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Abstract

In this paper, we consider the branching law of the Speh representation Sp(π, n+ l) of GL2n+2l with respect
to the block diagonal subgroup GLn × GLn+2l for any generic representation π of GL2 over any p-adic
field. We use the Shalika model of Sp(π, n) to construct certain zeta integrals, which were constructed by
Ginzburg and Kaplan independently, and study them. Finally, using these zeta integrals, we obtain a nonzero
GLn × GLn+2l-map from Sp(π, n + l) to τ ⊠ τ∨χπ × Sp(π, l) for any irreducible representation τ of GLn.
These results form part of the local theory of the Miyawaki lifting for unitary groups.
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0 Introduction

For a long time, the lifting problem has been one of the most important problems in the theory of automorphic
representations. With the advent of Arthur’s endoscopic classification, we can now understand half of this
problem, namely the existence of liftings, in many cases. However, we still do not know much about the
other half, namely the construction of liftings. If an automorphic representation is constructed explicitly, it
is possible to obtain additional data that is important for application in number theory, such as the data of
Fourier coefficients, which cannot be obtained by only considering it as an abstract representation. Thus,
the construction of liftings is still important.

One method to construct liftings is using global periods. In other words, it is a method to pullback an
automorphic form to the product of two groups and consider its inner product with another automorphic
form on the first factor. Of course, the product group and the automorphic representation to be pullbacked
need to be taken properly (roughly speaking, the product group needs to be ‘sufficiently large’ and the
automorphic representation needs to be ‘sufficiently small’). This type of construction is interesting because
its nonvanishing is often related to some special L-values (e.g. the theta lifting).

The Miyawaki lifting, which is the object of our interest, is one such construction. This is a construction
defined by using the pullbacks of Ikeda lifts to block diagonal subgroups as kernel functions, introduced by
Ikeda and modified and generalized by some researchers.

The purpose of this paper is to study the branching laws of Speh representations associated to generic
representations of GL2 over any p-adic field with respect to any block diagonal subgroup. It is essentially to
study the theory of the local Miyawaki lifting for split unitary groups over p-adic fields.

In the following subsections, we explain the above in more detail. Moreover, in the last subsection, we
will state the main results of this paper.

0.1 The Miyawaki lifting: The Siegel case

First, we recall the result of Ikeda [Ike06], the origin of the theory of the Miyawaki lifting.

0.1.1 Siegel modular forms

We introduce some notations for Siegel modular forms.
Let us denote the adele ring of Q by AQ. For any m ∈ Z≥0, we define Sp2m(R) by

Sp2m(R) =

{
g ∈ GL2m(R)

∣∣∣∣ g( −1m
1m

)
tg =

(
−1m

1m

)}
for any ring R and Siegel upper-half plane hm by

hm = {Z ∈ Mm(C) | Z = tZ, ImZ : positive definite}.
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For g =

(
A B
C D

)
∈ Sp2m(R) (A,B,C,D ∈ Mm(R)) and Z ∈ hm, we define a group action of Sp2m(R) on

hm by
gZ = (AZ +B)(CZ +D)−1

and put
j(g, Z) = det(CZ +D).

Let k be an integer and m ∈ Z>0. We consider a holomorphic function f on hm such that

f(gZ) = j(g, Z)kf(Z)

for any g ∈ Sp2m(Z) and Z ∈ hm. Then, since

f(Z +B) = detBkf(Z)

for any symmetric matrix B in Mm(Z), f = 0 if k is odd and f has the Fourier expansion

f(Z) =
∑
S

Af (S) exp(2π
√
−1tr(SZ))

if k is even, where S runs over all the half-integral symmetric matrices of size m. We note that Af (S) = 0 if
S is not positive semi-definite and m > 1 (Koecher’s principle). We call f a Siegel modular form of degree m
and weight k if m > 1. For m = 1, we call f a Siegel modular form of degree 1 and weight k if f is a modular
form of weight k, i.e. Af (S) = 0 if S < 0. We denote by Mk(Sp2m(Z)) the space of Siegel modular forms of
degree m and weight k. Moreover, we call f ∈ Mk(Sp2m(Z)) a Siegel cusp form if f lies in the kernel of the
Φ-operator, i.e., the function

Z 7→ lim
t→+∞

f(diag(Z,
√
−1t)

on hm−1 is zero. Note that f ∈ Mk(Sp2m(Z)) is a Siegel cusp form if and only if Af (S) = 0 unless S is
positive definite. We denote by Sk(Sp2m(Z)) the space of all Siegel cusp forms in Mk(Sp2m(Z)) (formally,
we define Mk(Sp0(Z)) = Sk(Sp0(Z)) = C).

For any f ∈Mk(Sp2m(Z)), we define an automorphic form ϕf on Sp2m(AQ) by

ϕf (γg∞k) = j(g∞,
√
−11m)−kf(g∞(

√
−11m))

for γ ∈ Sp2m(Q), g∞ ∈ Sp2m(R), and k ∈ K0 =
∏
p:prime

Sp2m(Zp) (recall the strong approximation theorem
Sp2m(AQ) = Sp2m(Q)(Sp2m(R) ×K0)). f is called a Hecke eigenform if ϕf is a Hecke eigenform. We note
that if f ∈ Sk(Sp2m(Z)), then ϕf is a cusp from.

For any Hecke eigenform f ∈ Sk(Sp2m(Z)), we denote by πf the cuspidal representation of Sp2m(AQ)
generated by ϕf and define the standard L-function L(s, f, st) of f by

L(s, f, st) =
∏

p:prime

L(s, (πf )p, st),

where L(s, (πf )p, st) is the local L-function of the p-th component (πf )p of πf associated to the standard
embedding

Ŝp2m = SO2m+1(C) ↪→ GL2m+1(C).

0.1.2 The Ikeda lifting

The Miyawaki lifting is defined by using the block diagonal restrictions of Ikeda lifts. Ikeda lifts are the Siegel
modular forms given by the following result of Ikeda.
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Theorem 0.1 ([Ike01, Theorem 3.2]). Let k,m be nonnegative integers such that k + m is even and f
a normalized Hecke eigenform of S2k(SL2(Z)). Then, there is an explicitly-constructed Hecke eigenform
F ∈ Sk+m(Sp4m(Z)), which we call the Ikeda lift of f to Sk+m(Sp4m(Z)), such that

L(s,F , st) = ζ(s)

2m∏
i=1

L(s+ k +m− i, f),

where L(s, f) is the Hecke L-function of f .

0.1.3 The Miyawaki lifting

We explain the 2006 work of Ikeda [Ike06].
Let k, n, and r be nonnegative integers such that k+n+r is even. Let f be a normalized Hecke eigenform

of S2k(SL2(Z)) and g ∈ Sk+n+r(Sp2r(Z)). We denote the Ikeda lift of f to Sk+n+r(Sp4n+4r(Z)) by F . Then,
the Miyawaki lift MF (g) of g with respect to F is defined by

MF (g)(Z) =

∫
Sp2r(Z)\hr

F(diag(Z,W ))gc(W )(det ImW )k+n−1dW

for any Z ∈ h2n+r, where g
c = g(−(·)) ∈ Sk+n+r(Sp2r(Z)).

For this MF (g), Ikeda proved the following:

Theorem 0.2 ([Ike06, Theorem 1.1]). We have MF (g) ∈ Sk+n+r(Sp4n+2r(Z)). Moreover, if g is a Hecke
eigenform and MF (g) 6= 0, then MF (g) is a Hecke eigenform whose standard L-function is equal to

L(s, g, st)

2n∏
i=1

L(s+ k + n+ r − i, f).

The reason why this lifting is called the ‘Miyawaki’ lifting is that Ikeda constructed it to approach the
following conjecture of Miyawaki in 1992:

Conjecture 0.3 ([Miy92]). Given normalized Hecke eigenforms f ∈ S2k−4(SL2(Z)) and g ∈ Sk(SL2(Z)),
there should be a Hecke eigenform Ff,g ∈ Sk(Sp6(Z)) whose standard L-function is equal to

L(s, g, st)L(s+ k − 2, f)L(s+ k − 3, f).

Indeed, Theorem 0.1 reduces the above conjecture to the nonvanishing of Miyawaki lifts. However, we do
not know the nonvanishing of them in general.

0.2 The Miyawaki lifting: The hermitian case

In 2018, the hermitian analogue of Theorem 0.2 was shown by Atobe and Kojima [AK18]. In the same year,
Kim and Yamauchi defined the analogue of the Miyawaki lifting for exceptional groups and obtained the
similar result [KY18]. Here, we recall the former result. It is completely parallel to §0.1.

0.2.1 Hermitian modular forms

We introduce some notations for hermitian modular forms.
Let K = Q(

√
−D) be an imaginary quadratic field with discriminant −D and Galois conjugation c. We

denote the Dirichlet character which corresponds to K/Q by χK/Q and the adele ring of K by AK .
For any m ∈ Z≥0, we define U(m,m)(R) by

U(m,m)(R) =

{
g ∈ GL2m(R⊗Q K)

∣∣∣∣ g( −1m
1m

)
tgc =

(
−1m

1m

)}
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for any Q-algebra R and hermitian upper-half plane Hm by

Hm = {Z ∈ Mm(C) |
√
−1

−1
(Z − tZ) : positive definite}.

For g =

(
A B
C D

)
∈ U(m,m)(R) and Z ∈ Hm, we define a group action of U(m,m)(R) on Hm by

gZ = (AZ +B)(CZ +D)−1

and put
j(g, Z) = det(CZ +D),

which is similar to the Siegel case.
For simplicity, we assume that the class number of K is equal to one. Put

Γm = U(m,m)(Q) ∩GL2m(OK),

where OK is the ring of integers of K.
Let k be an integer, m ∈ Z>0, and σ a character of Γm. We consider a holomorphic function f on Hm

such that
f(gZ) = σ(g)j(g, Z)kf(Z)

for any g ∈ Γm, Z ∈ Hm. Then, similar to the Siegel case, f = 0 if k is odd and f has the Fourier expansion

f(Z) =
∑
H

Af (H) exp(2π
√
−1tr(HZ))

if k is even, where H runs over all the half-integral hermitian matrices in Mm(K). We note that Af (H) = 0
if H is not positive semi-definite and m > 1. We call f a hermitian modular form of degree m and weight k
with character σ if m > 1. For m = 1, we call f a hermitian modular form of degree 1 and weight k with
character σ if Af (H) = 0 for any H < 0. We denote by Mk(Γ

m, σ) the space of hermitian modular forms
of degree m and weight k with character σ. Moreover, we call f ∈ Mk(Γ

m, σ) a hermitian cusp form if the
function

Z 7→ lim
t→+∞

f(diag(Z,
√
−1t)

on Hm−1 is zero. We denote by Sk(Γ
m, σ) the space of all hermitian cusp forms in Mk(Γ

m, σ) (formally, we
put Mk(Γ

0, σ) = Sk(Γ
0, σ) = C).

Assume that k is even and σ = det−k/2. Then, for any f ∈Mk(Γ
m,det−k/2), we can define an automorphic

form ϕf on U(m,m)(AQ) by

ϕf (γg∞k) = j(g∞,
√
−11m)−kf(g∞(

√
−11m)) det(g∞)k/2

for γ ∈ U(m,m)(Q), g∞ ∈ U(m,m)(R), and k ∈ K0 =
∏
p:prime

U(m,m)(Qp)∩GL2m(OKp
), where OKp

is the
ring of integers of Qp ⊗Q K (if p splits in K, define OKp

= Zp × Zp formally). Since

U(m,m)(AQ) = U(m,m)(Q)(U(m,m)(R)×K0)

(note that the cardinality of U(m,m)(Q)\U(m,m)(AQ)/(U(m,m)(R)×K0) is equal to the class number of
K in general), this is well-defined. f is called a Hecke eigenform if ϕf is a Hecke eigenform. We note that if

f ∈ Sk(Γ
m,det−k/2) then ϕf is a cusp form.

For any Hecke eigenform f ∈ Sk(Γ
m,det−k/2), we denote by πf the cuspidal representation of U(m,m)(AQ)

generated by ϕf and we define the standard L-function L(s, f, st) by

L(s, f, st) =
∏
p<∞

L(s,BC(πf )p),

where p runs over all finite places of K and BC(πf )p is the p-th component of the standard base change
BC(πf ) of πf to GL2m(AK) (we recall the definition in §0.3.1) and L(s,BC(πf )p) is the local L-function of
BC(πf )p associated to the identity map of GL2m(C).
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0.2.2 The hermitian Ikeda lifting

To define the Miyawaki lifting, we need the Ikeda lifting. The following result of Ikeda is the hermitian
analogue of Theorem 0.1.

Theorem 0.4 ([Ike08, Theorem 5.1, 5.2]). Let k,m be nonnegative integers and put l = 2k + m (resp.
l = 2k +m− 1) if m is even (resp. odd). Let f be a normalized Hecke eigenform of S2k(SL2(Z)) (resp.
S2k+1(Γ0(D), χK/Q)) if m is even (resp. odd). Then, there is an explicitly-constructed Hecke eigenform

F ∈ Sl(Γ
m,det−l/2), which we call the (hermitian) Ikeda lift of f to Sl(Γ

m,det−l/2), such that

L(s,F , st) =
m∏
i=1

∏
p<∞

L(s+m/2 + 1/2− i, (πGL
f )Kp ),

where πGL
f is the cuspidal representation of GL2(AQ) corresponding to f and (πGL

f )K is the base change lift

of πGL
f to GL2(AK).

0.2.3 The hermitian Miyawaki lifting

We state the result of Atobe and Kojima [AK18].
Let k, n, and r be nonnegative integers and put l = 2k + n + 2r (resp. l = 2k + n + 2r − 1) if n is even

(resp. odd). Let f be a normalized Hecke eigenform of S2k(SL2(Z)) (resp. S2k+1(Γ0(D), χK/Q)) if n is even

(resp. odd) and g ∈ Sl(Γ
r,det−l/2). We denote the Ikeda lift of f to Sl(Γ

2n+r,det−l/2) by F . Then, the
(hermitian) Miyawaki lift MF (g) of g with respect to F is defined by

MF (g)(Z) =

∫
Γm\Hr

F(diag(Z,W ))g(W )(det ImW )l−2rdW

for any Z ∈ Hn+r.
For this MF (g), they proved the hermitian analogue of Theorem 0.2:

Theorem 0.5 ([AK18, Theorem 1.1], see also Theorem 5.3 in loc. cit.). We have MF (g) ∈ Sl(Γ
n+r,det−l/2).

Moreover, if g is a Hecke eigenform and MF (g) 6= 0, then MF (g) is a Hecke eigenform whose standard L-
function is equal to

L(s, g, st)

n∏
i=1

∏
p<∞

L(s+ n/2 + 1/2− i, (πGL
f )Kp ).

More precisely speaking, by the calculation of the infinite component, they obtained the following equation
of the complete L-function

L(s,BC(πMF (g))) = L(s,BC(πg))

n∏
i=1

L(s+ n/2 + 1/2− i, (πGL
f )K)

if k ≥ n/2.

0.3 The representation-theoretical Miyawaki lifting

We can generalize the theory of the Miyawaki lifting representation-theoretically. There are two styles,
namely,

• the generalization using representation-theoretical Ikeda lifts which is explicitly constructed (cf. [IY20,
Yam20]) and

• the generalization using Arthur’s endoscopic classification ([Art13] and others), which is independent
of the theory of the representation-theoretical Ikeda lifting.
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Atobe studied the representation-theoretical Miyawaki lifting for Symplectic/Metaplectic groups under the
former style [Ato20] using the representation-theoretical Ikeda lifting given by Ikeda and Yamana [IY20]. We
recall the representation-theoretical Miyawaki lifting for unitary groups under the latter style defined by the
author [Ito] (it is basically defined in the same way for other groups).

Let F be a number field and E a quadratic extension of F with the nontrivial element c of Gal(E/F ). We
denote the ring of adeles of F and E by AF and AE , respectively. For any nondegenerate hermitian spaces
V over E, we denote its isometry group by U(V ), which is an algebraic group over F .

0.3.1 The endoscopic classification

First, we review the necessary parts of Arthur’s endoscopic classification for unitary groups, which is com-
pleted by Mok in the quasi-split case [Mok15] and almost completed by Kaletha, Minguez, Shin, and White
in the general case [KMSW].

Consider the formal commutative sum:

ψ = ⊞li=1kiµi ⊠ [mi].

Here,

• ki, ni,mi are positive integers,

• µi is an irreducible unitary cuspidal representation of GLni
(AE) = GLni

(E ⊗F AF ),

• [mi] is the unique irreducible mi-dimensional algebraic representation of SL2(C), and

• µi ⊠ [mi] (we often suppress ⊠ and write µi[mi] for short) is a formal tensor product of µi and [mi]
such that if µi = µj and mi = mj , then i = j.

Put N =
∑l
i=1 kinimi. We denote the isobaric automorphic representation

⊞li=1(⊞mi
j=1µi| · |

mi/2+1/2−i
AE

)⊞ki

of GLN (AE) by φψ, where | · |AE
is the idele norm of A×

E . Moreover, for any place v of F , we define ψv by

ψv = ⊕li=1 ⊠w|v (µi,w ⊠ [mi]
⊕ki),

where w runs over all places of E on v. Here, we identify the w-th component µi,w of µi with the representation
of the Langlands group of Ew which corresponds to µi,w under the local Langlands classification for general
linear groups. Then, ψv is a representation of

∏
w|v(LEw

×SL2(C)), where WEw
is the Weil group of Ew and

LEw =

{
WEw

w : archimedean;

WEw
× SL2(C) w : nonarchimedean.

We say that ψ is a global discrete A-parameter of degree N if

• ki = 1 for any i and

• for any i, µi is conjugate selfdual with parity (−1)mi+N , i.e. the Asai L-function L(s, µi,As(−1)mi+n

)
(see [GGP12, §7]) has a simple pole at s = 1.

We denote by Ψ2(N) the set of global discrete A-parameters of degree N . We note that for each place v of
F which does not split in E, ψv for any ψ ∈ Ψ2(N) is conjugate selfdual with parity (−1)N−1, i.e. there is a
nondegenerate bilinear form B : CN × CN → C such that

B(ψv(w)x, ψv(w
−1
c wwc)y) = B(x, y),

B(y, x) = (−1)N−1B(x, ψv(w
2
c )y)
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for any w ∈ LEv
× SL2(C) and x, y ∈ CN , where wc is a fixed element of WFv

\WEv
(the definition does not

depend on the choice of wc). If v is a place of F which splits into two places w1, w2 in E, then ψv = ψw1
⊠ψw2

satisfies ψ∨
w1

= ψw2
, where we identify WEw1

with WEw2
naturally and ψ∨

w1
is the dual of ψw1

.
Let V be a nondegenerate N -dimensional hermitian space over E and ψ ∈ Ψ2(N). Then, for each place v

of F , the Local A-packet Πψv (Vv), which is a multiset of irreducible representations of U(V )(Fv), is defined
(it depends only on ψv and the hermitian space Vv = V ⊗F Fv over Ev). We put

Πψ(V ) = {⊗vπv ∈ ⊗vΠψv
(Vv) | πv is unramified for almost all v}.

We note that

• if ψv is trivial on the inertia ofWEw for any w|v and U(V ) is unramified over Fv, then Πψv (Vv) contains
a unique unramified representation, which corresponds to the L-parameter (φψ)v and

• if v splits into two places w1, w2 in E, then Πψv
(Vv) is singleton and it consists of the representation

which corresponds to (φψ)w1
, where we identify U(V )(Fv) with GLN (Ew1

) by the composition of the
projection to the first factor

GLN (Ew1
)×GLN (Ew2

) ↠ GLN (Ew)

and the natural embedding
U(V )(Fv) ↪→ GLN (Ew1

)×GLN (Ew2
).

Then, the claim of the endoscopic classification is as follows:

Theorem 0.6 ([Mok15, Theorem 2.5.2], [KMSW, Theorem 1.7.1]). Let

L2
ψ =

⊕
π

π,

where π runs over the representations in Πψ(V ) which satisfies a certain condition (we do not discuss it here).
Then, the discrete spectrum L2

disc(U(V )(F )\U(V )(AF )) of L2(U(V )(F )\U(V )(AF )) is decomposed as

L2
disc(U(V )(F )\U(V )(AF )) =

⊕
ψ∈Ψ2(N)

L2
ψ.

If an irreducible discrete automorphic representation π of U(V )(AF ) is a subspace of L2
ψ, then we say

that ‘π has the A-parameter ψ’ and we denote φψ by BC(π) (the standard base change). Note that two
irreducible discrete automorphic representations π and π′ of U(V )(AF ) are nearly-equivalent if and only if
BC(π) = BC(π′).

0.3.2 The definition of representation-theoretical Ikeda lifts

We introduce the representation-theoretical Ikeda lifts. Let V be as above and assume N = 2m is even.

Definition 0.7. Let π be an irreducible discrete automorphic representation of U(V )(AF ). π is called an
Ikeda lift if the A-parameter of π is equal to φ[m] for some φ, where φ is a conjugate self-dual cuspidal
automorphic representation of GL2(AE) with parity (−1)m or equal to χ ⊞ χ′ for some distinct conjugate
self-dual automorphic characters χ, χ′ of A×

E with parity (−1)m.

We note that any automorphic representation generated by some hermitian Ikeda lift (see §0.2.2) or
representation-theoretical hermitian Ikeda lift constructed in [Yam20] is an Ikeda lift in this sense.

The following is the most important property of Ikeda liftings.

Proposition 0.8. Let π be an Ikeda lifting of U(V )(AF ) and v a place of F . Assume U(V ) is unramified
over Fv and πv is unramified. Then, πv is isomorphic to a quotient of some degenerate principal series
representation of U(V )(Fv) ' U(m,m)(Fv), i.e. a parabolic induction

Im(χ) := Ind
U(m,m)(Fv)
P δ

1/2
P ⊗ χ ◦ det,

where P is the block upper triangular parabolic subgroup of U(m,m)(Fv) whose Levi subgroup is isomorphic
to GLm(E ⊗F Fv), χ is a character of (E ⊗F Fv)×, and δP is the modulus character of P .

7



0.3.3 The definition of representation-theoretical Miyawaki lifts

We define the representation-theoretical Miyawaki lifting.
Let V1, V2 be nondegenerate hermitian spaces over E such that dimV1 = n ∈ Z>0, dimV2 = n + 2l, for

l ∈ Z≥0. Put V = V1 ⊥ V2 and think of U(V1)×U(V2) as a subgroup of U(V ) by the natural embedding. Let
Π be an Ikeda lifting of U(V )(AF ) with A-parameter φ[n+ l] and τ a discrete automorphic representation of
U(V1)(AF ) with A-parameter ψ.

Definition 0.9 (cf. §0.2.3). For any f ∈ τ and F ∈ Π, define an automorphic form MF (f) of U(V2) by

MF (f)(g) =

∫
U(V1)(F )\U(V1)(AF )

F|U(V1)(AF )×U(V2)(AF )(h, g)f(h)dh

as long as it converges. We call the representation of U(V2)(AF ) generated by all MF (f) the Miyawaki lift
of τ with respect to Π and denote it by MΠ(τ).

Here, we recall that unramified degenerate principal series representations have simple branching laws on
unramified representations as follows:

Proposition 0.10 ([AK18, Proposition 2.2, 2.3]). Assume U(V ), U(V1) and U(V2) are unramified over Fv.
Let τ1 (resp. τ2) be an irreducible unramified representation of U(V1)(Fv) (resp. U(V2)(Fv)) with L-parameter
φ1 (resp. φ2). Then, if there is a surjective U(V1)(Fv)×U(V2)(Fv)-map

In+l(χ) ↠ τ1 ⊠ τ2

for a character χ of (E ⊗F Fv)×, we have

φ2 = φ∨1 χ(χ
c)−1

l⊕
i=1

(χ⊕ (χc)−1)| · |l/2+1/2−i
Fv

.

This proposition and Proposition 0.8 determine the near equivalence classes of Miyawaki lifts. Namely,
the following holds:

Corollary 0.11. Assume MΠ(τ) is a subspace of L2(U(V )(F )\U(V )(AF )) and

Mϕ[n+l](ψ) := ψ∨χϕ ⊞ φ[l]

is a discrete A-parameter (namely, multiplicity-free), where χϕ is the central character of φ and ψ∨ is the
dual of ψ. Then, we have

MΠ(τ) ⊂ L2
Mϕ[n+l](ψ)

.

0.4 The nonvanishing of Miyawaki lifts

For application, it is important to determine the nonvanishing of Miyawaki lifts. Some results are already
known (e.g. [KY19] and [Ato20, §5]), however, we do not know the complete determination of it, either
classically or representation-theoretically.

However, similarly to other problems for global periods, we can divide this problem into two parts:

• (local problem) Determine the branching laws of the local components of Ikeda liftings with respect to
block diagonal subgroups.

• (global problem) Give a relationship between the nonvanishing of the Miyawaki lifting and some special
L-value.

In this paper, we give a partial answer of the local problem for split unitary groups, i.e., general linear groups,
over p-adic fields.
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0.5 The work of Lapid and Mao

This paper is highly related to the work of Lapid and Mao [LM20] (see also §1.2, 1.3). Let us quote their
result here.

Let F be a p-adic field with absolute value | · | and ring of integers O. Let q be the cardinality of the
residue field of F and ψ a nontrivial additive character of F . For k′, n′ ∈ Z>0, define w(k′,n′) ∈ GLn′k′(F ) by

(w(k′,n′))i,j = δk′(i−pn′+n′−1)+p,j if pn′ − n′ + 1 ≤ i ≤ pn′.

Let π1, π2 be irreducible generic representations of GLk(F ) (k ∈ Z>0) and π
1
n, π

2
n their Speh representations

of GLnk(F ) for n ∈ Z>0, respectively. Let Wψ
Sh(π

i
n) be the Shalika model of πin, i.e., the unique realization

of πin in

Ind
GLnk(F )
U Ψ(k,n),

where a parabolic subgroup P of GLnk(F ) with unipotent radical U is defined by

P =MU, M = w−1
(k,n)


GLn

GLn
. . .

GLn
GLn

w(k,n), U = w−1
(k,n)


1n

1n *
. . .

1n
1n

w(k,n)

and a character Ψ(k,n) of U is defined by

Ψ(k,n)

w−1
(k,n)


1n X1

1n X2 *
. . .

. . .

1n Xk−1

1n

w(k,n)

 = ψ

 ∑
1≤i≤k−1

trXi

 ,

where Xi ∈ Mk(F ).

For any W 1
Sh ∈ Wψ

Sh(π
1
n),W

2
Sh ∈ Wψ

Sh(π
2
n),Φ ∈ S(Mn,nk(F )) and s ∈ C, put

Z(W 1
Sh,W

2
Sh,Φ, s) =

∫
U\GLnk(F )

W 1
Sh(g)W

2
Sh(g)Φ(ηg)|det g|sdg,

where η ∈ Mn,nk(F ) is defined by

ηi,j =

{
1 if j = ki;

0 otherwise.

This zeta integral is an analogue of the Rankin-Selberg zeta integral defined in [JPSS83] for equal-rank two
representations.

They proved the following:

Theorem 0.12 ([LM20, Theorem 5.1]). The integral Z(W 1
Sh,W

2
Sh,Φ, s) has the following properties.

(i) If Re(s) is sufficiently large, then the integral defining Z(W 1
Sh,W

2
Sh,Φ, s) is absolutely convergent for

any W 1
Sh,W

2
Sh, and Φ.

(ii) For any W 1
Sh,W

2
Sh, and Φ, Z(W 1

Sh,W
2
Sh,Φ, s) admits a meromorphic continuation to C and

n−1∏
i=0

L(s− i, π1 ⊠ π2)−1Z(W 1
Sh,W

2
Sh,Φ, s)

defines an element of C[q−s, qs], where L(s, π1 ⊠ π2) is the Rankin-Selberg local L-function defined in
[JPSS83].
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(iii) if π1
n and π2

n are unramified, then

Z(W 1
Sh,W

2
Sh,Φ, s) =

n−1∏
i=0

L(s− i, π1 ⊠ π2)

up to a constant ifW 1
Sh andW 2

Sh are unramified vectors and Φ is the characteristic function of Mn,nk(O).

(iv) We have a local functional equation

Z(Ŵ 1
Sh, Ŵ

2
Sh, Φ̂, n− s) = χπ2(−1)n(k−1)

n−1∏
i=0

γ(s− i, π1 ⊠ π2, ψ)Z(W 1
Sh,W

2
Sh,Φ, n− s)

for any W 1
Sh,W

2
Sh, and Φ, where χπ2 is the central character of π2, γ(s, π1 ⊠ π2) is the γ-factor for

L(s, π1 ⊠ π2), Ŵ i
Sh is defined by

Ŵ i
Sh(g) =W i

Sh

(
w(nk,1)

tg−1
)
,

and Φ̂ is the Fourier transform

Φ̂(X) =

∫
Mn,nk(F )

Φ
(
tr( tY w(n,1)X)

)
dY.

0.6 The main results

We state the main results of this paper. Let F and ψ be as above. Let π be a generic irreducible representation
of GL2(F ) with central character χπ. We assume that π is approximately tempered (see §1.1, note that if π
is unitary, then it is approximately tempered). Let πn be the Speh representation Sp(π, n). We note that the
local components of any Ikeda lifts at the finite places where the unitary group splits are always of this form
(see Remark 1.2). We denote by Wψ

Sh(πn) the Shalika model of πn. Let τ 6= 0 be a smooth representation
of GLn(F ) which is realized as a subrepresentation of a (normalized) parabolic induction τ1 × · · · × τm for
some irreducible representations τi. For WSh ∈ WSh(πn), s ∈ C, and a matrix coefficient f of τ , we put

Z(WSh, s, f) :=

∫
GLn

ΦWSh
(g)f(g)|det g|s− 1

2 dg,

where ΦWSh
is the restriction of WSh to w−1

(2,n)diag(GLn(F ), 1n)w(2,n) ' GLn(F ). Then the following holds:

Theorem 0.13 (Theorem 2.1). (i) If Re(s) is sufficiently large, then the integral defining Z(WSh, s, f)
converges absolutely for any WSh and f . Moreover, Z(WSh, s, f) admits meromorphic continuation to
all of C and there is a (unique) polynomial P (X) ∈ C[X] such that P (0) = 1 and

〈Z(WSh, s, f) | WSh ∈ Wψ
Sh(πn), f : a matrix coefficient of τ〉C = P (q−s)−1C[q−s, qs],

where q is the cardinality of the residue field of F ; denote P (q−s)−1 by L(π; s, τ).

(ii) There is a function γ(s) ∈ C(q−s) such that

Z(W̃Sh, 1− s, f(·−1)) = γ(s)Z(WSh, s, f)

for any WSh and f , where W̃Sh := χ−1
π (det)WSh(

(
1n 0
0 −1n

)
·
(

0 1n
−1n 0

)
)(∈ Wψ−1

Sh (Sp(π∨, n)); denote γ(s)
by γ(π; s, τ, ψ).

(iii) If τ is irreducible and generic, then

L(π; s, τ) = L(s, π ⊠ τ),

where the right-hand side is the local L-factor of π⊠τ defined by Jacquet, Piatetski-Shapiro and Shalika
[JPSS83].
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Remark 0.14. • We constructed the above zeta integral based on the work of Lapid and Mao [LM20],
but in fact the integral had already been defined by Ginzburg ([Gin]) and Kaplan (Appendix C of
[CFK]) in a more general setting, namely for an irreducible generic representation π of GLk(F ) for any
k and any local field F of characteristic zero (either archimedean or p-adic), independently. Then, the
really new result in the above theorem is (iii) only (see Remark 2.2).

• In recent years, some analogues of Rankin-Selberg zeta integrals using Speh representations were given
by some researchers:

– Zeta integrals for Speh representations of type (n, k)× (n, k) were defined in [LM20].

– We can find zeta integrals for Speh representations of type (n, k) × (n − 1, k) in the recent work
of Atobe, Kondo, and Yasuda ([AKY]).

– The zeta integrals defined in Appendix C of [CFK] (and [Gin]) are (essentially) for Speh represen-
tations of type (n, 1)× (k, n).

Here, we say that the Speh representation Sp(π′, l) is of type (m, l) if π′ is a (generic, irreducible)
representation of GLm. Then, in all three of the above papers, the determination of the L-factors was
left unsolved (some partial results, such as [CFK, Proposition C.10], were given, see Remark 2.2). In
contrast, our result (iii) is a fortunate example solving this problem, albeit only for Speh representations
of type (n, 1)× (2, n).

Next we consider the general rank case. Since

Φπn(diag(g1,g2))WSh
= ΦWSh

(g−1
2 · g1)χπ(det g2)

for any WSh ∈ Wψ
Sh(πn) and g1, g2 ∈ GLn, the linear extension of L(π; s, τ∨)−1Z(·, s, ·)|s= 1

2
on WSh(πn) ⊗

τ∨ ⊗ τ defines a nonzero element of

HomGLn×GLn
(πn ⊗ (τ∨ ⊠ τχ−1

π ),C) ' HomGLn×GLn
(πn, τ ⊠ τ∨χπ).

Then, by simple consideration (see §4), the following holds:

Theorem 0.15 (Theorem 4.1). The space

HomGLn×GLn+2l
(πn+l, τ ⊠ τ∨χπ × πl)

is nonzero.

Remark 0.16. The above theorem only means that local Miyawaki lifts for split unitary groups are always
nonvanishing. To complete our purpose, there remain two problems, namely, uniqueness and multiplicity at
most one (see Conjecture 4.2).

We now give the organization of this paper. In §1, we introduce the notations, Speh representations, and
the models of Speh representations according to [LM20]. In §2, we introduce and study the above zeta integral.
We show some properties which zeta integrals should have in general, and give the proof of Theorem 0.13.
However, we postpone the proof of the functional equation, which is necessary to show Theorem 0.13(iii),
to the next section. In §3, we show the functional equation as just announced. The essential of the section
is the inequality dimC HomGLn×GLn

(πn, τ ⊠ τ∨χπ) ≤ 1 for supercuspidal τ . In §4, we make some remarks
about the branching laws of Speh representations with respect to block diagonal subgroups of general size,
including the proof of Theorem 0.15.
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1 Preliminaries

1.1 Notation

Throughout this paper, fix a p-adic field F with absolute value | · | and ring of integers O. Let q be the
cardinality of the residue field of F . If G is an algebraic group over F , we also use G to denote G(F ). The
term ‘representation’ is used to refer to a smooth, complex representation of an algebraic group over F .

We denote by IrrGLm the set of equivalence classes of irreducible representations of GLm and put
Irr =

⋃
0≤m IrrGLm. We denote by IrrgenGLm (resp. IrrscGLm) the subset consisting of all generic (resp.

supercuspidal) elements of IrrGLm and put Irrgen =
⋃

0≤m IrrgenGLm, Irrsc =
⋃

0≤m IrrscGLm.

For m = (m1, . . . ,ml) ∈ (Z>0)
l, we denote the block upper triangular parabolic subgroup of type m with

unipotent radical Um by Pm, a Levi subgroup diag(GLm1 , . . . ,GLml
) ' GLm1 × · · · ×GLml

of Pm by Mm,
and the modulus character of Pm by δPm .

We use the notation IndGH and indGH to denote induction and induction with compact support (both
unnormalized) from a subgroup H of G. If π1, . . . , πl are representations of GLm1

, ...,GLml
respectively, then

we denote the parabolically induced representations

IndGLm

Pm
δ

1
2

Pm
⊗ π1 ⊠ · · ·⊠ πl and IndGLm

Pm
π1 ⊠ · · ·⊠ πl

by π1×· · ·×πl (normalized induction) and π1∗· · ·∗πl (unnormalized induction), respectively, wherem =
∑
imi

and m = (m1, . . . ,ml).

If there is no confusion, we often denote (

l1︷ ︸︸ ︷
m1,m1, . . . ,m1,

l2︷ ︸︸ ︷
m2,m2, . . . ,m2, . . . ) by (m1

l1 ,m2
l2 , . . . ).

Let π be a representation of GLm. We denote the contragradient representation of π by π∨ and π⊗χ◦det
by πχ for any χ ∈ IrrGL1.

For π ∈ Irrsc, we denote the unique irreducible subrepresentation of π| · |m−1
2 × π| · |m−3

2 × · · · × π| · |−m−1
2

by St(π,m) (generalized Steinberg representation).
We denote by Alg′GLm the set of equivalence classes of representations π 6= 0 of GLm such that

π ⊂ π1 × · · · × πl

for some π1, . . . , πl ∈ Irr (equivalently, π1, . . . , πl ∈ Irrsc) and put Alg′ =
⋃

0≤mAlg′GLm. We note that Alg′

is closed under parabolic induction. For any π ∈ Alg′, we denote the central character of π by χπ.
Let π ∈ Irrgen. Then, π can be written uniquely (up to permutation) as

π = St(ρ1,m1)| · |r1 × · · · × St(ρl,ml)| · |rl

with cuspidal unitary representations ρi and ri ∈ R. We say that π is approximately tempered if ri − rj < 1
for any i and j, following [LM20]. We note that if π ∈ Irrgen is essentially unitary, then it is approximately
tempered.

1.2 Speh representations (cf. [LM20, §2])
For the rest of this section, fix π ∈ IrrgenGLk.

Let {ρ1, . . . , ρr} (ρi ∈ Irrsc) be the cuspidal support of π, which is a multiset of Irrsc. For each n ∈ Z>0,
we define the Speh representation Sp(π, n) as the representation corresponding to the multisegment

r∑
i=1

{ρi| · |−
n−1
2 , . . . , ρi| · |

n−1
2 }

under the Zelevinsky classification [Zel80]. By rearranging the indices, we assume that ρ1, . . . , ρi−1 6= ρi| · |−m
for all i and all m ∈ Z>0. Then, Sp(π, n) is the unique irreducible subrepresentation of

Sp(ρ1, n)× · · · × Sp(ρr, n),
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where Sp(ρi, n) is the unique irreducible quotient of ρi| · |
n−1
2 × ρi| · |

n−3
2 × · · · × ρi| · |−

n−1
2 .

Other realizations of Sp(π, n) are known:

Proposition 1.1 ([LM20, Corollary 2.11]). Sp(π, n) is a unique irreducible subrepresentation of

Sp(π, n− 1)| · |− 1
2 × π| · |

n−1
2 .

In particular, Sp(π, n) is both a subrepresentation of

Π = π| · |−
n−1
2 × π| · |−

n−3
2 × · · · × π| · |

n−1
2

and a quotient of

Π̃ = π| · |
n−1
2 × π| · |

n−3
2 × · · · × π| · |−

n−1
2 .

Remark 1.2 ([LM20, Remark 2.12]). Assume π is approximately tempered. Then, Sp(π, n) is the Langlands

quotient of Π̃. In particular, Sp(π, n) is the unique subrepresentation of Sp(π, n1)| · |−
n2
2 ×Sp(π, n2)| · |

n1
2 for

any n1, n2 ∈ Z>0 such that n1 + n2 = n.

From now on, we will denote Sp(π, n) by πn for short.

1.3 The models (cf. [LM20, §3])
For the rest of this section, fix a nontrivial character ψ of F .

For each n ∈ Z>0, we define w(k,n) ∈ GLkn by

(w(k,n))i,j = δk(i−pn+n−1)+p,j if pn− n+ 1 ≤ i ≤ pn

for p ∈ {1, . . . , k} and a function Ψ(k,n) : GLkn → C by

Ψ(k,n)(g) = ψ

∑
k∤i

gi,i+1

 .

Then, the restrictions of Ψ(k,n) to U(1kn) and U
w(k,n)

(nk)
= w−1

(k,n)U(nk)w(k,n) are both characters. We note that

Ψ(k,n)




1n X1

1n X2 *
. . .

. . .

1n Xk−1

1n


w(k,n)

 = ψ

 ∑
1≤i≤k−1

trXi

 ,

where Xi ∈ Mk(F ). We put

Wψ
Ze,k,n = IndGLkn

U
(1kn)

Ψ(k,n)|U(1kn)
and Wψ

Sh,k,n = IndGLkn

U
w(k,n)

(nk)

Ψ(k,n)|Uw(k,n)

(nk)

.

Then, it is known that dimC(πn,Wψ
Ze,k,n) = dimC(πn,Wψ

Sh,k,n) = 1 ([LM20, Theorem 3.1]) . We denote

the images of πn on Wψ
Ze,k,n and Wψ

Sh,k,n by Wψ
Ze(πn) (Zelevinsky model) and Wψ

Sh(πn) (Shalika model),
respectively. We note that

WSh(diag(

k︷ ︸︸ ︷
g, . . . , g)w(k,n) ·) = χπ(det g)WSh, g ∈ GLn

for any WSh ∈ Wψ
Sh(πn).

The relation between Wψ
Ze(πn) and Wψ

Sh(πn) is as follows:
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Proposition 1.3 ([LM20, Lemma 3.8, 3.11]). Let nn (resp. n̄n = tnn) be the set of upper (resp. lower)
triangular nilpotent matrices in Mn(F ) and

Nn = w−1
(k,n)


1n n̄n n̄n . . . n̄n

1n n̄n . . . n̄n
. . .

. . .
...

1n n̄n
1n

w(k,n), N
′
n = 1kn + w−1

(k,n)


nn
nn nn
...

...
. . .

nn nn . . . nn
0n 0n . . . . . . 0n

w(k,n).

Then, the isomorphism Tn : Wψ
Ze(πn)

∼→ Wψ
Sh(πn) and its inverse T −1

n : Wψ
Sh(πn)

∼→ Wψ
Ze(πn) are given by

TnWZe =

∫
Nn

WZe(u·)du, T −1
n WSh =

∫
N ′

n

WSh(u
′·)du′

for WZe ∈ Wψ
Ze(πn) and WSh ∈ Wψ

Sh(πn), where these integrands are (pointwise) compactly supported.

Now we consider ‘intermediate’ models between Wψ
Ze(πn) and Wψ

Sh(πn). Take

λ = (λ1, . . . , λnk) = (

n︷ ︸︸ ︷︷ ︸︸ ︷
k − 1, k − 2, . . . , 0,

︷ ︸︸ ︷
k − 1, k − 2, . . . , 0, . . . ,

︷ ︸︸ ︷
k − 1, k − 2, . . . , 0) + (λkk, λ

k
2k, . . . , λ

k
nk) ∈ Znk

and define a parabolic subgroup P = MU of GLkn by P =
{
g ∈ GLkn

∣∣ gi,j = 0 if λi < λj
}
. Then, the

restriction of Ψ(k,n) to U is a character and dimC(πn, Ind
GLnk

U Ψ(k,n)|U ) = 1 in general ([LM20, Theorem

3.1]). Take n = (n1, . . . , nl) ∈ (Z>0)
l such that

∑
i ni = n and assume that

λik = −jk if

j∑
p=1

np < i ≤
j+1∑
p=1

np

for j ∈ {0, . . . , l − 1}. Then, we have

P = diag(P
w(k,n1)

(nk
1 )

, . . . , P
w(k,nl)

(nk
l )

)Un

and
Ψ|U = (Ψ(k,n1)|Uw(k,n1)

(nk
1 )

⊠ · · ·⊠Ψ(k,nl)|Uw(k,nl)

(nk
l
)

)⊗ 1Un .

For this n, we put
Wψ

k,n = IndGLkn

U Ψ(k,n)|U ' Wψ
Sh,k,n1

∗ · · · ∗ Wψ
Sh,k,nl

and denote the image of πn on Wψ
k,n by Wψ

n(πn). Then, using Proposition 1.3, we obtain the relations

between Wψ
n(πn) and Wψ

Ze(πn), W
ψ
Sh(πn) as follows:

Corollary 1.4. Let nn = Un − 1n, n̄n = tnn and

Nn,1 = diag(Nn1
, . . . , Nnl

), N ′
n,1 = diag(N ′

n1
, . . . , N ′

nl
),

Nn,2 = w−1
(k,n)


1n n̄n n̄n . . . n̄n

1n n̄n . . . n̄n
. . .

. . .
...

1n n̄n
1n

w(k,n), N
′
n,2 = 1kn + w−1

(k,n)


nn
nn nn
...

...
. . .

nn nn . . . nn
0n 0n . . . . . . 0n

w(k,n).

Then, the isomorphisms

Tn,1 : Wψ
Ze(πn)

∼→ Wψ
n(πn), Tn,2 : Wψ

n(πn)
∼→ Wψ

Sh(πn)
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and their inverses
T −1
n,1 : Wψ

n(πn)
∼→ Wψ

Ze(πn), T
−1
n,2 : Wψ

Sh(πn)
∼→ Wψ

n(πn)

are given by

Tn,1WZe =

∫
Nn,1

WZe(u·)du, Tn,2W =

∫
Nn,2

W (u·)du,

T −1
n,1W =

∫
N ′

n,1

W (u′·)du′, T −1
n,2WSh =

∫
N ′

n,2

WSh(u
′·)du′

for WZe ∈ Wψ
Ze(πn), W ∈ Wψ

n(πn), and WSh ∈ Wψ
Sh(πn).

Remark 1.5. By proposition 1.1, we have

WZe|M(k(n−1),k)
∈ Wψ

Ze(πn−1)| · |
1
2 (k−1) ⊗Wψ

Ze(π)| · |
− 1

2 (n−1)(k−1)

and
WZe|M(kn)

∈ Wψ
Ze(π)| · |

1
2 (n−1)(k−1) ⊗Wψ

Ze(π)| · |
1
2 (n−3)(k−1) ⊗ · · · ⊗Wψ

Ze(π)| · |
− 1

2 (n−1)(k−1)

for any WZe ∈ Wψ
Ze(πn) (see [LM20, §3.1]). Similarly, by Remark 1.2, we have

W |M(kn1,kn2)
∈ WSh

ψ(πn1)| · |
1
2n2(k−1) ⊗WSh

ψ(πn2)| · |−
1
2n1(k−1)

for any W ∈ Wψ
(n1,n2)

(πn) if π is approximately tempered, where n1 + n2 = n. However, we do not know

whether this holds in general.

2 The local zeta integral

For the rest of this paper, fix π ∈ IrrgenGL2, n ∈ Z>0 and a nontrivial character ψ of F . Moreover, for each

m ∈ Z>0, we write w(2,m) = wm, Wψ
Ze,2,m = Wψ

Ze,m, W
ψ
Sh,2,m = Wψ

Sh,m, and Wψ
2,m = Wψ

m for short.

2.1 The main results

For any WSh ∈ Wψ
Sh(πn), define a function ΦWSh

on GLn by

ΦWSh
(g) =WSh(

(
g 0
0 1n

)wn
).

We note that

Φπn(diag(g1,g2)wn )WSh
= ΦWSh

(g−1
2 · g1)χ2(det g2), Φπn

((
1n X

1n

)wn
)
WSh

= ψ(tr(X·))ΦWSh

for g1, g2 ∈ GLn, and X ∈ Mn(F ) (see §1.3). In particular, ΦWSh
is bi-K-invariant for some open compact

subgroup K of GLn. Moreover, the set {ΦWSh
|WSh ∈ Wψ

Sh(πn)} does not depend on ψ since for any additive

character ψ′ = ψ(a·) of F , where a ∈ F×, the isomorphism Wψ′

Sh(πn)
∼→ Wψ

Sh(πn) is given by

W ′
Sh 7→W ′

Sh(diag(1n, a1n)
wn ·)

for W ′
Sh ∈ Wψ′

Sh(πn).

For WSh ∈ Wψ
Sh(πn), define W̃Sh ∈ Wψ−1

Sh (π∨
n ) by

W̃Sh(g
wn) = χ−1

π (det g)WSh(
((

1n 0
0 −1n

)
g
(

0 1n
−1n 0

))wn
)
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(note that πnχ
−1
π ' Sp(πχ−1

π , n) ' Sp(π∨, n) ' Sp(π, n)∨ = π∨
n ). We note that

Φ
W̃Sh

(g) =WSh(
((

g 0
0 1n

) (
0 1n
1n 0

))wn
).

Let τ ∈ Alg′GLn. For any matrix coefficient f of τ , denote a matrix coefficient f(·−1) of τ∨ by f∨.

Finally, for WSh ∈ Wψ
Sh(πn) and a matrix coefficient f of any τ ∈ Alg′GLn, define the zeta integral

Z(WSh, s, f) with complex variable s by

Z(WSh, s, f) =

∫
GLn

ΦWSh
(g)f(g)|det g|s− 1

2 dg.

The main result of this paper is as follows:

Theorem 2.1. Let τ ∈ Alg′GLn. Assume π is approximately tempered except (i).

(i) If Re(s) is sufficiently large, then the integral defining Z(WSh, s, f) converges absolutely for any

WSh ∈ Wψ
Sh(πn) and matrix coefficient f of τ .

(ii) Z(WSh, s, f) admits a meromorphic continuation to all of C and there is a (unique) polynomial P (X) ∈
C[X] such that P (0) = 1 and

I(π, τ) := 〈Z(WSh, s, f) | WSh ∈ Wψ
Sh(πn), f : a matrix coefficient of τ〉C = P (q−s)−1C[q−s, qs];

denote P (q−s)−1 by L(π; s, τ).

(iii) If τ = τ1 × τ2 for τ1, τ2 ∈ Alg′, then

L(π; s, τ) = L(π; s, τ1)L(π; s, τ2).

(iv) There is a function γ(s) ∈ C(q−s) such that

Z(W̃Sh, 1− s, f∨) = γ(s)Z(WSh, s, f)

for any WSh and f ; denote γ(s) by γ(π; s, τ, ψ).

(v) If τ is a subrepresentation of τ1 × τ2 for τ1, τ2 ∈ Alg′, then

γ(π; s, τ, ψ) = γ(π; s, τ1, ψ)γ(π; s, τ2, ψ).

(vi) If τ ∈ IrrgenGLn, then
L(π; s, τ) = L(s, π ⊠ τ),

where the right-hand side is the local L-factor defined by Jacquet, Piatetski-Shapiro and Shalika
[JPSS83].

Remark 2.2. As mentioned in Remark 0.14, some of our results are known. Specifically, they are as follows:

• (i) follows from the discussion at the beginning of Appendix C of [CFK].

• (ii) is a specialized version of [CFK, Theorem C.6].

• (iv) is a conclusion of [CFK, Theorem C.1].

• (v) is a specialized version of [CFK, Theorem C.2].

On the other hand:
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• (iii) is a partial refinement of [CFK, Theorem C.6 (2)], which says that

L(π; s, τ) ∈ L(π; s, τ1)L(π; s, τ2)C[q−s, qs].

• (vi) is a partial refinement of [CFK, Proposition C.10], which says that

L(s, π ⊠ τ) ∈ L(π; s, τ)C[q−s, qs].

The proofs of (iii) and (vi) (essentially, Proposition 2.7, Proposition 2.10, and Proposition 2.11) depend on the
facts in §1.3. Only if k = 2, then N ′

n,2 (in §1.3) coincides with the unipotent radical of some upper triangular
parabolic subgroup of GLn ⊂ GL2n, so that, by partial integration, we can obtain other representations of
our zeta integral using intermediate models. Our method does not seem to be (immediately) applicable to
the general case in [CFK] if k > 2.

Remark 2.3. (i) By a simple computation, one can see that the ψ-dependence of γ(π; s, τ, ψ) is given by

γ(π; s, τ, ψ(a·)) = χnπ(a)χ
2
τ (a)|a|n(2s−1)γ(π; s, τ, ψ)

for any a ∈ F×.

(ii) We put
ε(π; s, τ, ψ) := γ(π; s, τ, ψ)L(π; s, τ)/L(π∨; 1− s, τ∨).

Then, we have ε(π; s, τ, ψ), ε(π∨; 1− s, τ∨, ψ) ∈ C[q−s, qs] by Theorem 2.1(ii), (iv) and

ε(π; s, τ, ψ)ε(π∨; 1− s, τ∨, ψ) = 1

by the above (i) and using Theorem 2.1(iv) twice. In particular, we can write ε(π; s, τ, ψ) = cqls for
some c ∈ C and l ∈ Z.

We prove Theorem 2.1 in several parts: The proof of (ii) is given in §2.3 by reduction to the generic case.
(ii) for generic representations is proved in §2.2 (Corollary 2.8). The proofs of (iii) and (v) are given in §2.3
as byproducts of the proof of (ii). The proof of (iv) is a bit technical, so we postpone it to the next section.
(vi) is proved using the entire §2.4.

Finally, (i) is proved here. To prove this, we need the following two lemmas.

Lemma 2.4. (i) For any WSh ∈ Wψ
Sh(πn), there is an open compact subset C of Mn(F ) such that

suppΦWSh
⊂ C.

(ii) If r ∈ R is sufficiently large, then ΦWSh
| · |r is L2-function for any WSh ∈ Wψ

Sh(πn).

Proof. (i) and (ii) immediately follow from [LM20, Lemma 3.2] and [LM20, Proposition 4.2], respectively.

Lemma 2.5. Let G be an algebraic group over F and K an open compact subgroup of G. Let F be a right
K-invariant function on G. If F is an L1-function, then F is an L2-function.

Proof. We have the lemma as follows:∫
G

|F(g)|2dg =

∫
G×K

|F(g)F(gk)|dgdk ≤
∫
G×G

|F(g)F(gg′)|dgdg′ =
(∫

G

|F(g)|dg
)2

<∞.

proof of Theorem 2.1 (i). By Lemma 2.4 (i), we have

ΦWSh
(g)f(g)|det g|s− 1

2 = ΦWSh
(g)|det g|s1 × 1C∩GLn

(g)f(g)|det g|s2

for any WSh, f , and g ∈ GLn, where C is some open compact subset of Mn(F ) and s − 1/2 = s1 + s2.
By Lemma 2.4 (ii), ΦWSh

| · |s1 is an L2-function for any WSh if Re(s1) is sufficiently large. On the other
hand, 1C∩GLn

f | · |s2 is an L2-function for any f by Lemma 2.5 and the convergence of the zeta integral
of Godement and Jacquet [GJ72, Theorem 3.3] if Re(s2) is sufficiently large. Thus the integral defining
Z(WSh, s, f) converges absolutely for any WSh and f if Re(s) is sufficiently large.
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2.2 The generic case

In this subsection, we assume τ ∈ IrrgenGLn (we do not need to assume that π is approximately tempered

here). We let Wψ(τ ′) = Wψ
Ze(τ

′) for any τ ′ ∈ Irrgen.
For any open compact subgroup K of GLn and h ∈ GLn, define Lh,K ∈ Wψ(τ)∨ by

〈W,Lh,K〉 =
∫
K

W (hk)dk

for W ∈ Wψ(τ). We can obtain Wψ(τ)∨ = 〈Lh,K〉C easily.

For any WSh ∈ Wψ
Sh(πn) and W ∈ Wψ(τ), we consider the following zeta integral

Z(WSh, s,W ) =

∫
GLn

ΦWSh
(g)W (g)|det g|s− 1

2 dg.

Proposition 2.6. (i) If Re(s) is sufficiently large, then the integral defining Z(WSh, s,W ) converges ab-

solutely for any WSh ∈ Wψ
Sh(πn) and W ∈ Wψ(τ).

(ii) For any matrix coefficient f of τ and WSh ∈ Wψ
Sh(πn), there are W i

Sh ∈ Wψ
Sh(πn) and W i ∈ Wψ(τ)

(i = 1, . . . , l) such that

Z(WSh, s, f) =
∑

1≤i≤l

Z(W i
Sh, s,W

i)

if Re(s) is sufficiently large.

(iii) For any W ∈ Wψ(τ) and WSh ∈ Wψ
Sh(πn), there is a matrix coefficient f of τ such that

Z(WSh, s,W ) = Z(WSh, s, f)

if Re(s) is sufficiently large.

Proof. (i) For any sufficiently large r, 1C∩GLn
W | · |r is an L1-function of GLn for any open compact subset

C of Mn(F ) and W ∈ Wψ(τ) (see [JPSS79, (2.3.6), (3.1)]). Thus it immediately holds by Lemma 2.4, 2.5.
(ii) We can assume that f(g) = 〈W (·g), Lh,K〉 for some W ∈ Wψ(τ) and open compact subgroup K of

GLn such that ΦWSh
is bi-K-invariant. Then, by (i), we have

Z(WSh, s, f) =

∫
GLn

ΦWSh
(h−1gh)W (gh)|det g|s− 1

2 dg = Z(χ(deth)−1WSh(·diag(h, h)wn), s,W (·h))

if Re(s) is sufficiently large.
(iii) Take sufficiently small K and put f(g) = 〈W (·g), L1,K〉.

Proposition 2.7. Let WSh ∈ Wψ
Sh(πn) and W ∈ Wψ(τ). Then, L(s, π⊠ τ)−1Z(WSh, s,W ) defines an entire

function of s and Z(WSh, s,W ) ∈ L(s, π ⊠ τ)C[q−s, qs].

Proof. First we remark that for any W ′ ∈ Wψ(τ ′) (τ ′ ∈ IrrgenGLm), there is a constant C ′ > 0 such that

W ′ (udiag(a1, . . . , am′)k) 6= 0 ⇒ |a1| ≤ C ′|a2| ≤ · · · ≤ C ′m−1|am|

for any u ∈ U(1m), ai ∈ F× and k ∈ GLm(O) in general ([LM20, Lemma 3.2]).
If n = 1, then Z(WSh, s,W ) coincides with a Rankin-Selberg zeta integral for π ⊠ τ . In this case,

Z(WSh, s,W ) ∈ L(s, π ⊠ τ)C[q−s, qs] is trivial.
Assume that n ≥ 2. Then, for any u ∈ U(1n), h ∈ GLn, and h

′ ∈ GL2n, we have

WSh

((
u 0
0 1n

)wn

h′
)
W (uh) =WSh

((
u 0
0 1n

)wn

xnh
′
)
W (h),

18



where we put

xm :=

(
1m

0 0
1m−1 0

1m

)wm

= diag(1,

m−1︷ ︸︸ ︷
( 1 0
1 1 ), . . . , (

1 0
1 1 ), 1).

Thus we have

Z(WSh, s,W ) =

∫
U(1n)\GLn

WZe

(
xn

(
gn

1n

)wn
)
W (gn)|det gn|s−

1
2 dgn

if Re(s) is sufficiently large, where WZe := T −1
n WSh ∈ Wψ

Ze(πn). We can write

Z(WSh, s,W ) =

∫
U(12)\GL2×(F×)n−2×GLn(O)

WZe

(
xn

(
diag(g2, a3, . . . , an)k

1n

)wn
)

W (diag(g2, a2, . . . , an)k)|det g2|s−n+2− 1
2 |a3|s−n+5− 1

2 . . . |an|s+n−1− 1
2 dg2d

×a3 . . . d
×andk

=

∫
(F×)n×GL2(O)×GLn(O)

WZe

(
xn

(
diag(( a1 a2 ))k2, a3, . . . , an)k

1n

)wn
)

W (diag(( a1 a2 ))k2, a2, . . . , an)k)|a1|s−n+1− 1
2 . . . |an|s+n−1− 1

2 dg2d
×a3 . . . d

×andk2dk.

Let bi ∈ F× (i = 1, . . . , n) such that |b1| ≤ C|b2| ≤ · · · ≤ Cn−1|bn|, where C is the constant in the above
remark for W . Consider when the inequality

F(b1, . . . , bn, k
′) :=WZe

(
xn

(
diag(b1, b2, . . . , bn)k

′

1n

)wn
)


=WZe





1
1
1 1

1
1 1

. . .

1
1 1

1





b1
1

b2
1

. . .

bn
1


(
k′

1m

)wn




6= 0

holds for some k′ ∈ GLn(O). If |bn| is sufficiently large, then

F(b1, . . . , bn, k
′)

=WZe





1
1
1 1

. . .

1
1 1

13





b1
1

b2
1

. . .

bn
1


12n−2

1 b−1
n

1

(k′
1n

)wm



=WZe





1
1
1 1

. . .

1
1 1

13





b1
1

b2
1

. . .

bn
1


(
k′

1n

)wn


= 0
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by Remark 1.5 and the above remark. If |bn| is sufficiently small, then, since

1
1
1 1

. . .

1
1 1

1


=



1
−1 1

1
. . .

−1 1
1

1


w′



1
1 1

1
. . .

1 1
1

1



(w′ := diag(1

n−1︷ ︸︸ ︷
( 1
1 ), . . . , ( 1

1 ), 1)), we have

F(b1, . . . , bn, k
′)

=WZe





b1
−b2

1
−b3

. . .

1
−bn

12


w′



1
1 b2

1
. . .

1 bn
1

1


(
k′

1n

)wn



=WZe





b1
−b2

1
−b3

. . .

1
−bn

12


w′
(
k′

1n

)wn


= 0

also by Remark 1.5 and the above remark. Then, by repeating a similar argument, we have that there
is a constant c > 0 such that if F(b1, . . . , bn, k

′)W (diag(b1, . . . , bn)k
′) 6= 0 for some k′ ∈ GLn(O), then

|b2|, |b3|±1, |b4|±1, . . . , |bn|±1 < c.
Then, integrating in ai (i > 2) and k, and dividing the integral interval with respect to a2, we have

Z(WSh, s,W ) =
∑
i

Fi

∫
U(12)\GL2

W ′
πi(g2)W

′
i (diag(g2, 1n−2))|det g2|s−

n−2
2 1x(O,O)(( 0 1 )g2)dg2

+
∑
j

F ′
j

∫
F×

W ′′
πj(diag(a, 1))W

′′
j (diag(a, 1n−1))|a|s−

n
2 d×a

for some Fi, F
′
j ∈ C[q−s, qs],W ′

πi,W
′′
πj ∈ Wψ−1

Ze (π),W ′
i ,W

′′
j ∈ Wψ(τ) (i = 1, . . . , l1, j = 1, . . . , l2) and x ∈ F×

such that |x| � c by Remark 1.5. Since the set {ΦWπ
| Wπ ∈ Wψ(π)} has already been calculated explicitly

(see [Bum97, Theorem 4.7.2, 4.7.3]), it is easy to check that the latter sum is an element of L(s, π⊠τ)C[q−s, qs].
If n = 2, then the integrals in the former sum are Rankin-Selberg zeta integrals for π ⊠ τ . If n > 2, then for
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each i, we have∫
U(12)\GL2

W ′
πi(g2)W

′
i (diag(g2, 1n−2))|det g2|s−

n−2
2 1x(O,O)(( 0 1 )g2)dg2

=

∫
U(12)\GL2

W ′
πi(g2)W

′
i (diag(g2, 1n−2))|det g2|s−

n−2
2 dg2

−
∫
F×

∫
|x|<|b|

∫
GL2(O)

W ′
πi(diag(a, b)k2)W

′
i (diag(diag(a, b)k2, 1n−2))|a|s−

n
2 |b|s−n

2 −2dkd×bd×a.

The former integral is a Rankin-Selberg zeta integral for π⊠ τ . On the other hand, if |b| is sufficiently large,
then W ′(diag(diag(a, b)k2, 1n−2) = 0 for any a and k2. Therefore, integrating in b and k2, we can see that
the latter integral is an element of L(s, π ⊠ τ)C[q−s, qs].

Consequently, we have Z(WSh, s,W ) ∈ L(s, π ⊠ τ)C[q−s, qs].

We can see that I(π, τ)(= 〈Z(WSh, s, f) | WSh ∈ Wψ
Sh(πn), f : a matrix coefficient of τ〉C) is a nonzero

fractional ideal of C[q−s, qs], in the same way as for the space generated by the zeta integrals of Godement
and Jacquet for any admissible representation of any general linear group (see the discussion below Theorem
3.3 of [GJ72]). Then, by Proposition 2.6 and 2.7, we have the following:

Corollary 2.8. We have

I(π, τ) = 〈Z(WSh, s,W ) | WSh ∈ WSh(πn), W ∈ Wψ(τ)〉C
⊂ L(s, π ⊠ τ)C[q−s, qs]

In particular, Theorem 2.1 (ii) holds for irreducible generic τ without assuming that π is approximately
tempered.

For the proof of Theorem 2.1 (vi), we end this subsection with the following lemma.

Lemma 2.9. If n = 1, 2 and τ is irreducible and supercuspidal, then we have L(π; s, τ) = L(s, π ⊠ τ).

Proof. If n = 1, then it is trivial.
Assume n = 2. Then, for any WSh ∈ Wψ

Sh(π2) and W ∈ Wψ(τ), similar to Proposition 2.6, we have

Z(WSh, s,W ) =

∫
U(12)\GL2

WZe

((
diag(1,−1)g2

12

)
w2

)
W (g2)|det g2|s−

1
2 1x(O,O)(( 0 1 )g2)dg2

+

∫
F×

∫
|x|<|b|

∫
GL2(O)

WZe

(
x2

(
diag(a, b)k

12

)w2
)
W (diag(a, b)k2)|a|s−1|b|s−3dkd×bd×a.

for some x ∈ F×. Then, since τ is supercuspidal, the latter integral is an element of C[q−s, qs]. Thus, clearly
the functions Z(WSh, s,W ) generate L(s, π ⊠ τ)C[q−s, qs].

2.3 More results in the case that π is approximately tempered

For the rest of this section, we assume that π is approximately tempered. Then, for any W ∈ Wψ
(n1,n2)

(πn),

W |diag(GL2n1
,GL2n2

) ∈ WSh
ψ(πn1

)| · | 12n2 ⊗WSh
ψ(πn2

)| · |− 1
2n1 (1)

holds, where n1 + n2 = n (see Remark 1.5). We fix τi ∈ Alg′GLni
(i = 1, 2) and put τ0 = τ1 × τ2.

Similar to Lh,K in the previous subsection, for any open compact subgroup K of GLn, h ∈ GLn, and
v∨i ∈ τi (i = 1, 2), we define Lh,K,v1,v2 ∈ τ∨0 ' τ∨1 × τ∨2 by

〈v, Lh,K,v∨1 ,v∨2 〉 =
∫
K

〈v(hk), v∨1 ⊗ v∨2 〉dk

for any v ∈ τ1 × τ2. Then, it is easy to verify that τ∨0 = 〈Lh,K,v∨1 ,v∨2 〉C.
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Proposition 2.10. Let WSh ∈ Wψ
Sh(πn) and f a matrix coefficient of τ0.

(i) There are W j
Sh,i ∈ Wψ

Sh(πnj
) and matrix coefficients f ji of τi (i = 1, . . . , l, j = 1, 2) such that

Z(WSh, s, f) =
∑

1≤i≤l

Z(W 1
Sh,i, s, f

1
i )Z(W

2
Sh,i, s, f

2
i )

if Re(s) is sufficiently large.

(ii) For the above W j
Sh,i and f

j
i , we have

Z(W̃Sh, 1− s, f∨) =
∑

1≤i≤l

Z(W̃ 1
Sh,i, 1− s, (f1i )

∨)Z(W̃ 2
Sh,i, 1− s, (f2i )

∨)

if Re(s) is sufficiently small.

Proof. (i) We can assume that f(g) = 〈v(·g), Lh,K,v∨1 ,v∨2 〉, where K is an open compact subgroup of GLn such

that ΦWSh
is bi-K-invariant and v ∈ τ0. Since 1C∩GLn〈v(·), v∨1 ⊗ v∨2 〉| · |r is an L1-function of GLn for any

compact subset C of Mn(F ) and sufficiently large r by Iwasawa decomposition and [GJ72, Theorem 3.3], if
Re(s) is sufficiently large, then we have

Z(WSh, s, f) =

∫
GLn×K

ΦWSh
(g)〈v(hkg), v∨1 ⊗ v∨2 〉|det g|s−

1
2 dgdk

=

∫
GLn

ΦWSh
(h−1gh)〈v(gh), v∨1 ⊗ v∨2 〉| det g|s−

1
2 dg

by Lemma 2.4, 2.5. By Iwasawa decomposition GLn = U(n1,n2)M(n1,n2)GLn(O), the above integral can be
written as∫

GLn1
×GLn2

×GLn(O)

W

((
(
g1

1n1
)wn1

(
g2

1n2
)wn2

)(
kh

h

)wn
)
δP(n1,n2)

(( g1 g2 ))
− 1

2

〈τ1(g1)⊗ τ2(g2)v(kh), v
∨
1 ⊗ v∨2 〉|det g|s−

1
2 dg1dg2dk × χπ(deth)

−1,

where

W =

∫
Mn1,n2 (F )

WSh

1n1 X
1n2

1n

wn

·

 dX ∈ Wψ
(n1,n2)

(πn)

(Corollary 1.4). Since the integration over GLn(O) becomes a finite sum, we have (i) by (1).
(ii) We have

Z(W̃Sh, 1− s, f) =

∫
GLn×K

Φ
W̃Sh

(g)〈v(hkg−1), v∨1 ⊗ v∨2 〉|det g|−s+
1
2 dgdk

=

∫
GLn

Φ
W̃Sh

(h−1gh)〈v(g−1h), v∨1 ⊗ v∨2 〉| det g|−s+
1
2 dg.

if Re(s) is sufficiently small. By Iwasawa decomposition GLn = GLn(O)U(n1,n2)M(n1,n2), the above integral
can be written as∫

GLn1×GLn2×GLn(O)

W

((
(
g1

1n1
)wn1

(
g2

1n2
)wn2

)((
h

k−1h

)(
1n

1n

))wn
)
δP(n1,n2)

(( g1 g2 )))
− 1

2

χπ(det g1)
−1χπ(det g2)

−1〈τ1(g−1
1 )⊗ τ2(g

−1
2 )v(k−1h), v∨1 ⊗ v∨2 〉|det g1 det g2|−s+

1
2 dg1dg2dk × χπ(deth)

−1

=

∫
GLn1

×GLn2
×GLn(O)

W

((
((
g1

1n1
)(

1n1
1n1

))wn1

((
g2

1n2
)(

1n2
1n2

))wn2

)(
kh

h

)wn
)
δP(n1,n2)

(( g1 g2 )))
− 1

2

χπ(det g1)
−1χπ(det g2)

−1〈τ1(g−1
1 )⊗ τ2(g

−1
2 )v(kh), v∨1 ⊗ v∨2 〉|det g1 det g2|−s+

1
2 dg1dg2dk × χπ(deth)

−1.

Comparing the above integral and the integral in the proof of (i), we have (ii).
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Proposition 2.11. Let W j
Sh ∈ Wψ

Sh(πnj
) and f j a matrix coefficient of τj (j = 1, 2). Then, there are

WSh ∈ Wψ
Sh(πn) and a matrix coefficient f of τ0 such that

Z(W 1
Sh, s, f

1)Z(W 2
Sh, s, f

2) = Z(WSh, s, f)

if Re(s) is sufficiently large.

Proof. Since πm is irreducible for any m, we can take WSh ∈ Wψ
Sh(πn) such that∫

Mn1,n2 (F )

WSh

1n1 X
1n2

1n

wn

·

 dX

∣∣∣∣∣∣
diag(GL2n1

,GL2n2
)

=W 1
Sh| · |

n2
2 ⊗W 2

Sh| · |−
n1
2

by Corollary 1.4 and (1). Write f i = 〈τi(·)vi, v∨i 〉 (vi ∈ τi, v
∨
i ∈ τ∨i ) and define v ∈ τ0 by

v(g) =

∫
P(n1,n2)

1K(pg)δP(n1,n2)
(diag(m1,m2))

− 1
2 τ1(m

−1
1 )v1 ⊗ τ2(m

−1
2 )v2drp,

where p =

(
m1 ∗

m2

)
, K is an open compact subgroup of GLn such that ΦWSh

is bi-K-invariant, and drp

is the right Haar measure of P(n1,n2). Then, for f = 〈τ0(·)v, Lh,K,v∨1 ,v∨2 〉, we have

Z(WSh, s, f) =

∫
GLn

ΦWSh
(g)〈v(g), v∨1 ⊗ v∨2 〉|det g|s−

1
2 dg

=

∫
GLn×P(n1,n2)

ΦWSh
(p−1g)1K(g)δP(n1,n2)

(diag(m1,m2))
− 1

2 f1(m−1
1 )f2(m−1

2 )|det p−1g|s− 1
2 drpdg

=

∫
GLn1

×GLn2

ΦW 1
Sh
(m1)ΦW 2

Sh
(m2)f

1(m1)f
2(m2)|detm1 detm2|s−

1
2 dm1dm2

= Z(W 1
Sh, s, f

1)Z(W 2
Sh, s, f

2)

if Re(s) is sufficiently large.

We give the proofs of Theorem 2.1 (ii), (iii), and (v):

proof of Theorem 2.1 (ii), (iii), (v). (ii) Embedding τ to the parabolic induction of some irreducible generic
representation and using Proposition 2.10 (i) repeatedly, we can assume that τ is generic and irreducible.
However, we have already proved (ii) for generic representations (Corollary 2.8).

(iii) It follows from Proposition 2.10 (i) and Proposition 2.11.
(v) It follows from Proposition 2.10 (ii).

2.4 The proof of Theorem 2.1 (vi)

We have already shown Theorem 2.1 (i), (ii), (iii), and (v) ((iv) will be shown in the next section). At the
end of this section, we prove (vi). We suppose that Theorem 2.1 (iv) holds here.

proof of Theorem 2.1 (vi). We can assume that τ = St(ρ,m) for some ρ ∈ Irrsc and m by Theorem 2.1 (iii).
If L(s, π⊠ τ) = 1, then L(π, s, τ) = L(s, π⊠ τ) = 1 by Corollary 2.8. Thus we only have to consider the case
where

1. ρ ∈ IrrGL1, π = ρ′ × ρ−1| · |t or St(ρ−1| · |t, 2) (ρ′ ∈ IrrGL1, t ∈ C s.t. ρ′ρ| · |−t 6= | · |±1) or

2. ρ ∈ IrrscGL2, π = ρ∨| · |t (t ∈ C).
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By Corollary 2.8, we have
L(π; s, τ) = Q(q−s, qs)L(s, π ⊠ τ)

and
L(π∨; 1− s, τ∨) = Q̃(q−s, qs)L(1− s, π∨ ⊠ τ∨)

for some Q(X,Y ), Q̃(X,Y ) ∈ C[X,Y ]. Dividing the second equation by the first equation, we have that
γ(π; s, τ) coincides with Q(q−s, qs)Q̃(q−s, qs)−1γ(s, π ⊠ τ) up to a unit. By Theorem 2.1 (v), we have

γ(π; s, τ) =

m∏
i=1

γ(π; s+m/2 + 1/2− i, ρ).

By Lemma 2.9, the equation L(π; s, ρ) = L(s, π⊠ ρ) holds. Thus γ(π; s, τ) coincides with γ(s, π⊠ τ) up to a
unit. Consequently, we have

Q(q−s, qs) = cqlsQ̃(q−s, qs)

for some c ∈ F× and l ∈ Z. Namely, Q(q−s, qs) ∈ C[q−s, qs] is a common factor of L(s, π ⊠ τ)−1 and
L(1− s, π∨ ⊠ τ∨)−1.

Assume that π and τ satisfy the conditions in 2. Then, we have

L(s, π ⊠ τ)−1 = 1− q−s−t−
m−1

2

and
L(1− s, π∨ ⊠ τ∨)−1 = 1− q−1+s+t−m−1

2 = −q−1+s+t−m−1
2 (1− q−s−t+

m+1
2 )

by Theorem of [JPSS83, §(8.2)]. Thus L(s, π ⊠ τ)−1 and L(1 − s, π∨ ⊠ τ∨)−1 are relatively prime, and we
have L(π; s, τ) = L(s, π ⊠ τ).

Assume that π and τ satisfy the conditions in 1. We also assume n > 1 since we have already shown that
L(π; s, τ) = L(s, π ⊠ τ) for n = 1 (Lemma 2.9). Then, we have

L(s, π ⊠ τ)−1 =


(1− q−s−t−

n
2 )(1− q−s−t−

n
2 +1) if π = St(ρ−1| · |t, 2);

(1− q−s−t
′−n−1

2 )(1− q−s−t−
n−1
2 ) if π = ρ−1| · |t′ × ρ−1| · |t (| · |t−t′ 6= | · |±1);

(1− q−s−t−
n−1
2 ) otherwise

and

L(1− s, π∨ ⊠ τ∨)−1 =


(1− q−s−t+

n
2 +1)(1− q−s−t+

n
2 ) if π = St(ρ−1| · |t, 2);

(1− q−s−t
′+n+1

2 )(1− q−s−t+
n+1
2 ) if π = ρ−1| · |t′ × ρ−1| · |t (| · |t−t′ 6= | · |±1);

(1− q−s−t+
n+1
2 ) otherwise

up to a unit. Therefore, we have L(π; s, τ) = L(s, π ⊠ τ) unless π = ρ−1| · |t±n × ρ−1| · |t for some t ∈ C.
However, the case π = ρ−1| · |t±n × ρ−1| · |t does not occur since π is approximately tempered.

Remark 2.12. Using [CFK, Proposition C.10], Theorem 2.1 (vi) follows from Theorem 2.1 (iii) and Corollary
2.8 immediately.

3 The functional equation

In this section, we prove the functional equation (Theorem 2.1 (iv)). As mentioned in Remark 2.2, it has
already been proven. However, for the convenience of the readers, we prove it without the results in [CFK].

The key to the proof is the following proposition.
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Proposition 3.1. Let τ ∈ IrrscGLn and τ ′ ∈ IrrGLn. Then, we have

dimC HomGLn×GLn(πn, τ ⊠ τ ′) ≤ 1

if τ ′ = τ∨χπ and
dimC HomGLn×GLn

(πn, τ ⊠ τ ′) = 0

otherwise. (Here, we think of GLn ×GLn as the diagonal subgroup diag(GLn,GLn) of GL2n.)

We give the proof in §3.4.
By this proposition, we obtain Theorem 2.1 (iv) as follows:

proof of Theorem 2.1 (iv). By Proposition 2.10 (ii), we can assume τ ∈ IrrscGLn.
For any s ∈ C, the map

(WSh, v, v
∨) 7→ Z(WSh, s, 〈τ(·)v, v∨〉)/L(π; s, τ), WSh ∈ Wψ

Sh(πn), v ∈ τ, v∨ ∈ τ∨

is well-defined by Corollary 2.8 and its linear extension on Wψ
Sh(πn)⊗ τ ⊗ τ∨ defines a nonzero element of

Homdiag(GLn,GLn)wn (πn ⊗ (τ | · |s− 1
2 ⊠ τ∨χ−1

π | · |−s+ 1
2 ),C) ' Homdiag(GLn,GLn)wn (πn, τ

∨| · |−s+ 1
2 ⊠ τχπ| · |s−

1
2 )

' HomGLn×GLn
(πn, τ

∨| · |−s+ 1
2 ⊠ τχπ| · |s−

1
2 ).

On the other hand, it is easy to check that the linear extension of

(WSh, v, v
∨) 7→ Z(W̃Sh, 1− s, 〈v, τ∨(·)v∨〉)/L(π∨; 1− s, τ∨), WSh ∈ Wψ

Sh(πn), v ∈ τ, v∨ ∈ τ∨

on Wψ
Sh(πn) ⊗ τ ⊗ τ∨ defines a nonzero element of the same space. By Proposition 3.1, these two maps

coincide up to a constant. Thus, there is a function ε on C such that

Z(W̃Sh, 1− s, 〈v, τ∨(·)v∨〉)/L(π∨; 1− s, τ∨) = ε(s)Z(WSh, s, 〈τ(·)v, v∨〉)/L(π; s, τ)

for any WSh ∈ Wψ
Sh(πn), v ∈ τ, v∨ ∈ τ∨. By Theorem 2.1(ii), we obtain

γ(s) = L(π∨; 1− s, τ∨)ε(s)/L(π; s, τ) ∈ C(q−s)

as required.

We introduce some additional notations.
Let k, l be positive integers such that k ≥ l. Then, we often identify GLk−l with diag(GLk−l, 1l) ⊂ GLk.

Define

Dk
l =

(
GLk−l ∗

1l

)
= GLk−lU(k−l,l) ⊂ GLk

and

Dk
l oDl

m =

GLk−l ∗ ∗
GLl−m ∗

1m

 = Dk
l

(
1k−l

Dl
m

)
⊂ Dk

m

for m ∈ Z>0 such that l ≥ m. Moreover, for representations µ and σ of GLk−l and Dl
m, respectively, we

denote
Ind

Dk
m

Dk
l ⋊Dl

m
µ⊠ σ

by µo σ, where µ⊠ σ is regarded as a representation of Dk
l oDl

m by

U(k−l,l)\Dk
l oDl

m ' GLk−l ×Dl
m.

We note that (µo σ)|GLk−m
= µ ∗ σ|GLl−m

.
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Let i be a positive integer such that i ≤ n. We define

Ni =

{(
X Y

1i

)∣∣∣∣ X ∈ U(1i), Y ∈ Mi(F ) : upper triangular

}
⊂ D2i

i

and a character ΨNi
of Ni by

ΨNi

((
X Y

1i

))
= ψ(trY )

and put

Ii = ind
D2i

i

Ni
ΨNi .

3.1 The Kirillov-Shalika model

We start with the following lemma:

Lemma 3.2. We regard ψ ◦ tr as a character of U(n,n) by U(n,n) ' Mn(F ).

(i) Any nonzero subrepresentation of Ind
D2n

n

U(n,n)
ψ ◦ tr contains indD

2n
n

U(n,n)
ψ ◦ tr. In particular, ind

D2n
n

U(n,n)
ψ ◦ tr

is the unique irreducible subrepresentation of Ind
D2n

n

U(n,n)
ψ ◦ tr.

(ii) We have In ' ind
D2n

n

U(n,n)
ψ ◦ tr.

(i) and (ii) are special cases of more general statements [LM20, Lemma 3.12] and [LM20, Lemma 3.14],
respectively.

Let χ be a character of F×. Then, we can extend the action of D2n
n on Ind

D2n
n

U(n,n)
ψ ◦ tr to P(n,n) by

(diag(1n, g))f := χ(det g)f
(
diag(g−1, 1n)·

)
for any g ∈ GLn. We denote the extended representation by Ĩχn and the P(n,n)-submodule ind

D2n
n

U(n,n)
ψ ◦ tr of

Ĩχn by Iχn .

Let W ′ψ
Sh(πn) be the ‘ordinal’ Shalika model of πn i.e., a (unique) subspace of IndGL2n

U(n,n)
ψ ◦ tr which

realizes πn. We note that the isomorphism from Wψ
Sh(πn) to W ′ψ

Sh(πn) is given by WSh 7→ WSh(wn·) for

WSh ∈ Wψ
Sh(πn).

We define the Kirillov-Shalika model Kψ(πn) of πn by

Kψ(πn) = {W ′
Sh|D2n

n
| W ′

Sh ∈ Wψ
Sh(πn)}.

Then, the kernel of W ′ψ
Sh(πn) ↠ Kψ(πn) is a P(n,n)-module. Therefore, as a space with P(n,n)-action induced

by πn|P(n,n)
, Kψ(πn) is a subrepresentation of Ĩχπ

n .

If π is approximately tempered, then W ′ψ
Sh(πn) ↠ Kψ(πn) is bijective ([LM20, Corollary 4.4]). Thus, we

have the following proposition.

Proposition 3.3. Assume π is approximately tempered. Then, πn has a unique irreducible D2n
n -submodule.

Moreover, this submodule is a P(n,n)-submodule and is isomorphic to Iχπ
n as a P(n,n)-representation.

3.2 Special cases

We consider Proposition 3.1 for some special cases.

Lemma 3.4. Assume π is not supercuspidal. Then, Proposition 3.1 holds.
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Proof. Since π is not supercuspidal, πn is a quotient of the degenerate principal series 1GLn
χ1 × 1GLn

χ2 for
some χ1, χ2 ∈ IrrGL1. Then we have

dimC HomGLn×GLn
(πn, τ ⊠ τ ′) ≤ dimC HomGLn×GLn

(1GLn
χ1 × 1GLn

χ2, τ ⊠ τ ′).

Similar to [HKS96, Theorem 4.3], the equality

dimC HomGLn×GLn
(1GLn

χ1 × 1GLn
χ2, τ ⊠ τ ′) =

{
1 if τ ′ = τ∨χπ;

0 otherwise

is easy to verify by the filtration of 1GLn
χ1 × 1GLn

χ2 in [AK18, Lemma 2.5].

Lemma 3.5. Assume π is supercuspidal. Then, Proposition 3.1 holds if n = 1, 2.

Proof. If n = 1, then it follows from {ΦW | W ∈ Wψ(π)} = S(F×).
Assume n = 2. Then

dimC HomGL2×GL2
(π2, τ ⊠ τ ′) = 0

if τ ′ 6= τ∨χπ and
dimC HomGL2×GL2

(π2, τ ⊠ τ∨χπ) ≤ 1

unless τ = π| · | 12 by [LM20, Proposition 7.1]. Since HomGLn×GLn(πn, τ ⊠ τ ′) ' HomGLn×GLn(πn, τ
′ ⊠ τ) in

general, we have dimC HomGL2×GL2(π2, τ ⊠ τ∨χπ) ≤ 1 in general.

3.3 The filtration

In this subsection, we give a good filtration of πn. Assume that π is supercuspidal here.
The following fact is essential:

Proposition 3.6. For any π′ ∈ IrrscGL2, we have

Sp(π′, n)|D2n
1

' Sp(π′, n− 1)| · |1/2 o I1.

This is a special case of a more general result [Zel80, Theorem 3.5].
Using this, we obtain the following:

Lemma 3.7. Let i, k be positive integers such that k < 2i < 2n and σ = (σ, V ) be a representation of D2i
k .

Then, the following D2n
k -module

Σ = πn−i| · |
i
2 o σ

has a D2n
k+1-submodule J such that

Σ|D2n
k+1

/J ' πn−i| · |
i
2 o σ|D2i

k+1
, J ' πn−i−1| · |

i+1
2 o ind

D2i+2
k+1

G σ,

where

G =


1 ∗ ∗ ∗

GL2i−k ∗
1

1k


and σ = (σ, V ) is defined by

σ



1 ∗ a ∗

b c
1

1k


 = ψ(a)σ

((
b c

1k

))
.
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Proof. Put H = D2n
2i oD2i

k . Since

H\D2n
k /D2n

k+1 ' P(2n−2i,2i−k)\GL2n−k/D
2n−k
1 ,

we have
D2n
i = HD2n

k+1 tHwD2n
k+1,

where w =


12n−2i−1

1
12i−k

1k

. We note that H ∩D2n
k+1 = D2n

2i oD2i
k+1 and

w−1Hw ∩D2n
k+1 =


GL2n−2i−1 ∗ ∗ ∗

GL2i−k ∗
1

1k

 .

Put J = {f ∈ Σ |suppf ⊂ HwD2n
i+1}. Then, J is D2n

k+1-module and we have

Σ|D2n
k+1

/J ' πn−i| · |
i
2 o σ|D2i

k+1
, J ' ind

D2n
k+1

w−1Hw∩D2n
k+1

σ′,

where πn−i| · |i/2 = (πn−i| · |i/2, V ′) and σ′ = (σ′, V ′ ⊗ V ) is defined by

σ′



a ∗ b ∗

c d
1

1k


 = πn−i| · |i/2

((
a b

1

))
⊗ σ

((
c d

1k

))
.

Then, since πn−i| · |i/2|D2n−2i−1
1

' πn−i−1| · |
i+1
2 o I1 by Proposition 3.6, we have

σ′ ' ind
w−1Hw∩D2n

k+1

G′ πn−i−1| · |
i+1
2 ⊠ σ,

where G′ = D2n
2i+2diag(12n−2i−2, G) and πn−i−1| · |

i+1
2 ⊠ σ is regarded as a representation of G′ by

U(2n−2i−2,2i+2)\G′ ' GL2n−2i−2 ×G.

Thus we have

J ' πn−i−1| · |
i+1
2 o ind

D2i+2
k+1

G σ.

We obtain the following:

Proposition 3.8. There is a sequence

πn = J ′
1 ⊃ J ′

2 · · · ⊃ J ′
n

of subspaces of πn such that

• J ′
i is isomorphic to Ji = Ji(π, n) := πn−i| · |i/2 o Ii as D

2n
i -representation (i = 1, . . . , n) and

• J ′
i |D2n

i+1
/J ′
i+1 ' Ki = Ki(π, n) := πn−i| · |

i
2 o Ii|D2i

i+1
(i = 1, . . . , n− 1).

Proof. We have πn|D2n
1

' J1 by proposition 3.6. Then, using Lemma 3.7 repeatedly, we have this proposition

immediately (note that if σ = Ii, we have ind
D2i+2

i+1

G σ ' Ii+1 under the notations in Lemma 3.7).
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3.4 The proof of Proposition 3.1

Finally, we give the proof of Proposition 3.1.

proof of Proposition 3.1. By Lemma 3.4 and 3.5, we can assume that π is supercuspidal and n > 2.
By Proposition 3.3 and 3.8, the restriction map

HomGLn×GLn
(πn, τ × τ ′) → HomGLn×GLn

(J ′
n, τ × τ ′) ' HomGLn×GLn

(Iχπ
n , τ × τ ′)

is well-defined. We show that this map is injective. Suppose HomGLn×GLn(πn/J
′
n, τ × τ ′) 6= 0 for the sake of

contradiction. Then, we have HomGLn
(πn/J

′
n, τ) 6= 0. By Proposition 3.8, we have HomGLn

(Ki, τ) 6= 0 for
some i ∈ {1, . . . , n− 1}. Finally, using Proposition 3.6 and Lemma 3.7 repeatedly, we have

HomGLn
(πn−j | · |j/2 o σ, τ) = HomGLn

(πn−j | · |j/2 ∗ σ|GL2j−n
, τ) 6= 0

for some j ∈ Z>0 such that j < n ≤ 2j and representation σ of D2j
n . This contradicts τ ∈ Irrsc and n/2 > 1.

Therefore, we have

dimC HomGLn×GLn(I
χπ
n , τ × τ ′) ≥ dimC HomGLn×GLn(πn, τ × τ ′).

On the other hand, the equality

dimC HomGLn×GLn
(Iχπ
n , τ × τ ′) =

{
1 if τ ′ = τ∨χπ;

0 otherwise

holds since Iχπ
n |GLn×GLn

' indGLn×GLn

∆GLn
χπ(det), where ∆GLn is the diagonal embedding of GLn to GLn ×GLn.

Thus we get the required statement.

4 Some remarks for general rank case

By Theorem 2.1 (ii), we have
HomGLn×GLn

(πn, τ ⊠ τ∨χπ) 6= 0

for any τ ∈ IrrGLn if π is approximately tempered. To conclude this paper, let us consider the branching
laws of the Speh representations with respect to general block diagonal subgroups.

Theorem 4.1. Assume π is approximately tempered. Then, we have

HomGLn×GLn+2l
(πn+l, τ ⊠ τ∨χπ × πl) 6= 0

for any τ ∈ IrrGLn.

Proof. Let L be a nonzero element of HomGLn×GLn(πn| · |
l
2 , τ ⊠ τ∨χπ| · |l). For f ∈ πn| · |−

l
2 × πl| · |

n
2 =

πn| · |
l
2 ∗ πl| · |−

n
2 , define L̃f(g) = L⊗ id

πl|·|−
n
2
(f(g)) for any g ∈ GLn+2l. Then, L̃ is a nonzero element of

HomGLn×GLn+2l
(πn| · |−

l
2 × πl| · |

n
2 , τ ⊠ τ∨χπ × πl)

and the following diagram

πn| · |−
l
2 × πl| · |

n
2

f 7→f(12n+2l)−−−−−−−−→ πn| · |
l
2 ⊠ πl| · |−

n
2

L̃

y L⊗id

y
τ ⊠ τ∨χπ × πl

f ′ 7→f ′(1n+2l)−−−−−−−−−→ τ ⊠ τ∨χπ| · |l ⊠ πl| · |−
n
2

is commutative.
Since π is approximately tempered, πn+l is a subrepresentation of πn| · |−

l
2 ×πl| · |

n
2 . Since πn| · |

l
2 ⊠πl| · |−

n
2

is irreducible, πn+l is mapped onto πn|·|
l
2 ⊠πl|·|−

n
2 by substituting the unit. Then, by the above commutative

diagram, we have L̃|πn+l
is a nonzero element of HomGLn×GLn+2l

(πn+l, τ ⊠ τ∨χπ × πl).
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Let τ ′ ∈ IrrGLn+2l. According to [AK18, Proposition 2.3], τ ′ and τ∨χπ × πl have the same cuspidal
support if π, τ , and τ ′ are unramified and HomGLn×GLn+2l

(πn+l, τ ⊠ τ ′) 6= 0 (we note that if π and τ are
unramified and unitary, then τ∨χπ × πl is unramified and unitary). This fact is important for determining
the near equivalence classes of global Miyawaki lifts (see [Ito]). Furthermore, considering Proposition 3.1, it
is natural to expect the following conjecture:

Conjecture 4.2. Assume π, τ, and τ ′ are unitary. Then, the following should hold:

(i) (uniqueness) HomGLn×GLn+2l
(πn+l, τ ⊠ τ ′) 6= 0 ⇒ τ ′ = τ∨χπ × πl.

(ii) (multiplicity at most one) dimC HomGLn×GLn+2l
(πn+l, τ ⊠ τ ′) ≤ 1.
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