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Abstract

In this paper, we consider the branching law of the Speh representation Sp(mw,n + 1) of GLaj,49; with respect
to the block diagonal subgroup GL,, x GL,49; for any generic representation m of GLs over any p-adic
field. We use the Shalika model of Sp(w,n) to construct certain zeta integrals, which were constructed by
Ginzburg and Kaplan independently, and study them. Finally, using these zeta integrals, we obtain a nonzero
GL,, x GLj4o-map from Sp(m,n + 1) to 7 X 7"y, x Sp(m,1) for any irreducible representation 7 of GL,,.
These results form part of the local theory of the Miyawaki lifting for unitary groups.
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0 Introduction

For a long time, the lifting problem has been one of the most important problems in the theory of automorphic
representations. With the advent of Arthur’s endoscopic classification, we can now understand half of this
problem, namely the existence of liftings, in many cases. However, we still do not know much about the
other half, namely the construction of liftings. If an automorphic representation is constructed explicitly, it
is possible to obtain additional data that is important for application in number theory, such as the data of
Fourier coefficients, which cannot be obtained by only considering it as an abstract representation. Thus,
the construction of liftings is still important.

One method to construct liftings is using global periods. In other words, it is a method to pullback an
automorphic form to the product of two groups and consider its inner product with another automorphic
form on the first factor. Of course, the product group and the automorphic representation to be pullbacked
need to be taken properly (roughly speaking, the product group needs to be ‘sufficiently large’ and the
automorphic representation needs to be ‘sufficiently small’). This type of construction is interesting because
its nonvanishing is often related to some special L-values (e.g. the theta lifting).

The Miyawaki lifting, which is the object of our interest, is one such construction. This is a construction
defined by using the pullbacks of Tkeda lifts to block diagonal subgroups as kernel functions, introduced by
Ikeda and modified and generalized by some researchers.

The purpose of this paper is to study the branching laws of Speh representations associated to generic
representations of GLs over any p-adic field with respect to any block diagonal subgroup. It is essentially to
study the theory of the local Miyawaki lifting for split unitary groups over p-adic fields.

In the following subsections, we explain the above in more detail. Moreover, in the last subsection, we
will state the main results of this paper.

0.1 The Miyawaki lifting: The Siegel case
First, we recall the result of Ikeda [Ike06], the origin of the theory of the Miyawaki lifting.

0.1.1 Siegel modular forms

We introduce some notations for Siegel modular forms.
Let us denote the adele ring of Q by Ag. For any m € Zxq, we define Sp,,,(R) by

Spom(R) = {g € GLam(R) ‘ g <1m _1m> 9= (1m _1m)}

for any ring R and Siegel upper-half plane b,, by

bm = {Z € M,,,(C) | Z ="Z, ImZ : positive definite}.



For g = (g ZB;) € Spyn(R) (4,B,C,D € M,,(R)) and Z € b,,,, we define a group action of Sp,,,(R) on

Hm by
=(AZ+ B)(CZ + D)71

and put
jlg,Z) =det(CZ + D).

Let k£ be an integer and m € Z~y. We consider a holomorphic function f on b, such that
f92) =i(9, 2)" f(2)
for any g € Sps,,,(Z) and Z € b,,,. Then, since
f(Z+ B) =det B*f(Z)
for any symmetric matrix B in M,,,(Z), f = 0 if k is odd and f has the Fourier expansion

ZAf exp(2myv/—1tr(S2))

if k is even, where S runs over all the half-integral symmetric matrices of size m. We note that A;(S) = 0 if
S is not positive semi-definite and m > 1 (Koecher’s principle). We call f a Siegel modular form of degree m
and weight k£ if m > 1. For m = 1, we call f a Siegel modular form of degree 1 and weight £ if f is a modular
form of weight k, i.e. Af(S) =0if § < 0. We denote by My(Sp,,,(Z)) the space of Siegel modular forms of
degree m and weight k. Moreover, we call f € My(Sp,,,(Z)) a Siegel cusp form if f lies in the kernel of the
d-operator, i.e., the function

Z t_l>1_|rmoo f(diag(Z, v —1t)

on h,,—1 is zero. Note that f € My(Sp,,,(Z)) is a Siegel cusp form if and only if Af(S) = 0 unless S is
positive definite. We denote by Sk (Sps,,(Z)) the space of all Siegel cusp forms in My (Sp,,,(Z)) (formally,
we define My (Spy(Z)) = Sk(Spy(Z)) = C).

For any f € My (Sp,,,(Z)), we define an automorphic form ¢y on Sp,,,(Ag) by

@1 (V9ock) = §(Goor V=11m) "F f(goo(V=111,))

for v € Spy,, (Q), goo € Spoy, (R), and k € Ko = [[,. ... SP2n(Zp) (recall the strong approximation theorem
SPaom (Ag) = Spo,, (Q)(Spa,, (R) X Kp)). f is called a Hecke eigenform if ¢y is a Hecke eigenform. We note
that if f € Sk(Spg,,(Z)), then ¢y is a cusp from.

For any Hecke eigenform f € Si(Sp,,,(Z)), we denote by ms the cuspidal representation of Sp,,,(Ag)
generated by ¢y and define the standard L-function L(s, f,st) of f by

s, f,st) = H L(s, (m¢)p, st),

p:prime

where L(s, (my)p,st) is the local L-function of the p-th component (7s), of 7, associated to the standard
embedding
SPam = SO02i541(C) = GLay41(C).

0.1.2 The Ikeda lifting

The Miyawalki lifting is defined by using the block diagonal restrictions of Ikeda lifts. Tkeda lifts are the Siegel
modular forms given by the following result of Ikeda.



Theorem 0.1 ([Ike01, Theorem 3.2]). Let k,m be nonnegative integers such that k + m is even and f
a normalized Hecke eigenform of Sox(SLa(Z)). Then, there is an explicitly-constructed Hecke eigenform
F € Si4m(Spam(Z)), which we call the Tkeda lift of f to Sk4m(SPam(Z)), such that

2m

L(s, F,st) = C(s) [[L(s + k+m—i, f),

i=1

where L(s, f) is the Hecke L-function of f.

0.1.3 The Miyawaki lifting

We explain the 2006 work of Tkeda [Tke06].

Let k,n, and r be nonnegative integers such that k+n-+r is even. Let f be a normalized Hecke eigenform
of S21(SL2(Z)) and g € Skin+r(Spa,.(Z)). We denote the Ikeda lift of f to Skynir(SPyyya,(Z)) by F . Then,
the Miyawaki lift M z(g) of g with respect to F is defined by

MF(9)(Z) = /S o F(diag(Z, W))ge(W)(det ImW )*+"~1qw

for any Z € hn s, where g° = g(—()) € S inir(Spo,(Z)):
For this M z(g), Ikeda proved the following:

Theorem 0.2 ([Ike06, Theorem 1.1]). We have M#(g) € Sktn+r(SPanyo-(Z)). Moreover, if g is a Hecke
eigenform and Mz (g) # 0, then M £(g) is a Hecke eigenform whose standard L-function is equal to

2n
L(s,g,st)HL(s—&—k‘—l—n—l—r—i,f).

i=1

The reason why this lifting is called the ‘Miyawaki’ lifting is that Ikeda constructed it to approach the
following conjecture of Miyawaki in 1992:

Conjecture 0.3 ([Miy92]). Given normalized Hecke eigenforms f € Sar_4(SLa(Z)) and g € Sk (SLa(Z)),
there should be a Hecke eigenform Fy , € Si(Spg(Z)) whose standard L-function is equal to

L(s,g,st)L(s+k—2,f)L(s+k — 3, f).

Indeed, Theorem 0.1 reduces the above conjecture to the nonvanishing of Miyawaki lifts. However, we do
not know the nonvanishing of them in general.

0.2 The Miyawaki lifting: The hermitian case

In 2018, the hermitian analogue of Theorem 0.2 was shown by Atobe and Kojima [AK18]. In the same year,
Kim and Yamauchi defined the analogue of the Miyawaki lifting for exceptional groups and obtained the
similar result [KY18]. Here, we recall the former result. It is completely parallel to §0.1.

0.2.1 Hermitian modular forms

We introduce some notations for hermitian modular forms.

Let K = Q(+/—D) be an imaginary quadratic field with discriminant —D and Galois conjugation c. We
denote the Dirichlet character which corresponds to K/Q by xk /g and the adele ring of K by Af.

For any m € Z>(, we define U(m, m)(R) by

U(m,m)(R) = {g € GLom (R ®g K) ’ g (lm —1m) e — <1m —1m>}



for any Q-algebra R and hermitian upper-half plane H,, by
Hom ={Z € M,,,(C) | V-1 ( ‘7Z) : positive definite}.

For g = (é IB;) € U(m, m)(R) and Z € H,,, we define a group action of U(m,m)(R) on H,, by

=(AZ + B)(CZ + D)™*

and put
jlg,Z) =det(CZ + D),
which is similar to the Siegel case.
For simplicity, we assume that the class number of K is equal to one. Put

[ = U(m,m)(Q) N GLam (Ok),

where Of is the ring of integers of K.
Let k be an integer, m € Z~q, and o a character of I'. We consider a holomorphic function f on H,,
such that

fl92) = o(9)ilg. 2)" (2)
for any g € '™, Z € H,,,. Then, similar to the Siegel case, f = 0 if k£ is odd and f has the Fourier expansion

ZAf )exp(2mV/—1tr(HZ))

if k& is even, where H runs over all the half-integral hermitian matrices in M,, (K). We note that A;(H) =0
if H is not positive semi-definite and m > 1. We call f a hermitian modular form of degree m and weight k
with character o if m > 1. For m = 1, we call f a hermitian modular form of degree 1 and weight k& with
character o if Af(H) = 0 for any H < 0. We denote by M (I'"™, o) the space of hermitian modular forms
of degree m and weight k& with character o. Moreover, we call f € M (I'"™,0) a hermitian cusp form if the
function
Z — t£+moo f(diag(Z,/—1t)

on H,,—1 is zero. We denote by Si(I'™, o) the space of all hermitian cusp forms in My (T'"™, o) (formally, we
put M(I% o) = Si(I'%, o) = C).

Assume that k is even and o = det ™*/2. Then, for any f € M (I'™, det_k/z), we can define an automorphic
form ¢; on U(m,m)(Ag) by

©1(1950k) = 7(goer V=111m) 7* f (g0 (V—=11,)) det(goc )"/

for v € U(m, m)(Q), goo € U(m, m)(R), and k € Ko =[[,,.,...... U(m, m)(Qp) N GL2 (O, ), where Ok, is the
ring of integers of Q, ®q K (if p splits in K, define O, = Z, x Z, formally). Since

U(m,m)(Aq) = U(m, m)(Q)(U(m, m)(R) x Ko)
(note that the cardinality of U(m,m)(Q)\U(m,m)(Ag)/(U(m,m)(R) x Ky) is equal to the class number of
K in general), this is well-defined. f is called a Hecke eigenform if ¢ is a Hecke eigenform. We note that if
f € S,(I™, det™*/2) then @y is a cusp form.

For any Hecke eigenform f € Sj(I'™, det™*/2), we denote by 7 # the cuspidal representation of U(m, m)(Ag)
generated by ¢ and we define the standard L-function L(s, f,st) by

L(S7f,St) = H L(S’BC(Wf)P)a
p<oo

where p runs over all finite places of K and BC(ns), is the p-th component of the standard base change
BC(7s) of m to GLay, (Ak) (we recall the definition in §0.3.1) and L(s,BC(7y),) is the local L-function of
BC(7y), associated to the identity map of GLa,, (C).



0.2.2 The hermitian Ikeda lifting

To define the Miyawaki lifting, we need the Ikeda lifting. The following result of Ikeda is the hermitian
analogue of Theorem 0.1.

Theorem 0.4 ([Tke08, Theorem 5.1, 5.2]). Let k,m be nonnegative integers and put I = 2k + m (resp.
l=2k+m—1) if m is even (resp. odd). Let f be a normalized Hecke eigenform of Sax(SL2(Z)) (resp.
Sort1(lo(D), Xk /q)) if m is even (resp. odd). Then, there is an explicitly-constructed Hecke eigenform

F € S(I'™,det™"/?), which we call the (hermitian) Ikeda lift of f to Sy(I'"™,det™"/?), such that

m

L(s, Fost) =[] ] L(s +m/2+1/2 =i, (x§")[),

1=1p<oo

where W?L is the cuspidal representation of GLg(Ag) corresponding to f and (W?L)K is the base change lift
of WJ(;’L to GLa(Ak).

0.2.3 The hermitian Miyawaki lifting

We state the result of Atobe and Kojima [AK18].
Let k,n, and r be nonnegative integers and put I = 2k +n + 2r (resp. | =2k +n+ 2r — 1) if n is even
(resp. odd). Let f be a normalized Hecke eigenform of Sy, (SL2(Z)) (resp. Sori1(I'o(D), xk/q)) if n is even

(resp. odd) and g € S;(I'",det™"/?). We denote the Ikeda lift of f to S;(I'2"*", det™"/?) by F. Then, the
(hermitian) Miyawaki lift M #(g) of g with respect to F is defined by

Mz (9)(Z) = /Fm\q-[ F(diag(Z, W))g(W)(det ImW )= 2" dw

for any Z € Hpyr-
For this M £(g), they proved the hermitian analogue of Theorem 0.2:

Theorem 0.5 ([AK18, Theorem 1.1], see also Theorem 5.3 in loc. cit.). We have Mz (g) € S;(I™", det™/?).
Moreover, if g is a Hecke eigenform and M xz(g) # 0, then M £(g) is a Hecke eigenform whose standard L-
function is equal to

n
L(s,g,st) [T T] L(s +n/2+1/2 =i, (=F)[).
i=1p<oo

More precisely speaking, by the calculation of the infinite component, they obtained the following equation
of the complete L-function

n

L(s,BC(Tat,(g))) = L(s,BC(mg)) [ L(s +n/2+1/2 — i, (xF")F)

=1

if k> n/2.

0.3 The representation-theoretical Miyawaki lifting

We can generalize the theory of the Miyawaki lifting representation-theoretically. There are two styles,
namely,

e the generalization using representation-theoretical Tkeda lifts which is explicitly constructed (cf. [IY20,
Yam20]) and

e the generalization using Arthur’s endoscopic classification ([Art13] and others), which is independent
of the theory of the representation-theoretical Ikeda lifting.



Atobe studied the representation-theoretical Miyawaki lifting for Symplectic/Metaplectic groups under the
former style [Ato20] using the representation-theoretical Tkeda lifting given by Tkeda and Yamana [TY20]. We
recall the representation-theoretical Miyawaki lifting for unitary groups under the latter style defined by the
author [Tto] (it is basically defined in the same way for other groups).

Let F' be a number field and F a quadratic extension of F' with the nontrivial element ¢ of Gal(E/F'). We
denote the ring of adeles of F' and F by Ar and Ag, respectively. For any nondegenerate hermitian spaces
V over E, we denote its isometry group by U(V'), which is an algebraic group over F'.

0.3.1 The endoscopic classification

First, we review the necessary parts of Arthur’s endoscopic classification for unitary groups, which is com-
pleted by Mok in the quasi-split case [Mok15] and almost completed by Kaletha, Minguez, Shin, and White
in the general case [KMSW].

Consider the formal commutative sum:

& = Bi_ ki B [m].
Here,
e k;,n;, m; are positive integers,
e u; is an irreducible unitary cuspidal representation of GL,,(Ag) = GL,,(E ®F Ar),
e [m;] is the unique irreducible m;-dimensional algebraic representation of SLy(C), and

o 1; X [m;] (we often suppress K and write p;[m;] for short) is a formal tensor product of p; and [m;]
such that if p; = p; and m; = my, then i = j.

Put N = Zlizl k;n;m;. We denote the isobaric automorphic representation
s i /24+1/2—i\ Bk,
BBy (BB | - [ /27
of GLy(Ag) by ¢y, where | - |4, is the idele norm of A%. Moreover, for any place v of F, we define ¢, by
hy = @ézl Igw\v (,ui,w X [mi}eaki%

where w runs over all places of E on v. Here, we identify the w-th component p; ,, of f; with the representation
of the Langlands group of E,, which corresponds to p; ., under the local Langlands classification for general
linear groups. Then, v, is a representation of [[,,,(Lg, X SL2(C)), where W, is the Weil group of E,, and

w|v(

I Wg, w : archimedean;
B Wg, X SLy(C)  w : nonarchimedean.

We say that 1 is a global discrete A-parameter of degree N if

e k; =1 for any 7 and
e for any 4, u; is conjugate selfdual with parity (—1)™*" i.e. the Asai L-function L(s, p;, As(fl)m#n)
(see [GGP12, §7]) has a simple pole at s = 1.

We denote by Wo(N) the set of global discrete A-parameters of degree N. We note that for each place v of
F which does not split in E, 1, for any ¢ € U5(N) is conjugate selfdual with parity (—1)¥~1! i.e. there is a
nondegenerate bilinear form B: CY x CV — C such that

B(%(w)l‘, wv(wc_lwwc)y) = B(x7y)7
B(y,x) = (=1)" ' B(x, ¢ (w?)y)



for any w € Lp, x SLa(C) and =,y € CV, where w, is a fixed element of W, \ W, (the definition does not
depend on the choice of w,.). If v is a place of F' which splits into two places wi,ws in E, then ¢, = ., Kb,
satisfies ¥, = w,, where we identify Wg, with Wg, naturally and ¢,/ is the dual of 1y, .

Let V be a nondegenerate N-dimensional hermitian space over E and ¢» € Wo(N). Then, for each place v
of F, the Local A-packet I, (V,,), which is a multiset of irreducible representations of U(V')(F},), is defined
(it depends only on 1, and the hermitian space V,, =V ®p F, over E,). We put

Iy (V) = {®ymy € @11y, (Vy) | 7y is unramified for almost all v}.
We note that
e if ¢, is trivial on the inertia of Wy, for any w|v and U(V) is unramified over F),, then II,;, (V,) contains

a unique unramified representation, which corresponds to the L-parameter (¢y), and

e if v splits into two places wq,wq in E, then I, (V) is singleton and it consists of the representation
which corresponds to (¢y ), , where we identify U(V)(F,) with GLx(E,,) by the composition of the
projection to the first factor

GLN(Ewl) X GLN(Ew2) — GLN(Ew)

and the natural embedding
U(V)(Fv) — GLN(Ewl) X GLN(Ew2).

Then, the claim of the endoscopic classification is as follows:
Theorem 0.6 ([Mok15, Theorem 2.5.2], [KMSW, Theorem 1.7.1]). Let

- @

where 7 runs over the representations in IL, (V') which satisfies a certain condition (we do not discuss it here).
Then, the discrete spectrum L3, (U(V)(F)\U(V)(A )) of L? (U( Y(F)O\U(V)(AF)) is decomposed as

L (UWV)(F\U(V) = P L.

PYeEW2(N)

If an irreducible discrete automorphic representation 7 of U(V)(Ap) is a subspace of pr, then we say
that ‘m has the A-parameter ¢’ and we denote ¢, by BC(nm) (the standard base change). Note that two
irreducible discrete automorphic representations m and 7’ of U(V)(Ap) are nearly-equivalent if and only if

BC(m) = BC(x').

0.3.2 The definition of representation-theoretical Tkeda lifts

We introduce the representation-theoretical Tkeda lifts. Let V be as above and assume N = 2m is even.

Definition 0.7. Let 7 be an irreducible discrete automorphic representation of U(V)(Ag). 7 is called an
Tkeda lift if the A-parameter of 7 is equal to ¢[m| for some ¢, where ¢ is a conjugate self-dual cuspidal
automorphic representation of GLg(Ag) with parity (—1)™ or equal to x H x’ for some distinct conjugate
self-dual automorphic characters y, x' of Aj; with parity (—1)™.

We note that any automorphic representation generated by some hermitian Tkeda lift (see §0.2.2) or
representation-theoretical hermitian Tkeda lift constructed in [Yam20] is an Ikeda lift in this sense.
The following is the most important property of Ikeda liftings.

Proposition 0.8. Let 7 be an Ikeda lifting of U(V)(Ar) and v a place of F. Assume U(V) is unramified
over F, and m, is unramified. Then, m, is isomorphic to a quotient of some degenerate principal series
representation of U(V)(F,) ~ U(m,m)(F,), i.e. a parabolic induction

I.(x) := IIldg(m’m)(F”)(Sllg/2 ® x o det,

where P is the block upper triangular parabolic subgroup of U(m, m)(F,) whose Levi subgroup is isomorphic
to GL,,,(F ®p F,), x is a character of (E ®p F,)*, and dp is the modulus character of P.



0.3.3 The definition of representation-theoretical Miyawaki lifts

We define the representation-theoretical Miyawaki lifting.

Let V1, V5 be nondegenerate hermitian spaces over E such that dimV; = n € Z~g, dim Vo = n + 21, for
l € Z>o. Put V =V; L V; and think of U(V7) x U(V2) as a subgroup of U(V') by the natural embedding. Let
IT be an Ikeda lifting of U(V)(Ar) with A-parameter ¢[n + (] and 7 a discrete automorphic representation of
U(V1)(Ap) with A-parameter 1.

Definition 0.9 (cf. §0.2.3). For any f € 7 and F € II, define an automorphic form Mxz(f) of U(V2) by

Mz(f)(g) = Fluwiyar)xuva)arp) (s g) f(h)dh

/U(Vl)(F)\U(Vl)(AF)

as long as it converges. We call the representation of U(V2)(Ap) generated by all Mz(f) the Miyawaki lift
of 7 with respect to II and denote it by Mp(7).

Here, we recall that unramified degenerate principal series representations have simple branching laws on
unramified representations as follows:

Proposition 0.10 ([AK18, Proposition 2.2, 2.3]). Assume U(V), U(V;) and U(V3) are unramified over F,.
Let 71 (resp. 72) be an irreducible unramified representation of U(V7)(F,) (resp. U(Va)(F,)) with L-parameter
@1 (resp. ¢2). Then, if there is a surjective U(V1)(F,) x U(Va)(F,)-map

In+l(X) — T1 &7‘2

for a character x of (F ®p F,)*, we have

_ 1/241/2—1
(x ® (x) Y| - |22

d2 = Y x(x) " .
1

l
i=

This proposition and Proposition 0.8 determine the near equivalence classes of Miyawaki lifts. Namely,
the following holds:

Corollary 0.11. Assume My (7) is a subspace of L2(U(V)(F)\U(V)(AFr)) and

Mty () == ¥ xg B [l]

is a discrete A-parameter (namely, multiplicity-free), where x4 is the central character of ¢ and ¥V is the
dual of 1. Then, we have
2
MH(T) C Lqu[nJrl](w).

0.4 The nonvanishing of Miyawaki lifts

For application, it is important to determine the nonvanishing of Miyawaki lifts. Some results are already
known (e.g. [KY19] and [Ato20, 8§5]), however, we do not know the complete determination of it, either
classically or representation-theoretically.

However, similarly to other problems for global periods, we can divide this problem into two parts:

e (local problem) Determine the branching laws of the local components of Tkeda liftings with respect to
block diagonal subgroups.

e (global problem) Give a relationship between the nonvanishing of the Miyawaki lifting and some special
L-value.

In this paper, we give a partial answer of the local problem for split unitary groups, i.e., general linear groups,
over p-adic fields.



0.5 The work of Lapid and Mao

This paper is highly related to the work of Lapid and Mao [LM20] (see also §1.2, 1.3). Let us quote their
result here.

Let F be a p-adic field with absolute value | - | and ring of integers O. Let ¢ be the cardinality of the
residue field of F' and ¢ a nontrivial additive character of F'. For k', n’ € Z~¢, define w/ ,,;y € GLypr (F) by

(Wi ) )ij = Ok (impntmi—1)4p o0/ —n/ +1 < i <pn'.

their Speh representations
i.e., the unique realization

Let 7!, 72 be irreducible generic representations of GLi(F) (k € Z~¢) and 7w}, 72

of GL,;(F) for n € Z~q, respectively. Let Wg’h(w;) be the Shalika model of ¢,
of 7 in
Indg " w0,
where a parabolic subgroup P of GL,(F) with unipotent radical U is defined by
GL'I’L 17L
GL, 1, >k
-1 . -1 .
P = MU, M = w(km) .. w(k,n), U= w(k,n) .. w(k,n)
GL, 1
GL, 1n

and a character W ,y of U is defined by

ln Xl
1n X2 *
W (1.n) w(_kln) W) | =9 Z trX; |,

where X; € My (F).
For any W, € W (x1), W2, € W (72),® € S(M,, .4 (F)) and s € C, put

Z(Wh, W2, 0, 5) = / Wi (9) W2, (9)® ()] det g|*dg.
U\GL,,, (F)

)1 if j = ki;
g = 0 otherwise.

where n € M, i (F') is defined by

This zeta integral is an analogue of the Rankin-Selberg zeta integral defined in [JPSS83] for equal-rank two
representations.
They proved the following:

Theorem 0.12 ([LM20, Theorem 5.1]). The integral Z(W4d,, W&, , ®, s) has the following properties.

(i) If Re(s) is sufficiently large, then the integral defining Z(W¢,, W&, . ®, s) is absolutely convergent for
any Wéh, Ws?h, and .
(ii) For any W, W&, , and ®, Z(Wg,, W2, ®,s) admits a meromorphic continuation to C and
n—1
[[LG—in ®a®)" Z(We,, WE,, @, 5)
i=0
defines an element of C[g~*,¢*], where L(s,n' X 72) is the Rankin-Selberg local L-function defined in
[JPSS83].



(iii) if 7. and 72 are unramified, then

n—1
Z(Wey, W, ®,8) = [[ L(s —i,7' B x?)
=0

up to a constant if WSIh and WSQh are unramified vectors and @ is the characteristic function of M,, ,,1(O).

(iv) We have a local functional equation
n—1
Z(Way, W2, ®,n—5) = X2 (—1)"F D [ 7(s — i, 7! R 72, ) Z(Wd,,, Wy, @1 — 5)
=0

for any Wslh, WS2h7 and ®, where Y,2 is the central character of w2, (s, 7! X 72) is the y-factor for
L(s, 7' X x?), Wi, is defined by

WeL(9) = Wa, (Wakfg ")
and ® is the Fourier transform

B(X) = / O (tr("Ywe, X)) dY.
Mn,nk(F)

0.6 The main results

We state the main results of this paper. Let F’ and ¥ be as above. Let 7w be a generic irreducible representation
of GLy(F') with central character x,.. We assume that 7 is approximately tempered (see §1.1, note that if =
is unitary, then it is approximately tempered). Let 7, be the Speh representation Sp(w,n). We note that the
local components of any Ikeda lifts at the finite places where the unitary group splits are always of this form
(see Remark 1.2). We denote by Wéph(ﬂn) the Shalika model of m,. Let 7 # 0 be a smooth representation
of GL,(F) which is realized as a subrepresentation of a (normalized) parabolic induction 71 X -+« X 7, for
some irreducible representations 7;. For Wg, € Way (), s € C, and a matrix coefficient f of 7, we put

Z(Wsh, s, f) == /GL By, (9)f(g)| det g|*~ 2 dg,

where @y, is the restriction of Wgy to w(;ln)diag(GLn (F),1n)wz,n) ~ GL,(F). Then the following holds:

Theorem 0.13 (Theorem 2.1). (i) If Re(s) is sufficiently large, then the integral defining Z(Wagp, s, f)
converges absolutely for any Wsy, and f. Moreover, Z(Wgy, s, f) admits meromorphic continuation to
all of C and there is a (unique) polynomial P(X) € C[X] such that P(0) =1 and

(Z(Wsh, s, f) | Wsn € Wg)h(ﬂ'n), f : a matrix coefficient of 7)c = P(¢~*)"'Clg™*, ¢%],
where ¢ is the cardinality of the residue field of F'; denote P(¢=*)~! by L(m;s,7).
(ii) There is a function y(s) € C(¢~*) such that

Z(Wsn, 1= s, f(-1) = () Z(Wew, s, f)

for any Wsy, and f, where Wgp, := Xt (det) W (( I jn) . (fin o (e Wghil(Sp(ﬂV, n)); denote (s)
by y(m;s,7,9).

(iii) If 7 is irreducible and generic, then
L(m;s,7) = L(s, 7 K 1),

where the right-hand side is the local L-factor of 7X7 defined by Jacquet, Piatetski-Shapiro and Shalika
[JPSS83].
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Remark 0.14. e We constructed the above zeta integral based on the work of Lapid and Mao [LM20],
but in fact the integral had already been defined by Ginzburg ([Gin]) and Kaplan (Appendix C of
[CFK]) in a more general setting, namely for an irreducible generic representation 7 of GLy(F) for any
k and any local field F of characteristic zero (either archimedean or p-adic), independently. Then, the
really new result in the above theorem is (iii) only (see Remark 2.2).

e In recent years, some analogues of Rankin-Selberg zeta integrals using Speh representations were given
by some researchers:

— Zeta integrals for Speh representations of type (n, k) x (n, k) were defined in [LM20].

— We can find zeta integrals for Speh representations of type (n,k) x (n — 1, k) in the recent work
of Atobe, Kondo, and Yasuda ([AKY]).

— The zeta integrals defined in Appendix C of [CFK] (and [Gin]) are (essentially) for Speh represen-
tations of type (n,1) x (k,n).

Here, we say that the Speh representation Sp(n’,1) is of type (m,l) if ©’ is a (generic, irreducible)
representation of GL,,. Then, in all three of the above papers, the determination of the L-factors was
left unsolved (some partial results, such as [CFK, Proposition C.10], were given, see Remark 2.2). In
contrast, our result (iii) is a fortunate example solving this problem, albeit only for Speh representations
of type (n,1) x (2,n).

Next we consider the general rank case. Since
(I)wn(diag(ghgz))WSh = Dwy, (92_1 - g1)X=(det g2)

for any Wgy, € Wg’h(wn) and g1, 92 € GL,, the linear extension of L(T(;S,TV)71Z(',S,')|5:% on Wgp(m,) ®
7V @ 7 defines a nonzero element of

Homgr, xar, (7, ® (¥ R 7x; 1), C) ~ Homar, xar, (Tn, 7 8 7¥xx).
Then, by simple consideration (see §4), the following holds:
Theorem 0.15 (Theorem 4.1). The space

v
Homgr, xGL, 4o (Tntt, T X T7x7 X )
is nonzero.

Remark 0.16. The above theorem only means that local Miyawaki lifts for split unitary groups are always
nonvanishing. To complete our purpose, there remain two problems, namely, uniqueness and multiplicity at
most one (see Conjecture 4.2).

We now give the organization of this paper. In §1, we introduce the notations, Speh representations, and
the models of Speh representations according to [LM20]. In §2, we introduce and study the above zeta integral.
We show some properties which zeta integrals should have in general, and give the proof of Theorem 0.13.
However, we postpone the proof of the functional equation, which is necessary to show Theorem 0.13(iii),
to the next section. In §3, we show the functional equation as just announced. The essential of the section
is the inequality dim¢ Homgr, xgL, (Tn, 7 8 7¥xx) < 1 for supercuspidal 7. In §4, we make some remarks
about the branching laws of Speh representations with respect to block diagonal subgroups of general size,
including the proof of Theorem 0.15.
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1 Preliminaries

1.1 Notation

Throughout this paper, fix a p-adic field F' with absolute value |- | and ring of integers O. Let ¢ be the
cardinality of the residue field of F. If G is an algebraic group over F, we also use G to denote G(F'). The
term ‘representation’ is used to refer to a smooth, complex representation of an algebraic group over F.

We denote by IrrGL,, the set of equivalence classes of irreducible representations of GL,, and put
Irr = Uy<,, IrrGL,,. We denote by Irrge,GL,, (resp. IrrgGL,,) the subset consisting of all generic (resp.
supercuspidal) elements of IrrGL,, and put Irtgen = Uy<,, ITgenGLim, Irrse = U<, Isc GLi, -

For m = (my,...,m;) € (Zso)', we denote the block upper triangular parabolic subgroup of type m with
unipotent radical Uy, by Pp,, a Levi subgroup diag(GLyy,,, ..., GLy,) = GLy,, X -+ X GLyy,, of Py, by My,
and the modulus character of P,, by dp .

We use the notation Indg and ind7 to denote induction and induction with compact support (both
unnormalized) from a subgroup H of G. If 7y, ..., 7 are representations of GL,y,, ..., GL,,, respectively, then
we denote the parabolically induced representations

Indgiméfgm ®m X---Xm and Indgimﬂ1 X-. X

by m1 X - -xm; (normalized induction) and 7y - - -*m; (unnormalized induction), respectively, where m = 3. m;

and m = (my,...,my).
l1 l2

If there is no confusion, we often denote (1, my,. .., m1, Mg, Ma, ..., ma,...) by (mi't,ma'2,...).

Let 7 be a representation of GL,,. We denote the contragradient representation of 7 by 7¥ and 7 ® y odet
by mx for any x € IrrGL;.

For 7 € Irrs, we denote the unique irreducible subrepresentation of 7| - | ™= x 7| - | 2" x -+ x | - |~ "=~
by St(m, m) (generalized Steinberg representation).

We denote by Alg’GL,, the set of equivalence classes of representations 7 # 0 of GL,, such that

mCm X X T

for some 71, ..., m € Irr (equivalently, my,...,m € Irrg.) and put Alg’ = {J,<,,, Alg'GL;,. We note that Alg’
is closed under parabolic induction. For any m € Alg’, we denote the central character of ™ by Y.
Let m € Irrgen. Then, m can be written uniquely (up to permutation) as

™ = St(pr,ma)| - | x - St(pr, )| -

"

with cuspidal unitary representations p; and r; € R. We say that 7 is approximately tempered if r; —r; < 1
for any i and j, following [LM20]. We note that if 7 € Irrge, is essentially unitary, then it is approximately
tempered.

1.2 Speh representations (cf. [LM20, §2])

For the rest of this section, fix 7 € Irrgen GLy.
Let {p1,...,pr} (pi € Irrsc) be the cuspidal support of m, which is a multiset of Irrs.. For each n € Z~y,
we define the Speh representation Sp(m,n) as the representation corresponding to the multisegment

T
_n—1 n—1
Z{pi|'| 2""’pi|'|2}

=1

—m

under the Zelevinsky classification [Zel80]. By rearranging the indices, we assume that p1,...,pi—1 # pi|-|
for all ¢ and all m € Z<g. Then, Sp(mr,n) is the unique irreducible subrepresentation of

Sp(p1,n) X - -+ x Sp(pr,n),

12



n—3 n—1

where Sp(p;,n) is the unique irreducible quotient of p;| - |ﬂ2;1 X pil |72 XXl |7
Other realizations of Sp(m,n) are known:

Proposition 1.1 ([LM20, Corollary 2.11]). Sp(m,n) is a unique irreducible subrepresentation of

n—1

Sp(m,n—1)]- |72 x |- |7 .

In particular, Sp(m,n) is both a subrepresentation of

n—1 n—3 n—1
H:77|.|_T ><7T|"_ 2 ><--~><7T|-

and a quotient of
n—1 3 n—1

- ne
M=nx|-|"7 x7|-| 2 x---xnm|-|77 7.

Remark 1.2 ([LM20, Remark 2.12]). Assume 7 is approximately tempered. Then, Sp(7, n) is the Langlands
quotient of IT. In particular, Sp(s,n) is the unique subrepresentation of Sp(m, n1)|- |*n72 x Sp(m, na)| - |WT1 for
any ni,no € Z~g such that ny +ns = n.

From now on, we will denote Sp(w,n) by m, for short.

1.3 The models (cf. [LM20, §3])

For the rest of this section, fix a nontrivial character ¢ of F.
For each n € Z~¢, we define w, ,,) € GLgy, by

(w(k,n))i,j = 5k(i—pn+n—1)+p,j ifpn—n+1<i<pn

for p e {1,...,k} and a function ¥y ,,y : GLy, — C by

Virny(g) =1 ngﬂ

kti
Then, the restrictions of Wy ) to Ugrny and U(qfl‘,f)’") = w(_k%n)U("k)w(k’n) are both characters. We note that
1n X1 Wk,n)
L, X, K
¥ (k,n) =v| Y ux|,

1, Xn 1<i<k—1

where X; € My (F). We put

W%)e,k,n = Indgi’;z)\l’(k7n)|U(lkn) and Wé/}h,k,n = Indgﬁﬁgn) ‘I/(k:,n)|U“J<k,n>~
(nk) (nk)
Then, it is known that dimc(wn,W%’e kn) = dim@(ﬂng’h kn) = 1 ([LM20, Theorem 3.1]) . We denote

the images of 7, on Wge’k’n and Wg’h’km by W%/’e(ﬂn) (Zelevinsky model) and Wgh(ﬂn) (Shalika model),
respectively. We note that

k
Wen(diag(g, . .., 9)"®m-) = xx(det g)Wsn, g € GL,

for any Wgy, € ngh(ﬂn).
The relation between W%be(wn) and Wg’h(wn) is as follows:
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Proposition 1.3 ([LM20, Lemma 3.8, 3.11]). Let n,, (resp. 0, ='n,) be the set of upper (resp. lower)
triangular nilpotent matrices in M,, (F') and

1, n, n, ... 0, n,
1, n, ... n, n, n,
e § . . . o -1 . . .
N, = Wik n) . - o wkny, Np =1k + Wiy | - : - W(k,n)-
171, n, n, n, ... n,
1, Op Op ... ... Op

Then, the isomorphism 7y, : W%)C(ﬂ'n) 5 Wéph(wn) and its inverse 7,1 : ngh(wn) 5 W%/’C(ﬂn) are given by

ToaWze :/ Wae(uw)du, T, ' Wen = W (u'-)du’
Ny,

NG,
for Wy, € Wg’e(ﬂn) and Wgy, € Wé’bh(ﬂn), where these integrands are (pointwise) compactly supported.

Now we consider ‘intermediate’ models between W%’C(Wn) and Wéph(wn). Take

n

A= dn) =k —1,k—=2,...,0,k—1,k—2,...,0,...,k—1,k—2,...,0) + (A\F, A5 .. M\E ) e Z¥

and define a parabolic subgroup P = MU of GLg, by P = {g € GLg, ‘ gi; =0 if )\ < /\j}. Then, the
restriction of W ) to U is a character and dimc(ﬂn,IndCU;L”’"\IJ(k’n)\U) = 1 in general ([LM20, Theorem
3.1]). Take n = (nq,...,n;) € (Zso)" such that Y, n; = n and assume that

J Jj+1
Aip = —jk if Y np, <i< Y m,
p=1 p=1

for j € {0,...,1 —1}. Then, we have

I 1 W(k,ny) W(k,ny)
pP= dlag(P(n,f) b ’P(nf) VUn
and
Yy = (\Il(k,m)|Uw<k’%n1) b9 ‘I’(k,m)|Uw<:,nz>) ® 1y,
(nk) (k)

For this n, we put
v _ GLgn ~ WY )
Wy = Ind;* W (se,m) U Wahkny ¥ * Wah ko

and denote the image of m, on W;fn by WY (m,). Then, using Proposition 1.3, we obtain the relations
between WY (7,,) and Wge(ﬂn), Wgh(ﬂ'n) as follows:

Corollary 1.4. Let n, = U, — 1,,, 1, =n,, and

Np1=diag(Np,, ..., Ny,), N,/L’l = diag(N,/L17 R N,/”),
1, n, n, ... 1, Ny
1, n, ... n, N Nn
Nn,2 = w(_l:n) AT W(k,n)> N':z,Q = lgn + w(_kl’n) e W(k,n)-
1’ﬂ ﬁ'n Np Ny Ny

Then, the isomorphisms



and their inverses

are given by

Tn,1Wze :/ Wze(u-)du, %’QW:/ W (u-)du,
Np1 Np,2

ToiW = W (u')du', Ty 3Wen = Wan (u-)du’
N}, 4 Ny,

for Wye € Wi (1), W € W¥(m,,), and Wey, € WS, (7).
Remark 1.5. By proposition 1.1, we have
WaelMunsy s € Whe(mn1)| - [FE7D @ Wy (m)] [ 7200

and
Z S 7 3 7 3(n —L(n— —
e‘ZM(W") W%)e( )| : ‘2( 1)(k 1) X sze( )| ! ‘2( S)UC 1) R R sze(ﬂ'ﬂ : | 2( 1)(k 1)

for any Wy, € W%’e(ﬂn) (see [LM20, §3.1]). Similarly, by Remark 1.2, we have
Loy (k— Loy (k—
W|M(1m1,1cn2) = WShw(ﬂ—nlM ’ |2 2(b=1) ® WShw(ﬂ—nz” ’ | 2 (k1)

for any W € ngll nz)(ﬂ'n) if 7 is approximately tempered, where n; + no = n. However, we do not know

whether this holds in general.

2 The local zeta integral

For the rest of this paper, fix ™ € Irrgen GL2, n € Z~ and a nontrivial character ¢ of F'. Moreover, for each
m € Lo, We Write w(z ) = W, W%be,lm = W%’e’m, W;”m,m = Wé/’hm, and W;/fm = W}, for short.

2.1 The main results
For any Ws, € WY (), define a function @y, on GL,, by
Dy, (9) = Wan((§)"")

We note that
q)”n(diag(ghw)“’")WSh = Py, (92_1 - g1)xz(det g2), (bﬂﬂ((ln 1X )wn)WSh - ¢(tr(X'))(I)WS“

for g1,92 € GL,, and X € M, (F) (see §1.3). In particular, ®yy,, is bi-K-invariant for some open compact
subgroup K of GL,,. Moreover, the set {®wy, | Wsn € Wgh ()} does not depend on v since for any additive

character ¢’ = ¢(a-) of F, where a € F*, the isomorphism Wéﬁ;(wn) = Wgh(ﬂn) is given by
Wi, — Wi, (diag(1,, al,)""-)

for W§, e Wg’};(wn)
For Wsp, € WY (m,), define Ws, € W, () by

n

Wen(g"") = x7 " (det ) Wan((('s 5. ) g (9. 5 )"
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(note that m,x ! ~ Sp(rx,;*,n) ~ Sp(r",n) ~ Sp(m,n)Y =x,/). We note that
W
@y (9) = Wan(((§ 1)) (£, 5)))-

Let 7 € Alg’GL,,. For any matrix coefficient f of 7, denote a matrix coefficient f(-~1) of 7V by fV.

Finally, for Wg), € W;f’h(ﬂn) and a matrix coefficient f of any 7 € Alg’GL,, define the zeta integral
Z(Wsn, 8, ) with complex variable s by

Z0Wsnosf) = [ B (9)5(0) et g

The main result of this paper is as follows:
Theorem 2.1. Let 7 € Alg’GL,,. Assume 7 is approximately tempered except (i).

(i) If Re(s) is sufficiently large, then the integral defining Z(Wgp,s, f) converges absolutely for any
W, € WY (m,,) and matrix coefficient f of 7.

(ii) Z(Wsn, s, f) admits a meromorphic continuation to all of C and there is a (unique) polynomial P(X) €
C[X] such that P(0) =1 and

I(m,7) = (Z(Wgn, s, f) | Wan € Wg’h(wn), f : a matrix coefficient of )¢ = P(q¢~*)"'Cl¢™*, ¢°];
denote P(q~*)~! by L(m;s,7).
(iii) If 7 = 71 X 72 for 79,72 € Alg/, then

L(m;s,7) = L(m; s, 71) L(7; 5, 72).
(iv) There is a function (s) € C(¢~*) such that

Z(VfV\S/h, 1-— S, fv) = ’Y(S)Z(WS}], S, f)
for any Wgy, and f; denote ~y(s) by ~y(m; s, 7,1).

(v) If 7 is a subrepresentation of 7, X 75 for 71,7 € Alg’, then
7(71-7 S, T, 1/’) = ’7(71', S5, T1, 1/’)7(71'7 S, T2, 1/))

(vi) If 7 € IrrgenGL,,, then
L(m;s,7) = L(s, 7 X 1),

where the right-hand side is the local L-factor defined by Jacquet, Piatetski-Shapiro and Shalika
[JPSS83].

Remark 2.2. As mentioned in Remark 0.14, some of our results are known. Specifically, they are as follows:
o (i) follows from the discussion at the beginning of Appendix C of [CFK].

e (ii) is a specialized version of [CFK, Theorem C.6].

e (iv) is a conclusion of [CFK, Theorem C.1].

(

e (v) is a specialized version of [CFK, Theorem C.2].

On the other hand:
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e (iii) is a partial refinement of [CFK, Theorem C.6 (2)], which says that

L(m;s,7) € L(m;s,m71)L(m; 8, 72)Clqg%, ¢°].

e (vi) is a partial refinement of [CFK, Proposition C.10], which says that
L(s,mn® 1) € L(m;s,7)Clg"*%, ¢°].

The proofs of (iii) and (vi) (essentially, Proposition 2.7, Proposition 2.10, and Proposition 2.11) depend on the
facts in §1.3. Only if k = 2, then Ny, , (in §1.3) coincides with the unipotent radical of some upper triangular
parabolic subgroup of GL,, C GLs,, so that, by partial integration, we can obtain other representations of
our zeta integral using intermediate models. Our method does not seem to be (immediately) applicable to
the general case in [CFK] if k > 2.

Remark 2.3. (i) By a simple computation, one can see that the 1-dependence of ~(m; s, 7,1) is given by

(s, 7,0(a) = Xa(a)x (@)al" >~ Dy (s, 7, 9)
for any a € F'*.
(ii) We put
e(m; s, 7,9) == y(m; s, 7, 0) L(m; 8, 7)/L(mY;1 — 5, 7).
Then, we have e(m; s, 7,¢),e(7¥;1 —s,7V,9) € Clg~*, ¢°] by Theorem 2.1(ii), (iv) and
by the above (i) and using Theorem 2.1(iv) twice. In particular, we can write e(m; s, 7,v) = cq'® for
some c € C and [ € Z.

We prove Theorem 2.1 in several parts: The proof of (ii) is given in §2.3 by reduction to the generic case.
(ii) for generic representations is proved in §2.2 (Corollary 2.8). The proofs of (iii) and (v) are given in §2.3
as byproducts of the proof of (ii). The proof of (iv) is a bit technical, so we postpone it to the next section.
(vi) is proved using the entire §2.4.

Finally, (i) is proved here. To prove this, we need the following two lemmas.

Lemma 2.4. (i) For any Wy, € Wébh(ﬂn), there is an open compact subset C' of M, (F) such that
supp®w,, C C.
(i) If r € R is sufficiently large, then @y, | - | is L?-function for any Wg), € Wéph(ﬂn).
Proof. (i) and (ii) immediately follow from [LM20, Lemma 3.2] and [LM20, Proposition 4.2], respectively. [

Lemma 2.5. Let G be an algebraic group over F' and K an open compact subgroup of G. Let F be a right
K-invariant function on G. If F is an L'-function, then F is an L2-function.

Proof. We have the lemma as follows:

2
/G Flg)Pdg = /G @) F(ahdodh < [ 1F@Fasldsas = ( /G |f<g>|dg) <.

GxXG

proof of Theorem 2.1 (i). By Lemma 2.4 (i), we have

Dy, (9)f(9) det g]* % = @y, ()] det gI** x 1enar, (9)f(9)| det g|*

for any Wgy, f, and g € GL,, where C is some open compact subset of M, (F) and s — 1/2 = s1 + $a.
By Lemma 2.4 (ii), ®wy, |- |** is an L>-function for any Wgy, if Re(s;) is sufficiently large. On the other
hand, lengr, f| - %2 is an L2-function for any f by Lemma 2.5 and the convergence of the zeta integral
of Godement and Jacquet [GJ72, Theorem 3.3] if Re(sq) is sufficiently large. Thus the integral defining
Z(Wsn, s, f) converges absolutely for any Wg), and f if Re(s) is sufficiently large. O
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2.2 The generic case

In this subsection, we assume 7 € Irrge, GL,, (we do not need to assume that 7 is approximately tempered
here). We let WY (7') = Wy (') for any 7/ € Irrgen.
For any open compact subgroup K of GL,, and h € GL,, define Lj, x € W¥(7)" by

(W, L i) = /K W (hk)dk

for W € W¥(r). We can obtain W¥(7)" = (Lj, k) easily.
For any Wgy, € Wé/}h () and W € WY (1), we consider the following zeta integral

Z(Wep 5, W) = / By, (9)W (9)] det g~ Hdg.
GL,

Proposition 2.6. (i) If Re(s) is sufficiently large, then the integral defining Z(Wgy, s, W) converges ab-
solutely for any Wgy, € Wé/’h (mn) and W € W¥(7).

(ii) For any matrix coefficient f of 7 and Wgy € Wébh(wn), there are Wi, € Wébh(wn) and W' € W¥(r)
(i=1,...,1) such that

Z(Wsn,s, f) = Y Z(Wiy,, s, W)

1<i<l

if Re(s) is sufficiently large.
(iii) For any W € W¥(7) and Wsy, € Wgh(ﬂn), there is a matrix coefficient f of 7 such that
Z(Wsn, 8, W) = Z(Wgn, s, f)
if Re(s) is sufficiently large.

Proof. (i) For any sufficiently large r, 1onar, W/| - |" is an L!-function of GL,, for any open compact subset
C of M,(F) and W € W¥(7) (see [JPSST9, (2.3.6), (3.1)]). Thus it immediately holds by Lemma 2.4, 2.5.

(ii) We can assume that f(g) = (W(-g), Ln k) for some W € W¥(7) and open compact subgroup K of
GL,, such that @y, is bi-K-invariant. Then, by (i), we have

Z(Wen, s, f) :/ Dy, (h~Lgh)W (gh)| det g|*~ 2 dg = Z(x(det h) " Wey (-diag(h, h)*“"), s, W (-h))
GL,

if Re(s) is sufficiently large.
(iii) Take sufficiently small K and put f(g) = (W (-g), L1 k). O

Proposition 2.7. Let Wgy, € Wéph(wn) and W € WY (7). Then, L(s,7X7)"*Z(Wsp, s, W) defines an entire
function of s and Z(Wgy, s, W) € L(s,7 K 7)Clg™*, ¢°].

Proof. First we remark that for any W’ € W¥(7') (7 € IrrgenGLyy, ), there is a constant C’ > 0 such that
W' (udiag(as,. .. am)k) #0 = |a1| < C'lag| < -+ < O™ ay|

for any u € Uymy,a; € F'* and k € GL,,,(O) in general ([LM20, Lemma 3.2]).

If n = 1, then Z(Wsp,s, W) coincides with a Rankin-Selberg zeta integral for # X 7. In this case,
Z(Wsn, s, W) € L(s,m X 7)C[q %, ¢°] is trivial.

Assume that n > 2. Then, for any u € U(yny, h € GLy,, and b’ € GL3,, we have

Wen ((g 1(;) v h’) W (uh) = W <(g 10n> v xnh’> W (h),
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where we put

Thus we have
Z(Wsn,s, W) = / Wze <33n <gn 1 ) ) W (gn)| det gn|s_%d§n
U(ln)\GLn n

if Re(s) is sufficiently large, where Wy, := T, 1Wgy, € W%z’e(ﬂn). We can write

Z(Wsn, s, W) :/ Wze (xn (d1ag(gg7a37...,an)k 1 > >
U2y \GLa X (F )72 X GL, (O) n

W (diag(gz, az, - . ., an)k)| det go|* " 272 |ag|* "5 2 |a, |t 2 dgyd¥as . . . d¥ andk

/ WZe (‘Tn (diag((al az))k27a’37"'7a’n)k >wn>
(FX)"xGL3 (0)xGLy, (O) L,

W (diag((“ o, )k, @z, - - -, an)k)|ar[* "7 . jan ST 2 dgyd ¥ as . . . d¥ andkadk.

Let b; € F* (i =1,...,n) such that || < C|ba| < -+ < C"71|b,|, where C is the constant in the above
remark for W. Consider when the inequality

. ’ Wn
S T

1
1 by
1 1 1
1 by ) w,
e 11 1 (k )
1 bn
11 1
1
#0
holds for some k' € GL,,(O). If |b,| is sufficiently large, then
F(bry... bn, k)
1 b
1 1
11 b2 lop—2 i Wi
:er e 1 1 b;l ( 1 >
1 ' 1
11 b,
13 1
1 b1
1 1
11 by / .
7WZe 1 (k 1 > - O
1
11 bn
13 1
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by Remark 1.5 and the above remark. If |b,| is sufficiently small, then, since

1 1 1

F(b1,...,bn, k)
b1 1
b 1 by
1 1
7()3 , k/ Wn
:WZe .. w I 1
1 1 bln
15
by
_b2
1
—bs ’ Wn
1
_bn
12

also by Remark 1.5 and the above remark. Then, by repeating a similar argument, we have that there
is a constant ¢ > 0 such that if F(by,..., by, k)W (diag(by,...,bn)k") # 0 for some k' € GL,(O), then
|b2|, |l)3|i17 ‘b4‘i1, ceey |bn|i1 <c.

Then, integrating in a; (¢ > 2) and k, and dividing the integral interval with respect to as, we have

. g—n=2 —
Z(Wsn, s, W) = ZF/ Wri(g2) Wi (diag(g2, 1n—2))| det g2 "2 15(0,0) ((0 1)g2)dg,
U(12)\GL2

+ZF’/ W, (diag(a, 1)) W/ (diag(a, 1,—1))|al*~ 2 d*a

for some Fy, F} € Clg=*, q%), Wiy, W2y € Wa, (m), W, W/ € W¥(r) i =1,...,01,j = 1,...,15) and & € F*

such that |z| < ¢ by Remark 1.5. Since the set {®w, | W, € W¥(7)} has already been calculated explicitly
(see [Bum97, Theorem 4.7.2, 4.7.3]), it is easy to check that the latter sum is an element of L(s, 7®7)C[g~*, ¢°].
If n = 2, then the integrals in the former sum are Rankin-Selberg zeta integrals for 7 X 7. If n > 2, then for
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each i, we have

. s—n=2 —
W, (g2)Wi (diag(g2, 1n—2))| det g2|°~ 2 1,(0,0)((01)g2)dg,
U, 2, \GL
12) 2
-/ o, Tl W (g 2| et g,
U12)\GL2

—/ / / W, (diag(a, b)ko) W/ (diag(diag(a, b)ks, 1,,_2))|al*~ % |b]*~ %2 ~2dkd*bd* a.
Fx J|z|<|b| JGL2(0O)

The former integral is a Rankin-Selberg zeta integral for 7 X 7. On the other hand, if |b| is sufficiently large,
then W' (diag(diag(a,b)ks,1,—2) = 0 for any a and ks. Therefore, integrating in b and ks, we can see that
the latter integral is an element of L(s, 7 X 7)C[g~*, ¢°].

Consequently, we have Z(Wgy, s, W) € L(s,7 X 7)C[qg~*, ¢°]. O

We can see that I(m,7)(= (Z(Wsh, s, f) | Wen € Wg’h(wn), f + a matrix coefficient of 7)¢) is a nonzero
fractional ideal of Cl[g™*, ¢®], in the same way as for the space generated by the zeta integrals of Godement
and Jacquet for any admissible representation of any general linear group (see the discussion below Theorem
3.3 of [GJ72]). Then, by Proposition 2.6 and 2.7, we have the following:

Corollary 2.8. We have
I(?T,T) = <Z(WSh,S,W) | Wsnh € WSh(ﬂ'n), W e Ww(T»(c
C L(s,7®7)Clg"*, ¢°]

In particular, Theorem 2.1 (ii) holds for irreducible generic 7 without assuming that 7 is approximately
tempered.

For the proof of Theorem 2.1 (vi), we end this subsection with the following lemma.
Lemma 2.9. If n = 1,2 and 7 is irreducible and supercuspidal, then we have L(r;s,7) = L(s, 7 X 7).

Proof. If n =1, then it is trivial.
Assume n = 2. Then, for any Wg, € Wgh(ﬂg) and W € WY (7), similar to Proposition 2.6, we have

Z(WSh, S, W) = /

Uy2)\GL2

. wo
+/ / / Wae (1‘2 (dlag(a’b)k ) )W(diag(a7b)k2)|a3_1|b3_3dkdxbdxa.
Fx J]z|<|b] JGL2(0O) 1o

for some x € F*. Then, since 7 is supercuspidal, the latter integral is an element of C[g*, ¢®]. Thus, clearly
the functions Z(Wsp, s, W) generate L(s,m X 7)Clg~*, ¢°]. O

WZe ((dlag(17 _1)92 12) U)Q) W(92)| det 92‘5*% ]_$(07O)(( 01 )92)@2

2.3 More results in the case that 7 is approximately tempered

For the rest of this section, we assume that 7 is approximately tempered. Then, for any W &€ ngh n2)(7rn),

1 1
W ltiag(@Lany GLang) € Wen® (7| - 1372 @ Wt ()| - |73 1)

holds, where n; 4+ ny = n (see Remark 1.5). We fix 7; € Alg’GL,, (i =1,2) and put 7o = 7 X To.
Similar to Lp g in the previous subsection, for any open compact subgroup K of GL,, h € GL,, and
vy €1 (i=1,2), we define Ly, g v,0, € ) =1 X 75 by

(02 Loy y) = / (w(hk), oY ® oY) dk
K

for any v € 71 x 75. Then, it is easy to verify that 7o' = (Ln k vy vy )c-
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Proposition 2.10. Let Wy, € Wg’h(wn) and f a matrix coefficient of 7.
(i) There are Wéhl € Wé/}h(ﬂ'nj) and matrix coefficients ff of; (i=1,...,1, 7 =1,2) such that

ZWen,s, ) = Y Z(Wen o8 [Z(Wiio s, f7)

1<i<l
if Re(s) is sufficiently large.
(ii) For the above Wghz and f7, we have
Z(V/V\S/ha 1-— S, f\/) = Z Z(Wslh;z? 1- S, (fil)v)Z(WSQhﬂ'? 1- S, (ff)\/)
1<i<l

if Re(s) is sufficiently small.

Proof. (i) We can assume that f(g) = (v(-g), Ln,k vy vy ), where K is an open compact subgroup of GL,, such
that @y, is bi-K-invariant and v € 7. Since longr, (v(+),vY ® vy)| - |" is an L!'-function of GL,, for any
compact subset C' of M,,(F') and sufficiently large r by Iwasawa decomposition and [GJ72, Theorem 3.3], if
Re(s) is sufficiently large, then we have

Z(WShv 5, f) - / Py, (g) <U(hkg), vi/ ® U§>| detg|si%dgdk
GL, xK

- /G e (07 gh) wlgh) v © o) det gl Hdg

by Lemma 2.4, 2.5. By Iwasawa decomposition GL,, = Uy, np) M(n, ny) GLn (O), the above integral can be
written as

(91 L )w'”l ) (kh )wn) a1
w "1 . w 5 9 )
/GLnleanxGLn(O) <( ("1, )% h Py (% 02)

(71(91) © T2(g2)u(kh), vy @ vy)| det g|°~ *dgidgadh x xx(det h) ",
where "
1., X "
W= / Wen 1o, dx ew?, . ()
M () 1,
(Corollary 1.4). Since the integration over GL,(O) becomes a finite sum, we have (i) by (1).
(ii) We have

ni,ng

Z(Wen,1—s,f) = / © i (9)(v(hkg™),vY @ vy)|det g|~**2 dgdk
GL,xK

_ » » o
_/GL,,LCI)VVSJh(h gh) (g™ h), v ® vY)|det g| > dg.

if Re(s) is sufficiently small. By Iwasawa decomposition GL,, = GL,(O)U(n, ny)M(n, n,), the above integral
can be written as

[ (T e [ (G () I LR

X (det g1) " X (det g2) " mi (g7 1) © Ta(g5 Du(kT h), vY @ )| det gy det ga| 2 dgydgadk x xx(det h) !

(" 1)y, ")) <I~ch >wn
— W ni ny ) 5 g1 )
/GLn1><GLn2><GLn(O) << ((7 1n2)(1 e ))ne h P<"1'"2)(( !

X (det gl)_lxﬂ(det 92)_1<7'1 (gl_l) ® Tg(gz_l)’()(k'h), vy ®@ vy )| det gy det 92|_S+%dg1d92dk' X X (det h)_l.

Nl=

~—

)~

no

Comparing the above integral and the integral in the proof of (i), we have (ii). O
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Proposition 2.11. Let Wgh € Wg’h(wnj) and f7 a matrix coefficient of 7; (j = 1,2). Then, there are
Wsan € Wéph(wn) and a matrix coefficient f of 79 such that

Z(Wsl.h, S, fI)Z(WSth S, f2) - Z(WSIU S, f)
if Re(s) is sufficiently large.
Proof. Since m,, is irreducible for any m, we can take Wg), € Wg’h(ﬁn) such that

W,
L, X R )
/ ( )WSh In, | dX =Wanl-[F @Wg|- 7>
Mn T F
1m0 1n diag(GLa2n, ,GL2n,)

by Corollary 1.4 and (1). Write f* = (7;(-)vi,v)’) (v; € 7;,v) € 7)) and define v € 7 by
v(g) = / 1k (pg)dp,,, ., (diag(ma, m2)) T2 7 (my oy @ Ta(my ! vad,p,
P(7L1,n2)

[ *
where p = < -
is the right Haar measure of P, n,). Then, for f = (70(-)v, L k vy vy), We have

, K is an open compact subgroup of GL,, such that ®yy, is bi-K-invariant, and d,p

ZWanesid) = [ @wsy(0)t0(o)0) © o)l detgl" g
Ly,

— . _1 — — — s—1
—/G Py, (07 9) 1K (9)OP, ., (diag(ma, m)) ™2 f1 (my )2 (my )| det p~ " g|*~ = dypdg
LnXP(nl,nQ)

= / Py (1) Pz (mz) f1(m1) f?(my)| det my det my \3_% dmydms
GLypy XGLpy
= Z<Wslh’ S5 fl)Z(WSQha S, fz)
if Re(s) is sufficiently large. O
We give the proofs of Theorem 2.1 (ii), (iii), and (v):

proof of Theorem 2.1 (i), (i), (v). (ii) Embedding 7 to the parabolic induction of some irreducible generic
representation and using Proposition 2.10 (i) repeatedly, we can assume that 7 is generic and irreducible.
However, we have already proved (ii) for generic representations (Corollary 2.8).

(iii) It follows from Proposition 2.10 (i) and Proposition 2.11.

(v) It follows from Proposition 2.10 (ii). O

2.4 The proof of Theorem 2.1 (vi)

We have already shown Theorem 2.1 (i), (ii), (iii), and (v) ((iv) will be shown in the next section). At the
end of this section, we prove (vi). We suppose that Theorem 2.1 (iv) holds here.

proof of Theorem 2.1 (vi). We can assume that 7 = St(p, m) for some p € Irrge and m by Theorem 2.1 (iii).
If L(s,7®7) =1, then L(m,s,7) = L(s,7t®7) = 1 by Corollary 2.8. Thus we only have to consider the case
where

L. pelirGLy, m=p' x p~ Y|P or St(p™t - |1,2) (' € IrGLy,t € Cs.t. p'p|- |7t # |- |F1) or

2. p € IrtsGLy, m = pY| - |* (¢t € C).
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By Corollary 2.8, we have
L(m;s,7) = Q(q¢*,¢°)L(s,m X 7)
and R
L(rVi1—=5,77) =Q¢™°,¢")L(1 — s,7" R 7")
for some Q(X,Y),Q(X,Y) € C[X,Y]. Dividing the second equation by the first equation, we have that
y(m; s, 7) coincides with Q(¢=%,¢%)Q(¢%,¢*)"'v(s,7 X 7) up to a unit. By Theorem 2.1 (v), we have

~y(m;8,7) = H’V(TF;S +m/2+1/2—1i,p).
i=1
By Lemma 2.9, the equation L(7; s, p) = L(s, ™ X p) holds. Thus ~(7; s, 7) coincides with ~(s,7 X 7) up to a
unit. Consequently, we have ~
Qla*,q") = ¢¢"Qa*,¢°)

for some ¢ € F* and | € Z. Namely, Q(¢~*,¢°) € C[g%,¢°] is a common factor of L(s,7 X 7)~! and
L —s, 7V R7V)~L

Assume that 7 and 7 satisfy the conditions in 2. Then, we have

m—1

L(s,mtR7)~ ' =1—¢q 71"

and

L(l— S,Wv %4 Tv)fl —1_ q71+s+t7 mel 7q71+s+t7 mot (1— q757t+m2+1)

by Theorem of [JPSS83, §(8.2)]. Thus L(s,7 X 7)~! and L(1 — s,7¥ K 7V)~1 are relatively prime, and we
have L(m;s,7) = L(s, 7 X 7).

Assume that 7 and 7 satisfy the conditions in 1. We also assume n > 1 since we have already shown that
L(m;s,7) = L(s,7 X 1) for n = 1 (Lemma 2.9). Then, we have

(I—g " 5)1—g 72t ifr=St(p~|-[",2);
_ gt/ —n=1 _s—t—n=1 . _ ’ _ g
L(s,mR7)~ = (1 =g " ) (L —q ") ifw=p [ |[" xp7 (][ # ] EY;

(1—gst=") otherwise

and
(1 — g 37t (1 — g=s7t+%) if 7= St(p~t|%,2);
_ e gl mH1 e 4y mAl . _ ’ _ o
LA =sn"R7) = (1—qg " )1 —g ) ifm=p " xp7 (7 AL EY;

(1— g st otherwise

up to a unit. Therefore, we have L(m;s,7) = L(s,7 X 7) unless m = p~!| - [*" x p~1| - |* for some t € C.

However, the case 7 = p~!| - |**™ x p~!| - |* does not occur since 7 is approximately tempered. O
Remark 2.12. Using [CFK, Proposition C.10], Theorem 2.1 (vi) follows from Theorem 2.1 (iii) and Corollary
2.8 immediately.

3 The functional equation

In this section, we prove the functional equation (Theorem 2.1 (iv)). As mentioned in Remark 2.2, it has

already been proven. However, for the convenience of the readers, we prove it without the results in [CFK].
The key to the proof is the following proposition.
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Proposition 3.1. Let 7 € IrrgGL,, and 7’ € IrrGL,,. Then, we have
dim«; HOH]GL” xGL,, (7Tn7 T & ’/"/) S 1

if 7/ = 7Vx, and
dim¢ Homgy,, xar, (7, 7 X 7/) =0

otherwise. (Here, we think of GL,, x GL,, as the diagonal subgroup diag(GL,,, GL,) of GLs,.)

We give the proof in §3.4.
By this proposition, we obtain Theorem 2.1 (iv) as follows:

proof of Theorem 2.1 (iv). By Proposition 2.10 (ii), we can assume 7 € IrrscGL,,.
For any s € C, the map

(Wsn,v,0") = Z(Wsn, s, (T(-)v,v"))/L(7; 5,7), Wsp € Wg)h(ﬂ'n), ver, v et
is well-defined by Corollary 2.8 and its linear extension on Wg’h(ﬁn) ® 7 ® 7V defines a nonzero element of
Homgiag(GL,,,GL, ywn (Tn @ (7] - |Sf% XXt |7s+%)7(c) ~ Homgiag(GL,,,GL,)wn (Tn, 77| - |7S+% X 7Xr] - |87%)
~ Homgr, xgL, (0, 77| - |75+% X 7xr] - |S*%).
On the other hand, it is easy to check that the linear extension of
(Wsn, v,0Y) Z(VrV\S/h7 1—s,{v,7()"))/L(xV;1—s,77), Wy € Wg)h(ﬂ'n), ver, v ety

on Wgh(wn) ® 7 ® 7" defines a nonzero element of the same space. By Proposition 3.1, these two maps
coincide up to a constant. Thus, there is a function € on C such that

Z(W//svh, 1—s, (v, 7V ()oY))/L(nY;1 —5,77) = €(5) Z(Wan, s, (T(-)v,v")) /L(7; 8, T)
for any Wgy, € Wg’h(wn), verT, v¥ erY. By Theorem 2.1(ii), we obtain
Y(s) = L(m¥;1 = s,7")e(s)/L(m; 5, 7) € Clg™*)
as required. O

We introduce some additional notations.
Let k,1 be positive integers such that k > I. Then, we often identify GLj_; with diag(GLx_;,1;) C GLg.
Define

GLj_
Dy = < ket *> = GLr—1Ug—1,1) C GLg

L
and
GLk,l * * 1
DF x D! = GLi_p % :Df( Rt I ) c D¥,
L m

for m € Z~q such that I > m. Moreover, for representations y and o of GLi_; and D! | respectively, we

denote N

D
IndD%"xDinu X o
by p % o, where u X o is regarded as a representation of le x D! by
U(k—l,l)\le X Din ~ GL]@,[ X Dﬁn

We note that (¢ x 0)|gL,_,, = 4 *0laL,_,,-
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Let ¢ be a positive integer such that i < n. We define

(A

and a character Wy, of N; by

X € Ugiy, Y € My(F) : upper triangular} c D%

o (7 1)) oo

21

I =indy Uy

and put

3.1 The Kirillov-Shalika model

We start with the following lemma:

Lemma 3.2. We regard 1 o tr as a character of Uy, ) by Up,n) =~ My, (F).

. . D" .. D2 . . ,Dn
(i) Any nonzero subrepresentation of IndU<” ’ )1/) o tr contains mdU(’} )¢ o tr. In particular, 1ndU(” "

1 o tr.

1 otr

. . . . . D2
is the unique irreducible subrepresentation of IndU(” )
n,n

2n
(ii) We have I,, ~ indg(’;yn)z/; o tr.

(i) and (ii) are special cases of more general statements [LM20, Lemma 3.12] and [LM20, Lemma 3.14],
respectively.

2n
Let x be a character of F*. Then, we can extend the action of D?" on Indg(i n)’(/} otr to P, ) by
(diag(1n, 9))f := x(det g) f (diag(g~", 1n)-)

for any g € GL,. We denote the extended representation by 1:35 and the P, ,)-submodule indg(’fmw o tr of
IX by IX.
Let Wgﬁ(ﬂn) be the ‘ordinal’ Shalika model of m, i.e., a (unique) subspace of Ind(U}(I:f:)l/J o tr which

realizes m,. We note that the isomorphism from Wébh(wn) to ngl(ﬁn) is given by Wg, — Weap(wy,-) for

Wsn € Wgh(ﬂn).
We define the Kirillov-Shalika model Ky (m,) of 7, by

Ky (mn) = {Weplpzn | Wy € Wi (1)}

Then, the kernel of Wé‘ﬁ (M) = Ky(my) is a P, ny-module. Therefore, as a space with P, ,y-action induced
by mn|p, .y, Ky(mn) is a subrepresentation of Ix,

If 7 is approximately tempered, then Wé’ﬁ(ﬂn) — Ky (my) is bijective ([LM20, Corollary 4.4]). Thus, we
have the following proposition.

Proposition 3.3. Assume 7 is approximately tempered. Then, 7, has a unique irreducible D?"-submodule.

Moreover, this submodule is a P, ,)-submodule and is isomorphic to IX™ as a P, ,)-representation.

3.2 Special cases
We consider Proposition 3.1 for some special cases.

Lemma 3.4. Assume 7 is not supercuspidal. Then, Proposition 3.1 holds.
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Proof. Since 7 is not supercuspidal, 7, is a quotient of the degenerate principal series 1gr, x1 X laL, X2 for
some X1, x2 € IrrGL;. Then we have

dim(c HomGLnxGLn (7Tn, T 7'/) < dimc HomGLnxGLn (lGLn,Xl X ]_GLnXQ, T T/).

Similar to [HKS96, Theorem 4.3], the equality

. 1 if 7" =7Vxn;
dim¢ Homgr, xar, (oL, X1 X 1oL, X2, 7 X 7') = R
0 otherwise

is easy to verify by the filtration of 1gr,,x1 X laL, X2 in [AK18, Lemma 2.5]. O
Lemma 3.5. Assume 7 is supercuspidal. Then, Proposition 3.1 holds if n = 1, 2.

Proof. 1If n = 1, then it follows from {®y | W € W¥ (1)} = S(F>).
Assume n = 2. Then
dim¢ Homgr, xgL, (72, 7 X 7") = 0

if 7/ # 7Vx, and
dim(c HOIIIGLQX(;LZ(’/TQ,T X T\/Xﬂ-) S 1

unless 7 = 7| - |2 by [LM20, Proposition 7.1]. Since Homar, xqar, (7, 7 ¥ 7') ~ Homgr, xar, (7n, 7 K 7) in
general, we have dim¢ Homgr, gL, (2, 7 ¥ 7Vx,) < 1 in general. O

3.3 The filtration

In this subsection, we give a good filtration of m,. Assume that 7 is supercuspidal here.
The following fact is essential:

Proposition 3.6. For any 7’ € Irr,.GL2, we have
Sp(’,n)|p2e ~ Sp(n’,n — 1)| - |V/? x I

This is a special case of a more general result [Zel80, Theorem 3.5].
Using this, we obtain the following:

Lemma 3.7. Let i, k be positive integers such that k < 2i < 2n and 0 = (0, V) be a representation of D,%i.
Then, the following D?"-module

E:Wn,i|~|% X o
has a D,%ﬁ_l—submodule J such that

i1 2§42

Blpgy, /T2 Anmil - [F 2 olpgs o = mia] [ xindg" o,
where
1 * * ok
G- GL2i—p *
1
1g
and o = (o,V) is defined by
1 x a
b b ¢
A" ] ()
1y
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Proof. Put H = D3" x D?'. Since

H\Dl%n/Dk-i-l P(2n 24,2i— k)\GL2n k/D n k

we have
D" = HD{t | W HwD?
lon_2i—1
where w = ] L . We note that H N D3, = D3I x D% | and
%i—k
1y
GL2p—2i—1 * * %
GLo;— *
—1 21—k
HwNDj, = 1
1k

Put J = {f € ¥ |suppf C HwD}?,}. Then, J is D" ;-module and we have

i D3
E‘Diil/‘] = 7T’rL—i| : ‘2 X 0|Dii1a J >~ lndwalrllqmezn U/a

where 7,_;| - ["/? = (m_i| - [/2, V') and ¢’ = (¢!, V' @ V) is defined by
a * b x

A0 ) 9)en( 1)

1y

5 I, by Proposition 3.6, we have

Then, since 7,_;| - |7;/2|Dfnf2i—1 ~ i1

“'HwnDPY,

o’ deG, Tp—i—1] - |7®0

where G’ = D§?+2diag(12n_gi_2, G) and 7,_;_1] - | "o is regarded as a representation of G’ by

Uon—2i—2,2i+2)\G" ~ GLap_2i—2 X G.

Thus we have )
2042
k+1

i+l .
X ind o.

J >~ Tl

We obtain the following;:
Proposition 3.8. There is a sequence
m=J DJy--DJ),
of subspaces of m,, such that
e J! is isomorphic to J; = J;(m,n) := m,_| - |/? x I; as D?"-representation (i = 1,...,n) and
o Jlpzp, [Thy = Ky = Ki(m,n) o= mi| - |2 3 Ll (i = 1,..,n = 1),

Proof. We have 7, pan ™ J1 by proposition 3.6. Then, using Lemma 3.7 repeatedly, we have this proposition
2i+42
i+1

D
immediately (note that if ¢ = I;, we have ind;"*" o ~ I;;1 under the notations in Lemma 3.7). O

28



3.4 The proof of Proposition 3.1
Finally, we give the proof of Proposition 3.1.

proof of Proposition 3.1. By Lemma 3.4 and 3.5, we can assume that 7 is supercuspidal and n > 2.
By Proposition 3.3 and 3.8, the restriction map

HomGLnxGLn (7Tn, T X 7'/) — HOH’IGL”XGL" (J7/w T X ’1’/) ~ HomGLnxGLn (I%",T X 7'/)

is well-defined. We show that this map is injective. Suppose Homgr, xGL, (7n/J}, 7 X 7') # 0 for the sake of
contradiction. Then, we have Homgy,, (7,/J},,7) # 0. By Proposition 3.8, we have Homgy,, (K;,7) # 0 for
some i € {1,...,n — 1}. Finally, using Proposition 3.6 and Lemma 3.7 repeatedly, we have

Homgr, (Tn—j| - |72 x 0,7) = Homer,, (n—;| - [//% x 0|y, 7) # 0

for some j € Z~q such that j < n < 2j and representation o of D?/. This contradicts 7 € Irrge and n/2 > 1.
Therefore, we have

dimg HomGLn xGLp, (I%(" , T X 7'/) > dimg HOHlGL” xGLy, (7Tn, T X T/).
On the other hand, the equality

Lif 7/ = 7Vxr;
dime Homgt,, xGL, (I%(waT X 7—/) = . X
0 otherwise

holds since IX~|GL, xGL, =~ indg]é’i:GL”Xﬂ (det), where AGL,, is the diagonal embedding of GL,, to GL,, x GL,,.
Thus we get the required statement. O

4 Some remarks for general rank case

By Theorem 2.1 (ii), we have
Homgr, xGL, (Tn, 7 B 77 x7) # 0

for any 7 € IrrGL,, if 7 is approximately tempered. To conclude this paper, let us consider the branching
laws of the Speh representations with respect to general block diagonal subgroups.

Theorem 4.1. Assume 7 is approximately tempered. Then, we have

Homar, xGLy 4o (Tngt, TR T X0 X 1) # 0
for any 7 € IrrGL,,.

Proof. Let L be a nonzero element of Homgr, xar, (mn| - |2, 7 R 7Vxx| - |)). For f € mn| - |72 xm|- |52 =
Tn| - |2 % m| - | 7%, define Lf(g) = L ®id ~n(f(g)) for any g € GLy ;2. Then, L is a nonzero element of

m|-
_L n Vi
HomGLnXGLnJrzl(ﬂ-TJ ’ I 2 X ﬂ-l‘ ’ |2 T RT xR X 7Tl)
and the following diagram

7Tn|"7é X7Tl|'|% f’—>f(12n+2l) 7Tn|'|%®7rl|‘|7%

il L®idl
L =L
is commutative.
Since 7 is approximately tempered, ,,1; is a subrepresentation of m,|-|~2 x m|-| 2. Since |- |2 K| |~ %
is irreducible, 7, ; is mapped onto |- |é X |-|~% by substituting the unit. Then, by the above commutative
diagram, we have L is a nonzero element of Homgr,, xGL, .0 (Tnit, T R 7V X2 X 7). O

Tt n+21
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Let 7" € IrrGLy 9. According to [AK18, Proposition 2.3], 7/ and 7V, x m have the same cuspidal
support if 7, 7, and 7" are unramified and Homgr, xQL,. o (Tn4i, 7 & 7') # 0 (we note that if 7 and 7 are
unramified and unitary, then 7V, X m; is unramified and unitary). This fact is important for determining
the near equivalence classes of global Miyawaki lifts (see [Ito]). Furthermore, considering Proposition 3.1, it
is natural to expect the following conjecture:

Conjecture 4.2. Assume 7,7, and 7/ are unitary. Then, the following should hold:
(i) (uniqueness) Homgr, xGLy o (Tntt, TR T) # 0= 7" = 7¥x 5 X .

(ii) (multiplicity at most one) dimc Homgr,, xGL,, .5 (Tnti, 7 X 77) < 1.

n+21
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