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Abstract. Nonlinear Schrödinger equations with nonlinearities |u|2ku on the d-dimensional

torus are considered for arbitrary positive integers k and d. The solution of the Cauchy problem

is shown to be unique in the class CtH
s
x for a certain range of scale-subcritical regularities s,

which is almost optimal in the case d ≥ 4 or k ≥ 2. The proof is based on various multilinear

estimates and the infinite normal form reduction argument.

1. Introduction

We consider the Cauchy problem for nonlinear Schrödinger equations with periodic boundary

condition: {
i∂tu+∆u = λ|u|2ku, (t, x) ∈ [0, T ]× Td, d, k ∈ N, λ ∈ C,

u(0, x) = u0(x), x ∈ Td,
(1.1)

where Td := Rd/2πZd is the d-dimensional torus. The purpose of this article is to show un-

conditional (local) well-posedness of (1.1) in low-regularity Sobolev spaces Hs(Td) for general

dimensions d and degrees of nonlinearity 2k + 1 by means of an abstract theory given in [23]

based on the normal form reduction technique. Here, “unconditional” means that uniqueness of

the solution in the sense of distribution holds in the entire space C([0, T ];Hs). We distinguish it

from “conditional” well-posedness, for which uniqueness is ensured in a subset of C([0, T ];Hs)

or under additional assumptions, depending on how the solution is constructed. For instance,

a standard iteration argument with Sobolev inequalities shows that (1.1) is unconditionally lo-

cally well-posed in Hs(Td) for s > d
2 , while the Fourier restriction norm method (or Bourgain’s

method, see [1]) may yield conditional local well-posedness for lower regularities, in which case

uniqueness of solutions would be shown only in Bourgain spaces.

The (conditional) local well-posedness of (1.1) on the torus, along with underlying periodic

Strichartz estimates of the form∥∥P≤Ne
it∆ϕ

∥∥
Lp
t,x(I×Td)

≲d,p,I N
θ(d,p)∥ϕ∥L2(Td),

has been quite extensively studied since the pioneering work of Bourgain [1]. In [1] the Cauchy

problem (1.1) on standard square (or rational) tori was treated and its local and global well-

posedness in Hs(Td) was established already for a wide range of d, k and scale-subcritical

regularities s. Accordingly, a major interest nowadays has been drawn by the problems at the

scale-critical regularities and posed on general irrational tori; see [2, 3, 4, 5, 9, 10, 14, 16, 17,
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18, 21, 24, 27, 28], for instance. For (1.1) posed on the square torus, local well-posedness in Hs

is known to hold for any d, k ∈ N and any subcritical/critical regularities s ≥ sc,

sc :=
d

2
− 1

k
,

with the exception of 1d cubic case d = k = 1 (where the Cauchy problem is globally well-posed

in L2 but ill-posed in any Sobolev space of negative index; see [1, 7, 25, 13]) and L2-critical cases

(d, k) = (1, 2), (2, 1) (where well-posedness in the critical space Hsc = L2 is open; see [22] for a

partial result).

Concerning unconditional well-posedness, there are two natural thresholds: One is s ≥ sc

coming from the scaling, and the other is s ≥ se,

se :=
d(2k − 1)

2(2k + 1)
,

which is needed for the embedding Hs ↪→ L2k+1 so that the nonlinearity |u|2ku makes sense as

a distribution. Therefore, the natural conjecture is that (1.1) is unconditionally well-posed in

Hs(Td) for

s ≥ max{sc, se} = max
{d
2
− 1

k
,
d

2

2k − 1

2k + 1

}
. (1.2)

We see that sc = se +
1

2k+1(d− 2− 1
k ). In particular, sc ≥ se if and only if d ≥ 2 + 1

k , and
sc < se if d = 1, 2,

sc = se if d = 3 and k = 1,

sc > se if d = 3 and k ≥ 2, or d ≥ 4.

Unconditional well-posedness for nonlinear Schrödinger equations was investigated first by

Kato [20] and has been well studied in the non-periodic case (see [11, 26, 29, 15]), while much

less is known in the periodic case. Guo, Kwon, and Oh [12] proved unconditional uniqueness

of the solution for (1.1) with d = k = 1 in Hs(T) under the natural regularity constraint

s ≥ 1
6 = max{sc, se} via the technique of (Poincaré-Dulac) normal form reduction (see [23] and

references therein for results on other equations based on this method). Chen and Holmer [6]

and Herr and Sohinger [16] obtained uniqueness results on (1.1) with λ = ±1 from the analysis

of the Gross-Pitaevskii hierarchy, for quintic (defocusing) NLS on the 3d square torus at the

critical regularity s = sc = 1 and for cubic NLS on arbitrary (irrational) tori in dimension two

and higher with regularities in a certain subcritical range (in particular, in the whole subcritical

range s > d
2 − 1 when d ≥ 4), respectively. (We will come back to these results in Remark 1.3

later.) Recently, the author [23] abstracted the methodology introduced in [12] and proved

unconditional uniqueness for (1.1) on the 2d square torus in H2/3 as an application of the

abstract theory.

In this article, we extend the result on unconditional uniqueness for (1.1) to general higher-

dimensional/higher-degree cases by applying the abstract result in [23] again, but with more

refined analysis. The main result reads as follows:

Theorem 1.1. Let d, k ∈ N with (d, k) ̸= (1, 1). Assume that s satisfies
s > 3d−2

10 =

{
2
5
7
10

if k = 1 and

{
d = 2,

d = 3,

s > sc and s ≥ se if k ≥ 2 or d ≥ 4.

(1.3)
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Then, (1.1) is unconditionally locally well-posed in Hs(Td).

Remark 1.2. (i) Note that the lower bound (1.3) in the case k = 1, d = 2, 3 satisfies

d

2
>

3d− 2

10
>
d

6
= max{sc, se}.

For any other cases, we have almost optimal results in view of (1.2). In particular, if the

endpoint is subcritical with respect to scaling (i.e. se > sc), unconditional local well-posedness

holds also at the endpoint, unless d = 2 and k = 1. On the other hand, the abstract theory

in [23] is basically not prepared for application to the scale-critical problem. As a result, in

some cases (e.g., d ≥ 4 and any k) conditional well-posedness is already known at the endpoint

s = sc = max{sc, se} but unconditional uniqueness is left open.

(ii) Since we do not utilize Hamiltonian structure or conservation laws of the equation, the

result holds equally for any λ ∈ C. Moreover, our method can be applied to equations with

non-gauge-invariant power-type nonlinearities as well.

(iii) In the proof, we only use a “classical” argument based on divisor counting, so that our

result is restricted to the case of square (or rational) tori. On the other hand, in [16] the

Strichartz estimates on general irrational tori from [4, 21] was already applied to the problem of

unconditional uniqueness. Hence, it would be of interest to investigate the problem on irrational

tori by adapting such a “modern” technique to the abstract theory in [23].

Remark 1.3. We show uniqueness among all distributional solutions in C([0, T ];Hs) without as-

suming any other property. This should be compared with the results in [6, 16], where uniqueness

was shown for the solution satisfying certain conservation laws. In fact, conservation of the en-

ergy and of the L2-norm played an essential role in the argument in [6] and in [16], respectively.

On one hand, for the cubic NLS one can show the L2 conservation law for any distributional

solution in C([0, T ];Hd/4). To see this, let λ = 1 for simplicity and consider the approximating

sequence uN := P≤Nu of such a solution u. Here, P≤Nu := F−1
n 1{|n|≤N}(Fxu)(t, n), and Fx,

F−1
n denote the Fourier and inverse Fourier transforms on Td and Zd, respectively. The following

identity is verified by the equation for uN (which is smooth):

∥uN (t)∥2L2 = ∥uN (0)∥2L2 + 2ℑ
∫ t

0

∫
Td

(
P≤N (|u|2u)− |uN |2uN

)
uN dx dt, t ∈ [0, T ].

If u ∈ C([0, T ];Hd/4) ↪→ C([0, T ];L4), the integral on the right-hand side vanishes as N → ∞,

which shows that the L2-norm of u is constant in time. Recall that in [16] uniqueness was

claimed in Hs(Td) for s > 7
12 (≥ 1

2) if d = 2; s > 4
5 (≥ 3

4) if d = 3; s > d
2 − 1 (≥ d

4) if d ≥ 4.

Therefore, the uniqueness result in [16] actually yields unconditional uniqueness in the same

regularity range. In particular, Theorem 1.1 is covered by this result in the case k = 1, λ ∈ R,
and for s within the above range.

On the other hand, a similar regularization argument would not show the energy conservation

of the 3d quintic NLS for general solutions in C([0, T ];H1). In fact, we have

1

2
∥∇uN (t)∥2L2 +

1

6
∥uN (t)∥6L6 =

1

2
∥∇uN (0)∥2L2 +

1

6
∥uN (0)∥6L6

+ ℑ
∫ t

0

∫
T3

∇
(
P≤N (|u|4u)− |uN |4uN

)
· ∇uN dx dt

+ ℑ
∫ t

0

∫
T3

(
P≤N (|u|4u)− |uN |4uN

)
|uN |4uN dx dt.
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It seems that the treatment of the first (resp. the second) integral on the right-hand side requires

the regularity at least H4/3 (resp. H6/5). Hence, it is not clear whether the uniqueness result

in [6] implies unconditional uniqueness (without assuming conservation of the energy) for the

3d quintic NLS at the critical regularity H1. It shows unconditional uniqueness in the class

C([0, T ];H4/3), however.

Since local well-posedness of (1.1) has been obtained in the whole subcritical range of regular-

ities, to prove Theorem 1.1 we only have to show unconditional uniqueness. Following the argu-

ment in [23], we first move to the equation on the frequency side. Let u(t) ∈ C([0, T ];Hse(Td))

be a solution (in the sense of distribution) of (1.1) and ω(t, n) := Fx[e
−it∆u(t)](n), then ω

satisfies

∂tω(t, n) = cλ
∑

n1,n2,...,n2k+1∈Zd

n=n1−n2+···−n2k+n2k+1

eitΦω(t, n1)ω(t, n2) · · ·ω(t, n2k)ω(t, n2k+1), n ∈ Zd,
(1.4)

where c is a constant depending on the definition of the Fourier transform and

Φ = Φ(n, n1, n2, . . . , n2k+1) := |n|2 − |n1|2 + |n2|2 − · · · − |n2k+1|2.

Note that the sum in (1.4) is absolutely convergent for each n, since F−1
n |ω(t)| ∈ Hse ⊂ L2k+1.

In particular, ω(·, n) ∈ C1([0, T ]) for each n ∈ Zd and (1.4) holds in the classical sense.

We next separate some terms from the nonlinear part. This step was not taken in [23, Sec-

tion 3] for the sake of simplicity, while we do in order to obtain uniqueness in lower regularities.

Definition 1.4. Let d, k ∈ N with (d, k) ̸= (1, 1). We define the set A ⊂ (Zd)2k+1 as follows.

• If d ≥ 2 + 2
k (i.e., d ≥ 4, or d = 3 and k ≥ 2), then A := ∅.

• For k = 1 and d = 2, 3, we define

A :=
{
(n1, n2, n3) ∈ (Zd)3 : n2 = n1 or n2 = n3

}
.

• For k ≥ 2 and d = 1, 2, we first fix a linear order ⪰ on Zd such that n1 ⪰ n2 implies

|n1| ≥ |n2|. For instance, we may define it as

n1 ⪰ n2 ⇔

{
|n1| > |n2|, or
|n1| = |n2| and n1 ≥ n2 in the lexicographic order on Zd.

Given (nl)
2k+1
l=1 ∈ (Zd)2k+1 and m ∈ {1, 2, . . . , 2k+1}, we write n[m] to denote the m-th

largest one in the order ⪰ among {nl}2k+1
l=1 . Then, we define

A :=

A1 ∪ A2 if k ≥ 3 or d = 1,

A1 ∪ A2 ∪ A3 if k = 2 and d = 2,

where

A1 :=
{
(nl)

2k+1
l=1 : n[1] = n[2]

}
,

A2 :=
{
(nl)

2k+1
l=1 : n[2] = n[3]

}
,

A3 :=
{
(nl)

2k+1
l=1 : n[3] = n[4] and ⟨n[2]⟩ ≤ ⟨n[3]⟩3/2

}
, ⟨n⟩ := (1 + |n|2)1/2.

The set A consists of the frequencies which we separate from the principal nonlinear part.

Namely, we rewrite the equation (1.4) as

∂tω(t, n) = cλ
∑

n1,n2,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

1AceitΦω(t, n1)ω(t, n2) · · ·ω(t, n2k+1) +R[ω(t)](n), n ∈ Zd,
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where

R[ω(t)](n) := cλ
∑

n1,n2,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

1Ae
itΦω(t, n1)ω(t, n2) · · ·ω(t, n2k+1).

We use the notation of weighted sequential Lp-norms ∥ω∥ℓps := ∥⟨·⟩sω(·)∥ℓp(Zn) for p ∈ [1,∞] and

s ∈ R. The main ingredient of the proof is to show the following multilinear estimates:

Proposition 1.5. Let d, k be positive integers such that (d, k) ̸= (1, 1). The following holds.

(i) For any s1 > sc (≥ 0) and s2 > d/2, we have

(B1) sup
µ∈Z

∥∥ ∑
n1,n2,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

1{Φ=µ}

2k+1∏
l=1

ωl(nl)
∥∥
ℓ2s1 (Z

d
n)

≲
2k+1∏
l=1

∥ωl∥ℓ2s1 ,

(B1)’
∥∥ ∑

n1,n2,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

2k+1∏
l=1

ωl(nl)
∥∥
ℓ2s2 (Z

d
n)

≲
2k+1∏
l=1

∥ωl∥ℓ2s2 .

(ii) Let s > sc satisfy the condition (1.3). Define s2 := max{d
2 , s} + 1, and s1 ∈ (sc, s),

r ∈ [2,∞], σ ∈ [−s, 0] by

[s1, r, σ] :=



[
s+sc
2 , 2, −sc

]
if d ≥ 2 + 2

k ,[
max{ s+sc

2 , se − 1
2ε(k)}, ∞, 0

]
if d = 1, 2 and k ≥ 2,[

1
2(s+

3d−2
10 ), 10

2d−3 , −
(2d−3)(d−2)

10

]
if d = 2, 3 and k = 1,

where ε(k) is a positive constant given in Lemma 3.3 below. Then, it holds that

(R)
∥∥ ∑

n1,n2,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

1A

2k+1∏
l=1

ωl(nl)
∥∥
ℓ2s(Zd

n)
≲

2k+1∏
l=1

∥ωl∥ℓ2s ,

(B2) sup
µ∈Z

∥∥ ∑
n1,n2,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

1Ac∩{Φ=µ}

2k+1∏
l=1

ωl(nl)
∥∥
ℓrσ(Zd

n)
≲ min

1≤q≤2k+1
∥ωq∥ℓrσ

2k+1∏
l=1
l ̸=q

∥ωl∥ℓ2s1 ,

(B2)’
∥∥ ∑

n1,n2,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

1Ac

2k+1∏
l=1

ωl(nl)
∥∥
ℓrσ(Zd

n)
≲ min

1≤q≤2k+1
∥ωq∥ℓrσ

2k+1∏
l=1
l ̸=q

∥ωl∥ℓ2s2 ,

(B3)
∥∥ ∑

n1,n2,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

1Ac

2k+1∏
l=1

ωl(nl)
∥∥
ℓrσ(Zd

n)
≲

2k+1∏
l=1

∥ωl∥ℓ2s .

Once Proposition 1.5 is proved, Theorem 1.1 follows from [23, Theorem 1.1]. See [23, Section 3]

for details.

Remark 1.6. We can also obtain existence of local-in-time weak solutions to (1.1) for any sub-

critical regularities s > sc (unless d = k = 1) by combining Proposition 1.5 (i) above with

Theorem 7.3 (and the argument in Remark 7.4) in [23]. However, this result is not so mean-

ingful as unconditional uniqueness shown in Theorem 1.1, since the weak solutions constructed

by [23, Theorem 7.3] turn out to be identical with the (distributional) solutions constructed in
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former works by the fixed point argument in Xs,b- or U2, V 2-type spaces using the Strichartz es-

timates. Note that [23, Theorem 7.3] does not in itself imply any property of the weak solutions

by which the nonlinearity can make sense within the distributional framework.

In Section 2 we will prove several estimates on the number of lattice points satisfying certain

relations. These estimates will be used to prove Proposition 1.5 in Section 3.

2. Preliminaries

In this section, we prepare several estimates on the number of lattice points satisfying certain

relations. These estimates are the key ingredients of the proof of the main multilinear estimates

and shown by use of combinatorial tools such as the divisor bound: For any ε > 0 there is C > 0

such that #
{
m ∈ N : m divides n

}
≤ Cnε for any positive integer n.

Lemma 2.1. Let d ≥ 2. Then, for any η > 0 there exists C > 0 such that

#
{
n ∈ Zd : |n− n∗|2 = µ∗, n ∈ Bd

R

}
≤ CRd−2+η, (2.1)

#
{
(p, q) ∈ Z2 : (p− p∗)2 + 3(q − q∗)2 = µ∗, (p, q) ∈ B2

R

}
≤ CRη, (2.2)

for any n∗ ∈ Zd, (p∗, q∗) ∈ Z2, µ∗ ≥ 0, and any ball Bd
R ⊂ Rd of radius R > 1.

Proof. We only consider the case d = 2 for (2.1); for d ≥ 3, it suffices to fix d− 2 components of

n (which amounts to CRd−2) and then apply the 2d bound for the remaining two components.

When µ∗ ≲ R6, we recall the well-known estimate on the number of lattice points on a circle

for the estimate (2.1), while for (2.2) we refer to the argument in [1], p.117. When µ∗ ≫ R6,

Jarńık’s geometric observation [19] shows that there are at most two points; see e.g. Lemma 1.5

in [2]. □

Corollary 2.2. We have the following estimates.

(i) For any η > 0 there exists C > 0 such that for any R > 1 and n∗, n∗, µ
∗ ∈ Z,

#
{
(n1, n2, n3) ∈ Z3 : n1 + n2 + n3 = n∗, n21 + n22 + n23 = µ∗,

|n1 − n∗|+ |n2| ≤ R
}
≤ CRη.

(2.3)

(ii) Let d ≥ 2. For any η > 0 there is C > 0 such that for any R,R1, R2 > 1, n∗, n∗ ∈ Zd,

µ∗ ∈ Z,

#
{
(n1, n2) ∈ (Zd)2 : n1 + n2 = n∗, |n1|2 + |n2|2 = µ∗, |n1 − n∗| ≤ R

}
≤ CRd−2+η, (2.4)

#
{
(n1, n2, n3) ∈ (Zd)2 : n1 + n2 + n3 = n∗, |n1|2 + |n2|2 + |n3|2 = µ∗,

|n1| ≤ R1, |n2| ≤ R2

}
≤ Cmax{R1, R2}d−2+η min{R1, R2}d.

(2.5)

Proof. (i) The condition for (2.3) implies(
(3n1 − 3n∗) + 2n∗

)2
+ 3(n1 − n∗ + 2n2)

2 = 6µ∗ − 2(n∗)2,

(3n1 − 3n∗)
2 + (n1 − n∗ + 2n2)

2 ≤ 16R2.

(2.3) then follows from (2.2) with p = 3n1 − 3n∗ and q = n1 − n∗ + 2n2.

(ii) For (2.4), the condition implies∣∣(2n1 − 2n∗) + n∗
∣∣2 = 2µ∗ + |n∗|2, |2n1 − 2n∗| ≤ 2R,
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and the estimate follows by (2.1) with n = 2n1 − 2n∗. (2.5) follows easily from (2.4) fixing one

of n1, n2 first. □

Lemma 2.3. We have the following estimates.

(i) For any η > 0 there exists C > 0 such that for any R > 1 and n∗, n∗, µ
∗ ∈ Z,

#
{
(n1, n2, n3) ∈ Z3 : n1 − n2 + n3 = n∗, n21 − n22 + n23 = µ∗,

n2 ̸= n1, n2 ̸= n3, |n1|+ |n3| ≤ R
}
≤ CRη,

(2.6)

#
{
(n1, n2, n3) ∈ Z3 : n1 − n2 + n3 = n∗, n21 − n22 + n23 = µ∗,

n2 ̸= n1, n2 ̸= n3, |n1|+ |n2| ≤ R
}
≤ CRη.

(2.7)

(ii) Let d ≥ 2. For any η > 0 there is C > 0 such that for any R,R1, R2, R3 > 1, n∗ ∈ Zd,

µ∗ ∈ Z,

#
{
(n1, n2) ∈ (Zd)2 : n1 − n2 = n∗ ̸= 0, |n1|2 − |n2|2 = µ∗, |n1| ≤ R

}
≤ CRd−1, (2.8)

#
{
(n1, n2, n3) ∈ (Zd)3 : n1 − n2 + n3 = n∗, |n1|2 − |n2|2 + |n3|2 = µ∗,

n2 ̸= n1, n2 ̸= n3, |n1| ≤ R1, |n3| ≤ R3

}
≤ CRd−1

1 Rd−1
3 max{R1, R3}η,

(2.9)

#
{
(n1, n2, n3) ∈ (Zd)3 : n1 − n2 + n3 = n∗, |n1|2 − |n2|2 + |n3|2 = µ∗,

n2 ̸= n1, n2 ̸= n3, |n1| ≤ R1, |n2| ≤ R2

}
≤ CRd−1

1 Rd−1
2 max{R1, R2}η,

(2.10)

#
{
(n1, n2, n3) ∈ (Zd)3 : n1 − n2 + n3 = n∗, |n1|2 − |n2|2 + |n3|2 = µ∗,

|n1| ≤ R1, |n3| ≤ R3

}
≤ Cmax{R1, R3}dmin{R1, R3}d−2+η.

(2.11)

Proof. (2.6): We deduce from the condition that

0 ̸= (n∗ − n1)(n
∗ − n3) = µ∗∗ := ((n∗)2 − µ∗)/2.

If |µ∗∗| ≲ R6, the divisor bound implies that there are at most O(Rη) choices for n∗ − n1 and

n∗−n3, which determine (n1, n2, n3). If |µ∗∗| ≫ R6, we see that |n∗| ∼ |µ∗∗|1/2 ≫ R3 ≥ |n1|, |n3|.
We may assume n∗ −n1 ≥ n∗ −n3 > 0. It turns out that there are at most two choices for such

(n1, n2, n3) (cf. [8], Lemma 6.1). In fact, suppose that there are three different triplets, and let

a, b, c be the corresponding values for n∗ − n1; hence a ∼ b ∼ c ∼ n∗ ∼ (µ∗∗)1/2 ≫ R3 and they

are mutually different. Since a, b, c divide µ∗∗, lcm(a, b, c) also divides µ∗∗ and thus not greater

than µ∗∗. Moreover, since a, b, c are confined to the interval [n∗ −R,n∗ +R], we have

gcd(a, b), gcd(a, c), gcd(b, c) ≤ 2R

by the Euclidean algorithm. Now, the identity

lcm(a, b, c)gcd(a, b)gcd(a, c)gcd(b, c) = abc · gcd(a, b, c)

from elementary number theory shows that

µ∗∗(2R)3 ≥ abc ∼ (µ∗∗)3/2,

which contradicts the assumption |µ∗∗| ≫ R6.

(2.7): Similarly, we have

0 ̸= (n∗ − n1)(n1 − n2) = µ∗∗
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and the claim follows if |µ∗∗| ≲ R3. Suppose |µ∗∗| ≫ R3 and there are two different triplets

(n1, n2, n3) satisfying the condition. Let a, b denote two different values for n∗ − n1, which are

confined in the interval [n∗ −R,n∗ +R] and satisfy |a|, |b| ≥ |µ∗∗|/(2R). This time we use

lcm(a, b)gcd(a, b) = ab

to deduce that

|µ∗∗| · 2R ≥ (|µ∗∗|/(2R))2,

which contradicts the assumption |µ∗∗| ≫ R3. Therefore, there is at most one choice in this

case.

(2.8): We have

(2n1 − n∗) · n∗ = µ∗, n∗ ̸= 0, |n1 − n∗| ≤ R,

by which n1 is restricted on the intersection of a hyperplane and a ball of radius R, and therefore

the estimate follows.

(2.9): Let us assume R1 ≥ R3. We rewrite the condition as

n1,j − n2,j + n3,j = n∗j , (n1,j)
2 − (n2,j)

2 + (n3,j)
2 = µ∗j , |n1,j | ≤ R1, |n3,j | ≤ R3 (1 ≤ j ≤ d),

µ∗1 + µ∗2 + · · ·+ µ∗d = µ∗, n2 ̸= n1, n2 ̸= n3,

which in particular yield

2(n2,j − n1,j)(n2,j − n3,j) = (n∗j )
2 − µ∗j (1 ≤ j ≤ d).

Note that there is a freedom of choosing µ∗j ’s under the condition µ∗1 + · · ·+ µ∗d = µ∗. For each

j and µ∗j fixed, the number of possible choices for (n1,j , n2,j , n3,j) is estimated as follows:

(i) If µ∗j ̸= (n∗j )
2, then n1,j ̸= n2,j ̸= n3,j and the bound (2.6) is applicable, obtaining

O(Rη
1) for any η > 0.

(ii) If µ∗j = (n∗j )
2 and n1,j = n2,j , we have n3,j = n∗j and estimate the number of such

possibilities by O(R1).

(iii) If µ∗j = (n∗j )
2 and n3,j = n2,j , we obtain O(R3) similarly.

By rearranging coordinates we may assume that µ∗j ̸= (n∗j )
2 for 1 ≤ j ≤ ν and µ∗j = (n∗j )

2 for

ν + 1 ≤ j ≤ d, for some 0 ≤ ν ≤ d.

If ν ≥ 1, for each 1 ≤ j ≤ ν − 1 we use the trivial bound O(R1R3) on the number of possible

(n1,j , n2,j , n3,j), while for ν + 1 ≤ j ≤ d we invoke the bound in (ii) or (iii) above. For j = ν,

observing that µ∗ν is now determined by n∗, µ∗ and (n1,j , n2,j , n3,j)
ν−1
j=1 , we use the bound in (i). In

total, we obtain O((R1R3)
ν−1Rd−ν

1 Rη
1), which is maximized by the claimed one O(Rd−1

1 Rd−1
3 Rη

1)

when ν = d.

If ν = 0, the case (ii) or (iii) occurs for each 1 ≤ j ≤ d. Note that (ii) cannot occur d times;

otherwise the condition n2 ̸= n1 would be violated. Since µ∗j ’s are already fixed, we have an

upper bound O(Rd−1
1 R3), which is also smaller than the claimed one.

(2.10): Simply repeat the argument for (2.9) using (2.7) instead of (2.6).

(2.11): Besides (2.9) it suffices to take into account the case n2 = n1 or n2 = n3, which

amounts to O(max{R1, R3}d). We thus obtain the claimed bound. □
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Remark 2.4. Consider the bound (2.1). Since d-dimensional element n is constrained by one

equality |n − n∗|2 = µ∗, it is initially expected that the number of such n’s is of order at most

Rd−1. In this respect, (2.1) is better by almost one dimension than expected. The same is true

for all bounds in Lemma 2.1, Corollary 2.2, and Lemma 2.3, except for the bound (2.8) which is

no better than the “trivial” one. This fact has a large impact on the optimality of the regularity

range in Theorem 1.1. In fact, for Lemma 3.1 below we will not use (2.8) so that we can cover

the full subcritical range s > sc, while for Lemma 3.3 (only in the case k = 1, d = 2, 3) we will

have to rely on (2.8), resulting in non-optimal lower bounds of regularity in Theorem 1.1 for

these cases. See also Remark 3.4 below.

3. Proof of multilinear estimates

This section is devoted to the proof of Proposition 1.5. We often write a+, for a ∈ R, to
denote a number which must be greater than a but can be taken arbitrarily close to a.

Let us begin with the following:

Lemma 3.1. Let d, k ∈ N with (d, k) ̸= (1, 1), s > sc. Then, we have

∑
n0,n1,n2,...,n2k+1∈Zd

n0−n1+···−n2k+1=0

|n0|2−|n1|2+···−|n2k+1|2=µ

2k+1∏
l=0

ωl(nl) ≲ N−2s
max

2k+1∏
l=0

N s
l ∥ωl∥ℓ2(Zd)

for any µ ∈ Z, {Nl}2k+1
l=0 ⊂ 2N0, and any non-negative functions {ωl}2k+1

l=0 ⊂ ℓ2(Zd) satisfying

supp ωl ⊂ {n : Nl ≤ ⟨n⟩ < 2Nl}, where Nmax := max0≤l≤2k+1Nl. Here, the implicit constant is

uniform in µ and {Nl}.

Proof. We may assume by symmetry that

N0 ≥ N2 ≥ · · · ≥ N2k, N1 ≥ N3 ≥ · · · ≥ N2k+1, N0 ≥ N1.

Note that Nmax = N0 ∼ max{N1, N2}. Moreover, in the case Nmax ∼ Nsecond ≫ Nthird, where

Nsecond and Nthird are the second and the third largest among Nl’s, we may restrict each of ω0

and ωl corresponding to the largest and the second largest frequencies onto a ball of size Nthird

by almost orthogonality.

We fix µ ∈ Z and write “(∗)” to denote the condition

n0 − n1 + · · · − n2k+1 = 0, |n0|2 − |n1|2 + · · · − |n2k+1|2 = µ.

Let S1, S2 be two subsets of the index set {0, 1, . . . , 2k + 1} such that #S1,#S2 ≥ 2 and

S1 ∩ S2 = ∅. Let S3 := {0, 1, . . . , 2k + 1} \ (S1 ∪ S2), which may be empty. Applying the

Cauchy-Schwarz inequality several times, we have1

∑
n0,n1,...,n2k+1

(∗)

2k+1∏
l=0

ωl(nl) =
∑
nm

m∈S3

∏
m∈S3

ωm(nm)
∑
nj

i∈S2

∏
j∈S2

ωj(nj)
∑

ni; i∈S1

(∗)

∏
i∈S1

ωi(ni)

1If S3 = ∅, summation and supremum over (nm)m∈S3 as well as product in m ∈ S3 do not appear in the

following calculation.
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≤
( ∏

m∈S3

Nd/2
m ∥ωm∥ℓ2

)
sup
nm

m∈S3

∑
nj

j∈S2

∏
j∈S2

ωj(nj) ·A1/2
µ

( ∑
ni; i∈S1

(∗)

∏
i∈S1

ωi(ni)
2
)1/2

where Aµ = Aµ

(
(nj)j∈S2 , (nm)m∈S3

)
:= #

{
(ni)i∈S1 : (∗)

}
,

≤
( ∏

m∈S3

Nd/2
m ∥ωm∥ℓ2

)
sup
nm

m∈S3

(
sup
nj

j∈S2

A1/2
µ

)( ∑
nj

j∈S2

∏
j∈S2

ωj(nj)
2
)1/2( ∑

nj

j∈S2

∑
ni; i∈S1

(∗)

∏
i∈S1

ωi(ni)
2
)1/2

≤
( ∏

m∈S3

Nd/2
m ∥ωm∥ℓ2

)( ∏
j∈S2

∥ωj∥ℓ2
)

sup
nm

m∈S3

(
sup
nj

j∈S2

A1/2
µ

)( ∑
ni

i∈S1

Bµ

∏
i∈S1

ωi(ni)
2
)1/2

where Bµ = Bµ

(
(ni)i∈S1 , (nm)m∈S3

)
:= #

{
(nj)j∈S2 : (∗)

}
,

≤
( ∏

m∈S3

Nd/2
m ∥ωm∥ℓ2

)( ∏
j∈S2

∥ωj∥ℓ2
)( ∏

i∈S1

∥ωi∥ℓ2
)

sup
nm

m∈S3

(
sup
nj

j∈S2

A1/2
µ · sup

ni
i∈S1

B1/2
µ

)

≤
∏

m∈S3

Nd/2
m · sup

nj ; j∈S2

nm;m∈S3

A1/2
µ · sup

ni; i∈S1
nm;m∈S3

B1/2
µ ·

2k+1∏
l=0

∥ωl∥ℓ2 .

Hence, it suffices to show, for s > sc and suitable S1, S2, that

sup
nj ; j∈S2

nm;m∈S3

Aµ · sup
ni; i∈S1

nm;m∈S3

Bµ ·
∏

m∈S3

Nd
m ≲

(
N−2

max

2k+1∏
l=0

Nl

)2s
. (3.1)

(I) d ≥ 2, k = 1. Take S1 = {0, 2}, S2 = {1, 3}, and thus S3 = ∅. If N1 ≳ N2, then N0 =

Nmax ∼ N1. We use (2.4) twice and obtain

sup
n1,n3

Aµ · sup
n0,n2

Bµ ≲ Nd−2+
2 Nd−2+

3 ,

which implies (3.1). If N2 ≫ N1 so that N0 = Nmax ∼ N2, we use the almost orthogonality to

restrict n0 and n2 onto balls of size N1, which yields the bound Nd−2+
1 Nd−2+

3 and thus (3.1).

(II) d ≥ 2, k ≥ 2.

Case 1: N1 ≳ N4. Take S1 = {0, 2} and S2 = {1, 3}. In this case the same argument as (I)

leads to the desired estimate. We restrict n0, n2 as before if N2 ∼ Nmax ≫ N1. The estimate

(2.4) implies

LHS of (3.1) ≲ min{N1, N2}d−2+Nd−2+
3

2k+1∏
l=4

Nd
l ≲

(
N−2

max

2k+1∏
l=0

Nl

)d− 2
k
+
,

which is sufficient.

Case 2: N1 ≪ N4. In this case N0 = Nmax ∼ N2 and N4 = Nthird. Take S1 = {0, 2},
S2 = {4, 1, 3}, and restrict n0, n2 into N4-balls if N2 ≫ N4. For the estimate of Aµ and Bµ we

apply (2.4) and (2.11), respectively. We have

LHS of (3.1) ≲ Nd−2+
4 Nd

1N
d−2+
3

2k+1∏
l=5

Nd
l =

(
Nd−2+

4 Nd
1

k∏
i=3

Nd
2i

)(
Nd−2+

3

k∏
j=2

Nd
2j+1

)

≲
(
N−2

max

2k+1∏
l=0

Nl

)d− 2
k
+
,
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which is also sufficient.

(III) d = 1, k ≥ 2. We take S1 = {0, 2, 4} and S2 = {1, 3, 5}. Dividing n0, n2 into max{N1, N4}
scale if N2 ∼ Nmax ≫ N1, we apply (2.3) twice to obtain

LHS of (3.1) ≲ min{N2,max{N1, N4}}0+N0+
3

2k+1∏
l=6

Nl ≲
(
N−2

max

2k+1∏
l=0

Nl

)1− 2
k
+
,

as desired.

This concludes the proof. □

As a corollary, we obtain the following ℓ2 estimate:

Corollary 3.2. Let d, k ∈ N with (d, k) ̸= (1, 1), s > sc, and −s ≤ s′ ≤ s. Then, we have

sup
µ∈Z

∥∥ ∑
n1,n2,...,n2k+1∈Zd

n=n1−n2+···+n2k+1,Φ=µ

2k+1∏
l=1

ωl(nl)
∥∥
ℓ2
s′ (Z

d
n)

≲ ∥ωq∥ℓ2
s′

2k+1∏
l=1
l ̸=q

∥ωl∥ℓ2s

for any 1 ≤ q ≤ 2k + 1.

Proof. We treat the case q = 1; the same argument is applied to the other cases. By duality, it

suffices to show∣∣∣∣ ∑
n0,n1,n2,...,n2k+1∈Zd

n0−n1+···−n2k+1=0

|n0|2−|n1|2+···−|n2k+1|2=µ

2k+1∏
l=0

ωl(nl)

∣∣∣∣ ≤ C∥ω0∥ℓ2−s′
∥ω1∥ℓ2

s′

2k+1∏
l=2

∥ωl∥ℓ2s .

Choose ε > 0 so that s− ε > sc. By Lemma 3.1, the left-hand side is bounded by

∑
N0,...,N2k+1∈2N0

∑
n0,n1,n2,...,n2k+1∈Zd

n0−n1+···−n2k+1=0

|n0|2−|n1|2+···−|n2k+1|2=µ

2k+1∏
l=0

∣∣PNl
ωl(nl)

∣∣

≲
∑

N0,...,N2k+1

(N0N1 · · ·N2k+1

N2
max

)s−ε
2k+1∏
l=0

∥∥PNl
ωl

∥∥
ℓ2

≲
∑

N0,...,N2k+1

(N0N1 · · ·N2k+1

N2
max

)−ε∥∥PN0ω0

∥∥
ℓ2−s′

∥∥PN1ω1

∥∥
ℓ2
s′

2k+1∏
l=2

∥∥PNl
ωl

∥∥
ℓ2s
,

where PNω(n) := 1{N≤⟨n⟩<2N}ω(n), and at the last inequality we have used the fact that

N s
0N

s
1/N

2s
max ≤ N−s′

0 N s′
1 for any −s ≤ s′ ≤ s. The factor (N0N1 · · ·N2k+1/N

2
max)

−ε is enough

for summing up over N0, N1, . . . N2k+1: For Nmax and Nsecond ∼ Nmax we can use Cauchy-

Schwarz by orthogonality, and for the others there is a negative power of Nl. Therefore, the

claim follows. □

We will also use the ℓ∞ estimate below:

Lemma 3.3. Let d, k ∈ N be such that (d, k) ̸= (1, 1) and d < 2+ 2
k . Assume that s ∈ R satisfiess > d

2 − 1
2 if k = 1 and d = 2, 3,

s > se − ε(k) if k ≥ 2 and d = 1, 2,
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where ε(k) := 1
2 min{ 1

k(2k+1) ,
3
5 − 9

16 ,
2k+3

4k(2k+1) ,
3
10 − 1

6} > 0.2 Then, we have

sup
µ∈Z

∥∥ ∑
n1,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

1Ac∩{Φ=µ}

2k+1∏
l=1

ωl(nl)
∥∥
ℓ∞(Zd

n)
≲

∥∥ωq

∥∥
ℓ∞

2k+1∏
l=1
l ̸=q

∥∥ωl

∥∥
ℓ2s

for any 1 ≤ q ≤ 2k + 1.

Proof. It suffices to prove for

s∗ = s∗(d, k) :=

d
2 − 1

2 if k = 1 and d = 2, 3,

se − ε(k) if k ≥ 2 and d = 1, 2

that ∥∥ ∑
n1,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

1Ac∩{Φ=µ}ω̃(nq)

2k+1∏
l=1
l ̸=q

ωl(nl)
∥∥
ℓ∞(Zd

n)
≲

∥∥ω̃∥∥
ℓ∞

2k+1∏
l=1
l ̸=q

N s∗
l

∥∥ωl

∥∥
ℓ2 (3.2)

for any µ ∈ Z, 1 ≤ q ≤ 2k+1, (Nl)
2k+1
l=1 ⊂ 2N0 , and any non-negative functions {ωl}2k+1

l=1 ⊂ ℓ2(Zd)

satisfying supp ωl ⊂ {n : Nl ≤ ⟨n⟩ < 2Nl}. Note that nq is not restricted to a dyadic region. In

the following calculation we denote by (∗) the condition (for given q)

n = n1 − n2 + · · ·+ n2k+1, Φ = µ, (nl)
2k+1
l=1 ̸∈ A,

Nl ≤ ⟨nl⟩ < 2Nl (1 ≤ l ≤ 2k + 1, l ̸= q).

Given q, let T1, T2 be subsets of {1, 2, . . . , 2k+1} such that #T1,#T2 ≥ 2, T1∩T2 = {q}, and
let T3 := {1, 2, . . . , 2k + 1} \ (T1 ∪ T2). Note that T3 may be empty. By the Cauchy-Schwarz

inequality, we have∥∥ ∑
n1,...,n2k+1

(∗)

ω̃(nq)
2k+1∏
l=1
l ̸=q

ωl(nl)
∥∥
ℓ∞

≤ ∥ω̃∥ℓ∞ sup
n

∑
nm

m∈T3

∏
m∈T3

ωm(nm)
∑
nj

j∈T2\{q}

∏
j∈T2\{q}

ωj(nj)
∑

ni; i∈T1

(∗)

∏
i∈T1\{q}

ωi(ni)

≤ ∥ω̃∥ℓ∞
( ∏

m∈T3

Nd/2
m ∥ωm∥ℓ2

)
sup
n,nm

m∈T3

∑
nj

j∈T2\{q}

∏
j∈T2\{q}

ωj(nj)
∑

ni; i∈T1

(∗)

∏
i∈T1\{q}

ωi(ni)

≤ ∥ω̃∥ℓ∞
( ∏

m∈T3

Nd/2
m ∥ωm∥ℓ2

)
sup
n,nm

m∈T3

( ∏
j∈T2\{q}

∥ωj∥ℓ2
)( ∑

nj

j∈T2\{q}

( ∑
ni; i∈T1

(∗)

∏
i∈T1\{q}

ωi(ni)
)2)1/2

≤ ∥ω̃∥ℓ∞
( ∏

m∈T3

Nd/2
m ∥ωm∥ℓ2

)( ∏
j∈T2\{q}

∥ωj∥ℓ2
)

sup
n,nm

m∈T3

( ∑
nj

j∈T2\{q}

A′
µ

∑
ni; i∈T1

(∗)

∏
i∈T1\{q}

ωi(ni)
2
)1/2

,

where A′
µ = A′

µ

(
n, (nl)l∈T2∪T3\{q}

)
:= #

{
(ni)i∈T1 : (∗)

}
,

≤ ∥ω̃∥ℓ∞
( ∏

m∈T3

Nd/2
m ∥ωm∥ℓ2

)( ∏
j∈T2\{q}

∥ωj∥ℓ2
)

sup
n,nm

m∈T3

(
sup
nj

j∈T2\{q}

A′
µ ·

∑
ni

i∈T1\{q}

∑
nj ; j∈T2

(∗)

∏
i∈T1\{q}

ωi(ni)
2
)1/2

2When k ≥ 2 and d = 1, 2, it holds that se − sc > ε(k) > 0. Hence, s > se − ε(k) implies s > sc in this case.
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≤ ∥ω̃∥ℓ∞
( ∏

m∈T3

Nd/2
m ∥ωm∥ℓ2

)( ∏
j∈T2\{q}

∥ωj∥ℓ2
)( ∏

i∈T1\{q}

∥ωi∥ℓ2
)

sup
n,nm

m∈T3

(
sup
nj

j∈T2\{q}

A′
µ · sup

ni

i∈T1\{q}

B′
µ

)1/2
,

where B′
µ = B′

µ

(
n, (nl)l∈T1∪T3\{q}

)
:= #

{
(nj)j∈T2 : (∗)

}
. Hence, it suffices to show that

sup
n,nl
l ̸∈T1

#
{
(ni)i∈T1 : (∗)

}
· sup
n,nl
l ̸∈T2

#
{
(nj)j∈T2 : (∗)

}
·
∏

m∈T3

Nd
m ≲

2k+1∏
l=1
l ̸=q

N2s∗
l (3.3)

for any q ∈ {1, 2, . . . , 2k + 1} with an appropriate choice of T1, T2. Moreover, in the case k ≥ 2

we will need to fix the order of size of |n1|, . . . , |n2k+1|. We see that

LHS of (3.2) ≤
∑

σ∈S2k+1

∥∥ ∑
n1,...,n2k+1

(∗)

1{nσ(1)⪰nσ(2)⪰···⪰nσ(2k+1)}ω̃(nq)
2k+1∏
l=1
l ̸=q

ωl(nl)
∥∥
ℓ∞(Zd

n)
,

where S2k+1 denotes the symmetric group of degree 2k+1. By the same argument as above, it

also suffices to show that

sup
n,nl
l ̸∈T1

#
{
(ni)i∈T1 : (∗), nσ(1) ⪰ · · · ⪰ nσ(2k+1)

}
× sup

n,nl
l ̸∈T2

#
{
(nj)j∈T2 : (∗), nσ(1) ⪰ · · · ⪰ nσ(2k+1)

}
·
∏

m∈T3

Nd
m ≲

2k+1∏
l=1
l ̸=q

N2s∗
l

(3.4)

for any q ∈ {1, 2, . . . , 2k + 1} and σ ∈ S2k+1, with suitable T1, T2.

(I) k = 1 and d = 2, 3. The desired bound will be obtained from the estimates (2.4) and (2.8).

We only consider the worst case q = 2: Take T1 = {1, 2}, T2 = {2, 3}, then T3 = ∅ and two

applications of (2.8) yield

sup
n,n3

#
{
(n1, n2) ∈ (Zd)2 : (∗)

}
· sup
n,n1

#
{
(n2, n3) ∈ (Zd)2 : (∗)

}
≲ Nd−1

1 Nd−1
3 ,

which verifies (3.3).

(II) k ≥ 2 and d = 2. We verify (3.4) considering several cases separately according to the

choice of q, σ. Recall that n[m] is the m-th largest among (nl)
2k+1
l=1 in the order ⪯. For given

σ ∈ S2k+1, we denote by [m] the index l such that n[m] = nl; i.e., [m] := σ−1(m).

Case 1: nq = n[1]. We take T1 = {q, [2], [3]} and T2 = {q, [4], [5]}. By the definition of the

exceptional set A, we have nq ̸= n[2], n[3], n[4], n[5] and n[2] ̸= n[3]. Using one of the estimates

(2.5), (2.9), and (2.10), we obtain that

sup
n,nl; l ̸∈T1

#
{
(ni)i∈T1 : (∗)

}
≲ N1+

[2] N[3].

These estimates also imply

sup
n,nl; l ̸∈T2

#
{
(nj)j∈T2 : (∗)

}
≲ N1+

[4] N[5]

if n[4] ̸= n[5], while we have

sup
n,nl; l ̸∈T2

#
{
(nj)j∈T2 : (∗)

}
≲ N2

[5] ≤ N[4]N[5]

under the additional assumption n[4] = n[5]. Consequently, the left hand side of (3.4) is bounded

by

N1+
[2] N[3]N

1+
[4] N[5]

2k+1∏
l=6

N2
[l] ≤

2k+1∏
l=2

N2sc+
[l] ,
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which is favorable since se = sc +
1

k(2k+1) > sc + ε(k) in this case.

Case 2: n[1] ̸= nq = n[2]. We take T1 = {[1], q, [3]}, T2 = {q, [4], [5]}. The same argument as

Case 1 yields that

LHS of (3.4) ≲ N1+
[1] N[3]N

1+
[4] N[5]

2k+1∏
l=6

N2
[l] ≲

(
N[1]

2k+1∏
l=3

N[l]

)2sc+
.

Case 3: n[2] ̸= nq = n[3]. This is the only delicate case. We take T1 = {[1], [2], q} and

T2 = {q, [4], [5]}, but now both nq = n[4] and n[4] = n[5] are possible to occur. When nq = n[4],

noticing |nq| ≤ 2N[4], the same argument as above implies that

LHS of (3.4) ≲ N1+
[2] N[4] ·N2

[4]

2k+1∏
l=6

N2
[l].

If we further assume that k ≥ 3, this is bounded by

N1+
[2] N[4] ·N2

[4]

k+2∏
l=6

N2
[l] ·

2k+1∏
l=k+3

N2
[l] ≤

(
N[1]N[2]N[4]

k+2∏
l=6

N[l]

)2sc+(
N[5]

2k+1∏
l=k+3

N[l]

)2sc
,

which is sufficient for the claim. For k = 2, however, the resulting bound is (N[1]N[2]N[4])
4
3
+,

which is not acceptable since 2
3 >

3
5 = se > s∗. We now make use of the additional property

⟨n[2]⟩ > ⟨nq⟩3/2 of Ac. Since N[4] ≤ ⟨nq⟩ < (2N[2])
2/3, we have

LHS of (3.4) ≲ N1+
[2] N[4] ·N2

[4] ≲ N
9
4
+

[2] N
9
8

[4] ≤ (N[1]N[2]N[4])
9
8
+.

This is sufficient, because se =
3
5 >

9
16 + ε(2). For the remaining cases (i.e., nq ̸= n[4] = n[5] or

nq ̸= n[4] ̸= n[5]), we treat just as Case 1 and obtain

LHS of (3.4) ≲ N2+
[2] ·N1+

[4] N[5]

2k+1∏
l=6

N2
[l] ≲

(
N[1]N[2]

2k+1∏
l=4

N[l]

)2sc+
.

Case 4: n[3] ̸= nq = n[4]. We take T1 = {[1], [2], q}, T2 = {[3], q, [5]}. In this case nq = n[5] is

possible. The same argument as Case 1 with |nq| < 2N[3] implies

LHS of (3.4) ≲ N1+
[2] N[3] ·N1+

[3] N[5]

2k+1∏
l=6

N2
[l] ≲

(
N[1]N[2]N[3]

2k+1∏
l=5

N[l]

)2sc+
,

as desired.

Case 5: nq ̸= n[1], n[2], n[3], n[4]. We take T1 = {[1], [2], q}, T2 = {[3], [4], q}. In this case

n[3] = n[4] is possible, and the same argument as Case 1 with |nq| < 2N[4] implies

LHS of (3.4) ≲ N1+
[2] N[4] ·N2+

[4]

2k+1∏
l=5
l ̸=q

N2
[l] ≲

( 2k+1∏
l=1
l ̸=q

N[l]

)2sc+
,

which is sufficient.

(III) k ≥ 2 and d = 1. We follow the argument in (II) using (2.3), (2.6), and (2.7) instead of

(2.5), (2.9), and (2.10), respectively.

Case 1: nq = n[1] (T1 = {q, [2], [3]}, T2 = {q, [4], [5]}). Taking into account the case n[4] =

n[5], we have

LHS of (3.4) ≲ N0+
[2] (N

0+
[4] +N[5])

2k+1∏
l=6

N[l] ≤
2k+1∏
l=2

N
1− 3

2k
+

[l] .
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This is sufficient, since se =
2k−1

2(2k+1) =
1
2 − 3

4k + 2k+3
4k(2k+1) >

1
2 − 3

4k + ε(k).

Case 2: n[1] ̸= nq = n[2] (T1 = {[1], q, [3]}, T2 = {q, [4], [5]}). In the same manner, we have

LHS of (3.4) ≲ N0+
[1] (N

0+
[4] +N[5])

2k+1∏
l=6

N[l] ≤
(
N[1]

2k+1∏
l=3

N[l]

)1− 3
2k

+
.

Case 3: n[2] ̸= nq = n[3] (T1 = {[1], [2], q}, T2 = {q, [4], [5]}). In contrast to the case of d = 2,

a crude estimate suffices for any k ≥ 2. We have

LHS of (3.4) ≲ N0+
[2] (N

0+
[4] +N[4])

2k+1∏
l=6

N[l] ≤


(N[1]N[2]N[4])

1
3
+ if k = 2,(

N[1]N[2]

2k+1∏
l=4

N[l]

)1− 3
2k

+
if k ≥ 3,

which is sufficient since se =
3
10 >

1
6 + ε(k) if k = 2.

Case 4: n[3] ̸= nq = n[4] (T1 = {[1], [2], q}, T2 = {[3], q, [5]}). We have

LHS of (3.4) ≲ N0+
[2] (N

0+
[3] +N[5])

2k+1∏
l=6

N[l] ≤
(
N[1]N[2]N[3]

2k+1∏
l=5

N[l]

)1− 3
2k

+
.

Case 5: nq ̸= n[1], n[2], n[3], n[4] (T1 = {[1], [2], q}, T2 = {[3], [4], q}). We have

LHS of (3.4) ≲ N0+
[2] (N

0+
[4] +N[4])

2k+1∏
l=5
l ̸=q

N[l] ≲
( 2k+1∏

l=1
l ̸=q

N[l]

)1− 3
2k

+
.

This completes the proof. □

Remark 3.4. When k = 1 and d = 2, 3, there is still some gap between the regularity threshold
d
2 − 1

2 obtained in Lemma 3.3 and the expected one max{sc, se} = se =
d
6 . In the case d = 2, it

turns out that the claimed estimate actually fails for s < 1
2 ; this can be easily seen by testing

with ω1 = 1{(n1,0):|n1|≤N}, ω2 = 1{(n1,n2):max(|n1|,|n2|)≤N}, ω3 = 1{(0,n2):|n2|≤N}, q = 2, µ = 0,

n = 0, and taking N → ∞. The threshold might be improved by some further analysis in the

case d = 3.

We are now ready to give a proof of Proposition 1.5.

Proof of Proposition 1.5. Estimate (B1). This is a special case (s′ = s) of Corollary 3.2.

Estimate (B1)’. This follows from the Sobolev inequality, since s2 > d/2.

Estimate (R). If k = 1, then we have∣∣∣∣ ∑
n1,n2,n3∈Zd

n=n1−n2+n3

1A

3∏
l=1

ωl(nl)

∣∣∣∣ ≤ [ ∑
n=n1−n2+n3

n2=n1

+
∑

n=n1−n2+n3
n2=n3

]
|ω1(n1)ω2(n2)ω3(n3)|.

By the Cauchy-Schwarz inequality, for s ≥ 0 we have

LHS of (R) ≤ ∥ω1∥ℓ2∥ω2∥ℓ2∥ω3∥ℓ2s + ∥ω1∥ℓ2s∥ω2∥ℓ2∥ω3∥ℓ2 ≤ 2

3∏
l=1

∥ωl∥ℓ2s .

For k ≥ 2, we have∣∣∣∣ ∑
n1,n2,...,n2k+1∈Zd

n=n1−n2+···+n2k+1

1A

2k+1∏
l=1

ωl(nl)

∣∣∣∣ ≤ ∑
σ∈S2k+1

3∑
i=1

∑
(nl)

2k+1
l=1 ∈Ai, n[l]=nσ(l)

n=n1−n2+···+n2k+1

2k+1∏
l=1

|ω[l](n[l])|.
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Let us focus on the case σ = id for simplicity. The terms for i = 1 are treated with Young’s

inequality:∥∥⟨n⟩s ∑
n1∈Zd

|ω1(n1)ω2(n1)|
∑

n=n3−n4+···+n2k+1

2k+1∏
l=3

|ωl(nl)|
∥∥
ℓ2

≲
∥∥ ∑
n1∈Zd

⟨n1⟩s+
d(k−1)

2k |ω1(n1)ω2(n1)|
∑

n=n3−n4+···+n2k+1

⟨n3⟩
d(k−1)

2k |ω3(n3)|
2k+1∏
l=4

⟨nl⟩−
d
2k |ωl(nl)|

∥∥
ℓ2

≤ ∥ω1∥ℓ2s∥ω2∥ℓ2
d(k−1)

2k

∥ω3∥ℓ2
d(k−1)

2k

2k+1∏
l=4

∥ωl∥ℓ1
− d

2k

.

This is sufficient, since d(k−1)
2k = − d

2k +
d
2 < − d

2k+1 +
d
2 = se. The case i = 2 is treated in almost

the same manner. For i = 3, we exploit the restriction ⟨n2⟩ ≤ ⟨n3⟩3/2 to obtain

∥∥⟨n⟩s ∑
n3∈Zd

|ω3(n3)ω4(n3)|
∑

n=n1−n2+n5−···+n2k+1

|ω1(n1)ω2(n2)|
2k+1∏
l=5

|ωl(nl)|
∥∥
ℓ2

≲
∥∥ ∑
n3∈Zd

⟨n3⟩
d(2k−3/2)
2k+1/2 |ω3(n3)ω4(n3)|

×
∑

n=n1−n2+n5−···+n2k+1

⟨n1⟩s|ω1(n1)|⟨n2⟩−
d

2k+1/2 |ω2(n2)|
2k+1∏
l=5

⟨nl⟩
− d

2k+1/2 |ωl(nl)|
∥∥
ℓ2

≤ ∥ω1∥ℓ2s∥ω3∥ℓ2
d(2k−3/2)
2(2k+1/2)

∥ω4∥ℓ2
d(2k−3/2)
2(2k+1/2)

∥ω2∥ℓ1
− d

2k+1/2

2k+1∏
l=5

∥ωl∥ℓ1
− d

2k+1/2

.

This is also sufficient, because d(2k−3/2)
2(2k+1/2) = − d

2k+1/2 + d
2 < − d

2k+1 + d
2 = se.

Estimates (B2), (B2)’, (B3). Consider the following three cases separately: (i) d ≥ 2+ 2
k , (ii)

d = 1, 2 and k ≥ 2, (iii) d = 2, 3 and k = 1.

For (i), we use Corollary 3.2 with σ = −sc to obtain (B2). The estimate (B2)’ is verified by

the Sobolev inequalities

∥fg∥H−sc ≲ ∥f∥H−sc∥g∥Hs2 , ∥fg∥Hs2 ≲ ∥f∥Hs2∥g∥Hs2 .

Note that 0 ≤ sc <
d
2 < s2. For (B3), we use the Sobolev embeddings

∥f∥H−sc ≲ ∥f∥
L

dk
dk−1

, ∥f∥
L

dk(2k+1)
dk−1

≲ ∥f∥
H

se+
1

k(2k+1)
,

and note that sc = se +
1

2k+1(d− 2− 1
k ) ≥ se +

1
k(2k+1) if d ≥ 2 + 2

k .

For (ii), Lemma 3.3 gives (B2). (B2)’ follows from the inequality ∥ϕ ∗ ψ∥ℓ∞ ≲ ∥ϕ∥ℓ∞
∥∥ψ∥∥

ℓ2s2
for any s2 > d/2. Since s ≥ se and ∥f∥L2k+1 ≲ ∥f∥Hse , (B3) holds.

For (iii), neither Corollary 3.2 nor Lemma 3.3 is sufficient, so we interpolate these estimates

to optimize the regularity range. Let

M(ω1, ω2, ω3)(n) :=
∑

n=n1−n2+n3

1{n1 ̸=n2 ̸=n3}ω1(n1)ω2(n2)ω3(n3),

Mµ(ω1, ω2, ω3)(n) :=
∑

n=n1−n2+n3

1{n1 ̸=n2 ̸=n3}∩{Φ=µ}ω1(n1)ω2(n2)ω3(n3) (µ ∈ Z).

We have already seen in (i), (ii) that∥∥M(ω1, ω2, ω3)
∥∥
ℓ2
−( d2−1)

≲
3∏

l=1

∥ωl∥ℓ2
se+

1
3

,
∥∥M(ω1, ω2, ω3)

∥∥
ℓ∞

≲
3∏

l=1

∥ωl∥ℓ2se ,
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and also that∥∥M(ω1, ω2, ω3)
∥∥
ℓ2
−( d2−1)

≲ ∥ωq∥ℓ2
−( d2−1)

3∏
l=1
l ̸=q

∥ωl∥ℓ2s2 ,
∥∥M(ω1, ω2, ω3)

∥∥
ℓ∞

≲ ∥ωq∥ℓ∞
3∏

l=1
l ̸=q

∥ωl∥ℓ2s2 ,

while Corollary 3.2 and Lemma 3.3 give∥∥Mµ(ω1, ω2, ω3)
∥∥
ℓ2
−( d2−1)

≲ ∥ωq∥ℓ2
−( d2−1)

3∏
l=1
l ̸=q

∥ωl∥ℓ2d
2−1+

,

∥∥Mµ(ω1, ω2, ω3)
∥∥
ℓ∞

≲ ∥ωq∥ℓ∞
3∏

l=1
l ̸=q

∥ωl∥ℓ2d
2− 1

2+

(µ ∈ Z, 1 ≤ q ≤ 3).

Interpolating these estimates, we have∥∥M(ω1, ω2, ω3)
∥∥
ℓ
2/θ

−θ( d2−1)

≲
3∏

l=1

∥ωl∥ℓ2
se+

θ
3

,
∥∥M(ω1, ω2, ω3)

∥∥
ℓ
2/θ

−θ( d2−1)

≲ ∥ωq∥ℓ2/θ
−θ( d2−1)

3∏
l=1
l ̸=q

∥ωl∥ℓ2s2 ,

∥∥Mµ(ω1, ω2, ω3)
∥∥
ℓ
2/θ

−θ( d2−1)

≲ ∥ωq∥ℓ2/θ
−θ( d2−1)

3∏
l=1
l ̸=q

∥ωl∥ℓ2
d
2− 1+θ

2 +

for θ ∈ [0, 1]. To minimize the lower bound of regularity max{se + θ
3 ,

d
2 − 1+θ

2 }, we choose

θ = 2d−3
5 . From the resulting estimates, we obtain (B3), (B2)’, and (B2), respectively. □
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