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Abstract4

We initiate the systematic algorithmic study for gerrymandering over graphs that was recently5

introduced by Cohen-Zemach, Lewenberg and Rosenschein. Namely, we study a strategic procedure6

for a political districting designer to draw electoral district boundaries so that a particular target7

candidate can win in an election. We focus on the existence of such a strategy under the plurality8

voting rule, and give interesting contrasts which classify easy and hard instances with respect to9

polynomial-time solvability. For example, we prove that the problem for trees is strongly NP-10

complete (thus unlikely to have a pseudo-polynomial-time algorithm), but has a pseudo-polynomial-11

time algorithm when the number of candidates is constant. Another example is to prove that the12

problem for complete graphs is NP-complete when the number of electoral districts is two, while is13

solvable in polynomial time when it is more than two.14

Keywords: Gerrymandering; Computational Social Choice; Graph Algorithms15

1 Introduction16

Control in voting is one of the main topics in computational social choice. For example, Faliszewski and17

Rothe [12] dedicated one chapter on “Control and Bribery in Voting” for Handbook of Computational18

Social Choice, and gave an overview of the topic. One of the earliest papers was written by Bartholdi,19

Tovey, and Trick [17] who studied the manipulability of elections from the viewpoint of computational20

complexity. Among others, they studied the manipulation of the election result by partitioning the set21

of voters. They called the problem “Control by Partition of Voters,” but in fact, this is quite similar to22

the problem that is usually called gerrymandering in the political geography literature.23

We study the gerrymandering model that is proposed by Cohen-Zemach, Lewenberg and Rosenschein24

[7]. For brevity, we describe their model only for the plurality voting rule, which we adopt in this paper.25

Namely, we consider a hierarchical voting process as follows. The set of voters is partitioned into several26

groups, and each of the groups holds an independent election. From each group, one candidate is elected27

as a nominee. Then, among the elected nominees, a final voting is held to determine the winner. In28

the plurality voting rule, a candidate who gets the plurality votes is a nominee in the first stage, and a29

nominee who won in the most groups is a final winner.30

Gerrymandering is a word that means a strategic procedure for a political districting designer to31

draw electoral district boundaries so that the outcome of the election can be under control. Typically,32

such control implies the win of a particular candidate in the election. Gerrymandering is considered a33

bad practice, and one of the main motivations of research in political (re)districting is to avoid gerry-34

mandering.35

To model geographic constraints, Cohen-Zemach et al. [7] used a network structure, i.e., an undirected36

graph. Cohen-Zemach et al. [7] called the framework the gerrymandering over graphs. In gerrymandering37

over graphs, we are given an undirected graph G = (V,E), a natural number k, a set C of candidates,38

a target candidate p ∈ C, the weight w(v) of each vertex v ∈ V , and a candidate c(v) preferred by39
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Figure 1: (a) Input graph G = (V,E), C = {p, q1, q2} and k = 3, where the weight w(v) of each vertex v
is written inside the vertex (circle) and the candidate c(v) ∈ C preferred by v is written inside the square
attached to v. (b) A desired partition of V into k = 3 parts V1, V2, V3. In the first stage of the voting
process, q1 wins in V1 and the target candidate p wins in V2 and V3. Thus, p is elected in the second
stage as the final winner.

each vertex v ∈ V . See also Figure 1. We want to decide if there exists a partition of V into exactly k40

non-empty parts V1, V2, . . . , Vk such that (1) each part in the partition induces a connected subgraph of41

G and (2) the number of parts in which p wins is larger than the number of parts in which any other42

candidate wins. Section 2 will give a more formal description.43

The contributions of their paper [7] were two-fold. First, they proved that it is NP-complete to44

decide if there is a partition of a given graph such that each part contains at least two vertices and45

the target candidate p wins in at least b parts, for a given positive integer b. Second, they conducted46

simulation studies on random graphs and real-world networks for their original problem setting.47

1.1 Our results48

In this paper, we pursue theoretical studies of gerrymandering over graphs from the algorithmic point49

of view, and give a more systematic treatment to the problem. More specifically, we aim at classifying50

easy and hard instances of gerrymandering over graphs with respect to polynomial-time solvability. The51

results are summarized as follows.52

On the negative side, we prove that the problem is NP-complete even for very restricted cases. First,53

we prove the hardness even when k = 2, |C| = 2, and G is complete. The same hardness also applies54

when G is a planar graph of pathwidth two (K2,n). Second, we prove the hardness when all vertex55

weights are identical and |C| = 4. Third, we prove that the problem is strongly NP-complete when G is56

a tree of diameter four (thus, cannot be solved in pseudo-polynomial time unless P = NP).57

On the positive side, we provide polynomial-time algorithms for the following special cases of trees.58

First, we solve the problem for stars (i.e., trees of diameter two) in polynomial time. Second, we give59

a polynomial-time algorithm for paths when |C| is constant. Third, we give a pseudo-polynomial-time60

algorithm for trees when |C| is constant; this gives an interesting contrast to the strong NP-completeness61

for trees when |C| is a part of the input. We note that it is easy to see that the problem can be solved62

in polynomial time for trees when k is constant (nevertheless, we give a proof for completeness).63

As another interesting contrast, we give a polynomial-time algorithm for complete graphs when k ≥ 3;64

recall that the problem is NP-complete when k = 2. We also give a pseudo-polynomial-time algorithm65

when k = 2.66

We note that the following two cases are unsettled: a polynomial-time algorithm for paths (when67

|C| is not constant) and one for trees (when |C| is constant). They form main open problems from this68

paper.69

1.2 Past Work70

As mentioned before, control in voting is one of the major topics in computational social choice theory.71

After the paper by Bartholdi, Tovey, and Trick [17], numerous authors studied several variants, e.g.,72

[16, 15, 11, 19, 3, 9, 10, 1, 2, 22, 4].73
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To cope with gerrymandering, several authors have studied the political (re)districting problem. In74

the political districting problem, we are given a geographic region with population, and want to partition75

the region into several parts as to satisfy given constraints such as the shape of each part, small variance76

of the populations among parts, etc. In the operations research literature, heuristic algorithms have been77

developed, e.g., [20, 5, 23, 6]. To the best of the authors’ knowledge, there seems no algorithm with a78

theoretical guarantee for the quality of the output.79

As theoretical studies for gerrymandering, we are aware of four papers in which NP-hardness is80

proved. Puppe and Tasnádi [21] treated geographic constraints by combinatorics (i.e., certain sets of81

voters cannot form parts in the partition). Fleiner, Nagy and Tasnádi [13] and Lewenberg, Lev and82

Rosenschein [18] treated geographic constraints by geometry, where each group needs to be induced by83

a simply connected region in the plane in [13], and each group is determined by a closest ballot box84

in [18]. Cohen-Zemach, Lewenberg and Rosenschein [7] treated geographic constraints by networks, and85

each group needs to be induced by a connected subgraph. We adopt the model by Cohen-Zemach et al.86

in this paper.87

1.3 Organization of the Paper88

We start with the formal problem description in Section 2. The NP-completeness is discussed in Sec-89

tion 3. Algorithms for trees are given in Section 4. We provide algorithms for complete graphs in90

Section 5, and conclude the paper in Section 6.91

2 Problem Description92

Let G = (V,E) be an undirected graph. For a positive integer k, a partition of V into non-empty k93

subsets V1, V2, . . . , Vk is called a connected partition of G if the induced subgraph G[Vi] is connected94

for every i ∈ {1, 2, . . . , k}. We sometimes call each connected component G[Vi] a constituency in the95

connected partition of G.96

Let C be a finite set called the set of candidates. One element p of C is designated as the target97

candidate. We often denote C = {p, q1, q2, . . . , q`}. Each vertex v ∈ V has an associated positive integer98

weight w(v), and an associated candidate c(v) ∈ C that the vertex v prefers. Since each vertex v prefers99

only one candidate c(v), we assume without loss of generality that |C| ≤ |V |. For a vertex subset U ⊆ V100

of G, the set of all candidates that receive the largest total weight in U is denoted by top(U), that is,101

top(U) := arg max
q∈C

 ∑
v∈U : c(v)=q

w(v)

 .

See also Figure 2. An element of top(U) is often referred to as a top candidate in U (or in G[U ]). We102

sometimes say that a candidate q ∈ C wins in a constituency G[U ] if q ∈ top(U); in particular, q ∈ C103

wins alone in G[U ] if top(U) = {q}.104

The gerrymandering problem over a graph can be formulated as follows. We are given an undirected105

graph G = (V,E), the set C of candidates, the target candidate p ∈ C, and a positive integer k. For each106

vertex v ∈ V , we are also given an associated positive integer weight w(v) and an associated candidate107

c(v). Then, we want to decide if there exists a connected partition of G into k parts V1, V2, . . . , Vk such108

that p is the unique top candidate in the most constituencies of the partition; namely109

|{i ∈ {1, 2, . . . , k} : {p} = top(Vi)}| > |{i ∈ {1, 2, . . . , k} : q ∈ top(Vi)}| ∀ q ∈ C \ {p}.

The left-hand side represents the number of constituencies in which p wins alone, and the right-hand side110

represents the number of constituencies in which q is one of the top candidates. Therefore, the condition111

means that in the connected partition V1, V2, . . . , Vk of G, the target candidate p can win in the most112

constituencies no matter which tie-breaking rule is adopted among the top candidates. Such a connected113

partition of G is often referred to as a feasible solution in this paper. See also Figure 2. Note that if114

|V | < k or G has more than k connected components, then we can immediately conclude that there is115

no feasible solution.116
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Figure 2: (a) A connected partition of a path G (which is not a feasible solution), and (b) a feasible
solution, where k = 5, p is the target candidate, and top(Vi) is written below each constituency Vi.

Algorithmic Complexity An algorithm is said to be pseudo-polynomial-time if its running time is117

bounded by a polynomial in the numerical values of the input. A problem is said to be strongly NP-118

complete if it remains NP-complete even when the numerical values of the input are bounded by a119

polynomial in the encoding length of the input. Thus, a strongly NP-complete problem does not admit120

a pseudo-polynomial-time algorithm unless P = NP.121

3 Hardness of Gerrymandering122

In this section, we prove that the gerrymandering problem is computationally intractable even for very123

restricted cases.124

3.1 Hardness via Partition125

We first consider the case where both k and |C| are fixed to two.126

Theorem 1. The gerrymandering problem is NP-complete when k = 2, |C| = 2, and G is either a127

complete bipartite graph K2,n or a complete graph.128

Proof. We give a polynomial-time reduction from Partition: an instance is given by a list of n positive129

integers a1, a2, . . . , an, and the problem asks to decide if there exists a set S ⊆ {1, 2, . . . , n} such that130 ∑
i∈S ai =

∑
i 6∈S ai. It is known [14] that Partition is NP-complete. We now construct an instance of131

the gerrymandering problem. Let G = (U, V ;E) be a complete bipartite graph with U := {u1, u2} and132

V := {v1, v2, . . . , vn}. For each v ∈ U ∪ V , we define133

w(v) :=

ε+
1

2

n∑
i=1

ai if v ∈ U ;

ai if v = vi for i ∈ {1, 2, . . . , n},

where ε = 1
3 . We note that we can make each w(v) an integer by scaling the weight function, but we use134

the fractional weight function as above to simplify the description. Let C := {p, q}, where p is the target135

candidate, and define c(v) := p if v ∈ U , and c(v) := q if v ∈ V . Let k := 2.136

For the NP-completeness on complete graphs, we join every pair of vertices in the bipartite graph137

G = (U, V ;E) above.138

Since the membership in NP is easy, to complete the proof of Theorem 1, it suffices to prove the139

following claim.140
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Claim 1. The original instance of Partition has a desired set S ⊆ {1, 2, . . . , n} if and only if the141

corresponding instance of the gerrymandering problem has a feasible solution.142

We note that all arguments below hold for both complete bipartite graphs K2,n and complete graphs.143

We first prove the necessity. If S ⊆ {1, 2, . . . , n} satisfies that
∑
i∈S ai =

∑
i6∈S ai, then we define144

V1 := {u1} ∪ {vi : i ∈ S} and V2 := {u2} ∪ {vi : i 6∈ S}. Then, (V1, V2) is a partition of U ∪ V such145

that G[Vj ] is connected and top(Vj) = {p} for j ∈ {1, 2}. Therefore, (V1, V2) is a feasible solution to the146

gerrymandering problem.147

To show the sufficiency, suppose that (V1, V2) is a feasible solution to the gerrymandering problem.148

Since k = 2, it holds that |{j ∈ {1, 2} : {p} = top(Vj)}| = 2, that is, top(V1) = top(V2) = {p}. Recall149

that only two vertices u1 and u2 prefer the target candidate p. Since top(V1) = top(V2) = {p}, we150

have Vj ∩ {u1, u2} 6= ∅ for each j ∈ {1, 2}; we may thus assume that u1 ∈ V1 and u2 ∈ V2. Let151

S := {i ∈ {1, 2, . . . , n} : vi ∈ V1}. Then, top(V1) = top(V2) = {p} implies that152

∑
i∈S

ai =
∑

v∈V ∩V1

w(v) < w(u1) = ε+
1

2

n∑
i=1

ai,

∑
i 6∈S

ai =
∑

v∈V ∩V2

w(v) < w(u2) = ε+
1

2

n∑
i=1

ai.

By these inequalities, we have that
∑
i∈S ai = 1

2

∑n
i=1 ai =

∑
i6∈S ai, which shows that S is a desired set153

to Partition.154

We note that a complete bipartite graph K2,n is of pathwidth two. Thus, the gerrymandering problem155

remains NP-complete even for bounded pathwidth graphs and k = |C| = 2.156

We also note that the above NP-completeness proof works also for the case with k = 2 and |C| ≥ 3.157

To see this, let C := {p, q, q1, . . . , q`}, construct a complete graph or a complete bipartite graph as in the158

proof of Theorem 1, and add a new vertex ui with c(ui) = qi and w(ui) = 1
3 together with appropriate159

incident edges for each i ∈ {1, 2, . . . , `}. Since u1, . . . , u` do not affect the arguments in the proof of160

Theorem 1, we obtain the following corollary.161

Corollary 1. The gerrymandering problem is NP-complete when k = 2, |C| ≥ 3, and G is either a162

complete bipartite graph K2,n or a complete graph.163

In contrast to the NP-completeness on complete graphs for k = 2, we will prove in Section 5 that164

the problem is solvable in polynomial time if G is a complete graph and k ≥ 3; note that |C| is not165

necessarily fixed.166

When there is no restriction on G, the NP-completeness proof can be extended to the case with k ≥ 2.167

To see this, construct a complete graph or a complete bipartite graph as in the proof of Theorem 1 (or168

Corollary 1) and add a set R of k − 2 isolated vertices such that |{v ∈ R : c(v) = p}| = bk−22 c and169

|{v ∈ R : c(v) = q}| = dk−22 e. Let G = (V,E) be the obtained graph. Then, the obtained instance is170

equivalent to finding a connected partition (V1, V2) of G[V \R] such that top(V1) = top(V2) = {p}, which171

is exactly the same as Theorem 1 (or Corollary 1). This shows the following corollary.172

Corollary 2. The gerrymandering problem is NP-complete for any fixed k ≥ 2 and any fixed |C| ≥ 2.173

3.2 Hardness for Unit Weight Case via 3-Partition174

We then consider the case where every vertex has a unit weight.175

Theorem 2. The gerrymandering problem is NP-complete even if w(v) = 1 for every v ∈ V and |C| = 4.176

Proof. We give a polynomial-time reduction from 3-Partition: given a list of 3n positive integers a1, a2, . . . , a3n177

as an instance, the problem asks to decide if there exists a partition S1, S2, . . . , Sn of {1, 2, . . . , 3n} such178

that
∑
i∈Sj

ai = 1
n

∑3n
i=1 ai for every j ∈ {1, 2, . . . , n}. It is known that 3-Partition remains NP-complete179

even when each integer ai is bounded by some polynomial in n (see, e.g., [14]). We may assume that180

t := 1
n

∑3n
i=1 ai is an integer, since otherwise we can immediately conclude that there exists no solution,181

because
∑
i∈Sj

ai is an integer.182
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Figure 3: Construction for Theorem 2.

We construct an instance of the gerrymandering problem. As Figure 3 illustrates, consider a graph183

G = (V,E) defined as follows:184

U := {u1, u2, . . . , un} ∪ {ui,h : i ∈ {1, 2, . . . , n}, h ∈ {1, 2, . . . , t}},
W := {wi,h : i ∈ {1, 2, . . . , n}, h ∈ {1, 2, . . . , t}} ∪ {v1, v2, . . . , vn},
X := {x1, x2, . . . , x3n} ∪ {xi,h : i ∈ {1, 2, . . . , 3n}, h ∈ {1, 2, . . . , ai − 1}} ∪ {vn+1, vn+2, . . . , v2n},
V := U ∪W ∪X ∪ {v2n+1, v2n+2, . . . , v3n+1},
E := {(ui, ui,h), (ui,h, wi,h) : i ∈ {1, 2, . . . , n}, h ∈ {1, 2, . . . , t}}

∪ {(xi, xi,h) : i ∈ {1, 2, . . . , 3n}, h ∈ {1, 2, . . . , ai − 1}}
∪ {(xi, uj) : i ∈ {1, 2, . . . , 3n}, j ∈ {1, 2, . . . , n}}.

Let C := {p, q1, q2, q3}, where p is the target candidate. For each v ∈ V , we define c(v) as

c(v) :=


p if v = vi for some i ∈ {2n+ 1, 2n+ 2, . . . , 3n+ 1},
q1 if v ∈ U ,

q2 if v ∈W ,

q3 if v ∈ X.

Let k = 4n+ 1.185

Since the membership in NP is easy, to complete the proof of Theorem 2, it suffices to prove the186

following claim.187

Claim 2. The original instance of 3-Partition has a desired partition S1, S2, . . . , Sn if and only if the188

corresponding instance of the gerrymandering problem has a feasible solution.189

We first show the necessity. Assume that the original instance of 3-Partition has a desired partition190

S1, S2, . . . , Sn of {1, 2, . . . , 3n}. We define a partition V1, V2, . . . , V4n+1 of V , as follows: Define191

Vj := {uj} ∪ {uj,h, wj,h : h ∈ {1, 2, . . . , t}} ∪ {xi : i ∈ Sj} ∪ {xi,h : i ∈ Sj , h ∈ {1, 2, . . . , ai − 1}}

for each j ∈ {1, 2, . . . , n}, and define Vj := {vj−n} for each j ∈ {n + 1, n + 2, . . . , 4n + 1}. Then,192

each G[Vj ] is connected, and hence (V1, V2, . . . , V4n+1) forms a connected partition of G. Furthermore,193

top(Vj) = {q1} holds for all j ∈ {1, 2, . . . , n}, because we have194

• |{v ∈ Vj : c(v) = q1}| = t+ 1,195

• |{v ∈ Vj : c(v) = qi}| = t for each i ∈ {2, 3}, and196
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• |{v ∈ Vj : c(v) = p}| = 0.197

Similarly, we can see that198

• top(Vj) = {q2} for each j ∈ {n+ 1, n+ 2, . . . , 2n},199

• top(Vj) = {q3} for each j ∈ {2n+ 1, 2n+ 2, . . . , 3n}, and200

• top(Vj) = {p} for each j ∈ {3n+ 1, 3n+ 2, . . . , 4n+ 1},201

because Vj = {vj−n}. Therefore, we obtain202

|{j ∈ {1, 2, . . . , k} : {p} = top(Vj)}| > |{j ∈ {1, 2, . . . , k} : q ∈ top(Vj)}| ∀ q ∈ C \ {p},

which shows the necessity.203

We next show the sufficiency. Assume that there exists a connected partition V = (V1, V2, . . . , Vk) of204

G that is a feasible solution to the gerrymandering problem. Since {vj} forms a part of V, say Vn+j , for205

j ∈ {1, 2, . . . , 3n + 1}, V \ {v1, v2, . . . , v3n+1} is partitioned into n sets V1, V2, . . . , Vn such that G[Vj ] is206

connected for each j ∈ {1, 2, . . . , n}. By the construction of G, we obtain207

• |{j ∈ {1, 2, . . . , k} : {p} = top(Vj)}| = |{j ∈ {n+ 1, n+ 2, . . . , k} : {p} = top(Vj)}| = n+ 1,208

• |{j ∈ {1, 2, . . . , k} : q2 ∈ top(Vj)}| ≥ |{j ∈ {n+ 1, n+ 2, . . . , k} : q2 ∈ top(Vj)}| = n,209

• |{j ∈ {1, 2, . . . , k} : q3 ∈ top(Vj)}| ≥ |{j ∈ {n+ 1, n+ 2, . . . , k} : q3 ∈ top(Vj)}| = n.210

Since211

|{j ∈ {1, 2, . . . , k} : {p} = top(Vj)}| > |{j ∈ {1, 2, . . . , k} : q ∈ top(Vj)}| ∀ q ∈ C \ {p}

by the feasibility of V, we have that q2, q3 6∈ top(Vj) for each j ∈ {1, 2, . . . , n}, that is, top(Vj) = {q1} for212

j ∈ {1, 2, . . . , n}. Since top(Vj) = {q1}, Vj contains at least one vertex in U for each j ∈ {1, 2, . . . , n}.213

Due to the connectedness of G[Vj ], without loss of generality, we may assume that uj ∈ Vj . This also214

implies that {uj,h, wj,h : h ∈ {1, 2, . . . , t}} ⊆ Vj .215

For j ∈ {1, 2, . . . , n}, define Sj := {i ∈ {1, 2, . . . , 3n} : xi ∈ Vj}. Then, since xi ∈ Vj implies216

{xi} ∪ {xi,h : h ∈ {1, 2, . . . , ai − 1}} ⊆ Vj , we have217

Vj = {ui} ∪ {ui,h, wi,h : h ∈ {1, 2, . . . , t}} ∪ {xi : i ∈ Sj} ∪ {xi,h : i ∈ Sj , h ∈ {1, 2, . . . , ai − 1}}.

Since |{v ∈ Vj : c(v) = q1}| = t+ 1, |{v ∈ Vj : c(v) = q3}| =
∑
i∈Sj

ai, and top(Vj) = {q1}, it holds that218 ∑
i∈Sj

ai < t+ 1, which implies that
∑
i∈Sj

ai ≤ t by the integrality of ai and t. Therefore,219

3n∑
i=1

ai =

n∑
j=1

∑
i∈Sj

ai ≤ n · t = n · 1

n
·

3n∑
i=1

ai =

3n∑
i=1

ai.

Hence, we obtain
∑
i∈Sj

ai = 1
n

∑3n
i=1 ai for j = 1, 2, . . . , n, which shows that the original instance of220

3-Partition has a desired partition. This completes the proof of the sufficiency.221

We note that the graph in the reduction can be made connected, because the same argument works222

even if we add an edge between v3n+1 and v for every v ∈ V \ {v3n+1}.223

3.3 Hardness for Trees via Satisfiability224

We finally consider the case for trees.225

Theorem 3. The gerrymandering problem is strongly NP-complete even for trees of diameter four.226

7



v1,1

v1

v1,t

. . . .

... ...
v1,1

v1

v1,t vn,1

vn

vn,t

... ...
vn,1

vn

vn,t

vroot

Figure 4: Construction for Theorem 3.

Proof. We give a polynomial-time reduction from 3-SAT. Consider an instance of 3-SAT with n (≥ 2)227

variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm, in which each clause contains exactly three distinct228

literals. It is well-known that this problem is NP-complete (see, e.g., [14]). Furthermore, we may assume229

that n is odd, since we can add a new variable that appears in none of the clauses.230

We construct an instance of the gerrymandering problem. Set t := n−1+m(n−1)
2 and k := n(t+1)+1.231

As Figure 4 illustrates, consider a tree G = (V,E) defined as follows:232

V := {vroot} ∪ {vi, v̄i : i ∈ {1, 2, . . . , n}} ∪ {vi,j , v̄i,j : i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , t}},
E := {(vroot, vi), (vroot, v̄i) : i ∈ {1, 2, . . . , n}} ∪ {(vi, vi,j), (v̄i, v̄i,j) : i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , t}}.

We regard G as a rooted tree with the root vroot. Let M be a sufficiently large integer (e.g., M =
|V |+ 1), and define the weight of each vertex as

w(v) :=


M2 if v = vroot;

1 if v = vi or v = v̄i for some i ∈ {1, 2, . . . , n};
M otherwise.

We note that the weight of each vertex is bounded by a polynomial in |V |. Define the set C of candidates233

as234

C := {p, q1, . . . , qn, r1, . . . , rm} ∪ {sroot} ∪ {si,j : i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , t}}.

Here, p is the target candidate, while qi and rj correspond to the variable xi and the clause Cj , respec-235

tively. The candidates sroot and si,j will act as dummy candidates. Define c(vi,j) for each leaf vi,j of G236

as follows.237

• For each i ∈ {1, 2, . . . , n}, pick up n− 1 children of vi and associate them with qi, that is,238

|{v ∈ V : v is a child of vi, c(v) = qi}| = n− 1.

Similarly, pick up n− 1 children of v̄i and associate them with qi.239

• If Cj contains xi for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}, then pick up n−1
2 children of v̄i and240

associate them with rj , that is, |{v ∈ V : v is a child of v̄i, c(v) = rj}| = n−1
2 .241

• If Cj contains x̄i for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}, then pick up n−1
2 children of vi and242

associate them with rj , that is, |{v ∈ V : v is a child of vi, c(v) = rj}| = n−1
2 .243

• If vi,j is associated with none of {q1, . . . , qn, r1, . . . , rm} in the above procedures, then set c(vi,j) :=244

si,j .245

Define c(vi) := p, c(v̄i) := p for each i ∈ {1, 2, . . . , n} and c(vroot) := sroot.246

To complete the proof of Theorem 3, we prove the following claim.247
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Claim 3. The original instance of 3-SAT has a satisfying truth assignment if and only if the correspond-248

ing instance of the gerrymandering problem has a feasible solution.249

We first show the necessity. Assume that the original instance of 3-SAT has a satisfying truth250

assignment. We construct a partition of V as follows: for i ∈ {1, 2, . . . n}, remove all the edges incident251

to vi if True is assigned to xi, and remove all the edges incident to v̄i otherwise. Since the degree252

of each vertex vi (or v̄i) is t + 1, this operation divides the graph G into n(t + 1) + 1 = k connected253

components. Let V1, V2, . . . , Vk be the vertex sets of these connected components, and consider the254

partition V = (V1, V2, . . . , Vk). Without loss of generality, we may assume that vroot ∈ V1 and each of255

V2, V3, . . . Vk consists of a single vertex. Then, we can see the following.256

• Since w(vroot) is sufficiently large, we have top(V1) = {sroot}.257

• Since exactly one of {vi} and {v̄i} is a part of V for each i ∈ {1, 2, . . . n}, we have |{h ∈ {1, 2, . . . , k} :258

{p} = top(Vh)}| = n.259

• For each i ∈ {1, 2, . . . n}, if {vi} or {v̄i} is a part of V, then its each child also forms a part of V. Since260

exactly one of {vi} and {v̄i} forms a part of V, we have |{h ∈ {1, 2, . . . , k} : qi ∈ top(Vh)}| = n− 1.261

• For each j ∈ {1, 2, . . .m}, at least one literal in Cj is assigned True. If a literal xi (resp. x̄i)262

in Cj is assigned True, then all the children of v̄i (resp. vi) are contained in V1. Since |{v ∈263

V : v is a child of v̄i (resp. vi), c(v) = rj}| = n−1
2 and |{v ∈ V : c(v) = rj}| = 3(n−1)

2 , we have264

|{h ∈ {1, 2, . . . , k} : rj ∈ top(Vh)}| ≤ 3(n−1)
2 − n−1

2 = n− 1.265

• For each i ∈ {1, 2, . . . n} and j ∈ {1, 2, . . .m}, it is obvious that |{h ∈ {1, 2, . . . , k} : si,j ∈266

top(Vh)}| ≤ 1.267

Therefore, we obtain268

|{h ∈ {1, 2, . . . , k} : {p} = top(Vh)}| > |{h ∈ {1, 2, . . . , k} : q ∈ top(Vh)}| ∀ q ∈ C \ {p},

which shows the necessity.269

We next show the sufficiency. Assume that there exists a partition V = (V1, V2, . . . , Vk) that is a270

feasible solution to the gerrymandering problem. Since c(v) = p implies w(v) = 1 for any v ∈ V ,271

we can see that if {p} = top(Vh) for h ∈ {1, 2, . . . , k}, then either Vh = {vi} or Vh = {v̄i} for some272

i ∈ {1, 2, . . . , n}. Thus, since {h ∈ {1, 2, . . . , k} : {p} = top(Vh)} 6= ∅, there exists i ∈ {1, 2, . . . , n}273

such that {vi} or {v̄i} is a part of V. Since each child of vi or v̄i also forms a part of V, we have274

|{h ∈ {1, 2, . . . , k} : qi ∈ top(Vh)}| ≥ n − 1, and hence |{h ∈ {1, 2, . . . , k} : {p} = top(Vh)}| ≥ n. This275

means that |X| ≥ n, where X is defined as X := {v ∈ {v1, v̄1, . . . , vn, v̄n} : {v} is a part of V}.276

In order to make a vertex v ∈ X isolated, we have to remove all the edges incident to v. Since the277

degree of v ∈ X is t+ 1, the graph G is divided into |X|(t+ 1) + 1 connected components by removing278

all the edges incident to a vertex in X. Since |X| ≥ n and k = n(t+ 1) + 1, it holds that |X| = n. For279

each i ∈ {1, 2, . . . , n}, if vi and v̄i are both in X, then |{h ∈ {1, 2, . . . , k} : qi ∈ top(Vh)}| ≥ 2(n− 1) ≥ n,280

which is a contradiction. Therefore, |X ∩ {vi, v̄i}| = 1 for each i ∈ {1, 2, . . . , n}. Using this fact, we281

define an assignment to each variable as follows: we assign True to xi if vi ∈ X, and assign False to xi282

if v̄i ∈ X.283

For j ∈ {1, 2, . . . ,m}, since |{v ∈ V : c(v) = rj}| = 3(n−1)
2 ≥ n, there exists a vertex v ∈ V with284

c(v) = rj that does not form a part of V. That is, we have either xi is in Cj and v̄i 6∈ X, or x̄i is in Cj285

and vi 6∈ X for some i ∈ {1, 2, . . . , n}. This shows that Cj contains a literal that is assigned True by the286

definition of the assignment. Therefore, the original instance of 3-SAT has a satisfying truth assignment,287

which shows the sufficiency.288

4 Algorithms for Trees289

In contrast to Theorem 3, we show some tractable cases for trees in this section. We first note the290

following observation.291

Theorem 4. The gerrymandering problem is solvable in polynomial time for trees when k is a fixed292

constant.293
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Proof. Since a given graph G = (V,E) is a tree, we need to delete exactly k−1 edges to obtain a partition294

V1, V2, . . . , Vk of V such that G[Vi] is connected for each i ∈ {1, 2, . . . , k}. Notice that there are only295

O(|E|k−1) possible sets of edges to be deleted. Thus, we enumerate all possible sets of k − 1 edges, and296

check whether each set results in a feasible solution. This yields a polynomial-time algorithm for trees297

when k is fixed.298

In the remainder of this section, we thus assume that k is not fixed and is part of the input. Theorem 3299

implies that the problem does not admit even a pseudo-polynomial-time algorithm (i.e., an algorithm300

whose running time is polynomial in |V |, |E|, and maxv∈V w(v)) for trees unless P = NP. We thus301

consider subclasses of trees (more specifically, stars and paths), and/or assume that |C| is a fixed constant;302

note that however k is not fixed.303

4.1 Polynomial-Time Algorithm for Stars304

As the first polynomial-time solvable case, we deal with stars in this subsection. We note that neither305

|C| nor k is fixed in the following theorem.306

Theorem 5. The gerrymandering problem is solvable in polynomial time for stars.307

We give such an algorithm as a proof of Theorem 5. Suppose in this subsection that a given graph308

G = (V,E) is a star having n vertices, whose center vertex is r. For each candidate q ∈ C, let L(q) =309

{v ∈ V \ {r} : c(v) = q}. Consider any connected partition V1, V2, . . . , Vk of G; we assume without310

loss of generality that r ∈ Vk always holds in this subsection. Then, we know that Vi consists of a311

single vertex v for each i ∈ {1, 2, . . . , k − 1}; and hence top(Vi) has only one top candidate c(v), that312

is, top(Vi) = {c(v)}. Therefore, for the given partition, we can compute the number of constituencies313

where the target candidate p wins by checking (i) whether top(Vk) = {p} or not, and (ii) the number of314

vertices v in V \ Vk such that c(v) = p, that is, |L(p) \ Vk|.315

Based on (i) and (ii), we now classify the feasible solutions as follows: for a candidate q∗ ∈ C and an316

integer x ∈ {1, 2, . . . , |L(p)|}, a feasible solution V1, V2, . . . , Vk to the gerrymandering problem is called a317

(q∗, x)-partition of G if the following holds:318

• if q∗ = p, then top(Vk) = {p} and |L(p) \ Vk| = x; otherwise top(Vk) 3 q∗ and |L(p) \ Vk| = x + 1319

(that is, p wins alone in exactly x+ 1 constituencies);320

• each candidate q ∈ C \ {p} wins in at most x constituencies.321

In this subsection, we will construct a polynomial-time algorithm to check whether there exists a (q∗, x)-322

partition of G for a given pair of a candidate q∗ ∈ C and an integer x ∈ {1, 2, . . . , |L(p)|}. Since |C| ≤ n323

and |L(p)| ≤ n, by applying this algorithm to all pairs (q∗, x) we can solve the gerrymandering problem324

in polynomial time.325

From now on, we fix a candidate q∗ ∈ C and an integer x ∈ {1, 2, . . . , |L(p)|}. Our algorithm indeed326

determines whether there exists a particular (q∗, x)-partition of G, characterized as follows.327

Lemma 1. Assume that G has a (q∗, x)-partition. Then, there exists a (q∗, x)-partition V1, V2, . . . , Vk328

of G satisfying the following conditions:329

• w(u) ≥ w(v) holds for every pair of vertices u ∈ L(q∗) ∩ Vk and v ∈ L(q∗) \ Vk; and330

• w(u) ≤ w(v) holds for every candidate q ∈ C \ {q∗} and every pair of vertices u ∈ L(q) ∩ Vk and331

v ∈ L(q) \ Vk.332

Proof. Let V1, V2, . . . , Vk be any (q∗, x)-partition of G. Assume that there exists a pair of vertices333

u ∈ L(q∗) ∩ Vk and v ∈ L(q∗) \ Vk such that w(u) < w(v); we assume without loss of generality that334

V1 = {v}. Then, we define V ′1 , V
′
2 , . . . , V

′
k, as follows:335

V ′i :=


{u} if i = 1;

(Vk \ {u}) ∪ {v} if i = k;

Vi otherwise.

(1)
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We now prove that V ′1 , V
′
2 , . . . , V

′
k form a (q∗, x)-partition of G. Since u, v ∈ V \ {r}, we first note that336

V ′1 , V
′
2 , . . . , V

′
k form a connected partition of G. We then note that top(V ′k) = {q∗} holds, since it holds337

for any candidate q ∈ C \ {q∗} that338 ∑
z∈L(q∗)∩V ′k

w(z) >
∑

z∈L(q∗)∩Vk

w(z) ≥
∑

z∈L(q)∩Vk

w(z) =
∑

z∈L(q)∩V ′k

w(z);

the first inequality holds since V ′k = (Vk \ {u}) ∪ {v} and w(v) > w(u), and the second inequality holds339

since q∗ ∈ top(Vk). We finally prove that p wins alone in exactly x + 1 constituencies, and any other340

candidate q ∈ C \ {p} wins in at most x constituencies in the partition. To see this, it suffices to notice341

that, for all q ∈ C, we have342

|{i ∈ {1, 2, . . . , k − 1} : top(V ′i ) = {q}}| = |{i ∈ {1, 2, . . . , k − 1} : top(Vi) = {q}}|;

recall that u, v ∈ L(q∗) and hence c(u) = c(v) = q∗. In this way, we conclude that V ′1 , V
′
2 , . . . , V

′
k form343

a (q∗, x)-partition of G. By repeatedly applying this operation, we obtain a (q∗, x)-partition of G that344

satisfies the first condition of the lemma.345

We next consider any (q∗, x)-partition V1, V2, . . . , Vk of G satisfying the first condition of the lemma.346

Assume that there exist a candidate q ∈ C\{q∗} and a pair of vertices u ∈ L(q)∩Vk and v ∈ L(q)\Vk such347

that w(u) > w(v); we assume without loss of generality that V1 = {v}. Then, we define V ′1 , V
′
2 , . . . , V

′
k348

by (1). We note that top(V ′k) = top(Vk) \ {q}, since we have349 ∑
z∈L(q)∩V ′k

w(z) <
∑

z∈L(q)∩Vk

w(z) ≤
∑

z∈L(q∗)∩Vk

w(z) =
∑

z∈L(q∗)∩V ′k

w(z).

Therefore, if q∗ = p and hence top(Vk) = {p}, then top(V ′k) = {p} holds; and if q∗ 6= p and hence350

q∗ ∈ top(Vk), then q∗ ∈ top(V ′k) holds. Then, by the same arguments above for the first condition, we351

conclude that V ′1 , V
′
2 , . . . , V

′
k form a (q∗, x)-partition of G. By repeatedly applying this operation, we352

obtain a (q∗, x)-partition of G that satisfies both first and second conditions of the lemma.353

We here give a precise description of our algorithm to determine whether there exists a (q∗, x)-partition354

of a star G satisfying the conditions in Lemma 1. For each q ∈ C, we denote L(q) = {vq1, v
q
2, . . . , v

q
|L(q)|}355

and assume that356

• w(vq1) ≥ w(vq2) ≥ · · · ≥ w(vq|L(q)|) if q = q∗; and357

• w(vq1) ≤ w(vq2) ≤ · · · ≤ w(vq|L(q)|) if q 6= q∗.358

Since G = (V,E) is a star, a connected partition of G is determined by a subset Vk of V such that359

r ∈ Vk. Our algorithm tries to construct a subset Vk of V that yields a (q∗, x)-partition of G satisfying360

the conditions in Lemma 1; if we fail to construct such a subset Vk, then Lemma 1 ensures that there is361

no (q∗, x)-partition of G.362

We first decide the vertices in Vk∩L(p) for the target candidate p. Recall that p wins in exactly x+1363

constituencies in any (q∗, x)-partition of G. Then, the number of vertices in L(p)\Vk can be represented364

by α(p), defined as follows:365

α(p) :=

{
x if p = q∗;

x+ 1 otherwise.

By Lemma 1, we then obtain that366

Vk ∩ L(p) = {vp1 , v
p
2 , . . . , v

p
|L(p)|−α(p)}. (2)

When q∗ 6= p, we guess the number of vertices in L(q∗)\Vk. That is, for α(q∗) = 1, 2, . . . ,min{x, |L(q∗)|},367

we try to find a (q∗, x)-partition of G under the assumption that |L(q∗) \ Vk| = α(q∗). By Lemma 1, we368

obtain that369

Vk ∩ L(q∗) = {vq
∗

1 , v
q∗

2 , . . . , v
q∗

|L(q∗)|−α(q∗)}. (3)
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We then decide the vertices in Vk ∩ L(q) for each candidate q ∈ C \ {p, q∗}. By (2) and (3), we can370

define371

W q∗ :=


∑

u∈Vk∩L(q∗)

w(u) + w(r) if c(r) = q∗;∑
u∈Vk∩L(q∗)

w(u) otherwise.

For q ∈ C \ {p, q∗} and for ` ∈ {1, 2, . . . , |L(q)|}, define372

W q
` :=


∑̀
i=1

w(vqi ) + w(r) if c(r) = q;

∑̀
i=1

w(vqi ) otherwise.

For each q ∈ C \ {p, q∗}, let β(q) be a minimum non-negative integer such that373

• W q
|L(q)|−β(q) < W q∗ if q∗ = p;374

• W q
|L(q)|−β(q) ≤W

q∗ if q∗ 6= p,375

where we denote β(q) = +∞ if such β(q) does not exist. Notice that β(q) represents the minimum376

number of vertices that have to be contained in L(q) \ Vk so that top(Vk) satisfies the requirement.377

Recall that each candidate q ∈ C\{p, q∗} can win in at most x constituencies in any (q∗, x)-partition of378

G. Thus, if β(q) ≥ x+1 for some q ∈ C\{p, q∗}, then we can immediately conclude that G has no (q∗, x)-379

partition. We also observe that, if β(q) = x and W q
|L(q)|−β(q) = W q∗ for some q ∈ C \{p, q∗}, then q wins380

in x+1 constituencies, and hence G has no (q∗, x)-partition. If neither of the above conditions holds, then381

for q ∈ C \ {p, q∗}, |Vk ∩L(q)| can take an arbitrary integer satisfying β(q) ≤ |Vk ∩L(q)| ≤ min{x, L(q)}.382

Therefore, the existence of a desired (q∗, x)-partition is equivalent to383 ∑
q∈C\{p}

β(q) ≤ k − 1− α(p) ≤
∑

q∈C\{p}

min{x, L(q)}

if q∗ = p, and384 ∑
q∈C\{p,q∗}

β(q) ≤ k − 1− α(p)− α(q∗) ≤
∑

q∈C\{p,q∗}

min{x, L(q)}

if q∗ 6= p.385

Since the number of choices of α(q∗) is at most min{x, L(q∗)}, the algorithm above runs in polynomial386

time for each candidate q∗ ∈ C and each integer x ∈ {1, 2, . . . , |L(p)|}. Therefore, we obtain a polynomial-387

time algorithm for stars.388

4.2 Polynomial-Time Algorithm for Paths with Fixed |C|389

As the second polynomial-time solvable case, we consider paths when |C| is fixed. We note that the390

problem is not so straightforward even for paths: Recall the example in Figure 2, where the vertex u391

should form a singleton even if p can win alone in {u, v}; greedily enlarging the constituency having392

a vertex z with c(z) = p does not always yield a feasible solution. We thus construct a dynamic393

programming algorithm, and obtain the following theorem.394

Theorem 6. The gerrymandering problem is solvable in polynomial time for paths when |C| is a fixed395

constant.396

We give such an algorithm as a proof of Theorem 6. Suppose in this subsection that a given graph G397

is a path with n vertices and |C| is a fixed constant; for notational convenience, we assume that the path398

is drawn from left to right. Roughly speaking, our algorithm employs a dynamic programming method,399

which computes and extends partial solutions for sub-paths from left to right by keeping the frontier400

(i.e., the rightmost constituency) of a partial solution together with the information on the way how the401

candidates in C win in the partial solution.402
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We now define partial solutions for sub-paths. Let v1, v2, . . . , vn be the vertices in G ordered from403

left to right. For a pair of integers i, j, 1 ≤ i ≤ j ≤ n, we denote by Gi,j the sub-path of G consisting404

of vertices vi, vi+1, . . . , vj ; note that Gi,i consists of a single vertex vi. We call any mapping t : 2C →405

{0, 1, . . . , k} a top configuration, which will characterize how the candidates in C win in a partial solution.406

We note that there are only a polynomial number of distinct top configurations t; more specifically, it407

is O(k2
|C|

) = O(n2
|C|

). For a pair of integers i, j, 1 ≤ i ≤ j ≤ n, and a top configuration t, we call a408

partition V1, V2, . . . , Vk′ of V (G1,j) an (i, j; t)-partition of G1,j if the following four conditions hold:409

1. k′ =
∑
X⊆C t(X);410

2. Vk′ = {vi, vi+1, . . . , vj};411

3. G[Vz] is connected for each z ∈ {1, 2, . . . , k′ − 1}; and412

4. |{z ∈ {1, 2, . . . , k′} : top(Vz) = X}| = t(X) for all X ⊆ C, that is, t(X) is the number of districts413

in which the set of top candidates is exactly X.414

We regard (i, j; t)-partitions of G1,j as partial solutions of G1,j , and call the rightmost constituency415

Gi,j = G[Vk′ ] the frontier of an (i, j; t)-partition. We then define the following function: for integers i, j,416

1 ≤ i ≤ j ≤ n, and a top configuration t : 2C → {0, 1, . . . , k}, let417

φ(i, j; t) :=

{
yes if G1,j has an (i, j; t)-partition;

no otherwise.

Then, there is a feasible solution to a given instance of the gerrymandering problem if and only if there418

exists a pair of i ∈ {1, 2, . . . , n} and a top configuration t such that φ(i, n; t) = yes,
∑
X⊆C t(X) = k,419

and t({p}) >
∑
X⊆C : q∈X t(X) for all q ∈ C \ {p}. In our algorithm for the gerrymandering problem,420

we compute φ(i, n; t) for all i and t, and then check whether there exist i and t satisfying the above421

conditions.422

In order to compute φ(i, n; t), our algorithm computes φ(i, j; t) for all possible triples (i, j, t) from423

left to right of a given path G as follows.424

Initialization. We first compute φ(i, j; t) for all (i, j, t) such that i = 1. Notice that V (G1,j) itself is425

the frontier when i = 1. Therefore, φ(1, j, t) = yes, 1 ≤ j ≤ n, holds if and only if the top configuration426

t : 2C → {0, 1, . . . , k} satisfies427

t(X) =

{
1 if X = top(V (G1,j));

0 otherwise.

Update. The case where i ≥ 2 can be computed as follows. For two integers i, j, 1 ≤ i ≤ j ≤ n, and a428

top configuration t, we have φ(i, j; t) =
∨
φ(h, i− 1; t′), where the or operation is taken over all integers429

h, 1 ≤ h ≤ i− 1, and the top configuration t′ defined as follows: for each X ⊆ C,430

t′(X) :=

{
t(X)− 1 if X = top(V (Gi,j));

t(X) otherwise.

Recall that there are O(k2
|C|

) = O(n2
|C|

) distinct top configurations t, and |C| is fixed in this subsec-431

tion. Therefore, our algorithm above runs in polynomial time. This completes the proof of Theorem 6.432

4.3 Pseudo-Polynomial-Time Algorithm for Trees with Fixed |C|433

Recall again that the gerrymandering problem does not admit even a pseudo-polynomial-time algorithm434

for trees in general unless P = NP (Theorem 3). However, if |C| is a fixed constant, we have the following435

theorem for trees.436

Theorem 7. The gerrymandering problem is solvable in pseudo-polynomial time for trees when |C| is a437

fixed constant.438
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Figure 5: (a) Subtree Gu in a whole tree G and (b) subtree Giu in Gu.

We give such an algorithm as a proof of Theorem 7. Suppose in this subsection that a given graph439

G is a tree with n vertices and |C| is a fixed constant. We choose an arbitrary vertex r in V (G) as440

the root of G, and regard G as a rooted tree. Similarly to paths, our algorithm employs a dynamic441

programming method, which computes and extends partial solutions for subtrees from the leaves to the442

root of G. However, in contrast to the path case, we need a special care when we keep the frontier (i.e.,443

the constituency containing the root of each subtree) in a partial solution. Although it sufficed to specify444

only two endpoints of the frontier (i.e., two integers i and j) in the path case, the tree case may require445

us to specify O(n) endpoints of the frontier, which would result in an exponential-time algorithm. We446

thus characterize the frontier of a partial solution only by the weight that each candidate obtains; this447

will yield a pseudo-polynomial-time algorithm for trees.448

We now define partial solutions for subtrees. For each vertex u in V (G), let Gu be the subtree of449

G that is rooted at u and is induced by u and all descendants of u on G. (See Figure 5(a).) Denote450

the children of u by v1, v2, . . . , v`, ordered arbitrarily. For each i ∈ {1, 2, . . . , `}, we denote by Giu the451

subtree of G induced by {u}∪V (Gv1)∪V (Gv2)∪ · · · ∪V (Gvi). For example, in Figure 5(b), the subtree452

Giu is surrounded by a thick dotted rectangle. For notational convenience, we denote by G0
u the tree453

consisting of a single vertex u. Then, Gu = G0
u for each leaf u of G. Let W :=

∑
u∈V (G) w(u), and let454

ZW := {0, 1, . . . ,W}. We call a vector ~x ∈ ZCW a weight configuration, which characterizes the weight455

that each candidate in C obtains in the frontier of a partial solution. For a subtree Giu, a top configuration456

t : 2C → {0, 1, . . . , k}, and a weight configuration ~x ∈ ZCW , we call a partition V1, V2, . . . , Vk′ of V (Giu) a457

(t, ~x)-partition of Giu if the following four conditions hold:458

1. k′ − 1 =
∑
X⊆C t(X);459

2. G[Vz] is connected for each z ∈ {1, 2, . . . , k′}, and u ∈ Vk′ ;460

3. |{z ∈ {1, 2, . . . , k′ − 1} : top(Vz) = X}| = t(X) for all X ⊆ C; and461

4.
∑
v∈Vk′ : c(v)=q

w(v) = ~x(q) for all q ∈ C.462

We regard (t, ~x)-partitions of Giu as partial solutions of Giu, and call the constituency G[Vk′ ] containing463

the root u of Giu the frontier of a (t, ~x)-partition. Note that, by the condition 1 of the definition above,464

k′ is automatically determined when t is fixed. Note also that the condition 3 of the definition above465

means that t(X) is the number of districts in which the set of top candidates is exactly X, where the466

set top(Vk′) of top candidates in the frontier is not counted, since this frontier G[Vk′ ] may be extended467

later. However, top(Vk′) = arg maxq∈C{~x(q)} holds, and hence top(Vk′) can be computed only from ~x.468

For a top configuration t and each X ⊆ C, we define469

t~x(X) :=

{
t(X) + 1 if X = arg maxq∈C{~x(q)};
t(X) otherwise.

We then define the following function: For a subtree Giu, a top configuration t : 2C → {0, 1, . . . , k}, and470

a weight configuration ~x ∈ ZCW , we let471

ϕ(Giu; t, ~x) :=

{
yes if Giu has a (t, ~x)-partition;

no otherwise.
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Figure 6: (t, ~x)-partitions of a subtree Giu, and their restrictions to subtrees Gi−1u and Gvi .

Then, there is a feasible solution to a given instance of the gerrymandering problem if and only if472

there exists a pair of a top configuration t and a weight configuration ~x such that ϕ(G; t, ~x) = yes,473 ∑
X⊆C t~x(X) = k, and t~x({p}) >

∑
X⊆C : q∈X t~x(X) for all q ∈ C \ {p}. In our algorithm for the474

gerrymandering problem, we compute ϕ(G; t, ~x) for all t and ~x, and then check whether there exist t and475

~x satisfying the above conditions.476

For a given tree G, in order to compute ϕ(G; t, ~x), our algorithm computes ϕ(Giu; t, ~x) for all possible477

triples (Giu, t, ~x) from the leaves to the root r as follows.478

Initialization. We first compute ϕ(G0
u; t, ~x) for all vertices u ∈ V (G) (including internal vertices in G).479

Recall that G0
u consists of a single vertex u. Therefore, ϕ(G0

u; t, ~x) = yes holds if and only if t(X) = 0480

for all X ⊆ C and ~x satisfies481

~x(q) =

{
w(u) if q = c(u);

0 otherwise

for each q ∈ C. Notice that we have computed ϕ(Gu; t, ~x) for all leaves of G, since Gu = G0
u if u is a leaf.482

483

Update. We now consider the case where i ≥ 1. To compute ϕ(Giu; t, ~x), we classify the partial solutions484

of Giu into the following two groups (a) and (b).485

(a) The vertices u and vi are contained in the same connected component. (See also Figure 6(a).)486

In this case, the edge uvi is not deleted, and the frontier in a (t, ~x)-partition of Giu can be obtained487

by merging the frontier in a (t′, ~y)-partition of Gi−1u with the frontier in a (t′′, ~z)-partition of Gvi . Thus,488

we define489

ϕa(Giu; t, ~x) :=
∨(

ϕ(Gi−1u ; t′, ~y) ∧ ϕ(Gvi ; t
′′, ~z)

)
,

where the or operation
∨

is taken over all top configurations t′, t′′ : 2C → {0, 1, . . . , k} and all weight490

configurations ~y, ~z ∈ ZCW such that t′(X) + t′′(X) = t(X) for each X ⊆ C, and ~y(q) + ~z(q) = ~x(q) for491

each q ∈ C.492

(b) The vertices u and vi are not contained in the same connected component. (See also Figure 6(b).)493

In this case, the edge uvi is deleted, and the frontier in a (t, ~x)-partition of Giu is the frontier in a494

(t′, ~x)-partition of Gi−1u . Note that the frontier Vk′′ in a (t′′, ~z)-partition of Gvi is merely a connected495

component in the (t, ~x)-partition of Giu. Thus, we can compute top(Vk′′), and have to take the top496

candidates in Vk′′ into account. Therefore, we define497

ϕb(Giu; t, ~x) :=
∨(

ϕ(Gi−1u ; t′, ~x) ∧ ϕ(Gvi ; t
′′, ~z)

)
,

where the or operation
∨

is taken over all top configurations t′, t′′ : 2C → {0, 1, . . . , k} and all weight498

configurations ~z ∈ ZCW such that t′(X) + t′′~z (X) = t(X) for each X ⊆ C.499

Then, ϕ(Giu; t, ~x) = ϕa(Giu; t, ~x) ∨ ϕb(Giu; t, ~x). Recall that there are O(k2
|C|

) distinct top configu-500

rations t, and notice that |ZCW | = O(W |C|). Since |C| is fixed in this subsection, our algorithm above501

computes ϕ(Giu; t, ~x) for all possible triples (Giu, t, ~x) in pseudo-polynomial time. Furthermore, in pseudo-502

polynomial time, we can check whether there exists a pair of a top configuration t and a weight configu-503

ration ~x such that ϕ(G; t, ~x) = yes,
∑
X⊆C t~x(X) = k, and t~x({p}) >

∑
X⊆C : q∈X t~x(X) for all q ∈ C \{p}504

by enumerating all possible pairs. This completes the proof of Theorem 7.505
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5 Algorithms for Complete Graphs506

In this section, we consider complete graphs. Recall that the gerrymandering problem is NP-complete507

for complete graphs even if k = |C| = 2 (Theorem 1). In this section, for each candidate q ∈ C, we define508

T (q) := {v ∈ V : c(v) = q}.509

We give the following theorem for complete graphs and k = 2; note that |C| is not necessarily fixed.510

Theorem 8. The gerrymandering problem is solvable in pseudo-polynomial time for complete graphs511

and k = 2.512

Proof. Since G = (V,E) is a complete graph, any vertex subset U ⊆ V induces a connected subgraph.513

Furthermore, since k = 2, the target candidate p must win alone in both constituencies G[V1] and G[V2]514

in any feasible solution V1, V2. Thus, the problem for complete graphs and k = 2 can be rephrased as515

follows: For each pair of nonnegative integers W1 and W2 such that W1 +W2 =
∑
v∈T (p) w(v), we wish516

to determine whether each vertex set T (q), q ∈ C, can be partitioned into two subsets T 1
q and T 2

q such517

that518

• if q = p, then
∑
v∈T 1

p
w(v) = W1 and

∑
v∈T 2

p
w(v) = W2; and519

• if q ∈ C \ {p}, then
∑
v∈T 1

q
w(v) < W1 and

∑
v∈T 2

q
w(v) < W2.520

If there is a pair of W1 and W2 such that desired partitions T 1
q , T 2

q of T (q) exist for all q ∈ C, then there521

is a feasible solution to the gerrymandering problem. For each q ∈ C, the existence of such a partition of522

T (q) can be checked by a pseudo-polynomial-time algorithm for the subset sum problem [14].523

Finally, we show an interesting contrast on complete graphs: the problem is solvable in polynomial524

time for complete graphs and any k ≥ 3. The feasibility of the gerrymandering problem for such a case525

can be characterized by the following (4); furthermore, it yields a polynomial-time algorithm.526

Theorem 9. The gerrymandering problem is solvable in polynomial time for complete graphs and any527

k ≥ 3. In particular, there exists a feasible solution to such an instance if and only if it holds that528

|T (p)|+
∑

q∈C\{p}

min{|T (q)|, |T (p)| − 1} ≥ k. (4)

Proof. It suffices to prove that there exists a feasible solution for a complete graph G and any k ≥ 3 if529

and only if (4) holds, since we can check in polynomial time whether (4) holds or not.530

We first prove the necessity. Assume that there exists a feasible solution V1, V2, . . . , Vk to the gerry-531

mandering problem. We define α := |{i ∈ {1, 2, . . . , k} : {p} = top(Vi)}|, and β(q) := |{i ∈ {1, 2, . . . , k} :532

q ∈ top(Vi)}| for each q ∈ C \ {p}. Then, we have α ≤ |T (p)| and β(q) ≤ |T (q)| for each q ∈ C \ {p}.533

Furthermore, since V1, V2, . . . , Vk is a feasible solution of the gerrymandering problem, β(q) ≤ |T (p)| − 1534

holds for each q ∈ C \ {p}. Thus, we have535

α+
∑

q∈C\{p}

β(q) ≤ |T (p)|+
∑

q∈C\{p}

min{|T (q)|, |T (p)| − 1}. (5)

On the other hand, we have536

α+
∑

q∈C\{p}

β(q) = α+

k∑
i=1

|top(Vi) \ {p}| ≥ α+ |{i ∈ {1, 2, . . . , k} : {p} 6= top(Vi)}| = k. (6)

Thus, (4) follows from (5) and (6).537

We next show the sufficiency. Assume that (4) holds.538

We first consider the case where |T (p)| ≥ k. Let X1, X2, . . . , Xk−1 be an arbitrary partition of T (p).539

Then, we define Vi := Xi for each i ∈ {1, 2, . . . , k−1} and Vk := V \T (p). The definition of V1, V2, . . . , Vk540

implies that541

• |{i ∈ {1, 2, . . . , k} : {p} = top(Vi)}| = k − 1, and542
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• |{i ∈ {1, 2, . . . , k} : q ∈ top(Vi)}| ≤ 1 for all q ∈ C \ {p}.543

Since k ≥ 3 and hence k− 1 > 1, V1, V2, . . . , Vk forms a feasible solution of the gerrymandering problem.544

Next we consider the case where |T (p)| < k. We denote C \ {p} = {q1, q2, . . . , q`}; the candidates are545

ordered arbitrarily. Let `′ ∈ {1, 2, . . . , `} be the integer such that546

|T (p)|+
`′−1∑
j=1

min{|T (qj)|, |T (p)| − 1} < k, and

|T (p)|+
`′∑
j=1

min{|T (qj)|, |T (p)| − 1} ≥ k.

Notice that (4) and |T (p)| < k imply the existence of such an integer `′. For each integer j ∈ {1, 2, . . . , `′−547

1}, we define γj := min{|T (qj)|, |T (p)| − 1}. Furthermore, we define γ`′ by548

γ`′ := k − |T (p)| −
`′−1∑
j=1

min{|T (qj)|, |T (p)| − 1} ≤ min{|T (q`′)|, |T (p)| − 1}.

Let X1, X2, . . . , X|T (p)| be the partition of T (p) into singletons. For each j ∈ {1, 2, . . . , `′ − 1}, let549

Y j1 , Y
j
2 , . . . , Y

j
γj be an arbitrary partition of T (qj). Furthermore, let Y `

′

1 , Y
`′

2 , . . . , Y
`′

γ`′
be an arbitrary550

partition of {v ∈ V : c(v) /∈ {p, q1, q2, . . . , q`′−1}}. Then, we define a partition (V1, V2, . . . , Vk) of V by551

(X1, X2, . . . , X|T (p)|, Y
1
1 , Y

1
2 , . . . , Y

1
γ1 , . . . , Y

`′

1 , Y
`′

2 , . . . , Y
`′

γ`′
).

The definition of V1, V2, . . . , Vk implies that552

• |{i ∈ {1, 2, . . . , k} : {p} = top(Vi)}| = |T (p)|,553

• |{i ∈ {1, 2, . . . , k} : qj ∈ top(Vi)}| = γj ≤ |T (p)| − 1 for all j ∈ {1, 2, . . . , `′ − 1}, and554

• |{i ∈ {1, 2, . . . , k} : qj ∈ top(Vi)}| ≤ γ`′ ≤ |T (p)| − 1 for all j ∈ {`′, `′ + 1, . . . , `}.555

Thus, V1, V2, . . . , Vk form a feasible solution of the gerrymandering problem.556

6 Conclusion557

In this paper, we gave several hardness results and polynomial-time algorithms for gerrymandering over558

graphs. The main open problem left in this paper is to settle the complexity status for paths when the559

number of candidates is not fixed. The polynomial-time solvability for trees also remains open when the560

number of candidates is fixed, whereas we give a pseudo-polynomial-time algorithm for this case. The561

complexity for trees of diameter three also remains unclear. The problem under other voting rules should562

also be investigated. In particular, it is natural to consider partitions into (almost) equal sized parts as563

in [8]. Parameterized complexity of the problem is also a natural direction of further research.564
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