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1. INTRODUCTION 

This is a joint work with Anne de Bouard (Ecole Polytechnique, France) and Arnaud 
Debussche (Univ Rennes/IUF, France). 

In this talk, we will present our mathematical analysis of the Gross-Pitaevskii equation, 
which is a model for Bose-Einstein condensates. In particular, we are interested in a model 
with stochastic effects, e.g. temperature effects arising around the critical temperature of 
condensation. Interactions of the condensate with the "thermal cloud" formed by non­
condensed atoms need to be taken into account in this situation. Those interactions should 
preserve the principles of the fluctuation-dissipation theorem, which ensures formally the 
relaxation of the system to the expected physical equilibrium (see [2, 11, 12]), leading to 
the so-called Projected Stochastic Gross-Pitaevskii Equation: 

d1j! = P{ - ~Lap7Pdt + ~~~ (v - Lap)1j!dt + dWa(t, x)} (1.1) 

where 
n,2 

Lap= - 2m ll + V(x) + gl7jJl 2 , (dWa(s, y), dWa(t, x)) = 2G(x)6t-s6x-y dt. 

Here, m is the mass of an atom, V(x) is the trapping, generally harmonic, potential, v 
is the chemical potential, g characterizes the strength of atomic interactions related to 
the s-wave scattering length. The second and third terms in the right hand side of (1.1) 
represent growth processes, i.e., collisions that transfer atoms from the thermal cloud to 
the classical field and vice versa. The form of G(x) may be determined from kinetic theory, 
and is often taken as a constant, and dWa is the complex-valued Gaussian noise associated 
with the condensate growth. Lastly, 'P is a projection which restricts the dynamics to the 
low-energy region defined by the harmonic oscillator modes, or Fourier modes, depending 
on the situation. At zero temperature T = 0, the statistics of the atoms is well represented 
by a single condensate wave function, and the standard Gross-Pitaevskii equation (i.e. 
(1.1) without dissipation and noise) describes the coherent evolution of the wave function 
in a quite good manner since, for ex. the effect of thermal cloud may be neglected. 
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In (1.1), neglecting the projection operator on the lowest energy modes, and setting 
G(x) = 1 , also the chemical potential to zero, the equation for the macroscopic wave 
function 'i/J may be written in its simplest dimensionless form: 

8t'i/J = (i + 1 )(~'0 - V(x)'i/J - gl'i/Jl 2'i/J) + W7(t, x), t > 0, x E IB.d_ (1.2) 

When 1 = 0, one recovers the standard Gross-Pitaevskii equation for the wave function 
'i/J, and in this case the hamiltonian 

H('i/J) = ! r lv''i/J(x)l2dx + ! r V(x)l'i/J(x)l 2dx + !/_ r l'i/J(x)l4dx 
2 Jffi.d 2 Jffi.d 4 Jffi.d 

is conserved. Note that for 1 > 0, "the statistical equilibrium", i.e. formal Gibbs measure 
for (1.2) is given by 

p(d'i/J) = rexp [-H('i/J)] d'i/J, 
for some normalizing constant r. 

In this talk, we consider the harmonic potential V(x) = lxl 2 . Equation (1.2) has been 
studied in space dimension one in [3], and the existence of global solutions for all initial 
data was proved. The exponential convergence to equilibrium was also obtained in [3], 
thanks to a Poincare inequality, and to the properties of the Gibbs measure previously 
established in [5], where its support was in particular shown to contain £P(IB.) for any 
p > 2. 

We have recently succeeded to extend part of those results to the two-dimensional case, 
and we will report the results in this talk. Remark that the Gaussian measure generated 
by the linear equation is only supported in w-s,q, with s > 0, q 2'. 2, and sq > 2. Here, 
w-s,q is a Sobolev space based on the operator - H = -~ + V: 

ws,P(IB.2) = {v E S'(IB.2), lvlws,P(ffi.2) := l(-H) 812vlLP(ffi.2) < +oo}, 

for 1 ~ p ~ +oo, and s E IB., where S and S' denote the Schwartz space and its dual 
space, respectively. 

Hence, as is the case for the stochastic quantization equations, the use of renormaliza­
tion is necessary in order to give a meaning to the solutions of (1.2) in the support of 
the Gaussian measure. Renormalization procedures, using Wick products, have been by 
now widely used in the context of stochastic partial differential equations (see e.g. for the 
case of dimension 2 considered here [6, 7, 9, 16, 19] and references therein), in particular 
for parabolic equations based on gradient flows. The complex Ginzburg-Landau equation 
driven by space-time white noise, i.e. (1.2) without the confining potential, posed on the 
three-dimensional torus, was studied in [13] and for the two-dimensional torus in [15, 18]. 
The main difference in our case is the presence of the harmonic potential V. It is thus 
natural to use functional spaces based on the operator - H = -~ + V, rather than on 
standard Sobolev or Besov spaces; we chose to work on Sobolev spaces based on - H since 
it is enough for our analysis, especially in the two-dimensional setting. 
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Several difficulties arise when trying to adapt the previous methods to the present two­
dimensional case. First, the diverging constant in the definition of the Wick product 
is no more a constant, but rather a function of the space variable x; This is already 
the case for SPDEs on manifolds for instance but does not imply many difficulties. Up 
to our knowledge, Wick products corresponding to the Gaussian measure associated to 
the operator - H considered here have never been constructed. An essential tool in the 
definition of the Wick products is the kernel K(x, y) of the operator (-H)-1 , which is 
defined by 

(-H)-1 j(x) = { K(x, y)f(y)dy, 
}IE.2 

and in particular its integrability properties. It appears ( [17]) that K is never in £P(JR~ x 
JR~), for any p ~ 1, but we only have KE U(JR~; LP(JR~)) for r > p ~ 2 (see Proposition 
2 below). 

Using these properties of the kernel K, we construct the Wick products with respect 
to the Gaussian measure with covariance (-H)-1 and use the method of [7] to construct 
local solutions. Then using ideas from [16], we are able to prove that the solutions are 
global when I is sufficiently large. Moreover, we prove that (1.2) has an invariant measure 
which is the limit of Gibbs measures corresponding to finite dimensional approximations 
of this equation. This can be seen as a construction of the infinite dimensional Gibbs 
measure p. Details of our work presented in this talk can be referred to [4]. 

2. MAIN RESULTS. 

Writing equation (1.2) in a more mathematical form, we will consider in what follows 
the infinite dimensional, stochastic complex Ginzburg-Landau equation, with a harmonic 
potential in the case of d = 2: 

dX = (,1 +h2)(HX -1x12x)dt+ ~dW, t > o, x E JR2, (2.1) 

where H = ~ - lxl 2 , x E JR2 . We consider a more general equation with parameters 
11 > 0, and 12 E JR, in order to clarify the effects of the dissipation induced by 11 . Let 
{hk}kEN2 be the orthonormal basis of L2 (1R2 ,JR), consisting of eigenfunctions of -H with 
corresponding eigenvalues {.>.~hEN2, i.e. -Hhk = A~hk. It is known that A~= 2lkl + 2 
with k = (k1 , k2 ) E N2 , and the functions hk(x) are the Hermite functions. The unknown 
function X is a complex valued random field on a probability space (D, F, lP') endowed 
with a standard filtration (Ft)t>O· 

We take {hk, ihkhEN2 as a complete orthonormal system in L2 (1R2 , q, and we may 
write the cylindrical Wiener process as 

W(t, x) = I: (/3k,R(t) + if3k,I(t))hk(x). (2.2) 
kE.N2 

Here, (/3k,R(t))c:>_o and (/3k,r(t))c:>_o are sequences of independent real-valued Brownian mo­
tions, on the stochastic basis (D, F, lP', (Ft)t20 ). In all what follows, the notation lE stands 
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for the expectation with respect to lP. We denote by E~ the complex vector space spanned 
by the Hermite functions, E~ = span{hk}lkl:<:N· 

For a function series of the form u = ~kEN2 ckhk, we introduce, for any N E N fixed, 
the spectral projector IIN by 

IIN [ L Ckhk] := L Ckhk, 
kEN2 kEN2,lkl:<:N 

Also we define, for any N EN fixed, a smooth projection operator SN : L2(lll2, CC) --+ E~ 
by 

sN[ L ckhk] := L x[;} ]ckhk = x[~][ L ckhk], 
kEN2 kEN2 N N kEN2 

where x ~ 0 is a cut-off function such that x E C0 (-1, 1), x = l on [-½,½]-Note that 
here and in what follows, we denote by AN the value A(N,O), for simplicity. A modification 
of Theorem 1.1 of [14] implies that SN is a bounded operator from JJ' to JJ', uniformly in 
N, for any p E [1, oo]. 

As was pointed out in the introduction, due to the space-time white noise, the solution of 
(2.1) is expected to have negative space regularity, and thus the nonlinear term -IXl2 X is 
ill-defined. In order to make sense of this term, we use a renormalization procedure based 
on Wick products. This amounts to "subtract an infinite constant" from the nonlinear 
term in (2.1). More precisely, writing the solution X = u + Z~•12 with 

z;;,_i;,,2(t) = J2'ri [t(XJ e(t-r)('Y1+i'Y2)HdW(T), 

which is the stationary solution for the linear stochastic equation 

dZ = (,1 + i,2)HZdt + J2'YidW, 

we find out the following random partial differential equation for u: 

(2.3) 

OtU = (,1 + i,2)(Hu - lu + z;;.;m1 2(u + Z;;.';·12 )), u(O) = Uo := X(O) - Z;;.';•12 (0). 

We are therefore required to solve this random partial differential equation. Here, by 
standard arguments, it can be seen that the best regularity we may expect for ZJ.;•12 is 
almost surely: ZJ.;•12 E w-s,q(lll2) for s > 0, q ~ 2, sq > 2. If we develop 

lu + z;;,_i;,,212(u + z;;,,;•12 ) = lul 2u + 21u1 2 z;;,_i;,,2 + u(Z;;.';·12 )2 + u2 z~·'2 

+2u1z;;,_i;,,212 + 1z;;.;m12z;;,_i;,,2, 

we are led to multiply functions having both negative Sobolev regularity, which cannot 
be defined in the usual distribution sense. Note that ZJ.;•12 is complex-valued centered 
Gaussian (see also (2.6)). 
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We need some preliminaries to introduce the renormalization procedure. Let us recall 
a few facts about Hermite polynomials Hn(x), n E N, These are defined through the 
generating functions 

where 
(-lt x 2 dn x 2 

Hn(x) = --e2 -(e-2), n 2'. 1 JnT dxn 

and H0 (x) = l. The Wick products of ZJdi'12 are defined as follows. We write ZR,oo = 

ReZJdi,12 and Z1,00 = ImZJdi,12 . For any k, l E N, we define, if the limit of the right hand 
side below exists in a suitable topology, 

: (ZR,oo)k(z1,ool: := Nlim : (SNZR,oo)k :: (SNZ1,ool:. 
--+oo 

In the right hand side, the notation : (SNzr : (x) for n E N, N E N, X E IR.2 , and for a 
real-valued centered Gaussian white noise z, means 

; (SNzr; (x) = PN(xr,./-;;J.Hn [PN\/Nz(x)] , X E IR.2 

with 
1 

PN(x) = [L X2 (;}) ; 2 (hk(x)) 2] 2 

kEl\12 N k 

Actually this Wick product is indeed well-defined in w-s,q, as soon as s > 0, q 2'. 4 and 
qs > 8: 

Proposition 1. For any k,l EN, the sequence{: (SNZR,oo)k :: (SNZ1,00 )1 :}NEN is a 
Cauchy sequence in Lq(D,, w-s,q(IR.2)), for q 2'. 4, s > 0 with qs > 8. 

Moreover, defining then, for any k, l E N, for any fixed t, 

: (ZR,ool(Z1,ool: := lim : (SNZRoo)k :: (SNZ100) 1 :, in U(D,, w-s,q(IR.2)), 
N➔oo ' ' 

where s > 0, q 2'. 4 and sq > 8, there exists a constant Ms,q,k,l such that 

lE [I : (ZR,oo)k(z1,ool : 1~-s,q] ~ Ms,q,k,l· 

Remark that higher order moments may also be estimated thanks to the Nelson formula. 

For the proof of Proposition 1, the key ingredients are estimates on the kernel K of the 
operator (-H)-1 via Sobolev embeddings: 

Proposition 2. For any n EN\ {O}, we have Kn E L;w:,2 for any r 2'. 2 and a< 1-r 
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We then consider the following renormalized equation in the space w-•,q(ffi.2): 

dX = h1+h2)(HX-:IXl2X:)dt+~dW, t>0, xEJR.2, (2.4) 

X(0) = Xa, 

in the sense that we solve the shifted equation (2) with lu + z~,12 l2(u + z~,12 ) replaced 
by: lu + z~,12 12(u + z~,12 ) : defined by replacing in (2.4) all the terms involving z~,,2 

by the corresponding Wick products. Hence we consider 

8tu = h1 + h2) [Hu-: lu + Z~''2 12(u + Z~''2 ) :] , (2.5) 

supplemented with the initial condition 

u(0) = ua = X 0 - Z~'12 (0). 

We first have the following local well-posedness result of equation (2.5). 

Theorem 1. Fix any T > 0. Let 11 > 0, 12 E ffi. and q > p > 3r, r > 6. As­
sume O < s < f3 < 2/p, qs > 8, f3 - s > ~ - f3 and s + 2(~ - /3) < 2(1 - ¼)­
Let Uo E w-•,q(ffi.2). Then there exists a random stopping time Ta(w) > 0, which de­
pends on ua and(: (ZR,oo)k(z1,00 ) 1 :)09+19, and a unique solution u of (2.5) such that 
u E C([0,T0), w-•,q(ffi.2 )) n U(0,T0, W/3,P(ffi.2)) a.s. We have moreover almost surely 
Ta= T or limttT6' lu(t)lw-s,q = +oo. 

When the dissipation coefficient 11 is sufficiently large, an energy estimate allows us to 
get a bound on the Lq norm of the solution, and to obtain a global existence result, as 
is stated in the next Propositions and Theorem. This method of globalization has been 
widely used for the complex Ginzburg-Landau equation (see [1, 10]) and has been adapted 
in the renormalized case ([13, 16]). 

Proposition 3. Let 11 > 0, 12 E ffi. and q > p > 3r, r > 6. Assume O < s < f3 < 2/p 
satisfy the assumptions of Theorem 1 and that we have in addition s ::::; ~ - f3 < f;,, with 
2(l - /3) < f3 and 3(l - /3) < 2(1- !). Let u0 E Lq(ffi.2 ). Then the solution u of (2.5) 

p p q 

given by Theorem 1 satisfies : u E C([0, T0), U(ffi.2)). 

In the next Proposition we give the Lq a priori bound. 

Proposition 4. (Lq a priori estimate}. Let 11 > 0 and q > p > 3r, r > 6. Assume 
0 < s < f3 < 2/p satisfy the assumptions of Theorem 1 and we have in addition s ::::; 
~ - f3 < f;,, with 2(~ - /3) < f3 and 3(~ - /3) < 2(1 - ¼)- Moreover assume 12 = 0, or 

q < 2 + 2(K2 + K✓l + K2) with K = l,i/,21 if 12 -/- 0. Let u0 E U(ffi.2), and let u be the 
unique solution constructed in Theorem 1. Then, there exists a constant C > 0 depending 
on 11, 1'2, q and(: (ZR,oo)k(Z1,ool :)o:c;k+l:::;3, such that for any t with 0 < t < Ta' 

q ~ q 
lu(t)IL"::::; e- 4 lualL" + C, 
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where T0 is the maximal existence time given in Theorem 1. The coefficient fJ is given by 

fJ = 1 if '"'(2 = 0, and fJ = 1 - 2("2+~~) if '"'(2 -/- 0. 

By the previous results and using the smoothing properties of the heat semi-group, we 
finally obtain the global existence of solutions in the case of large 'Yi > 0. 

Theorem 2. Let '°YI > 0 and q > p > 3r, r > 6. Assume 0 < s < /3 < 2/p satisfy the 
assumptions of Theorem 1 and we have in additions ~ ~ - /3 < -&,, with 2(~ - /3) < /3 
and 3(~ - /3) < 2(1 - ¼)- Moreover assume 12 = 0, or q < 2 + 2(1£2 + 1£✓1 + 1£2) with 
1£ = 111 1 if 12 -/- 0. Let u0 E w-s,q(IR2 ). Then there exists a unique global solution u of 'Y2 
(2.5) in C([0, T], w-s,q) n Lr(o, T; Wf3,P) a.s. for any T > 0. 

The next step is the construction of a Gibbs measure. The Gibbs measure is formally 
written as an infinite-dimensional measure of the following form: 

p(du) = re-1-l(uldu, 

where 

H(u) = ! r 1Vu(x)l2dx + ! r lxu(x)l2dx + -41 r lu(x)l4dx, 
2 }R2 2 }R2 }R2 

and r is a normalizing constant. We will make sense of this infinite dimensional measure 
as follows. Using (2.2), it may be easily seen that (2.3) can be written as 

✓2 
ZJ};-'Y2(t) = L Tgk(w, t)hk(x), (2.6) 

kEN2 k 

where {gk(w, t)}kEN2 is a system of independent, complex-valued random variables with 
law Nic(0, 1). Thus, the projection onto Efv of the stationary solution ZJ};•'Y2 (t) has the 
same law as the Gaussian measure µN induced by a random series 

✓2 L Tgk(w)hk(x) 
kEN2,lkl'.SN k 

defined on (0, F, lP') where {gk(w)}kEN2 is a system of independent, complex-valued ran­
dom variables with the law Nic(0, 1). Thanks to the same argument as Lemma 2.1 in [3], 
we see that the series converges in U(O, w-s,q) if s > 0, q 2". 2 and sq > 2, and the 
limit defines the infinite-dimensional Gaussian measure µ on w-s,q_ However, although 
the above Gibbs expression may be formally written as 

p(du) = re-U11.2 lu(x)l 4dxµ(du), 

we cannot give a sense for it, since L4 (IR2 ) is not in the support ofµ. For that reason, we 
should also renormalize the L4 norm in the Gibbs measure. This fact leads us to define 
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the Gibbs measure for (2.4) as a limit of 

PN(dy) = rNexp {-12 (~1sNy(x)l4- 2p;._,(x)ISNy(x)l 2 + 2pj.,r(x)) dx} µN(dy), y EE~, 

where rN is the normalizing constant. This (JN is a unique invariant measure for the finite 
dimensional system: 

dX = b1 + h2)(Hx - sN(: 1sNx12sNx :))dt + ~IINdW, (2.7) 

whose solution approximates to the solution of (2.4) as N-+ +oo. We can indeed prove 
the tightness of the family of measures (PN )NEN · 

Theorem 3. Let 11, 12, q, s be as in Theorem 2. Then, there exists an invariant measure p 
supported in w-s,q(JR2), for the transition semi-group associated with equation (2.4), which 
is well-defined according to Theorem 2. Moreover, p is the weak limit of a subsequence of 
the family (PN )N defined above. 

The tightness of (PN )NEN is not induced by a U bound as in Proposition 4, which does 
not a priori hold for the finite dimensional approximations (2.7). We thus have to prove 
an alternative bound considering the coupled evolution on E'f.i x E'f.i given by 

{ 
du 
dt = (1'1 + ~1'2) [Hu - SN(: ISN(u + Z)l 2SN(u + Z): )] 

dZ = (,1 + i,2)HZdt + yl2'y;IINdW. 
(2.8) 

We denote ZJ.!/Y2 by Z for the sake of simplicity. One may easily prove, using similar 
estimates as in the proof of Proposition 5 below, together with the Gaussian properties 
of Z, and a Krylov-Bogolyubov argument, that (2.8) has an invariant measure VN on 
E'f.i x lE~. Moreover, by uniqueness of the invariant measure of (2.7), we necessarily have 
for any bounded continuous function cp on lE~ : 

{ cp(x)pN(dx) = 1· { cp(u + z)vN(du, dz). 
JE~ JEfvxEfv 

The next proposition will imply the tightness of the sequence (PN )N in w-s,q_ 

Proposition 5. Let (uN, ZN1) E C(lR+; E~xE~) be a stationary solution of (2.8). Then, 
for any m > 0, there is a constant Cm > 0 independent oft and N, such that 

lE(l(-H) 2!nuNliT) ~ Cm. (2.9) 

Corollary 2.1. The family of finite dimensional Gibbs measures (PN)N is tight in w-s,q 
for any q > 8 and s > §.. 

q 

Unfortunately, the bound in Proposition 5 does not provide higher moment bounds on 
the measures PN, preventing us to obtain global strong solutions in the small dissipa­
tion case, as would be expected. Nevertheless, the bound in Proposition 5 allows us to 
construct a stationary martingale solution for any dissipation coefficients: 
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Theorem 4. Let 11 > 0 and 12 E IR, and let O < s < 1, q > 8, sq > 8. Then, there exists 
a stationary martingale solution X of (2.4) having trajectories in C(IR+, w-•,q) and such 
that for any t?: 0, .C(X(t)) = p, the measure constructed in Theorem 3. 

3. FINAL REMARKS AND PERSPECTIVE 

The problem we encounter is that we are not able to prove global existence for any 
11 . We cannot use the same argument as in [3]. In [15] the author obtained a global 
strong solution for any dissipation parameter in the complex Ginzburg-Landau equation. 
To apply a similar argument to our case, we would need the integrability q of the Wick 
products in Proposition 1 to be close to 2. Thus this would need an optimization of 
Proposition 1. It is also expected that (2.4) has a unique invariant measure. Strong 
Feller property of the associated transition semigroup can be proved as in [19] or [8]. 
Irreducibility seems to be much more complex. These questions will be the object of a 
future work. 

We consider V(x) = lxl 2 , but a generalization of the potential V(x) is of course possi­
ble; by a technical reason it could impose more restrictions on the parameter , 1 for the 
regularization properties of the heat semigroup. 
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