Stability of standing waves for L^2 -critical nonlinear Schrödinger equations with attractive inverse-power potential

By

Noriyoshi FUKAYA*

Abstract

We consider stability of standing waves for L^2 -critical nonlinear Schrödinger equations with an attractive inverse-power potential. We prove that if the frequency of ground-state standing wave is sufficiently large, then it is orbitally stable. Our results are extensions of the results of Fukuizumi (2005), in which similar results were proven for L^2 -critical nonlinear Schrödinger equations with smooth potentials such as harmonic potential.

§1. Introduction

We consider the following nonlinear Schrödinger equations with the L^2 -critical nonlinearity and an inverse-power potential:

(1.1)
$$i\partial_t u = -\Delta u - \frac{\gamma}{|x|^{\alpha}} u - |u|^{p-1} u, \quad (t,x) \in \mathbb{R} \times \mathbb{R}^N,$$

where $N \in \mathbb{N}$, $\gamma > 0$, $0 < \alpha < \min\{2, N\}$, and p = 1 + 4/N. It is known that the Cauchy problem for (1.1) is locally well-posed in $H^1(\mathbb{R}^N, \mathbb{C})$ if $1 (see [4]), where <math>2^*$ is the Sobolev critical exponent defined by

$$2^* := \begin{cases} \infty & \text{if } N = 1, 2, \\ \frac{2N}{N-2} & \text{if } N \ge 3. \end{cases}$$

The L^2 -norm and the energy

$$E(v) := \frac{1}{2} \|\nabla v\|_{L^2}^2 - \frac{\gamma}{2} \int_{\mathbb{R}^N} \frac{|v|^2}{|x|^{\alpha}} - \frac{1}{p+1} \|v\|_{L^{p+1}}^{p+1}$$

© 2021 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Received January 1, 2020. Revised June 19, 2020.

²⁰²⁰ Mathematics Subject Classification(s): 35Q55,35B35

^{*}Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

e-mail: fukaya@rs.tus.ac.jp

are conserved quantities of (1.1).

The aim of this note is to prove stability of ground-state standing waves for (1.1) with sufficiently large frequency. Our results are inspired by Fukuizumi [7], where the similar results were proven for L^2 -critical nonlinear Schrödinger equations with smooth potentials such as harmonic potential. However, Fukuizumi [7] does not treat the case of potentials having singularities such as inverse-power potentials. In this note we extend the results of [7] to the case of inverse-power potentials.

Eq. (1.1) has standing wave solutions with the form

$$u_{\omega}(t,x) = e^{i\omega t}\phi(x),$$

where $\omega \in \mathbb{R}$ is the frequency, and $\phi \in H^1(\mathbb{R}^N, \mathbb{C}) \setminus \{0\}$ is a nontrivial solution of the elliptic equation

(1.2)
$$-\Delta\phi + \omega\phi - \frac{\gamma}{|x|^{\alpha}}\phi - |\phi|^{p-1}\phi = 0, \quad x \in \mathbb{R}^N.$$

Eq. (1.2) is written as $S'_{\omega}(\phi) = 0$, where S_{ω} is the action defined by

$$S_{\omega}(v) := E(v) + \frac{\omega}{2} \|v\|_{L^{2}}^{2}$$

= $\frac{1}{2} \|\nabla v\|_{L^{2}}^{2} + \frac{\omega}{2} \|v\|_{L^{2}}^{2} - \frac{\gamma}{2} \int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{\alpha}} - \frac{1}{p+1} \|v\|_{L^{p+1}}^{p+1}$

We define the set of all ground states by

$$\mathcal{G}_{\omega} := \{ \phi \in \mathcal{A}_{\omega} \mid S_{\omega}(\phi) \le S_{\omega}(\psi) \text{ for all } \psi \in \mathcal{A}_{\omega} \},\$$

where \mathcal{A}_{ω} is the set of all nontrivial solutions:

$$\mathcal{A}_{\omega} := \{ \phi \in H^1(\mathbb{R}^N, \mathbb{C}) \mid \phi \neq 0, \ S'_{\omega}(\phi) = 0 \}.$$

The following results on existence and uniqueness of ground states are known (see e.g. [6, 9] for existence and see [5] for uniqueness).

Proposition 1.1. Let $1 and <math>\omega > -e_0$, where

$$e_0 := \inf \left\{ \|\nabla v\|_{L^2}^2 - \gamma \int_{\mathbb{R}^N} \frac{|v|^2}{|x|^{\alpha}} \ \middle| \ v \in H^1(\mathbb{R}^N, \mathbb{C}), \ \|v\|_{L^2} = 1 \right\} < 0$$

is the smallest eigenvalue of the operator $-\Delta - \gamma |x|^{-\alpha}$. Then \mathcal{G}_{ω} is not empty.

Moreover, there exists the positive, radial, and decreasing function $\phi_{\omega} \in \mathcal{A}_{\omega}$ such that

$$\mathcal{G}_{\omega} = \{ e^{i\theta} \phi_{\omega} \mid \theta \in \mathbb{R} \}.$$

In particular, $\omega \mapsto \phi_{\omega}$ is a C^1 -mapping from $]-e_0, \infty[$ to $H^1_{rad}(\mathbb{R}^N, \mathbb{R})$.

Hereafter, we denote the unique positive radial ground state by ϕ_{ω} . To state our results, we define orbital stability of standing waves.

Definition 1.2. We say that a standing wave solution $u(t) = e^{i\omega t}\phi$ is orbitally stable if for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $u_0 \in H^1(\mathbb{R}^N, \mathbb{C})$ satisfies $||u_0 - \phi||_{H^1} < \delta$, then the solution u(t) of (1.1) with $u(0) = u_0$ exists globally in time and satisfies

$$\inf_{\theta \in \mathbb{R}} \|u(t) - e^{i\theta}\phi\|_{H^1} < \varepsilon$$

for all $t \in \mathbb{R}$.

We say that a standing wave solution is orbitally *unstable* if it is not stable.

We review some known results related to our works. First, we recall the case of $\gamma = 0$. Cazenave and Lions [3] proved that if $1 , then the ground-state standing wave <math>e^{i\omega t}\phi_{\omega}$ is stable for any $\omega > 0$. On the other hand, Berestycki and Cazenave [2] proved that if $1 + 4/N \le p < 2^* - 1$, then the standing wave is unstable for any $\omega > 0$ (see also [16] for the case p = 1 + 4/N).

Next, we recall the cases of $\gamma > 0$. The following results are known. For any $1 , if <math>\omega$ is sufficiently close to $-e_0$, then the standing wave $e^{i\omega t}\phi_{\omega}$ is stable [9]. When $1 , if <math>\omega$ is sufficiently large, then the standing wave is stable [9]. When $1 + 4/N , if <math>\omega$ is sufficiently large, then the standing wave $e^{i\omega t}\phi_{\omega}$ is unstable [8] (see also [6, 14] for strong instability).

For the nonlinear Schrödinger equation with a suitable attractive potential

$$i\partial_t u = -\Delta u + V(x)u - |u|^{p-1}u, \quad (t,x) \in \mathbb{R} \times \mathbb{R}^N,$$

Fukuizumi [7] proved that even when p = 1 + 4/N, the standing wave is stable for sufficiently large ω . These phenomena are different from the case of $\gamma = 0$. We can find similar results in [13] for double power nonlinear Schrödinger equations and in [10] for nonlinear Schrödinger equations with an attractive delta potential.

In this note we prove the similar results as Fukuizumi [7] for (1.1). The following is the main result of this note.

Theorem 1.3. Let p = 1 + 4/N. Then there exists $\omega_* > -e_0$ such that if $\omega > \omega_*$, the standing wave solution $e^{i\omega t}\phi_{\omega}$ of (1.1) is stable.

Remark. In the case $N \geq 3$ and $\alpha = 2$, the equation (1.1) has the scaling invariance, that is, if u(t) is a solution of (1.1), then $\lambda^{2/(p-1)}u(\lambda^2 t, \lambda x)$ with $\lambda > 0$ is also a solution of (1.1). Therefore, when p = 1 + 4/N, we can show strong instability of ground states for any $\omega > 0$ by using the same argument of Berestycki and Cazenave [2] as in the case without potential.

N. FUKAYA

The proof of Theorem 1.3 is based on the argument of Fukuizumi [7]. We use the following sufficient conditions for stability of standing waves.

Proposition 1.4 ([11, 15]). Let $1 . If <math>\partial_{\omega} \|\phi_{\omega}\|_{L^2}^2 > 0$ at $\omega = \omega_0$, then the standing wave $e^{i\omega_0 t}\phi_{\omega_0}(x)$ is stable.

In [7], the assumption in Proposition 1.4 is verified for sufficiently large ω . One of the key of the proof in [7] is the uniform $L^2_{\rm rad}$ -boundedness in ω of the linearized inverse operators around the ground states. We can show the uniform boundedness by using regularity of the potential. However, in the case of (1.1), even when $v \in C_c(\mathbb{R}^N)$, the function $|x|^{-\alpha}v$ is not L^2 -function if $\alpha \geq N/2$ and v(0) > 0. From this observation, the L^2 -boundedness seems to be not effective, and we cannot establish the L^2 -boundedness. Instead here, by investigating the properties of linearized operators in more details and by using the homogeneity of the potential $-\gamma |x|^{-\alpha}$, we establish the uniform $H^1_{\rm rad}$ - $H^{-1}_{\rm rad}$ boundedness of the inverse operators (Lemma 2.3) and use it to verify the positivity of the derivative $\partial_{\omega} \|\phi_{\omega}\|_{L^2}^2$.

Remark. We seem to generalize our results to the case with more general potentials V(x), but we do not pursue this further in this note.

Remark. The results of [7, 8, 9] and ours are summarized as follows. When $\omega \searrow -e_0$, the ground state of (1.2) converges to that of the linear equation $-\Delta \phi + V(x)\phi = 0$ up to some scaling (see [9, Section 4]). Therefore, the stability can be understood by regarding (1.1) as a perturbation of the linear equation. On the other hand, when $\omega \to \infty$, the rescaled ground state of (1.2) converges to that of the nonlinear equation with $\omega = 1$ and $\gamma = 0$ (see Section 2 below). Since the ground state without potential is stable if p < 1 + 4/N and unstable if $p \ge 1 + 4/N$, we might expect that the ground state of (1.2) is unstable for large ω when $p \ge 1 + 4/N$. However, in the L^2 -critical case p = 1 + 4/N, the effect of attractive potential for large ω is very weak but sufficient to contribute to stability of ground states.

We can expect that the ground state is stable for the whole range $]-e_0, \infty[$ of ω , but the stability for a middle range of ω is still not known.

The rest of this note is organized as follows: In section 2, we investigate properties of ground states and their linearized operators. In section 3, we prove Theorem 1.3 by using Proposition 1.4.

§ 2. Properties of ground states and their linearized operators

In this section we prepare some lemmas to prove Theorem 1.3. Hereafter we only consider real-valued and radial functions. We denote

$$L^2_{\mathrm{rad}}(\mathbb{R}^N) := L^2_{\mathrm{rad}}(\mathbb{R}^N, \mathbb{R}), \quad H^1_{\mathrm{rad}}(\mathbb{R}^N) := H^1_{\mathrm{rad}}(\mathbb{R}^N, \mathbb{R}), \quad H^{-1}_{\mathrm{rad}}(\mathbb{R}^N) := H^1_{\mathrm{rad}}(\mathbb{R}^N, \mathbb{R})^*.$$

We put

$$\tilde{\phi}_{\omega}(x) := \omega^{-1/(p-1)} \phi_{\omega}(x/\sqrt{\omega}).$$

Then we have $\phi_{\omega}(x) = \omega^{1/(p-1)} \tilde{\phi}_{\omega}(\sqrt{\omega} x)$, and $\tilde{\phi}_{\omega}$ satisfies

(2.1)
$$-\Delta \tilde{\phi}_{\omega} + \tilde{\phi}_{\omega} - \omega^{-1+\alpha/2} \frac{\gamma}{|x|^{\alpha}} \tilde{\phi}_{\omega} - \tilde{\phi}_{\omega}^{p} = 0, \quad x \in \mathbb{R}^{N}.$$

Let $\tilde{\phi}_{\infty} \in H^1_{\mathrm{rad}}(\mathbb{R})$ be the unique positive radial solution of

$$-\Delta\phi + \phi - \phi^p = 0, \quad x \in \mathbb{R}^N$$

(see e.g., [1] for existence and [12] for uniqueness). Then we have the following convergence results.

Lemma 2.1.
$$\tilde{\phi}_{\omega} \to \tilde{\phi}_{\infty} \text{ in } H^1_{\mathrm{rad}}(\mathbb{R}^N) \text{ as } \omega \to \infty.$$

```
Proof. See [8].
```

By differentiating (2.1) with respect to ω , we get

(2.2)
$$\tilde{L}_{\omega}(\partial_{\omega}\tilde{\phi}_{\omega}) = -\omega^{-2+\alpha/2} \left(1 - \frac{\alpha}{2}\right) \frac{\gamma}{|x|^{\alpha}} \tilde{\phi}_{\omega},$$

where

$$\tilde{L}_{\omega} := -\Delta + 1 - \omega^{-1+\alpha/2} \frac{\gamma}{|x|^{\alpha}} - p \tilde{\phi}_{\omega}^{p-1}.$$

Let

$$\tilde{L}_{\infty} := -\Delta + 1 - p \tilde{\phi}_{\infty}^{p-1}.$$

Then we have

(2.3)
$$\tilde{L}_{\omega} = \tilde{L}_{\infty} - \omega^{-1+\alpha/2} \frac{\gamma}{|x|^{\alpha}} - p(\tilde{\phi}_{\omega}^{p-1} - \tilde{\phi}_{\infty}^{p-1}).$$

The following nondegeneracy results are important for our analysis.

Lemma 2.2. For $\omega \in [-e_0, \infty]$, the operator $\tilde{L}_{\omega} \colon H^1_{\mathrm{rad}}(\mathbb{R}^N) \to H^{-1}_{\mathrm{rad}}(\mathbb{R}^N)$ is injective. In particular, the range $\tilde{L}_{\omega}(H^1_{\mathrm{rad}}(\mathbb{R}^N))$ is dense in $H^{-1}_{\mathrm{rad}}(\mathbb{R}^N)$.

Proof. The injectivity (i.e. nondegeneracy) were proven by [12, 17] in the case of $\omega = \infty$ and by [5] in the case of $-e_0 < \omega < \infty$. We show the density of the range $\tilde{L}_{\omega}(H^1_{\mathrm{rad}}(\mathbb{R}^N))$ in $H^{-1}_{\mathrm{rad}}(\mathbb{R}^N)$. We regard $\tilde{L}_{\omega}: D(\tilde{L}_{\omega}) \to L^2_{\mathrm{rad}}(\mathbb{R}^N)$ as the operator on $L^2_{\mathrm{rad}}(\mathbb{R}^N)$. Then since $\ker(\tilde{L}_{\omega}) = \{0\}$, it follows that $L^2_{\mathrm{rad}}(\mathbb{R}^N) = \tilde{L}_{\omega}(D(\tilde{L}_{\omega}))^- \oplus$ $\ker(\tilde{L}_{\omega}) = \tilde{L}_{\omega}(D(\tilde{L}_{\omega}))^-$. Since $L^2_{\mathrm{rad}}(\mathbb{R}^N)$ is dense in $H^{-1}_{\mathrm{rad}}(\mathbb{R}^N)$, the range $\tilde{L}_{\omega}(D(\tilde{L}_{\omega}))$ is also dense in $H^{-1}_{\mathrm{rad}}(\mathbb{R}^N)$. Noting that $D(\tilde{L}_{\omega}) \subset H^1_{\mathrm{rad}}(\mathbb{R}^N)$, we have the conclusion. \Box

Since $\tilde{L}_{\omega} \colon H^1_{\mathrm{rad}}(\mathbb{R}^N) \to H^{-1}_{\mathrm{rad}}(\mathbb{R}^N)$ is injective, its inverse operator

$$\tilde{L}^{-1}_{\omega} \colon \tilde{L}_{\omega}(H^1_{\mathrm{rad}}(\mathbb{R}^N)) \to H^1_{\mathrm{rad}}(\mathbb{R}^N)$$

is defined and surjective. The following estimate is the key of our proof.

Lemma 2.3. There exist $C_0 > 0$ and $\omega_0 > -e_0$ such that

$$\|\tilde{L}_{\omega}^{-1}f\|_{H^{1}} \le C_{0}\|f\|_{H^{-1}}$$

for all $\omega > \omega_0$ and $f \in \tilde{L}_{\omega}(H^1_{\mathrm{rad}}(\mathbb{R}^N)).$

Proof. It suffices to show that there exist $C_0 > 0$ and $\omega_0 > -e_0$ such that

(2.4)
$$\|v\|_{H^1} \le C_0 \|\hat{L}_\omega v\|_{H^{-1}}$$

for all $v \in H^1_{\mathrm{rad}}(\mathbb{R}^N)$ and $\omega > \omega_0$. First, we show that there exists $C_1 > 0$ such that

(2.5)
$$\|v\|_{H^1} \le C_1 \|\tilde{L}_{\infty}v\|_{H^{-1}}$$

for all $v \in H^1_{\mathrm{rad}}(\mathbb{R}^N)$. If not, for any $n \in \mathbb{N}$ there exists $v_n \in H^1_{\mathrm{rad}}(\mathbb{R}^N)$ such that $\|v_n\|_{H^1} = 1$ and $\|\tilde{L}_{\infty}v_n\|_{H^{-1}} < 1/n$. This implies that

(2.6)
$$\begin{aligned} \|\tilde{L}_{\infty}v_{n}\|_{H^{-1}} &\to 0, \\ |\langle \tilde{L}_{\infty}v_{n}, v_{n}\rangle| \leq \|\tilde{L}_{\infty}v_{n}\|_{H^{-1}} \|v_{n}\|_{H^{1}} \to 0 \end{aligned}$$

as $n \to \infty$.

On the other hand, for any $g \in \tilde{L}_{\infty}(H^1_{rad}(\mathbb{R}^N))$, since there exists $w \in H^1_{rad}(\mathbb{R}^N)$ such that $\tilde{L}_{\infty}w = g$, we have

$$|\langle g, v_n \rangle| = |\langle \tilde{L}_{\infty} w, v_n \rangle| = |\langle \tilde{L}_{\infty} v_n, w \rangle| \le \|\tilde{L}_{\infty} v_n\|_{H^{-1}} \|w\|_{H^1} \to 0$$

as $n \to \infty$. Since $\tilde{L}_{\infty}(H^1_{\mathrm{rad}}(\mathbb{R}^N))$ is dense in $H^{-1}_{\mathrm{rad}}(\mathbb{R}^N)$ by Lemma 2.2, we see that $v_n \to 0$ weakly in $H^1_{\mathrm{rad}}(\mathbb{R}^N)$. Therefore, by $\|v_n\|_{H^1} = 1$, we obtain

$$\langle \tilde{L}_{\infty} v_n, v_n \rangle = \|v_n\|_{H^1}^2 - p \int_{\mathbb{R}^N} \tilde{\phi}_{\infty}^{p-1} |v_n|^2 = 1 - p \int_{\mathbb{R}^N} \tilde{\phi}_{\infty}^{p-1} |v_n|^2 \to 1$$

as $n \to \infty$. This contradicts (2.6). Thus, the inequality (2.5) holds.

Next, we show (2.4). Let $v \in H^1_{rad}(\mathbb{R}^N)$. By (2.3) and (2.5) we have

$$\begin{split} \|\tilde{L}_{\omega}v\|_{H^{-1}} &\geq \|\tilde{L}_{\infty}v\|_{H^{-1}} - \omega^{-1+\alpha/2}\gamma\||x|^{-\alpha}v\|_{H^{-1}} - \|(\tilde{\phi}_{\omega}^{p-1} - \tilde{\phi}_{\infty}^{p-1})v\|_{H^{-1}} \\ &\geq \frac{1}{C_{1}}\|v\|_{H^{1}} - \omega^{-1+\alpha/2}\gamma\||x|^{-\alpha}v\|_{H^{-1}} - \|(\tilde{\phi}_{\omega}^{p-1} - \tilde{\phi}_{\infty}^{p-1})v\|_{H^{-1}}. \end{split}$$

The second and third terms in the right hand side are estimated as follows:

$$|||x|^{-\alpha}v||_{H^{-1}} \lesssim ||v||_{H^{1}},$$
$$||(\tilde{\phi}_{\omega}^{p-1} - \tilde{\phi}_{\infty}^{p-1})v||_{H^{-1}} \lesssim ||\tilde{\phi}_{\omega} - \tilde{\phi}_{\infty}||_{H^{1}} ||v||_{H^{1}}.$$

Therefore, since $\alpha < 2$ and $\tilde{\phi}_{\omega} \to \tilde{\phi}_{\infty}$ in $H^1(\mathbb{R}^N)$, if ω is sufficiently large, we obtain

$$\|\tilde{L}_{\omega}v\|_{H^{-1}} \ge \frac{1}{2C_1} \|v\|_{H^1}.$$

This completes the proof.

§3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by using Proposition 1.4.

Lemma 3.1. For $\omega > -e_0$,

(3.1)
$$(p-1) \int_{\mathbb{R}^N} \tilde{\phi}^p_\omega \partial_\omega \tilde{\phi}_\omega = \left(1 - \frac{\alpha}{2}\right) \omega^{-2 + \alpha/2} \gamma \int_{\mathbb{R}^N} \frac{\tilde{\phi}^2_\omega}{|x|^\alpha},$$

(3.2)

$$\|\tilde{\phi}_{\omega}\|_{L^{2}}^{2} = \omega^{-1+\alpha/2} \left(1-\frac{\alpha}{2}\right) \gamma \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega}^{2}}{|x|^{\alpha}} - \left\{\frac{(p+1)(N-2)}{2} - N\right\} \frac{1}{p+1} \|\tilde{\phi}_{\omega}\|_{L^{p+1}}^{p+1}.$$

Proof. First, we show (3.1). By multiplying $\partial_{\omega} \tilde{\phi}_{\omega}$ with (2.1) and integrating it, we have

(3.3)
$$\int_{\mathbb{R}^N} \nabla \tilde{\phi}_{\omega} \cdot \nabla \partial_{\omega} \tilde{\phi}_{\omega} + \int_{\mathbb{R}^N} \tilde{\phi}_{\omega} \partial_{\omega} \tilde{\phi}_{\omega} - \omega^{-1+\alpha/2} \gamma \int_{\mathbb{R}^N} \frac{\tilde{\phi}_{\omega} \partial_{\omega} \tilde{\phi}_{\omega}}{|x|^{\alpha}} - \int_{\mathbb{R}^N} \tilde{\phi}_{\omega}^p \partial_{\omega} \tilde{\phi}_{\omega} = 0.$$

By multiplying $\tilde{\phi}_{\omega}$ with (2.2) and integrating it, we have

(3.4)
$$\int_{\mathbb{R}^{N}} \nabla \tilde{\phi}_{\omega} \cdot \nabla \partial_{\omega} \tilde{\phi}_{\omega} + \int_{\mathbb{R}^{N}} \tilde{\phi}_{\omega} \partial_{\omega} \tilde{\phi}_{\omega} - \omega^{-1+\alpha/2} \gamma \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega} \partial_{\omega} \tilde{\phi}_{\omega}}{|x|^{\alpha}} - p \int_{\mathbb{R}^{N}} \tilde{\phi}_{\omega}^{p} \partial_{\omega} \tilde{\phi}_{\omega} = -\left(1 - \frac{\alpha}{2}\right) \omega^{-2+\alpha/2} \gamma \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega}^{2}}{|x|^{\alpha}}$$

By (3.3) and (3.4), we obtain

$$(p-1)\int_{\mathbb{R}^N}\tilde{\phi}^p_{\omega}\partial_{\omega}\tilde{\phi}_{\omega} = \left(1-\frac{\alpha}{2}\right)\omega^{-2+\alpha/2}\gamma\int_{\mathbb{R}^N}\frac{\tilde{\phi}^2_{\omega}}{|x|^{\alpha}}.$$

N. FUKAYA

Next, we show (3.2). The action corresponding to the equation (2.1) is given by

$$\tilde{S}_{\omega}(v) = \frac{1}{2} \|\nabla v\|_{L^{2}}^{2} + \frac{1}{2} \|v\|_{L^{2}}^{2} - \omega^{-1+\alpha/2} \frac{\gamma}{2} \int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{\alpha}} - \frac{1}{p+1} \|v\|_{L^{p+1}}^{p+1}$$

We compute

$$(3.5) \qquad \tilde{S}_{\omega}(\lambda^{\delta}\tilde{\phi}_{\omega}(\lambda\cdot)) = \frac{\lambda^{2\delta+2-N}}{2} \|\nabla\tilde{\phi}_{\omega}\|_{L^{2}}^{2} + \frac{\lambda^{2\delta-N}}{2} \|\tilde{\phi}_{\omega}\|_{L^{2}}^{2} \\ -\lambda^{2\delta+\alpha-N} \omega^{\alpha/2-1} \frac{\gamma}{2} \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega}^{2}}{|x|^{\alpha}} - \frac{\lambda^{(p+1)\delta-N}}{p+1} \|\tilde{\phi}_{\omega}\|_{L^{p+1}}^{p+1}.$$

We take $\delta = (N-2)/2$. Then we have $2\delta + 2 - N = 0$, $2\delta - N = -2$, $2\delta + \alpha - N = -(2-\alpha)$, and $(p+1)\delta - N = (p+1)(N-2)/2 - N$. By differentiating (3.5) at $\lambda = 1$, since $\tilde{S}'_{\omega}(\tilde{\phi}_{\omega}) = 0$, we get

$$0 = -\|\tilde{\phi}_{\omega}\|_{L^{2}}^{2} + \omega^{-1+\alpha/2} \left(1 - \frac{\alpha}{2}\right) \gamma \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega}^{2}}{|x|^{\alpha}} - \left\{\frac{(p+1)(N-2)}{2} - N\right\} \frac{1}{p+1} \|\tilde{\phi}_{\omega}\|_{L^{p+1}}^{p+1}.$$

This completes the proof.

This completes the proof.

Lemma 3.2. If p = 1 + 4/N, then there exists $\omega_* > -e_0$ such that $\partial_{\omega} \|\phi_{\omega}\|_{L^2}^2 > 0$ for all $\omega > \omega_*$.

Proof. Note that since p = 1 + 4/N, we have $\|\phi_{\omega}\|_{L^2} = \|\tilde{\phi}_{\omega}\|_{L^2}$. By differentiating (3.2) with respect to ω , we have

$$\partial_{\omega} \|\phi_{\omega}\|_{L^{2}}^{2} = \partial_{\omega} \|\tilde{\phi}_{\omega}\|_{L^{2}}^{2}$$

$$(3.6) = -\omega^{-2+\alpha/2} \left(1 - \frac{\alpha}{2}\right)^{2} \gamma \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega}^{2}}{|x|^{\alpha}} + 2\omega^{-1+\alpha/2} \left(1 - \frac{\alpha}{2}\right) \gamma \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega} \partial_{\omega} \tilde{\phi}_{\omega}}{|x|^{\alpha}}$$

$$- \left\{\frac{(p+1)(N-2)}{2} - N\right\} \int_{\mathbb{R}^{N}} \tilde{\phi}_{\omega}^{p} \partial_{\omega} \tilde{\phi}_{\omega}.$$

We note that

$$\partial_{\omega}\tilde{\phi}_{\omega} = -\omega^{-2+\alpha/2} \left(1 - \frac{\alpha}{2}\right) \gamma \tilde{L}_{\omega}^{-1} \left(\frac{\tilde{\phi}_{\omega}}{|x|^{\alpha}}\right)$$

by (2.2), and that

$$\frac{(p+1)(N-2)}{2} - N\Big|_{p=1+4/N} = -\frac{4}{N} = -(p-1)\Big|_{p=1+4/N}$$

Therefore, combining (3.6) and (3.1), we have

$$\begin{aligned} \partial_{\omega} \|\phi_{\omega}\|_{L^{2}}^{2} &= \omega^{-2+\alpha/2} \frac{\alpha}{2} \left(1-\frac{\alpha}{2}\right) \gamma \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega}^{2}}{|x|^{\alpha}} + 2\omega^{-1+\alpha/2} \left(1-\frac{\alpha}{2}\right) \gamma \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega} \partial_{\omega} \tilde{\phi}_{\omega}}{|x|^{\alpha}} \\ &= \omega^{-2+\alpha/2} \frac{\alpha}{2} \left(1-\frac{\alpha}{2}\right) \gamma \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega}^{2}}{|x|^{\alpha}} - 2\omega^{-3+\alpha} \left(1-\frac{\alpha}{2}\right)^{2} \gamma^{2} \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega}}{|x|^{\alpha}} \tilde{L}_{\omega}^{-1} \left(\frac{\tilde{\phi}_{\omega}}{|x|^{\alpha}}\right). \end{aligned}$$

Since $\tilde{\phi}_{\omega} \to \tilde{\phi}_{\infty}$ in $H^1(\mathbb{R}^N)$ as $\omega \to \infty$, we have

$$\int_{\mathbb{R}^N} \frac{\tilde{\phi}_{\omega}^2}{|x|^{\alpha}} \to \int_{\mathbb{R}^N} \frac{\tilde{\phi}_{\infty}^2}{|x|^{\alpha}} > 0$$

as $\omega \to \infty$. Moreover, since $|x|^{-\alpha} \tilde{\phi}_{\omega} \in \tilde{L}_{\omega}(H^1_{rad}(\mathbb{R}^N))$ by (2.2), we can use Lemma 2.3 to get

$$\left| \int_{\mathbb{R}^{N}} \frac{\tilde{\phi}_{\omega}}{|x|^{\alpha}} \tilde{L}_{\omega}^{-1} \left(\frac{\tilde{\phi}_{\omega}}{|x|^{\alpha}} \right) \right| \leq \left\| \frac{\tilde{\phi}_{\omega}}{|x|^{\alpha}} \right\|_{H^{-1}} \left\| \tilde{L}_{\omega}^{-1} \left(\frac{\tilde{\phi}_{\omega}}{|x|^{\alpha}} \right) \right\|_{H^{1}}$$
$$\lesssim \left\| \frac{\tilde{\phi}_{\omega}}{|x|^{\alpha}} \right\|_{H^{-1}}^{2} \lesssim \| \tilde{\phi}_{\omega} \|_{H^{1}}^{2} \leq 2 \| \tilde{\phi}_{\infty} \|_{H^{1}}^{2}$$

for sufficiently large ω . We note that since $0 < \alpha < 2$, we get $-2 + \alpha/2 > -3 + \alpha$. Therefore, we obtain

$$\partial_{\omega} \|\phi_{\omega}\|_{L^2}^2 \gtrsim \omega^{-2+\alpha/2} + o(\omega^{-2+\alpha/2})$$

as $\omega \to \infty$. This means that $\partial_{\omega} \|\phi_{\omega}\|_{L^2}^2 > 0$ if ω is sufficiently large. This completes the proof.

Proof of Theorem 1.3. Theorem 1.3 follows from Proposition 1.4 and Lemma 3.2. \Box

Acknowledgements

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University and by JSPS KAKENHI Grant Number 20K14349. The authors would like to thank the referee for helpful comments.

References

- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), 313–345.
- [2] H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 489–492.
- [3] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549–561.
- [4] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

N. FUKAYA

- [5] N. Fukaya, Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential, Commun. Pure Appl. Anal. 20 (2021), 121–143.
- [6] N. Fukaya and M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with attractive inverse power potential, Osaka J. Math. 56 (2019), 713–726.
- [7] R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials, Adv. Differential Equations 10 (2005), 259–276.
- [8] R. Fukuizumi and M. Ohta, *Instability of standing waves for nonlinear Schrödinger equations with potentials*, Differential Integral Equations **16** (2003), 691–706.
- [9] R. Fukuizumi and M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations 16 (2003), 111–128.
- [10] R. Fukuizumi, M. Ohta, and T. Ozawa, Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 837–845.
- [11] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal. 74 (1987), 160–197.
- [12] M. K. Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^n , Arch. Rational Mech. Anal. **105** (1989), 243–266.
- [13] M. Ohta, Stability and instability of standing waves for one-dimensional nonlinear Schrödinger equations with double power nonlinearity, Kodai Math. J. 18 (1995), 68–74.
- [14] M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential, Harmonic analysis and nonlinear partial differential equations, RIMS Kôkyûroku Bessatsu, B56, Res. Inst. Math. Sci. (RIMS), Kyoto, 2016, pp. 79– 92.
- [15] J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys. 91 (1983), 313–327.
- [16] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), 567–576.
- [17] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39 (1986), 51–67.