfh|.

The perturbed EP parallel pressure (δPh,‖) also reflects the role of the initial

EP velocity distribution function. δPh,‖ for the bump-on-tail and slowing-down

velocity distributions are shown in figures 5.12(a-b), respectively. In these fig-

ures, the orbit of the resonant EP with the largest value of |δfh| is plotted during

the linear phase (magenta filled circles). The selected resonant EPs are the high

velocity co-passing EP within the 0.25 < vh/vA0 < 0.40 range and the low veloc-

ity co-passing within the 0.05 < vh/vA0 < 0.10 range for the bump-on-tail and

slowing-down distribution functions, respectively. In the bump-on-tail case, the

largest δPh,‖ is along the path of the high velocity co-passing resonant EP. The

δPh,‖ along this path has the poloidal structure (m+jµB) of 2 which is close to the

n/m = 2/4 GAE poloidal mode number [85]. This EP poloidal resonance num-

ber corresponds to the high velocity n/m = 2/4 toroidicity-induced resonance for

co-passing EP (0.25 < vh/vA0 < 0.40) in figures 5.11(a & c). According to the res-

onance condition, the resonant velocity for m+ jµB = 3 locates at vh/vA0 ≈ 0.70.

Since, the majority of the EP velocity redistributions for the bump-on-tail case

are caused by the m+ jµB = 2 resonance, δPh,‖ in the other parts of the poloidal

cross section are fairly small for the bump-on-tail velocity distribution function.

In the slowing-down velocity distribution function case, δPh,‖ in the other part
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becomes more apparent.

The time evolution of the logarithmic amplitude of the n/m = 2/4 and

n/m = 1/2 GAEs for bump-on-tail and slowing-down velocity distribution func-

tions are compared and shown in figures 5.13(a-b), respectively. The solid and

dashed lines represent the time evolution for the bump-on-tail and the slowing-

down velocity distribution functions, respectively. These results show that the

linear growth rate (γ/ωA) and the saturation amplitude for both the n/m = 2/4

and n/m = 1/2 GAEs are comparable to each other. It is noted that logarith-

mic amplitude n/m = 1/2 GAE (see figure 5.13(b)) for bump-on-tail distribution

function has lower amplitude than that of the slowing-down distribution function,

despite having a higher linear growth rate. This results from the lower initial

amplitude.

Figure 5.13: Comparison of the time evolution of (a) n/m = 2/4 and (b) n/m =
1/2 radial MHD velocity harmonic between the bump-on-tail (solid line) and the
slowing-down (dashed line) equilibrium EPs distribution functions.

5.4.4 EP Spatial Redistribution by GAEs in Heliotron J

plasma

The dependence of the EP spatial redistribution (transport) on the equilibrium

EP velocity distribution function is analyzed. The EP density and parallel pres-
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Figure 5.14: Time evolution of the EP density (a-b) and parallel pressure (c-d)
profiles. (a) and (c) are the profiles for the bump-on-tail distribution function,
while (b) and (d) are for the slowing-down distribution function. These profiles
are normalized by equilibrium EP density and parallel pressure at the axis. The
nonlinear phases start from t ≥ 0.193 ms and t ≥ 0.207 ms for the bump-on-tail
and slowing down distribution functions, respectively.

sure profiles before and after the saturation of the n/m = 2/4 GAE are shown

in figure 5.14 for the bump-on-tail and slowing-down distribution functions. It

shows that the redistributed EP spatial profiles are dependent on the equilibrium

velocity distribution functions. For the bump-on-tail velocity distribution func-

tion, the large reduction (17− 20%) of the EP parallel pressure is observed. This

results in the hollow EP density and pressure profiles[12, 86]. The cause of the

hollow redistributed profile is the large orbit width of the high velocity resonant

EP. The orbit of the resonant EP with the largest value of |δfh| for the bump-

on-tail velocity distribution function case is shown in figure 5.15(a). The markers

with different colors are the same EP but at different times. The blue marker

represents the linear growth phase. As time progresses, the EP orbit transients

from the blue (linear growth) to the red (nonlinear). This indicates that the high

velocity resonant EPs transit the core region. These particles are transported by

the ExB kick to the edge region. This results in the reduction of the EP density

and pressure in the core region. In the edge region (r/a > 0.7), the redistributed
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EP pressure profile (figures 5.14(c-d)) is lower than the initial value. This is due

to the finite energy transfer from the EP to the n/m = 2/4 GAE. In contrast, the

redistributed EP density (figures 5.14(a-b)) in the edge region is higher than the

initial value. For the slowing-down velocity distribution function, the flat redis-

tributed EP density and pressure spatial profiles are observed. This supports the

previous explanation where the majority of the EPs are the low velocity particles,

which have smaller orbit widths. They are localized near the mode location as

shown in figure 5.15(b). In addition, the EP equilibrium distribution function

(fh0) of the high velocity resonant EPs, which transit the core region, are lower;

therefore, the high velocity EP contributions to the spatial profile redistribution

is lower for the slowing-down case.

Figure 5.15: The Poincaré plot of the resonant co-passing EP with the largest
value of |δfh| interacting with the n/m = 2/4 GAE. The resonant EP for the
bump-on-tail and slowing velocity distribution functions are shown in panels (a)
and (b), respectively. The resonant EP orbit is represented by the colored markers.
The color of each marker represents time. The blue marker represents the linear
growth phase. As time progresses, the EP transients from the blue (linear growth)
to the red (nonlinear).

5.4.5 Numerical Convergence

Numerical convergence has been investigated with different grid resolutions.

Since Heliotron J is a helical-axis device, under cylindrical grid coordinate sys-

tem, many grids will represent the vacuum region; therefore, more concern is on

the poloidal grid resolution. The convergence test is performed with (r,φ,z) =

(256,640,256), a finer grid resolution. The comparison between these 2 grid reso-
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lutions are shown on Fig.5.16. The linear growth rate for (r,φ,z) = (160,640,160)

and (256,640,256) cases are γ/ωA = 1.82× 10−2 and γ/ωA = 1.95× 10−2. The dif-

ference of the linear growth is less than 10%; therefore, (r,φ,z) = (160,640,160) is

sufficient for the simulation of the n/m = 1/2 and n/m = 2/4 modes in Heliotron

J.

Figure 5.16: Comparison of the time evolution of n/m = 2/4 GAE (cosine, log-
arithmic amplitude and frequency) with two different poloidal grid resolutions
(r,φ,z) = (160x640x160) and (256,640,256). Panel (a) shows the comparison be-
tween the time evolution of the cosine component and the logarithmic amplitude
of the radial MHD velocity for two grid resolutions. The linear growth rates for
these two resolutions are labeled in the legend. Panel (b) shows the time evolution
of the mode frequency.

5.5 SUMMARY

The nonlinear simulations of EP-driven MHD instabilities in a helical-axis he-

liotron plasma were calculated for the first time with the kinetic-MHD hybrid

simulation code MEGA. The GAE with n/m = 2/4 was successfully reproduced

with the MEGA simulation based on the experimental bulk plasma temperature

and density profiles. The frequency and the spatial location of the n/m = 2/4

GAE observed in the simulation are consistent with the experimental measure-
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ments. While the inconsistency on the radial location and the linear growth rate

of the n/m = 1/2 mode between simulation and experiment (n/m = 1/2 EPM)

was observed.

For the n/m = 2/4 GAE, we found that the 3-dimensional spatial profile of

the GAE is primarily composed of n = 2 harmonics while the contributions from

the other toroidal mode numbers of the n = +2 mode family such as n = −2 and

6 are weak. This indicates that the coupling of harmonics with the same toroidal

mode numbers through toroidicity is dominant for the GAE spatial profile, and the

couplings with the different toroidal mode numbers through helicity and bumpi-

ness have minor effects. The EP transport by instabilities was calculated, where

the dependency of the EP spatial profile on the equilibrium velocity distribution

function was observed. The nonlinear evolution of the GAE for the bump-on-tail

and the slowing-down distribution functions of EPs were compared and found to

be comparable to each other.

The n/m = 1/2 GAE was found with a lower linear growth rate than that of

the n/m = 2/4 GAE. The n = +1 toroidal mode family filter needs to be applied

to observe the clear oscillation of the n/m = 1/2 GAE. This result is similar to

the previous FAR3D simulation [31] in terms of the relative linear growth rate.

This suggests that more realistic parameters and assumptions are necessary. The

spatial location of the n/m = 1/2 GAE is different from that of the n/m = 1/2

EPM inferred from the experimental measurements. The possible candidate for

the n/m = 1/2 GAE is the weak density fluctuation at r/a = 0.45 shown in figure

3.7(a).

We have also demonstrated that MEGA can simulate the EP-driven MHD

instability in the Heliotron J. MEGA can be a useful tool for the numerical study of

the interaction between EPs and MHD waves and the wave-induced EP transport

in optimized heliotrons with helical-axis. The detailed analysis of the interaction

between EPs and shear Alfvén waves through νB = 0 (e.g. toroidicity) and νB 6= 0

(e.g. helicity)-induced resonances was also reported.

66



Chapter 6

The Effects of the Boundary

Condition on the Modelling of

Energetic Particle Driven MHD

modes in Heliotron J by Hybrid

MHD-EP Model

6.1 Introduction

Previously the EP-driven MHD modes were simulated by MEGA, an EP-MHD

hybrid simulation code; however, the n/m = 1/2 EP mode (EPM) at r/a ≈ 0.70

was not reproduced. Even at the unrealistically high EP pressure and spatial gradi-

ent, destabilization of the n/m = 1/2 EPM was not observed. Due to the low mag-

netic shear of Heliotron J, low-n MHD instabilities, such as the n/m = 1/2 EPM

and the n/m = 2/4 GAE, potentially have a large radial extend. It is possible that

even a low-n MHD instability at the middle of the plasma (0.40 < r/a < 0.50)

can cause a finite radial displacement at the LCFS. In the field of EP-driven MHD

instability simulation, it is normally assumed that the plasma is surrounded by

the perfectly conducting wall. In this context, this assumption is called the “fixed

boundary” condition. Under this assumption, the plasma displacement at the

LCFS is set to zero. The fixed boundary condition was also applied in our previ-

ous work in chapter 5[61]. Under this boundary condition, only the n/m = 2/4

and the weak n/m = 1/2 global Alfvén eigenmodes (GAEs) at 0.40 < r/a < 0.50

were reproduced. The n/m = 1/2 EPM at r/a > 0.70, which is the most unstable

mode, was not reproduced by any means. This n/m = 1/2 EPM can likely cause

the finite plasma displacement at the LCFS. This statement is supported by (1)
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the location of the mode, (2) the low toroidal mode number, and (3) the low mag-

netic shear of Heliotron J. Under these explanations, the fixed boundary condition

is not valid for the modeling of any low-n MHD instabilities in Heliotron J, a low

magnetic shear device. The plasma displacement at the LCFS induced by the

EP-driven MHD instability can be considered with the free boundary condition.

With this boundary condition, the perfectly conducting wall is placed at the ac-

tual location of the Heliotron J vacuum vessel. The vacuum region is introduced

between the plasma and the perfectly conducting wall regions. The MHD plasma

on the plasma-vacuum boundary can be displaced from the equilibrium position

by the MHD instability.

The role of the free boundary condition on the toroidal Alfvén eigenmode

(TAE) stability was investigated by EY Chen et al [43] with AEGIS, an ideal MHD

analysis code. Their results show that the frequency of the ideal MHD mode de-

creases with the increase of the perfectly conducting wall distance from the LCFS.

The stability of the eigenmode is affected by the change in the continuum damping

through the frequency shift. In the strongly shaped plasma, the effects of the free

boundary condition are enhanced. The contribution of the EP kinetic in the free

boundary simulation was studied by S.X. Yang et al [44] with MARS-K, a hybrid

MHD-EP code on HL-2A plasma[87]. In contrast to Ref.[43], the resistive wall

assumption was utilized in place of the perfectly conducting wall assumption. It

showed that the linear growth rate of the TAE increased as the distance between

the LCFS and resistive wall position (wwall) increased. However, at a certain

distance, the linear growth rate converged to the “no wall limit” value, where fur-

ther increment in wwall has no significant effect. The effects of the free boundary

condition in stellarator/heliotron configurations have not yet been studied. Since

Heliotron J has low magnetic shear and strongly shaped plasma, the boundary

condition can have a significant impact on low-n MHD instabilities.

6.2 Simulation setups

The referred experimental discharge and the MHD equilibrium are the same

as chapter 5. The major differences are on the EP initial distribution function

and the boundary conditions. For the cylindrical grid resolution, (R, φ, Z) =

(160, 640, 160) is utilized in this study. It was confirmed in chapter 5 that (R, φ, Z)

= (160, 640, 160) is sufficient for the modelling of low-n MHD instabilities in He-

liotron J. The simulation domain is (0.818 m < R < 1.582 m, 0 < φ < 2π, 0 m

< Z < 0.762 m).
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6.2.1 Boundary conditions

The simulation domain is divided into 3 regions: (1) plasma, (2) vacuum, and

(3) perfectly conducting wall. The comparison between the fixed and free bound-

ary simulation domains is shown in figures 6.1(a-b), respectively. These figures

show the poloidal cross-section of the plasma resistivity, where the black solid line

with circular marker indicates the perfectly conducting wall. The perfectly con-

ducting wall in the free boundary simulation corresponds to the actual Heliotron

J vacuum vessel. The plasma resistivity (η) in the plasma, vacuum, and perfectly

conducting wall regions are 5× 10−7µ0vA0R0, 1× 10−4µ0vA0R0, and 0.00, respec-

tively. In the fixed boundary simulation (figure 6.1(a)), only the plasma and the

perfectly conducting wall exist, while the vacuum region is introduced only in the

free boundary simulation (see figure 6.1(b)). Under these simulation setups, the

plasma displacement in the fixed and free boundary simulations is set to zero at

the LCFS and the vacuum-wall interface, respectively. In the free boundary simu-

lation, the plasma at the plasma-vacuum interface (LCFS) can be freely displaced

by instability.

Figure 6.1: The poloidal cross-sections of the plasma resistivity (η) for the fixed (a)
and free (b) boundary simulations. The domains can be classified into 3 regions:
vacuum vessel (perfectly conducting wall), vacuum, and plasma. These regions
are represented by red, black, and blue colors, respectively. At the vacuum-plasma
interface of the panel (b), the gradient of the plasma resistivity exists.
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6.2.2 Initial EP distribution

In the study of the EP-driven MHD mode with the free boundary simulation,

the initial EP distribution function (∇fh0) was modified from chapter 5 to main-

tain numerical stability and clarify the free boundary effect. In this chapter,

the standard value of the EP beta (βh0,0) at the magnetic axis is reduced from

βh0,0 = 0.18%[61] to βh0,0 = 0.11%. The reason is that the calculated linear growth

rate from the free boundary simulation is much higher than the fixed boundary

result. This will be shown in the following section. In addition, this reduction

makes the simulation parameters more realistic. For the initial EP spatial distri-

bution, two different spatial profiles are utilized. They are shown in figure 6.2(a)

as ∇fh0,r60 and ∇fh0,r50. The maximum EP spatial gradient (∇fh,0) for ∇fh0,r50

and ∇fh0,r60 are placed at the middle (r/a ≈ 0.50) and the edge (r/a ≈ 0.60) of

the plasma, respectively. For the ∇fh0,r50 case, the maximum EP spatial gradient

is located at the extremum of both the n/m = 1/2 and n/m = 2/4 shear Alfvén

Figure 6.2: (a) Initial EP spatial and (b) velocity distributions. White lines in
panel (b) represent µ =constant.
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continua. This distribution (∇fh0,r50) will be utilized only in the section 6.3. The

free boundary effect and its dependency on the mode number can be easily in-

vestigated. For ∇fh0,r60, the maximum EP spatial gradient (∇fh0) corresponds

to the radial position of the experimentally observed n/m = 1/2 EPM. This case

will be discussed in section 6.4 where the experimentally observed n/m = 1/2

EPM will be reproduced. Lastly, only the bump-on-tail velocity distribution will

be investigated in this chapter. Since the role of the EPs in different regions of the

velocity space has been clarified in chapter 5. This initial EP velocity distribution

is shown in figure 6.2(b).

6.3 ∇fh0,r50: Effect of Boundary Condition on the

Properties of EP-driven MHD mode in He-

liotron J

In this section, the roles of the boundary condition on the linear properties of

the EP-driven MHD mode are investigated. The utilized EP initial spatial dis-

tribution (fh0) is the ∇fh0, r50 case shown in figure 6.2(a), where the sharp EP

spatial gradient is placed at the extremum of both the n/m = 1/2 and n/m = 2/4

shear Alfvén continua. Both the n/m = 1/2 and n/m = 2/4 GAEs are expected

to be simultaneously destabilized under this setup. Since both modes are located

nearly at the same radial location, the dependency of the free boundary effect on

the mode number can be investigated. The comparison of the linear properties of

the n/m = 1/2 and n/m = 2/4 GAEs between free and fixed boundary condi-

tions is discussed in subsection 6.3.1. The dependencies of the linear growth rate

(γ/ωA), the frequency, and the radial location of the EP-driven MHD mode on the

perfectly conducting wall location are discussed in subsection 6.3.2. Lastly, the

underlying effect of the free boundary condition will be clarified in subsection 6.3.3.

6.3.1 Effect on spatial profile, linear growth rate, and fre-

quency

The radial MHD velocity (δvrad) profiles from the fixed and free boundary simu-

lations are shown in figures 6.3(a-b) and (c-d), respectively. The black dashed line

represents the EP pressure. The amplitude of the radial MHD velocity and the

EP pressure are referred to the left and right vertical axes, respectively. The time

evolution of the n/m = 1/2 and n/m = 2/4 radial MHD velocity harmonics are
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shown in figures 6.4(a-b), respectively. For the fixed boundary simulation, only

the n/m = 2/4 GAE emerges as the dominant mode (figure 6.3(b)). This mode

has an averaged frequency of 158.85 kHz. The linear growth rate (γ/ωA) of the

n/m = 2/4 GAE is 4.237 × 10−3. This result is similar to the previous results

in section 5.4[61]. According to section 5.4.1, the n/m = 1/2 GAE can only be

observed with the application of the nf = +1 toroidal mode family filter. The

radial width and the frequency of the n/m = 2/4 GAE from the fixed boundary

simulation are compared to its shear Alfvén continuum. It is denoted by the un-

filled triangles in figure 6.5(b).

Significant differences are observed in the free boundary simulation. In the

free boundary simulation, the n/m = 1/2 GAE emerges as the dominant mode

instead of the n/m = 2/4 GAE. The coherent structure of the n/m = 2/4 GAE is

still observable but at a lower amplitude. Both the n/m = 1/2 and the n/m = 2/4

GAEs have a global structure and a single dominant poloidal harmonic. They are

located at the same radial location (r/a ≈ 0.50) which correspond to the ex-

tremum of both the n/m = 1/2 and n/m = 2/4 shear Alfvén continua (see figure

6.5). This information is sufficient to conclude that these two modes are GAEs.

The radial width and the frequency of the n/m = 1/2 and n/m = 2/4 GAEs

from the fixed boundary simulation are compared to their shear Alfvén continua.

They are denoted by the filled triangles in figures 6.5(a-b). In terms of the spa-

tial profile, the free boundary simulation yields a broader mode spatial profile.

The location of the mode peak is also slightly shifted radial outward. This is

apparent from the comparison of the fixed and free boundary simulation results

of the n/m = 2/4 GAE. In terms of the time evolution, the increases in γ/ωA

for both the n/m = 1/2 and the n/m = 2/4 GAEs in the free boundary simu-

lation are observed. The linear growth rates for the n/m = 1/2 and n/m = 2/4

GAEs increase from γ/ωA = “Unobservable” to γ/ωA = 1.032 × 10−2 and from

γ/ωA = 4.237 × 10−3 to γ/ωA = 7.379 × 10−3, respectively. The change in γ/ωA

is higher for the n/m = 1/2 GAE than the n/m = 2/4 GAE. This indicates that

the effect of the free boundary condition is stronger for a low-n MHD mode where

mode width decreases as the mode number increases. It is also supported by the

fact that both of these modes are located at the same radial location.
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Figure 6.3: The spatial profiles of radial MHD velocity harmonic for the fixed and
free boundary “∇fh0,r50” simulations. The simulation results for the free and fixed
boundary cases are shown in panels (a-b) and (c-d), respectively. Panels (a) and
(c) show Nf = +1, and panels (b) and (d) show Nf = +2 toroidal mode families.

Figure 6.4: The time evolution of the logarithmic amplitude of radial MHD ve-
locity harmonic for “∇fh0,r50” at the location of maximum amplitude. Panels (a)
and (b) represent the n/m = 1/2 and the n/m = 2/4 modes, respectively. The
fixed and free boundary simulation results are denoted by the unfilled and filled
markers, respectively. For the case where linear growth of the mode cannot be
observed, γ/ωA is set to “Undefined”.
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Figure 6.5: The shear Alfvén continua for the low beta (βb0 = 0.37%) currentless
plasma of Heliotron J: (a) nf = +1 and (b) nf = +2 toroidal mode families. The
∇fh0,r50 and ∇fh0,r60 are represented by the triangle and square, respectively. The
frequencies and spatial locations of the n/m = 1/2 and the n/m = 2/4 modes for
the free and fixed boundary simulations are represented by the filled and unfilled
markers, respectively. The large and small markers represent the radial location
of the peak and the edge of the radial MHD fluctuation profile, respectively. The
vertical solid lines represent the deviation of the calculated frequency.

6.3.2 Dependency on perfectly conducting wall position

In this section, the dependency of the linear growth rate, the frequency, and

the radial location of the EP-driven MHD mode on the perfectly conducting wall

position will be investigated. The set of artificially perfectly conducting walls with

different radial location is created. These artificially created walls are based on

the LCFS and the actual Heliotron J vacuum vessel. The radial step size between
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each artificially created conducting wall is based on the poloidal direction with

respect to the magnetic axis. These artificially created walls are denoted by the

averaged perfectly conducting wall distance from the LCFS (wwall). It is averaged

because of the non-uniformity of Heliotron J plasma geometry. These walls are

shown in figure 6.6. The lower and the upper limits of wwall are 0.00m and 0.125m,

respectively. wwall = 0.00m represents the normal fixed boundary condition where

the plasma is surrounded by the perfectly conducting wall. For wwall = 0.125m,

the boundary takes shape of the actual Heliotron J vacuum vessel (Similar to the

free boundary results in section 6.3.1). During this scan, the normalization factor

for the EP initial distribution function is kept constant.

Figure 6.6: The scanned artificially created perfect conducting walls. Panels (a)
and (b) show the poloidal cross-sections at the straight and corner sections, respec-
tively. The scanned walls are differentiated by their averaged distance between
the wall and LCFS (wwall). The wwall = 0.00m, 0.0015m, 0.055m, 0.096m, and
0.125m walls are denoted by circular, triangular, square, diamond, and star mark-
ers, respectively. The contour also represents the local distance between the wall
and LCFS. The white solid lines in the plasma region represent the magnetic flux
surfaces.

The dependency of γ/ωA on wwall is shown in figure 6.7(a). For the small

wwall, γ/ωA of all coherent modes increase with wwall. After the finite increase

in wwall, γ/ωA approaches the “no wall limit” value. The zero linear growth rate

for the n/m = 1/2 GAE at wwall = 0.00 m indicates that the linear growth is

not observable. This means either the mode linear growth rate is lower than the

total damping rate or the mode linear growth is obscured by the numerical noises
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from other faster-growing modes. In figure 6.7(a), the increase in γ/ωA for the

n/m = 1/2 GAE is higher than the n/m = 2/4 GAE. The stronger dependency

for the n/m = 1/2 GAE is due to the lower mode number.

The dependency of the mode frequency is shown in figure 6.7(b-c). The

slight increases of the mode frequencies with respect to wwall are observed. This

contradicts with the results in Ref.[43, 44]. For the n/m = 1/2 mode, it can be

explained by the outward radial shift of the mode. According to figure 6.7(d), as

wwall increases the peak location of the modes moves closer to the LCFS and settle

at the “no-wall limit.” According to the n/m = 1/2 shear Alfvén continuum, the

frequencies of these shear Alfvén continua slightly increase as the modes move away

from their extrema. However, this explanation does not valid for the n/m = 2/4

GAE. In addition, the change in the frequency with respect to radial position for

both the n/m = 1/2 and n/m = 2/4 shear Alfvén continua cannot fully cover

the change in the frequency of the n/m = 1/2 and n/m = 2/4 GAEs in the free

boundary simulation.

Figure 6.7: The dependency of the linear properties of the n/m = 1/2 and n/m =
2/4 GAEs on wwall. (a) linear growth rate, (b) the comparison between the mode
frequency and the peak location of the mode with the n/m = 1/2 and n/m = 2/4
shear Alfvén continua, (c) the mode frequency, and (d) the radial location of the
mode.
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6.3.3 Effect on EP driving and MHD dissipation rates

The presented results in subsections 6.3.1 and 6.3.2 indicate that the bound-

ary condition at the LCFS has a significant impact on the spatial profile and γ/ωA

of the low-n MHD instability in Heliotron J. However, the underlying mechanism

of the enhancement in γ/ωA in the free boundary simulation has not yet been

clarified. To clarify the underlying physical mechanism of the free boundary con-

dition effects, The differences in the EP driving (γh) and MHD dissipation (γd)

rates between the fixed and free boundary simulations are analyzed. These 2 val-

ues can be calculated from the EP energy transfer (−d∆Eh/dt) and the MHD

thermal fluctuation energy (d∆ET/dt) rates. These rates are normalized by the

total Alfvén eigenmode energy (∆EAE). These values are calculated by the spatial

integration of the EP energy transfer, MHD kinetic energy, and MHD thermal en-

Figure 6.8: The time evolution of γh (yellow solid line), γd (green dash-dotted
line), and ∆EAE (red solid line with unfilled circles). γh and γd are referred to the
left vertical axis, while ∆EAE is referred to the right vertical axis. The simulation
results for the free and fixed boundary ∇fh0,r50 cases are shown in panels (a-b),
respectively. For the free boundary ∇fh0,r50 case, nf = +2 toroidal mode filter is
applied.
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ergy throughout the simulation domain. The normalized −d∆Eh/dt and d∆ET/dt

are proportional to the EP driving rate (γh) and the MHD dissipation rate (γd),

respectively. In this analysis, only the n/m = 2/4 GAE in the ∇fh0,r50 case was

analyzed because the linear growth of the n/m = 2/4 GAE is observable in both

the free and fixed boundary simulations. The contribution of the n/m = 1/2 GAE

from the free boundary simulation must be filtered out for the free boundary case

because its contribution can affect the calculated γh and γd. The free boundary

∇fh0,r50 case is re-simulated with the nf = +2 toroidal mode filter. The results

are shown in figure 6.8. γh (yellow solid line) and γd (green dash-dotted line)

are referred to the left vertical axis. The logarithmic time evolution of ∆EAE

(red solid line with filled circles) is also shown. It is referred to the right vertical

axis. It can be seen that the Alfvén eigenmode saturates when γh is equal to γd

(ωAt ≈ 2450). The major difference between the free and fixed boundary simula-

tions is γh. As expected, the boundary condition has a weak effect on the MHD

part of the Alfvén eigenmodes because they are internal modes. This suggests that

the free boundary condition enhances the EP and shear Alfvén wave interaction.

The EP driving rate (γh) is enhanced through the broadening of the mode spatial

profile. This allows more EPs to interact with the shear Alfvén wave, and thus,

γh increases. The outward radial shift of the mode can also enhance γh if the high

velocity resonant EPs can efficiently interact with the mode in the peripheral re-

gion. This will be further verified in section 6.4.3 by the kinetic analysis of the EP

redistribution in spatial and velocity spaces. In addition, the strong EP spatial

gradient also exists in the peripheral region for this simulation.

6.3.4 Effect of Resistivity (ηvac) in the Vacuum Region

In the free boundary simulation setup, the plasma resistivity (ηvac) is assumed

to be higher than the plasma region (η). In subsection 6.3.1, η and ηvac are 5.00×
10−7µ0vA0R0 and 1.00×10−4µ0vA0R0, respectively. The validity of this assumption

is investigated in this subsection. The spatial profiles and the time evolution of the

n/m = 1/2 and n/m = 2/4 GAEs presented in subsection 6.3.1 are compared with

the free boundary simulation results with ηvac = 5.00×10−7µ0vA0R0. Since Alfvén

eigenmode and EPM are the internal mode, it is expected that the linear properties

of the n/m = 1/2 and n/m = 2/4 GAEs will have a weak dependence on ηvac.

The simulation results are shown in figure 6.9. The ηvac = 1.00×10−4µ0vA0R0 and

ηvac = 5.00 × 10−7µ0vA0R0 cases are represented by solid line with and without

unfilled circles, respectively. The difference in the linear growth rate and the

spatial profile between these two cases are infinitesimal. This figure implies that
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the linear properties of the n/m = 1/2 and n/m = 2/4 GAEs have a very weak

dependence on ηvac.

Figure 6.9: The comparison of the effect of ηvac on the linear properties of the
n/m = 1/2 and n/m = 2/4 GAEs calculated with the free boundary simulation.
Panels(a) and (b) show the normalized spatial profile of the n/m = 1/2 and
n/m = 2/4GAEs, respectively. Panels (c) and (d) shows the time evolution of the
n/m = 1/2 and n/m = 2/4 GAEs, respectively. The solid line with and without
unfilled circles represent ηvac = 1.00×10−4µ0vA0R0 and ηvac = 5.00×10−7µ0vA0R0,
respectively.

6.4 ∇fh0,r60: Modeling of the n/m = 1/2 EPM at

the plasma edge by the free boundary simu-

lation

Section 6.3 has shown that the free boundary simulation can significantly affect

the linear growth rate of the peripheral EP-driven MHD mode through the change

in the EP-SAW interaction. The n/m = 1/2 GAE can be easily destabilized as

the dominant mode under this setup. To reproduce the experimentally observed

n/m = 1/2 EPM at the peripheral region, ∇fh0,r60 is utilized in place of ∇fh0,r50.

The spatial profile and the time evolution of the n/m = 1/2 EPM will be dis-
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cussed in subsection 6.4.1. In subsection 6.4.2, the simulated bulk plasma density

fluctuation profile (δρ) will be compared with the density fluctuation measured

with BES. The kinetic analysis and the EP redistribution by the n/m = 1/2 EPM

and the n/m = 2/4 GAE will be presented in subsection 6.4.3. Lastly, the fre-

quency chirping of the n/m = 1/2 EPM will be investigated and compared with

experiment.

6.4.1 Spatial profiles and time evolution of the n/m = 1/2

EPM

The spatial profile of the radial MHD velocity for the Nf = +1 and Nf = +2

modes calculated by the free boundary simulation are shown in figures 6.10(a-b),

respectively. Similar to section 6.3, the utilized EP beta at the magnetic axis

(βh0(r/a=0)) is 0.11%. The n/m = 1/2 mode is observed as the dominant mode

with the frequency of 97.46 kHz. The peak location of the n/m = 1/2 mode is

Figure 6.10: The spatial profiles of radial MHD velocity harmonic for the fixed
and free boundary ∇fh0,r60 simulations. The simulation results for the free and
fixed boundary cases are shown in panels (a-b) and (c-d), respectively. For the
fixed boundary simulation, βh0(r/a=0)= 0.22% is utilized. Panels (a) and (c) show
Nf = +1, and panels (b) and (d) show Nf = +2 toroidal mode families.
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located around r/a = 0.60, which corresponds to the region with the highest EP

spatial gradient. This n/m = 1/2 mode is potentially an EP mode (EPM), which

is supported by its radial location and frequency. Firstly, its radial location does

not peak at the extremum of the n/m = 1/2 shear Alfvén continuum (r/a = 0.50),

but adjacent. Secondly, its linear frequency (97.46 kHz) is higher than the fixed

boundary case (88.58 kHz). Lastly, this mode has a finite sin component which

suggests the strong interaction with the shear Alfvén continuum. Therefore, it is

sufficient to conclude that this n/m = 1/2 mode is an EPM. For the Nf = +2,

the coherent structure of the n/m = 2/4 mode can only be observed after the

saturation of the n/m = 1/2 mode (nonlinear phase). This indicates that the

n/m = 2/4 mode is destabilized by the redistributed EP spatial distribution at

r/a ≈ 0.50. The radial MHD velocity of the n/m = 1/2 and n/m = 2/4 modes

are plotted at the time when the n/m = 2/4 mode has the maximum amplitude.

Similar to the n/m = 2/4 GAE in section 6.3, this n/m = 2/4 mode is also located

at the extremum of the n/m = 2/4 shear Alvén continuum. The linear frequency

of the n/m = 2/4 mode cannot be accurately measured because it is obscured due

to the significant difference between the n/m = 1/2 and n/m = 2/4 modes. The

estimated linear frequency of the n/m = 2/4 mode fluctuates between 140 kHz

and 210 kHz; therefore, the linear frequency of the n/m = 2/4 mode is written

as “Unobservable” in figure 6.10(b). The radial location and the frequency of the

n/m = 1/2 EPM and the n/m = 2/4 mode are also compared with the n/m = 1/2

and n/m = 2/4 shear Alfvén continua in figures 6.5(a-b), respectively.

The role of the boundary condition is also discussed for the ∇fh0,r60 case.

The fixed boundary simulation is simulated with βh0(r/a=0.0d0)=0.11%. No EP-

driven MHD mode is destabilized with this EP beta value (The simulation results

are not shown). In order to destabilize the n/m = 1/2 and n/m = 2/4 mode in the

fixed boundary simulation, βh0(r/a=0) increases from 0.11% to 0.22%. The radial

MHD velocity profiles for the Nfp = +1 and Nfp = +2 modes calculated by the

fixed boundary simulation are shown in figures 6.10(c-d), respectively. Under this

higher βh0 value, the destabilized n/m = 1/2 and n/m = 2/4 modes are observed

at r/a ≈ 0.50. Due to their radial locations and their single poloidal dominant

harmonic structures, these n/m = 1/2 and n/m = 2/4 modes are classified as

GAEs. This suggests that these 2 GAEs are not destabilized by the strong EP

spatial gradient at 0.60 < r/a < 0.70 but by the weak EP spatial gradient at

r/a = 0.50. The frequencies of the n/m = 1/2 and n/m = 2/4 modes are 88.58

kHz and 157.1 kHz, respectively.

The time evolution of the logarithmic amplitude of the n/m = 1/2 and
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the n/m = 2/4 radial MHD velocity logarithmic amplitudes are shown in figures

6.11(a-b), respectively. The solid line with filled and unfilled squares represents

the time evolution of the free and fixed boundary results, respectively. The linear

growth rates are shown in the legend. The calculated linear growth rate of the EP-

driven MHD mode with the free boundary simulation is significantly higher than

the fixed boundary simulation, despite having lower βh0(r/a=0). These results

imply that the peripheral n/m = 1/2 EPM cannot be destabilized by the fixed

boundary simulation even if the unrealistically high βh0 is utilized.

The presented n/m = 1/2 EPM and the n/m = 2/4 GAE have relatively

large mode widths. Their presence can potentially cause the modification of the

magnetic field. The Poincaré plot of the magnetic field modified by the n/m = 1/2

EPM and the n/m = 2/4 GAE is shown in figure 6.12. Panels (a) and (b) show the

Poincaré plot of the modified magnetic field during the linear and nonlinear growth

phases, respectively. During the linear phase, the differences between the initial

and modified magnetic surfaces are infinitesimal. The shape of the LCFS can be

retained during the linear growth phase. The modification of the magnetic field

is apparent during the nonlinear phase when the mode amplitude is sufficiently

large. The reconnections of the magnetic field line are observed. The two mag-

netic island chains in the middle of the plasma have a poloidal number of 9. This

corresponds to the ι/2π = 5/9 rational surfaces at r/a ≈ 0.40 and 0.75 (See figure

5.2). Since the large-amplitude fluctuation caused by MHD mode does not have

Figure 6.11: The time evolution of the logarithmic amplitude of radial MHD
velocity harmonic for ∇fh0,r60 at the location of maximum amplitude. Panels (a)
and (b) represent the n/m = 1/2 and the n/m = 2/4 modes, respectively. The
free and fixed boundary simulation results are denoted by the filled and unfilled
markers, respectively.
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only an interchange parity but also tearing parity during the nonlinear phase[88].

The formation of the magnetic island is possible. This has also been observed in

the simulation of the Abrupt Large Event (ALE) in JT-60U[66]. The scale of the

magnetic reconnection by the n/m = 1/2 EPM needs further validation since the

utilized η in this simulation is higher than the experiment. To maintain numer-

ical stability, significantly higher grid resolution (and computational resource) is

required to compensate for the reduction in η.

Figure 6.12: The Poincaré plot of the Heliotron J magnetic field modified by the
n/m = 1/2 EPM. The black marker and colored marker represent the initial and
the modified magnetic fields, respectively. Panels (a) and (b) show the Poincaré
plot of the modified magnetic field during the linear (ωAt = 522) and nonlinear
(ωAt = 3963) growth phases, respectively.

6.4.2 Experimental Validation of the n/m = 1/2 EPM

The bulk plasma density fluctuation (δρ) profile of the n/m = 1/2 EPM

and the n/m = 2/4 GAE calculated by the “∇fh0,r60 is compared with the den-

sity fluctuation measured with the beam emission spectroscopy (figure 3.7). The

n/m = 1/2 EPM and the n/m = 2/4 GAE density harmonics (δρ) are shown

in figures 6.13(a-b), respectively. The free and the fixed boundary simulation re-

sults are represented by solid line and dashed line, respectively. The bulk plasma

density fluctuation profiles are closer to the edge region when compared to the

radial MHD velocity profiles. This is due to the non-uniformity of the equilibrium

bulk plasma density profile. The free boundary simulation results agree well with

the density fluctuation signal shown in figure 3.7[25]. The simulated n/m = 1/2

EPM (r/a ≈ 0.6907) corresponds to the maximum peak within the 84.4 kHz ¡ f
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¡ 96.0 kHz frequency range at r/a ≈ 0.774, while the simulated n/m = 2/4 GAE

(r/a ≈ 0.6356) corresponds to the maximum peak within the 137.7kHz kHz ¡ f

¡ 149.3 kHz frequency range at r/a ≈ 0.675, respectively. The discrepancies in

terms of the radial location of the n/m = 1/2 EPM and the n/m = 2/4 GAE

between the simulation and the experiment are 0.0833 and 0.0394, respectively.

In the fixed boundary simulation, the deviations become much larger. The devi-

ations for the N/m = 1/2 and n/m = 2/4 modes increase to 0.2428 and 0.1324,

respectively. These also suggest that the free boundary condition is necessary for

reproducing the experimental observation in Heliotron J.

Figure 6.13: The density fluctuation profiles for the n/m = 1/2 EPM and the
n/m = 2/4 GAE for the free boundary “∇fh0,r60” simulation are shown in panels
(a) and (b), respectively. The dash and solid lines represent the free and fixed
boundary simulation results.
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6.4.3 Kinetic analysis of EP redistribution by the n/m =

1/2 EPM and the n/m = 2/4 GAE in Heliotron J

Redistribution in velocity space

In this section, the interaction between the EPs and the n/m = 1/2 EPM and

the n/m = 2/4 GAE from the free boundary simulation of the ∇fh0,r60 case is

investigated by analyzing the perturbed EP distribution function (δfh) in velocity

(v,Λ) and spatial spaces. The similar approach to chapter 5 is utilized in this

section; however, only the helicity (µB/νB = 1/1) and toroidicity (µB/νB = 1/0)

magnetic Fourier components are considered in this analysis. The resonant layers

become apparent when the shear Alfvén wave electric field becomes sufficiently

large. Since the observed modes are EPM and GAE, the resonant velocities are

not identical between co-passing and cntr-passing EPs[89]. The redistribution of

the co-passing and counter-passing EPs are shown in figures 6.14, respectively. In

contrast to figure 5.11 in chapter 5, the toroidicity and helicity-induced resonant

velocities for both the n/m = 1/2 and the n/m = 2/4 modes are plotted in yellow

and purple colors, respectively. The dashed line and dotted line marked with

circular markers represent the toroidicity and helicity-induced resonant velocities,

respectively. For the EP redistribution by the n/m = 1/2 EPM, it is strongest

in the high velocity region (see point “1” in figure 6.14). The poloidal resonance

numbers (m+µBj) of the n/m = 1/2 EPM and the n/m = 2/4 GAE around point

“1” are 1 and 2, respectively. The poloidal resonance number of the n/m = 1/2

EPM (m+µBj = 1) is closer to m = 2 than the poloidal resonance number of the

n/m = 2/4 GAE (m+µBj = 2) to m = 4. The resonance layer in the high velocity

region tends to have a wider width than the low velocity region. This can be

understood by the larger orbit width of the high velocity EPs than the low velocity

EPs. These EPs can drift across different flux surfaces; hence, they experience

wider ranges of ι/2π. This increases the difference between the simulation results

and the generalized EP-SAW resonance condition for stellarator/heliotron because

ι/2π is assumed to be constant. The helicity-induced resonances (µB/νB = 1/1)

can be observed in the low velocity region (see point “2” in figure 6.14). The initial

distribution function (∇fh0) at around point 2 is lower than the 0.075 < vh/vA0 <

0.125 velocity region. However, the more intense δfh is observed around point 2.

This is caused by several the helicity and toroidicity-induced resonances within

this region. The redistribution caused by the n/m = 2/4 GAE is infinitesimal

due to its much lower amplitude. This is evident from the regions with only the

n/m = 2/4 resonant velocity, such as the counter-passing EP redistribution in the

vh/vA0 > 0.30 velocity range (See point “3” in figure 6.14(b)). In this region, only

the n/m = 2/4 resonant velocity curve exists, and the clear EP redistribution is
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Figure 6.14: The perturbed EP distribution functions due to the interaction with
the n/m = 1/2 EPM and the n/m = 2/4 GAE in velocity space δfh(v,Λ) for
∇fh0,r60: (a) co-passing and (b) counter-passing EPs. The dashed and circu-
lar marker dotted lines represent toroidicity and helicity-induced resonances, re-
spectively. The yellow and purple colors represent the resonant curves for the
n/m = 1/2 EPM and the n/m = 2/4 GAE, respectively. The purple and green
markers indicate the destabilizing and stabilizing resonant EPs with the highest
value of |δfh|, respectively. The hexagram-shaped and triangular markers indi-
cate the initial and final locations in the velocity space of these resonant EPs,
respectively. The Poincaré plot of these EPs are shown in figure 6.17(a-d).
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not observed. This is difference from the fixed boundary results (figure 5.11(b))

in chapter 5 because the n/m = 2/4 GAE is a dominant mode. In addition, the

EP interaction with the n/m = 1/2 EPM is weaker for the counter-passing EP.

Neglecting the spatial dependence, the weaker interaction is due to the fact that

the high velocity n/m = 1/2 toroidicity-induced resonance for the counter-passing

EP is located in the lower velocity region.

The majority of the redistributions (δfh) in velocity space are due to the

energy transfer from the EPs to the n/m = 1/2 EPM. This can be seen from the

fact that the positive δfh (clump) is located in the low velocity side of the reso-

nance layer. The stabilization process can only be observed in the vh/vA0 > 0.425

velocity range of the co-passing EP where the clump is located in the high velocity

region. This is caused by the sharp ∂fh0
∂v

< 0. To confirm these explanations, the

total EP energy transfer (∆Eh) is calculated in velocity space from
∫ ~E ·~vdt. The

integrated results for each region in phase space are shown in figure 6.15. The neg-

ative (blue) value means that EPs in the particular phase space are losing energy

to the shear Alfvén wave. The negative energy transfer regions emerge throughout

the velocity phase space, except for the vh/vA0 > 0.425 region. In term of the total

energy transfer, the main contributions are from the high velocity resonances for

both co-passing and counter-passing EPs (see point “1” in figure 6.15), while the

contribution of the low velocity resonances (vh/vA0 < 0.20) are negligible. This

is caused by the lower equilibrium EP distribution function (∇fh0) for the bump-

on-tail distribution and from the fact that lower energy particles can transfer less

energy to the shear Alfvé wave[90].

Redistribution in spatial space

The spatial redistribution of the high velocity EPs by the n/m = 1/2 EPM and

the n/m = 2/4 GAE for ∇fh0,r60 are discussed. In chapter 5, the dependency of

the EP spatial redistribution on the location of the resonant particles in phase

space has been demonstrated. The redistributed EP parallel pressure profile by

the n/m = 1/2 EPM for ∇fh0,r60 is shown in figure 6.16. The majority of the EP

redistribution during t ≤ 2247ω−1
A is caused by the n/m = 1/2 EPM. Initially,

this spatial redistribution increases the EP pressure gradient around r/a ≈ 0.50.

This enhances the EP-driving for the n/m = 2/4 GAE. At t > 2378ω−1
A , the EP

pressure profile is flattened around r/a ≈ 0.50. The hollow EP pressure profile

forms when the resonant markers that transit the core region[12, 61] have a large

δfh. The guiding centers of the resonant EPs with the largest value of the net en-

ergy transfer are traced. The Poincaré plots of the traced resonant co-passing and
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Figure 6.15: The total transferred EP energy via the interaction with the n/m =

1/2 EPM and the n/m = 2/4 GAE electric field (Σwi~vh,i · ~E) for ∇fh0,r60: (a) co-
passing and (b) counter-passing EPs. The dashed and circular marker dotted lines
represent toroidicity and helicity-induced resonances, respectively. The yellow and
purple colors represent the resonant curve for the n/m = 1/2 EPM and the n/m =
2/4 GAE, respectively. The purple and green markers indicate the destabilizing
and stabilizing resonant EPs with the highest value of |δfh|, respectively. The
hexagram-shaped and triangular markers indicate the initial and final locations in
the velocity space of these resonant EPs, respectively. The Poincaré plot of these
EPs are shown in figure 6.17(a-d).
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counter-passing EPs are shown in figures 6.17(a-b) and (c-d), respectively. The

destabilizing and stabilizing resonant EPs are shown in panels (a and c) and (b

and d), respectively. The time evolution of the kinetic energy of these traced EPs

are shown in panel (e). The markers with different colors in each panel represent

the same resonant EP but at different times. The color of the marker corresponds

to the rainbow color bar on the horizontal axis of the panel (e). During the linear

growth phase of the n/m = 1/2 EPM, the resonant co-passing EP transit the

core region. They have sufficiently large orbit widths such that they can inter-

act with the perpendicular electric of the n/m = 1/2 EPM at the plasma edge.

This supports the conjecture in section 6.5 where the radially outward shift of

the mode profile in the free boundary simulation can enhance the EP and shear

Alfvén wave interaction. In contrast to the resonant co-passing EPs, the resonant

counter-passing EPs do not transit the core region. Their orbits are localized

around the plasma edge. This implies that the resonant counter-passing EPs not

only have lower ∇fh0 in velocity space but also in spatial space. This further

supports the fact that the net EP energy transfer to the n/m = 1/2 EPM by the

Figure 6.16: The spatial EP redistributions by the n/m = 1/2 EPM and the
n/m = 2/4 GAE for the free boundary ∇fh0,r60 simulation at various time. The
n/m = 1/2 EPM starts to saturate around t=2247ω−1

A , while the n/m = 2/4 GAE
saturates after t=2378ω−1

A .
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Figure 6.17: The Poincaré plot of the resonant co-passing and counter-passing EPs
interacting with the n/m = 1/2 EPM in the free boundary “∇fh0,r60” simulation.
The co-passing and counter-passing EPs with the largest value of |δfh| are shown
in panels (a-b) and (c-d), respectively. Panels (a) and (c) show destabilizing EPs,
while panels (b) and (d) show stabilizing EPs. The time evolution of the kinetic
energy of these EPs is shown in (e). The color of each marker in panels (a-d)
represents time. The color bar for time is presented on the horizontal axis of the
panel (e). The directions of the toroidal magnetic field and the magnetic field
gradient are shown at the lower right corner of the panels (a-d).
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counter-passing EPs is lower than the co-passing EP (figure 6.15(b)).

The convective transport of the destabilizing EP and the stabilizing EP is

in the opposite direction. According to figures 6.17(a-d), the destabilizing EPs

are transported radially outward, while the stabilizing EP are transported inward.

These results are similar to the tokamak plasma. In the tokamak plasma, the vari-

ation of the EP toroidal canonical angular momentum (Pφ) also depends on its

kinetic energy (Ek)[53, 54]. In the toroidally axisymmetric configuration, “E ′”, a

combination of Ek and Pφ, is conserved during the wave-particle interaction. The

conservation of “E ′” is expressed as dE ′/dt = d(Ek−ωPφ/n)/dt = 0. By a simple

algebraic manipulation, the toroidal canonical angular momentum (Pφ) can be

written as δPφ = (n/ω)δE. Since the sign of the transport direction depends on

the sign of δPφ, the destabilizing (δEk < 0) and stabilizing (δEk > 0) EPs will

be transported radially outward (δPφk < 0) and inward (δPφk > 0), respectively.

Since the EP destabilization effect must be greater than the stabilization effect,

this creates net radially outward transport; thus, producing a hollow EP pressure

profile.

In the physical view, the transport direction can also be explained by the

sign of the perceived electric field (dW
dt

= ~vh · ~E). Since the grad-B drift and cur-

vature drift is pointing downward in Heliotron J, the perceived electric fields of

the resonant EPs at the z = 0 m plane are pointing upward and downward for

the destabilizing and stabilizing EPs, respectively. This results in the different

direction of the E ×B kick between the destabilizing and stabilizing EPs.

6.4.4 Frequency Chirping of the n/m = 1/2 EPM

In the experiment, the asymmetric downward frequency chirping of the

n/m = 1/2 EPM has been observed in the power spectrum density (PSD) of

the magnetic probe signal. The #61569 PSD of the toroidal magnetic probe sig-

nal in the 75kHz ¡ f ¡ 110kHz frequency range is shown in figure 6.18. This

indicates that the EP driving rate (γh) and the MHD dissipation rate (γd) are

comparable[91, 92, 93]. In the experiment, the frequency of the n/m = 1/2 EPM

chirps from 100 kHz to 87 kHz. In this experiment, the plasma was heated by

ECH and NBI. It was found that the application of the on-axis ECH heating can

suppress EP-driven MHD modes[25, 94, 95]. These studies also showed that the

EP-driven MHD mode transients from the continuous mode to the chirping mode
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Figure 6.18: The downward frequency chirping of the n/m = 1/2 EPM measured
with the Mirnov coil in #61569 discharge.

as the ECH power increases. When the ECH power is sufficiently high, the mode

bursts. The prospective physical causes are the changes in the trapped electron

collision damping rate and the EP pressure profile[79]. Since the trapped electron

collision damping effect is excluded in the fluid model, the ECH suppression effect

can be compensated by the higher dissipation coefficients (η, ν). These coefficients

are already higher than the experimental values as shown in chapter 5. γh and γd

of the n/m = 1/2 EPM calculated by the free boundary simulation of the ∇fh0,r60

case are calculated by the time evolution of total EP energy transfer and the MHD

fluctuation energy transfer. The calculated γh and γd for the n/m = 1/2 EPM are

shown in figure 6.19. It is seen that γh and γd are at the comparable level.

Figure 6.19: The time evolution of the γh (yellow solid line), γd (green dash-dotted
line), and ∆EAE (red solid line with unfilled circles) of the n/m = 1/2EPM . γh
and γd are referred to the left vertical axis, while ∆EAE is referred to the right
vertical axis.
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Figure 6.20: (a) The time evolution of cosine components of the n/m = 1/2
radial MHD velocity harmonics. (b) The power spectral density of the n/m = 1/2
radial MHD velocity harmonic. The calculated frequency chirping from the Berk-
Breizman model[91, 96] is plotted by the white dashed line.

The time evolution of the simulated n/m = 1/2 EPM radial MHD velocity

is shown in figure 6.20(a). After the mode saturation at t ≈ 0.475ms, the beating

pattern is observed. The PSD of the n/m = 1/2 EPM radial MHD velocity har-

monic is shown in figure 6.20(b). The simulated results are also compared with the

Berk–Breizman (BB) model[96], where the EP driving rate and MHD dissipation

rate are obtained from figure 6.8(a). The results from the Berk-Breizman model

are denoted by the white dashed lines in figure 6.20(b). The asymmetric downward

frequency chirping is observed. The n/m = 1/2 EPM chirps downward from the

linear frequency (ωo) of 97.46 kHz to 80.00 kHz. The upward frequency chirping

has a much lower amplitude. It can be observed only within the 0.30 < t < 0.50

range. After t ≈ 0.50 ms, the upward frequency chirping dissipates. This is possi-

bly caused by the increase in the toroidicity-induced resonant velocity between the

n/m = 1/2 EPM and the co-passing EPs. When the frequency of the n/m=1/2

EPM chirps upward, EP needs higher velocity to keep resonate with the mode.

Since the majority of the EP drive is caused by the interaction between the high-
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velocity co-passing EPs and shear Alfvén wave through the “m+j=1” high-velocity

toroidicity-induced resonance (See figure 6.14), the increase in the co-passing EP

resonant velocity can exceed the NBI injection energy of Heliotron J. This also

implies that the resonant velocity of the upward frequency chirping will shift into

the ∂fh/∂v < 0 (stabilizing) region.

6.5 Dependency of the free boundary effect on

the plasma shape

In this section, the dependency of the free boundary effect on the plasma shape

is estimated. In the toroidally symmetric configuration (e.g. tokamak), the role of

the boundary condition was found to be more significant in the strongly shaped

plasma[43]. In Heliotron J plasma, this dependence is analyzed in the 3 main

magnetic configurations: low bumpiness (ε01 = 0.01), standard (ε01=0.06), and

high bumpiness configurations (ε01=0.15). The MHD equilibrium of the standard

and high bumpiness configurations are calculated based on the same bulk plasma

density and temperature profiles as the low bumpiness configuration in sections

6.1-6.4. The MHD equilibria for these magnetic configurations are shown in figures

Figure 6.21: The low beta currentless MHD equilibria for the low, standard, and
high bumpiness configurations. The Poincareé plot of the equilibrium magnetic
field for the low, standard, and high bumpiness magnetic configurations are shown
in panels (a), (b), and (c), respectively. The rotational transform profiles of these
MHD equilibria are shown in panel (d). The initial EP pressure profile is shown
in panel (e).
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6.21. The Poincaré plot and the rotational transform (ι/2π) profile of these MHD

equilibria are shown in panels (a-c) and (d), respectively. From the Poincaré plot,

the plasma is more shaped and has a smaller plasma volume in the standard

and high bumpiness configurations. The difference in terms of the ι/2π profile

is infinitesimal. This is also reflected in the calculated n/m = 2/4 shear Alfvén

continuum for each MHD equilibrium (figure 6.22). The initial EP pressure profile

for this calculation is shown in figure 6.21(e). Differ from sections 6.1-6.4, the

initial EP pressure profile has a strong gradient in the core region.

Figure 6.22: The Nf = +2 shear Alfvén continua of the low beta currentless for
the (a) low bumpiness, (b) standard, and (c) high bumpiness configurations. The
n/m = 2/4 shear Alfvén continuum is plotted by blue solid line. Other shear
Alfvén continua are plotted by gray solid lines.

In these MHD equilibria, the n/m = 2/4 mode is observed as a single domi-

nant mode for all the magnetic configurations. The fixed and free boundary simula-

tion results for the low, standard, and high magnetic configurations are compared.

The spatial profile of the Nf = +2 radial MHD velocity harmonics calculated with

the fixed and free boundary simulations are shown in figures 6.23(a,c,e) and (b,d,f),

respectively. For all the magnetic configurations, the n/m = 2/4 GAEs are peaked

around the 0.30 < r/a < 0.50 range. Similar to the results in sections 6.3 and 6.4,

the major differences between the fixed and free boundary simulations results are

the radial location and the spatial width of the mode. In the free boundary simu-

lation, the mode spatial profile radially shifts outward to the plasma edge region

by roughly ∆(r/a) ≈ 0.05, and the mode widths are also broadened. According

to the n/m = 2/4 shear Alfvén continuum shown in figure 6.22, these n/m = 2/4

modes do not located at the extremum of their individual n/m = 2/4 shear Alfvén

continua but adjacent. The mode structures from all cases also have a finite sine

component, which suggests a strong interaction with the shear Alfvén continuum.
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Figure 6.23: The spatial profile of the Nf = 2 radial MHD velocity harmonic
from the low (ε01 = 0.01, a-b), standard (ε01 = 0.06, c-d), and high bumpiness
(ε01 = 0.15, e-f) configurations. The fixed and free boundary simulation results
are shown in panels (a, c, and e) and (b, d, and f), respectively.

Therefore, it is sufficient to conclude that these n/m = 2/4 modes are EPMs.

The logarithmic time evolution of the n/m = 2/4 radial MHD velocity har-

monics from each magnetic configuration are shown in figure 6.24. In this figure,

the n/m = 2/4 EPM from the low, standard, and high bumpiness configurations

are represented by blue, green, and violet colors, respectively. The estimated linear

growth rate (γ/ωA) of the n/m = 2/4 EPM with the fixed boundary simulation for

the low, standard, and high bumpiness configurations are 9.69×10−3, 3.540×10−3,

and 5.985 × 10−3, respectively. The linear growth rate of the n/m = 2/4 EPM

is highest for the low bumpiness case, while the linear growth rate is significantly

lower in the standard and high bumpiness configurations. Interestingly, the linear
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Figure 6.24: The time evolution of the logarithmic amplitude of the n/m = 2/4
radial MHD velocity harmonic for the low, standard, and high bumpiness config-
urations. The fixed and free boundary simulation results are shown in panels (a)
and (b), respectively.

growth rate from all of the magnetic configurations becomes comparable in the free

boundary simulation. In the free boundary simulation, the linear growth rate of

the n/m = 2/4 for the low, standard, and high bumpiness configurations increase

to 1.248 × 10−2, 8.109 × 10−3, and 9.465 × 10−3, respectively. The changes are

roughly 28.75%, 91.75% , and 51.66% for the low, standard, and high bumpiness

configurations, respectively. These results suggest the importance of the bound-

ary condition in the strongly shaped plasma. In addition, these results also show

that the boundary condition has the essential role in Heliotron J. The effect of the

boundary condition is finite even for the n/m = 2/4 EPM that is localized in the

core region.

6.6 Summary

The roles of the boundary condition for the simulation of the EP-driven MHD

instabilities in Heliotron J were investigated in this chapter. The free and fixed

boundary simulation results were compared. It was shown that the free boundary
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condition is necessary to reproduce the experimentally observed EP-driven MHD

modes (e.g. n/m = 1/2 EPM and n/m = 2/4 GAE) in the peripheral region

of Heliotron J. With the free boundary condition, the n/m = 1/2 EPM and the

n/m = 2/4 GAE at the peripheral region can be destabilized within the range

of reasonable initial EP pressure. The free boundary simulation predicts a higher

linear growth rate when compared to the fixed boundary case. The increase in

the linear growth rate is brought about by the enhancement of the EP driving

rate while the MHD dissipation remains almost the same. This is caused by the

changes in the EP and shear Alfvén wave interaction through the broadening and

the outward radial shift of the mode spatial profile. The effect of the free boundary

condition will be significant if the EP spatial gradient is located in the peripheral

region. It was supported by the kinetic analysis of the EP redistribution in real

and velocity spaces. Since the initial EP velocity distribution is the bump-on-

tail velocity distribution, the resonant EPs with the largest value of δfh are the

high velocity co-passing EPs from the core region. These resonant co-passing EPs

have sufficiently large orbit widths such that they can effectively interact with the

n/m = 1/2 EPM at the plasma edge.

The dependency of the linear growth rate of the n/m = 1/2 and n/m = 2/4

GAEs on the perfectly conducting wall position. The set of artificially created

perfectly conducting walls is created based on the actual Heliotron J vacuum ves-

sel and the LCFS. The linear growth rates of both the n/m = 1/2 and n/m = 2/4

GAEs significantly increase as the distance between the LCFS and the perfectly

conducting wall increases. After a finite increase in the wall distance, the linear

growth rate quickly approaches “no wall limit,” where further increases in the wall

distance do not affect the outcome. This result also shows that the changes in

the linear growth rate are more significant for the low-n MHD mode (n/m = 1/2

GAE).

The dependency of the free boundary effect on the plasma shape was inves-

tigated. These results suggested that the boundary condition becomes more sig-

nificant in the MHD equilibrium with strongly shaped plasma and smaller plasma

volume. The boundary condition can have a significant effect on the EP-driven

MHD mode even if the mode is located more toward the core region (r/a < 0.4)

in Heliotron J. In addition, the dependence of the linear growth rate (γ/ωA) of the

EP-driven MHD mode on the distance between the plasma and the perfectly con-

ducting wall (∆w) is stronger than the tokamak plasma[44]. This is possibly due

to the low magnetic of Heliotron J. It would be interesting to investigate the effects

of the free boundary condition on other stellarator/heliotron configurations, such
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as the Large Helical Device (LHD). It is expected that the free boundary effects

will be weaker since LHD has a higher magnetic shear.
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Chapter 7

Conclusions

In summary, the EP-SAW and SAW-SAW interactions in Heliotron J, the quasi-

isodynamic optimized low magnetic shear helical-axis heliotron, were clarified and

discussed. These interactions were investigated numerically by MEGA, a hybrid

EP-MHD simulation code. The presented results have expanded the view of the

EP-driven MHD instabilities in Heliotron J. These include the role of EPs in each

particular phase space and their interactions with the SAW via toroidicity and

helicity-induced resonances. These results also clarify the EP transport in He-

liotron J. Besides the clarification of the EP-SAW and SAW-SAW interactions

in Heliotron J, the experimental validation was performed. Previously, MEGA

has been applied only in the planar axis device with high magnetic shear, such as

tokamak and LHD. Unlike these devices, the fixed boundary condition significantly

affects the EP-driven MHD mode in Heliotron J where the EP interaction with

the low-n MHD mode is significantly underestimated. This discrepancy between

the simulation and experiment was tackled by the free boundary condition. The

role and the necessity of the boundary condition in Heliotron J in the simulation

of the low-n MHD mode has been confirmed.

In the first part (chapter 5), the EP-driven MHD modes in the low beta cur-

rentless equilibrium of Heliotron J were simulated. The referred experimental dis-

charge is #61569. From the magnetic fluctuation measured with the Mirnov coils

and the density fluctuation signal measured with BES, the peripheral n/m = 1/2

EPM at r/a > 0.70 is the dominant mode. The second dominant mode is the

n/m = 2/4 GAE at r/a ≈ 0.50. In addition to these two modes, another mode

with the same frequency as the n/m = 1/2 EPM was observed near the plasma

core (0.30 < r/a < 0.50). This mode has a smaller amplitude than the n/m = 1/2

EPM. From the MEGA simulation results, the n/m = 2/4 and n/m = 1/2 modes

GAEs were destabilized at r/a ≈ 0.50. The n/m = 2/4 GAE was successfully

reproduced in the simulation; however, the n/m = 1/2 EPM cannot be destabi-
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lized by any means (e.g. increasing the spatial gradient of the EP distribution

function and EP pressure). In contrast to the experiment, the n/m = 1/2 GAE

was observed at r/a ≈ 0.50 instead. This n/m = 1/2 GAE has a much smaller

linear growth rate than the n/m = 2/4 GAE. The possible candidate of this

n/m = 1/2 GAE is the weaker EP-driven MHD mode at 0.171 < r/a < 0.522

since it shares a similar frequency as the n/m = 1/2 EPM; however, the ampli-

tude of this weaker mode in the experiment is still greater than the n/m = 2/4

GAE. According to the kinetic analysis, the poloidal resonance number (m+ jµB)

of the n/m = 1/2 high-velocity toroidicity-induced resonance for the co-passing

EP is 1. This is closer to its poloidal mode number (m=2) than the n/m = 2/4

GAE case. For the n/m = 2/4 GAE, the poloidal resonance number of the high-

velocity toroidicity-induced resonance for the co-passing EP is 2, which is farther

than its poloidal mode number (m=4). This suggests that the EP-SAW interac-

tion should be stronger for the n/m = 1/2 GAE than the n/m = 2/4 GAE, but

this was not observed in the simulation. Other factors and assumptions, such as

the boundary condition, need to be reconsidered. In the last section, the interac-

tions between the EPs and the n/m = 2/4 GAE between the bump-on-tail and

the slowing-down velocity distributions were compared. The bump-on-tail case

represents the experimentally observed EP energy distribution, while the slowing-

down case represents the ideal scenario where τcx >> τsd The calculation results

showed no significant difference in the linear growth rates between these two dis-

tributions. For both the bump-on-tail and slowing-down distributions, the high

velocity EPs effectively interact with the n/m = 2/4 GAE through the high ve-

locity toroidicity-induced resonance. The role of the helicity-induced resonances

are weaker than the toroidicity-induced resonances because they are localized in

the low velocity region (vh/vA0 < 0.10). In the bump-on-tail velocity distribution,

the EPs in vh/vA0 > vinj range have a strong stabilization mechanism. This is due

to the finite ∂f/∂v < 0. In the slowing-down distribution, the existence of these

helicity-induced resonances in the low velocity region compensates the reduction

of the EP drive via the high velocity toroidicity resonance. The differences in

the initial EP distribution also cause differences in the redistributed EP pressure

profile. The hollow (flat) EP pressure profile is formed after the saturation of the

EP-driven MHD modes in the bump-on-tail (slowing-down) distribution.

In the second part (chapter 6), the discrepancy in the n/m = 1/2 EPM be-

tween the simulation and the experiment was investigated. It was tackled by the

free boundary simulation. In this boundary condition, the MHD plasma at the

LCFS is not surrounded by the perfectly conducting wall but the vacuum region.

Due to the low magnetic shear of Heliotron J, any low-n MHD mode potentially
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has a large mode width. It is possible that even the core localized low-n MHD

mode can cause a finite plasma displacement at the LCFS. With the free boundary

condition, the missing n/m = 1/2 EPM at the plasma edge has been successfully

reproduced. The underlying effect of the boundary condition is on the kinetic part

of the EP, while its effect on the MHD part is small. The simulated mode spatial

profile by the free boundary simulation is also broader than the fixed boundary

results. The peak of the mode is also shifted radially outward toward the edge

region. These two modifications enhance the EP-SAW interaction in three ways:

(1) broader profile allows more EPs to interact with the mode, (2) mode perceives

the stronger EP spatial gradient (if the EP spatial gradient is finite at the periph-

eral region), and (3) the high velocity co-passing EPs transit the core region. It is

also demonstrated that the n/m = 1/2 EPM cannot be destabilized in the fixed

boundary condition even if the significantly higher EP beta is utilized. Lastly, the

dependency of the free boundary effect on the plasma shape and volume was in-

vestigated. The low, standard, and high bumpiness magnetic configurations were

considered. The plasma of the standard and the high bumpiness configurations

are more shaped and have a smaller volume than the low bumpiness configura-

tion. The calculation results show that the calculated linear growth rates from the

standard and high bumpiness magnetic configurations were significantly lower in

the fixed boundary simulation. The effect of the boundary condition is significant

even on the low-n mode that is located in the core region (0.3 < r/a < 0.4).

Future Studies

In this study, the EP-SAW and SAW-SAW interactions in the high beta plasma

have not yet been investigated in Heliotron J. The effect of the non-inductive cur-

rent drive on the EP-SAW resonance has not been investigated. The non-inductive

current drive can alter the EP-SAW resonance through the change in the rotational

transform. Another interesting consequence of the non-inductive current-driven

MHD equilibrium is the formation of the low-order magnetic islands. In the field

of the EP-driven MHD instability simulation, the nested flux surface is a common

assumption. This assumption is valid only in the high shear device because the

size of the magnetic island is negligible. In the low magnetic shear device (e.g.

Heliotron J and W7-X), the low-order magnetic island can have a finite width.

Previously, the effect of the magnetic island on the EP-driven MHD mode has

been studied theoretically and experimentally such as the frequency up-shift of

the accumulation point of the shear Alfvén continuum[97, 98] and the formation

of the magnetic island-induced Alfvén eigenmode (MiAE)[99]. However, the im-
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pact of the static magnetic island on the EP-driven MHD mode in the realistic

plasma shape has not yet been simulated. This issue will also be important in the

high beta plasma equilibrium. Since MEGA has been successfully validated with

Heliotron J, a low shear device, its application on the MHD equilibrium with low-

order magnetic islands is advantageous because the MHD plasma is represented

by the cylindrical coordinate.

In addition to ECCD, the electron cyclotron resonance heating (ECRH) was

also found to have a stabilization effect on the EP-driven MHD instability in

certain plasma discharges. In Heliotron J and TJ-II devices, the amplitude of

the EP-driven modes was reduced with the application of the on-axis ECRH. The

time evolution of the mode changes from continuous modes into the chirping mode.

However, this is not always true. In the low-bumpiness configuration of Heliotron

J, the amplitude of the n/m = 1/2 EPM and the n/m = 2/4 GAE reduce with

the increasing ECRH power (109-234 kW). However, at the ECRH power of 308

kW, the amplitude of the EPM and GAE slightly increase. The nonlinear relation

between ECRH power and amplitude of EP-driven MHD mode was also observed

in other magnetic configurations[79]. The application of ECRH can affect (1) EP

slowing-down time (τsd), (2) bulk plasma pressure, and (3) trapped electron colli-

sional damping rate. The first and second parameters can be investigated by the

current model in MEGA. For the collisional damping of the trapped electron, a

more sophisticated model is necessary.

In the recent study, the thermal ion kinetic effect is incorporated in the new

MEGA code[85]. This allows us to investigate the alpha channeling effect of

the thermal ion[100, 101]. The additional toroidally asymmetric resonances in

stellarator and heliotron configurations can potentially increase the ion Landau

damping[16]. The effectiveness of these additional resonances in the stellarator

and heliotron configuration can be further investigated.
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