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Stability of standing waves

for L2-critical nonlinear Schrödinger equations

with attractive inverse-power potential

By

Noriyoshi Fukaya∗

Abstract

We consider stability of standing waves for L2-critical nonlinear Schrödinger equations

with an attractive inverse-power potential. We prove that if the frequency of ground-state

standing wave is sufficiently large, then it is orbitally stable. Our results are extensions of

the results of Fukuizumi (2005), in which similar results were proven for L2-critical nonlinear

Schrödinger equations with smooth potentials such as harmonic potential.

§ 1. Introduction

We consider the following nonlinear Schrödinger equations with the L2-critical non-

linearity and an inverse-power potential:

(1.1) i∂tu = −∆u− γ

|x|α
u− |u|p−1u, (t, x) ∈ R× RN ,

where N ∈ N, γ > 0, 0 < α < min{2, N}, and p = 1 + 4/N . It is known that the

Cauchy problem for (1.1) is locally well-posed in H1(RN ,C) if 1 < p < 2∗ − 1 (see [4]),

where 2∗ is the Sobolev critical exponent defined by

2∗ :=


∞ if N = 1, 2,

2N

N − 2
if N ≥ 3.

The L2-norm and the energy

E(v) :=
1

2
‖∇v‖2L2 −

γ

2

∫
RN

|v|2

|x|α
− 1

p+ 1
‖v‖p+1

Lp+1
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are conserved quantities of (1.1).

The aim of this note is to prove stability of ground-state standing waves for (1.1)

with sufficiently large frequency. Our results are inspired by Fukuizumi [7], where the

similar results were proven for L2-critical nonlinear Schrödinger equations with smooth

potentials such as harmonic potential. However, Fukuizumi [7] does not treat the case of

potentials having singularities such as inverse-power potentials. In this note we extend

the results of [7] to the case of inverse-power potentials.

Eq. (1.1) has standing wave solutions with the form

uω(t, x) = eiωtϕ(x),

where ω ∈ R is the frequency, and ϕ ∈ H1(RN ,C) \ {0} is a nontrivial solution of the

elliptic equation

(1.2) −∆ϕ+ ωϕ− γ

|x|α
ϕ− |ϕ|p−1ϕ = 0, x ∈ RN .

Eq. (1.2) is written as S′
ω(ϕ) = 0, where Sω is the action defined by

Sω(v) := E(v) +
ω

2
‖v‖2L2

=
1

2
‖∇v‖2L2 +

ω

2
‖v‖2L2 −

γ

2

∫
RN

|v|2

|x|α
− 1

p+ 1
‖v‖p+1

Lp+1 .

We define the set of all ground states by

Gω := {ϕ ∈ Aω | Sω(ϕ) ≤ Sω(ψ) for all ψ ∈ Aω },

where Aω is the set of all nontrivial solutions:

Aω := {ϕ ∈ H1(RN ,C) | ϕ 6= 0, S′
ω(ϕ) = 0 }.

The following results on existence and uniqueness of ground states are known (see e.g.

[6, 9] for existence and see [5] for uniqueness).

Proposition 1.1. Let 1 < p < 2∗ − 1 and ω > −e0, where

e0 := inf

{
‖∇v‖2L2 − γ

∫
RN

|v|2

|x|α

∣∣∣∣ v ∈ H1(RN ,C), ‖v‖L2 = 1

}
< 0

is the smallest eigenvalue of the operator −∆− γ|x|−α. Then Gω is not empty.

Moreover, there exists the positive, radial, and decreasing function ϕω ∈ Aω such

that

Gω = { eiθϕω | θ ∈ R }.

In particular, ω 7→ ϕω is a C1-mapping from ]−e0,∞[ to H1
rad(RN ,R).
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Hereafter, we denote the unique positive radial ground state by ϕω. To state our

results, we define orbital stability of standing waves.

Definition 1.2. We say that a standing wave solution u(t) = eiωtϕ is orbitally

stable if for any ε > 0 there exists δ > 0 such that if u0 ∈ H1(RN ,C) satisfies ‖u0 −
ϕ‖H1 < δ, then the solution u(t) of (1.1) with u(0) = u0 exists globally in time and

satisfies

inf
θ∈R

‖u(t)− eiθϕ‖H1 < ε

for all t ∈ R.
We say that a standing wave solution is orbitally unstable if it is not stable.

We review some known results related to our works. First, we recall the case of

γ = 0. Cazenave and Lions [3] proved that if 1 < p < 1 + 4/N , then the ground-

state standing wave eiωtϕω is stable for any ω > 0. On the other hand, Berestycki and

Cazenave [2] proved that if 1 + 4/N ≤ p < 2∗ − 1, then the standing wave is unstable

for any ω > 0 (see also [16] for the case p = 1 + 4/N).

Next, we recall the cases of γ > 0. The following results are known. For any

1 < p < 2∗ − 1, if ω is sufficiently close to −e0, then the standing wave eiωtϕω is stable

[9]. When 1 < p < 1 + 4/N , if ω is sufficiently large, then the standing wave is stable

[9]. When 1+4/N < p < 2∗−1, if ω is sufficiently large, then the standing wave eiωtϕω

is unstable [8] (see also [6, 14] for strong instability).

For the nonlinear Schrödinger equation with a suitable attractive potential

i∂tu = −∆u+ V (x)u− |u|p−1u, (t, x) ∈ R× RN ,

Fukuizumi [7] proved that even when p = 1 + 4/N , the standing wave is stable for

sufficiently large ω. These phenomena are different from the case of γ = 0. We can find

similar results in [13] for double power nonlinear Schrödinger equations and in [10] for

nonlinear Schrödinger equations with an attractive delta potential.

In this note we prove the similar results as Fukuizumi [7] for (1.1). The following

is the main result of this note.

Theorem 1.3. Let p = 1+4/N . Then there exists ω∗ > −e0 such that if ω > ω∗,

the standing wave solution eiωtϕω of (1.1) is stable.

Remark. In the case N ≥ 3 and α = 2, the equation (1.1) has the scaling

invariance, that is, if u(t) is a solution of (1.1), then λ2/(p−1)u(λ2t, λx) with λ > 0 is

also a solution of (1.1). Therefore, when p = 1+4/N , we can show strong instability of

ground states for any ω > 0 by using the same argument of Berestycki and Cazenave [2]

as in the case without potential.



48 N. Fukaya

The proof of Theorem 1.3 is based on the argument of Fukuizumi [7]. We use the

following sufficient conditions for stability of standing waves.

Proposition 1.4 ([11, 15]). Let 1 < p < 2∗ − 1. If ∂ω‖ϕω‖2L2 > 0 at ω = ω0,

then the standing wave eiω0tϕω0
(x) is stable.

In [7], the assumption in Proposition 1.4 is verified for sufficiently large ω. One of

the key of the proof in [7] is the uniform L2
rad-boundedness in ω of the linearized inverse

operators around the ground states. We can show the uniform boundedness by using

regularity of the potential. However, in the case of (1.1), even when v ∈ Cc(RN ), the

function |x|−αv is not L2-function if α ≥ N/2 and v(0) > 0. From this observation, the

L2-boundedness seems to be not effective, and we cannot establish the L2-boundedness.

Instead here, by investigating the properties of linearized operators in more details and

by using the homogeneity of the potential −γ|x|−α, we establish the uniform H1
rad-H

−1
rad

boundedness of the inverse operators (Lemma 2.3) and use it to verify the positivity of

the derivative ∂ω‖ϕω‖2L2 .

Remark. We seem to generalize our results to the case with more general poten-

tials V (x), but we do not pursue this further in this note.

Remark. The results of [7, 8, 9] and ours are summarized as follows. When ω ↘
−e0, the ground state of (1.2) converges to that of the linear equation −∆ϕ+V (x)ϕ = 0

up to some scaling (see [9, Section 4]). Therefore, the stability can be understood by

regarding (1.1) as a perturbation of the linear equation. On the other hand, when

ω → ∞, the rescaled ground state of (1.2) converges to that of the nonlinear equation

with ω = 1 and γ = 0 (see Section 2 below). Since the ground state without potential

is stable if p < 1 + 4/N and unstable if p ≥ 1 + 4/N , we might expect that the ground

state of (1.2) is unstable for large ω when p ≥ 1+4/N . However, in the L2-critical case

p = 1 + 4/N , the effect of attractive potential for large ω is very weak but sufficient to

contribute to stability of ground states.

We can expect that the ground state is stable for the whole range ]−e0,∞[ of ω,

but the stability for a middle range of ω is still not known.

The rest of this note is organized as follows: In section 2, we investigate properties

of ground states and their linearized operators. In section 3, we prove Theorem 1.3 by

using Proposition 1.4.

§ 2. Properties of ground states and their linearized operators

In this section we prepare some lemmas to prove Theorem 1.3. Hereafter we only

consider real-valued and radial functions. We denote

L2
rad(RN ) := L2

rad(RN ,R), H1
rad(RN ) := H1

rad(RN ,R), H−1
rad(R

N ) := H1
rad(RN ,R)∗.
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We put

ϕ̃ω(x) := ω−1/(p−1)ϕω(x/
√
ω).

Then we have ϕω(x) = ω1/(p−1)ϕ̃ω(
√
ω x), and ϕ̃ω satisfies

(2.1) −∆ϕ̃ω + ϕ̃ω − ω−1+α/2 γ

|x|α
ϕ̃ω − ϕ̃pω = 0, x ∈ RN .

Let ϕ̃∞ ∈ H1
rad(R) be the unique positive radial solution of

−∆ϕ+ ϕ− ϕp = 0, x ∈ RN

(see e.g., [1] for existence and [12] for uniqueness). Then we have the following conver-

gence results.

Lemma 2.1. ϕ̃ω → ϕ̃∞ in H1
rad(RN ) as ω → ∞.

Proof. See [8].

By differentiating (2.1) with respect to ω, we get

(2.2) L̃ω(∂ωϕ̃ω) = −ω−2+α/2
(
1− α

2

) γ

|x|α
ϕ̃ω,

where

L̃ω := −∆+ 1− ω−1+α/2 γ

|x|α
− pϕ̃p−1

ω .

Let

L̃∞ := −∆+ 1− pϕ̃p−1
∞ .

Then we have

(2.3) L̃ω = L̃∞ − ω−1+α/2 γ

|x|α
− p(ϕ̃p−1

ω − ϕ̃p−1
∞ ).

The following nondegeneracy results are important for our analysis.

Lemma 2.2. For ω ∈ ]−e0,∞], the operator L̃ω : H
1
rad(RN ) → H−1

rad(RN ) is

injective. In particular, the range L̃ω(H
1
rad(RN )) is dense in H−1

rad(RN ).

Proof. The injectivity (i.e. nondegeneracy) were proven by [12, 17] in the case

of ω = ∞ and by [5] in the case of −e0 < ω < ∞. We show the density of the

range L̃ω(H
1
rad(RN )) in H−1

rad(RN ). We regard L̃ω : D(L̃ω) → L2
rad(RN ) as the operator

on L2
rad(RN ). Then since ker(L̃ω) = {0}, it follows that L2

rad(RN ) = L̃ω(D(L̃ω))
− ⊕

ker(L̃ω) = L̃ω(D(L̃ω))
−. Since L2

rad(RN ) is dense in H−1
rad(RN ), the range L̃ω(D(L̃ω)) is

also dense in H−1
rad(RN ). Noting that D(L̃ω) ⊂ H1

rad(RN ), we have the conclusion.
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Since L̃ω : H
1
rad(RN ) → H−1

rad(RN ) is injective, its inverse operator

L̃−1
ω : L̃ω(H

1
rad(RN )) → H1

rad(RN )

is defined and surjective. The following estimate is the key of our proof.

Lemma 2.3. There exist C0 > 0 and ω0 > −e0 such that

‖L̃−1
ω f‖H1 ≤ C0‖f‖H−1

for all ω > ω0 and f ∈ L̃ω(H
1
rad(RN )).

Proof. It suffices to show that there exist C0 > 0 and ω0 > −e0 such that

(2.4) ‖v‖H1 ≤ C0‖L̃ωv‖H−1

for all v ∈ H1
rad(RN ) and ω > ω0. First, we show that there exists C1 > 0 such that

(2.5) ‖v‖H1 ≤ C1‖L̃∞v‖H−1

for all v ∈ H1
rad(RN ). If not, for any n ∈ N there exists vn ∈ H1

rad(RN ) such that

‖vn‖H1 = 1 and ‖L̃∞vn‖H−1 < 1/n. This implies that

‖L̃∞vn‖H−1 → 0,

|〈L̃∞vn, vn〉| ≤ ‖L̃∞vn‖H−1‖vn‖H1 → 0(2.6)

as n→ ∞.

On the other hand, for any g ∈ L̃∞(H1
rad(RN )), since there exists w ∈ H1

rad(RN )

such that L̃∞w = g, we have

|〈g, vn〉| = |〈L̃∞w, vn〉| = |〈L̃∞vn, w〉| ≤ ‖L̃∞vn‖H−1‖w‖H1 → 0

as n → ∞. Since L̃∞(H1
rad(RN )) is dense in H−1

rad(RN ) by Lemma 2.2, we see that

vn ⇀ 0 weakly in H1
rad(RN ). Therefore, by ‖vn‖H1 = 1, we obtain

〈L̃∞vn, vn〉 = ‖vn‖2H1 − p

∫
RN

ϕ̃p−1
∞ |vn|2 = 1− p

∫
RN

ϕ̃p−1
∞ |vn|2 → 1

as n→ ∞. This contradicts (2.6). Thus, the inequality (2.5) holds.

Next, we show (2.4). Let v ∈ H1
rad(RN ). By (2.3) and (2.5) we have

‖L̃ωv‖H−1 ≥ ‖L̃∞v‖H−1 − ω−1+α/2γ‖|x|−αv‖H−1 − ‖(ϕ̃p−1
ω − ϕ̃p−1

∞ )v‖H−1

≥ 1

C1
‖v‖H1 − ω−1+α/2γ‖|x|−αv‖H−1 − ‖(ϕ̃p−1

ω − ϕ̃p−1
∞ )v‖H−1 .
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The second and third terms in the right hand side are estimated as follows:

‖|x|−αv‖H−1 ≲ ‖v‖H1 ,

‖(ϕ̃p−1
ω − ϕ̃p−1

∞ )v‖H−1 ≲ ‖ϕ̃ω − ϕ̃∞‖H1‖v‖H1 .

Therefore, since α < 2 and ϕ̃ω → ϕ̃∞ in H1(RN ), if ω is sufficiently large, we obtain

‖L̃ωv‖H−1 ≥ 1

2C1
‖v‖H1 .

This completes the proof.

§ 3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by using Proposition 1.4.

Lemma 3.1. For ω > −e0,

(p− 1)

∫
RN

ϕ̃pω∂ωϕ̃ω =
(
1− α

2

)
ω−2+α/2γ

∫
RN

ϕ̃2ω
|x|α

,(3.1)

‖ϕ̃ω‖2L2 = ω−1+α/2
(
1− α

2

)
γ

∫
RN

ϕ̃2ω
|x|α

−
{
(p+ 1)(N − 2)

2
−N

}
1

p+ 1
‖ϕ̃ω‖p+1

Lp+1 .

(3.2)

Proof. First, we show (3.1). By multiplying ∂ωϕ̃ω with (2.1) and integrating it,

we have ∫
RN

∇ϕ̃ω · ∇∂ωϕ̃ω +

∫
RN

ϕ̃ω∂ωϕ̃ω − ω−1+α/2γ

∫
RN

ϕ̃ω∂ωϕ̃ω
|x|α

(3.3)

−
∫
RN

ϕ̃pω∂ωϕ̃ω = 0.

By multiplying ϕ̃ω with (2.2) and integrating it, we have∫
RN

∇ϕ̃ω · ∇∂ωϕ̃ω +

∫
RN

ϕ̃ω∂ωϕ̃ω − ω−1+α/2γ

∫
RN

ϕ̃ω∂ωϕ̃ω
|x|α

(3.4)

− p

∫
RN

ϕ̃pω∂ωϕ̃ω = −
(
1− α

2

)
ω−2+α/2γ

∫
RN

ϕ̃2ω
|x|α

.

By (3.3) and (3.4), we obtain

(p− 1)

∫
RN

ϕ̃pω∂ωϕ̃ω =
(
1− α

2

)
ω−2+α/2γ

∫
RN

ϕ̃2ω
|x|α

.
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Next, we show (3.2). The action corresponding to the equation (2.1) is given by

S̃ω(v) =
1

2
‖∇v‖2L2 +

1

2
‖v‖2L2 − ω−1+α/2 γ

2

∫
RN

|v|2

|x|α
− 1

p+ 1
‖v‖p+1

Lp+1 .

We compute

S̃ω(λ
δϕ̃ω(λ·)) =

λ2δ+2−N

2
‖∇ϕ̃ω‖2L2 +

λ2δ−N

2
‖ϕ̃ω‖2L2

− λ2δ+α−Nωα/2−1 γ

2

∫
RN

ϕ̃2ω
|x|α

− λ(p+1)δ−N

p+ 1
‖ϕ̃ω‖p+1

Lp+1 .

(3.5)

We take δ = (N−2)/2. Then we have 2δ+2−N = 0, 2δ−N = −2, 2δ+α−N = −(2−α),
and (p + 1)δ − N = (p + 1)(N − 2)/2 − N . By differentiating (3.5) at λ = 1, since

S̃′
ω(ϕ̃ω) = 0, we get

0 = −‖ϕ̃ω‖2L2 + ω−1+α/2
(
1− α

2

)
γ

∫
RN

ϕ̃2ω
|x|α

−
{
(p+ 1)(N − 2)

2
−N

}
1

p+ 1
‖ϕ̃ω‖p+1

Lp+1 .

This completes the proof.

Lemma 3.2. If p = 1+4/N , then there exists ω∗ > −e0 such that ∂ω‖ϕω‖2L2 > 0

for all ω > ω∗.

Proof. Note that since p = 1+4/N , we have ‖ϕω‖L2 = ‖ϕ̃ω‖L2 . By differentiating

(3.2) with respect to ω, we have

∂ω‖ϕω‖2L2 = ∂ω‖ϕ̃ω‖2L2

= −ω−2+α/2
(
1− α

2

)2

γ

∫
RN

ϕ̃2ω
|x|α

+ 2ω−1+α/2
(
1− α

2

)
γ

∫
RN

ϕ̃ω∂ωϕ̃ω
|x|α

−
{
(p+ 1)(N − 2)

2
−N

}∫
RN

ϕ̃pω∂ωϕ̃ω.

(3.6)

We note that

∂ωϕ̃ω = −ω−2+α/2
(
1− α

2

)
γL̃−1

ω

( ϕ̃ω
|x|α

)
by (2.2), and that

(p+ 1)(N − 2)

2
−N

∣∣∣∣
p=1+4/N

= − 4

N
= − (p− 1)|p=1+4/N .

Therefore, combining (3.6) and (3.1), we have

∂ω‖ϕω‖2L2

= ω−2+α/2α

2

(
1− α

2

)
γ

∫
RN

ϕ̃2ω
|x|α

+ 2ω−1+α/2
(
1− α

2

)
γ

∫
RN

ϕ̃ω∂ωϕ̃ω
|x|α

= ω−2+α/2α

2

(
1− α

2

)
γ

∫
RN

ϕ̃2ω
|x|α

− 2ω−3+α
(
1− α

2

)2

γ2
∫
RN

ϕ̃ω
|x|α

L̃−1
ω

( ϕ̃ω
|x|α

)
.
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Since ϕ̃ω → ϕ̃∞ in H1(RN ) as ω → ∞, we have∫
RN

ϕ̃2ω
|x|α

→
∫
RN

ϕ̃2∞
|x|α

> 0

as ω → ∞. Moreover, since |x|−αϕ̃ω ∈ L̃ω(H
1
rad(RN )) by (2.2), we can use Lemma 2.3

to get ∣∣∣∣∣
∫
RN

ϕ̃ω
|x|α

L̃−1
ω

( ϕ̃ω
|x|α

)∣∣∣∣∣ ≤ ∥∥∥ ϕ̃ω|x|α
∥∥∥
H−1

∥∥∥L̃−1
ω

( ϕ̃ω
|x|α

)∥∥∥
H1

≲
∥∥∥ ϕ̃ω|x|α

∥∥∥2
H−1

≲ ‖ϕ̃ω‖2H1 ≤ 2‖ϕ̃∞‖2H1

for sufficiently large ω. We note that since 0 < α < 2, we get −2 + α/2 > −3 + α.

Therefore, we obtain

∂ω‖ϕω‖2L2 ≳ ω−2+α/2 + o(ω−2+α/2)

as ω → ∞. This means that ∂ω‖ϕω‖2L2 > 0 if ω is sufficiently large. This completes the

proof.

Proof of Theorem 1.3. Theorem 1.3 follows from Proposition 1.4 and Lemma 3.2.
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