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Stability of standing waves
for L?-critical nonlinear Schrédinger equations
with attractive inverse-power potential

By

Noriyoshi FUKAYA*

Abstract

We consider stability of standing waves for L?-critical nonlinear Schrédinger equations
with an attractive inverse-power potential. We prove that if the frequency of ground-state
standing wave is sufficiently large, then it is orbitally stable. Our results are extensions of
the results of Fukuizumi (2005), in which similar results were proven for L?-critical nonlinear
Schrodinger equations with smooth potentials such as harmonic potential.

§ 1. Introduction

We consider the following nonlinear Schrodinger equations with the L2-critical non-

linearity and an inverse-power potential:

(1.1) 10 = —Au — - lulP~tu, (t,z) € R x RY,

||

where N € N, v > 0, 0 < a < min{2,N}, and p = 1 +4/N. It is known that the
Cauchy problem for (1.1) is locally well-posed in H*(RY,C) if 1 < p < 2* —1 (see [4]),
where 2* is the Sobolev critical exponent defined by

50 it N =1,2,
2% = IN

— if N > 3.
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The L?-norm and the energy
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are conserved quantities of (1.1).

The aim of this note is to prove stability of ground-state standing waves for (1.1)
with sufficiently large frequency. Our results are inspired by Fukuizumi [7], where the
similar results were proven for L2-critical nonlinear Schrédinger equations with smooth
potentials such as harmonic potential. However, Fukuizumi [7] does not treat the case of
potentials having singularities such as inverse-power potentials. In this note we extend
the results of [7] to the case of inverse-power potentials.

Eq. (1.1) has standing wave solutions with the form

uy(t, ) = eo(z),

where w € R is the frequency, and ¢ € H*(RY,C) \ {0} is a nontrivial solution of the

elliptic equation

(1.2) —Aptwd— ¢ —|gP =0, zeRY.

]
Eq. (1.2) is written as S/, (¢) = 0, where S,, is the action defined by

w
Suw(v) == E(v) + §||v||iz

1 w gl Els 1 1
= C||Vul22 + 2 2——/ - Lo
1903+ Sholfze =3 [ 2 = ol

We define the set of all ground states by
G 1= {6 € Au | Su(0) < Su(t) for all v € A, },
where A,, is the set of all nontrivial solutions:
Ao ={oc H'RY,C) |9 #0, S,(¢) =0}.

The following results on existence and uniqueness of ground states are known (see e.g.

6, 9] for existence and see [5] for uniqueness).

Proposition 1.1. Let1 <p <2* —1 and w > —eqg, where

= inf { || Vo3 / P
€n - 1n v —
0 L " RN fL’|a

is the smallest eigenvalue of the operator —A — ~|x|~*. Then G, is not empty.

veH%RMc»wwm:1}<o

Moreover, there exists the positive, radial, and decreasing function ¢, € A, such
that

Go={c"p, |0 €R}.

In particular, w — ¢, is a C*-mapping from |—eg, o[ to H. 4

(RN R).
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Hereafter, we denote the unique positive radial ground state by ¢,. To state our
results, we define orbital stability of standing waves.

Definition 1.2. We say that a standing wave solution u(t) = ¢™!¢ is orbitally
stable if for any ¢ > 0 there exists § > 0 such that if ug € H'(RY,C) satisfies ||ug —
o|lgr < 9, then the solution u(t) of (1.1) with u(0) = ug exists globally in time and
satisfies

Inf Jlu(t) — el <e

for all t € R.

We say that a standing wave solution is orbitally unstable if it is not stable.

We review some known results related to our works. First, we recall the case of
v = 0. Cazenave and Lions [3] proved that if 1 < p < 1+ 4/N, then the ground-
state standing wave e“!¢,, is stable for any w > 0. On the other hand, Berestycki and
Cazenave [2] proved that if 14+ 4/N < p < 2* — 1, then the standing wave is unstable
for any w > 0 (see also [16] for the case p =1+ 4/N).

Next, we recall the cases of ¥ > 0. The following results are known. For any
1 < p< 2 —1,if w is sufficiently close to —eg, then the standing wave e™“!¢,, is stable
[9]. When 1 < p <1+ 4/N, if w is sufficiently large, then the standing wave is stable
[9]. When 1+4/N < p < 2* — 1, if w is sufficiently large, then the standing wave e™“!¢,,
is unstable [8] (see also [6, 14] for strong instability).

For the nonlinear Schrodinger equation with a suitable attractive potential

i0u = —Au+V(x)u —|ulPlu, (t,2) e R xRV,

Fukuizumi [7] proved that even when p = 1 + 4/N, the standing wave is stable for
sufficiently large w. These phenomena are different from the case of v = 0. We can find
similar results in [13] for double power nonlinear Schrédinger equations and in [10] for
nonlinear Schrodinger equations with an attractive delta potential.

In this note we prove the similar results as Fukuizumi [7] for (1.1). The following
is the main result of this note.

Theorem 1.3. Let p = 1+4/N. Then there exists w, > —eq such that if w > w,,
the standing wave solution ¢, of (1.1) is stable.

Remark. In the case N > 3 and o = 2, the equation (1.1) has the scaling
invariance, that is, if u(t) is a solution of (1.1), then A%/ P~V (A%, Az) with A > 0 is
also a solution of (1.1). Therefore, when p = 1+4/N, we can show strong instability of
ground states for any w > 0 by using the same argument of Berestycki and Cazenave [2]
as in the case without potential.
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The proof of Theorem 1.3 is based on the argument of Fukuizumi [7]. We use the
following sufficient conditions for stability of standing waves.

Proposition 1.4 ([11, 15]). Let 1 < p < 2* — 1. If 0, ]|¢]|32 > 0 at w = wy,
then the standing wave e*°t¢,, () is stable.

In [7], the assumption in Proposition 1.4 is verified for sufficiently large w. One of
the key of the proof in [7] is the uniform L? ;-boundedness in w of the linearized inverse
operators around the ground states. We can show the uniform boundedness by using
regularity of the potential. However, in the case of (1.1), even when v € C.(RY), the
function |z|~%v is not L?-function if & > N/2 and v(0) > 0. From this observation, the
L?-boundedness seems to be not effective, and we cannot establish the L?-boundedness.
Instead here, by investigating the properties of linearized operators in more details and
by using the homogeneity of the potential —vy|x|~%, we establish the uniform I-,Irlad—l-,[r;(lj

boundedness of the inverse operators (Lemma 2.3) and use it to verify the positivity of
the derivative d,,| P [|%.

Remark.  We seem to generalize our results to the case with more general poten-
tials V' (z), but we do not pursue this further in this note.

Remark.  The results of [7, 8, 9] and ours are summarized as follows. When w
—ep, the ground state of (1.2) converges to that of the linear equation —A¢+V (z)p =0
up to some scaling (see [9, Section 4]). Therefore, the stability can be understood by
regarding (1.1) as a perturbation of the linear equation. On the other hand, when
w — 00, the rescaled ground state of (1.2) converges to that of the nonlinear equation
with w = 1 and 7 = 0 (see Section 2 below). Since the ground state without potential
is stable if p < 1+ 4/N and unstable if p > 14 4/N, we might expect that the ground
state of (1.2) is unstable for large w when p > 1+4/N. However, in the L2-critical case
p=1+44/N, the effect of attractive potential for large w is very weak but sufficient to
contribute to stability of ground states.

We can expect that the ground state is stable for the whole range |—eg, oo[ of w,
but the stability for a middle range of w is still not known.

The rest of this note is organized as follows: In section 2, we investigate properties
of ground states and their linearized operators. In section 3, we prove Theorem 1.3 by
using Proposition 1.4.

§ 2. Properties of ground states and their linearized operators

In this section we prepare some lemmas to prove Theorem 1.3. Hereafter we only
consider real-valued and radial functions. We denote

L{aRY) := L2 a(RY,R), Hipq(RY) := Hq(RY,R), H4(RY) := Hy q(RY,R)".

rad rad rad
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We put
bo(z) = w VP Vg (z/vw).
Then we have ¢,,(z) = w/ @V, (Vwz), and ¢, satisfies

(2.1) A+ — w‘HO‘/Q#&w — =0, zeRV.

Let &oo € H! ,(R) be the unique positive radial solution of
rad
—Ap+¢d— P =0, xe€R"

(see e.g., [1] for existence and [12] for uniqueness). Then we have the following conver-
gence results.

Lemma 2.1. ¢, — ¢oo in H. {(RN) as w — oo,

Proof. See [8]. O

By differentiating (2.1) with respect to w, we get

2.2 Ew aw ~w = s (1 - g) l ~w
where
Lyi=—-A+1-— w_HO‘/Q% — poPt
x| “
Let

Lo ::—A—i—l—pgggo_l.

Then we have

(2.3) L= Loo — w—lwﬁ —p(¢t — Y.
x (0%

The following nondegeneracy results are important for our analysis.

Lemma 2.2. For w € |—eg, ], the operator L,: H. (RY) — H_L(RN) is
injective. In particular, the range L,(HL (RN)) is dense in H_ (RN).

Proof. The injectivity (i.e. nondegeneracy) were proven by [12, 17] in the case
of w = oo and by [5] in the case of —ep < w < oco. We show the density of the
range L, (HL (RY)) in H,L(RN). We regard L,,: D(L,) — L2 4(RY) as the operator
on L2 (RY). Then since ker(L,) = {0}, it follows that L2 ,(RN) = L,(D(L,))” ®
ker(L,) = Ly, (D(L,))~. Since L2 4(RY) is dense in H,}(RY), the range L, (D(L,,)) is

also dense in H_ | (RY). Noting that D(L,) C HL ,(RM), we have the conclusion. [J



50 N. Fukavya

Since L, : H:

L RY) — H_L(RN) is injective, its inverse operator

L% Lu(HL(RY)) - HLo(RY)

w rad

is defined and surjective. The following estimate is the key of our proof.

Lemma 2.3. There exist Cy > 0 and wy > —eqy such that

LSl < Collfll -

for all w > wo and f € Ly(HL (RN)).

Proof. 1t suffices to show that there exist Cy > 0 and wy > —eq such that
(2.4) ol < Coll Luvllzr—
for all v € H! ;(RY) and w > wp. First, we show that there exists C; > 0 such that
(2.5) lollzr < CrllLoovl| -1

for all v € HL (RY). If not, for any n € N there exists v, € HL (RY) such that

|vnllgr =1 and || Logvy || -1 < 1/n. This implies that

| Loon || -1 — 0,

(26) |<Eoovn,vn>| S ||Eoovn||H—1’|vn||H1 — 0

as m — 00.
On the other hand, for any g € Lo, (HL (RY)), since there exists w € HL ;(RY)
such that Loow = g, we have

(g, vn) = {Loow, va)| = (Locvn, w)| < | Locnll -1 w] s — 0

(RN)) is dense in H_:(RN) by Lemma 2.2, we see that

- 3 1
as n — 0o. Since Lo (H rad

rad
vp, — 0 weakly in HL (RY). Therefore, by ||v,|/z: = 1, we obtain

(Eootnstn) = a2y —p / S o2 = 1—p /
RN

[ ol 1

as n — oo. This contradicts (2.6). Thus, the inequality (2.5) holds.
Next, we show (2.4). Let v € H ,(RY). By (2.3) and (2.5) we have

rad
ILwvll -1 > | Loovll -1 — w™ 2|2~ %0l g = (857" = &8 vl g

1 - - Tp—1 _ Tp—
o el | Pl (Gl L S
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The second and third terms in the right hand side are estimated as follows:

[~ vllg-1 < vl

165~ = 5 ol S 16w — dooll e [[0ll e

Therefore, since a < 2 and ¢, — Poo in H LRY), if w is sufficiently large, we obtain

~ 1
| Lov|| -1 > Q—QHUHHL

This completes the proof. O

§3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by using Proposition 1.4.

Lemma 3.1. For w > —ey,
_ _ 72
(3.1) 0= [ dtoud= (1= )werny [ O
RN 2 RN |Il)'|
(3.2)
||(5 HQ — /2 <1 _ g) 'Y/ GZ;_Z, o (p+1)(N—2) _N 1 H(; HP—H
Al 2)7 Jox Talo 2 pr 1%l

Proof. First, we show (3.1). By multiplying d,¢,, with (2.1) and integrating it,

we have
7 7 7 7 ~waw ~w
(3.3) Vo - VOude +/ GO by — w1/ 2 PO
RN RN RV |z[®
- ggf;awqgw =0.
RN
By multiplying ¢, with (2.2) and integrating it, we have
(3.4 Voo Vbt [ duudy —wtrosy [ Gulabe
RN RN R 7]
- aN 0%
— PO.¢, = —(1— = 2Ha/2 / —
P 9u0u9 (1-3) e o [z

By (3.3) and (3.4), we obtain

1) [ oue= (1= D)wrrreny [

]RN
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Next, we show (3.2). The action corresponding to the equation (2.1) is given by

2
1
L

Nzl p TR

~ 1 1
Su(®) = Z[|V0]22 + < o]f22 — w1 He/2]
2 2 2 [

We compute

~ 5 26+2—-N - A\20-N )
(35 Bu(Nh(h) = o Vhuls + bl
. )\26+a—Nwa/2—11/ ¢2} - )\(p+1)6—N ||(5 Hp+11-
2 Jrn |z|® p+1 wiLe

We take 6 = (N—2)/2. Then we have 20+2—N =0,26—N = —2,20+a—N = —(2—a),
and (p+1)0 — N = (p+ 1)(IN — 2)/2 — N. By differentiating (3.5) at A = 1, since
S (fw) = 0, we get
72
= _ + 1)(N —2) 1 - 1
0:_ w 22 1+a/2 (1_g> / ¢UJ — (p _N - - w p 1-
This completes the proof. O

Lemma 3.2.  Ifp=1+4/N, then there exists w, > —eq such that d,,| ¢, |32 > 0
for all w > wy.

Proof. Note that since p = 1+4/N, we have ||, |2 = ||¢w||r2. By differentiating
(3.2) with respect to w, we have

Qulltullfe = BullduZ2

_ a2 (1 @) 9 Cibaga (O PuO.s b
(3.6) = —w (1 2) ’Y/RN 2| + 2w (1 2>fy T
_{(p-l—l)(N—Q) _N} 70,50,
2 -

We note that

o=t (-5 02 ()

by (2.2), and that

P+DN-2) o

4
= N (P = Dlpmra/n -

p=144/N

Therefore, combining (3.6) and (3.1), we have
8w||¢w||%2
72

_ w72+a/2g (1 _ g) '7/ w 2w71+a/2 (1 o g) ~ ¢w8w¢w
2 RN |1'|a 2 RN

_ - 2Ha2 (1_9%/ ﬁ_2w—3+a <1_g>272/ Pus E;1<¢w >
2 2/ Jan |zl 2 Ry |2 [
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Since @, — ¢oo in HY(RN) as w — oo, we have

12 12
/ —= — / Poo >0
Ry [2* 0 Jp |zl

as w — co. Moreover, since |z|~%¢,, € L, (HL ,(RN)) by (2.2), we can use Lemma 2.3

rad

to get

L (1)

S 19wl < 2llowllin

/. ﬁ%i;l(w)

<[ et

<l H

|| -2
for sufficiently large w. We note that since 0 < a < 2, we get —2 + a/2 > -3 + a.
Therefore, we obtain

Oullbulle 2 w™274/2 4 o(w™2F/2)

as w — co. This means that 9,|/¢, 7. > 0 if w is sufficiently large. This completes the
proof. O

Proof of Theorem 1.3. Theorem 1.3 follows from Proposition 1.4 and Lemma 3.2.
O
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