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REMARKS ON STRICHARTZ ESTIMATES FOR 
SCHRODINGER EQUATIONS WITH SLOWLY DECAYING 

POSITIVE POTENTIALS 

HARUYA MIZUTANI 

ABSTRACT. We discuss a recent progress [28] concerning Strichartz es
timates for Schrodinger equations with real-valued slowly decaying pos
itive potentials. Our admissible class of potentials particularly includes 
the positive Coulomb potential in three and higher space dimensions. 

1. INTRODUCTION 

This is a survey article based on a recent result [28] of the author concern
ing the (global-in-time) Strichartz estimates for the Schrodinger equation: 

i8tu(t, x) = Hu(t, x) + F(t, x), t E ffi., x E ffi.n; ult=O = uo (1.1) 

where uo = uo(x) and F = F(t, x) are given data and 

H = -~+ V(x) 

is a Schrodinger operator with~ being the Laplacian and V(x) being a real
valued potential decaying at infinity. A typical example we have in mind is 
the repulsive Coulomb potential and its smooth approximation of the forms 

V(x) = Zlxl-µ or Z(x)-µ 

where Z > 0, µ E (0, 2) and (x) = ✓1 + lxl 2 . 

The Strichartz estimate is a family of space-time inequalities for the so
lution u = u(t,x) to (1.1) of the form 

(1.2) 

where (Pj, Qj), j = 1, 2, satisfy the following admissible condition: 

p,q?:_2, 2/p=n(l/2-1/q), (n,p,q)#(2,2,oo). (1.3) 

Here L';; = Lq(ffi.n), Lf = LP(ffi.), LfL';; = LP(ffi.;Lq(ffi.n)) andp' = p/(p-l) is 
the Holder conjugate ofp. The special case with (p1, q1) = (p2, q2) = (2, n2r,,_2 ) 

in dimension n?:. 3 is called the (double) endpoint estimate. Note that the 
endpoint estimate, combined with the trivial one for (p1, q1) = (p2, q2) = 
( oo, 2) and the complex interpolation, implies (1.2) for all admissible pairs. 

Before stating the main result, we first give a brief summary of the existing 
literature. The Strichartz estimate (1.2) for the free case H = -~ has been 
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established by [38, 14, 40, 23] and is known to be one of fundamental tools 
in the study of the nonlinear Schrodinger equation (NLS): 

We refer to the textbook [39] for applications to NLS. Since then, the 
Strichartz estimate has been extensively studied by many authors and ex
tended to various settings. In particular, if n 2:: 3 and the real-valued po
tential V satisfies the very short-range condition 

and H = -D.+ V has neither zero eigenvalue nor zero resonance (see [27, 
Section 2] for the definition of zero resonance under the condition V E Lnf2 ), 

then the continuous part Pc(H)u of the solution u to (1.1) satisfies (1.2) for 
all admissible pairs ([34, 15, 2, 27]). Note that, in case of the point-wisely 
decaying potential 

the above very short-range condition corresponds to the conditionµ > 2. In 
contrast with the very short-range case, there is a counterexample ifµ < 2. 
Precisely, it wad proved in [16] that if V E C3 (JR.n \ {0}; JR.) satisfies 

V(x) = lxl-µU(0), 0 = x/lxl, µ E [O, 2), 

and U has a non-degenerate minimum point so that min U = 0 then, for any 
sn-1 

admissible pair, (global-in-time) Strichartz estimates cannot hold in general. 
In the critical case V(x) = 0( (x)-2 ), the Strichartz estimate is also known to 
hold under some repulsive conditions and smallness of the negative part V_ 
of the potential. A typical example satisfying such conditions is the inverse

square potential V(x) = alxl-2 with the subcritical constant a > - (n~2l2 

(see [8, 9, 3, 26] and references therein). It is worth noting that there is no 
existing positive result for the slowly decaying case 

The Strichartz estimates have been also extensively established for more 
general operators than the Schrodinger operator with a scalar potential on 
the Euclidean space, e.g., 

• Schrodinger operator with short-range magnetic potentials ([13, 25]); 
• Laplace-Beltrami operator on the asymptotically conic or hyperbolic 

manifolds under the nontrapping or moderate trapping conditions 
([25, 19, 11, 4]); 

• Schrodinger operator on a star graph or tree ([17, 1]); 
• Fractional and higher-order Schrodinger operators or more general 

elliptic operators ([24, 18, 29, 30]). 
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2. MAIN RESULT 

Now we state the main results in the paper [28]. 

Theorem 2.1 (Smooth potential). Let n 2 2 andµ E (0, 2). Suppose that 
V is a real-valued smooth function satisfying the following conditions: 

(Hl) l8~V(x)I :s; Ca(l + lxl)-µ-lal on ffi.n for any multi index a; 
(H2) V(x) 2 C1(l + lxl)-µ on ffi.n with some C1 > O; 
(H3) -x · v'V(x) 2 C2(l + lxl)-µ for lxl 2 Ro with some C2, Ro > 0. 

Then the solution u to (1.1) satisfies (1.2) for any admissible pairs. 

A typical example of V satisfying the above (Hl)-(H3) is 

V(x) = Z(x)-µ, Z > 0. 

Theorem 2.2 (Singular potential). Let n 2 3, Z > 0 andµ E (0, 2). 
Suppose that Vs E C 00 (ffi.n; ffi.) satisfies 

1a~Vs(x)I :s; Ca(l + lxl)-l-µ-lal_ 

Let V(x) = -~ + Zlxl-µ + cVs(x). Then there exists c* = c*(Z, µ, Vs) > 0 
such that for all c E [O, c*), the solution u to (1.1) satisfies (1.2) for any 
admissible pairs. 

Remark 2.3. We give some remarks on these theorems: 

• In both cases of Theorems 2.1 and 2.2, H is purely absolutely con
tinuous and Pc(H) = Id. 

• One can choose c* = min(Z/Mo, µZ/M1) in Theorem 2.2, where 

Mg= lllxlll(x · v')RVsllv"'· 
• These theorems do not contradict with the counterexample due to 

[16] in the previous section. Indeed, both of conditions (Hl)-(H3) 
and conditions in Theorem 2.2 do not intersect with one for the 
counterexample. 

• The restriction n 2 3 on the space dimension in Theorem 2.2 is due 
to the use of the following L; £;-estimate with a singular weight 

llx(x) 1x1-µ12e-it(-~+V)uollL2(JRl+n) :s; Clluo IIL2(JRn) 

for a smooth approximation V of the potential V in Theorem 2.2, 
where V satisfies (Hl)-(H3) and X E C0 (ffi.n). This estimate imme
diately follows from the endpoint Strichartz estimate in Theorem 2.1 
and Holder's inequality if n 2 3 since x(x)lxl-µ/ 2 E Ln, but this is 
not the case if n = 2 since the endpoint Strichartz estimate cannot 
hold in two space dimensions. However, such a restriction seems to 
be not essential. it would be interesting to investigate whether The
orem 2.2 (with p > 2) also holds in two space dimensions or not. It 
is also an interesting question if Theorem 2.1 holds in the one space 
dimension in which case our proof does not work. 
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We conclude this section with a simple application of the above theorems 
to nonlinear scattering theory. Let n ~ 3 and V satisfy the assumption in 
Theorem 2.1 or 2.2. Consider the mass-critical NLS with the potential V: 

(i8t + ~ - V)v = ulvl 41nv, (t, x) E ~ x ~n; vlt=O = Vo. (2.1) 

Corollary 2.4. Let a- E K Then for any vo E £ 2 with sufficiently small 

L 2 -norm llvolb « 1, (2.1) admits a unique global mild solution 

VE C(~; L2(~n)) n £2+4/n(~l+n). 

Moreover, if l < µ < 2 then there exist unique V± E L 2 such that 

lim llv(t) - it~v±IIL2 = 0; 
t--+±oo 

if O < µ < l then there exist unique V± E L 2 such that 

lim llv(t) - e-iS(t,D)v±IIL2 = 0, 
t--+±oo 

where S(t, D) = 3"-1s(t, ()3" is a Fourier multiplier by an approximate so

lution to the Hamilton-Jacobi equation 

The unique existence of the global solution v and the scattering of v to 
a linear solution e-itHV± can be proved by a standard method (see [39]) 
by means of Theorems 2.1 and 2.2. Ifµ > l then V is of short-range type 
and the scattering of the linear solution e-itHV± to a free solution eit~V± is 
nothing but the asymptotic completeness of the wave operator 

s-lim eitH it~ 
t--+±oo 

which is well-known (see [33]). When µ E (0, 1) the above modified scat
tering result follows from the asymptotic completeness of the modified wave 
operator 

(see e.g. [12]). 

s-lim eitH e-iS(t ,D) 
t--+±oo 

3. OUTLINE OF THE PROOF 

In this section we give an outline of the proof of Theorem 2.1. We use 
a similar method based on the microlocal analysis as that in [4] where the 
Strichartz estimates on the long-range asymptotically conic manifold was 
studied. We may consider the homogeneous estimate only, namely we let 
F = 0 and hence u = e-itHu0 for simplicity. Let 2* = 2n/(n - 2). 

Step 1: Energy localization. Since V E Lfoc and V ~ 0, the kernel 
e-tH (x, y) of the semi-group e-tH satisfies the Gaussian upper bound 

0:::; e-tH(x,y):::; et~(x,y):::; (47rtt12e-lx-yl 2 /(4t), t > 0 (3.1) 
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(see [35]). Then an abstract theorem due to [10] implies that the following 
square function estimate holds: 

where {f (2-j .X)}jEZ is a dyadic partition of unity on (0, oo ), that is f E 

C0 (IR), 0 S f S 1, supp f C (1/2, 2) and 

Lf(Tj.X) = 1, .X > 0. 
jEZ 

Hence the proof is reduced to proving following energy localized estimate 

(3.2) 

where cp E C0 (IR) with supp cp ~ (0, oo) and the implicit constant should 
be independent of A. In what follows, we shall focus on the low energy case 
A E (0, 1] since the high energy case A~ 1 can be handled similarly. 

Step 2: Reduction to a semiclassical problem. Next task is to approximate 
the energy localization cp( A - 2 H) by a pseudo differential operator (PDO). 
For each A> 0, it can be shown by using Helffer-Sjostrand formula [20] 

cp(.X-2H) = _ _!_ f °,!(z)(.X-2H - z)-1dL(z) 
7r le uz 

( with rp being an almost analytic extension of cp) and a micro local parametrix 
construction of the resolvent (.x-2 H - z)-1 that cp(.x-2 H) is a PDO Op(a) = 
a(.X, x, D) with the principal symbol a= cp(.X-2 1~1 2 + V(x)). However, since 

ll8€allv,o ~ .x-1 , the operator norm II Op(a)IIL2➔£2 may blow up as A '\i 0 
t,x X X 

in general. Hence this rough observation cannot be used to show the above 
uniform estimate (3.2) in the low energy case .X E (0, 1]. 

In order to overcome such a difficulty, we first decompose the energy 
localized cp(.X-2H) into two regions {Alxl S 1} and {Alxl ~ l}: 

cp(.X-2 H)u = cp(.X-2 H) ( X{>,lxl9} + X{>.lxl2'.1}) u, 

where XA is a smooth cut-off function supported near A and XA = 1 on A. 
In the compact region {Alxl S 1}, we use Bernstein's inequality 

llcp(A-2 H) 11£2 ➔£2* ;S A 
X X 

(which follows from (3.1) thanks to an abstract theorem by [10]) to deduce 
the desired Strichartz estimate for the first term cp(.x-2 H)X{>.lxl:S:l} u from 
the following weighted L;L;-estimate 

II (x)-1ull£2£2 ;S lluoll£2, 
t X 

where we have used the bound A S min(l, lxl-1 ). Then such a weighted 
L;L;-estimate follows from the uniform resolvent estimate proved by [32] 
under the conditions (Hl)-(H3) and Kato's smooth perturbation theory [22]. 
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In the non-compact region {>.lxl ~ 1 }, we approximate rp(>.-2 H)X{>,.lxl::>1} 
by a suitable rescaled pseudodifferential operator 

'.D.>. Op(a>-)*'.Dt 

modulo an error term, where '.D>.f(x) = >,n/2 J(>.x) is the usual dilation and 
the leading term of a>-(x, ~) is given by 

a~(x,~) = rp (1~1 2 + v>-(x)) X{lxl::>l}(x), v>-(x) = r 2v(>.- 1x) 

and the error term can be handled by a similar argument as that for the 
compact part. Let us now introduce the semiclassical parameter h by 

h = >.2/µ-l E (0, 1], 

where recall that we have assumedµ E (0, 2). By rescaling, the main term 
'.D.>. Op(a>-)*'.Dte-itH then can be written in the form 

'.D Op(a>-)*'.D*e-itH - '.D Op (a )*e-it>-2Hh'.D* >. >. - .>-2/ µ, h h >.2/ µ, (3.3) 

where Hh is a semiclassical Schrodinger operator given by 

and Oph(ah) = ah(x, hD) is a semiclassical PDO with the symbol ah sup
ported in 

The main advantage to introduce the parameter his that, since Vh obeys 

for lxl ~ 1 uniformly in >. (and hence in h), ah belongs to the symbol class 
S((x)-1(~)-00 , (x)-2dx2 + (~)-2de) uniformly in h E (0, 1], namely they 
satisfy, for any N ~ 0, a, (3, 

1a~afah(x,~)I ~ Ca13N(x)-lal(~)-N-l/31 

uniformly in h E (0, 1]. Therefore, we can use the semiclassical analysis 
to handle the operator (3.3). Then, by virtue of a scaling argument, the 
problem is reduced to showing the following semiclassical Strichartz estimate 

(3.4) 

with the implicit constant being independent of h E (0, 1]. 
Step 3: Semiclassical Strichartz estimate. In order to obtain (3.4), we 

further decompose the support of the symbol ah into the compact part 
{1 ~ lxl ~ 2R} and non-compact part {lxl ~ R} for sufficiently large R 
( which is independent of h): ah = a'j,0 m + a'r:', where 

supp a'j,0 m C supp ah n {1 ~ lxl ~ 2R}, 

suppa'r:' c suppah n {lxl ~ R}. 
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For the compact part, we employ a similar idea as that in [37] which yields 
that the desired Strichartz estimate can be deduced from the semiclassical 
dispersive estimate 

for sufficiently small to <R: 1 (independent of h), and the local smoothing 
estimate of the form 

(3.6) 

(3.5) can be proved by using the semiclassical WKB parametrix construction 
of e-itHh/h Oph(ah0 m) and the stationary phase method (see e.g. [41]), while 
one can prove (3.6) by using a semiclassical version of Mourre's theory ([31 ]). 

To deal with the non-compact part a't:, we decompose a't: into the outgo
ing part at and incoming part a-,;. Thanks to the abstract TT* -argument 
by [23], it suffices to show the following long-time dispersive estimate 

II Oph(at)*e-itHh/h Oph(at)IIL1--tL= ~ lthl-n/2, t-=/- 0. 
X X 

To this end, we essentially follow the idea of [6]. The main ingredient in the 
proof is the construction of the semiclassical Isozaki-Kitada (IK) parametrix 
of e-itHh/h Oph(at) whose main term is given by 

J,;(c+)ithLi J,;(d+)*, 

where Ji; ( w), which is called the IK modifier, is a semi classical Fourier 
integral operator with a time-independent phase function 

and the amplitudes c+ and d+ are supported in some outgoing regions. The 
dispersive estimate for the main part of the IK parametrix of the form 

II Oph(at)* J,;(c+)eith~ J,;(d+)*IIL1--tL= ~ lthl-n/2, t-=/- 0, 
X X 

then can be proved by using the standard stationary phase method, while 
several microlocal propagation estimates will be used in order to deal with 
the error term. Since the calculation is rather involved, we omit the details 
(see [28, Subsection 3.1 ]). To prove such propagation estimates, we employ 
the local decay estimate for the propagator e-itHh/h Oph(at) which can be 
obtained by means of the semiclassical version studied again by [31] of the 
multiple commutator method of [21]. 
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