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1 Introduction 

The standard two-body Schri:idinger operator added a constant electric field 0 =/-EE JRn, as 
a self-adjoint operator acting on L2 (JRn) 

-n?b./(2m) - qE · x (1.1) 

is called by the free Stark Hamiltonian. Here, x E ]Rn is the position of the particle and 
b. = ~]=1 8;; is the Laplacian. We also denote the Plank constant, mass and charge of 
the particle by Ii = h/(21r), m > 0 and 0 =/- q E lR respectively. However, in the following, 
by the suitable scale conversion and coordinate rotation, we let these physical constants be 
E = e1 = (1, 0, ... , 0) and Ii= m = q = 1 without loss of generality, and employ the next 
free Hamiltonian 

(1.2) 

where p is the momentum operator -iV = -A(ox,, ... , 8xJ-
Throughout this report, we assume that the space dimension n ?, 2, and denote the 

pairwise interaction potential by V. Under Assumption 1.1, the full Hamiltonian 

(1.3) 

is also realized as self-adjoint by virtue of the Kato-Rellich theorem. 
In this report, we will introduce the result of the inverse scattering [I]. By applying the 

time-dependent method invented by Enss-Weder [EW], we can prove that the scattering op
erator which is defined by the wave operators determines potential V uniquely. In particular, 
by comparison with the previous researches ([We], [Nl], [AM] and [AFI]), we can allow that 
the potential function V belong to the very broad classes. 

The assumptions for the potential V are quite important in scattering theory. We state 
the details of these assumptions below, roughly speaking, V is the multiplication operator of 
the real-valued function V(x) which is represented by V = vvs+ vs+ V 1 E ,p-vs+'P'6 +'P'dU'P'i5, 
and its value vanishes at large distance. We use the following notations. The Kitada bracket 
of x has the definition, (x) = Jl + lxl2 . F(· ··)is the characteristic function of the set{···}, 
and II · II denotes the operator norm in L2 (JRn) or the usual L2 (JRn)-norm. 
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Assumption 1.1. vvs E yvs is decomposed into 

(1.4) 

where a singular part Vts is IPl2 /2-bounded with its relative bound less than 1, x1 Vts is 
IPl2 /2-bounded, a regular part v;vs is bounded, and vvs satisfies 

(1.5) 

vs E ys belongs to C1(Rn) and satisfies 

(1.6) 

for the multi-index (3 with lf31 = 1, where 1/2 < 'Y ,( 1 and O < a ,( 'Y- V1 E Yd belongs to 
C2 (Rn) and satisfies 

(1.7) 

for lf31 ,( 2, where O < "(G ,( 1/2 and 1 - "(G < ,,,, ,( 1. Finally, V 1 E "f/15 belongs to C2 (Rn) 
and satisfies 

l8fV1(x)I ,( CfJ(x)-'YD-lfJl/2 

for lf31 :( 2, where 3/8 < 'YD ,( 1/2. 

2 Short-range interactions 

(1.8) 

We first consider the short-range case, that is, V1 = 0. We see that the wave operators 
defined by the following strong limits 

w± = S-lim eitHS e-itH5 
t-+±oo 

(2.1) 

exist. By using these wave operators w±, the scattering operator S = S(V) is defined by 

(2.2) 

The first theorem of this paper is the following. 

Theorem 2.1. If S(Vi) = S(Vi) for Vi, Vi E yvs + "f/8, then Vi = Vi holds. 

The Enss-Weder time-dependent method was developed in [EW] and, by applying its 
method, Weder [We] first proved this theorem for 'Y > 3/4. However, the borderline between 
the short-range and long-range is 1/2. Nicoleau [Nl] proved this theorem for V E C 00 (Rn) 
which satisfied 

(2.3) 
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under 1 > 1/2 with the additional condition n?, 3. Thereafter, these results were improved 
by Adachi-Maehara [AM] given 1/2 < 0: ::;; ,. The behavior of the short-range part under 
their assumptions was 

(2.4) 

with small E > 0. In this sense, a possibility in which the condition regarding the size of 0: 

could be relaxed was left because the classical trajectory in the Stark effect is x(t) = O(t2 ) 

as t ➔ oo. Adachi, Fujiwara, and Ishida [AFI] considered the time-dependent electric fields 

(2.5) 

where O ::;; µ < 1 and O =/= E0 E ]Rn, and proved this theorem under iiµ < a ::;; 1 with 
1/(2 - µ) < 1 ,,;; 1 and 

7 - 3µ - J(l - µ)(17 - 9µ) 

4(2 - µ) 
1+µ 

2(2 - µ) 

if O,:;; µ,,;; 1/2, 

if 1/2 < µ < 1. 
(2.6) 

The smallest iiµ is when µ = 0, and in this case, (2.5) corresponds to the constant electric 
field (1.2). Therefore, the result by [AFI] is one of the improvements of [AM] because 

ii0 = (7 - vl.7)/8 < 1/2. (2.7) 

Theorem 2.1 is a further improvement of [AM] and [AFI]. We prove that this ii0 is allow to 
be equal to zero. This means that the tail of the first-order differential of the short-range 
part behaves as 

(2.8) 

Therefore, from the physical aspect and the motion of the classical trajectory, our assumptions 
are quite natural, and relaxing the condition on 0: is one of the main motivations of this study. 

The following reconstruction theorem yields the proof of Theorem 2.1. 

Theorem 2.2. Let w E IR.n be given such that lwl = 1 and lw · e1I < 1. Put v = lvlw. 
Suppose <I>0 , 1¥0 E L2 (IR.n) such that their Fourier transforms §<I>0 , §iJ:!0 E Cg"(IR.n) with 
supp§<I>a,supp§Wo C {~ E IR.n 11~1 < 17} for the given 1] > 0. Put <I>v = eiv·x<I>0 , 1¥v = 

eiv•xw0 . Then 

lvl(i[S,pj]<I>v, 1¥v) = 1: { wvs(x + wt)pj<I>o, Wo) - wvs(x + wt)<I>o,Pj1¥o) 

+(i(ox; V 8 )(x + wt)<I>o, Wo) }dt + o(l) (2.9) 

holds as lvl ➔ oo for vvs E yvs and vs E J/8 , where (·, ·) is the scalar product of L2 (1Rn) 
and Pi is the j th component of p. 
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The propagation estimate for the regular part vs is one of the main techniques in this 
report, and is also one of the improvements on previous work. 

Proposition 2.3. Let v and <l'>v be as in Theorem 2.2. Then 

(2.10) 

holds as lvl ➔ oo for vs E J/8 • 

In [AM, Lemma 2.2], the right-hand side of (2.10) was O(lvl-"') for 1/2 < o: < 1. This 
order was improved in [AFI, Lemma 3.4] by giving O(lvl 80 (a)+<) with any small E > 0 and 

80(0:) = -o: - o:(l - o:). 
2 - 0: 

(2.11) 

The number (7-v'l7)/8 in (2.7) comes from the inequality 8 0 (0:) < -1/2, which is required 
to prove the reconstruction theorem. As mentioned before, not only was the time-independent 
case (1.2) treated by [AFI], but also the time-dependent case (2.5). For more details, see [AFI, 
Lemma 3.4]. Our key ideas for further improvements are the efficient use of the well-known 
propagation estimate for the free Schrodinger dynamics 

(2.12) 

as ltl ➔ oo and the Holder inequality. 

3 Long-range interactions 

We next consider the long-range case, that is, V1 -=j. 0. For V1 E Y"d, we find the existence 
of the Graf-type (or Zorbas-type) modified wave operators which were proposed in Graf [G] 
and Zorbas [Z] 

(3.1) 

and the Dollard-type modified wave operators introduced by Jensen and Yajima [JY] (see 
also White [Wh] and Adachi [Al) 

(3.2) 

by virtue of the condition ,c +Ko> 1. We find also the existence of (3.2), even if V1 E J/i5. 
Then, for V1 E Y"d U J/i5, the Dollard-type modified scattering operator SD = SD (V1; vvs + vs) 
is defined by 

SD = (WJ)*WD. (3.3) 

The second theorem of this paper is the following. 
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Theorem 3.1. Let a V 1 E YduYd be given. If So(V1; Vi)= So(V1; ½) for Vi,½ E yvs+ys, 
then Vi = ½ holds. Moreover, any one of the Dollard-type modified scattering operators S0 

determines uniquely the total potential V. 

When V1 E Yd, a similar result to Theorem 3.1 was obtained in [AM] (Note that the 
notation of rG was denoted by 10 in [AM]), however, the decay condition of the short-range 
part was 1/2 < a ~ r- Therefore, Theorem 3.1 extends the short-range class introduced in 
[ AM] to the broader ys. For V 1 E Yd, the uniqueness of the short-range interactions was also 
proved in [AFI] for the time-dependent electric fields (2.5), in which a satisfied ciµ,D < a~ 1 
with 1/(2 - µ) < 1 ~ 1 and 

{ 

13 - 5µ - J(l - µ)(41 - 25µ) 

a = 8(2 - µ) 
µ,D 1 + µ 

2(2 - µ) 

if 0 ~ µ ~ 5/7, 

if 5/7 < µ < 1, 
(3.4) 

and ,o satisfied iµ < ,o ~ 1/(2 - µ) with 

~ 1 1- µ 
'Y =---+---

µ 2(2 - µ) 4(2 - µ)" 
(3.5) 

The smallest ciµ,D and iµ are whenµ= 0, and this case corresponds to a constant electric field 
(1.2). In comparison with our result, let us substituteµ= 0 for (3.4) and (3.5). Although 
io = 3/8 says that the condition on the long-range class is the same as our assumption (1.8), 
for the short-range class, Theorem 3.1 makes true improvement because 

cio,o = (13 - v'41)/16. (3.6) 

We prove that this cio,o is allow to be equal to zero. 

The following reconstruction theorem yields the proof of Theorem 3.1. 

Theorem 3.2. Letw E lRn be given such that lwl = 1 and lw·e1I < 1. Putv = lvlw. Suppose 
<Iio, Wo E L 2 (1Rn) such that §"<Iio,§"Wo E C8°(1Rn) with supp§"<Iio,supp§°Wo C {~ E ]Rn 
l~I < 77} for the given 7/ > 0. Put <llv = eiV·Xcpo, Wv = eiv·xwo. Then 

lvl(i[So,Pj]<llv, '1Iv) 

= 1: { (Vvs(x + wt)pj<llo, Wo) - (Vvs(x + wt)<llo,PjWo) 

+(i(ax, V 8 )(x + wt)<ll0 , '1I0 ) + (i(ax, V 1)(x + wt)<ll0 , '1I0) }dt + o(l) (3.7) 

holds as lvl ➔ oo for vvs E yvs vs E ys and V1 E "f/,1 U "//,1 
J' , , G D· 

We define a class of long-range potentials -fd as follows. V1 E -fd belongs to C2 (1Rn) and 
satisfies that 

(3.8) 
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for l,BI ~ 2, where 1/4 < i'n ~ 1/2. Clearly, Yd <;;; Yd. Moreover, we denote the Dollard-type 
modifier Mn(t) by 

(3.9) 

for V 1 E YduYd. 

The next propagation estimate for vs along the modified time evolution by ciH5 Mn(t) 
when V1 E Yd is one of the main techniques in this report, and is also one of the improvements 
on the previous work. 

Proposition 3.3. Let v and <I>v be as in Theorem 2.2. Then 

(3.10) 

holds as lvl ➔ 00 for vs E ys and V1 E Yd. 
In [AFI, Lemma 4.4], whenµ= 0 of (2.5), the estimate of (3.10) was O(lvl 80 ,n(a)+e) with 

any small E > 0 and 
a(l - a) 

80 n(a) = -a - ---. 
' 4-3a 

(3.11) 

The number (13-v'41)/16 in (3.6) comes from the inequality 8 0,n(a) < -1/2. Our key ideas 
for this improvement are the efficient use of the propagation estimate of the free Schrodinger 
dynamics (2.12) and the Holder inequality as with Proposition 2.3. 

There are several other studies concerning the uniqueness of the interaction potentials 
in the external electric fields. Nicoleau [N2] considered the time-periodic electric field and 
obtained the same result given in [Nl]. Valencia and Weder [VW] applied the result obtained 
in [AM] to the N-body case (see also [We]). Adachi, Kamada, Kazuno, and Toratani [AKKT] 
also treated the time-dependent electric field, which is the same as in (2.5), however, the case 
where µ = 0, that is, the constant electric field (1.2) was not included. 
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