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Non-self adjoint Hamiltonian and its applications 

Hiroshi Inoue 1 

Abstract 

Theory of non-self adjoint operators and these applications are interested in various fields 

of mathematics and physics. These are many research results related to pseudo-Hermitian 

operators. In this filed, generalized Riesz systems can be used to construct some physical 

operators. From this fact, it seems to be important to consider under what conditions 

biorthogonal sequences are generalized Riesz systems. In this paper, we shall focus intro­

duce the research I have done in the last few years. 

1 Department of Economics, Faculty of Economics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-kn, 
Fukuoka, 813-8503, Japan 
e-mail: h-inoue@ip.kyusan-u.ac.jp 



18

1 lntrod uction 

A sequence { 'Pn} in a Hilbert space 1-l is called a generalized Riesz system if there exist an 

orthonormal basis (from now on, ONB) Fe= { en} in 1-l and a densely defined closed operator 

Tin 1-l with densely defined inverse such that Fe C D(T) n D((T-1)*) and Ten = 'Pn, n = 
0, 1, · · ·. In this case (Fe, T) is called a constructing pair for {'Pn}, [3, 7, 10]. Then, if we put 

7/Jn := (r-1 )*en, n = 0, I,···, Fcp := { 'Pn} and F,;, := { 7/Jn} are biorthogonal sequences in 1-l, 

that is, ('Pn, 7/Jm) = 6nm, n, m = 0, 1, · · ·. 

The notion of generalized Riesz system is useful to investigate non-self-adjoint Hamiltonians 

constructed from Fcp and F,;,. More precisely, let Fcp be a generalized Riesz system with a 

constructing pair (Fe, T) and define 7/Jn as above. Then we consider the operators 

together with 

where a = { an} C C. Here 

DO DO DO 

H': := L O'.nen ® en, A::' := L O'.n+len ® en+l, B': := L O'.n+len+l ® en 
n=O n=O n=O 

are the self-adjoint Hamiltonian, the lowering operator and the raising operator for { en}, re­

spectively (if, x, y, z E 1-l, (y ® z)x := (x, z)y ). 

Since H:_:'Pn = O'.n'Pn, A~'Pn = O'.n'Pn-1 (0 if n = 0) and B:_:'Pn = D'.n+1'Pn+1, n = 0, 1, · · ·, 

it seems natural to call the operators H:_;, A~ and B:_; the non-self ad joint Hamiltonian, and 

the generalized lowering and raising operators for { 'Pn}, respectively. Similarly, since H$7/Jn = 
O'.n1Pn, A~7/Jn = O'.n1Pn-1 (0 if n = 0) and B$7/Jn = D'.n+11Pn+1, the operators H$, A~, B$ are 

called the non-self adjoint Hamiltonian, generalized lowering operator and raising operator for 

{ 7/Jn} respectively. 

Then, it is interesting to understand under what conditions biorthogonal sequences Fcp and F,;, 

are generalized Riesz system, which is what we will discuss in this paper. 

Studies on this subject have been undertaken in [7, 8, 9, 10]. Here we want to explore this 

question in a more general framework. 

Let D'P and D,;, be the linear spans of the biorthogonal sequences Fcp and F,;,, respectively, 
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and define the subspaces D(ip) and D('lj;) in H by 

00 

n=O 
00 

D('lj;) {xEH;1)(x,'lj;n)l 2 <oo}. 
n=O 

Clearly, D,f; C D(ip) and D'P C D('lj;). In [9], we have shown that if both D'P and D,f; are 

dense in H ( this case is called regular), then F'P and F,p are generalized Riesz systems. After 

that, in [10], it was proved that, if either D'P and D(ip), or D,f; and D('lj;), are dense in H 

(the case is called semiregular), again F'P and F,p are generalized Riesz systems. Hence we will 

consider under what conditions F'P and F,p are generalized Riesz systems when none of the 

above conditions is satisfied. In [3], we have proved that this holds under the assumptions that 

F'P and F,p are biorthogonal and, at once, V-quasi bases, in the sense that 

00 

L (x, 'Pn) (1Pn, y) = (x, y), \/x, y E V, 
n=O 

where 1) is a dense subspace in H such that F'P UF,p C 1) C D(ip) nD('lj;), with some additional 

assumptions. In this paper we shall show that this result holds in a more general case. In 

Section 3 we define the notion of (V, £)-quasi bases which is a generalization of V-quasi bases 

as follows: 
00 

L (x, 'PnH1Pn, y) = (x, y), \/x E V, y E £ 
n=O 

where 1) and£ are dense subspaces in H such that D,p C 1) C D(ip) and D'P C £ C D('lj;), and 

we show in Theorem 3.2 that, under this condition, F'P and F,p are generalized Riesz systems. 

In Section 4, we shall introduce some physical examples and relationships between the 

examples and generalized Riesz systems. 

2 Preliminaries 

In this section we review some results on generalized Riesz systems needed in the rest of the 

paper. By Lemma 3.2, [10], we have the following 

Lemma 2.1. Let {ipn} be a generalized Riesz system with a constructing pair (Fe, T). 

Then, we have the following statements. 
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{1) T* has a densely defined inverse and (T*)-1 = (r-1 )*. 

{2) Let 'I/Jn:= (T- 1 )*en, n = 0, l, · · ·. Then, {<pn} and {'I/Jn} are biorthogonal and (T-1)* 
is a densely defined closed operator in 1i with densely defined inverse T*. Hence { 'I/Jn} is a 

generalized Riesz system with a constructing pair (Fe, (r-1 )*). 

{3) D(<p) n D('I/J) is dense in 1-l. 

Next, for any ONB {e,.} in 1i and a sequence {<pn} in 1-l, we introduce the operators ri,e, 

Tcp,e and Te,cp as follows: 

ri,e ·- the linear operator defined by ri,een = 'Pn, n = 0, 1, · · · , 
00 

Tcp,e .- L 'Pn ® en, 
n=O 

00 

Te,cp := Len® C{Jn• 
n=O 

Similarly we can introduce, for the set { 'I/Jn} in Lemma 2.1, the operators TJ,e, T,;,,e and Te,,f;• 

These operators had a role in [10] and will also be relevant here. By Lemmas 2.1, 2.2 in [10] 

we get the following 

Lemma 2.2. {1) Tcp,e is a densely defined linear operator in 1i such that 

{3) ri,e is closable if and only if Tcp,e is closable if and only if D( <p) is dense in 1-l. If this 

holds, then 

(2.1) 

Furthermore, by Lemmas 2.3 and 2.4 in [10] we have 

Lemma 2.3. Let F'P and F,;, be biorthogonal sequences in 1-l. Suppose that D(<p) is dense 

in 1-l. Then we have the following 

{1) Tcp,e has an inverse and f;,! ~ Te,,f; = (T,;,,e)*. 
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(2) The following (i), (ii) and (iii) are equivalent: 

(i) Dc.p is dense in 1-l. 
(ii) Tc.p,e has a densely defined inverse. 

(iii) r;,e(= Te,c.p) has a densely defined inverse. 

If this holds, then T;:~ = (T;_!)*. 

(3) For the operators T,J;,e and Te,,J; the same results as in (1) and (2) hold. 

By [10], Theorem 3.4, we also get 

Theorem 2.4. Let Fc.p and F1 be biorthogonal sequences in 1-l, and let Fe be an arbitrary 

ONE in 1-l. Then the following statements hold: 

(1) Suppose that both Dc.p and D1 are dense in 1-l. Then Fc.p (resp. F1) is a generalized 

Riesz system with constructing pairs (Fe, Tc.p,e) and (Fe, T;;_J) (resp. (Fe, 1'1,e) and (Fe, T;:~)), 
and Tc.p,e (resp. T1,e) is the minimum among constructing operators of the generalized Riesz 

system Fc.p (resp. F1), and T;;_J (resp. T;:~) is the maximum among constructing operators of 

Fc.p (resp. F1)- Furthermore, any closed operator T (resp. K) satisfying Tc.p,e C T C Te~J (resp. 

1'1,e c Kc T;:~) is a constructing operator for Fc.p (resp. F1). 
(2) Suppose that D(cp) and Dc.p are dense in 1-l. Then Fc.p (resp. F1) is a generalized 

Riesz system with a constructing pair (Fe, Tc.p,e) (resp. (Fe, T;:~)) and the constructing operator 

Tc.p,e (resp. T;:~) is the minimum (resp. the maximum) among constructing operators of Fc.p 
(resp. F1 ). 

(3) Suppose that D('l(J) and D1 are dense in 1-l. Then F1 (resp. Fc.p) is a generalized 

Riesz system with a constructing pair (Fe, T1,e) (resp. (Fe, T;;_J)) and the constructing operator 

1'1,e (resp. T;;_J) is the minimum (resp. the maximum) among constructing operators of F1 
(resp. Fc.p)-

Theorem 2.4 shows how the problem stated in Introduction (under what conditions biorthog­

onal sequences Fc.p and F1 are generalized Riesz systems) can be solved in the case when either 

Dc.p and D( 1(J) or D1 and D( cp) are dense in 1-l. But, this problem has not been solved completely 

in case that both Dc.p and D1 are not dense in 1-l, which is what is interesting for us here. We 

will see how the operators Tc.p,e, Te,c.p, T,J;,e and Te,,J; will be relevant in our analysis, together 

with the ('D, £)-quasi bases we will define in the next section. This result is a generalization of 

the one obtained in [3]. 
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3 ('D, £)-quasi bases 

In this section we extend the notion of 'D-quasi bases by introducing a second dense subset E of 

the Hilbert space 1{, and we relate these new families of vectors to generalized Riesz systems. 

Definition 3.1. Let Fcp and F,p be biorthogonal sequences in 1{ and let 'D and E be dense 

subspaces such that D,p <:;;; 1) <:;;; D(tp) and D'P <:;;; E <:;;; D('lj;). Then ({'Pn},{7/Jn}) is said to be a 

('D, E)-quasi basis if 

00 

L (x, 'Pk) (7/Jk, y) = (x, y) 
k=O 

for all x E 'D and y E E. 

It is clear that any ('D, 'D)-quasi basis is a 'D-quasi basis in the sense of [1]. 

Example 1:- A very simple example of a ('D, E)-quasi basis can be constructed as follows. 

Let { en} be an ONB for 1{. Let O:n be an unbounded sequence of positive real numbers having 

0 as limit point. To be more concrete, let us take 

if n is even 

if n is odd. 

Let Tx = I:;:;"=1 O:n (x, en) en be defined on the domain 

D(T) = { x E 1{: ~(2k + 1)2l(x, e2k+1)12 < oo}. 

The operator T is unbounded, selfadjoint, invertible with inverse r-1 defined as r-1y 

I:;';°=1 o:;;-1 (x, en) en on the domain 

Both D(T) and D(r-1) are dense subspaces of 1{ and they are different as one can easily check. 

Let us set 'Pn = Ten and 7/Jn = r-1en, n E N. The 'Pn = O:nen, while 7/Jn = r-1en = o:;;-1en. 

Moreover D(tp) = D(T), D('ljJ) = D(T-1 ). Then we have 

00 00 

n=O n=O 
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Thus, (F<p,F,p) is a (D(ip),D(1j,))-quasi basis. 

Example 2:- Let H0 = p2 +x2 be (twice) the self-adjoint Hamiltonian of a one-dimensional 

harmonic oscillator. We consider Ho to be the closure of the operator acting in the same way 

on the Schwartz space S(JR), and T = ]. + p2 , which is an unbounded self-adjoint operator 

defined on D(T) = W 2•2 (1R), the Sobolev space of functions having first and second order weak 

derivative in L2 (1R). The operator T = H 0 + ]. - x2 is unbounded, invertible with bounded 

inverse r-1 . The eigensystem of H0 is well known: 

en(x) = l Hn(x) e-x2
/ 2 

✓2nn!Jrl/2 

n ::0: 0, where Hn(x) is the n-th Hermite polynomial. It is easy to see that en(x) E D(T) so 

that we can define 'Pn(x) = (Ten)(x) and 1/in(x) = (T- 1en)(x). We get 

'Pn(x) = (2 + 2n - x2 )en(x), 1/in(x) = ! { e-lx-yl en(Y) dy. 
2 }',!. 

These functions are respectively eigenvectors of H = TH0r-1 and Ht, with eigenvalue 2n + 1. 

Some computations show that, for instance, 

H = H0 - 2 ( D. + 2x d~) G * . 

Here G(x) is the Green function of T, G(x) = ½e-lxl, and (G * f)(x) = J'll!. G(x - y)f(y)dy, for 

all f(x) E L2 (1R). Of course we can rewrite H as follows: H = H0 - 2(1 + 2ixp) G*, which is 

manifestly non self-adjoint. 

The sets F'P and F,p are biorthogonal and form a (D(T), H)-quasi basis, since 

00 

L (!, 'Pk) (1/ik, g) = (!, g) ' 
k=O 

for all f(x) E D(T) and g(x) E L2 (1R). 

Let F'P and F,p be biorthogonal sequences. Suppose that F'P is a generalized Riesz system 

with constructing pair (Fe, T). We put 1/ir := (r-1 )*en, n = 0, 1, · · ·. Then F,p and F'J := { 1/in 
are biorthogonal sequences, but F,p does not necessarily coincide with FJ. For this reason we 

will call the constructing pair (Fe, T) natural for the biorthogonal sequences F'P and F,p if 

F,p = FJ. If D'P is dense in 1{, then (Fe, T) is automatically natural for F'P and F,p. 
The next theorem, which is the main result of this paper, shows that the notion of (V, £)­

quasi basis is intimately linked to that of generalized Riesz system. 
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Theorem 3.2. Let (Fcp,F,p) be a biorthogonal pair and V and E be dense subspaces in 1-l 
such that D,p <:;;; V <:;;; D( cp) and D'P <:;;; E <:;;; D( 'ljJ). Then the following statements are equivalent: 

(i) (Fcp, F,p) is a (V,E)-quasi basis. 

(ii) For any ONE Fe = { en} in 1-l, F'P is a generalized Riesz system with a natural con­

structing pair (Fe, T) satisfying D(T*) :2 V and D(T- 1 ) :2 E. 

(iii) For any ONE Fe = { en} in 1-l, F,p is a generalized Riesz system with a natural con­

structing pair (Fe, K) satisfying D(K*) :2 E and D(K-1 ) :2 V. 

If the statement (i) holds, then we can take (Te,,PIE)-1 and (Te,cplD)-1 as T and Kin (ii) and 

(iii), respectively. If D'P is not dense in 1-l, then Te,,p does not have an inverse, but Te,,P I£ has 

an inverse. 

Proof-Take arbitrary x E Vandy EE. Since x E D(Te,<p) = D(cp) and y E D(Te,,p) = D('lj;), 

we have 

which implies that 

00 

n=O 
00 

00 

n=O 

L (Te,<pX, en) (en, Te ,,pY) = (Te,<pX, Te,,pY), 
n=O 

(3.1) 

Now we put T := (Te,,PIE)-1 . Since D(T) = Te,,PIED(Te,,PIE) :2 Te,,PIEE :2 Te,,PIED<p = De 
and D((T-1)*) = D((Te,,PIE)*) :2 D((Te,cplD)-1) = Te,cplDD(Te,<plD) :2 Te,cp1vD,p = De, it 

follows that T is a densely defined closed operator in 1-l with densely defined inverse such that 

e <:;;; D(T) n D((T-1)*). Furthermore, we have 

Thus, F'P is a generalized Riesz system with a natural constructing pair (Fe, T). Furthermore, 

we have D(T-1 ) = D(Te,,PIE) :2 E and by (3.1) D(T*) :2 D(Te,cplD) :2 V. Thus (i) ⇒ (ii). 

In a similar way, setting K = (Te,<p Iv )-1 , we can show that F,p is a generalized Riesz system for 

a natural constructing pair (Fe, K) satisfying D(K*) :2 E and D(K-1 ) :2 V. Thus (i) implies 
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(iii). 

(ii) => (i) Take arbitrary x E V and y E £. Since 

00 

L (x, (()k) (7/Jk, y) 
k=O 

00 

L (x, Ten) ( (T- 1 )*en, y) 
k=O 
00 

L (T*x, en) (en, r-1y) = (T*x, r-1y) = (x, y)' 
k=O 

it follows that (F'P, F,p) is a (V, £)-quasi basis. Similarly we can show (iii) => (i). This completes 

the proof. □ 

Suppose that a biorthogonal pair ( {((Jn}, { 7/Jn}) is (V, £)-quasi basis. Then (V,£) is not unique, 

and so we define the following family 9J1'P,'P by 

9J1'P,'P = { (V,£); ( { ((Jn}, { 7/Jn}) is (V, £) - quasi basis} 

In order to find a better constructing pair for ( {((Jn}, { 7/Jn}) we have investigated the ordered 

set 9J1'P,'P with the following order ::s: 
For (Vi, £1), (V2, £2) E 9J1<p,,f;, (Vi, £1) ::S (V2, £2) if and only if V2 c V1 and £1 c £2. 

For details refer to [11, 12]. 

4 Physical Examples 

In this section we investigate connections between generalized Riesz systems and (V, £)-quasi 

bases using the same physical examples as [4, 11]. Let Un}, n = 0, 1, · · · be an ONB in 

L2(1R) consisting of the Hermite functions which is contained in the Schwartz space S(JR) of all 

infinitely differential rapidly decreasing functions on JR. We define the momentum operator p 

and the position operator q by 

and 

(pf)(x) 

:= the set of all differentiable functions f on lR 

such that !/; E L2(1R), 

= -i'fx, f E D(p) 

{ D(q) = {f E L2 (1R); J~;: lxf(x)l 2dx < oo }, 

(qf)(x) = xf(x), f E D(q). 
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Then p and q are self-adjoint operators in L2 (1R), S(JR) is a core for p and q, and furthermore 

pS(JR) C S(JR) and qS(JR) C S(JR), and [p, q] := pq - qp = -i]_ on S(JR). Next we define the 

standard bosonic operators a, at by 

1 . 1 . 
a= ,/2(q + ip) and at = ,/2(q - ip). 

Then, 

afn { 
0, n = 0 

fofn-1 n = l, 2, · · · , 

✓n + lfn+I, n = 0, l, · · · 

and [a, at] = ]_ on S(JR). 

The following Examples 3, 4 and 5 are extensions of the standard quantum harmonic oscillator. 

Example 3:- The Hamiltonian of this model is the unbounded self-adjoint operator with 

bounded inverse, introduced in [4]. Let T = ]_ + q2 . Then Un} C D(T). Let us define two 

biorthogonal sequences 

Then we can show that 

and the biorthogonal pair ({ipn},{7/!n}) is regular. Hence it follows from Corollary 4 and 

Theorem 6 in [12] that T = T<p,e = Te~J, (D,f;, L2 (JR)) is the largest element of 001:'P,'P and 

(D1, L2 (1R))~ is a unique element of ooi:;,1 . We see this from a physical point of view. 

Ho .- p2 +q2 
00 

n=O 

where II0 is the standard quantum harmonic oscillator. We consider the non-self-adjoint Hamil­

tonians for { IPn} and { 7/Jn} as follows: 

H<p .- THor- 1 = p2 + V<p(q) + 4iq(n + q2)-1p, 

H1 .- y-I HoT = p2 + V1(q) - 4iq(]_ + q2)-1p, 



27

where 

v'l'(q) q2 + 2(n - 3q2)(n + q2)-2 , 

V,;,(q) q2 - 2(n + q2)-1 

and they can be seen as a modified version of the harmonic oscillator where an extra potential is 

added, going to zero as q-2 , and the manifestly non-self-adjoint terms ±4iq(n + q2)-1p appear. 

The raising operators A'I', A,;, and B'I', B,;, for { IPn} and { 7Pn} are as follows: 

Then 

Example 4:- The Hamiltonian of this model is the non-self-adjoint operator, introduced in 
[14, 6]. Let T := eat+a, then y-l = e-(at+a)_ We put 

where 

1 
IPn .- Tfn = ;:::,(at+ ntrpo 

vn! 

7Pn .- y-i fn = ~(at - nt7,bo, n E No, 
vn! 

!po .- efo(x - V2) = ~e-½(x-v'2) 2
• 

7[4 

7,Uo .- efo(x + \/'2). 

Then {rpn} and {7,bn} are regular biorthogonal sequences in L2 (1R) which are generalized Riesz 

systems with constructing pairs ( {Jn}, eat+a) and ( Un}, e-(at+a)), respectively, and 

H'I' THoT- 1 

1 . 
2Ho +iV2p 

1 
ata+(a-at)+ 2n, 

A'I' TaT- 1 = a - n, 
B'I' Tatr- 1 =at+ n. 
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By Proposition 8 in [11], Tip,f is the smallest constructing operator and Ti,~ is the largest con­

structing operator for { 'Pn} and Tip,f C eat+a C Ti,~- Similarly, T,p,f is the smallest constructing 

operator and Ti,~ is the largest constructing operator for {'!f!n} and T,p,f C e-(at+a) C Ti,~­

Furthermore, in [12] (D(cp), Dip) is the smallest element of 9Rip ,1/J, (Dw, D('lfJ)) is the largest 

element of 9Rip,1/J and (D(cp), Dip) j (D(ea+a1), D(e-(a+a1)) j (D,p, D('I/J)). 

The following example is a modification of the non-self-adjoint Hamiltonian H'P in Example 3 

exchanging the moment operator p for the position operator q. 

Example 5:- The Hamiltonian of this model is the non-self-adjoint operator, introduced in 

[11], Example 10. Let T := e-iat eia, then T-1 = e-iaeiat. We put 

1 . 
--(at+ intcp' n = l, 2, · · · , v'nf o, 

- 1-(at - int'1j;' n = l, 2, · · · , v'nf o, 

where 

'Pb e-iat Jo, 

'!f!b eHiat Jo-

Then {cp~} and {'1j;~} are regular biorthogonal sequences in T}(JR) which are generalized Riesz 

systems with constructing pairs ( {Jn}, e-iat eia) and ( {Jn}, e-iaeial), respectively, and 

H' THoT- 1 

1 . 
2(p2 + q2) + v2iq 

. 1 ata+i(a+at)+ 2n, 

A~ TaT- 1 =a+ ill, B'P = TatT- 1 =at+ ill, 

A,i, T- 1aT = a - ill, B,i, = T- 1atT = at - ill. 

Furthermore, in [12] (D( cp'), Dip,) is the smallest element of 9Rip',1/J', (Dw', D( '1/J')) is the largest 

element of9Rip',1/J' and (D(cp'),Dip,) ~ (D(T*),D(T- 1 )) ~ (Dw,,D('I/J')). 

Example 6:- (The Swanson model) 

The Swanson Hamiltonian is a non-self-adjoint Hamiltonian introduced in [5, 14]. Let T0 := 
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where 

(0) 
'Po 

- 1-(cos0at + isin0a)n,n(0) 
~ rO, 

Y'rt! 

- 1-(coseat - isin0a)nor,(0) 
~ 'l'O' 

yn! 

00 00 

~ ·tan0( 1)2 ~ k co6e-,-2-a Jo=co6(-itan0) 
k=O k=O 

(2k - 1)!! 
(2k)!! fa, 

00 00 

~ ·tan0( 1)2 ~ k do 6 e,-2-a Jo=do 6 (itan0) 
k=O k=O 

(4.1) 

and where (2k)!! = 2k(2k - 2) · · · 4 · 2, (2k - 1)!! = (2k - 1)(2k - 3) · · · 3 · 1, and c0 and 

d0 are constants satisfying ( cp6°), 1/;6°)) = 1. Then cp0 and 'I/J0 are regular biorthogonal se­

quences in L2 (JR:.) contained in S(JR:.) which are generalized Riesz systems with constructing 
pairs ( {Jn}, ei(0/ 2)(a2 -(a1)2 l) and ( {Jn}, ei(0/ 2)((a1)2 -a2l), respectively, and 

THOT- 1 

1 i 
-(p2 + q2) - - tan 20(p2 - q2 ) 
2 2 

. 1 
ata +~tan 20(a2 + (at)2) + 2 n, 

T0ar0- 1 = (cos0)a+i(sin0)at, 

By Proposition 8 in [11], T'Pe,f (resp. Tv,0 ,1) is the smallest constructing operator and Ti,/,1 

( resp. r:;;01,f) is the largest constructing operator for cp0 ( resp. 'I/J0) and every closed operator 

T (resp. K) in L2 (JR:.) satisfying T'Pe,f c Tc Ti,0
1,1 (resp. T,t,0 ,t c Kc r:;;0

1,1) is a constructing 

operator for cp0 (resp. 'I/J0)- Furthermore, in [12] (D(cp0), D'P0 ) is the smallest element of 

9Jlcp0 ,v,0 , (D,t,0 , D('I/J0)) is the largest element of 9Jlcp0 ,v,0 and (D(cp0), Dcp0 ) =s (D(T*), D(T-1 )) :::s 

(Dv,0 , D('I/J0)). 
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