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Abstract
In this short note, we explain the construction of the Feynman/anti-Feynman
propagators by Gérard and Wrochna and show that they coincide with limits of the
resolvent via elementary calculus.

1 Introduction

Feynman/anti-Feynman propagators on Lorentzian manifolds are fundamental object in
quantum field theory. In [5], it is proved that Feynman/anti-Feynman parametrix (in-
verses up to smooth kernels) exist under a non-trapping condition. Recently, on general
globally hyperbolic spacetimes, Feynman/anti-Feynman propagators are constructed by
scattering or spectral techniques on L?-based spaces ([2], [3], [6], [7]). In particular,
Dereziniski and Siemssen propose a method of construction for Feynman/anti-Feynman
propagators based on the essential self-adjointness of wave operators:

Conjecture 1.1. [4, Conjecture 8.3] For a large class of asymptotically stationary space-
times (M, g), the wave operator P is essentially self-adjoint on C°(M) and the Feynman
propagator defined in [4] coincides with a limit of its resolvent at the real line.

In this note, we consider the wave operator

n+1

Py= =Y & =0/ —A, on RIF'=R, xRy
j=2

Moreover, we denote its symbol by po:

n+1

P& =-&+> &
Jj=2

The purpose of this note is to explain how to construct the Feynman-propagator in [6]
and [7] for our model operator Py and to show the result in [11] by a more elementary
method. Since Fy is constant coefficient and static, all the arguments are simpler and
more elementary than on curved spacetimes.

First, we refer to the essential self-adjointness for 5. Although the proof for essential
self-adjointness of wave operators on curved spacetimes is not trivial (see [12] or [9]), the
essential self-adjointness of P, is easily proved in this case:
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Lemma 1.2. Fy is essentially self-adjoint on C°(R"*1).

Proof. Tt suffices to prove that
(Py+i)u=0, ueLl*R")

implies u = 0. By the Fourier transform, this is equivalent to the fact that (po(§)+i)au(§) =
0 and v € L2(R™) imply u = 0. Since py(¢) is real-valued and =i is purely imaginary,
dividing (po(§) +7)u(§) = 0 by (po(§) £ 14), we obtain 4 = 0. This implies u = 0. O

We denote the unique self-adjoint extension of Fy by the same symbol Fy. The main
result of this note is the following theorem.

Theorem 1.3. For s > %, the limits

R.:= lim (Py+mdFie)™"

e—0,e>0

exist in B({z)*L*(R™1), (z)=*L?(R"*1)). Moreover, Ry coincides with the anti-Feynman
propagator defined in [6] and [7].
Remark 1.4. The convention of the Feynman/anti-Feynman propagators in [6] and [7] are
opposite to in physics.

This result is also proved in [2] for more general static spacetimes by using the theory
of dissipative operators. In this paper, we use the Fourier analysis and the spectral theory
instead.

One of important properties of Feynman/anti-Feynman propagators is the following
asymptotics: For mg > 0 and (P + md)u = f with f € S§(R"*1),

. i _ 2
u is Feynman < u(t) ~ eV "2t mp, . as t — 400,
. . i — 2
u is anti-Feynman < u(t) ~ e¥'V "2 M0p_ . as ¢ — toc.
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2 Limiting absorption principle
In this section, we prove the existence of the powers of the outgoing/incoming resolvent
for Py away from the zero energy. The main result of this section is the following theorem.

Theorem 2.1. Let k > 1 be an integer, I € R\ {0} be a bounded interval and s > k/2.
Then

sup ||{z)~*(Py — z)’k<x>’s||B(L2(Rn+1)) < 00, (2.1)

z€l+
where I = {z € C|Re z € I, £Im z > 0}. Moreover, the limits
()7 (R = A 0) ™M) ™" = Tim (@)™ (Ry = A i) H{) ™ (2.2)
e—

exist uniformly in A € I.



Remark 2.2. Similar estimates hold on an ultrastatic Lorentizan manifold M = R x Y/,
where Y is compact [1, Theorem C.5].

Remark 2.3. The case k =1 is proved in [10].
Proof. Set & = (—x1, Z3..., tpy1) and consider the differential operator
A=%-D,(I-A)'"+(I-A)"'D, -7

with the domain C°(R"™!). By using Nelson’s commutator theorem with a conjugate
operator —A + |z|? 4 1, it turns out that A is essentially self-adjoint on C>°(R™"*1). We
denote its unique self-adjoint extension by the same symbol A. A simple calculation gives

o G [ 21EP
[Ppid] = —2A(I — AL = F <1+|£|23").

In the following, we see that [P, iA] satisfy the Mourre estimate except at 0, that is,

Er(Ro)[Po,iAlEr(Fy) >

4“aE,(P0), (2.3)

where E;(P,) is the spectral projection of Py to I and x; is the characteristic function of
I CR. Fix I @R\ {0}. We set a=inf{|\||A € I} > 0. Then for £ € p,"(I), we have

&> = Z|5]|2+ Z 17 > a.

Jj=k+1

Hence we obtain
4f¢/?

Xl(po(f))l T

E xr(po(§)) > raaXI(Po(f))

where y; is the characteristic function for . This proves (2.3). Moreover since ad® P, are
bounded operators for all k > 1, it follows that Py € C*(A) for all k > 1. By the results
in [8], we obtain (2.1) and (2.2).

O

3 Feynman propagator

In this section, we construct the Feynman/anti-Feynman propagators along the strategy
in [6] and [7].

3.1 Diagonalized operator

In this subsection, we shall construct the Feynman/anti-Feynman propagators for the
diagonalized operator P defined below.
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Notation

For my > 0, we set

V=A+m? 0
Had: 0 Pad:D _Had
( 0 —\/—A—i—m?)7 !

L) — G etV —Atmg 0 . (10 ~ (00
()*6 - 0 67it\/T+mg’ ™ = , W o= .

Moreover, for % < v < 1, we denote
H™=H" @& H™, Y™ = (t) "L (R; H™),
X = {u € C(R;H™) | P € H™}, |Jully, = [lp§ ull3em + | P2t in-
For u = (ug,u;) € C(R; D'(R™) & D'(R")), we denote
pifu = (uo(t), w(t) € D'(R") & D'(R").

Construction of propagators

Proposition 3.1. (i) There exist bounded linear operators G4 : L*(R; H™) — C(R; H™)
such that

PadGid = IdLl(R;%m)
and for f € L*(R; H™),
GYf(t) =0 as t— —oo, G f(t)—=0 as t— +ooc.

The operator G4 are called retarded/advanced propagators for P respectively.
(14) There exist bounded linear operators G%AF : LYR; H™) — C(R; H™) such that

PadG(ll:‘d/AF = Idpy(wgem)
and for f € L*(R; H™),
WiGaFd/AFf(t) —0 as t— —oc, W;G%CI/AFf(t) —0 as t— +oo.

The operator GaFd/ A are called Feynman/anti-Feynman propagators for P* respectively.

Proof. Set
t

(G )(t) :i/ Ut — s)f(s)ds for f=(fo, f1) € L'(Ry; H™), (3.1)

Foo
t t
(GEpar(t) =(i / VAT L (5)ds, i / e MEmIVEAIME g (5)ds) (32)
Foo +o0

Since
sup |[U(t) | pgem) < oo,
teR
we have G, G, € B(L'(R; ™), C(R; ™). The rest of the properties can be easily

checked.
O
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Propagators as inverses between some function spaces

We shall show that G%¢ and G‘Iffj 4p can be realized as inverses between some Banach
spaces. Such observation is useful for constructing Feynman/anti-Feynman propagators
on curved spacetimes. First, we define the boundary data at t = doc.

Definition 1. We define
d : d d
pgut/in =85 tl}gloo u” (_t>p? ;
/)(O)LZt/inu = lim (e7™ AT (1), €Y AT 0 (1),
t—+oo
We also define the Feynman/anti Feynman scattering data:
ad . + ad ad
pF/AF =T Pout + prin'

The next lemma assures that the boundary maps are well-defined for the function
belonging to Xe®™,

Lemma 3.2. We have
Plssjim PEpar € B(XM™ H™).

Proof. 1t suffices to prove p%, . € B(X*™ H™). Let u = (up,u;) € X**™ and f =

ut/in

(fo, f1) = Pu € Y*™ C L*(R; H™). By the Duhamel formula, we have

t
P9 = u(t) = e u(0) + i / e IH™ £(5)ds. (3.3)

0

This implies
; ad +o0 ; ad
it = Jim_ e gty = (0) 4 / e f(s)ds. (3.4)
g 0

This representation gives p®?, in € B (dadim F{m). O

Now we introduce the out/in and Feynman/anti-Feynman function spaces.

Definition 2. Set

xadm {u e X™ | psd, u=0}, QC%TF = {u € X | p“AC%/Fu =0}.

out/in in/out
Proposition 3.3. (i) The operator

Pad . xad,m N yad,m

out/in

is invertible and its inverse is equal to G¢*.
(ii) The operator

Pad . x%d/,zﬂF N yad,m

1s invertible and its inverse is equal to GF/AF.



62

Proof. Let u € X*™ and set f = P%u. The relation (3.4) imply that pz?‘r‘f/outu =0is
equivalent to

w0 =~ [ e gas

Foo

By (3.3) and (3.1), the above identity is also equivalent to u = G f. This proves (i).
Next, we show (ii). For u = (ug,u;) € X*™ with f = (fo, 1) = P*u € Y™, we
have p%t, Pl = 0 is equivalent to

0 0
up(0) = z/ eTIVIAT g (s)ds € H™, uy (0) = z/ VAT £ (s)ds € H™.
Foo +o0
By (3.3) and and (3.2), it is also equivalent to u = G“F‘}AFf. O

3.2 Propagators for F,

Now we construct Feynman /anti-Feynman propagators for P,.

Notation

Let mg > 0. We set
0 1 2 2 2
H = 2 0l P=0; - Ay +mi=F+mg,

1

i1 =1\ o i i A e ;

We denote

NI
=

where we note H is not self-adjoint and hence U(t) is not unitary. Moreover, for u €
CHR; D'(R™)), we set

pru = (u(t), Deu(t)), (pu)(t) = pu,  m;(uo, ur) = u;.
Then we have
P=m0o(D,— H)op.
For % < v < 1, we define function spaces X, Y™ by

Y™ = (1) VLA(R; H™), X" = {u € C(R; H™) N C (R, H™) | Pu € Y™},
ullzem = lullz = (O Fmer + 10O [Fm + (| Pulfgm-

Moreover, we set

Cfree
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Representation of the solution to Pu = f

Lemma 3.4. Suppose that u € C(R; H™) satisfies Pu € L'(R; H™). Then we have

u(t) :%AfleitA(Au(O) + Dyu(0) — i/(; e A f(s)ds)

+ %A‘le‘i”‘(Au(O) — Dyu(0) + i /0 ¢i*A f(s)ds) (3.5)

Proof. By the Duhamel formula, we have

. t . _
u(t) =(costA)u(0) + sin A (Oyu)(0) +/ Mf(s)ds.

A 0 A

Rewriting this formula, we obtain (3.5). O
Now we set
1 L
by =b.(t) = E(AU(O) + Dyu(0) F z/ e A f(s)ds). (3.6)
0

Next lemma shows that c;fmi is the spectral projections of H in the energy space.

Lemma 3.5. For u € X™, we have

n U(t) B A*le:titAbi
cfree Dtu(t) - :l:eiitAbi

Proof. We observe u(t) = A~teb, + A~le="®4p_ and Dyu(t) = e*b, — e *4b_. Thus,
+ u(t) \ 11 AT\ (A b, 4 A tem A
Cfree Dwu(t)) 2\£4 1 et Ah, — et

A—leiitAbi
= ( :l:eiz'tAbi > :

Construction of propagators

Proposition 3.6. (i) There exist bounded linear operators G+ : LY(R; H™) — C(R; H™ )
such that

PGi - IdLl(]R;Hm)
and for f € L*(R; H™),
Gif(t) =0 as t— Foo.

The operator G+ are called retarded/advanced propagators for P respectively.
(i4) There exist bounded linear operators Gpjap : L*(R; H™) — C(R; H™) such that

PGpjar = Idpw;gm)
and for f € LY(R; H™),
cﬁeepGp/AFf(t) —0 as t— —o0, cﬁee,oGF/AFf(t) —0 as t— +oo.

The operator G ap are called Feynman/anti-Feynman propagators for P respectively.
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Proof. For f(t) € LY(Ry;; H™), we set
/ 7,(75 S)A —i(t—s)A)f(S)dS7

- t
z i ,
(Grrarf)(t ———2 / A f(s)ds + §A’1 / e =94 £(5)ds
q:

+o0

(GL)(t ~3

(7) and (i7) are easily proved.

Remark 3.7. We can write
¢

Gof(t) = —im /W Ut — o) (f&)) ds.

Propagators as inverses

Similar to the last section, we shall show that G4+ and Gp/ap are realized as inverses
between some Banach spaces. We introduce boundary maps at t = +o00.

Definition 3. We define
Poutyin =5 — lim T'U(—t)p,

=400
We also define the Feynman/anti Feynman scattering data:

PF/AF = T Pout + T Pin,
where 7F is defined in the last section.

Now we set
+o0 . oo
by 1+ = Au(0) + Dyu(0) — z/ e A f(s)ds, b_ . = Au(0) — Dyu(0) + z/ A f(s)ds
0 0

Lemma 3.8. We have

o (5L ) o ()

PFr/AFU :i\/§A7% < bg,i )

-F
Moreover,
Poutins Pryar € B(X™, H™ 2 & H™2),
Proof. The first formula follows from the following calculation:
1 (cos tAu(t) —iA ' sin tA(Dm)(t))
—iAsintAu(t) + costA(Dyu)(t) )’
+ Au(t) + Dyu(t) = £2bo (1),

nu = lim T
Pout/in oo

where by are defined in (3.6). The mapping properties of pout/in, pr/ar can be proved by
using ||| grm o gm = 1.

|



Corollary 3.9. For u € X™, we have

Poutth = 0= b+.,— = b—.,— = 07 Pinl = 0= b+,+ = b—,+ = Oa
PruU = 0« b+1+ = b_ﬁ_ = 0, PAFU = 0< b+’_ = b_’+ = O7
Definition 4. Set
xgzt/in - {’LL S xm | pin/outu - O}, YIE‘I/AF = {U € xm | pAF/FU - O}
Proposition 3.10. (i) The operator
P Xy Y

1s invertible and its inverse is equal to G+.
(¢4) The operator

P:X e — Y"

is invertible and its inverse is equal to Gpjap.

Proof. This proposition follows from the representation (3.5) and Corollary 3.9.

Connection to the diagonalized operator
Lemma 3.11. We have

U(t) = TU ()T !
Proof. We recall

_ (A 0 ad(p\ _ itH*® _ eitd 0
Had<0 _A)~, u (t)*e - 0 efitA .

i L (1 =1\ (A7l g A1
T = <A A)( 0 Ale)\ -4 1

A—leitA _AflefitA A 1
= < it eitA ) <—A 1)
A emitd A1 (gitd _ omit)
(A(eitA — emitd) citA | p—itA )
costA A l'sintA
1AsintA costA

Thus we have

1
2
1
2
1
2
On the other hand, we note

H2k _p2k . g2l g2k g2kl (0 Al)

A 0

costA  iA 'sin tA)

U(t) =costH +isintH = (z’AsintA costA

65
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4 Resolvent and propagators

In this section, we shall show that the outgoing resolvent for P, coincides with the anti-
Feynman propagator constructed in the last section. For € > 0, set

A= /=D, +md, Ae) =+\/—-A, +md—ic,

where we choose the branch of A(e) as Im /—A, + m — ie < 0. Explicitly, we can write

A2 VA*+e A% VA*+e
A(E): 7+T_Z\/_7+T

:Al(é) — LAz(E)
with Ay(e) > 0. Mimicking the definition of the anti-Feynman propagator, we define
—1

(Car©) ) =A@ [ @O (s)ds + At [0 p(syas

2 0o —00

Proposition 4.1. For ¢ > 0, we denote the resolvent of Py by R(¢): R(g) = (Py +m3 —
ie)~'. Then we have G4r(g) = R(g) on L*(R™).

Proof. Since By is essentially self-adjoint on C%°(R™"1), it suffices to prove
f=Gap(e)(P+mg—ie)f, f=(P+mi—ic)Gar(e)f, feCTR™)

and G4r(g) € B(L*(R"™)). The above two identities can be proved by a simple calcula-
tion and by the integration by parts. Hence we shall prove G4r(e) € B(L*(R")). We

denote A, = +/|n|?> + m{ and
Gar(e) = FyanGar(e)Fyny, Ale,n) = /0> +mf —ic = Ai(e,n) — ids(e,n).

By Plancherel’s theorem, it suffices to prove @) € B(L*(R™1)). We observe

9
Ag(en) = ——4 > - AL 4.1
For f € L*(R™1), set u = m)f Then we have
— Ant
u(A,t) :714(&,7;)’1 / et Ant=9)AEM) £(5)ds
; e
+ EA(& 77)71 / efz(Antfs)A(a,n)f(s)ds

. t - t
:‘?Z ¢ilt=s)AnAe) £ AnS)der% / eI MACT) £( 4 5)ds.

oo



Since A; is real-valued, the inequality (4.1) implies

(At z2m < / F(Ays)dsllzaqe + 5 / = (Ay)ds] 12z

<C.A,> ||f\|L2<Rt>-

Thus we obtain |u||z2,) < Cel f]lz2(r) and hence [[ul|p2@nt1y < Ccl| f|| 2@n1y-
(]

Lemma 4.2. For s > 1 and f € (t)*L*(R"*') C LY(R; L*(R")), we have Gap(e)f —
Garf in (t)*L*(R™) as e — 0.

Proof. By the spectral theorem, for ¢t > 0, we have
efitA(e) N efz‘tA. A(€)71 N A71

strongly in L*(R}). This implies Gap(e)f — Gapf in (t)*L*(R™).
Now Theorem 1.3 can be proved by the two result above.
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