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Abstract

Murota (1998) and Murota and Shioura (1999) introduced concepts of M-convex
function and M♮-convex function as discrete convex functions, which are generaliza-
tions of valuated matroids due to Dress and Wenzel (1992). In the present paper we
consider a new operation defined by a convolution of sections of an M♮-convex func-
tion that transforms the given M♮-convex function to an M-convex function, which
we call a compression of an M♮-convex function. For the class of valuated gener-
alized matroids, which are special M♮-convex functions, the compression induces a
valuated permutohedron together with a decomposition of the valuated generalized
matroid into flag-matroid strips, each corresponding to a maximal linearity domain
of the induced valuated permutohedron. We examine the details of the structure of
flag-matroid strips and the induced valuated permutohedron by means of discrete
convex analysis of Murota.
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1. Introduction
Murota (1998) and Murota and Shioura (1999) introduced the concepts of M-convex func-
tion [13] and M♮-convex function [17], as discrete convex functions. Their original ideas
can be traced back to Dress and Wenzel’s valuated matroids [4] introduced in 1992. See
[14, 15, 16] for details about the theory of discrete convex analysis and its applications
developed by Murota and others (also see [10, Chapter VII]).
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In the present paper we consider a new operation defined by a convolution of sections
of an M♮-convex function that transforms the given M♮-convex function to an M-convex
function, which we call a compression of an M♮-convex function. For the class of val-
uated generalized matroids, which is a special class of M♮-convex functions, the com-
pression induces a valuated permutohedron together with a decomposition of the valuated
generalized matroid into flag-matroid strips, each corresponding to a maximal linearity
domain of the valuated permutohedron. We examine the details of the structure of flag-
matroid strips and the induced valuated permutohedron. We investigate the structures of
the strip decomposition of valuated generalized-matroids, special M♮-convex functions by
means of discrete convex analysis of Murota ([14]). The strip decomposition of a valu-
ated generalized-matroid uniquely determines a valuated permutohedron, identified with
a special M-convex function.

The present paper is organized as follows. In Section 2 we give some definitions and
preliminaries about (i) submodular/supermodular functions and related polyhedra such as
base polyhedra, submodular/supermodular polyhedra, and generalized polymatroids, and
(ii) M-/M♮-convex functions and L-/L♮-convex functions. In Section 3 we introduce a new
operation called a compression of M♮-convex functions, which leads us to the concepts
of flag-matroid strips and a strip decomposition of M♮-convex functions in Section 4. In
Section 5 we consider valuated generalized matroids, which are special M♮-convex func-
tions, and examine implications of our results in valuated generalized matroids. The strip
decomposition of a valuated generalized matroid gives a collection of strips of flag ma-
troids [2], each inducing a sub-permutohedra. The compression of a valuated generalized
matroid induces a valuated permutohedron whose maximal linearity domains corresponds
to flag-matroid strips of the valuated generalized matroid. Section 6 gives some conclud-
ing remarks.
Note: We gratefully acknowledge that Georg Loho informed us of the closely related
results independently and almost at the same time obtained by Madeline Brandt, Christo-
pher Eur, and Leon Zhang [3].

2. Definitions and Preliminaries
Let E = [n](= {1, · · · , n}) for a positive integer n > 1. For any x ∈ RE and X ⊆ E
define x(X) =

∑
e∈X x(e), where x(∅) = 0. For any subset X ⊆ E its characteristic

vector χX in RE is defined by χX(e) = 1 if e ∈ X and χX(e) = 0 if e ∈ E \X . We also
write χe instead of χ{e} for e ∈ E.
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2.1. Basics of submodular/supermodular functions
A function f : 2E → R is called a submodular function if it satisfies

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (∀X, Y ⊆ E). (2.1)

We assume that f(∅) = 0 for any set function f : 2E → R in the sequel. A negative of a
submodular function is called a supermodular function. (Also see [5, 10].)

For a submodular function f : 2E → R define

P(f) = {x ∈ RE | ∀X ⊆ E : x(X) ≤ f(X)}, (2.2)

which is called the submodular polyhedron associated with submodular function f . Also
define

B(f) = {x ∈ P(f) | x(E) = f(E)}, (2.3)

which is called the base polyhedron associated with submodular function f . As is well
known (see [10]), the base polyhedron B(f) is always nonempty (and is a face of P(f)).

For a supermodular function g : 2E → R we define in a dual manner the supermodular
polyhedron

P(g) = {x ∈ RE | ∀X ⊆ E : x(X) ≥ g(X)} (2.4)

and the base polyhedron

B(g) = {x ∈ P(g) | x(E) = g(E)}. (2.5)

For a submodular function f : 2E → R define a supermodular function f# : 2E → R by

f#(X) = f(E)− f(E \X) (∀X ⊆ E), (2.6)

which is called the dual supermodular function of f . Then we have B(f) = B(f#). For
more details about submodular/supermodular functions and associated polyhedra see [10,
Chapter II], where submodular/supermodular functions defined on distributive lattices
D ⊆ 2E are also investigated and their base polyhedra are unbounded unless D = 2E .

Define QZ = Q ∩ ZE for any set Q ⊆ RE . Also denote by Conv(Q) the convex hull
of Q in RE . When Conv(QZ) = Q, we identify Q with QZ.

When a submodular function f : 2E → R is integer-valued, its submodular polyhe-
dron and base polyhedron are integral (i.e., every vertex of the polyhedra is an integral
vector). Moreover, we have

Conv(P(f)Z) = P(f), Conv(B(f)Z) = B(f). (2.7)

Most of the following arguments are valid even if we regard Z in place of R as the under-
lying totally ordered additive group. When f is integer-valued, we call P(f)Z and B(f)Z
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the submodular polyhedron and the base polyhedron, respectively, associated with f as
well. (This is the approach taken in [10], indeed.)

For a submodular function f : 2E → R and a nonempty proper subset A of E define
functions fA : 2A → R and fA : 2E\A → R by

fA(X) = f(X) (∀X ⊆ A), fA(X) = f(X ∪ A)− f(A) (∀X ⊆ E \ A). (2.8)

We also define fE = f∅ = f . We call fA the restriction of f on A and fA the contraction
of f by A. Similarly we define the restriction and contraction for supermodular functions.

2.2. Permutohedra and sub-permutohedra
For a permutation π : [n] → [n] we identify π with the permutation vector (π(1), · · · , π(n))
in Zn, which we denote by vπ (or simply by π when there is no possibility of confu-
sion). Suppose that an integer-valued submodular function f : 2E → Z is given by
f(X) =

∑|X|
i=1(n − i + 1) for all X ⊆ E = [n]. Then the base polyhedron B(f) has the

n! extreme points, each being a permutation vector identified with a permutation of [n],
which is called the permutohedron (or permutahedron) in RE .

For any permutation π of [n] we have a unique complete flag

F : F1 ⊂ · · · ⊂ Fn = [n] (2.9)

such that for each i ∈ [n] Fi is the set of the first i elements of (π(1), · · · , π(n)), i.e.,

1. |Fi| = i for each i = 1, · · · , n and

2.
n∑

i=1

χFi
= vπ, where χFi

is the characteristic vector of a set Fi ⊆ [n].

Denote the flag F in (2.9) by Fπ : F π
1 ⊂ · · · ⊂ F π

n .
Let us consider a polyhedron P satisfying the following two:

(P1) P is the convex hull of a set of some permutation vectors.

(P2) P is a base polyhedron.

We call such a polyhedron P a sub-permutohedron.1 A sub-permutohedron is precisely
the Coxeter matroid polytope associated with a flag matroid of complete flag (see [2]
and the discussions to be made in Section 5). A recent interesting appearance of a sub-
permutohedron is from the theory of Bruhat order ([1]), due to Tsukerman and Williams
[21], that every Bruhat interval polytope is a sub-permutohedron.

1We may call the sub-permutohedron a permutohedron, and an ordinary permutohedron a complete
permutohedron, but we resist the temptation.
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2.3. Base polyhedra, generalized polymatroids, and strong maps
Suppose that a submodular function f : 2E → R and a supermodular function g : 2E → R
with f(∅) = g(∅) = 0 satisfy the following inequalities

f(X)− g(Y ) ≥ f(X \ Y )− g(Y \X) (∀X, Y ⊆ E). (2.10)

Then the polyhedron

P(f, g) = {x ∈ RE | ∀X ⊆ E : g(X) ≤ x(X) ≤ f(X)} (2.11)

is called a generalized polymatroid ([7, 11]). There exists a one-to-one correspondence
between base polyhedra and generalized polymatroids up to translation along a coordinate
axis as follows (see [10, Figure 3.7]).

Theorem 2.1 ([9, 10]): For the base polyhedron B(f) associated with a submodular func-
tion f : 2E → R the projection of B(f) along an axis e ∈ E on the coordinate subspace
given by the hyperplane x(e) = 0 is a generalized polymatroid P(f ′, g′) in RE′

with
E ′ = E − {e}, where f ′ is the restriction of f on E ′ and g′ is the restriction of f# on E ′.

Conversely, every generalized polymatroid in RE′
is obtained in this way.

When a generalized polymatroid is a convex hull of {0, 1}-valued points (vertices),
then it is called a generalized-matroid polytope, which can be identified with the family
G of subsets X ⊆ E such that χX are vertices of the generalized-matroid polytope. The
family G is called a generalized matroid (see [8]).

An ordered pair (f1, f2) of submodular functions fi : 2E → R (i = 1, 2) is called a
weak map if we have

P(f2) ⊆ P(f1). (2.12)

Moreover, the ordered pair (f1, f2) is called a strong map if we have

P((f2)X) ⊆ P((f1)X) (∀X ⊂ E), (2.13)

i.e., every ordered pair ((f1)X , (f2)X) of contractions of f1 and f2 by X ⊂ E is a weak
map. The concept of strong map was originally considered for matroids (see [19, 20, 22]),
and we adapt it to any submodular functions (or submodular systems).2

We also have the following theorem.

Theorem 2.2: P(f, g) is a generalized polymatroid if and only if (f, g#) is a strong map.

2As is remarked below (2.7), we can regard R appearing here as the set Z of integers.
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(Proof) Relation (2.13) is equivalent to the following inequalities

f2(Z ∪X)− f2(X) ≤ f1(Z ∪X)− f1(X) (X ⊂ E, Z ⊆ E \X). (2.14)

Putting W = E \ (Z ∪X), (2.14) is rewritten in terms of the dual supermodular function
f#
2 of f2 as

f#
2 (Z ∪W )− f#

2 (W ) ≤ f1(Z ∪X)− f1(X) (X ⊂ E, Z ⊆ E \X) (2.15)

with W = E \ (Z ∪X). Because of the supermodularity of f#
2 (2.15) is equivalent to

f#
2 (Z ∪W )− f#

2 (W ) ≤ f1(Z ∪X)− f1(X) (2.16)

for all X,W,Z ⊂ E with X ∩W = X ∩Z = Z ∩W = ∅, which is equivalent to (2.10).
2

A sequence of submodular functions f1, · · · , fp : 2E → R is called a strong map
sequence if for each i = 1, · · · , p−1 the pair (fi+1, fi) is a strong map. It follows from
Theorem 2.2 that

(F1) Given a strong map sequence f1, · · · , fp : 2E → R, we have a sequence of gener-
alized polymatroids P(fi+1, (fi)

#) for i = 1, · · · , p− 1.

We also have the following.

(F2) For a generalized polymatroid P(f, g) and α ∈ R such that g(E) ≤ α ≤ f(E)
the intersection of P(f, g) and the hyperplane x(E) = α is a base polyhedron (we
call such a base polyhedron a section of P(f, g) and denote it by P(f, g)(α)). When
P(f, g) is integral and α is an integer, the section P(f, g)(α) is integral. Moreover,
letting B(f ′) be a section of P(f, g) with a submodular function f ′, we have a strong
map sequence g#, f ′, f , i.e., P(f ′, g) and P(f, (f ′)#) are generalized polymatroids.

A strong map sequence f1, · · · , fp : 2E → Z with fi (i = 1, · · · , p) being matroid
rank functions is called a flag matroid (see [2]).

2.4. M♮-convex functions and L♮-convex functions
Let f : RE → R ∪ {+∞} be a polyhedral convex function such that

1. its effective domain, domf ≡ {x ∈ RE | f(x) < +∞}, is a generalized polyma-
troid (hence nonempty) and

2. every linearity domain of f is a generalized polymatroid,
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where a linearity domain (or affinity domain) of f is Argmin(f −h) for a linear function
h(x) = ⟨z, x⟩(≡

∑
e∈E z(e)x(e)) with some z ∈ (RE)∗. Then f is called an M♮-convex

function3, which is due to Murota and Shioura [17, 14] (also see [10, Section 17]). The
negative of an M♮-convex function is called an M♮-concave function (see Figure 1).

z = g(x)

z

x(2)

x(1)

O

Figure 1: An M♮-concave function g ([10, Fig. 17.4]).

When domf of an M♮-convex function f is a base polyhedron, f is called an M-
convex function (see [14]).4 Any concept related to M-/M♮-concave functions is defined
in a natural way from that defined for M-/M♮-convex functions.

Now let f : RE → R ∪ {+∞} be an M♮-convex function satisfying the following (a)
and (b):

(a) The effective domain of f is an integral generalized polymatroid.

(b) Every linearity domain of f is also an integral generalized polymatroid.

Such an M♮-convex function f can be identified with f being restricted on the integer
lattice ZE . So we can consider an M♮-convex function f : ZE → R∪{+∞}. An integer-
valued M-concave function g : ZE → Z∪{−∞} with its effective domain being a matroid
base polytope coincides with a valuated matroid due to Dress and Wenzel [4]. Also, if an

3Here we employ another equivalent definition of M♮-convexity, instead of the original definition by
means of the exchange axiom introduced by Murota and Shioura [17, 18, 14]. Recall that arguments here
are valid if R is regarded as the set Z of integers, as well.

4M-convex functions were introduced earlier than M♮-convex functions by Murota (see [13, 14]). There
is a one-to-one correspondence between M-convex functions and M♮-convex convex functions because of
Theorem 2.1.
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M♮-convex function f : ZE → R∪{+∞} has an effective domain dom(f) whose convex
hull Conv(dom(f)) is a permutohedron, we call f a valuated permutohedron.

For any M♮-convex function f : RE → R ∪ {+∞} define the Legendre-Fenchel
transform (or convex conjugate) of f by

f •(y) = sup{⟨y, x⟩ − f(x) | x ∈ RE} (y ∈ (RE)∗), (2.17)

where ⟨y, x⟩ =
∑

e∈E y(e)x(e). The function f • is called an L♮-convex function ([14]),
which is equivalent to submodular integrally convex function due to Favati and Tardella [6]
when the underlying R is regarded as Z. The original f is recovered from f • by taking
another Legendre-Fenchel transform as follows.

f(x) = sup{⟨y, x⟩ − f •(y) | y ∈ (RE)∗} (x ∈ RE). (2.18)

(See [14, 15].) Hence there exists a one-to-one correspondence between M♮-convex func-
tions and L♮-convex functions. Furthermore, Murota [14] showed the integrality prop-
erty that (2.17) and (2.18) with R being replaced by Z hold for any M♮-convex function
f : ZE → Z ∪ {+∞}. When f is an M-convex function, its Legendre-Fenchel transform
is what is called an L-convex function ([14]).

For any x ∈ RE the subdifferential of f at x, denoted by ∂f(x), is defined by

∂f(x) = {w ∈ (RE)∗ | ∀z ∈ RE : f(z) ≥ f(x) + ⟨w, z − x⟩}. (2.19)

The subdifferential of f • is defined similarly as

∂f •(w) = {x ∈ RE | ∀y ∈ (RE)∗ : f •(y) ≥ f •(w) + ⟨y − w, x⟩}. (2.20)

Then we have the following.

Lemma 2.3: We have w ∈ ∂f(x) if and only if x ∈ ∂f •(w).

(Proof) Note that both statements, w ∈ ∂f(x) and x ∈ ∂f •(w), are equivalent to that
f(x) + f •(w) = ⟨w, x⟩. 2

Remark: When f : RE → R∪{+∞} is an M♮-convex function, subdifferentials ∂f •(w)
for all w ∈ dom(f •) are generalized polymatroids (or M♮-convex sets). Furthermore, if f
is defined on integer lattice ZE , then ∂f •(w) for all w ∈ dom(f •) are integral generalized
polymatroids (restricted on ZE). 2

For more details about M-/M♮-convex functions and L-/L♮-convex functions see [14,
15] and [10, Chapter VII].

8



3. Compression of M♮-convex Functions
In this section we introduce a new transformation, called compression, of M♮-convex
functions defined on the integer lattice ZE . The compression of an M♮-convex function
f : ZE → R ∪ {+∞} is a transformation of the M♮-convex function f to an M-convex
function f̂ : ZE → R ∪ {+∞}.

Consider any M♮-convex function f : ZE → R ∪ {+∞}. We suppose the following:

• The effective domain dom(f) is bounded and full-dimensional. That is, dom(f) is
a full-dimensional generalized polymatroid P(f ∗, g∗) (with finite f ∗(E) > g∗(E)).

For each integer α such that f ∗(E) ≥ α ≥ g∗(E) let f(α) : ZE → R ∪ {+∞} be the
M-convex function defined by

f(α)(x) =

{
f(x) if x(E) = α
+∞ otherwise

(x ∈ ZE) (3.1)

(cf. [14, 15, 16]). We call f(α) the α-section of f . Then put

If = {α ∈ Z | f ∗(E) ≥ α ≥ g∗(E)} (3.2)

and consider the convolution of all the sections f(α) (α ∈ If ), which is given by

f̂(x) = min

∑
α∈If

f(α)(yα)
∣∣∣ x =

∑
α∈If

yα, ∀α ∈ If : yα ∈ ZE

 (x ∈ ZE). (3.3)

where note that f(α)(yα) < +∞ only if yα(E) = α. We call f̂ the compression of f .
It is shown ([14, Theorem 6.13]) that the convolution of M-convex functions is an

M-convex function. Hence we have the following theorem about the compression of an
M♮-convex function f , where we give its proof for completeness.

Theorem 3.1: For the compression f̂ of an M♮-convex function f : ZE → R∪{+∞} the
Legendre-Fenchel transform of f̂ is given by

f̂ • =
∑
α∈If

f(α)
•. (3.4)

We also have
dom(f̂) =

∑
α∈If

dom(f(α)), (3.5)

where the right-hand side is the Minkowski sum of the effective domains dom(f(α)) for all
α ∈ If .
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(Proof) For any w ∈ (RE)∗ we have from (3.3)

f̂ •(w) = sup{⟨w, x⟩ − f̂(x) | x ∈ ZE}

= sup

∑
α∈If

(⟨w, yα⟩ − f(α)(yα))
∣∣∣ ∀α ∈ If : yα ∈ ZE


=

∑
α∈If

sup{⟨w, x⟩ − f(α)(x) | x ∈ ZE}

=
∑
α∈If

f(α)
•(w). (3.6)

This implies (3.4) and (3.5) because of the definition of the Legendre-Fenchel transform.
2

4. M♮-convex Functions and Strip Decomposition
Now, we introduce the concept of the strip decomposition of an M♮-convex function de-
fined on the integer lattice ZE . Let f : ZE → R ∪ {+∞} be an M♮-convex function with
a full-dimensional and bounded effective domain dom(f).

4.1. Strip decomposition of M♮-convex functions
For the compression f̂ of f and for any w ∈ (RE)∗ let us define D(f̂ , w) ⊆ ZE and
D(f(α), w) ⊆ ZE (α ∈ If ) by

D(f̂ , w) = Argmin{f̂(x)− ⟨w, x⟩ | x ∈ ZE} (4.1)

D(f(α), w) = Argmin{f(α)(x)− ⟨w, x⟩ | x ∈ ZE} (α ∈ If ), (4.2)

where recall (3.2) for the definition of If . We call D(f̂ , w) and D(f(α), w) (α ∈ If )

linearity domains of f̂ and f(α) (α ∈ If ), respectively, associated with w. We see from
Lemma 2.3 that for every x ∈ ZE we have

x ∈ D(f̂ , w) ⇐⇒ w ∈ ∂f̂(x) ⇐⇒ x ∈ ∂f̂ •(w). (4.3)

This means that the linearity domains of f̂ are exactly the subdifferentials of f̂ •.
Let S be the collection of all maximal linearity domains of f̂ (or maximal subdifferen-

tials of f̂ •). Then S gives a polyhedral division of dom(f̂) into generalized polymatroids.
Since dom(f) is full-dimensional, the dimension of dom(f̂) is equal to |E|−1(= n−1).

For each maximal linearity domain S ∈ S of f̂ let w be a vector in (RE)∗ such that
S = ∂f̂ •(w) and put D(α, S) = D(f(α), w) (α ∈ If ), which are independent of the
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choice of w satisfying S = ∂f̂ •(w). Define D(S) =
∪
{D(α, S) | α ∈ If} and let fD(S)

be the restriction of f on D(S). Then we call fD(S) = (f
D(α,S)
(α) | α ∈ If ) a strip of f

associated with S ∈ S, where f
D(α,S)
(α) is the restriction of f(α) on D(α, S). (See Figure 2

for an example of a strip of an M♮-concave function.) The collection of the strips fD(S)

for all S ∈ S is called the strip decomposition of f .

z = g(x)

z

x(2)

x(1)

O

Figure 2: A strip of an M♮-concave function g indicated by shade.

4.2. Strips viewed from parametric optimization

For any strip fD(S) = (f
D(α,S)
(α) | α ∈ If ) of an M♮-convex function f associated with

S ∈ S let w be a vector in (RE)∗ such that S = ∂f̂ •(w). Then consider a parametric
optimization problem P(λ) with a parameter λ ∈ R described as follows.

P(λ) : Minimize f(x)− ⟨w + λ1, x⟩ subject to x ∈ dom(f), (4.4)

where 1 = χE is the n-dimensional vector of all ones. We then have the following
theorem.

Theorem 4.1: For w ∈ (RE)∗ chosen as above there exist a finite sequence of values
λ0 = −∞ < λ1 < · · · < λp < λp+1 = +∞ and that of integers k0 = g∗(E) < k1 <
· · · < kp = f ∗(E) such that the set X∗(λ) of optimal solutions of P(λ) for each λ ∈ R is
given by

X∗(λ) =

{ ∪ kℓ
α=kℓ−1

D(α, S) if λ = λℓ (ℓ = 1, · · · , p)
D(kℓ, S) if λ ∈ (λℓ, λℓ+1) (ℓ = 0, · · · , p).

(4.5)
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(Proof) Because of the discrete structure of the M♮-convex function f and the assumption
that dom(f) is bounded, there exists a finite sequence of values λ0 = −∞ < λ1 < · · · <
λp < λp+1 = +∞ such that

1. for each i = 0, 1, · · · , p Problems P(λ) for all λ ∈ (λi, λi+1) have one and the
same optimal solution set, and

2. the set X∗(λi) of optimal solutions of P(λi) for each i = 1, · · · , p consists of
more than one optimal solution and we have X∗(λi) ∩X∗(λi+1) = X∗(λ) for each
i = 1, · · · , p− 1 and λ ∈ (λi, λi+1).

Hence the optimal solution sets X∗(λ) are expressed as (4.5) for a sequence of some
integers k0 = g∗(E) < k1 < · · · < kp = f ∗(E) that gives a division of the interval If . 2

Here it should be noted that values λi (i = 1, · · · , p) depend on the choice of w ∈ S, while
the vectors w + λi1 (i = 1, · · · , p) are uniquely determined by f and S ∈ S, because of
the assumptions that dom(f) is full-dimensional and S ∈ S is a maximal linearity domain
of f̂ .

5. Valuated Generalized Matroids
In this section we further investigate the structures of strips and their compressions for a
class of valuated generalized matroids, which are special M♮-convex functions defined on
the unit hypercube {0, 1}E , in more details.

Let f : ZE → Z ∪ {+∞} be an M♮-convex function such that dom(f) = {0, 1}E ,
which is called a valuated generalized matroid. For any X ⊆ E we often write f(X) as
f(χX) and regard f as a function on 2E in the sequel.

5.1. Compression of valuated generalized matroids and valuated per-
mutohedra

For a valuated generalized matroid f : 2E → Z the compression f̂ of f given by (3.3)
becomes

f̂(x) = min

∑
α∈[n]

f(Yα)
∣∣∣ x =

∑
α∈[n]

χYα , ∀α ∈ [n] : Yα ∈
(
E

α

) (x ∈ ZE), (5.1)

where
(
E
α

)
= {X ⊆ E | |X| = α} for α ∈ [n], and we define f̂(x) = +∞ if the

minimum on the right-hand side does not exist for x ∈ ZE . Then the effective domain of
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the compression f̂ given by (3.6) is expressed by the following Minkowski sum:

dom(f̂) =
∑
α∈[n]

{
χY

∣∣∣ Y ∈
(
E

α

)}
. (5.2)

Recall that E = [n].

Theorem 5.1: The effective domain dom(f̂) of the compression f̂ is a permutohedron.
Hence the compression f̂ is a valuated permutohedron, whose linearity domains are sub-
permutohedra.

(Proof) The right-hand side of (5.2) is the Minkowski sum of the sets of the characteristic
vectors of bases of uniform matroids Uα,n of rank α for α ∈ [n]. Hence it is a base
polyhedron whose every extreme point (a greedy solution in the sense of Edmonds [5])
is a permutation (π(1), · · · , π(n)) ∈ Zn of [n] and vice versa. It follows that (the convex
hull of) dom(f̂) is a permutohedron and f̂ is a valuated permutohedron. Moreover, for
any generic w ∈ (RE)∗ and every α ∈ [n], D(f(α), w) in (4.2) is a singleton, χF (α) say.
Then, for each α = 1, · · · , n we have F (α − 1) ⊂ F (α) and χF (α) − χF (α−1) = χi for
some i ∈ [n] (= E) with F (0) = ∅. Hence sets F (α) for α = 1, · · · , n form a complete
flag

∅ = F (0) ⊂ F (1) ⊂ F (2) ⊂ · · · ⊂ F (n) = [n] (5.3)

and it determines a permutation π of [n] with the permutation vector vπ =
∑n

α=1 χF (α).
It follows that every linearity domain of the compression f̂ is a sub-permutohedron. 2

5.2. Strips of valuated generalized matroids and flag matroids

For every S ∈ S we have the strip fD(S) = (f
D(α,S)
(α) | α = 0, 1, · · · , n) of f associated

with S ∈ S, which is characterized as follows. We identify χX with X for any X ⊆ [n].

Theorem 5.2: For each α = 0, 1, · · · , n we have a base family D(α, S) of a matroid
([n], ρSα) with a rank function ρSα satisfying ρSα([n]) = α. Moreover, the sequence of
(ρSα | α = 0, 1, · · · , n) is that of strong maps, i.e., a flag matroid.

(Proof) The present theorem follows from the definition of the strip fD(S) = (f
D(α,S)
(α) |

α = 0, 1, · · · , n) and the assumption that f is a valuated generalized matroid. 2

We call the flag matroid (ρSα | α = 0, 1, · · · , n) the flag matroid associated with a
strip S ∈ S (or a flag-matroid strip) of the valuated generalized matroid f . We see from
Theorems 5.1 and 5.2 the following.

Theorem 5.3: Every valuated generalized matroid f induces a valuated permutohedron
f̂ by its compression and each flag-matroid strip of f corresponds to a maximal linearity
domain, a sub-permutohedron, of the induced valuated permutohedron.
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Every valuated generalized matroid is regarded as a valuated permutohedron endowed
with valuated flag-matroid strips, one for each maximal linearity domain of it.

6. Concluding Remarks
We have introduced the concepts of strip decomposition and compression of M♮-convex
functions. We have examined the structures of valuated generalized-matroids by consid-
ering the strip decomposition of a valuated generalized-matroid into flag-matroid strips.
The compression of a valuated generalized matroid induces a valuated permutohedron, a
special M-convex function of Murota [14]. We thus have a new transformation, which
we call the compression, of a valuated generalized-matroid (an M♮-convex function) to a
valuated permutohedron (a special M-convex function). Every Bruhat interval polytope is
known to be a sub-permutohedron, due to Tsukerman and Williams [21]. It is interesting
to investigate Bruhat interval polytopes from a point of view of the strip decomposition of
valuated generalized-matroids and also from a point of view of valuated permutohedra.
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