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1. lntrod uction 

We consider generalized form of discrete Schrodinger operators de­
fined on '.J-C = £2 (7ld; en), d, n 2: 1. We let 

(1.1) Hu(x) = H0u(x) + V(x)u(x), 

where H 0 is a convolution operator 

( Z~:~~ Z~:~: : : : Z~:~~ ) 
(1.2) H0u = : : . . : u, 

. . . . 
Ho,nl Ho,n2 ° 0 0 Ho,nn 

E '.J-C, 

(1.3) Ho,jkuk(x) = L fjk(x - y)uk(Y), uk E £2 (7ld), 
yEZd 

and V(x) = t (½(x), ... , Vn(x)) is an :!Rn-valued function on 71.,d_ 

The above operator H is derived from discrete Schrodinger opera­
tors on periodic lattices, which are considered as tight binding Hamil­
tonians of an electron moving in a crystal in the field of solid-state 
physics. 

EXAMPLE 1.1. Discrete Schrodinger operator on square lattice. For 
u E £2(7ld), we set 

1 
Hsqu(x) = (Hsq,o + V)u(x) = - 2d L u(y) + V(x)u(x), x E zd. 

ly-xl=l 

EXAMPLE 1.2. Triangular lattice. For u E £2 (7l2) and V: 71.,2 ----+ JR, 
we set 

1 6 

Htru(x) = (Htr,o + V)u(x) = - 6 L u(x + nj) + V(x)u(x), x E 7l2 . 

j=l 

where n 1 = (1,0), n 2 = (-1,0), n3 = (0, 1), n4 = (0,-1), n 5 = (1,-1) 
and n6 = ( -1, 1). 
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FIGURE 1. Square lattice. 

FIGURE 2. Trianular lattice 

EXAMPLE 1.3. Hexagonal lattice (graphene). For u = t(u1 , u2 ) E 
£2(.Z2) EB £2(.::Z::2) = £2(Z2; C2) and V: Z2 --+ IR2, we set 

Hheu(x) = Hhe,ou(x) + Vu(x) 

1 ( u2(x1, x2) + u2(x1 - 1, x2) + u2(x1, x2 - 1) ) 
= -3 u1(x1,x2) +u1(x1 + l,x2) +u1(x1,x2 + 1) 

+ ( ½(x1,x2)u1(x1,x2)) x = (xi,xz) E z2. 
½(x1, x2)u2(x1, x2) ' 

Note that hexagonal lattice~ Z2 x {O, 1} (~ Z2 ) with considering the 
canonical Z2-action. 

More examples of lattices, such as Kagome lattice, diamond lattice 
and graphite, are found in [1]. 

In this note we develop a scattering theory for the pair of operators 
H0 and Hof the form (1.1) with V oflong-range type, and we see that 
as an application we can construct a long-range scattering theory of 
quantum walks on zd. 

We note that if f = (fjk) # 0 has a finite support and 

(1.4) 
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FIGURE 3. Hexagonal lattice. Circles and squares cor­
respond to the first and second entries, respectively. 

and if Vis short-range, i.e. IV(x)I ::::; C(x)-P with p > 1, then the wave 
operators 

exist and are complete Ran w± = 'J{ac(H) (see [2], [1] and [6]). Here 
'J{ac(A) denotes the absolutely continuous subspace of A and Pac(A) de­
notes the orthogonal projection onto 'J{ac(A) for an selfadjoint operator 
A. 

2. Main theorem 

We denote the Fourier transform '.3" by 

(2.1) '.fu(~) = ( ~~:m ) ' 
Fun(~) 

(2.2) Fuj(~) =(27r)-~ L e-ix·~uj(x). 

Then '.3" is a unitary operator from 'J{ onto'.}{= L2(1fd; en). We easily 
see that '.3" o H 0 o '.3"* is a multiplication operator on 1fd by the matrix­
valued function 

(2.3) 

where 

(2.4) 

h1n(~) ) 
h2n(~) 

. ' 

hnn(~) 

hjk(~) := Le-ix-~ fjk(x). 
xEZd 
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In this note we assume that hjk's are smooth functions on 'll'd, equiva­
lently fJk's are rapidly decreasing: 

sup (x)mlfJk(x)I < oo 
xEZd 

for any m EN, where (x) = (1 + lxl 2)½. 
Note that r,(Ho) = {>,. I det(Ho(e) - >.) = 0 for some e E 'll'd} and 

H0 is a self-adjoint operator if and only if Ha(e) is a symmetric matrix 
for any e E 'll'd, equivalently, (1.4). 

We assume the selfadjointness of H0 and a long-range condition of 
V. 

ASSUMPTION 2.1. (1) fJk's are rapidly decreasing functions satis­
fying (1.4). 

(2) V = t(½, • • • , Vn) has the following representation 

V =Vi+ Vs, 

where each entry of VL is the same, i.e., VL = t(½, · · · , ½) with some 
½ : zd --+ R Furthermore, there exist p > 0 and C, Ca > 0 such that 

(2.5) 

(2.6) 

IB~½(x)I:::; Ca(x)-p-lal, 

IVs(x)I :::; C(x)-I-p 

for any X E zd and 0: E zt. Here a~= a~: ... a~:, aXj V(x) = V(x) -
V(x - ei) is the difference operator with respect to the j-th variable. 

We denote the set of Fermi surfaces corresponding to the energies 
in r c ffi. by 

(2.7) Ferm(r) :={p = (e, >.) E 'll'd x r I,,\ is an eigenvalue of Ha(e)} 

={p = (e, >.) E 'll'd X r I det (Ho(e) - >.) = O}. 

DEFINITION 2.2. ,,\0 E r,(H0 ) is said to be a non-threshold energy 
of Ho if the following properties hold: 

(1) For any ea E 'll'd such that det(Ho(eo) - >.a) = 0, there exists an 
open neighborhood G c 1I'd x ffi. of p = (ea, >.0 ) such that Ferm(IR) n G 
has a graph representation, i.e. 

(2.8) Ferm(IR) n G = {(e, >.(e)) I e EU} 

with some U 3 fo and,,\ E C00 (U). 
(2) Let fo be arbitrarily fixed so that det(H0 (fo) - ,,\0 ) = 0 holds, 

and let >.(e) be as in (2.8). Then v'e>.(fo) i- 0 holds (note that >.P(e) 
is smooth function on Ueo by the smoothness of Ha(e)). 

Let r(H0) be the set of non-threshold energies of H 0 . Then H 0 

has purely absolutely continuous spectrum on r(H0), i.e., <Tpp(H0 ) n 
r(Ho) = <Tsc(Ho) n r(Ho) = </>. 
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THEOREM 2.3 ( [10]). Suppose Assumption 2.1 and r <s r(H0). 

Then one can construct Isozaki-Kitada modifiers J± = J±,r such that 
the modified wave operators exist: 

(2.9) w± (r) = s-lim eitH J e-itHo E (r) 
IK t--+±oo ± Ho , 

where EHo denotes the spectral measure of H0. Moreover, the following 
properties hold: 

i) Intertwining property: HW]i(r) = W]i(r)H0. 
ii) Partial isometries: IIWJi(r)ull = IIEH0 (r)ull­
iii) Completeness: Ran W]i(I') = EH(r)'Xac(H). 

The case of n = 1, e.g. discrete Schrodinger operators on square and 
triangular lattices, is considered by Nakamura [5] and the author [8]. 
Moreover, Theorem 2.3 includes the result by the author [9], where a 
long-range scattering theory for discrete Schrodinger operators on the 
hexagonal lattice is studied. See also [3], [4], [7], [12] and references 
therein for scattering theory of Schrodinger operators on ]Rd. 

3. Formal proof 

For n = 1, modified wave operators are constructed as follows: Let 
ifJ± : ]Rd x ']['d ➔ lR and 

hu(x) = (27r)-~ f ei<p±(x,E)~u(~)d~. 
Iird 

The phase functions ifJ± ~ x · ~ are solutions to the eikonal equation 

Ho(VxifJ±(x,~)) + ½(x) = Ho(~), 

where½ is a smooth extension of½ onto ]Rd_ 

The proof of existence of (2.9) is given by the stationary phase 
method. Let W(t)u = eitHe-itHou. Then we have for ±t, ±s 2 0 

W(t)u - W(s)u = ft eiTH(Hh - hH0)e-iTHoudT. 

It follows that 

(H h - hHo)e-itHou(x) = r ei(<p±(x,E)-tHo(E))a±(x, ~)~u(~)d~, 
Iird 

where 

a±(x, ~) =Ho(V xifJ±(x, ~)) + ½(x) - Ho(~)+ 0( (x)-p-l) 

=0((x)-P-1 ). 

The stationary points are determined by VEifJ±(x, ~) - tVEHo(~) = 0, 
approximately 

x,:::,, tVEHo(~)-/- 0 
by the nonthreshold condition in Definition 2.2. Thus we obtain II (H h­
hH0)e-itHoull = 0( (t)-1-P) and W(t)u is a Cauchy sequence. We omit 
the proof of completeness. For a rigorous proof, see [8] and [10]. 
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If n 2: 2, one of the reasonable proofs is to diagonalize H0 (~). We 
choose a unitary matrix U(~) such that 

U(~)* Ho(~)U(~) = diag(,\j(~)) if EHo(~)(I')-/= 0. 

Let h,j be the corresponding modifier to Aj(Dx)- Then 

h = U(Dx) diag(h,j)U(Dx)* 

satisfy the claim of Theorem 2.3. The above argument works in the 
hexagonal lattice case (see [9]). However there is a case where U(~) 

cannot be taken globally, e.g. (c 6 ·c 6 +/6 ) on l~I = 1. For a 
',,2 - i-,3 --,1 

rigorous proof, we consider orthogonal projections onto Ker(H0 (~) -

Aj(~)) instead. For details, see [10]. 

4. Application to quantum walks 

Let J-( = £'2 (Z; (C2 ). For w E J-C, we use the notation 

W = ( :~ ) , Wj E £'2 (Z) = £'2 (Z; C). 

We consider quantum walks 

U := SC and U0 := SC0 

defined as unitary operators on J-C, where 

Sw(x) = ( '1!1(x + 1) ) 
'1!2(x - 1) ' 

Co : 2 x 2 unitary matrix, 

and 

C = C(x) : 2 x 2 unitary matrix-valued function on Z. 

Then '.f' o U0 o '.f'* is a multiplication operator on 'l1' by 

where 

Note that 

O"(Uo) ={,\I det(Uo(~) - ,\) = 0 for some~ E 'll'} C S 1 . 

We set 

Ferm(r) :={p = (~, ,\) E 'l1' x r I ,\ : eigenvalue of U0 (~)} 

for I' C S 1 . 
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DEFINITION 4.1. Ao E rY(U0 ) C S1 is said to be a non-threshold 
energy of Uo if 

d 
d~ det(Uo(~) - Ao) =I O for any ~ s.t. det(U0 (~) - Ao) = 0. 

Let r(U0 ) be the set of non-threshold energies of U0 . 

In this case, the long-range condition for perturbation is the follow­
ing. 

ASSUMPTION 4.2. Let B(x) := Ca1C(x). Then 

B(x) = eiViJd+Bs(x), 

where 

l8~½(x)I ~ Ca(x)-p-lal, 

IBs(x)I ~ C(x)-l-p 

for x E zd and 0: E zt with some p > 0. 

THEOREM 4.3. Suppose Assumption 4.2 and r <s r(U0). Then one 
can construct Isozaki-Kitada modifiers J± = J±,r such that the modified 
wave operators exist: 

(4.1) w± (r) = s-lim e-w J ew0 E (r) 
IK t--+±oo ± Uo , 

where Eu0 denotes the spectral measure of U0 • Moreover, they are par­
tially isometric from Ran Eu0 (r) onto EH(r)J-Cac(H). 

REMARK 4.4. Wada [11] has already studied a long-range scatter­
ing theory, however the method from discrete Schrodinger operators 
can cover any dimensional case. Note also that the long-range condi­
tion by [11] is different with that of this note. 

The construction of h is as follows. Let A(~) be arbitrary branch 
of eigenvalues with Ran A <s r, and IP±(x, ~) be such that 

Then we define J± by the same manner. The proof is given similarly 
to [10]. 
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