
57

Feynman propagator on the Minkowski spacetime 

Kouichi Taira 

Research Organization of Science and Technology, 
Ritsumeikan university 

Abstract 

In this short note, we explain the construction of the Feynman/anti-Feynman 
propagators by Gerard and Wrochna and show that they coincide with limits of the 
resolvent via elementary calculus. 

1 Introduction 

Feynman/anti-Feynman propagators on Lorentzian manifolds are fundamental object in 
quantum field theory. In [5], it is proved that Feynman/anti-Feynman parametrix (in
verses up to smooth kernels) exist under a non-trapping condition. Recently, on general 
globally hyperbolic spacetimes, Feynman/anti-Feynman propagators are constructed by 
scattering or spectral techniques on L2-based spaces ([2], [3], [6], [7]). In particular, 
Derezinski and Siemssen propose a method of construction for Feynman/anti-Feynman 
propagators based on the essential self-adjointness of wave operators: 

Conjecture 1.1. /4, Conjecture 8.3} For a large class of asymptotically stationary space
times ( M, g), the wave operator P is essentially self-adjoint on C',':' ( M) and the Feynman 
propagator defined in [4} coincides with a limit of its resolvent at the real line. 

In this note, we consider the wave operator 

n+l 

Po= a;l - La;j = a;- D..y on JR.;+1 = ffi.t X ffi.;. 
j=2 

Moreover, we denote its symbol by p0 : 

n+l 

Po(~) = -~i + L ~r 
j=2 

The purpose of this note is to explain how to construct the Feynman-propagator in [6] 
and [7] for our model operator P0 and to show the result in [11] by a more elementary 
method. Since P0 is constant coefficient and static, all the arguments are simpler and 
more elementary than on curved spacetimes. 

First, we refer to the essential self-adjointness for P0 • Although the proof for essential 
self-adjointness of wave operators on curved spacetimes is not trivial (see [12] or [9]), the 
essential self-adjointness of P0 is easily proved in this case: 
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Lemma 1.2. P0 is essentially self-adjoint on C~(JR.n+l). 

Proof. It suffices to prove that 

(Po± i)u = 0, u E L2(JR.n+l) 

implies u = 0. By the Fourier transform, this is equivalent to the fact that (p0(~)±i)u(~) = 

0 and u E L2 (JR.n+l) imply u = 0. Since p0 (~) is real-valued and ±i is purely imaginary, 
dividing (p0 (~) ± i)u(~) = 0 by (p0 (~) ± i), we obtain u = 0. This implies u = 0. □ 

We denote the unique self-adjoint extension of P0 by the same symbol P0 . The main 
result of this note is the following theorem. 

Theorem 1.3. For s > ½, the limits 

R± := lim (Po+ m6 =f ic)-1 
e--+0,e>O 

exist in B( (x) 8 L 2 (JR.n+I ), (x)-s L 2 (JR.n+l )). Moreover, R+ coincides with the anti-Feynman 
propagator defined in /6} and /7}. 

Remark 1.4. The convention of the Feynman/anti-Feynman propagators in [6] and [7] are 
opposite to in physics. 

This result is also proved in [2] for more general static spacetimes by using the theory 
of dissipative operators. In this paper, we use the Fourier analysis and the spectral theory 
instead. 

One of important properties of Feynman/anti-Feynman propagators is the following 
asymptotics: For m 0 > 0 and (Po+ m5)u = f with f E S(JR.n+1 ), 

u is Feynman {cc} u(t) ~ e±it✓-t>y+m5b±,± as t--+ ±oo, 

u is anti-Feynman {cc} u(t) ~ e=i=it✓-t>y+m5b=i=,± as t--+ ±oo. 

Acknowledgment. This work was supported both by JSPS Research Fellowship for 
Young Scientists, KAKENHI Grant Number 20J00221 and by the Research Institute for 
Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto 
University. 

2 Limiting absorption principle 

In this section, we prove the existence of the powers of the outgoing/incoming resolvent 
for P0 away from the zero energy. The main result of this section is the following theorem. 

Theorem 2.1. Let k 2: 1 be an integer, I ~JR.\ {0} be a bounded interval and s > k/2. 
Then 

sup ll(x)-s(Po - z)-k(x)-sllB(L2(JRn+1)) < oo, (2.1) 
zEI± 

where I±= {z EC I Re z EI, ±Im z > 0}. Moreover, the limits 

(x)-s(Po - >.. ± i0)-k(x)-s = lim (x)-s(Po - >.. ± iE)-k(x)-s (2.2) 
e--++O 

exist uniformly in >.. E I. 
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Remark 2.2. Similar estimates hold on an ultrastatic Lorentizan manifold M = ~ x Y, 
where Y is compact [1, Theorem C.5]. 

Remark 2.3. The case k = l is proved in [10]. 

Proof. Set x = (-x1 , x2 ... , Xn+i) and consider the differential operator 

with the domain C~(~n+l ). By using Nelson's commutator theorem with a conjugate 
operator-~+ lxl 2 + 1, it turns out that A is essentially self-adjoint on C~(~n+1). We 
denote its unique self-adjoint extension by the same symbol A. A simple calculation gives 

[P. iA] = -2~(1 - ~)-1 = :r-1 ( 21~12 :r) . 
o, 1 + 1~12 

In the following, we see that [P, iA] satisfy the Mourre estimate except at 0, that is, 

(2.3) 

where E1(P0 ) is the spectral projection of P0 to I and XI is the characteristic function of 
I c R Fix I~~\ {0}. We set a= inf{l>-11 >.EI}> 0. Then for~ E Pr;1(I), we have 

k d 

1~12 = ~ l~jl 2 + ~ l~jl2 ;::,: a. 
j=l j=k+l 

Hence we obtain 

where XI is the characteristic function for I. This proves (2.3). Moreover since ad~P0 are 
bounded operators for all k ;::,: 1, it follows that P0 E Ck(A) for all k ;::,: 1. By the results 
in [8], we obtain (2.1) and (2.2). 

□ 

3 Feynman propagator 

In this section, we construct the Feynman/ anti-Feynman propagators along the strategy 
in [6] and [7]. 

3.1 Diagonalized operator 

In this subsection, we shall construct the Feynman/anti-Feynman propagators for the 
diagonalized operator pad defined below. 
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Notation 

For m 0 > 0, we set 

0) _ (0 0) o,1r=o1· 

Moreover, for ½ < v < 1, we denote 

'.J-{m = Hm ffi Hm, z)ad,m = (t)-v L2(JR; '.J--Cm), 

xad,m = { u E C(JR; '.J--Cm) I padu E '.J--Cm}, llull;, = IIPgdull~m + IIPadull~ad,m• 
For u = ( u0 , u1) E C (JR; '.D' (JRn) EB '.D' (JRn)), we denote 

pfdu = (uo(t), u1(t)) E '.D'(lRn) EB '.D'(lRn). 

Construction of propagators 

Proposition 3.1. (i) There exist bounded linear operators Gel: L1 (JR; '.J--Cm)---+ C(JR; '.J--Cm) 
such that 

and for f E L1 (lR; '.J--Cm), 

G~d f (t) ---+ 0 as t---+ -oo, G°:...d f (t) ---+ 0 as t---+ +oo. 

The operator Gal are called retarded/advanced propagators for pad respectively. 
(ii) There exist bounded linear operators G}~AF: L1 (JR; '.J--Cm)---+ C(JR; '.J--Cm) such that 

padG}~AF = I du(!R;'.){m) 

and for f E L1 (lR;'.J--Cm), 

7T±G}~AFf(t) ---+ 0 as t---+ -oo, 1r~G}~AFf(t)---+ 0 as t---+ +oo. 

The operator G}~AF are called Feynman/anti-Feynman propagators for pad respectively. 

Proof. Set 

(G±d f)(t) =i t uad(t - s)f(s)ds for f = (Jo, Ji) E L1 (1Rt; '.J--Cm), (3.1) 
l~oo 

(G}~AFf)(t) =(i t ei(t-s)v'-Mm2 fo(s)ds,i rt e-i(t-s)v'-Mm2 fi(s)ds) (3.2) 
hoo J±oo 

Since 

sup 11uad(t)IIB('.){m) < oo, 
tEIR 

we have Gal, G}~AF E B(L1(JR; '.J--Cm), C(JR; '.J--Cm)). The rest of the properties can be easily 
checked. 

□ 
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Propagators as inverses between some function spaces 

We shall show that G±d and G°J,,~AF can be realized as inverses between some Banach 
spaces. Such observation is useful for constructing Feynman/anti-Feynman propagators 
on curved spacetimes. First, we define the boundary data at t = ±oo. 

Definition 1. We define 

ad 1· o rad( t) ad Pout/in = S - lm Ll - Pt , 
t➔±oo 

Pad . U = lim (e-itv-Ll+m2U (t) eitv-Ll+m2U (t)) out/in t➔±oo O , 1 • 

We also define the Feynman/ anti Feynman scattering data: 

ad ._ ± ad + 'f ad 
PF/AF .- 7r Pout 7r Pin· 

The next lemma assures that the boundary maps are well-defined for the function 
belonging to xad,m. 

Lemma 3.2. We have 

ad ad B(,y-ad,m n.rm) 
Pout/in' PF/AF E .A, , JL • 

Proof. It suffices to prove p~~t/in E B(Xad,m, '.J-Cm). Let U = (uo, u1) E xad,m and j 
(Jo, Ji) := Pu E °\}ad,m C L1 (~; '.J-Cm). By the Duhamel formula, we have 

pfdu = u(t) = eitHadu(O) + i 1t ei(t-s)Had f(s)ds. 

This implies 

1±00 

Pad . u = lim e-itHadpadu = u(O) + i e-isHadf(s)ds. out/in t ± t 
➔ 00 0 

This representation gives p~~t/in E B(Xad,m, '.J-Cm). 

Now we introduce the out/in and Feynman/anti-Feynman function spaces. 

Definition 2. Set 

:x;ad,m _ { :x;ad,m I ad _ O} out/in - U E Pin/outU - , 

Proposition 3.3. ( i) The operator 

,y-ad,m { ,y-ad,m I ad O} .A,F/AF = u E .A, PAF/Fu = · 

pad : :x;ad,m -+ °\jad,m 
out/in 

is invertible and its inverse is equal to G'±d. 
( ii) The operator 

pad . :x;ad,m -+ °\jad,m 
· F/AF 

is invertible and its inverse is equal to G°J,,~AF· 

(3.3) 

(3.4) 

□ 



62

Proof. Let u E xad,m and set f = padu. The relation (3.4) imply that pfi;outu = 0 is 
equivalent to 

u(O) = - ro e-isHad f(s)ds. 
J'f'OO 

By (3.3) and (3.1), the above identity is also equivalent to u = G'±df. This proves (i). 
Next, we show (ii). For U = (uo, u1) E xad,m with j = Uo, Ji) = padu E )!ad,m, we 

have p'1;,_~1Fu = 0 is equivalent to 

ua(O) = i ro e-isv-Mm2 fo(s)ds E Hm, u1(0) = i 10 eisv-LHm2 fi(s)ds E Hm. 
J'f'OO ±oo 

By (3.3) and and (3.2), it is also equivalent to u = G°j,~AFJ. 

3. 2 Propagators for P0 

Now we construct Feynman/anti-Feynman propagators for P0 • 

Notation 

Let m 0 > 0. We set 

H = (12 ~), 
T=- ~ (! 

We denote 

□ 

where we note H is not self-adjoint and hence ll(t) is not unitary. Moreover, for u E 

C 1 (JR; '.D' (JRn))' we set 

PtU = (u(t),Dtu(t)), (pu)(t) = PtU, ·n"j(uo,u1) = Uj

Then we have 

P = 1r1 o (Dt - H) op. 

For ½ < v < 1, we define function spaces xm, )!m by 

)!m = (t)-v L2 (1R; Hm), xm = {u E C(JR; Hm+l) n C 1 (1R; Hm) I Pu E )Jm}, 

llullim := llull;,, := llu(O) llim+1 + ll8tu(O) llim + IIPull~m-

Moreover, we set 

± 1 ( 1 ±A-1) 
Cfree = 2 ±A 1 
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Representation of the solution to Pu = f 
Lemma 3.4. Suppose that u E C(JR; Hm) satisfies Pu E L1(JR; Hm). Then we have 

u(t) =! A-leitA(Au(O) + Dtu(O) - i 1t e-isA f ( s )ds) 
2 0 

+ !A-1e-itA(Au(O) - Dtu(O) + i 1t eisA f(s)ds) (3.5) 
2 0 

Proof. By the Duhamel formula, we have 

sintA 1t sin(t- s)A 
u(t) =(costA)u(O) + --y(8tu)(O) + 

0 
A f(s)ds. 

Rewriting this formula, we obtain (3.5). □ 

Now we set 

b± = b±(t) = -(Au(O) ± Dtu(O) =i= i e-isA f(s)ds). l 1t . 
2 0 

(3.6) 

Next lemma shows that c'.Tree is the spectral projections of Hin the energy space. 

Lemma 3.5. For u E xm, we have 

Construction of propagators 

□ 

Proposition 3.6. (i) There exist bounded linear operators G± : L1(JR; Hm)-+ C(JR; Hm+l) 
such that 

G±f(t) -+ 0 as t-+ =i=oo. 

The operator G± are called retarded/advanced propagators for P respectively. 
(ii) There exist bounded linear operators GF/AF: L1 (JR; Hm)-+ C(JR; Hm+l) such that 

PGF/AF = JdLl(~;Hm) 

and for f E L1 (lR; Hm), 

cyreePGF/AFf(t)-+0 as t-+-oo, CjreePGF/AFf(t)-+0 as t-++oo. 

The operator GF/AF are called Feynman/anti-Feynman propagators for P respectively. 
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Proof. For f(t) E L1 (IR.t; Hm), we set 

(G±f)(t) = - '!_ r A-l(ei(t-s)A - e-i(t-s)A)f(s)ds, 
2 l"'foo 

(GF/AF f)(t) = -i A-1 r ei(t-s)A f(s)ds + '!_A-1 r e-i(t-s)A f(s)ds. 
2 J"'foo 2 J±oo 

( i) and ( ii) are easily proved. 

□ 

Remark 3.7. We can write 

G±J(t) = -in0 ltoo ll(t - s) (J~s)) ds. 

Propagators as inverses 

Similar to the last section, we shall show that G± and GF/AF are realized as inverses 
between some Banach spaces. We introduce boundary maps at t = ±oo. 

Definition 3. We define 

Pout/in =s - lim r-1u(-t)pt t--+±oo 
We also define the Feynman/ anti Feynman scattering data: 

PF/AF := 7r± Pout + 7r"'f Pin, 

where 1r± is defined in the last section. 

Now we set 

b+,± = Au(O) + Dtu(O) - i 1±oo e-isA f(s)ds, b-,± = Au(O) - Dtu(O) + i 1±oo eisA f(s)ds. 

Lemma 3.8. We have 

i _1. (e-itA(Au(t)+Dtu(t))) .r;:; --"(b+±) 
Pout/inU= v'2A \~Too eitA(-Au(t)+Dtu(t)) =iv2A 2 -b~,± 

PF/AFU =iv'2A-½ ( ~t~~J 
Moreover, 

B(xm Hm+-' Hm+-') Pout/in, PF/AF E , 2 EB 2 • 

Proof. The first formula follows from the following calculation: 

_ _ r r-1 (costAu(t) - iA-1 sintA(Dtu)(t)) 
PoutjinU - tlT00 -iA sin tAu(t) + cos tA(Dtu)(t) ' 

± Au(t) + Dtu(t) = ±2b±(t), 

where b± are defined in (3.6). The mapping properties of Pout/in, PF/AF can be proved by 
using lleitAIIH=--tH= = 1. 

□ 
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Corollary 3.9. For u E Xm, we have 

PoutU = 0 {=} b+,- = b-,- = 0, 

ppu = 0 {=} b+,+ = b-,- = 0, 

Definition 4. Set 

PinU = 0 {:} b+,+ = b-,+ = 0, 

PAFU = 0 {=} b+,- = b-,+ = 0, 

x:t/in = {u E xm I Pin/outU = 0}, xr;:/AF = {u E xm I PAF/FU = 0}. 

Proposition 3.10. (i) The operator 

p : x:t/in -+ z}m 

is invertible and its inverse is equal to G ±. 

( ii) The operator 

p : X'J}:/AF -t zjm 

is invertible and its inverse is equal to G F; AF. 

Proof. This proposition follows from the representation (3.5) and Corollary 3.9. □ 

Connection to the diagonalized operator 

Lemma 3.11. We have 

Proof. We recall 

Thus we have 

On the other hand, we note 

H2k =A2k I, H2k+l = A2k H = A2k+l (~ A~1
) ' 

. . ( cos tA iA-1 sin tA) 
li(t) =costH +ismtH = iAsintA costA . 

□ 
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4 Resolvent and propagators 

In this section, we shall show that the outgoing resolvent for P0 coincides with the anti
Feynman propagator constructed in the last section. For c > 0, set 

where we choose the branch of A(s) as Im J-6,,.Y + m5 - is::; 0. Explicitly, we can write 

A2 ✓ A4 + c ·✓ A2 ✓ A4 + c 
A(s) = 2 + --2- - i -2 + --2-

=A1(s) - iA2(s) 

with A2 (s) ;::: 0. Mimicking the definition of the anti-Feynman propagator, we define 

Proposition 4.1. For c > 0, we denote the resolvent of P0 by R(s): R(s) =(Po+ m5 -
ic)-1. Then we have GAF(s) = R(c) on L2 (~n+1). 

Prnof. Since P0 is essentially self-adjoint on C;:"'(~n+l ), it suffices to prove 

and GAF(c) E B(L2(~n+l)). The above two identities can be proved by a simple calcula
tion and by the integration by parts. Hence we shall prove GAF(c) E B(L2(~n+l)). We 
denote A,,,= Jl771 2 + m5 and 

~) = 3"y➔ryGAF(s)3",,,➔y, A(s, 77) = ✓1771 2 + m5 - is= A1(c, 77) - iA2(c, 77). 

By Plancherel's theorem, it suffices to prove~) E B(L2 (~n+1)). We observe 

For f E L2 (~n+1 ), set u = ~)f. Then we have 

u(A,,,t) = ~i A(s, 77)-1 LA,,t ei(A,,t-s)A(,e,ry) f(s)ds 

i 1A,,t . + 2A(s, 77)-1 -oo e-,(A,,t-s)A(,e,ri) f(s)ds 

=~ii ei(t-s)A,,A(,e,ry) f(A,,,s)ds + ~ 1too e-i(t-s)A,,A(,e,ry) f(A,,,s)ds. 

( 4.1) 
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Since A1 is real-valued, the inequality (4.1) implies 

1 lt e(t-s) 1 lt -e(t-s) 
llu(A,,t)IIL2(IR,) ::=:: 211 

00 
e 4 J(A,,s)dsllL2(IR,) + 211 

00 
e 4 J(A,,s)dsllL2(IR,) 

1 

::=;c£A; 2 llfllu(IR,J· 

Thus we obtain llull£2(JR,) ::=; C0 IIJIIL2(IR) and hence llullL2(Rn+1) ::=; C0 IIJIIL2(JRn+1). 
□ 

Lemma 4.2. Fors > ½ and f E (t)-s L 2 (~n+l) C L 1(~; L 2 (~n)), we have GAF(s)f --+ 
GAF! in (t) 8 L2 (~n+l) ass--+ 0. 

Proof. By the spectral theorem, for t 2: 0, we have 

e-itA(c)--+ e-itA, A(s)-1--+ A-I 

Now Theorem 1.3 can be proved by the two result above. 
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