Note on weighted q－Fock spaces and q－orthogonal polynomials

Nobuhiro ASAI（淺井暢宏）＊
Department of Mathematics， Aichi University of Education， Kariya 448－8542，Japan．

Abstract

In this short note，we shall discuss weighted q－Fock spaces，field operators and their vac－ uum distributions，which have strong connections with q－orthogonal polynomials including discrete q－Hermite I polynomials．One can see that our general approach can treat not only known examples scattered in［1］［5］［8］［9］［10］［13］，but also can involve non－trivial and interest－ ing examples，which were not referred in previous works［5］［11］．This is a summary paper of our paper［4］．

1 Weighted q－Deformation

Let \mathscr{H} be a complex Hilbert space equipped with the inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ ，where the inner product is linear on the right and conjugate linear on the left．Let $\mathcal{F}_{\text {fin }}(\mathscr{H})$ denote the algebraic full Fock space over \mathscr{H} ，

$$
\mathcal{F}_{\text {fin }}(\mathscr{H}):=\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathscr{H}^{\otimes n}
$$

where Ω denotes the vacuum vector．We note that elements of $\mathcal{F}_{\text {fin }}(\mathscr{H})$ are expressed as finite linear combinations of the elementary vectors $f_{1} \otimes \cdots \otimes f_{n} \in \mathscr{H}^{\otimes n}$ ．We equip $\mathcal{F}_{\text {fin }}(\mathscr{H})$ with the inner product

$$
\left\langle f_{1} \otimes \cdots \otimes f_{m}, g_{1} \otimes \cdots \otimes g_{n}\right\rangle_{0}:=\delta_{m, n} \prod_{k=1}^{n}\left\langle f_{k}, g_{k}\right\rangle, \quad f_{k}, g_{k} \in \mathscr{H}
$$

For $q \in(-1,1)$ ，define the q－symmetrization operator on $\mathscr{H}^{\otimes n}$ as

$$
\begin{aligned}
& P_{q}^{(n)}=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\ell(\sigma)} \sigma, \quad n \geq 1, \\
& P_{q}^{(0)}=I_{\mathscr{H} \otimes^{80}}, \quad P_{0}^{(n)}=I_{\mathscr{H} \not{ }^{\otimes n}},
\end{aligned}
$$

where we put $0^{0}=1$ and $\mathscr{H}^{\otimes 0}=\mathbb{C} \Omega$ by convention， \mathfrak{S}_{n} denotes the n－th symmetric group of permutations and $\ell(\sigma)$ means the number of inversion of a permutation $\sigma \in \mathfrak{S}_{n}$ defined by

$$
\ell(\sigma)=\#\{(i, j) \mid 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}
$$

[^0]Definition 1.1 ([11]). Let $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ be a sequence of strictly positive numbers and $\left[\tau_{n}\right]$! := $\prod_{i=1}^{n} \tau_{i}$. The τ-weighted q-symmetrization operators on $\mathscr{H}^{\otimes n}$ and $\mathcal{F}(\mathscr{H})$, respectively, are defined by

$$
\begin{aligned}
& T_{q}^{(0)}=P_{q}^{(0)}, \quad T_{q}^{(n)}=\left[\tau_{n}\right]!P_{q}^{(n)}, n \geq 1 \\
& T_{q}=\bigoplus_{n=0}^{\infty} T_{q}^{(n)}
\end{aligned}
$$

Since $P_{q}^{(n)}$ and $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ are a strictly positive operator and sequence, respectively, the τ-weighted q-inner product is defined by

$$
\left\langle f_{1} \otimes \cdots \otimes f_{m}, g_{1} \otimes \cdots \otimes g_{n}\right\rangle_{q,\left\{\tau_{n}\right\}}:=\delta_{m, n}\left\langle f_{1} \otimes \cdots \otimes f_{m}, T_{q}^{(n)}\left(g_{1} \otimes \cdots \otimes g_{n}\right)\right\rangle_{0} .
$$

Let $\mathcal{F}_{q,\left\{\tau_{n}\right\}}(\mathscr{H})$ denote the τ-weighted (generalized) q-Fock space. In this paper, we do not take completion. The τ-weighted q-creation operator $b_{q,\left\{\tau_{n}\right\}}^{\dagger}(f)$ is defined as the usual left creation operator and $b_{q,\left\{\tau_{n}\right\}}(f)$ is its adjoint with respect to $\langle\cdot, \cdot\rangle_{q,\left\{\tau_{n}\right\}}$, that is, $b_{q,\left\{\tau_{n}\right\}}=\left(b_{q,\left\{\tau_{n}\right\}}^{\dagger}\right)^{*}$.

Proposition 1.2. (1) The τ-weighted q-annihilation operator $b_{q,\left\{\tau_{n}\right\}}$ acting on the elementary vectors is given as follows:

$$
\begin{aligned}
& b_{q,\left\{\tau_{n}\right\}}(f) \Omega=0, \quad b_{q,\left\{\tau_{n}\right\}}(f) f_{1}=\tau_{1}\left\langle f, f_{1}\right\rangle \Omega, \quad f \in \mathscr{H} \\
& b_{q,\left\{\tau_{n}\right\}}(f)\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\tau_{n} \sum_{k=1}^{n} q^{k-1}\left\langle f, f_{k}\right\rangle f_{1} \otimes \cdots \otimes f_{k} \otimes \cdots \otimes f_{n}, \quad n \geq 2,
\end{aligned}
$$

where $\stackrel{\vee}{f_{k}}$ means that f_{k} should be deleted from the tensor product.
(2) The τ-weighted q-creation and annihilation operators satisfy

$$
b_{q,\left\{\tau_{n}\right\}}(f) b_{q,\left\{\tau_{n}\right\}}^{\dagger}(g)-q \beta_{N} b_{q,\left\{\tau_{n}\right\}}^{\dagger}(g) b_{q,\left\{\tau_{n}\right\}}(f)=\langle f, g\rangle \tau_{N+1}, \quad f, g \in \mathscr{H}
$$

where $\left\{\beta_{n}:=\tau_{n+1} / \tau_{n}\right\}_{n=1}^{\infty}$ and operators β_{N} and τ_{N} are defined as

$$
\left\{\begin{array}{l}
\varphi_{N} \Omega=\Omega, \varphi_{N}\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\varphi_{n}\left(f_{1} \otimes \cdots \otimes f_{n}\right), \quad n \geq 1 \\
\varphi \in\{\beta, \tau\}
\end{array}\right.
$$

Corollary 1.3. Suppose $\tau_{1}=1$ and $\beta_{n}=Q>0$ for $n \geq 1$. The following commutation relation holds.

$$
b_{q,\left\{\tau_{n}\right\}}(f) b_{q,\left\{\tau_{n}\right\}}^{\dagger}(g)-q Q b_{q,\left\{\tau_{n}\right\}}^{\dagger}(g) b_{q,\left\{\tau_{n}\right\}}(f)=\langle f, g\rangle \tau_{N+1}, \quad f, g \in \mathscr{H} .
$$

2 Examples

Let us begin with the following examples to proceed our discussion.
Example 2.1. Suppose $\tau_{1}=1$ and $q \in(-1,1)$.
(1) $Q=1$ implies $\tau_{n}=\tau_{2}>0, n \geq 2$. If we set $\tau_{2}=t$, then one can get $T_{q}^{(n)}=t^{n-1} P_{q}^{(n)}$ and the $(q, t)_{W}$-Fock space in the sense of Wojakowski [12]. If we take $q=0$, one can derive the t-free deformation done by Bożejko-Wysoczańsky [9][10]. Moreover, if $\tau_{n}=1$ for all $n \geq 1$, one can recover the well-known q-Fock space of Bożejko-Speicher [8] (See also [7]).
(2) If $Q=s^{2}, s \in(0,1]$, then we have $\tau_{n}=s^{2(n-1)}, n \geq 1$. One can get $T_{q}^{(n)}=s^{n(n-1)} P_{q}^{(n)}$ and the $(q, s)_{B Y}$-Fock space by Bożejko-Yoshida [11]. The s-free deformation of Yoshida [13] can be
derived if $q=0$. Moreover, one can see that a limiting case of $(q, s)_{B Y}$ as $q \rightarrow 1$ coincides with the Q^{N}-deformation of the Boson Fock space [1].
(3) The Boolean Fock space can be derived as a limiting case of the $(0, t)_{W}$-Fock space as $t \rightarrow 0$ and also $(0, s)_{B Y}$-Fock space as $s \rightarrow 0$.

One can derive a further deformation from (2) in Example 2.1. We shall show the relationship between Blitvić [5] construction and ours.
Remark 2.2. In [6], Bożejko-Ejsmont-Hasebe constructed the (α, q)-Fock space, which is different from the (q, t)-Fock space by Blitvić [5]. In this note, the expression " $\{q, t\}$ " will be used to refer a symbol " (q, t) " to avoid confusions with the (α, q)-deformation.

In fact, if we replace s^{2} by $t>0$ in (2) of Example 2.1, then we have $\tau_{n}=t^{n-1}$ and $\left[\tau_{n}\right]!=t^{\binom{n}{2}}$ for $n \geq 1$. In addition, if one considers the (q / t)-symmetrization operator $P_{q / t}^{(n)}$, which is strictly positive for $|q|<t$, then one can consider the weighted (q / t)-symmetrization operator in forms of $T_{q / t}^{(0)}=P_{q / t}^{(0)}$ and $T_{q / t}^{(n)}=t^{\binom{n}{2}} P_{q / t}^{(n)}, n \geq 1$. From now on, we set

$$
\begin{aligned}
& Q_{q, t}^{(0)}=T_{q / t}^{(0)}, \quad Q_{q, t}^{(n)}=T_{q / t}^{(n)}, n \geq 1,|q|<t \\
& Q_{q, t}=\bigoplus_{n=0}^{\infty} Q_{q, t}^{(n)}
\end{aligned}
$$

which are called the $\{q, t\}$-symmetrization operators on $\mathscr{H}^{\otimes n}$ and $\mathcal{F}(\mathscr{H})$, respectively. An inner product defined by

$$
\left\langle f_{1} \otimes \cdots \otimes f_{m}, g_{1} \otimes \cdots \otimes g_{n}\right\rangle_{q, t}:=\delta_{m, n}\left\langle f_{1} \otimes \cdots \otimes f_{m}, Q_{q, t}^{(n)}\left(g_{1} \otimes \cdots \otimes g_{n}\right)\right\rangle_{0}
$$

is called the $\{q, t\}$-inner product, which is the $(q / t, \sqrt{t})_{B Y}$-inner product. The free Fock space equipped with this $\{q, t\}$-inner product is called the $\{q, t\}$-Fock space denoted by $\mathcal{F}_{q, t}(\mathscr{H})$. Therefore, we have seen the following propositions:
Proposition 2.3. Suppose $q \in(-1,1), t \in(0,1]$ and $|q|<t$. The $(q / t, \sqrt{t})_{B Y}$-Fock space is equivalent to the $\{q, t\}$-Fock space in the sense of [5].

The $\{q, t\}$-creation operator $a_{q, t}^{\dagger}(f)$ is defined as the usual left creation operator and $\{q, t\}$ annihilation operator $a_{q, t}(f)$ as its adjoint with respect to $\langle\cdot, \cdot\rangle_{q, t}$. By replacing q by q / t and setting $Q=t, \tau_{n}=t^{n-1}$ in Proposition 1.2 and Corollary 1.3, then one can get the following proposition.
Proposition 2.4. (1) The $\{q, t\}$-annihilation operator $a_{q, t}$ acting on the elementary vectors is given as follows:

$$
\begin{align*}
& a_{q, t}(f) \Omega=0, \quad a_{q, t}(f) f_{1}=\left\langle f, f_{1}\right\rangle \Omega, \quad f \in \mathscr{H} \\
& a_{q, t}(f)\left(f_{1} \otimes \cdots \otimes f_{n}\right)=t^{n-1} \sum_{k=1}^{n}\left(\frac{q}{t}\right)^{k-1}\left\langle f, f_{k}\right\rangle f_{1} \otimes \cdots \otimes \stackrel{f}{k}_{k} \otimes \cdots \otimes f_{n} \quad n \geq 2 \tag{2.1}
\end{align*}
$$

where $\stackrel{\vee}{f}$ means that f_{k} should be deleted from the tensor product.
(2) The $\{q, t\}$-creation and annihilation operators satisfy

$$
a_{q, t}(f) a_{q, t}^{\dagger}(g)-q a_{q, t}^{\dagger}(g) a_{q, t}(f)=\langle f, g\rangle t^{N}, \quad f, g \in \mathscr{H}
$$

where the operator t^{N} is defined by

$$
t^{N} \Omega=\Omega, \quad t^{N}\left(f_{1} \otimes \cdots \otimes f_{n}\right)=t^{n} f_{1} \otimes \cdots \otimes f_{n}, \quad n \geq 1
$$

We would like to consider the spectral measure (vacuum distribution) of the $\{q, t\}$-Gaussian (field) operator $g_{q, t}(f)$ on $\mathcal{F}_{q, t}(\mathscr{H})$ defined by

$$
g_{q, t}(f):=a_{q, t}^{\dagger}(f)+a_{q, t}(f), \quad f \in \mathscr{H},
$$

with respect to the vacuum state $\langle\Omega, \cdot \Omega\rangle_{q, t}$. Orthogonal polynomials play important roles to compute a distribution of such a field operator with respect to the vacuum state. In [5], the $\{q, t\}$-Hermite polynomials given by the recurrence relation,

$$
\begin{aligned}
H_{0}(x ; q, t) & =1, H_{1}(x ; q, t)=x, \\
x H_{n}(x ; q, t) & =H_{n+1}(x ; q, t)+[n]_{q, t} H_{n-1}(x ; q, t), n \geq 1,
\end{aligned}
$$

where $[n]_{q, t}:=t^{n-1}[n]_{q / t}$ are mentioned. Note that $[n]_{q}:=[n]_{q, 1}=\sum_{k=0}^{n-1} q^{k}$ and $[n]_{q, q}=q^{n-1} n$. However, concrete densities of orthogonalizing measures are not mentioned except for a very restricted case, $0=q<t$. We have been seeking examples for $q \neq 0$, which can be treated within the $\{q, t\}$-deformation. In this paper, we shall present not only recognized examples, but also unrecognized ones in [5][11] as follows.

Example 2.5. Let us consider the $\left\{q s^{2}, s^{2}\right\}$-deformation for $q \in(-1,1), s \in(0,1]$. This deformation is of interest and quite fruitful.
(I) The $\left\{q s^{2}, s^{2}\right\}$-Gaussian (field) operator is equal to the $(q, s)_{B Y \text {-Gaussian (field) operator. }}$ The $\left\{q, s^{2}\right\}$-deformation is different from the $(q, s)_{B Y}$ except for $q=0$ or $s=1$.
(II) In addition, the probability density for $(q, s)_{B Y}$ case is known for the following three cases: (1) $s=1, q \in(-1,1)$ in $[7][8],(2) s \in(0,1], q=0$ in [5][13], and (3) $s=\sqrt{|q|},|q| \in(0,1)$.

The case (1) is obvious at this time and provides the (Roger's continuous) q-Hermite polynomials. Therefore, one can obtain the q-Gaussian operator ([7][8]).

In case (2), it is known that the $\{0, t\}$-Hermite polynomials are the t-Chebyshev II polynomials $\left(q=0<t \leq 1\right.$ and set $t=s^{2}$). The $\{0,1\}$-Gaussian measure is the semicircular measure. If $t \neq 1$, the $\{0, t\}$-Gaussian measure is known to be a discrete probability measure with atoms at which are represented by the zeros of the t-Airy function (See [5] and references cited therein). The $\{0, t\}$-Gaussian (field) operator is the same as the $(0, \sqrt{t})_{B Y}$-Gaussian (field) operator, which is nothing but the s-free Gaussian (field) operator [13]. Moreover, the limiting case $s \rightarrow 0$ implies the Boolean Gauss (field) operator, whose distribution is $\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)$. The case (3) is not referred as a particular example in [5][11]. One can see that the $\left\{q^{2},|q|\right\}$-Hermite polynomials are identified as a rescaled version of discrete $|q|$-Hermite I polynomials ${ }^{1}$. Let μ_{q} denote the orthogonalizing measure ${ }^{2}$ for the discrete q-Hermite I polynomials. Correspondingly, the rescaled orthogonalizing measure of $\mu_{|q|}$ is given by $D_{1 / \sqrt{1-|q|}} \mu_{|q|},|q| \in(0,1)$, where D_{λ} denotes the dilation of a probability measure μ by $D_{\lambda} \mu(\cdot)=\mu(\cdot / \lambda), \lambda \neq 0$. Moreover, the $\left\{q^{2},|q|\right\}$-Gaussian (field) operator coincides with the $(q, \sqrt{|q|})_{B Y}$-Gaussian (field) operator.
(III) Furthermore, since the $(q, s)_{B Y}$-Fock space as $q \rightarrow 1$ coincides with the Q^{N}-deformation of the Boson Fock space mentioned in (2) of Example 2.1, a limiting case of the $\left\{q s^{2}, s^{2}\right\}$ Gaussian (field) operator as $q \rightarrow 1$ agrees with the Q^{N}-deformation of the classical Gaussian (field) operator [1]. It is our paper [4] which first points out this nontrivial relationship of interest.

Acknowledgment. This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

[^1]
References

[1] Accardi, L. and Lu, Y.-G.: The $q q$-bit (III) : Symmetric q-Jordan-Wigner embeddings, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22, (2019), 1850023 (19 pages).
[2] Asai, N., Kubo, I. and Kuo, H.-H.: The Brenke type generating functions and explicit forms of MRM-triples by means of q-hypergeometric series, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16, (2013), 1350010 (27 pages).
[3] Asai, N. and Yoshida, H.: Poisson type operators on the Fock space of type B, J. Math. Phys., 60, (2019), 011702 (9 pages).
[4] Asai, N. and Yoshida, H.: Deformed Gaussian operators on weighted q-Fock spaces, J. Stoch. Anal., 1 (4), (2020), Article 6.
[5] Blitvić, N.: The (q,t)-Gaussian process. J. Funct. Anal., 263, (2012), 3270-3305.
[6] Bożejko, M., Ejsmont, W. and Hasebe, T.: Fock space associated with Coxeter groups of type B, J. Funct. Anal., 269, (2015), 1769-1795.
[7] Bożejko, M., Kümmerer, B. and Speicher, R.: q-Gaussian processes: Non-Commutative and classical aspects, Comm. Math. Phys., 185, (1997), 129-154.
[8] Bożejko, M. and Speicher, R.: An example of a generalized Brownian motion, Comm. Math. Phys., 137, (1991), 519-531.
[9] Bożėjko, M. and Wysoczański, J.: New examples of convolutions and non-commutative central limit theorems, Banach Center Publ., 43, (1998), 95-103.
[10] Bożejko, M. and Wysoczański, J.: Remarks on t-transformations of measures and convolutions, Ann. Inst. H. Poincare Probab. Statist., 37, (2001), 737-76.
[11] Bożejko, M. and Yoshida, H.: Generalized q-deformed Gaussian random variables, Banach Center Publ., 73, (2006), 127-140.
[12] Wojakowski, L.: Probability interpolating between free and boolean, Ph.D. dissertation, University of Wroclaw, 2004.
[13] Yoshida, H.: Remarks on the s-free convolution, in: Non-commutativity, Infinite Dimensionality, and Probability at the Crossroads, N. Obata et al. (eds.), World scientific, Singapore, 2002, 412-433.

[^0]: ＊Supported by JSPS KAKENHI Grant Numbers JP20K03652．

[^1]: ${ }^{1}$ It is known that the discrete q-Hermite I polynomials are a symmetric case of Al-Salam-Carlitz I polynomials. In addition, the discrete q-Hermite I polynomials belong to the class IV of Brenke-Chihara polynomials. See [2][4] and references therein.
 ${ }^{2} \mu_{q}$ is expressed as an infinite sum of atoms on $\left\{0, \pm q^{k}: k=0,1, \ldots\right\}$.

