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1 Introduction 

We discuss stationary scattering theory for repulsive Hamiltonians with short-range 

perturbations. For such Hamiltonians, it is well-known that their spectrum is purely 

absolutely continuous in ~ and time-dependent wave operators exist and are complete, 

see [1]. However stationary scattering theory for repulsive Hamiltonians is not well studied 

even for short-range case, as far as the speaker knows. 

In the present paper, we deal with several topics on stationary scattering theory. The 

first one is existence and completeness of stationary wave operators. To construct sta­

tionary wave operators we need radiation condition bounds for limiting resolvents stated 

as Corollary 2.5 below. The second one is unitarity of scattering matrix. The last one 

is a characterization of asymptotic behaviors of generalized eigenfunctions with minimal 

growth order at infinity. We characterize their leading term by outgoing/incoming spher­

ical waves. We note these topics are not dealt with in [1]. 

1.1 Basic setting 

We consider the following repulsive Hamiltonians. 

where d EN= {1, 2, ... }, a E (0, 1), p = -ia and q is a real-valued function. 

Let us impose on q more precise condition. We choose and fix a cut-off function x E 

C 00 (~) which satisfies 

x=x(s)= -{ 
1 s < l, 

0 s 2: 2, 
(1.1) 
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By using the function x we introduce the function r E 0 00 (~d) by 

r = r(x) = x(lxl) + (1 - x(lxl)) lxl. 

Now we define our escape function J E 0 00 (~d) as 

rl-a - 1 
f = f(x) = -- + l. 

1-a 

Such a choice of f is based on the scattering trajectory of classical particles subject to 

the repulsive electric field, see [4, 5]. We note f ~ l on ~d. 

Condition 1.1. The perturbation q is a real-valued function belonging to C1(~d). More­

over there exist p, Ck > 0 for k = 0, 1 such that 

Under Condition 1.1 it follows by the Faris-Lavine theorem (cf. [8]) that His essen­

tially self-ad joint on 08° (~d). We denote its self-ad joint extension by the same letter for 

simplicity. 

Next we introduce the Agmon-Hormander spaces associated with f. We let F(S) be 

the sharp characteristic function of a general subset S <:;;;; ~d, and set 

Then define the Agmon-Hormander spaces B, B* and Ba as 

B = { 1P E Lf0 c(~d) I 11'1/Jlls := L 2n/2 l1Fn'I/Jll£2 < 00 }, 

nENo 

B* = { 'I/; E Lfoc(~d) I 11'1/Jlls• := sup rn12 IIFn'I/Jll£2 < CX) }, 

nENo 

Ba= { 'I/; E B* I ;~~ rn12 l1Fn'I/Jll£2 = 0 }· 

Bis a Banach space with respect to the norm II . lls, and B* and Ba are Banach spaces 

with respect to the same norm II · lls•- We introduce the !-weighted L2 -space of order 

s E ~ as 
L;=rsL2, 

and then, for any s > 1/2 the following inclusion relations hold: 

(1.2) 

We introduce differential operators ar and at as 

respectively, and then we define conjugate operator A as 
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(1.3) 

We note that A is different from the usual one used in Mourre theory, cf. [1, 7]. In 

fact the commutator i[H, A] has only weaker positivity which decays at infinity, see [4]. 

However by using A of (1.3) we can prove strong results, e.g. Theorem 2.1 below. We 

also note that A is self-adjoint with maximal domain 'D(A) = { 'i/J E L2 I A'i/J E L2 } and 

has expressions 

A= pf - ½(llf) = (pf)* + ½(llf). 

We denote the resolvent of H for z E CC \ ~ by R( z), i.e. 

2 Results on spectral theory 

From this section, we always assume Condition 1. 1. In this section we state several re­

sults on generalized eigenfunction and resolvents of H. We establish stationary scattering 

theory based on these results, which are interesting in their own right. We note we have 

obtained similar results with long-range perturbations in [4, 5]. 

First we state the absence of B0-eigenfunctions, which is called Rellich's theorem. 

Theorem 2.1. Let>. ER Suppose a function cp E B0 satisfies 

(H - >.)cp = 0 

in the distributional sense. Then cp = 0 on ~d. 

We set 

where 8jk is Kronecker's delta. For any compact interval Is;;;~ we introduce 

h = {z =>.±if I>. EI, r E (0, 1)}, 

respectively. We also use the notation (T),;, = ('i/J, T'i/J) for a general linear operator T. 
Then the following limiting absorption principle bounds hold. 

Theorem 2.2. Let I C ~ be a compact interval. Then there exists C > 0 such that for 
any 'i/J E B and z E I± 

respectively. 
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As a corollary of Theorems 2.1 and 2.2 we obtain, noting (1.2), that the spectrum of 

H is purely absolutely continuous in JR, i.e. 

Using the function X of (1.1), we define smooth cut-off functions Xm, Xm, Xm,n E C00 (JRd) 
for m, n E N0 as 

Xm = x(f /2m), Xm = 1 - Xm, Xm,n = XmXn· 

We choose and fix large m E N so that on supp Xm 

2(Re z) - 2q0 + r 2a > 1, r = lxl, 

where z Eh and q0 = q + ½r2a(fif)2 + %ra-1(t:,.f) + ¼r2a(of l:,.f) - %r-2. Then we set 

an asymptotic complex phase a by 

a= a = X- [r-a✓2(z - q ) + r2a ± iar-a-I :::r:: ia z-qo r-a-1] z m O , 2(z-qo)+r2" 

for z Eh- Here we choose the branch of square root as Re -,/s > 0 for s E <C \ (-oo, 0]. 
We let 

,Be= min {p + l~a' 1 + l~aa} · 

Then we have radiation condition bounds for complex spectral parameters. 

Theorem 2.3. Let I C lR be a compact interval. For all ,6 E [0, ,Be), there exists C > 0 
such that for any 'ljJ E f-f3 [3 and z E h 

respectively. 

The following three corollaries are applications of Theorem 2.2 and Theorem 2.3. The 

first one is the limiting absorption principle. 

Corollary 2.4. Let I C lR be a compact interval. For any s > 1/2 and w E (0, ,Be) n 
(0, min{ s - 1/2, 1 }] there exists C > 0 such that for any z, z' E I+ or z, z' E L 

IIR(z) - R(z')ll.c(L;,L2_,)::::; Clz - z'lw, 

llr-ap{ R(z) - R(z')} ll.c(L;,£2-sl ::::; Clz - z'lw-

In particular, for any >. E JR, there exist uniform limits 

in the norm topology of C(L;, L'2___8 ). We denote these limits by R(>. ± i0), r-<>pR(>. ± i0), 

respectively. These limiting resolvents belong to C(B, B*). 
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The second one is the radiation condition bounds for real spectral parameters, which 

follows from Theorem 2.3 and Corollary 2.4. We set 

a± := lim az, >. E I. 
I±3z--+>.±iO 

Corollary 2.5. Let I C lR be a compact interoal and>. E I. Then for all (3 E [0, f3c), 
there exists C > 0 such that for any 'I/; E J-f3 B 

11Jf3(A =f a±)R(>. ± i0)'l/;lls• + (p1J 2 f3-lfJ.JkPk)~(~±io),;,::; CIIJf3'1/;lls, 
respectively. 

The last one is Sommerfeld's uniqueness theorem. 

Corollary 2.6. Let>. E JR, cp E Jf3B* and 'I/; E J-f3B with (3 E [0, f3c)- Then cp = R(>.±i0)'l/; 
hold if and only if both of the following conditions hold: 

(i) (H - >.)cp = 'I/; in the distributional sense. 

(ii) (A =f a±)cf> E J-f3B6, 

respectively. 

3 Results on stationary scattering theory 

We can obtain several topics on stationary scattering theory by using the results of 

Section 2, especially Corollaries 2.5 and 2.6. We can prove them by similar approaches 

and schemes to [2, 3, 6]. However we omit the details. 

Let us introduce the function 0>. for >. E lR by 
rl+a 

0>.(x) = l+a +>.f. 

Note that the function 0>. is an approximate solution to the eikonal equation 

½l~(x)l2 - ½lxl2"' + q - A= 0, 

in the sense that for 1/3 < a < 1 the quantity of the left-hand side tends to 0 faster than 

J-1 as f ➔ oo. More precisely, the function 0>. satisfies 

½I~: (x)l2 - ½lxl2a + q - >. = ou-1-min{p,(3a-1)/(1-a)}). (3.1) 

Remark 3.1. We constructed 0>. by the following simple approximation. 

0>. (x) ~ J (r2" + 2>.) 112 ( 8r) dx ~ J (r"' + >.r-a + O(r-3")) ( 8r) dx. 

Thus by adding some lower order terms to 0>.(x), we can improve the order of the right­

hand side of (3.1). In particular, for all a E (0, 1), there exists a smooth function 0>. such 

that for some p > 0 

½Ii:(>., x) 1
2 - ½lxl 2" + q - >. = ou-1-r). 

In the following we consider the case of 1/3 < a < 1 for simplicity. However our results 

hold for all a E (0, 1) by retaking 0>. appropriately as stated in the above remark. 
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3.1 stationary wave operator 

We set C± = (21r) 1!2 exp{±¥(dt::-1n and J = r-(d+a-l), and then, introduce the 
operators F±(>,, f) which map from C0 (JR.d) to L2(§d-I) by 

respectively, where 'l/J E Ca (JR.d) and W E §d-l. 

Theorem 3.2. The operators F±(>., f) extend to bounded operators from B into L2(§d-l ). 
In particular, for any 'ljJ E C0 (JR.d) there exist limits 

Moreover it holds that for any 'ljJ E B 

In addition, the operators F±(>.) are continuous in >. ER 

We introduce the spaces 

and define the operators F±: B-+ C(IR.; L2(§d-I)) as 

respectively. Let M>.. be the multiplication operator by >. on 1-l. 

Theorem 3.3. The operators F± are extended to unitary operators 1l-+ ii., and satisfy 

In particular, H and M>.. are unitary equivalent. 

We note we use a density of F±(>.) stated as (3.4) below to prove RanF± = ii.. 
The operators F± : 1l -+ ii. are called stationary wave operators, and their existence 

and completeness follows from Theorem 3.3. 

3.2 Characterization of generalized eigenfunctions 

Let us introduce the functions <t>t[v] for v E L2 (§d-l) by 

(3.2) 
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respectively. We may call these functions outgoing/incoming approximate generalized 

eigenfunctions. In fact for v E C00 (§d-l) we can see by straightforward calculations that 

(3.3) 

The adjoints of .F±(,\): 

which are called the stationary wave matrices, are characterized by efJt and 'l/Jt as follows. 

Proposition 3.4. Let v E C00 (§d-1), and let c/Jt[v] and 'l/Jt[v] be given by (3.2) and (3.3), 

respectively. Then 

respectively . 

.F±(,X.)* are also called eigenoperators. In fact, by Proposition 3.4 and a density argu­

ment we obtain 

By Corollary 2.6, we have 

We can deduce from this equality that 

This implies 
coo(sd-1) ~ Ran.F±(,\) ~ L2(sd-1). (3.4) 

Therefore we can define the scattering matrix S(,\) as satisfying for 'lj; E B 

(3.5) 

Then by Theorem 3.2 we obtain the following proposition. 

Proposition 3.5. S(,\) defined by (3.5) is extended to a unitary operator on L2 (§d-l) 
and is strongly continuous in ,\ E R 

Finally, we obtain a characterization of the B* -eigenfunctions in terms of efJt similar to 

[6]. Let us introduce the set of minimal generalized eigenfunctions. 

£>.. := { cp E B* I (H - ,\)cp = 0 in the distributional sense.}. 

Theorem 3.6. For any fixed ,\ E lR the following assertions hold. 

(i) For any one of~± E L2 (§d-l) or cp E £>.. the two other quantities in {~+,~-,cp} 
uniquely exist such that 

(3.6) 
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(ii) For the quantities { ~+, ~-, q>} satisfying (3.6), the following relations hold. 

1 112R . 
~± = -C± lim - r 1l2 e=i=10>-(1 ±pf)4>df, 

2 R-too R R 

In particular the wave matrices?(>.)* give one-to-one correspondences between the 

spaces L2(§d-l) and£>,,. 

(iii) The operators F± ( >.) : B --+ L2 (§d-l) are surjections. 

It is guaranteed by Theorem 3.6 that£>-. has many elements. In particular, Theorem 2.1 

is sharp, cf. (1.2). 
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