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Gevrey well-posedness and ill-posedness of

third-order nonlinear Schrödinger equations

on the torus

By

Nobu Kishimoto∗

Abstract

Tsutsumi and the author recently proved unique existence of real analytic solutions and

non-existence of Gevrey solutions for certain nonlinear dispersive equations posed on the torus.

In this note, we revisit these results and prove them in a slightly more general setting.

§ 1. Introduction

In [6, 7], Tsutsumi and the author investigated the Cauchy problem associated with

the following third-order nonlinear Schrödinger equations:

∂tu = α1∂
3
xu+ iα2∂

2
xu+ iγ1|u|2u+ γ2∂x

(
|u|2u

)
− iΓu∂x

(
|u|2

)
,(1.1)

(t, x) ∈ (−T, T )× T,

u(0, x) = u0(x), x ∈ T,(1.2)

where T := R/2πZ is the one-dimensional torus, αj , γj (j = 1, 2) are real constants, Γ

is a complex constant and T is a positive constant. The equation (1.1), which formally

conserves the L2-norm, has a background in physics as a model for the signal propagation

in a crystal optical fiber; see, e.g., [1]. It was mentioned in [6] that for any real analytic

initial data u0 the solution to (1.1)–(1.2) exists uniquely in a certain class of functions
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that are analytic in x and continuous in t. This existence result is classical and does

not require any further assumption on αj , γj , and Γ. In fact, the main result in [6] was

non-existence of solutions with Sobolev initial data under the assumption

(1.3) α1 6= 0, Re(Γ) 6= 0,
2α2

3α1
6∈ Z.

It is then natural to ask whether the Cauchy problem (1.1)–(1.2) has a solution for

initial data in Gevrey classes, which are intermediate classes of Sobolev spaces and the

class of analytic functions. In [7], this problem was answered negatively, as naturally

expected from the observation made in [6] that the resonant nonlinear interactions in

(1.1) give rise to a Cauchy-Riemann type operator. However, the proof was far from

trivial because of the nonlinear setting, and moreover, the third-order dispersion was

needed to overcome the derivative loss in the nonlinearity.

The aim of this note is to revisit these existence and non-existence results in analytic

and Gevrey classes obtained in [6, 7] and prove them in a slightly more general setting

for future use. The results on the particular Cauchy problem (1.1)–(1.2) are stated as

Corollaries 3.2 and 4.3 below. In particular, for analytic initial data we prove local

well-posedness. Here, well-posedness in a space X means unique existence of a solution

in CtX, the space of continuous functions in t with values in X, and continuity of the

data-to-solution mapping from X to CtX.

We will take analytic or Gevrey class as the data space X, but in practice we will

estimate the solutions in certain Banach spaces of analytic or Gevrey functions (which

are strictly smaller than the entire analytic or Gevrey classes). This is because Gevrey

class is defined by suitable limiting procedure with a sequence of such Banach spaces

and is not Banach nor even metrizable in itself. For instance, the space of all analytic

functions A can be defined as the inductive limit lim−→ r↓0A(r) of Banach spaces A(r),

each of which is a certain subspace of the class of all analytic functions with radius of

analyticity r.

Let us recall the existence result in [6], which asserts unique existence of solutions u

in C([−T, T ];A(r/2)) for initial data u0 in A(r) with existence time T = T (‖u0‖A(r)) >

0, for any r > 0. Due to the derivative loss in the nonlinearity, it is reasonable to

construct solutions in a space of reduced radius of analyticity as above. However, in

[6] it was not shown (in fact, not likely) that the solution remains in the same space

A(r) as the initial data, and hence the result was not referred to as well-posedness. In

this article, we see that the Cauchy problem is well-posed in A, that is, for any u0 ∈ A
the solution exists uniquely in C([−T, T ];A) and depends continuously on initial data

in the A-topology. Note that this is different from well-posedness in A(r) for each

r > 0; indeed, it is possible that the solution immediately loses radius of analyticity but

remains analytic for a while, in which case the problem is ill-posed in each A(r) but can
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be well-posed in A. Well-posedness in each A(r) basically implies that in A, whereas

the converse is not true in general.

Clearly, the relation is opposite for non-existence (or ill-posedness) results; non-

existence in A implies that in each A(r) but the converse does not necessarily hold. In

fact, for a Gevrey class G and a suitable defining sequence {G(r)}r>0, non-existence in

each G(r) can be shown essentially in the same argument as for the Sobolev case [6],

whereas more elaborate analysis is required for proving non-existence in G, which was

the main contribution of [7].

There are several papers which study the ill-posedness nature of other nonlinear

evolution equations within the framework of regular function spaces; e.g., the degenerate

Zakharov equations by Colin and Métivier [3], the Prandtl equations by Gérard-Varet

and Dormy [4], and the incompressible Hall- and electron-MHD equations by Jeong

and Oh [5]. These papers concern either Gevrey-ill-posedness for a linearized equation

around a specific solution or Sobolev-ill-posedness for the full nonlinear equation, leaving

Gevrey-ill-posedness of the full equation as challenging open problems.

The plan of this note is as follows. In the next preliminary section we intro-

duce Gevrey classes and give fundamental nonlinear estimates. In Section 3 we prove

local well-posedness in Gevrey classes for general equations with derivative-type non-

linearities. In Section 4 a Gevrey smoothing effect of certain elliptic-type equations is

established, and as a corollary, non-existence of solution in Gevrey classes is deduced.

§ 2. Preliminaries

§ 2.1. Gevrey classes on Td

The standard definition of Gevrey class of order σ, denoted by Gσ, is the set of all

C∞ functions whose n-th derivative has magnitude of growth order at most Cn(n!)σ for

some C > 0. Hence, it can be defined as the inductive limit (b→ 0) of Banach spaces

G̃σb := {f ∈ C∞(Td) : ‖f‖G̃σ
b
:= sup

n≥0
bn(n!)−σ max

|α|≤n
‖∂αf‖L∞(Td) <∞}, b > 0,

that is, the union Gσ =
⋃
b>0 G̃

σ
b equipped with the inductive limit topology. See, e.g.,

[8, Definition 1.4.1]. Note that G1 is the space of real analytic functions on Td.
Here, we use a different definition which is well suited for our analysis. It turns out

that our definition of Gσ gives the same topological space as that defined above.

Definition 2.1. For σ ≥ 1, a > 0, and s ∈ R, define the Banach space Gσa,s by

Gσa,s := {f ∈ C∞(Td) : ‖f‖Gσ
a,s

:= sup
k∈Zd

〈k〉sea|k|
1/σ

|f̂k| <∞},
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where 〈k〉 := max{1, |k|}, and

f̂k :=
1

(2π)d/2

∫
Td

f(x)e−ik·x dx, k ∈ Zd.

Define Gσ, Gevrey class of order σ, as the inductive limit (a→ 0) of {Gσa,0}a>0.

It is easy to see the following inclusion relations:

• G1 ⊊ Gσ1 ⊊ Gσ2 ⊊
⋃
σ≥1

Gσ ⊊ C∞ (1 < σ1 < σ2)

• Gσ1 ⊊
⋂
a>0

Gσ2
a,0 ⊊ Gσ2

a1,0
⊊ Gσ2

a2,0
⊊ Gσ2 (1 ≤ σ1 < σ2, a1 > a2 > 0)

• Gσa1,0 ⊊ Gσa1,−s2 ⊊ Gσa1,−s1 ⊊
⋃
s≤0

Gσa1,s ⊊
⋂
s≥0

Gσa2,s ⊊ Gσa2,s1 ⊊ Gσa2,s2 ⊊ Gσa2,0

(σ ≥ 1, a1 > a2 > 0, s1 > s2 > 0)

We recall some fundamental properties of Gevrey classes. For the proof, see [7, Ap-

pendix] and references therein.

Lemma 2.2. Let σ ≥ 1. The following holds.

(i) Gσ is a complete Montel space (in particular, every bounded set is precompact).

(ii) The above embeddings are all continuous (in fact, compact).

(iii) A set A ⊂ Gσ is bounded if and only if A ⊂ Gσa,0 for some a > 0 and it is

bounded in Gσa,0.

(iv) Let I ⊂ R be a compact interval. Then, u ∈ C(I;Gσ) if and only if u ∈
C(I;Gσa,0) for some a > 0.

§ 2.2. Multilinear estimates in Gevrey spaces

Definition 2.3. Let β ∈ R. We say N [u] is a nonlinearity of β-derivative type

if it is of the form

(2.1) N [u] =
1

(2π)d/2

∑
k∈Zd

eik·x
∑

k1,k2,...,kp∈Zd

k=k1+k2+···+kp

M(k1, k2, . . . , kp)ω
(1)
k1
ω
(2)
k2

· · ·ω(p)
kp

for some p ≥ 1 (degree of nonlinearity, possibly linear), ω(j) ∈ {û, ˆ̄u} (1 ≤ j ≤ p), and

a function M : (Zd)p → C satisfying

|M(k1, . . . , kp)| ≤ C
( 〈k1〉〈k2〉 · · · 〈kp〉

〈kmax〉

)s0
〈kmax〉β , k1, . . . , kp ∈ Zd

for some C > 0 and s0 ≥ 0, where kmax := max
1≤j≤p

|kj |.
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Namely, a nonlinearity of β-derivative type is a power-type nonlinearity with loss

of at most β derivatives. The following lemma is easily verified:

Lemma 2.4. If N [u] is a nonlinearity of β-derivative type, then for any σ ≥ 1,

a > 0 and s ≥ 0 it holds that

(2.2) ‖N [u]‖Gσ
a,s

≤ Cps‖u‖p−1
Gσ

a,s0+d+1
‖u‖Gσ

a,s+β
,

where C > 0 is a constant independent of s, a and σ. Moreover, for any β′ ∈ R,
〈∇〉β′

N [u] is of (β + β′)-derivative type.

Proof. The estimate (2.2) follows from the elementary inequality

〈k1 + · · ·+ kp〉sea|k1+···+kp|1/σ ≤ ps〈kmax〉s
p∏
j=1

ea|kj |
1/σ

(s ≥ 0, a > 0, σ ≥ 1)

and the embedding 〈·〉−d−1`∞ ↪→ `1. The latter claim is trivial when β′ ≥ 0 or the

frequency interaction is restricted to the case 〈k1 + · · ·+ kp〉 ∼ 〈kmax〉. Otherwise, the

claim follows from

〈kmax〉|β
′| ≤ C

( 〈k1〉〈k2〉 · · · 〈kp〉
〈kmax〉

)|β′|
.

For N ≥ 0, let P≥N (resp. P<N ) denote the Fourier projection onto the set {n ∈
Zd : |n| ≥ N} (resp. {n ∈ Zd : |n| < N}).

The next lemma will play a crucial role in deriving a Gevrey smoothing effect

(Proposition 4.1). This is an improvement of the crude estimate (2.2) in the following

two respects: The constant can be made s-independent, and the index a can be replaced

by the strictly smaller one θa except for one function. Note also that the assumption

σ > 1 is essentially used in the proof.

Lemma 2.5. Let σ > 1 and a > 0. Assume that N [u] is a nonlinearity of degree

p ≥ 2 and of β-derivative type for some β ∈ R. Then, there exists C,C0 > 0 such that

for any s ≥ 0 it holds

‖P≥C0sσN [u]‖Gσ
a,s

≤ C‖u‖p−1
Gσ

θa,s0+d+1
‖u‖Gσ

a,s+β
,

where θ := (1− 1/p)1−1/σ ∈ (0, 1).

Proof. The claim is a consequence of the following inequality ([7, Lemma 2]):

〈k1 + · · ·+ kp〉sea|k1+···+kp|1/σ ≤ max
1≤q≤p

〈kq〉sea|kq|
1/σ ∏

1≤j≤p
j ̸=q

eθa|kj |
1/σ

,



110 N. Kishimoto

which is valid if σ > 1 and |k1 + · · ·+ kp| ≥ C(σ, a, p)sσ.

§ 3. Local well-posedness in Gevrey classes

In this section we consider an abstract nonlinear evolution equation of the form

(3.1) ∂tu = iψ(Dx)u+N [u], (t, x) ∈ (−T, T )× Td,

where

ψ(Dx)f := F−1
k [ψkf̂k], ψ = (ψk)k∈Zd : Zd → R.

Proposition 3.1. Assume that N [u] is a (sum of) nonlinearity of (1/σ)-derivative

type in the sense of Definition 2.3 for some σ ≥ 1.

Then, for any a > 0 and r > 0, there exists T0 = T0(a, r) > 0 such that the following

holds: For any 0 < T ≤ T0 and any u0 ∈ B(a, r) := {f ∈ Gσa,s0+d+1 : ‖f‖Gσ
a,s0+d+1

≤ r},
there exists a unique solution u ∈ C([−T, T ];Gσa/2,0) to (3.1) on [−T, T ] with initial

condition u(0, x) = u0(x) satisfying

‖u‖XT
:= sup

|t|≤T
‖u(t)‖Gσ

a(1−|t|/2T ),s0+d+1
≤ 2‖u0‖Gσ

a,s0+d+1
.

Moreover, the mapping B(a, r) 3 u0 7→ u ∈ C([−T, T ];Gσa/2,0) is Lipschitz continuous.

Proof. We only consider the case where N [u] consists of a single nonlinearity of

(1/σ)-derivative type. We will show, for any u0 ∈ Gσa,s0+d+1, that

Ψu0 [u](t) := eitψ(Dx)u0 +

∫ t

0

ei(t−t
′)ψ(Dx)N [u(t′)] dt′

is a contraction mapping on B := {u ∈ C([−T, T ];Gσa/2,0) : ‖u‖XT
≤ 2‖u0‖Gσ

a,s0+d+1
}

(which is a complete metric space with metric induced by the XT -norm) if T is suffi-

ciently small according to a and ‖u0‖Gσ
a,s0+d+1

.

For the linear part, we have

eitψ(Dx)u0 ∈ C([−T, T ];Gσa,s0+d+1), ‖eitψ(Dx)u0‖XT
= ‖u0‖Gσ

a,s0+d+1
.

For the Duhamel integral, we first observe, using (2.2), that N [u] ∈ L∞([−T, T ];Gσa/2,0)
if u ∈ C([−T, T ];Gσa/2,0) and ‖u‖XT

< ∞. This implies that
∫ t
0
e−it

′ψ(Dx)N [u(t′)] dt′
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belongs to C([−T, T ];Gσa/2,0), and so does the Duhamel integral. Moreover, we have

∥∥∥∫ t

0

ei(t−t
′)ψ(Dx)N [u(t′)] dt′

∥∥∥
Gσ

a(1−|t|/2T ),s0+d+1

=
∥∥∥〈k〉s0+d+1ea(1−

|t|
2T )|k|1/σ

∫ t

0

ei(t−t
′)ψk

∑
k=k1+···+kp

M(k1, . . . , kp)ûk1(t
′) · · · ûkp(t′) dt′

∥∥∥
ℓ∞

≤ C sup
k

∑
k=k1+···+kp

〈kmax〉s0+d+1e
a(1− |t|

2T )
p∑

j=1
|kj |

1
σ

×
∫ t

0

( 〈k1〉〈k2〉 · · · 〈kp〉
〈kmax〉

)s0
〈kmax〉

1
σ

p∏
j=1

|ûkj (t′)| dt′

≤ C sup
k

∑
k=k1+···+kp

( 〈k1〉〈k2〉 · · · 〈kp〉
〈kmax〉

)−(d+1)

×
∫ t

0

〈kmax〉
1
σ e

−a |t|−|t′|
2T

p∑
j=1

|kj |
1
σ

p∏
j=1

‖u(t′)‖Gσ
a(1−|t′|/2T ),s0+d+1

dt′

≤ C‖u‖pXT
sup

k1,...,kp

∫ |t|

0

〈kmax〉
1
σ e

−a |t|−t′
2T

p∑
j=1

|kj |
1
σ

dt′, |t| ≤ T.

(Note that some of ûkj ’s may be replaced with ˆ̄ukj in the above computation.) The

integral in the last line is evaluated by

|t|+ sup
(k1,...,kp )̸=(0,...,0)

〈kmax〉
1
σ

( a

2T

p∑
j=1

|kj |
1
σ

)−1

≤ (1 + 2a−1)T, |t| ≤ T,

so that we obtain∥∥∥∫ t

0

ei(t−t
′)ψ(Dx)N [u(t′)] dt′

∥∥∥
XT

≤ C(1 + a−1)T‖u‖pXT
.

A similar argument shows the corresponding difference estimate. As a consequence, Ψu0

is a contraction on B if (1+a−1)T‖u0‖p−1
Gσ

a,s0+d+1
� 1. By Banach’s fixed point theorem,

there is a unique solution of the Cauchy problem in B for such a T . The Lipschitz

continuity of the data-to-solution mapping is an immediate consequence of the above

estimates.

Corollary 3.2. Assume that N [u] is a (sum of) nonlinearity of (1/σ)-derivative

type in the sense of Definition 2.3 for some σ ≥ 1. Then, the Cauchy problem associated

with (3.1) is locally well-posed in Gσ in the following sense.

(i) For any bounded set A ⊂ Gσ, there exists T = T (A) > 0 such that, for any

u0 ∈ A, there is a solution u ∈ C([−T, T ];Gσ) on the time interval [−T, T ] satisfying
u(0) = u0.
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(ii) If u1, u2 ∈ C(I;Gσ) are solutions on some time interval I containing 0 and

u1(0) = u2(0), then u1 ≡ u2 on I.

(iii) The mapping A 3 u0 7→ u ∈ C([−T (A), T (A)];Gσ) from the initial datum to

the unique solution given above is continuous. Here, A is given the relative topology as

a subset of Gσ and C([−T, T ];Gσ) is given the compact-open topology.

In particular, the Cauchy problem (1.1)–(1.2) is locally well-posed in G1 for any

α1, α2 ∈ R and γ1, γ2,Γ ∈ C.

Proof. (i) From Lemma 2.2 (iii) and (ii), a bounded subset A of Gσ is a bounded

subset of Gσ2a,0 for some a > 0, and then of Gσa,s0+d+1, i.e., A ⊂ B(a, r) for some

a, r > 0. Hence, we can take T (A) to be T0(a, r) given in Proposition 3.1 and obtain

a solution u ∈ C([−T, T ];Gσa/2,0) for any u0 ∈ A. Again by Lemma 2.2 (ii), we see

C([−T, T ];Gσa/2,0) ⊂ C([−T, T ];Gσ).
(ii) We may assume that I = [0, T ′] for some T ′ > 0. Let u1, u2 ∈ C([0, T ′];Gσ) be

two solutions with u1(0) = u2(0) =: u0. By Lemma 2.2 (iv) and (ii), there exists a > 0

such that u1, u2 ∈ C([0, T ′];Gσa,s0+d+1). Choose r > 0 and 0 < T ′′ ≤ min{T ′, T0(a, r)}
such that

max
0≤t≤T ′′

‖uj(t)‖Gσ
a,s0+d+1

≤ 2‖u0‖Gσ
a,s0+d+1

≤ 2r, j = 1, 2.

Since we have uj ∈ C([0, T ′′];Gσa/2,0) and ‖uj‖XT ′′ ≤ 2‖u0‖Gσ
a,s0+d+1

for j = 1, 2, the

uniqueness assertion in Proposition 3.1 (suitably modified for solutions forward in time)

shows that u1(t) = u2(t) for t ∈ [0, T ′′]. Repeating this procedure (if necessary) gives

uniqueness on [0, T ′].

(iii) We first observe that a bounded set in Gσ is precompact, by Lemma 2.2

(i), and hence metrizable, since Gσ is the inductive limit of an increasing sequence of

Banach spaces (see, e.g., [2, Theorem 2 and Examples 1.2]). It then suffices to show the

sequential continuity of the mapping.

Let A be a bounded set in Gσ and, as in (i), choose a, r > 0 such that A is a bounded

set in Gσ2a,0 and A ⊂ B(a, r). Assume that a sequence {u0,n}n≥1 ⊂ A converges to

u0 ∈ A. Then, since {u0,n} is bounded in Gσ2a,0 and the embedding Gσ2a,0 ↪→ Gσa,s0+d+1

is compact by Lemma 2.2 (ii), {u0,n} converges to u0 in Gσa,s0+d+1. The continuity

assertion in Proposition 3.1 shows the convergence of the corresponding solutions un →
u in C([−T (A), T (A)];Gσa/2,0). Finally, we note that the inclusion C([−T, T ];Gσa/2,0) ⊂
C([−T, T ];Gσ) (the latter space given the compact-open topology) is continuous since

Gσa/2,0 ⊂ Gσ is continuous. Therefore, un converges to u in C([−T, T ];Gσ), and the

mapping has been shown to be sequentially continuous.

Finally, we notice that the equation (1.1) is of the form (3.1) with ψk = −α1k
3 −

α2k
2 and a sum of cubic nonlinearities of 1-derivative type, so that the above result can

be applied.
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§ 4. Smoothing effect and non-existence of solutions in Gevrey classes

In this section, we shall prove a Gevrey smoothing effect on a function u satisfying

an equation of the following type:

(4.1) ∂t
(
u−N1[u]

)
= ψ(t,Dx)u+N2[u], (t, x) ∈ [−T, T ]× Zd.

We assume that

ψ(t,Dx) = F−1
k ψk(t)Fx with {ψk}k∈Zd ⊂ C([−T, T ];R) satisfying

A := inf
|k|≥K

|k|−
1
ρ min
|t|≤T

|ψk(t)| > 0 for some K > 0 and ρ ≥ 1,
(4.2)

N1[u] is a (sum of) nonlinearity of (β − 1
ρ )-derivative type and

N2[u] is a (sum of) nonlinearity of β-derivative type, for some β ∈ [0, 1ρ ).
(4.3)

The assumption (4.2) means that the differential operator ψ(t,Dx) is of elliptic type of

order 1/ρ uniformly in t.

Proposition 4.1. Let ρ ≥ 1, and assume (4.2)–(4.3). Let u be a function in

C([−T, T ];Gσa,0) for some T > 0, σ > ρ, a > 0 and satisfy the equation (4.1) on the

time interval [−T, T ]. Then, there exists ε > 0 depending on σ, a, ρ, A,K,N1, N2, and

‖u‖C([−T,T ];Gσ
θa,s0+d+1)

, but not on T , ‖u‖C([−T,T ];Gσ
a,0)

, such that u∈C((−T, T );Gσa+ε,0).
Here, θ ∈ (0, 1) is the maximum of the constants given in Lemma 2.5 for N1[u], N2[u].

Proof. For t0, t ∈ [−T, T ], we integrate the equation (4.1) in the Fourier side to

have

ûk(t0) = e
−

∫ t
t0
ψk ûk(t) +

(
N̂1[u(t0)]k − e

−
∫ t
t0
ψkN̂1[u(t)]k

)
−

∫ t

t0

e
−

∫ t′
t0
ψk

(
ψk(t

′)N̂1[u(t
′)]k + N̂2[u(t

′)]k

)
dt′, k ∈ Zd.

By the assumption (4.2), for each k ∈ Zd with |k| ≥ K it holds

either min
|t|≤T

ψk(t) ≥ A|k|
1
ρ

(
⇒ e

−
∫ t
t0
ψk ≤ e−A(t−t0)|k|

1
ρ
, t > t0

)
or max

|t|≤T
ψk(t) ≤ −A|k|

1
ρ

(
⇒ e

−
∫ t
t0
ψk ≤ e−A(t0−t)|k|

1
ρ
, t < t0

)
.

Let t0 and (1 ≥) δ > 0 satisfy t0 ± δ ∈ [−T, T ]. For k satisfying the former,

|ûk(t0)| ≤ e−Aδ|k|
1
ρ |ûk(t0 + δ)|+

(
|N̂1[u(t0)]k|+ |N̂1[u(t0 + δ)]k|

)
+

∫ t0+δ

t0

(
e
−

∫ t′
t0

|ψk||ψk(t′)||N̂1[u(t
′)]k|+ e−A(t′−t0)|k|

1
ρ |N̂2[u(t

′)]k|
)
dt′,
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while for the latter,

|ûk(t0)| ≤ e−Aδ|k|
1
ρ |ûk(t0 − δ)|+

(
|N̂1[u(t0)]k|+ |N̂1[u(t0 − δ)]k|

)
+

∫ t0

t0−δ

(
e−

∫ t0
t′ |ψk||ψk(t′)||N̂1[u(t

′)]k|+ e−A(t0−t′)|k|
1
ρ |N̂2[u(t

′)]k|
)
dt′.

In both cases, we have

|k|
1
ρ−β |ûk(t0)| ≤ |k|

1
ρ−βe−Aδ|k|

1
ρ

max
|t−t0|≤δ

|ûk(t)|

+ 3|k|
1
ρ−β max

|t−t0|≤δ
|N̂1[u(t)]k|+A−1|k|−β max

|t−t0|≤δ
|N̂2[u(t)]k|.

Now, we observe that

sup
k

|k|
1
ρ−βe−Aδ|k|

1
ρ
= ( 1−ρβAδ )1−ρβ sup

k

(
Aδ

1−ρβ |k|
1
ρ e−

Aδ
1−ρβ |k|

1
ρ
)1−ρβ

≤ C(ρ, β,A)δ−(1−ρβ),

and that 〈∇〉
1
ρ−βN1[u] and 〈∇〉−βN2[u] are nonlinearities of 0-derivative type, by the

assumption (4.3) and Lemma 2.4. Applying Lemma 2.5, for any s ≥ 0 we have

‖P≥max{C0sσ,K}u(t0)‖Gσ

a,s+( 1
ρ
−β)

≤ C1δ
−(1−ρβ)‖u‖C([t0−δ,t0+δ];Gσ

a,s)
,

where (and hereafter) C1 denotes any positive constant depending on ρ, σ, a, A, K, N1,

N2, and ‖u‖C([−T,T ];Gσ
θa,s0+d+1)

, but not on s and δ. On the other hand,

‖P<max{C0sσ,K}u(t0)‖Gσ

a,s+( 1
ρ
−β)

≤ ‖u(t0)‖Gσ

θa, 1
ρ
−β

sup
|k|<max{C0sσ,K}

e(1−θ)a|k|
1
σ 〈k〉s

≤ C1

(
C1s

σ
)s
.

Hence, we have

‖u(t0)‖Gσ
a,s+η

≤ max
{
C1

(
C1s

σ
)s
, C1δ

−ρη‖u‖C([t0−δ,t0+δ];Gσ
a,s)

}
, s ≥ 0,

where we have set η := 1
ρ − β ∈ (0, 1]. This estimate shows a Sobolev (i.e., polynomial

order) smoothing effect in the interior of the time interval.

To obtain Gevrey (i.e., exponential order) smoothing, we iterate the above estimate,

paying particular attention to the s-dependence. For any sufficiently large positive

integer N (satisfying N ≥ T and T ρNσ−ρησ ≥ 1), we apply the above estimate with

δ = T/N(≤ 1) repeatedly. Noticing δ−ρ ≤ (Nη)σ, we obtain

‖u(0)‖Gσ
a,Nη

≤ max
{

max
0≤n≤N−1

(
C1δ

−ρη)N−1−n
C1

(
C1(nη)

σ
)nη

,
(
C1δ

−ρη)N‖u‖C([−T,T ];Gσ
a,0)

}
≤ CN1 (Nη)σNηmax

{
1, ‖u‖C([−T,T ];Gσ

a,0)

}
.
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Since mm ≤ emm! for m ∈ N, this estimate roughly means that the m-th derivative of

the function ea|∇|
1
σ u(0) has growth of order at most Cm1 (m!)σ when m→ ∞, and hence

ea|∇|
1
σ u(0) ∈ Gσε,0, or equivalently u(0) ∈ Gσa+ε,0, for some ε > 0 depending on C1. For

a precise argument, see the last part of the proof of [7, Lemma 3].

We remark that the increment ε does not depend on the size of interval T , nor the

C([−T, T ];Gσa,0)-norm of u. In particular, the above argument implies u(t) ∈ Gσa+ε,0 for

any t ∈ (−T, T ). While ‖u(t)‖Gσ
a+ε,0

may blow up as t→ ±T , we see that it is bounded
on any compact subinterval of (−T, T ). In fact, T -dependence of the norm ‖u(0)‖Gσ

a+ε,0

evaluated above comes from the contribution of ‖u(0)‖Gσ
a,Nη

for N relatively small

(depending on T ), which we have neglected. Hence, ‖u(0)‖Gσ
a+ε,0

stays bounded as long

as T does not approach to zero. Finally, we reduce ε by half and obtain the continuity

of the mapping t 7→ u(t) ∈ Gσa+ε/2,0 on any compact subinterval of (−T, T ) using the

continuity in Gσa,0 and the interpolation inequality ‖f‖Gσ
a+ε/2,0

≤ ‖f‖1/2Gσ
a+ε,0

‖f‖1/2Gσ
a,0

.

Corollary 4.2. Let ρ ≥ 1, and assume (4.2)–(4.3). Let u ∈ C([−T, T ];Gσ),
with σ > ρ and T > 0, be a solution to (4.1) on the time interval [−T, T ]. Then,

u ∈
⋂
a>0

C((−T, T );Gσa,0).

Proof. The claim follows from the preceding proposition and the argument in the

proof of [7, Theorem 1], so we give only an outline of the proof. By Lemma 2.2 (iv), u

belongs to C([−T, T ];Gσa0,0) for some a0 > 0. Define the function ã : (0, T ] → [a0,∞]

by

ã(t) := sup
{
a > 0 : u ∈ C([−t, t];Gσa,0)

}
.

On one hand, ã is monotone decreasing by definition. On the other hand, Proposition 4.1

implies that ã has to be discontinuous at any point where it is finite. Since the cardinality

of discontinuous points of a monotone function with finite values is at most countable,

we conclude that ã ≡ ∞ on (0, T ).

Corollary 4.3. Let σ > 1, and assume that the condition (1.3) holds. Let u ∈
C([−T, T ];Gσ) be a non-trivial solution to (1.1) on [−T, T ] for some T > 0. Then,

u(t) ∈
⋂
a>0G

σ
a,0 for all t ∈ (−T, T ).

In particular, for any u0 ∈ Gσ \
⋂
a>0G

σ
a,0 there exists no T > 0 for which the

Cauchy problem (1.1)–(1.2) has a solution in C([−T, T ];Gσ).

Proof. Let u ∈ C([−T, T ];Gσ) be a non-trivial solution to (1.1). Since the L2

norm is conserved (see [6, Lemma 2.5]), we see that ‖u(t)‖L2 ≡ ‖u(0)‖L2 > 0.

Let us recall how to deduce an equation of the form (4.1) from (1.1) (see [6,

pp. 10008–10010] for details). We begin with converting the linear dispersive terms
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(α1∂
3
x + iα2∂

2
x)u into time oscillation in the nonlinear terms by the transformation

u 7→ v(t) := e−t(α1∂
3
x+iα2∂

2
x)u(t).

The Fourier coefficients v̂k(t) then satisfy the following equation:

∂tv̂k =
∑

k1,k2,k3∈Z
k=k1+k2+k3

iγ1 + iγ2k + Γ(k1 + k2)

2π
eitΦv̂k1 ˆ̄vk2 v̂k3 ,

Φ = Φ(k1, k2, k3) := 3α1(k1 + k2)(k2 + k3)
(
k1 + k3 +

2α2

3α1

)
.

The first term in the sum (with coefficient γ1) is a cubic nonlinearity of 0-derivative

type with s0 = 0. (Although the multiplier M depends also on t, the bound on |M | is
uniform in t and thus the argument so far can be applied.)

We next divide the remaining part of the sum into the resonant and the non-

resonant terms:

∑
k=k1+k2+k3

iγ2k + Γ(k1 + k2)

2π
eitΦv̂k1 ˆ̄vk2 v̂k3

=

[ ∑
k=k1+k2+k3

(k1+k2)(k2+k3)=0

+
∑

k=k1+k2+k3
Φ̸=0

]
iγ2k + Γ(k1 + k2)

2π
eitΦv̂k1 ˆ̄vk2 v̂k3

=
2iγ2 + Γ

2π
‖u(0)‖2L2kv̂k −

iγ2
2π

k|v̂k|2v̂k −
Γ

2π

( ∑
k3∈Z

k3|v̂k3 |2
)
v̂k

+
∑

k=k1+k2+k3
Φ̸=0

iγ2k + Γ(k1 + k2)

2π
eitΦv̂k1 ˆ̄vk2 v̂k3 .

Note that the assumption 2α2

3α1
6∈ Z (i.e., the fact Φ = 0 ⇔ (k1 + k2)(k2 + k3) = 0) is

essentially used here. We have also applied the L2 conservation ‖v(t)‖L2 = ‖u(t)‖L2 ≡
‖u(0)‖L2 . Observe that the second and the third terms on the right-hand side are

cubic nonlinearities of 0-derivative type with s0 = 1/2 and 1, respectively, since the

corresponding multipliers are M(k1, k2, k3) = c1k3χk1=k2=k3 and c2k3χk2=k3 .

The last term, which corresponds to the non-resonant part, is in itself a nonlinearity

of 1-derivative type, which however can be dealt with by the third-order dispersion of

the equation. We make a further decomposition into two sums over (k1, k2, k3) ∈ D :=

{|k1| ∼ |k2| ∼ |k3|} and Dc, then the former is a cubic nonlinearity of 0-derivative type

with s0 = 1/2. For the latter, we apply differentiation by parts in t and substitute the
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(original) equation for v̂:

∑
k=k1+k2+k3

Φ̸=0, Dc

iγ2k + Γ(k1 + k2)

2π
eitΦv̂k1 ˆ̄vk2 v̂k3

= ∂t
∑

k=k1+k2+k3
Φ̸=0, Dc

iγ2k + Γ(k1 + k2)

2π

eitΦ

iΦ
v̂k1 ˆ̄vk2 v̂k3

−
∑

k=k1+k2+k3
Φ̸=0, Dc

iγ2k + Γ(k1 + k2)

2π

eitΦ

iΦ

∑
k1=k11+k12+k13

iγ1 + ik1γ2 + Γ(k11 + k12)

2π

× v̂k11 ˆ̄vk12 v̂k13 ˆ̄vk2 v̂k3− (two similar terms).

Here, all the formal calculations are easily justified, because we consider a smooth

solution. Noticing |Φ| ≥ ck2max in Dc (here we essentially use the third-order dispersion;

i.e., the assumption α1 6= 0), the first sum is the time derivative of a cubic nonlinearity

of (−1)-derivative type with s0 = 0, while we see ([7, Lemma 1]) that the other sums

are quintic nonlinearities of 0-derivative type with s0 = 1.

To treat the remaining term

2iγ2 + Γ

2π
‖u(0)‖2L2kv̂k = i

(2γ2 + Im(Γ)

2π
‖u(0)‖2L2k

)
v̂k +

Re(Γ)

2π
‖u(0)‖2L2kv̂k,

we apply the second transformation

v̂k 7→ ŵk(t) := exp
(
− i

2γ2 + Im(Γ)

2π
‖u(0)‖2L2kt

)
v̂k(t)

to eliminate the first term on the right-hand side. The second term will be the one that

is responsible for Gevrey smoothing effect.

We have so far obtained the equation for w of the form (4.1):

∂tw =
Re(Γ)

2π
‖u(0)‖2L2(−i∂x)w + ∂tN1[w] +N2[w],

where N1[w] is a cubic nonlinearity of (−1)-derivative type and N2[w] is a sum of cubic

and quintic nonlinearities of 0-derivative type, and hence (4.3) is satisfied with ρ = 1

and β = 0. Finally, by the assumptions Re(Γ) 6= 0 and ‖u(0)‖L2 > 0, the condition

(4.2) is also satisfied with ρ = 1, K = 1 and A = (2π)−1|Re(Γ)|‖u(0)‖2L2 . Applying

Corollary 4.2 (with σ > 1 = ρ) to w and noticing |ûk(t)| = |ŵk(t)|, we have the desired

Gevrey smoothing property for u, concluding the proof of Corollary 4.3.
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