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Abstract

In this thesis, based on the higher-order matched asymptotic expansion with the analytic
expression of the Green’s function of the Laplace–Beltrami operator on the toroidal surface,
we study the quasi-stationary states consisting of localized spots in a reaction-diffusion system
on the surface of a torus with major radius R and minor radius r. Under the assumption
that these localized spots persist stably, we analytically obtain the evolution equation of
slow dynamics for the centers of localized spot patterns on the toroidal surface. Owing to
the analytic representation of the evolution equation, we investigate the existence of equilibria
with a single spot, two spots, N -ring configuration where N localized spots are equally spaced
along a latitudinal line with a mathematical rigor and two N -rings configuration on the surface
of torus. We show that localized spots at the innermost/outermost locations of the torus are
equilibria for any aspect ratio α = R

r . In addition, we obtain there exists a range of the aspect
ratio in which localized spots stay at a special location of the torus and for the case of a single
spot, this special location is stable. The theoretical results and the linear stability of these
spot equilibria are confirmed by solving Brusselator reaction-diffusion model by numerical
means. We also list some numerical simulations about spot division of Brusselator reaction-
diffusion model on the torus and compare the existence and spot dynamics of spot equilibria
on the toroidal surface with the unit sphere. This thesis is an extension of the study of [26]
and we add some new results.
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Chapter 1

Introduction

Self-organizing beautiful patterns of localized spot-like structures appear ubiquitously in many
phenomena including animal skin, chemical reaction, cellular differentiation and many others.
In order to clarify the mechanism of spot patterns theoretically, it is helpful to construct
phenomenological models describing the dynamics of those localized spot structures. A well-
known model for localized spot structures is obtained from reaction-diffusion (RD) systems,
in which spatially homogeneous steady states self-organize into localized spot structures due
to Turing instability [30]. The localized spot patterns of reaction-diffusion systems is widely
observed and applied in chemistry [6, 19, 22, 28, 34], biology [11, 18, 21, 27], physics [1, 2].
More examples of localized patterns in reaction-diffusion systems are also found in [35].

In order to construct localized patterns and analyze dynamics of localized patterns of
RD systems, the method of matched asymptotic expansions is often used in the studies of
RD systems. By using this method, the localized spot patterns and spot dynamics of the
Gierer–Meinhardt RD model [12, 13] and the Gray–Scott RD model [7, 16] are analyzed in
1D domain. For the case of 2D domain: a bounded domain of plane, this method is used
to construct localized spot patterns of the Gierer–Meinhardt RD model [15], the Gray–Scott
RD model [5], the Schnakenburg RD model [17], and to analyze their dynamics and stability
analytically. In addition, by using the method of matched asymptotic expansions to analyze
spot patterns of Schnakenburg RD model on the 2D domain, Kolokolnikov et al. [17] obtained
that the direction of the self-replication should be perpendicular to the direction of the motion.
Unlike the studies in 1D and 2D domain, only a few studies analyzed the dynamics of localized
spot on the surface. Using the method of matched asymptotic expansions, Rozada et al.
[24] constructed the quasi-equilibrium solutions of spot pattern on the sphere and obtain
spot self-replication instability, competition instability and oscillatory instability. Using the
higher-order matching, Trinh and Ward [29] obtained evolution equation of slow dynamics for
spot patterns on the sphere. Some detailed results for the existence and bifurcation structure
of N -spot patterns are also obtained in [29]. In the meantime, another remarkable geometric
feature of compact surfaces is the existence of handle structures. Hence, it is interesting to
investigate how the handles affect the dynamics and the stability of localized spot patterns.
One of the simplest compact surfaces is a toroidal surface with major radius R and minor
radius r. Different from the surface of a sphere, it has not only nonconstant curvature but also
a handle that is measured by the aspect ratio α = R/r. Tzou and Tzou [32] have proposed
an analytic-numerical method for computing the Green’s function for Helmholtz operators
on curved surfaces, which is applied to derive an ODE describing a slow dynamics of N
localized spots for Schnakenberg reaction-diffusion model. With this model, they numerically
investigate the stability of one and two localized spots. Sakajo and Wang [26] utilized the
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explicit analytic formula of the Green’s function of the Laplace–Beltrami operator on the
toroidal surface and obtained the existence and slow dynamics of localized quasi-equilibrium
multispot patterns on the toroidal surface, and analyzed equilibria of 1-spot, 2-spot, N -ring
spot pattern and their stabilities.

In this thesis, we consider a reaction-diffusion system of the following form on a surface
M.

ut = ϵ2△Mu+ ϵ2A+ F u(u, v), τvt = △Mv +B +
1

ϵ2
F v(u, v), (1.1)

where △M is the Laplace–Beltrami operator on M, and the reaction terms F u(u, v) and
F v(u, v) are specified by

F u(u, v) = a1u+ u2
n∑

i,j=0

ai,ju
ivj , F v(u, v) = b1u+ u2

n∑
i,j=0

bi,ju
ivj . (1.2)

Here, we assume that a1 < 0, τ > 0, n ∈ N0, A,B, b1, ai,j , bi,j ∈ R are independent of ϵ
and 0 < ϵ ≪ 1. We define the parameter E = B − b1

a1
A > 0 for later use. One example of

(1.1) is Brusselator reaction-diffusion (BRD) model which is used as a mathematical model
of reaction mechanism [23, 31]. It is specified by

ut = ϵ2△Mu+ ϵ2A− u+ fu2v, τvt = △Mv +
1

ϵ2
(u− u2v), (1.3)

in which F u(u, v) = −u + fu2v, F v(u, v) = u − u2v, A > 0 and B = 0 in (1.1) with an
additional parameter 0 < f < 1 satisfying τ = 1

f2 . Note that the model is considered on

a bounded domain of plane [4, 33] as well as on the unit sphere [24, 29]. Another example
of reaction-diffusion system model (1.1) is Schnakenberg model [32], in which τ > 0, A = 0,
B > 0, F u(u, v) = −u+ u2v and F v(u, v) = −u2v.

This thesis is an extension of the study of [26]. In Chapter 2, based on the higher-order
matched asymptotic expansion, we derive the quasi-equilibrium solutions of localized spot
pattern and an ODE describing the slow dynamics of localized spot centers of the reaction-
diffusion system (1.1) on a toroidal surface. In Chapter 3, using the ODE, we show that
localized spots at the innermost or outermost locations of the torus are equilibria for any
aspect ratio α = R

r . Furthermore, we investigate the existence of equilibria having one spot,
two spots, N -ring and two N -rings configuration. The linear stability of these equilibria are
discussed. Section 3.1 and Section 3.5 are new results, and Sections 3.2 to 3.4 have been pub-
lished in [26]. The explicit analytic formula of the Green’s function of the Laplace–Beltrami
operator on the toroidal surface [25] is used in the derivation. This is different from the
derivation by [32], in which the Helmholtz Green’s function is constricted numerically. Owing
to the analytic formula, we can conduct rigorous mathematical analysis of the spot dynamics.
We also carry out numerical simulations of the BRD model (1.3), which are compared with
our theoretical results. In Chapter 4, we list some numerical simulations about spot division
of BRD model (1.3) on the torus. In Chapter 5, based on the study [24, 14, 29] of the BRD
model (1.3) on the unit sphere, we derive the quasi-equilibrium solutions of localized spot
pattern, evolution equation of slow dynamics of RD model (1.1) and compare the existence
and spot dynamics of equilibria on the toroidal surface with on the unit sphere. This chapter
is new content. The last chapter is a summary. In Appendix A, we show the asymptotic
expansions of the Green’s function which are used in deriving the quasi-equilibrium solutions
of localized spot. In Appendix B, an algorithm computing equilibria and their stability nu-
merically is shown. In Appendix C, we briefly introduce the surface finite element method
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and give an example of discrete approximation of the BRD model by using this method. In
this thesis, the theoretical results of spot dynamics are confirmed by solving the numerical
evolution of the BRD model (1.3) by Adaptive MultiDimensional Simulations [36, 37].
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Chapter 2

Quasi-stationary Spot Solution on
the Surface of a Torus

Let TR,r denote the toroidal surface with major radius R and minor radius r that is embedded
in the Euclidean space E3.

TR,r = {x ∈ E3 |x = ((R− r cos θ) cosφ, (R− r cos θ) sinφ, r sin θ)}, (2.1)

where (θ, φ) ∈ (R/2πZ)× (R/2πZ) is the toroidal coordinates. Let us consider the reaction-
diffusion model (1.1) on the torus M = TR,r, where the Laplace–Beltrami operator is specified
by

△TR,r
=

1

r2(R− r cos θ)

∂

∂θ

(
(R− r cos θ)

∂

∂θ

)
+

1

(R− r cos θ)2
∂2

∂φ2
.

2.1 Construction of localized spots

Following the asymptotic analysis in [24], we construct a quasi-stationary solution of RD model
(1.1) on the toroidal surface in the limit of ϵ → 0. Suppose that the quasi-stationary spot
solution solution at a scaled time σ = ϵ2t consists ofN localized spots located at (θj(σ), φj(σ)),
j = 1, . . . , N . Since ∂x

∂θ = (r sin θ cosφ, r sin θ sinφ, r cos θ) and ∂x
∂φ = (−(R−r cos θ) sinφ, (R−

r cos θ) cosφ, 0), we obtain ∂x
∂θ ·

∂x
∂φ = 0,

∣∣∣∂x∂φ ∣∣∣ = r and
∣∣∣∂x∂φ ∣∣∣ = (R− r cos θ). Then, we introduce

a local coordinate y = (y1, y2) of O(ϵ) around the jth spot as follows.

y1(θ, σ) = rϵ−1(θ − θj(σ)), y2(φ, σ) = (R− r cos θj(σ))ϵ
−1(φ− φj(σ)). (2.2)

It follows from

1

r2(R− r cos θ)

∂

∂θ

(
(R− r cos θ)

∂

∂θ

)
=

1

ϵ

sin θ

R− r cos θ

∂

∂y1
+

1

ϵ2
∂2

∂y21
,

1

(R− r cos θ)2
∂2

∂φ2
=

(R− r cos θj)
2

ϵ2(R− r cos θ)2
∂2

∂y22
=

1

ϵ2

(
1− 2 sin θ

R− r cos θ
ϵy1 +O

(
ϵ2
)) ∂2

∂y22
,

sin θ

R− r cos θ
=

sin θj
R− r cos θj

+O(ϵ)
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that we obtain

△TR,r
=

1

ϵ2

(
∂2

∂y21
+

∂2

∂y22
+

ϵ sin θj
R− r cos θj

∂

∂y1
− 2ϵy1 sin θj
R− r cos θj

∂2

∂y22
+O(ϵ2)

)
=

1

ϵ2
(
△y + ϵNj +O

(
ϵ2
))
,

(2.3)

where △y = ∂2

∂y21
+ ∂2

∂y22
and

Nj =
sin θj

R− r cos θj

(
∂

∂y1
− 2y1

∂2

∂y22

)
.

With the local coordinates y = (y1, y2) and the scaled time σ in the inner region of the jth
spot, the solutions u and v of RD model (1.1) can be expressed by u(y1, y2, σ) and v(y1, y2, σ).
Owing to |φ− φj | ≤ O(ϵ) in the jth inner spot, we obtain

∂u

∂t
=

∂u

∂y1

∂y1
∂σ

∂σ

∂t
+
∂u

∂y2

∂y2
∂σ

∂σ

∂t
+
∂u

∂σ

∂σ

∂t

= −rϵdθj
dσ

∂u

∂y1
− (R− r cos θj)ϵ

dφj

dσ

∂u

∂y2
+ ϵ(φ− φj)r sin θj

dθj
dσ

∂u

∂y2
+ ϵ2

∂u

∂σ

= ϵLju+O(ϵ2)

(2.4)

and similarly
∂v

∂t
= ϵLjv +O(ϵ2),

where

Lj = −
(
r
dθj
dσ

, (R− r cos θj)
dφj

dσ

)
· ∇y, ∇y =

(
∂

∂y1
,
∂

∂y2

)
. (2.5)

The solutions of (1.1) near the jth spot are expanded with respect to ϵ as follows.

u(y1, y2, σ) =
∞∑
n=0

ϵnujn, v(y1, y2, σ) =
∞∑
n=0

ϵnvjn. (2.6)

We here define wjn = (ujn, vjn)
T . In the inner region near the jth spot, substituting (2.3),

(2.4) and (2.6) into (1.1), we obtain the equation for the quasi-steady solution at the leading
order of ϵ on y ∈ R2.

△yuj0 + F u(uj0, vj0) = 0, △yvj0 + F v(uj0, vj0) = 0. (2.7)

At the next order, by introducing P = △y + Mj , where Mj =

(
∂Fu

∂u
(uj0,vj0)

∂Fu

∂v
(uj0,vj0)

∂Fv

∂u
(uj0,vj0)

∂Fv

∂v
(uj0,vj0)

)
,

the following equation for wj1 is derived.

Pwj1 = △ywj1 +Mjwj1 = −Njwj0 +

(
Ljuj0
0

)
. (2.8)

In order to construct radially symmetric localized solutions uj0(ρ) and vj0(ρ) of the equation
(2.7) where ρ = |y|, let us consider the following boundary value problem:

△ρuj0 + F u(uj0, vj0) = 0, △ρvj0 + F v(uj0, vj0) = 0, 0 < ρ <∞,

u′j0(0) = v′j0(0) = 0, uj0 → 0, vj0 ∼ Sj log ρ+ χ(Sj) + o(1) as ρ→ ∞,
(2.9)
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where χ(Sj) is a constant independent of ρ, △ρ = ∂ρρ +
1
ρ∂ρ, and uj0 is exponentially small

as ρ → ∞. This is called the core problem, in which parameter Sj is referred to as the
strength of the jth spot. On the other hand, we consider the solutions of RD model (1.1) in
the region outside of the spot with the scale of O(ϵ). The Taylor expansion of x(θ, φ) in the
neighborhood of xj = ((R− r cos θj) cosφj , (R− r cos θj) sinφj , r sin θj) is given by |x−xj |2 =
ϵ2(yTMT

j Mjy)+O(ϵ3), where x(θ, φ) = ((R− r cos θ) cosφ, (R− r cos θ) sinφ, r sin θ) andMj

is defined by

Mj =

cosφj sin θj − sinφj

sinφj sin θj cosφj

cos θj 0

 . (2.10)

It follows from MT
j Mj = I and yTy = ρ2 that we obtain |x − xj | = ϵρ + O(ϵ2). Owing to

the quasi-stationarity of the solution, u should satisfy ut = 0 and △TR,r
u = 0 in the region

separated from O(ϵ) neighborhoods of the localized spots at {x1, . . . ,xN}. In the outer region

of the spots, since the nonlinear term is negligible, we obtain u ∼ − ϵ2A
a1

for a1 ̸= 0. Combining
the inner and outer approximations of u, we have the following asymptotic expression of u in
the outer region:

u ∼ −ϵ2 A
a1

+

N∑
j=1

uj0.

Regarding the equation (1.1) for v in the outer region, we have B + 1
ϵ2
F v ∼ B + b1

ϵ2
u ∼ E in

the outer region of spots, since the nonlinear terms are negligibly small. Since |x− xj | ∼ ϵρ,
uj ∼ uj0 and vj ∼ vj0 in the inner region of the jth spot, the contribution in F v(u, v) from
the jth localized spots to the outer region is approximated by the delta function bδ(x − xj)
whose weight b is obtained by integrating the nonlinear term in the disk of radius ϵρ around
the jth spot.

b = ϵ2
∫ 2π

0
dθ

∫ ∞

0
F v(uj0, vj0)ρdρ = −2πϵ2

∫ ∞

0
(ρ∂ρρvj0 + ∂ρvj0)dρ

= −2πϵ2 [ρ∂ρvj0]
∞
0 = −2πϵ2Sj .

Hence, by combining the inner and outer approximations for B + 1
ϵ2
F v(u, v), we obtain

B +
1

ϵ2
F v(u, v) ∼ E − 2π

N∑
j=1

Sjδ(x− xj). (2.11)

Using (2.11) and the far-field behavior of the inner solution (2.9), we finally obtain the fol-
lowing outer problem for v subject to the matching condition:

△TR,r
v + E = 2π

N∑
j=1

Sjδ(x− xj), |x− xj | > O(ϵ), j = 1, . . . , N, (2.12)

v ∼ vj0 + ϵvj1 ∼ Sj log ρ+ χ(Sj) + ϵvj1 + o(1), |x− xj | → O(ϵ), j = 1, . . . , N. (2.13)

To solve (2.12), we make use of the Green’s function G(x;x0) associated with the toroidal
surface, satisfying

△TR,r
G(x;x0) = −δ(x− x0) +

1

4π2Rr
, G(x;x0) = G(x0;x). (2.14)
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According to [25], the Green’s function on the toroidal surface is explicitly represented by

G(x;x0) = − 1

2π
log

∣∣∣∣P ( ζ

ζ0

)∣∣∣∣− F (θ)− F (θ0)−
1

4π2A
K(θ)K(θ0) +

1

4π
K(θ)− 1

4π
K(θ0),

(2.15)

where

K(θ) = −
∫ θ

0

dη

α− cos η
, F (θ) = − 1

4π2α

∫ θ

0

αη − sin η

α− cos η
dη, ζ(θ, φ) = eiφ exp (K(θ)) ∈ C

(2.16)
and A = (α2 − 1)−1/2 with α = R/r. Note that the variables x, (θ, φ) and ζ are related to
each other through the relations (2.1) and (2.16). In (2.15), the function P (ζ) denotes the
Schottky–Klein prime function associated with the annular domain Dζ = {ζ ∈ C|e−2πA <
|ζ| < 1}.

P (ζ) = (1− ζ)
∏
n≥1

(
1− e−2nπAζ

) (
1− e−2nπAζ−1

)
. (2.17)

If Sj satisfies
∑N

j=1 Sj = 2πrRE, the solution of (2.12) is expressed by

v = −2π

N∑
j=1

SjG(x;xj) + v (2.18)

with a constant v to be determined. In order to compute v, we match the behavior of the
outer solution (2.18) as |x−xj | → O(ϵ) and the far-field behavior of the inner solution (2.13)
of the jth spot as ρ → ∞. Let us rewrite Gj(x) = G(x;xj) for j = 1, 2, . . . , N , which is
divided into three parts:

2πGj(x) = − log

∣∣∣∣1− ζ(θ, φ)

ζ(θj , φj)

∣∣∣∣− logWj(θ, φ)−Qj(θ), (2.19)

where

Wj(θ, φ) =

∣∣∣∣∣∣
∏
n≥1

(
1− e−2nπA ζ(θ, φ)

ζ(θj , φj)

)(
1− e−2nπA

(
ζ(θ, φ)

ζ(θj , φj)

)−1
)∣∣∣∣∣∣ , (2.20)

Qj(θ) = 2π

(
F (θ) + F (θj) +

1

4π2A
K(θ)K(θj)−

1

4π
K(θ) +

1

4π
K(θj)

)
. (2.21)

As x → xj , it follows from (A.2) in Appendix A that we obtain

log

∣∣∣∣1− ζ(θ, φ)

ζ(θj , φj)

∣∣∣∣ = log ρ+ log ϵ− log (R− r cos θj)−
ϵ(1 + sin θj)y1
2(R− r cos θj)

+
ϵ sin θjy1y

2
2

2ρ2(R− r cos θj)

+O(ϵ2).
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Owing to (2.22) and (A.7) in Appendix A, we also have

logWj(θ, φ) = logWj(θj , φj) +
∂(logWj(θ, φj))

∂θ

∣∣∣∣
θ=θj

(θ − θj)

+
∂(logWj(θj , φ))

∂φ

∣∣∣∣
φ=φj

(φ− φj) +O(ϵ2)

=k +O(ϵ2),

Qj(θ) =Qj(θj) +
∂Qj

∂θ

∣∣∣∣
θ=θj

(θ − θj) +O(ϵ2) = qj +Q′
j(θj)

ϵy1
r

+O(ϵ2),

where k = logWj(θj , φj) = 2 log (
∏

n≥1

(
1− e−2nπA)), qj = Qj(θj) and

Q′
j(θ) = − 1

2πα

αθ − sin θ

α− cos θ
− 1

2πA
K(θj)

1

α− cos θ
+

1

2

1

α− cos θ
. (2.22)

Hence, as x → xj , we have

2πGj(xj) =− log ρ− log ϵ+ log (R− r cos θj) +
ϵ(1 + sin θj)y1
2(R− r cos θj)

− ϵ sin θjy1y
2
2

2ρ2(R− r cos θj)

− k − qj −Q′
j(θj)

ϵy1
r

+O(ϵ2).

On the other hand, by Taylor expansion, as x → xi for i ̸= j, we have

2πGj(x) ∼ 2πGj(xi) + 2π
∂Gj(θ, φ)

∂θ

∣∣∣∣
(θ,φ)=(θi,φi)

(θ − θi) + 2π
∂Gj(θ, φ)

∂φ

∣∣∣∣
(θ,φ)=(θi,φi)

(φ− φi)

= −
(
G̃ji + ∇(θ,φ)G̃j

∣∣∣
(θ,φ)=(θi,φi)

·
(
ϵy1
r
,

ϵy2
R− r cos θi

))
,

where G̃j = −2πGj , G̃ji = G̃j(xi), and ∇(θ,φ) = ( ∂
∂θ ,

∂
∂φ). Then, as |x − xj | → O(ϵ), by

matching the outer solution (2.18) of v and the far-field behavior of the inner solution (2.13)
of the jth spot, we have

−2π

N∑
i=1

SiGi(x) + v ∼ Sj log ρ+ χ(Sj) + ϵvj1, |x− xj | → O(ϵ),

which implies

Sj

(
log ρ+ log ϵ− log (R− r cos θj)−

ϵ(1 + sin θj)y1
2(R− r cos θj)

+
ϵ sin θjy1y

2
2

2ρ2(R− r cos θj)

)
+ Sjk + Sjqj

+
ϵSj
r
Q′

j(θj)y1 +

N∑
i=1
i ̸=j

Si

(
G̃ij + ∇(θ,φ)G̃i

∣∣∣
(θ,φ)=(θj ,φj)

·
(
ϵy1
r
,

ϵy2
R− cos θj

))
+ v

∼ Sj log ρ+ χ(Sj) + ϵvj1.

(2.23)

Matching the leading order of (2.23), we obtain

χ(Sj) = Sj(log ϵ− log (R− r cos θj) + k + qj) + v +
N∑
i ̸=j

SiG̃ij , j = 1, . . . , N. (2.24)
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Let us recall that the expression (2.18) is valid under the assumption that

N∑
j=1

Sj = 2πrRE. (2.25)

Hence, the matrix form of (2.24) and (2.25) is given by

χ(S)− (G + (log ϵ)I −P+K +Q)S = ve, eTS = 2πrRE, (2.26)

where

S =

S1
...
SN

 , e =

1
...
1

 , χ(S) =

χ(S1)
...

χ(SN )

 , G =


0 G̃12 · · · G̃1N

G̃21
. . .

...
...

G̃N1 · · · 0

 ,

P =


p1 0

p2
. . .

0 pN

 , K =


k 0

k
. . .

0 k

 , Q =


q1 0

q2
. . .

0 qN

 .

(2.27)

Here, pj = log (R− r cos θj) and qj = Qj(θj) for j = 1, 2, . . . , N . Since eTS =
∑N

j=1 Sj =

2πrRE and eTe = N , by taking the inner product between eT and the first equation of (2.26),
we have the following formula deriving the constant v from S and χ(S).

v =
1

N
(eTχ(S)− (eTG + (log ϵ)eT I − eTP+ eTK + eTQ)S)

=− 2πrRE log ϵ

N
+

1

N
(eTχ(S)− (eTG − eTP+ eTK + eTQ)S). (2.28)

Substituting (2.28) into (2.26), we have

S +
1

log ϵ
(I − e0)(G −P+K +Q)S =

1

log ϵ
(I − e0)χ(S) +

2πrRE

N
e, (2.29)

where e0 = 1
N eeT is the matrix whose components are all 1

N . The equation (2.29) gives rise
to a nonlinear equation g(S) = 0 for S. Suppose that there exist solutions Sj , uj0(ρ), vj0(ρ),
j = 1, . . . , N , of (2.29) and (2.9) for given N spot centers (θj , φj). In addition, if the solutions
uj0(ρ) and vj0(ρ) are spot-shaped for j = 1, 2 . . . , N , then the localized spot solutions uqe and
vqe of RD model (1.1) are represented by

uqe ∼ −ϵ2 A
a1

+
N∑
j=1

uj0(ϵ
−1|x− xj |), (2.30)

vqe ∼


vj0(ϵ

−1|x− xj |), |x− xj | ≤ O(ϵ),

−2π
N∑
j=1

SjG(x;xj) + v, |x− xj | > O(ϵ).
(2.31)
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2.2 Stability of localized spots

We assume that the quasi-equilibrium solution of (2.30) and (2.31) is stable up to eigenvalues
of O(1) when we derive the evolution equation for spot cores in the next section. Hence, we
discuss the stability of the quasi-stationary spot solutions uqe and vqe based on the analysis
in [24]. Substituting u = uqe + eλtψ, v = vqe + eλtϕ into RD model (1.1) and linearizing the
equation, we obtain the following eigenvalue problem:

ϵ2△TR,r
ψ +

∂F u

∂u
(uqe, vqe)ψ +

∂F u

∂v
(uqe, vqe)ϕ = λψ,

△TR,r
ϕ+

1

ϵ2

(
∂F v

∂u
(uqe, vqe)ψ +

∂F v

∂v
(uqe, vqe)ϕ

)
= τλϕ.

(2.32)

Since we are concerned with the stability of a localized spot in the inner region of the jth
spot, we expand

uqe(y1, y2, σ) =
∞∑
n=0

ϵnujn, vqe(y1, y2, σ) =
∞∑
n=0

ϵnvjn. (2.33)

Note that we have uqe ∼ uj0 and vqe ∼ vj0 in the inner region of the jth spot with the strength
Sj as the leading order. Assume now that uj0 and vj0 are radially symmetric functions, say
uj0(ρ) and vj0(ρ) which are solutions of the core problem (2.9). Using the local coordinates
(2.2) and (2.3) in the inner region of the jth spot, the eigenvalue problem (2.32) is reduced to

△yψ +
∂F u

∂u
(uj0, vj0)ψ +

∂F u

∂v
(uj0, vj0)ϕ+O(ϵ) = λψ,

△yϕ+
∂F v

∂u
(uj0, vj0)ψ +

∂F v

∂v
(uj0, vj0)ϕ+O(ϵ) = ϵ2τλϕ.

(2.34)

Furthermore, we assume τλ ≪ O(ϵ−2) and neglect the O(ϵ) term. Then, we obtain the
eigenvalue problem at the leading order.

△yψ +
∂F u

∂u
(uj0, vj0)ψ +

∂F u

∂v
(uj0, vj0)ϕ = λψ,

△yϕ+
∂F v

∂u
(uj0, vj0)ψ +

∂F v

∂v
(uj0, vj0)ϕ = 0.

(2.35)

By the separation of variables with ψ = ψ̂(ρ)eiωm and ϕ = ϕ̂(ρ)eiωm around the inner region
of the jth spot in the coordinates y = (y1, y2) = (ρ cosω, ρ sinω) and m = 0, 1, 2 . . . , the
equations (2.35) are reduced to those for the shape of the jth spot.

△ρψ̂ − m2

ρ2
ψ̂ + (a1 − λ)ψ̂ +

∂(u2fu)

∂u
(uj0, vj0)ψ̂ +

∂F u

∂v
(uj0, vj0)ϕ̂ = 0,

△ρϕ̂− m2

ρ2
ϕ̂+

∂F v

∂u
(uj0, vj0)ψ̂ +

∂F v

∂v
(uj0, vj0)ϕ̂ = 0,

(2.36)

where fu(u, v) =
∑n

i,j=0 ai,ju
ivj . Owing to the existence of (a1 − λ)ψ̂ in the equation (2.36)

for ψ̂, we impose that ψ̂ → 0 as ρ→ ∞ if Reλ > a1. The far-field condition for ψ̂ is given by
ψ̂′(0) = ϕ̂′(0) = 0 and ψ̂ → 0 as ρ→ ∞. In what follows, we consider the modes m ≥ 2, since
(ψ̂, ϕ̂) = (∂ρuj0, ∂ρvj0) is the solution of (2.36) corresponding to the λ = 0 for m = 1, which is

obtained by differentiating core problem (2.9). Hence, owing to the existence of −m2

ρ2
ϕ̂ in the

equation (2.36) for ϕ̂, the boundary condition for ϕ̂ is given by ϕ̂ → 0 as ρ → ∞ for m ≥ 2.
By solving the eigenvalue problem (2.36) numerically, we can observe the stability of the jth
spot.
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2.3 Derivation of evolution equation for spot cores

Based on the asymptotic analysis in [29], the evolution equation of N spot centers is derived
from the second-order inner core problem (2.8) with the operator Lj containing the temporal
derivative in terms of σ. The boundary condition of vj1(y1, y2, σ) as ρ → ∞ is obtained by
matching the next order O(ϵ) in (2.23).

vj1 =Sj

(
1

r
Q′

j(θj)y1 −
(1 + sin θj)y1
2(R− r cos θj)

+
sin θjy1y

2
2

2ρ2(R− r cos θj)

)
+

N∑
i=1
i ̸=j

Si∇(θ,φ)G̃i(θj , φj) ·
(
y1
r
,

y2
R− r cos θj

)

=Yj +
Sj sin θjy1y

2
2

2ρ2(R− r cos θj)
, j = 1, 2, . . . , N, (2.37)

where

Yj = Sj

(
1

r
Q′

j(θj)y1 −
(1 + sin θj)y1
2(R− r cos θj)

)
+

N∑
i=1
i ̸=j

Si∇(θ,φ)G̃i(θj , φj) ·
(
y1
r
,

y2
R− r cos θj

)
.

Regarding the boundary condition of uj1(y1, y2, σ), owing to u ∼ −ϵ2A/a1 as ρ → ∞, the
O(ϵ) term of u in (2.6) becomes uj1 = 0 as ρ → ∞ for wj1 = (uj1, vj1)

T . This gives rise to
the following boundary value problem:

Pwj1 = △ywj1 +Mjwj1 = −Njwj0 +

(
Ljuj0
0

)
, y = (y1, y2) ∈ R2,

wj1 ∼

(
0

Sj

2ρ2
sin θj

R−r cos θj
y1y

2
2 + Yj

)
as ρ = |y| → ∞.

(2.38)

We solve this equation by considering the decomposition of wj1,

wj1 =

(
uj1
vj1

)
= we

j1 +wd
j1, we

j1 =

(
uej1
vej1

)
, wd

j1 =

(
udj1
vdj1

)
, (2.39)

where we
j1 and wd

j1 satisfy the following inhomogeneous boundary value problems:

Pwe
j1 = −Njwj0, Pwd

j1 =

(
Ljuj0
0

)
, y ∈ R2, (2.40)

we
j1 ∼

(
0

Sj

2ρ2
sin θj

R−r cos θj
y1y

2
2

)
, wd

j1 ∼
(

0
αj · y

)
, ρ = |y| → ∞. (2.41)

Here, the function αj = (αj,1, αj,2)
T is introduced so that αj · y = Yj for j = 1, 2, . . . , N .

Each αj is a function from (θ1, θ2, . . . , θN , φ1, φ2, · · ·φN ) ∈ R2N to R2, and it is explicitly
given by

αj =

(
αj,1

αj,2

)
=

N∑
i=1
i ̸=j

Si

(
1
r
∂G̃i
∂θ

1
R−r cos θj

∂G̃i
∂φ

)∣∣∣∣∣
(θ,φ)=(θj ,φj)

+ Sj

(
1
rQ

′
j(θj)−

(1+sin θj)
2(R−r cos θj)

0

)
. (2.42)
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As shown in [32], we
j1 =

sin θj
R−r cos θj

(−y22
2

∂wj0

∂y1
+ y1y2

∂wj0

∂y2
) is the solution of the first equation,

which contains no temporal derivative term. Hence, it has nothing to do with the spot
dynamics. Hence, we construct the evolution equation for the jth spot by solving the second
equation of (2.40) for wd

j1. By differentiating (2.7), we obtain P ∂wj0

∂yi
= 0 for i = 1, 2, which

means the dimension of the null-space of the adjoint operator P∗ = (△y + MT
j ) is at least

two. Let us consider the homogeneous adjoint problem P∗Ψ = 0, which is solved by the
separation of variables in terms of the local coordinates y = (ρ cosω, ρ sinω)T ,

Ψ(ρ, ω) = P (ρ)T (ω), P (ρ) =

(
P1(ρ)
P2(ρ)

)
, (2.43)

where T (ω) = cosω or sinω. Substituting (2.43) into the equation, we obtain the equation
for P (ρ)

△ρP − 1

ρ2
P +MT

j P = 0, P (0) = 0, P ∼
(
− b1
a1ρ

,
1

ρ

)T

, ρ→ ∞. (2.44)

The boundary condition of P as ρ→ ∞ is obtained as follows. Owing to (2.8) with uj0 → 0
and uj0vj0 → 0 as ρ→ ∞, MT

j should satisfy

MT
j →

(
a1 b1
0 0

)
, ρ→ ∞. (2.45)

This yields △ρP2 − ρ−2P2 = 0 as ρ → ∞ and we thus have P2 = O(ρ−1) as ρ → ∞.
Normalizing P so that P2 ∼ 1

ρ as ρ → ∞, we have P1 ∼ − b1
a1ρ

as ρ → ∞. Hence, we obtain

another boundary condition P ∼ (− b1
a1ρ
, 1ρ)

T as ρ→ ∞.

Let Bκ = {y | |y| ≤ κ}. By using Green’s second identity to wd
j1 and Ψ, we obtain

Λ = lim
κ→∞

∫
Bκ

[
ΨTPwd

j1 − (wd
j1)

TP∗Ψ
]
dy (2.46)

= lim
κ→∞

∫
Bκ

[
ΨT (△y +Mj)w

d
j1 − (wd

j1)
T (△y +MT

j )Ψ
]
dy

= lim
κ→∞

∫ 2π

0

(
ΨT∂ρw

d
j1 − (wd

j1)
T∂ρΨ

)∣∣∣
ρ=κ

ρdω. (2.47)

Using the far-field asymptotic behavior as ρ→ ∞,

wd
j1 ∼

(
0

αj · y

)
=

(
0

αj,1ρ cosω + αj,2ρ sinω

)
, Ψ ∼

(
− b1

a1ρ
1
ρ

)
T (ω), (2.48)

we calculate (2.47) as

Λ =

∫ 2π

0
(2αj,1 cosω + 2αj,2 sinω)T (ω)dω =

{
2παj,1 if T (ω) = cosω,

2παj,2 if T (ω) = sinω.
(2.49)

On the other hand, since P∗Ψ = 0, substituting (2.40) into the left-hand side of (2.46) and
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using
∂uj0

∂y1
=

∂uj0

∂ρ cosω,
∂uj0

∂y2
=

∂uj0

∂ρ sinω, we obtain

Λ = lim
κ→∞

∫
Bκ

[
ΨTPwd

j1

]
dy =

∫ ∞

0

∫ 2π

0
ρP1(ρ)T (ω)Ljuj0dρdω

= −
∫ ∞

0

∫ 2π

0
ρP1(ρ)T (ω)

(
r
dθj
dσ

∂uj0
∂ρ

cosω + (R− r cos θj)
dφj

dσ

∂uj0
∂ρ

sinω

)
dρdω

=

{
−rπCj dθjdσ , if T (ω) = cosω,

−(R− r cos θj)πCj dφj

dσ , if T (ω) = sinω.

(2.50)

Here, the constant Cj is defined by

Cj =
∫ ∞

0
ρ
∂uj0
∂ρ

P1(ρ)dρ. (2.51)

We note that since the solution uj0 of (2.9) depends on the strength Sj and the parameters
F u, F v, so does Cj . Equating (2.49) and (2.50) for T (ω) = cosω and T (ω) = sinω, we obtain
the equation of the jth spot,

dθj
dσ

= −2αj,1

rCj
,

dφj

dσ
= − 2αj,2

(R− r cos θj)Cj
. (2.52)

The evolution equation is valid as long as the localized spots of RD model (1.1) with the
strengths S persist stably for a long time, and the constant Cj has a fixed sign independently
of Sj . These conditions are validated numerically for BRD model (1.3) in the next section.

2.4 Validation of the theory for Brusselator reaction-diffusion
system

We construct quasi-stationary solutions uqe and vqe for BRD model (1.3) by numerical means
to validate the existence of stable localized spots. That is to say, we determine the source
strength S ∈ RN , χ ∈ RN and v ∈ R so that they satisfy (2.9), (2.28) and (2.29) and check
its stability. Let us first consider the following boundary value problem on 0 ≤ ρ ≤ ρ0 for
ρ0 ≫ 1 for a given scalar S.

△ρû− û+ fû2v̂ = 0, △ρv̂ + û− û2v̂ = 0, 0 < ρ ≤ ρ0,

û′(0) = v̂′(0) = 0, û(ρ0) = 0, and v̂′(ρ0) =
S

ρ0
.

(2.53)

Taking ρ0 = 20, we solve this equation with the COLNEW method [3] in the bvpSolve R
library [20]. We then set χ(S) = v̂(ρ0) − S log ρ0. This defines a map χ : S ∈ R 7→ χ(S) ∈
R. Then, for the jth component Sj of S, we obtain the approximation χ(Sj) ≈ χ(Sj).
Consequently, û and v̂ are the approximate solutions uj0 and vj0 of (2.9) with Sj . In addition,
it is important to observe that the shape of the solution depends on the parameters f and S.
Figure 2.1(a) shows that the radial solution û(ρ) is localized When S = 2, but it tends to be
volcano-shaped as S increases for f = 0.7. As a matter of fact, it is numerically confirmed
that the radial solution remains localized for S ≤ 3.44. Since the solution is assumed to be
localized in the present asymptotic analysis, we need to restrict our attention to small S.
The algorithm solving g(S) = 0 is described in Appendix B. The plot of χ(S) for various
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(a) (b)

Figure 2.1: (a) Numerical solution û(ρ) of the approximate core problem (2.53) for BRD
model (1.3) with f = 0.7 and various S. (b) The constant χ(S) in (2.9) that is obtained by
solving g(S) = 0 numerically for f = 0.3, 0.5, 0.7, 0.9 and S ∈ [0.1, 8.0].

f is shown in Figure 2.1(b). Note that Figure 2.1(a) and (b) are the same as those in [24],
although the chosen parameters are different.

Next, we confirm the stability of the localized spot solutions of the BRD model (1.3)
described in Section 2.2. With F u(u, v) = −u+ fu2v and F v(u, v) = u− u2v, the linearized
problem (2.36) is reduced to

△ρψ̂−
m2

ρ2
ψ̂−(1+λ)ψ̂+2fuj0vj0ψ̂+fu

2
j0ϕ̂ = 0, △ρϕ̂−

m2

ρ2
ϕ̂+ψ̂−2uj0vj0ψ̂−u2j0ϕ̂ = 0. (2.54)

The boundary condition is given by ψ̂′(0) = ϕ̂′(0) = 0, ψ̂ → 0 and ϕ̂ → 0 as ρ → ∞. For the
approximate solutions uj0 and vj0 of the core problem (2.9) and given m, we solve (2.54) by
using the finite central differences on 0 < ρ < ρ0 = 20, which gives rise to a generalized matrix
eigenvalue problem. We pay attention to the eigenvalue of (2.54) having the largest real part,
say the principal eigenvalue λmax. Figure 2.2 shows the real part of λmax for fixed f = 0.7
and m = 2, 3, 4, which is the same plot as that in [24]. It indicates that λmax is negative for
small S and gets larger as S increases monotonically, and it finally becomes positive for large
S. Hence, there exists a unique threshold, denoted by Σm(f), where the principal eigenvalue
becomes zero. If S > Σm(f), since the principal eigenvalue is real, the spot becomes unstable,
while it is stable for S < Σm(f). Since Σ2(f) < Σ3(f) < Σ4(f) for f = 0.7, the spot is
unstable for any modes of perturbations with m ≥ 2 if S > Σ2(f). It is important to notice
that the stability of the localized spot depends not on the locations but on the strength S,
the parameter f , and the mode m.

Finally, the value of Cj is computed. We solve the following boundary value problem on
0 ≤ ρ ≤ ρ0 with ρ0 ≫ 1 to approximate (P1, P2) satisfying (2.44).

△ρP̂1 −
1

ρ2
P̂1 + (2fûv̂ − 1)P̂1 + (1− 2ûv̂)P̂2 = 0, △ρP̂2 −

1

ρ2
P̂2 + fû2P̂1 − û2P̂2 = 0,

P̂1(0) = P̂2(0) = 0, P̂1(ρ0) =
1

ρ0
, P̂2(ρ0) =

1

ρ0
.

(2.55)

15



Figure 2.2: Plots of the principal eigenvalue λmax of (2.54) when f = 0.7 and Sj ∈ [0.01, 8]
for m = 2, 3, 4.

With P̂1 and û′ obtained in this way, we can define a map C : S ∈ R 7→ C(S) ∈ R by

C =

∫ ρ0

0
ρû′(ρ)P̂1(ρ)dρ. (2.56)

We thus have Cj ≈ C(Sj) for given Sj . Figure 2.3 shows the plot of C(S) of the BRD model
(1.3) with f = 0.7, which is the same plot as that in [29]. Let us note that Cj is independent
of the location of the jth spot by construction, and it is always negative for 0 < S < Σ2(0.7).
Consequently, we conclude that the stable localized spots with 0 < S < Σ2(0.7) with a
negative C exist, where the equation (2.52) of the spot cores remains valid.

Figure 2.3: Plot of C(S) of the BRD model (1.3) for f = 0.7 and S ∈ [0.1, 8]. The vertical
dotted line represents S = Σ2(f), which determines the stability of the quasi-steady spot
solution. For S > Σ2(f), it is unstable. For 0 < S < Σ2(f), we observe C < 0.
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Chapter 3

Dynamics of Quasi-stationary
Localized Spots

In this chapter, under the assumption that localized N spots persist stably and Cj < 0 for
j = 1, . . . , N , we study the equilibrium states of evolution equation (2.52), meaning that N
spots of RD model (1.1) are in a quasi-equilibrium state moving very slowly with O(ϵ−2) time
scale. Since Cj < 0 and R − r cos θj > 0, the N spots configuration centered at (θj , φj) is an
equilibrium state if and only if αj,1 = αj,2 = 0, j = 1, . . . , N . It is important to note that
αj,1 and αj,2 are independent of the choice of the reaction terms F u and F v if we ignore the
constraint (2.29). On the other hand, we need to specify the reaction terms to discuss the

linear stability, since the matrix generally depends on
∂Sj

∂θi
and

∂Sj

∂φi
, i, j = 1, 2, . . . , N , except

the one-spot case. The theoretical results are compared with the nonlinear evolutions of the
BRD model (1.3) that are obtained numerically.

3.1 θj = 0 or π

When spots are located at the innermost or the outermost locations of the torus, i.e θj = 0
or π for j = 1, 2, . . . , N , by the symmetry of the torus, independent of φj , the spots should

satisfy
dθj
dσ = 0 for j = 1, 2, . . . , N . This result can be confirmed by computing (2.42) as

follows.

Theorem 3.1.1. Suppose that θj = 0 or π for j = 1, 2, . . . , N and there exists Sj , j = 1, . . . , N
satisfying (2.29). Then, wherever the location of φj is, we have αj,1 = 0 for j = 1, 2, . . . , N .

Hence,
dθj
dσ = 0 for j = 1, 2, . . . , N .

Proof. It follows from (2.52) and (2.42) that

αj,1 =

N∑
i=1
i ̸=j

Si
r

∂G̃i

∂θ

∣∣∣∣∣
(θ,φ)=(θj ,φj)

+ Sj

(
1

r
Q′

j(θj)−
(1 + sin θj)

2(R− r cos θj)

)
, (3.1)

where ∂G̃i
∂θ

∣∣∣
(θ,φ)=(θj ,φj)

= hi,j,n + ti,j + Q′
i(θj). Here Q′

i, hi,j,n and ti,j are defined by (2.22),

(A.3) and (A.5). It follows from (2.22) that 1
rQ

′
j(θj)−

(1+sin θj)
2(R−r cos θj)

= 0 when θj = 0 or π, since

K(0) = 0 and K(π) = −πA. When θi = θj = 0 or θi = θj = π, from (A.3) and (A.5), we have
hi,j,n = hj,i,n = 0, ti,j = tj,i = − 1

2(α−cos θj)
and Q′

i(θj) = Q′
j(θi) = Q′

j(θj) =
1

2(α−cos θj)
. Hence,
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when θi = θj = 0 or θi = θj = π, we obtain ∂G̃i
∂θ (θj , φj) = 0. Next, we show that when θi = 0

and θj = π, we obtain ∂G̃i
∂θ (θj , φj) =

∂G̃j

∂θ (θi, φi) = 0. Setting

Ei,j = exp

(
−
∫ θj

θi

dη

α− cos η

)
and s = exp(−2πA),

we have Ei,j = E−1
j,i = exp (−πA) = s

1
2 when θi = 0 and θj = π. Since s < 1, we obtain

lim
k→∞

sk = 0. Then, it follows from (2.22), (A.3) and (A.5) that

(α− cos θj)
∑
n≥1

hi,j,n =

(
s

3
2 cos (φj − φi)− s3

1− 2s
3
2 cos (φj − φi) + s3

− s
1
2 cos (φj − φi)− s1

1− 2s
1
2 cos (φj − φi) + s1

)

+

(
s

5
2 cos (φj − φi)− s5

1− 2s
5
2 cos (φj − φi) + s5

− s
3
2 cos (φj − φi)− s3

1− 2s
3
2 cos (φj − φi) + s3

)
+ · · ·

=− s
1
2 cos (φj − φi)− s1

1− 2s
1
2 cos (φj − φi) + s1

,

(α− cos θj)ti,j =
s

1
2 cos (φj − φi)− s1

1− 2s
1
2 cos (φj − φi) + s1

,

(α− cos θj)Q
′
i(θj) =− 1

2πα
(αθj − sin θj)−

1

2πA
K(θi) +

1

2
= 0,

and

(α− cos θi)
∑
n≥1

hj,i,n =

(
s

1
2 cos (φj − φi)− s1

1− 2s
1
2 cos (φj − φi) + s1

− s
3
2 cos (φj − φi)− s3

1− 2s
3
2 cos (φj − φi) + s3

)

+

(
s

3
2 cos (φj − φi)− s3

1− 2s
3
2 cos (φj − φi) + s3

− s
5
2 cos (φj − φi)− s5

1− 2s
5
2 cos (φj − φi) + 53

)
+ · · ·

=
s

1
2 cos (φj − φi)− s1

1− 2s
1
2 cos (φj − φi) + s1

,

(α− cos θi)tj,i =
s−

1
2 cos (φj − φi)− s−1

1− 2s−
1
2 cos (φj − φi) + s−1

= −1− s
1
2 cos (φj − φi)− s1

1− 2s
1
2 cos (φj − φi) + s1

,

(α− cos θi)Q
′
j(θi) =− 1

2πα
(αθi − sin θi)−

1

2πA
K(θj) +

1

2
= 1.

Then, we obtain ∂G̃i
∂θ (θj , φj) =

∂G̃j

∂θ (θi, φi) = 0 and

αj,1 =

N∑
i=1
i ̸=j

Si
r

∂G̃i

∂θ

∣∣∣∣∣
(θ,φ)=(θj ,φj)

+ Sj

(
1

r
Q′

j(θj)−
(1 + sin θj)

2(R− r cos θj)

)
= 0. (3.2)

Similarly, we obtain αi,1 = 0. Hence, we obtain
dθj
dσ = αj,1 = 0 when θj = 0 or π, j =

1, . . . , N .
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3.2 A single spot

Suppose that the spot is located at (θ1, φ1) with the strength S1 on the toroidal surface. For
one spot, S1 = 2πrRE is the solution of (2.29) and independent of (θ1, φ1). We then find the
equilibrium state, in which the spot is in a quasi-equilibrium state moving very slowly with
O(ϵ−2) time scale. This is the solution of

α1,1(θ1) =
S1

r(α− cos θ1)

(
−αθ1 − sin θ1

2πα
− K(θ1)

2πA
− sin θ1

2

)
, α1,2(θ1) = 0,

where K(θ1) = −2A arctan (
√

α+1
α−1 tan

θ1
2 ). Since α1,2 always vanishes, it is sufficient to solve

the equation α1,1(θ1) = 0 for θ1.

Theorem 3.2.1. There exists a unique αs > 1 such that the following holds. For 1 < α < αs,
there exists a unique ϑs(α) ∈ (0, π) such that the single spots at θ1 = 0, ϑs(α), π, 2π − ϑs(α)
are equilibria. Then the spots at θ1 = 0 and π are unstable, while those at θ1 = ϑs(α) and
2π − ϑs(α) are stable. On the other hand, for αs ≤ α, there exist the stable spot at θ1 = 0
and the unstable spot at θ1 = π.

Proof. When the spot is located at the innermost and the outermost points of the torus, i.e.
θ1 = 0 and θ1 = π, as shown in Theorem 3.1.1, α1,1(0) = α1,1(π) = 0. We now find the other
equilibrium. Let us rewrite

α1,1(θ1) =
S1β1(θ1)

r(α− cos θ1)
, β1(θ1) = −αθ1 − sin θ1

2πα
− K(θ1)

2πA
− sin θ1

2
.

The zeros of β1(θ1) = 0 are equivalent to those of α1,1(θ1) = 0 owing to α − cos θ1 > 0. It
follows from

β′1(θ1) = −α− cos θ1
2πα

+
1

2πA
1

α− cos θ1
− cos θ1

2
(3.3)

that there exist θb ∈ [0, 2π) satisfying β′1(θb) = 0 if and only if θ = θb satisfies

α−A(α− cos θ)2 − παA cos θ(α− cos θ) = 0. (3.4)

With x = cos θ, it gives rise to the quadratic equation α−A(α− x)2 − παAx(α− x) = 0. It
has the solutions x1 =

√
γ + δ2 + δ and x2 = −

√
γ + δ2 + δ, where

γ =
α2 − α

√
α2 − 1

πα− 1
> 0, δ =

πα2 − 2α

2(πα− 1)
> 0.

Note that x2 < x1. Hence, owing to the one-to-one correspondence between x ∈ [−1, 1]
and θ ∈ [0, π] and the symmetry x = cos θ = cos(2π − θ), (3.4) has two solutions at most in
θ ∈ (0, π) and two solutions at most in θ ∈ (π, 2π) corresponding to x1 and x2. It is easy to see
x2 = −

√
γ + δ2+δ < 0 < 1. Since x2 = −

√
γ + δ2+δ > −1, it is reduced to 1+2δ > γ, which

is equivalent to −α
√
α2 − 1 < (α+1)((π− 1)α− 1). This inequality always holds true owing

to (α+ 1)((π− 1)α− 1) > 0 for α > 1. Hence, we obtain −1 < x2 < 1. We then consider the

range of α where x1 < 1. Let us first confirm that δ < 1 for 1 < α <
√
1 + 1

π2 +
1+π
π ≈ 2.3677.

In this range, x1 < 1 is reduced to γ < 1− 2δ, which is equivalent to

(α− 1)((π2 + 2π)α3 − (2 + π)2α2 + (3 + 2π)α− 1) < 0.
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Since the cubic equation (π2 + 2π)α3 − (2 + π)2α2 + (3 + 2π)α − 1 = 0 has only one real
solution, say α = αs ≈ 1.2010, we obtain x1 < 1 for α ∈ (1, αs). Hence, owing to −1 <
x2 < 1 ≤ x1 for α ≥ αs, the equation β′1(θb) = 0 has the solutions θb = cos−1 x2 ∈ (0, π) and
2π−cos−1 x2 ∈ (π, 2π). Accordingly, since β1(0) = β1(π) = 0, there is no solution of β1(θ) = 0
except θ = 0, π. In addition, it follows from β′1(0) ≤ 0 and β′1(π) > 0 for α ≥ αs that the spot
at θ1 = 0 is stable and that at θ1 = π is unstable. On the other hand, since −1 < x2 < x1 < 1
for α ∈ (1, αs), (3.4) has two solutions in (0, π) and the other two solutions in (π, 2π), which
indicates that there exists ϑs(α) ∈ (0, π) such that one spot solutions at θ1 = 0, ϑs(α), π,
and 2π − ϑs(α) are the solutions of β1(θ1) = 0 by the continuity of β1. Owing to β′1(π) > 0,
we also obtain β′1(0) > 0, β′1(ϑs(α)) < 0 and β′1(2π − ϑs(α)) < 0. Hence, the single spots at
θ1 = 0 and π are unstable, while those at ϑs(α), 2π − ϑs(α) are stable.

To confirm the linear stability of the one-spot case, we solve BRD model (1.3) numerically
from the initial condition (2.30) and (2.31) having one spot on the torus of (R, r) = (1.1, 1.0)
and (R, r) = (1.3, 1.0). The numerical parameters are given by f = 0.7, ϵ = 0.05, S1 = 3,
A = S1

2πRr . After computing the solution up to t = 100 when the localized spot is formed, we
add a 2% random perturbation to the solution. For α = 1.1 < αs, the present theory expects
that the spot at ϑs(1.1) ≈ 0.64295 is stable, whereas that at θ = 0 and π are unstable.
Figure 3.1 shows that the spot centered at θ1 = 0 is moving toward the stable one spot at
θ1 = ϑs(1.1) after the perturbation. When α = 1.3 > αs, the spot at θ1 = 0 is stable and that
at θ1 = π is unstable. Figure 3.2 confirms that the spot centered at θ1 = π is moving toward
θ1 = 0 after a long-time evolution.

Figure 3.1: Evolution of the BRD model (1.3) from a one-spot initial condition (2.30) and
(2.31) centered at θ1 = 0 and φ1 = π on the torus of R = 1.1 and r = 1.0, i.e., α = 1.1. The
numerical parameters are f = 0.7, ϵ = 0.05, S1 = 3, A = S1

2πRr . The red horizontal dotted
line represents the reference lines of ϑs(1.1) ≈ 0.64295. Since the spot is unstable, it starts
moving toward ϑs(1.1).
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Figure 3.2: Evolution of the BRD model (1.3) from a one-spot initial condition (2.30) and
(2.31) centered at θ1 = π and φ1 = π on the torus of R = 1.3 and r = 1.0, i.e., α = 1.3. The
numerical parameters are the same as Figure 3.1. The unstable spot starts moving toward
the stable spot at θ = 0 as expected.

3.3 Two spots

Suppose that two spots are centered at (θ1, φ1) and (θ2, φ2) on the toroidal surface. Then the
source strengths S1 and S2 > 0 satisfy S1 + S2 = 2πRrE owing to (2.25). Then, we have the
following theorem.

Theorem 3.3.1. Suppose that 0 ≤ φ2 ≤ φ1 < 2π. Two spots pattern is an equilibrium only
if φ1 − φ2 = π or 0. Moreover, φ1 − φ2 = 0 is unstable.

Proof. It follows from (2.42) with (A.4) and (A.6) that α1,2 is given by

α1,2 =
S2

R− r cos θ1

∂G̃2

∂φ

∣∣∣∣∣
(θ,φ)=(θ1,φ1)

=
S2

R− r cos θ1

E2,1 sin (φ1 − φ2)

(1− E2,1 cos (φ1 − φ2))2 + E2
2,1 sin

2 (φ1 − φ2)
+

S2
R− r cos θ1

∞∑
n=1

w2,1,n,

(3.5)

where

w2,1,n =
sin (φ1 − φ2)s

n
((
E2,1 + E−1

2,1

)
(1 + s2n)− 4s2n cos (φ1 − φ2)

)
(1 + s2n − sn cos (φ1 − φ2)(E2,1 + E−1

2,1))
2 + (sn(E2,1 − E−1

2,1) sin (φ1 − φ2))2

with s = exp(−2πA) < 1. Since (E2,1+E
−1
2,1)(1+s

2n)−4s2n cos (φ1 − φ2) ≥ 2(1+s2n)−4s2n >
0, we obtain α1,2 = 0 if and only if φ1−φ2 = kπ, k ∈ Z. Similarly, we have α2,2 = 0 if and only
if φ1 − φ2 = kπ, k ∈ Z. Under the supposition that 0 ≤ φ2 ≤ φ1 < 2π, we have φ1 − φ2 = 0
or π. The linear stability of φ1 = φ2 = π is unstable. Indeed, with a small perturbation to
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the spot centers at (θ1, θ2, φ1 = ∆φ,φ2 = −∆φ) where ∆φ > 0, by (3.5), we have α1,2 > 0
and α2,2 < 0. Hence, the two spots thus tend to φ1 − φ2 = π, which means φ1 − φ2 = 0 is
unstable.

3.4 The N-ring configuration

Let us consider a ring configuration of N spots at θj = ϑN and φj = (2j − 1)π/N on the
toroidal surface for j = 1, . . . , N , which is called the N -ring at ϑN . Then the strengths of the
N spots become identical according to (2.29) and are set as Sj = Sc =

2πrRE
N , which means

that the existence of the N -ring is independent of the choice of the reaction terms F u and
F v. It follows from (2.42) with (A.4) and (A.6) that we have

αj,2 =
Sc

R− r cos θj

N∑
i=1
i ̸=j

 ∂ log
∣∣∣1− ζ(θj ,φ)

ζ(θi,φi)

∣∣∣
∂φ

∣∣∣∣∣∣
φ=φj

+
∂ logWi(θj , φ)

∂φ

∣∣∣∣
φ=φj

 = 0. (3.6)

From (2.42), we have

αj,1 =
Sc
r

N∑
i=1
i ̸=j

 ∂ log
∣∣∣1− ζ(θ,φj)

ζ(θi,φi)

∣∣∣
∂θ

∣∣∣∣∣∣
θ=θj

+
∂ logWi(θ, φj)

∂θ

∣∣∣∣
θ=θj

+Q′
i(θj)


+
Sc
r

(
Q′

j(θj)−
1 + sin θj

2(α− cos θj)

)
.

From (A.3) and (A.5) with θi = θj , we obtain

∂ logWi(θ, φj)

∂θ

∣∣∣∣
θ=θj

= 0,
∂ log

∣∣∣1− ζ(θ,φj)
ζ(θi,φi)

∣∣∣
∂θ

∣∣∣∣∣∣
θ=θj

= − 1

2(α− cos θj)
.

Substituting θj = ϑ, we have

αj,1(ϑ) =
Sc
r

(
N

(
Q′

1(ϑ)−
1

2(α− cosϑ)

)
− sinϑ

2(α− cosϑ)

)
=
Sc
r

1

α− cosϑ

(
− N

2πα
(αϑ− sinϑ)− N

2πA
K(ϑ)− 1

2
sinϑ

)
.

As shown in Theorem 3.1.1, we have αj,1 = 0 for j = 1, 2, . . . , N , when ϑ = 0 or π. Hence,
the N -ring at the innermost/outermost locations of the torus becomes an equilibrium state
of N spots for any α > 1. For ϑ ̸= 0, π, it is sufficient to consider the existence of equilibrium
N -ring at ϑ ∈ (0, π) by symmetry. We thus have the following theorem.

Theorem 3.4.1. The N -rings at ϑN = 0 and π are equilibria for any α > 1. For N ≥ 2,
there are αm(N) and αM (N) with 1 < αm(N) < αM (N) for which the following is satisfied.
For α ∈ (αm(N), αM (N)), there exists a unique ϑN (α) ∈ (0, π) such that the N -ring at ϑN (α)
becomes an equilibrium. Moreover, limα↘αm(N) ϑN (α) = π and limα↗αM (N) ϑN (α) = 0.
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Proof. Let us define βN (θ) = − N
2πα(αθ− sin θ)− N

2πAK(θ)− 1
2 sin θ. Owing to 1

α−cos θ ̸= 0 for
α > 1, αj,1(θ) = 0 is equivalent to βN (θ) = 0. Owing to

β′N (θ) =
1

α− cos θ

(
− N

2πα
(α− cos θ)2 +

N

2πA
− 1

2
cos θ(α− cos θ)

)
,

we introduce mN (x, α) = − N
2πα(α−x)

2+ N
2πA− 1

2x(α−x) by the change of variable, x = cos θ.
Then mN (x, α) = 0 becomes a quadratic equation with respect to x, whose discriminant
D(N,α) is given by

D(N,α) =

(
N

π
− 1

2
α

)2

− N

π

(
1− N

πα

)(
1

A
− α

)
(3.7)

=
1

4
α2 −

(
1− N

πα

)
N

πA
. (3.8)

When α > N
π , it follows from (3.7) that D(N,α) > 0 owing to 1

A < α. On the other hand, for
α ≤ N

π , (3.8) yields D(N,α) > 0. Hence, mN (x) = 0 has two real roots, and so does β′N (θ) = 0
for θ ∈ [0, π] owing to α − cos θ ∈ [α − 1, α + 1]. Hence, it follows from βN (0) = βN (π) = 0
that βN (θ) = 0 has one unique solution ϑN (α) ∈ (0, π) if and only if β′N (0)β′N (π) > 0. This
condition is confirmed by checking mN (−1, α)mN (1, α) > 0 owing to α− cos θ > 0. Since

mN (1, α) = − N

2πα
(α−1)2+

N

2πA
− 1

2
(α−1), mN (−1, α) = − N

2πα
(α+1)2+

N

2πA
+
1

2
(α+1),

we have

d

dα
mN (1, α) = −N

2π
+

N

2πα2
+

Nα

2π
√
α2 − 1

− 1

2
,

d

dα
mN (−1, α) = −N

2π
+

N

2πα2
+

Nα

2π
√
α2 − 1

+
1

2

and
d2

dα2
mN (1, α) =

d2

dα2
mN (−1, α) =

N

2π

(
− 2

α3
− (α2 − 1)−

3
2

)
< 0.

On the other hand, it follows from

lim
α↘1

mN (1, α) = 0, lim
α→∞

mN (1, α) = −∞,

lim
α↘1

d

dα
mN (1, α) = ∞, lim

α→∞

d

dα
mN (1, α) = −1

2

that there exists a unique αM (N) > 1 such that mN (1, α) > 0 for 1 < α < αM (N), while
mN (1, α) < 0 for α > αM (N). Similarly, since

lim
α↘1

mN (−1, α) = −2N

π
+ 1 < 0, lim

α→∞
mN (−1, α) = ∞,

lim
α↘1

d

dα
mN (−1, α) = ∞, lim

α→∞

d

dα
mN (−1, α) =

1

2
,

there exists a unique αm(N) > 1 such that mN (−1, α) < 0 for 1 < α < αm(N), and
mN (−1, α) > 0 for α > αm(N).
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With α0 =
2N
π > 1 for N ≥ 2, we have

mN (1, α0) = − N

2πα0
(α0 − 1)2 +

N
√
α2
0 − 1

2π
− 1

2
(α0 − 1)

=
πα0

2

(
− 1

2πα0
(α0 − 1)2 +

1

2π

√
α2
0 − 1

)
− 1

2
(α0 − 1)

= −1

4
(α0 − 1)2 +

α0

4

√
α2
0 − 1− 1

2
(α0 − 1) =

1

4

(
−(α2

0 − 1) + α0

√
α2
0 − 1

)
> 0.

Recalling that mN (1, α) > 0 for 1 < α < αM (N), we have α0 = 2N
π < αM (N). On the other

hand, let us notice mN (−1, αM (N)) = mN (−1, αM (N))−mN (1, αM (N)) = αM (N)− 2N
π > 0.

We thus have αm(N) < αM (N), since mN (−1, α) is monotone increasing. Moreover, by
mN (−1, α) = 0 at α = αm(N) and mN (1, α) = 0 at α = αM (N), it is easy to see that
limα↘αm(N) ϑN (α) = π and limα↗αM (N) ϑN (α) = 0 owing to the one-to-one correspondence
of x = cos θ for θ ∈ [0, π].

We observe the linear stability of the N -ring configuration of the BRD model (1.3) for
N = 2, . . . , 6 on the torus of (R, r) = (α2 ,

1
2) with α = [1.01, 10] by numerical means. The

parameters are f = 0.7, ϵ = 0.05, Sc = 1.5, and A = NSc
2πRr . We compute the eigenvalues

of the linearized matrix of
dθj
dσ and

dφj

dσ (2.52) for j = 1, 2, . . . , N at the equilibria, thereby
observing the principal eigenvalue, say λmax. We note that 0 is always an eigenvalue of this
equilibrium originated from the invariance of the infinitesimal translation of the torus in the
φ direction. Figure 3.3(a) shows the real part of the principal eigenvalue, indicating that
there exists αs(N) such that the N -ring at ϑ = 0 is neutrally stable for α > αs(N), and it is
unstable otherwise. Figure 3.3(b) shows that the N -ring at ϑ = π is always unstable. The real
part of the principal eigenvalue λmax(α) for the N -ring at ϑN (α) ∈ (0, π) with N = 2, . . . , 6
in the range of α ∈ (αm(N), αM (N)) is shown in Figure 3.3(c). This indicates that it is
unstable. Let us compare the result with that of the one-spot case in the previous section,
which is equivalent to the 1-ring. According to theorem 3.2.1, we find that the stable 1-ring
at ϑ1(α) = ϑs(α) exists for 1 < αM (1) = αs(1) = αs, although αm(1) is not defined. On the
other hand, Figure 3.3 indicates that αm(N) < αM (N) < αs(N) for N ≥ 2. Moreover, the
stability of the 1-ring at ϑ1(α) is stable, whereas the N -ring at ϑN (α) for N ≥ 2 is unstable.

We solve BRD model (1.3) numerically for the localized 5-ring initial condition (2.30)
and (2.31) on the torus of (R, r) = (1.7, 0.5), (R, r) = (2.1, 0.5), and (R, r) = (2.2, 0.5) with
f = 0.7, ϵ = 0.05, Sc = 1.5 and A = NSc

2πRr . After solving the equations until the localized spots
are formed, we add a 2% random perturbation to the solution. For the 5-ring, the parameters
are αm(5) ≈ 2.990, αM (5) ≈ 3.495, αs(5) ≈ 4.296. Let us remember that the 5-ring at ϑ = π
is always unstable and that at ϑ = 0 is stable for α = 4.4 > αs(5). As a matter of fact,
Figure 3.4 shows that the spots centered at ϑ = π are moving toward those at ϑ = 0 after
a long-time evolution. On the other hand, since the 5-ring at ϑ = 0 becomes unstable for
α = 4.2 < αs(5), the spots centered at ϑ = 0 initially are moving toward another quasi-
equilibrium solution consisting of nonsymmetric spot centers after the perturbation as shown
in Figure 3.5. When α = 3.4 ∈ (αm(5), αM (5)) where an unstable 5-ring at ϑ5(α) exists, we
confirm in fig. 3.6 that the unstable 5-ring at ϑ5(α) moves toward another quasi-equilibrium
state.
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(a)

(b)

(c)

Figure 3.3: The real part of the principal eigenvalue λmax(α) for the N -ring for N = 2, . . . , 6
on the torus of (R, r) = (α2 ,

1
2), α ∈ [1.01, 10]. The numerical parameters are f = 0.7, ϵ = 0.05,

Sc = 1.5, and A = NSc
2πRr . (a) λmax(α) for the N -ring at ϑ = 0. (b) λmax(α) for the N -ring at

ϑ = π. (c) Each curve is the plot of λmax(α) for the N -ring at ϑN (α) ∈ (0, π) in the range of
α ∈ (αm(N), αM (N)). The plots of λmax(α) in Figure 3.3(a) and (b) are shown for reference.
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Figure 3.4: Evolution of the BRD model (1.3) from the 5-ring initial condition (2.30) and

(2.31) centered at θj = π and φj =
(2j−1)π

5 , j = 1, 2, . . . , 5 on the torus of R = 2.2 and r = 0.5.

The numerical parameters are f = 0.7, ϵ = 0.05, Sc = 1.5, A = 5Sc
2πRr . The spots approach a

quasi-stationary state having spots at θj = 0, j = 1, 2, . . . , 5.

3.5 The two N-rings configuration

We consider the quasi-equilibrium state of two kinds of two N -rings, where N localized spots
are equally spaced along latitudinal line θj = ϑ1 with strength S1 for j = 1, 3, . . . , 2N − 1 and
the other N localized spots are equally spaced along latitudinal line θj = ϑ2 with strength
S2 for j = 2, 4, . . . , 2N . Two special configuration are considered. The first case is called
untwisted two N -rings satisfying φ2j−1 = φ2j = (2j − 2)π/N for j = 1, 2, . . . , N . The second
case is called twisted two N -rings φ2j−1 = (2j − 2)π/N and φ2j = (2j − 1)π/N for j =
1, 2, . . . , N .

3.5.1 Two N-rings at (ϑ1, ϑ2) = (0, π)

Let us consider untwisted and twisted two N -rings at (ϑ1, ϑ2) = (0, π) on the toroidal surface.
As shown in Theorem 3.1.1, in both cases, we have αj,1 = 0, j = 1, 2, . . . , 2N . It follows from
(2.42) with (A.4) and (A.6) that, by the symmetry of two N -rings, in both cases, we obtain

α2j−1,2 =
S1

R− r cos θ2j−1

N∑
i=1
i ̸=j

 ∂ log
∣∣∣1− ζ(θ2j−1,φ)

ζ(θ2i−1,φ2i−1)

∣∣∣
∂φ

∣∣∣∣∣∣
φ=φ2j−1

+
∂ logW2i−1(θ2j−1, φ)

∂φ

∣∣∣∣
φ=φ2j−1



+
S2

R− r cos θ2j

N∑
i=1

 ∂ log
∣∣∣1− ζ(θ2j−1,φ)

ζ(θ2i,φ2i)

∣∣∣
∂φ

∣∣∣∣∣∣
φ=φ2j−1

+
∂ logW2i(θ2j−1, φ)

∂φ

∣∣∣∣
φ=φ2j−1

 = 0.

Similarly, we can obtain α2j,2 = 0 for j = 1, 2, . . . , N . Hence, if there exist Sj , j = 1, 2, . . . , 2N
satisfying (2.29), the untwisted and twisted two N -rings at (ϑ1, ϑ2) = (0, π) are equilibria.
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Figure 3.5: Evolution of the BRD model (1.3) from the 5-ring initial condition (2.30) and

(2.31) centered at θj = 0 and φj =
(2j−1)π

5 , j = 1, 2, . . . , 5 on the torus of R = 2.1 and r = 0.5.
The numerical parameters are the same as Figure 3.4. The 5-ring at ϑ = 0 starts moving
toward another equilibrium point, since it is unstable.

When the two N -rings are not on the symmetric latitude, S1 and S2 no longer have the same
value in general, which makes the situation more complicated. As an example, we compute
the strengths of two 1-ring, i.e. (θ1, φ1) = (0, 0) and (θ2, φ2) = (π, π) for the BRD model
(1.3) on the torus of (R, r) = (α2 ,

1
2) for α ∈ [1.01, 2] numerically with the parameters f = 0.7

ϵ = 0.05 and A = 3
2πRr , i.e., S1 + S2 = 3. Figure 3.7(a) shows that the strength S1(α) is not

unique for α > α4 ≈ 1.021. For each value of S1(α) on this curve, the largest real part of
the eigenvalue λmax is shown in Figure 3.7(b). The case 1 is unstable for α ∈ [1.1, 2]. When
α = α4 ≈ 1.021, unstable case 2 and case 3 appear. As α increase, case 2 and case 3 change
their stabilities. Then, as α increase, these two cases become unstable again.

3.5.2 Two N-rings at (ϑ1, ϑ2) = (ϑN , 2π − ϑN)

Let us consider untwisted and twisted two N -rings at (ϑ1, ϑ2) = (ϑN , 2π−ϑN ) on the toroidal
surface for ϑN ∈ (0, π). In both cases, the strengths of the N spots become identical according
to (2.29). Hence, they are set as Sj = Sc =

πrRE
N for j = 1, 2, . . . , 2N , which means that the

existence of the untwisted and twisted twoN -rings at (ϑ1, ϑ2) = (ϑN , 2π−ϑN ) are independent
of the choice of the reaction terms F u and F v. As similar to the untwisted and twisted two
N -rings (ϑ1, ϑ2) = (0, π), we obtain αj,2 = 0 for j = 1, 2, . . . , 2N in the untwisted and twisted
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Figure 3.6: Evolution of the BRD model (1.3) from the 5-ring initial condition (2.30) and

(2.31) centered at θj = 1.1 and φj = (2j−1)π
5 , j = 1, 2, . . . , 5 on the torus of R = 1.7 and

r = 0.5. The numerical parameters are the same as Figure 3.4. At t = 2000, the solution
is close to the 5-ring at ϑ5(3.4) ∈ (0, π). The unstable 5-ring starts moving toward another
equilibrium state since it is unstable.

two N -rings (ϑ1, ϑ2) = (ϑN , 2π−ϑN ), by the symmetry of two N -rings. From (2.42), we have

α2j−1,1 =
Sc
r

N∑
i=1
i ̸=j

 ∂ log
∣∣∣1− ζ(θ,φ2j−1)

ζ(θ2i−1,φ2i−1)

∣∣∣
∂θ

∣∣∣∣∣∣
θ=θ2j−1

+
∂ logW2i−1(θ, φ2j−1)

∂θ

∣∣∣∣
θ=θ2j−1

+Q′
2i−1(θ2j−1)


+
Sc
r

(
Q′

2j−1(θ2j−1)−
1 + sin θ2j−1

2(α− cos θ2j−1)

)

+
Sc
r

N∑
i=1

 ∂ log
∣∣∣1− ζ(θ,φ2j−1)

ζ(θ2i,φ2i)

∣∣∣
∂θ

∣∣∣∣∣∣
θ=θ2j−1

+
∂ logW2i(θ, φ2j−1)

∂θ

∣∣∣∣
θ=θ2j−1

+Q′
2i(θ2j−1)

 .

By the symmetry of two N -rings, we have α1,1 = α3,1 = · · · = α2N−1,1 = −α2,1 = −α4,1 =
· · · = −α2N,1. Then, we first consider the existence of the untwisted two N -rings at (ϑ1, ϑ2) =

(ϑN (α), 2π − ϑN (α)) that is in a quasi-stationary state. Let Eθ = exp
(∫ 2π−θ

θ
dη

α−cos η

)
. We

then obtain Eθ ∈ (1, s−1) and E−1
θ ∈ (s, 1) for θ ∈ (0, π). Owing to Eθ ↗ s−1 as θ ↘ 0, it
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(a) (b)

Figure 3.7: (a) The strength S1(α) for the spot (θ1, φ1) = (0, 0) of the twisted two 1-rings
(ϑ1, ϑ2) = (0, π) of the BRD model (1.3) on the torus of (R, r) = (α2 ,

1
2) for α ∈ [1.01, 2].

They are obtained by solving (2.29) numerically with the parameters f = 0.7 ϵ = 0.05 and
A = 3

2πRr , satisfying S1(α) + S2(α) = 3. When α > α4 ≈ 1.021, we have three solutions. (b)
The real part of the principal eigenvalue λmax corresponding to the strength in Figure 3.7(a).

follows from (A.3) and φ2j−1 = φ2j that

h2j,2j−1,1 = lim
θ2j−1↘0

∂ log

∣∣∣∣(1− e−2πA ζ(θ,φ2j−1)
ζ(θ2j ,φ2j)

)(
1− e−2πA

(
ζ(θ,φ2j−1)
ζ(θ2j ,φ2j)

)−1
)∣∣∣∣

∂θ

∣∣∣∣∣∣∣∣
θ=θ2j−1

= lim
θ2j−1↘0

1

α− cos θ2j−1

−s
(
E−1

θ2j−1
− Eθ2j−1

)
1 + s2 − s

(
Eθ2j−1

+ E−1
θ2j−1

) = +∞.

From (A.3), we have

lim
n→∞

hi,j,n+1

hi,j,n
= lim

n→∞

−(1 + s2n+2)sn+1 cos (φj − φi) + s2n+2(E−1
i,j + Ei,j)

−(1 + s2n)sn cos (φj − φi) + s2n(E−1
i,j + Ei,j)

= s < 1.

Hence, the other terms in α2j−1,1 remain bounded as θ ↘ 0, we obtain α2j−1,1 → +∞.
Similarly, since Eθ ↘ 1 as θ ↗ π, from (A.5), we obtain

lim
θ2j−1↗π

∂ log
∣∣∣1− ζ(θ,φ2j−1)

ζ(θ2j ,φ2j)

∣∣∣
∂θ

∣∣∣∣∣∣
θ=θ2j−1

= lim
θ2j−1↗π

1

α− cos θ2j−1

Eθ2j−1

1− Eθ2j−1

= −∞

and the other terms in α2j−1,1 are bounded. Hence, lim
θ↗π

α2j−1,1 → −∞. Since αj,1 is continu-

ous function of ϑN , there exist ϑN (α) ∈ (0, π) such that α2j−1,1 = α2j,1 = 0 for j = 1, 2, . . . , N ,
for any α > 1.

Next, we consider the existence of the twisted two N -rings at (ϑ1, ϑ2) = (ϑN (α), 2π −
ϑN (α)) that is in a quasi-stationary state. When ϑN = 0 or π, the twisted two N -rings at
(ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α)) is a 2N -ring with ϑ2N = 0 or π. The twisted two N -rings at

29



(ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α)) is a equilibrium if and only if α1,1 = 0. Hence, it is sufficient
to consider the equation

α1,1(θ) =
Sc
r

1

α− cos θ

(
(α− cos θ)Q′

1(θ)−
1

2
(1 + sin θ) +

2N∑
i=2

(
ti,1 + hi,1 + (α− cos θ)Q′

i(θ)
))

= 0,

where ti = (α − cos θ)ti,1 and hi = (α − cos θ)hi,1. Here θ1 = θ3 = · · · = θ2N−1 = θ,
θ2 = θ4 = · · · = θ2N = 2π − θ and ti,1, hi,1 are defined in (A.3) and (A.5). When θi = θ, we
have ti = −1

2 and hi = 0. Hence, from (2.22), (A.3) and (A.5), we obtain

α1,1(θ) =
Sc
r

1

α− cos θ

(
− 2N

2πα
(αθ − sin θ)− 1

2
(1 + sin θ) + 2N − 1

2
(N − 1)

)
+
Sc
r

1

α− cos θ

N∑
i=1

(t2i,1 + h2i,1)

=
Sc
r

1

α− cos θ

(
− N

πα
(αθ − sin θ)− 1

2
sin θ +

3

2
N +

N∑
i=1

(t2i,1 + h2i,1)

)
.

Let us here introduce the function βN (θ, α) by

βN (θ, α) =
dα1,1(θ)

dθ

=
Sc

r(α− cos θ)2
eN (θ, α) +

d
(
Sc
r

1
α−cos θ

)
dθ

(
− N

πα
(αθ − sin θ)− 1

2
sin θ +

3

2
N +

N∑
i=1

(t2j,1 + h2j,1)

)
,

where

eN (θ, α) =(α− cos θ)
d

dθ

(
− N

πα
(αθ − sin θ)− 1

2
sin θ +

3

2
N +

N∑
i=1

(t2j,1 + h2j,1)

)

=− N

πα
(α− cos θ)2 − 1

2
cos θ(α− cos θ) + (α− cos θ)

d

dθ

(
N∑
i=1

(t2j,1 + h2j,1)

)
.

Notice that α1,1(θ) vanishes at θ = 0, π, and it is continuous. Hence, if βN (0, α)βN (π, α) > 0,
there must exist ϑN (α) ∈ (0, π) such that α1,1(ϑN (α)) = 0. The condition is equivalent to
eN (0, α)eN (π, α) > 0 owing to βN (0, α) = Sc

r(α−1)2
eN (0, α) and βN (π, α) = Sc

r(α+1)2
eN (π, α).

The plots of eN,0(α) = eN (0, α) and eN,π(α) = eN (π, α) are shown in Figure 3.8 indicating
that there exist αd(N) for N = 1, . . . , 5, such that for 1 < α < αd(N), the twisted two N -rings
(ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α)) becomes an quasi-stationary state.

We confirm the existence of two 1-rings by solving the BRD model (1.3) from the initial
condition (2.30) and (2.31). The numerical parameters are ϵ = 0.05, f = 0.7, A = 3

2πRr .
The center of the two spots at the initial moment is (θ1, φ1, θ2, φ2) = (0, π2 , 0,

3π
2 ) with S1 =

S2 = 1.5 on the torus of (R, r) = (0.925, 0.5), i.e. α = 1.85. After the localized two spots
are formed, we add a 2% random perturbation to check the stability. Figure 3.9 shows that
when α = 1.85 < αs(2) ≈ 1.89, the 2-ring at θ1 = θ2 = 0 is unstable and moves toward the
stable quasi-stationary state the twisted two 1-rings at (ϑ1, ϑ2) = (ϑ1(1.85), 2π − ϑ1(1.85))
as expected. On the other hand, when α = 1.65 < αd(1) ≈ 1.76, the twisted two 1-rings
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(a) (b)

Figure 3.8: Plots of eN,0(α) = eN (0, α) and eN,π(α) = eN (π, α) for 1.01 ≤ α ≤ 20, showing
eN,π(α) > 0 and eN,0(α) are monotone decreasing.

(ϑ1, ϑ2) = (ϑ1(1.65), 2π−θ1(1.65)) are unstable and moving toward a quasi-stationary state of
the twisted two 1-rings at (ϑ1, ϑ2) = (π, 0) after a long-time evolution as shown in Figure 3.10.
The center of the two spots of another example at the initial moment is the untwisted two
1-rings at (ϑ1, ϑ2) = (θ0, 2π − θ0) on the torus of (R, r) = (0.6, 0.5) with S1 = S2 = 1.5 and
θ0 ≈ 0.8934, which is the numerical solution of α1,1(θ0, 2π − θ0, π, π) = 0. The numerical
parameters are f = 0.7, ϵ = 0.05, A = 3

2πRr , φ1 = π
2 , φ2 = 3π

2 , S1 = S2 = 1.5. As shown
in Figure 3.11, the two spots are moving towards a stable quasi-stationary state, the twisted
two 1-rings at (ϑ1, ϑ2) = (ϑc(1.2), 2π − θc(1.2)).

We observe the linear stability of the untwisted and twisted two N -rings configuration of
the BRD model (1.3) for N = 1, . . . , 5 on the torus of (R, r) = (α2 ,

1
2) with α = [1.01, 10] by

numerical means. The parameters are ϵ = 0.05, f = 0.7, Sc = 1.5 and A = NSc
πRr . We compute

the eigenvalues of the linearized matrix of
dθj
dσ and

dφj

dσ (2.52) for j = 1, 2, . . . , 2N at the
equilibria, thereby observing the real part of principal eigenvalue, say λmax. Figure 3.12(a)
shows the real part of the principal eigenvalue of the untwisted two N -rings at (ϑ1, ϑ2) =
(ϑN (α), 2π − ϑN (α)), indicating that these cases are unstable for α > 1. Figure 3.12(b)
shows the real part of the principal eigenvalue of the twisted two N -rings at (ϑ1, ϑ2) =
(ϑN (α), 2π − ϑN (α)). There exist two unstable peaks for N > 1. By the numerical results,
there exists αe(N) such that the twisted two N -rings at (ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α))
only exist when α ∈ (1, αe(N)). When α → αe(N), a supercritical pitchfork bifurcation
occurs: the twisted two N -rings (ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α)) vanish and 2N -ring ϑ = 0
change its stability. The bifurcation diagram of θ1 with respect to stable equilibria about
the second peak of the twisted two 2-rings of the BRD model (1.3) is shown in Figure 3.13
for α ∈ [1.5, 5] with parameters ϵ = 0.05, f = 0.7, Sc = 1.5. The equilibria in Figure 3.13
are located at (φ1, φ2, φ3, φ4) = (0, π2 , π,

3π
2 ). There exist four special twisted two 2-rings

equilibria, (ϑ1, ϑ2) = (ϑa, ϑb), (ϑb, ϑa), (−ϑa,−ϑb) and (−ϑb,−ϑa) where ϑa(α) ∈ (0, π),
ϑb(α) ∈ (π, 2π) satisfying 2π < ϑa(α)+ϑb(α) < 3π. As α increases, there exists a supercritical
pitchfork bifurcation such that the twisted two 2-rings (ϑ1, ϑ2) = (ϑ2, 2π−ϑ2) and (2π−ϑ2, ϑ2)
change their stability. By the bifurcation, there appear those four special twisted two 2-
rings equilibria appear. As α increases, another supercritical pitchfork bifurcation happens,
those four special equilibria vanish and the twisted 2-rings (ϑ1, ϑ2) = (0, π) and (π, 0) change
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Figure 3.9: Evolution of the BRD model (1.3) from the initial condition (2.30) and (2.31)
consisting of two spots centered at θ1 = θ2 = 0 and φ1 = π

2 , φ2 = 3π
2 on the torus of

R = 0.925 and r = 0.5. The numerical parameters are f = 0.7, ϵ = 0.05, A = Sc
πRr and

Sc = 1.5. The 2-ring starts moving toward (θ1, θ2) = (ϑ1(1.85), 2π−ϑ1(1.85)). The horizontal
dotted line represents the reference lines of ϑ1(1.85) ≈ 0.3067 and 2π − ϑ1(1.85) ≈ 5.9765.

their stability. Then, as α increases, we observe the opposite process: another supercritical
pitchfork bifurcation happens, those four special equilibria appear and the twisted 2-rings
(ϑ1, ϑ2) = (0, π) and (π, 0) change their stability and, as α increases, another supercritical
pitchfork bifurcation happens, those four special equilibria vanish and the twisted 2-rings
(ϑ1, ϑ2) = (ϑ2, 2π − ϑ2) and (2π − ϑ2, ϑ2) change their stability. And there exists another
supercritical pitchfork bifurcation such that two 2-rings vanish and 4-ring θ = 0 change its
stability which bifurcation is αs(2N) introduced in Section 3.4. By our numerical results, we
obtain the similar four special equilibria and supercritical pitchfork bifurcations in the second
peak when N = 3, 4, 5 and first peak when N = 1 in Figure 3.12(b). To confirm the linear
stability of second peak, we solve the BRD model (1.3) numerically from the twisted two
2-rings at (ϑ1, ϑ2) = (ϑ2(2.5), 2π−ϑ2(2.5)) on the torus of (R, r) = (1.25, 0.5). The numerical
parameters are given by ϵ = 0.05, f = 0.7, Sc = 1.5, A = 2Sc

πRr . After computing the solution
up to t = 1000 when the localized spot is formed, we add a 2% random perturbation to the
solution. Figure 3.14 shows that the these two 2-rings are moving toward the twisted two
2-rings at (ϑ1, ϑ2) = (0, π) after the perturbation as we expected.

For the first peak in Figure 3.12(b) for N = 2, 3, 4, 5, we observe the unstable two twisted
2N -rings (ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α)) move to a certain special location after the pertur-
bation. For example, We solve the BRD model (1.3) numerically for the twisted two 4-rings
(ϑ1, ϑ2) = (ϑ4(α), 2π − ϑ4(α)) on the torus of (R, r) = (0.75, 0.5) with f = 0.7, ϵ = 0.05,
Sc = 1.5, A = 4Sc

πRr and ϑ4 ≈ 1.8647. When t = 1000, we add a 2% random perturbation to
the solution. For α = 1.5, as show in Figure 3.12(b), these twisted two 4-rings are unstable.
Figure 3.15 shows that this two 4-rings pattern is unstable after a long-time evolution, and it
is moving to a special location. To show this sepcial pattern more specifically, the evolution
of this simulation on the 3D torus model is shown in Figure 3.16.
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Figure 3.10: Evolution of BRD model (1.3) from the initial condition (2.30) and (2.31) con-
sisting of two spots centered at (θ1, θ2) = (θ0, 2π − θ0) and φ1 = π

2 , φ2 = 3π
2 on the torus of

R = 0.825 and r = 0.5, where θ0 ≈ 0.7378 is the solution of α1,1(θ0, 2π − θ0, π, 0) = 0. The
numerical parameters are f = 0.7, ϵ = 0.05, Sc = 1.5 and A = Sc

πRr . At first, two spots move
toward a quasi-stationary state of two spots at (ϑc, 2π− ϑc). The two spots become unstable
and starts moving toward (θ1, θ2) = (π, 0).

Figure 3.11: Evolution of the BRD model (1.3) from the initial condition (2.30) and (2.31)
centered at (θ1, θ2, φ1, φ2) = (θ0, 2π − θ0, π, π) on the torus of R = 0.6 and r = 0.5, where
θ0 ≈ 0.8934. The numerical parameters are f = 0.7, ϵ = 0.05, Sc = 1.5 and A = 3

2πRr . The
two-spot configuration becomes unstable and is moving toward φ1 − φ2 = π. The horizontal
dotted line represents the reference lines of ϑc(1.2) ≈ 1.0970 and 2π−ϑc(1.2) ≈ 5.1862 which
is the numerical solution of α1,1(ϑc, 2π − ϑc, π, 0) = 0.

33



(a) (b)

Figure 3.12: The real part of the principal eigenvalue λmax(α) for the untwisted and twisted
two N -rings at (ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α)), N = 1, . . . , 5 on the torus of (R, r) = (α2 ,

1
2)

with α ∈ [1.01, 10]. The numerical parameters are ϵ = 0.05, f = 0.7, Sc = 1.5 and A = NSc
πRr .

(a) The untwisted two N -rings. (b) The twisted two N -rings.

Figure 3.13: A part of bifurcation diagram with respect to θ1 of the twisted two 2-rings with
α ∈ [1.5, 5.0]. The numerical parameters are ϵ = 0.05, f = 0.7, Sc = 1.5 and A = 2Sc

πRr . The
solid line represents the stable solutions and the dotted line depicts the unstable solutions.
The equilibria are located at (φ1, φ2, φ3, φ4) = (0, π2 , π,

3π
2 ). The black line represents the

4-ring ϑ4 = 0. The green line represents the twisted two 2-rings at (ϑ2(α), 2π − ϑ2(α)) and
(2π − ϑ2(α), ϑ2(α)). The blue line represents the twisted two 2-rings at (ϑ1, ϑ2) = (0, π) and
(π, 0). The red line represents special twisted two 2-rings solutions with (ϑ1, ϑ2) = (ϑa, ϑb),
(ϑb, ϑa), (−ϑa,−ϑb) and (−ϑb,−ϑa) where ϑa(α) ∈ (0, π), ϑb(α) ∈ (π, 2π) and 2π < ϑa(α) +
ϑb(α) < 3π.
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Figure 3.14: Evolution of the BRD model (1.3) from the initial condition (2.30) and (2.31)
centered at (θ1, θ2, θ3, θ4, φ1, φ2, φ3, φ4) = (θ0, 2π − θ0, θ0, 2π − θ0, 0,

π
2 , π,

3π
2 ) on the torus

of R = 1.25 and r = 0.5, where θ0 ≈ 1.2854. The numerical parameters are ϵ = 0.05,
f = 0.7, Sc = 1.5 and A = 3

πRr . When t = 1000, we add a 2% random perturbation
to the solution. The two 2-rings configuration becomes unstable and is moving toward
(θ1, θ2, θ3, θ4) = (π, 2π, π, 2π).

Figure 3.15: Evolution of the BRD model (1.3) from the initial condition (2.30) and (2.31)
centered at the two twisted 4-rings (ϑ1, ϑ2) = (θ0, 2π − θ0) on the torus of R = 0.75 and
r = 0.5, where θ0 ≈ 1.8647. The numerical parameters are f = 0.7, ϵ = 0.05, Sc = 1.5 and
A = 6

πRr . When t = 1000, we add a 2% random perturbation to the solution. The two 4-rings
configuration becomes unstable and is moving toward a special position.
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Figure 3.16: Evolution of u of the BRD model (1.3) centered at the two twisted 4-rings
(ϑ1, ϑ2) = (θ0, 2π − θ0) on the torus of R = 0.75 and r = 0.5, where θ0 ≈ 1.8647. The
numerical parameters and the initial condition are the same as Figure 3.15. The two 4-rings
configuration becomes unstable and is moving toward a special position. The right-handed
coordinates are shown in each figure.
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Chapter 4

Some Numerical Simulations of
Brusselator Reaction-diffusion
model

In this chapter, we list some numerical simulations about spot division of BRD model (1.3)
on the torus which are left open for future research. The numerical parameters of numerical
simulations are given by f = 0.7, ϵ = 0.05, A = S1

2πRr and when t < 100, S1 = 3. The the
initial condition is given by (2.30) and (2.31).

The first experiment is shown in Figure 4.1. The initial condition is one spot at (θ1, φ1) =
(0, π) on the torus of (R, r) = (0.75, 0.5). When t ≥ 100, we set S1 = 14. Fist, this spot
is divided into four spots. Then, each spot is divided into two spots and a pattern of eight
spots is formed. When t = 1000, the pattern is close to the unstable untwisted two 4-rings
at (ϑ1, 2π − ϑ1). When t = 5500, the pattern is close to the unstable twisted two 4-rings at
(ϑ1, 2π − ϑ1). After a long-time evolution, the pattern is moving toward a special position

which is similar to the stable pattern shown in Figure 3.15, although A =
∑8

j=1 Sj

2πRr is different

between these two simulations :
∑8

j=1 Sj = 12 in Figure 3.15 and
∑8

j=1 Sj = 14 in Figure 4.1.

The second experiment is shown in Figure 4.2. The initial condition is one spot at
(θ1, φ1) = (0, π) on the torus of (R, r) = (2.0, 0.5). When t ≥ 100, same as the first ex-
periment, we set S1 = 14. Different from the division process in the first experiment, one
spot is first divided into two spots. Then, each spot is divided into three spots. From t = 180
to t = 230, it seems that two spots at θ = 0 is divided into six spots, but new spots vanish.
Finally, two spots at θ = 0 split in the φ direction, and we obtain a pattern of eight spots.
From t = 180 to t = 240, these two spots at θ = 0 are moving in the φ direction. Hence,
the direction of division of these two spots are parallel to the direction of the motion. In
the meantime, as shown in [17], when Sj ≈ Σ2(f), the direction of the self-replication should
be perpendicular to the direction of the motion. Hence, when Sj > Σ2(f), the direction of
self-replication could be different.

The third experiment is shown in Figure 4.3. The initial condition is one spot at (θ1, φ1) =
(π, π) on the torus of (R, r) = (2.0, 0.5). When t ≥ 100, same as the above two experiment, we
set S1 = 14. This spot is first divided into four symmetric spots with Sc = 3.5 > Σ2(f) ≈ 3.2.
Hence, these four spots pattern is unstable. Since these four spots are symmetric, each spot
should be divided into two spots. It seems that each spot is divided into two spots, but two of
them vanish and we finally obtain a pattern of six spots. The reason of vanishing phenomenon
arises because of our torus model: the vertices of model are not symmetric. Hence, we found
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that spot division may be unstable.
The fourth experiment is shown in Figure 4.4. The initial condition is one spot at (θ1, φ1) =

(0, π) on the torus of (R, r) = (2.0, 0.5). When t ≥ 100, we set S1 = 20. As similar to the
division process in the second experiment, one spot is first divided into two spots, and then
each spot is divided into three spots. But different from the division process in the second
experiment, the two spots at θ = 0 do not split in the φ direction, but are divided into six
spots. Finally, each spot at θ = 0 is divided into three spots again, and we obtain a pattern
of fourteen spots.

Figure 4.1: Evolution of the BRD model (1.3) from one spot centered at (θ1, φ1) = (0, π) on
the torus of R = 0.75 and r = 0.5. The numerical parameters are f = 0.7, ϵ = 0.05, A = S1

2πRr .
When t < 100, S1 = 3. When t = 100, we set S1 = 14. Then, the division of spot is observed
and a pattern of eight spots is formed. After a long-time evolution, the pattern is moving
toward a special position which is similar to the stable pattern shown in Figure 3.15.
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Figure 4.2: Evolution of the BRD model (1.3) from one spot centered at (θ1, φ1) = (0, π) on
the torus of R = 2.0 and r = 0.5. The numerical parameters are f = 0.7, ϵ = 0.05, A = S1

2πRr .
When t < 100, S1 = 3. When t = 100, we set S1 = 14. Then, the division of spot is observed
and a pattern of eight spots is formed.
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Figure 4.3: Evolution of the BRD model (1.3) from one spot centered at (θ1, φ1) = (π, π) on
the torus of R = 2.0 and r = 0.5. The numerical parameters are f = 0.7, ϵ = 0.05, A = S1

2πRr .
When t < 100, S1 = 3. When t = 100, we set S1 = 14. Then, the division of spot is observed
and a pattern of six spots is formed.
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Figure 4.4: Evolution of the BRD model (1.3) from one spot centered at (θ1, φ1) = (0, π) on
the torus of R = 2.0 and r = 0.5. The numerical parameters are f = 0.7, ϵ = 0.05, A = S1

2πRr .
When t < 100, S1 = 3. When t = 100, we set S1 = 20. Then, the division of spot is observed
and a pattern of fourteen spots is formed.
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Chapter 5

Comparison between the Spots on
the Sphere and Torus

5.1 Quasi-stationary spot solution on the sphere

In [24, 29], quasi-stationary spot solutions and their dynamics of the BRD model (1.3) on the
unit sphere are considered on the unit sphere endowed with the spherical coordinate system
in R3,

xS(θS , φS) = (cosφS sin θS , sinφS sin θS , cos θS)
T

for the longitudinal angular coordinate φS ∈ [0, 2π) and the latitudinal coordinate θS ∈ (0, π).
Two poles θ = 0 and θ = π are not contained in this parameterization, but we can rotate
the sphere so that there is no spot at the poles. In this section, following the asymptotic
analysis in [24, 29], we extend quasi-stationary spot solutions and the evolution equation of
the spots of RD model (1.1) on the unit sphere. Let (θS,j , φS,j) denote the core of jth spot on
the unit sphere and xS,j = xS(θS,j , φS,j). Since ∂xS

∂θS
= (cosφS cos θS , sinφS cos θS ,− sin θS),

∂xS
∂φS

= (− sinφS sin θS , cosφS sin θS , 0), we have ∂xS
∂θS

· ∂xS
∂φS

= 0,
∣∣∣∂xS
∂θS

∣∣∣ = 1 and
∣∣∣∂xS
∂φS

∣∣∣ = sin θS .

Then, we introduce the following local coordinate s = (s1, s2)
T near the jth spot on the unit

sphere:

s1(θS , σ) =
1

ϵ
(θS − θS,j(σ)), s2(φS , σ) =

sin θS,j
ϵ

(φS − φS,j(σ)), ρ =
√
s21 + s22, (5.1)

where σ = ϵ2t. The Laplace–Beltrami operator on the unit sphere is defined by

△S =
1

sin2 θS

∂2

∂2φS
+

1

sin θS

∂

∂θS

(
sin θS

∂

∂θS

)
. (5.2)

It follows from the local coordinate (5.1) that Laplace–Beltrami operator can be approximated
by

△S =
1

ϵ2
(
△s + ϵNS,j +O

(
ϵ2
))
, (5.3)

where △s = ∂2

∂s21
+ ∂2

∂s22
and

NS,j = cot θS,j

(
∂

∂s1
− 2s1

∂2

∂s22

)
.
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Owing to |φS − φS,j | ≤ O(ϵ) in the jth inner spot, we obtain

∂u

∂t
=

∂u

∂s1

∂s1
∂σ

∂σ

∂t
+
∂u

∂s2

∂s2
∂σ

∂σ

∂t
+
∂u

∂σ

∂σ

∂t
= ϵLS,ju+O(ϵ2) (5.4)

and similarly
∂v

∂t
= ϵLS,jv +O(ϵ2),

where

LS,j = −
(
dθS,j
dσ

, sin θS,j
dφS,j

dσ

)
· ∇s, ∇s =

(
∂

∂s1
,
∂

∂s2

)
. (5.5)

Here NS,j and LS,j is different from Nj and Lj of the torus case, since they depend on the
local coordinates. The solutions of (1.1) near the jth spot are expanded with respect to ϵ as
follows.

u(s1, s2, σ) =
∞∑
n=0

ϵnujn, v(s1, s2, σ) =
∞∑
n=0

ϵnvjn. (5.6)

Since the core problem on the sphere is identical to that on the torus, we have the following
results that are the same as those in the torus case:

u ∼ −ϵ2 A
a1

+
N∑
j=1

uj0,

and

△Sv + E = 2π
N∑
j=1

Sjδ(x− xj), |x− xj | > O(ϵ), j = 1, . . . , N, (5.7)

v ∼ vj0 + ϵvj1 ∼ Sj log ρ+ χ(Sj) + ϵvj1 + o(1), |x− xj | → O(ϵ), j = 1, . . . , N, (5.8)

where E = B − b1
a1
A. At next order, if we replace Nj and Lj of the torus case with NS,j and

LS,j , by introducing PS = △s+Mj , the next order equation is identical to that on the torus:

PSwj1 = △swj1 +Mjwj1 = −NS,jwj0 +

(
LS,juj0

0

)
, (5.9)

where wjn = (ujn, vjn)
T and Mj is defined in (2.8). The source-neutral Green’s function on

the unit sphere, which is the solution of △SL(xS ;xS,0) = −δ(xS−xS,0)+
1
4π and

∫
S Gdx = 0,

is given by

L(xS ;xS,0) = − 1

2π
log |xS − xS,0|+R0, (5.10)

where R0 =
1
4π (log 4− 1). Then, by introducing Li(xS) = log |xS − xS,i| the solution of (5.8)

is

v =
N∑
j=1

SjLj(xS)− 4πR0E + v, where

N∑
j=1

Sj = 2E. (5.11)

By local coordinate (5.1), Trinh and Ward [29] shows the following results.
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Theorem 5.1.1. (Lemma 1 in [29]) Suppose that θj ∈ (0, π). Then for |xS − xS,j | = O(ϵ)
and |s| = O(1), we have

xS − xS,j = ϵJjs+O(ϵ2), |xS − xS,j | = ϵρ+
ϵ2

2ρ
s1s

2
2 cot θS,j , (5.12)

where Jj is the 3× 2 matrix defined by

JT
j =

(
cosφS,j cos θS,j sinφS,j cos θS,j − sin θS,j

− sinφS,j cosφS,j 0

)
.

Then, using Theorem 5.1.1 and matching the leading order and next order of ϵ of (5.8) as
xS → xS,j for j = 1, . . . , N , we obtain

Sj log ϵ− 4πR0E + v +
N∑
i=1
i ̸=j

SiLij = χ(Sj), (5.13)

vj1 =
Sj
2ρ2

s1s
2
2 cot θS,j +

N∑
i=1
i ̸=j

Si ∇(θS ,φS)Li

∣∣
(θS ,φS)=(θS,j ,φS,j)

·
(
s1,

1

sin θS,j
s2

)
, as |ρ| → ∞,

(5.14)

where Lij = log |xS,i − xS,j |. Since Sj and v depends on the Green’s function on the surface,
the algebraic system of Sj and v of the torus case and the sphere case are different. By (5.13)

and
∑N

j=1 Sj = 2E, we obtain following the nonlinear algebraic system for Sj , j = 1, 2, . . . , N :

S +
1

log ϵ
(I − e0)LS − 1

log ϵ
(I − e0)χ =

2E

N
e, (5.15)

where e0 =
1
N eeT is the matrix whose components are all 1

N and

S =

S1
...
SN

 , e =

1
...
1

 , χ(S) =

χ(S1)
...

χ(SN )

 , L =


0 L12 · · · L1N

L21
. . .

...
...

LN1 · · · 0

 . (5.16)

Then, v is given by

v = −2E log ϵ

N
+ 4πR0E +

1

N
(eTχ− eTLS).

Suppose (5.15) has a solution. Then, there is a quasi-equilibrium solution uqe and vqe for RD
model (1.1):

uqe ∼ −ϵ2E +

N∑
j=1

uj(ϵ
−1|xS − xS,j |), (5.17)

vqe ∼


vj(ϵ

−1|xS − xS,j |), |xS − xS,j | = O(ϵ),
N∑
i=1

SiLi(xS)− 4πR0E + v, |xS − xS,j | > O(ϵ).
(5.18)
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For the BRD model (1.3), we have E = A. Hence, quasi-equilibrium solution of the BRD
model (1.3) can be expressed as follow:

(Principal Result 2.1 in [24]) Let ϵ→ 0. Suppose that the nonlinear algebraic system

S +
1

log ϵ
(I − e0)LS − 1

log ϵ
(I − e0)χ =

2A

N
e, (5.19)

for the source strengths Sj , j = 1, · · · , N , has a solution. Then, there is a quasi-equilibrium
solution uqe and vqe for the Brusselator model (1.3) with leading-order uniformly valid asymp-
totics given by

uqe ∼ −ϵ2A+

N∑
j=1

uj(ϵ
−1|x− xj |), (5.20)

vqe ∼


vj(ϵ

−1|xS − xS,j |), |xS − xS,j | = O(ϵ),
N∑
i=1

SjL(xS ;xS,i)− 4πR0A+ v, |xS − xS,j | > O(ϵ),
(5.21)

where v is given by

v = −2A log ϵ

N
+ 4πR0A+

1

N
(eTχ− eTLS). (5.22)

To obtain the evolution equation for the slow spot dynamics, let us consider the following
problem followed from (5.9) and (5.14):

PSwj1 = △swj1 +Mjwj1 = −NS,jwj0 +

(
LS,juj0

0

)
, (5.23)

vj1 =
Sj
2ρ2

s1s
2
2 cot θj +

N∑
i=1
i ̸=j

Si ∇(θS ,φS)Li

∣∣
(θS ,φS)=(θS,j ,φS,j)

·
(
s1,

1

sin θS,j
s2

)
, as |ρ| → ∞.

(5.24)

Since the boundary condition depends on the Green’s function of surface, the boundary con-
dition (5.24) of the sphere is different from the boundary condition of the torus (2.38). As
similar to that on the torus, this equation is solved by considering the decomposition of wj1.

wj1 =

(
uj1
vj1

)
= we

j1 +wd
j1, we

j1 =

(
uej1
vej1

)
, wd

j1 =

(
udj1
vdj1

)
, (5.25)

where we
j1 and wd

j1 satisfy

PSw
e
j1 = −NS,jwj0, PSw

d
j1 =

(
LS,juj0

0

)
, s ∈ R2, (5.26)

we
j1 ∼

(
0

Sj

2ρ2
s1s

2
2 cot θS,j

)
, wd

j1 ∼
(

0
αS,j · s

)
, ρ = |s| → ∞. (5.27)

Here, the function αj = (αS,j,1, αS,j,2)
T is given by

αS,j =

(
αS,j,1

αS,j,2

)
=

N∑
i=1
i ̸=j

Si

(
∂Li
∂θS

1
sin θS,j

∂Li
∂φS

)∣∣∣∣∣
(θS ,φS)=(θS,j ,φS,j)

. (5.28)
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The difference between αS,j of the sphere case and αj of the torus case is generated by the
Green’s functions and the local coordinates of the sphere and the torus. As shown in [29],

we
j1 = − s22

2 cot θS,j
∂wj0

∂s1
+ s1s2 cot θS,j

∂wj0

∂s2
is a solution of the first equation. The rest of the

computation is similarly to that on the torus. Replacing Nj and Lj with NS,j and LS,j in the
derivation of (2.49) and (2.50), we obtain the following evolution equation of RD model (1.1).
The following results derived in [29] shows the evolution equation of spots of the BRD model
(1.3) on the sphere, but it still holds for RD model (1.1).

(Principal Result 2 in [29]) Let ϵ → 0. Provided that there are no O(1) timescale in-
stabilities of the quasi-equilibrium spot pattern, the time-dependent spot locations, xj =
(cosφj sin θj , sinφj sin θj , cos θj)

T , vary on the slow time-scale σ = ϵ2t, and satisfy the differ-
ential algebraic system:

dθS,j
dσ

= − 2

Cj
αS,j,1, sin θS,j

dφj

dσ
= − 2

Cj
αS,j,2, j = 1, 2, . . . , N, (5.29)

where Cj is defined in (2.51) and

(
αS,j,1

αS,j,2

)
=

N∑
i=1
i ̸=j

Si

(
∂Li
∂θS

1
sin θS,j

∂Li
∂φS

)∣∣∣∣∣
(θS ,φS)=(θS,j ,φS,j)

. (5.30)

By using cosine law |xS,i − xS,j |2 = 2(1 − cos γij), where γij is the angle between xS,i and
xS,j satisfying

cos γij = cos θS,i cos θS,j + sin θS,i sin θS,j cos (φS,i − φS,j),

(5.30) can be expressed by

dθS,j
dσ

= − 1

Cj

N∑
i=1
i ̸=j

Si
1− cos γij

(sin θS,j cos θS,j − cos θS,j sin θS,j cos (φS,j − φS,j)),

sin θS,j
dφS,j

dσ
= − 1

Cj

N∑
i=1
i ̸=j

Si
1− cos γij

sin θS,j sin (φS,j − φS,j),

(5.31)

for j = 1, 2, . . . , N . Writing xS,j as a column vector, (5.31) is equivalent to

dxS,j

dσ
=

2

Cj
(I −Qj)

N∑
i=1
i ̸=j

SixS,i

|xS,i − xS,j |2
, Qj = xS,jx

T
S,j , j = 1, 2, . . . , N. (5.32)

Since C(S) only depends on reaction terms of RD model (1.1), C(S) of the sphere case and
the torus case are the same. Hence, the difference of the evolution equations of spots on the
torus (2.52) and sphere (5.30) is only caused by the difference in the Green’s functions and
local coordinates of torus and sphere. Since the Green’s function on the torus is difficult to
express to the function of x and xj as log|xS − xS,j | on the sphere, the evolution equation
(2.52) on the torus is difficult to obtain the form as (5.32).
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5.2 Dynamics of quasi-stationary localized spots on the sphere
and torus

We compare the existence and stability of a single spot, two spots, N -ring and twisted and
untwisted two N -rings on the unit sphere and torus. The comparison is based on our analysis
and numerical simulations in Chapter 3 of the BRD model (1.3) on the torus and the numerical
simulations of (5.32) of the BRD model (1.3) on the unit sphere carried in [14, 29]. For
2 < N ≤ 10, the numerical simulations of (5.19) and (5.32) of the BRD model (1.3) was
carried in [14, 29] with parameter f = 0.5 and ϵ = 0.02. In [14, 29], to generate N initial
points, uniformly distributed random variables hθS and hφS in (0, 1) were generated. Then, the
spherical coordinates of initial spot center is given by θS = cos−1(2hθS − 1) and φS = 2πhφS .

• Since the sphere has rotation invariance, the single spot is a stable equilibrium no matter
where this spot is. In the meantime, torus is not constant curvature and the Green’s
function on the surface depends on the geometric property of the surface. For the case
of torus, as shown in the proof of Theorem 3.2.1, there exists bifurcation αs ≈ 1.2010
such that for 1 < α < αs, the single spot (θ1, φ1) on the torus is an equilibrium if and
only if θ1 = 0, ϑs(α), π, 2π−ϑs(α) where ϑs(α) ∈ (0, π). The spots at θ1 = 0 and θ1 = π
on the torus are unstable, while those at θ1 = ϑs(α) and 2π − ϑs(α) are stable. For
α ≥ αs, the single spot (θ1, φ1) on the torus is an equilibrium if and only if θ1 = 0 or
θ1 = π, the spot at θ1 = 0 is stable and the spot at θ1 = π is unstable.

• For any two spot cores (θS,1, φS,1) and (θS,2, φS,2) on the sphere, we can rotate the sphere
such that these cores are symmetric. Hence, for any two spots pattern, S1 = S2 = E is
a solution of (5.19). Then, Trinh and Ward [29] obtained the following result.

Theorem 5.2.1. (Lemma 4 in [29]) Let γ1,2 = γ1,2(σ) denote the angle between the spot
centers xS,1 and xS,2, i.e. x

T
S,2xS,1 = cos γ1,2. Then, provided that S1 = S2 = E < Σ2(f)

, we have for all time σ = ϵ2t ≥ 0 that

cos (γ1,2/2) = cos (γ1,2(0)/2)e
−Eσ/|C(E)|. (5.33)

Since γ1,2 → π as σ → ∞ for any γ1,2(0), the steady-state two-spot pattern will have
spots centered at antipodal points on the sphere for any initial configuration of spots.

Hence, any initial two-spot pattern on the sphere will move to be γ12 = π, the antipo-
dal points on the sphere. Let us remember that the necessary condition of two spot
equilibrium on the torus is φ1 − φ2 = 0 or φ1 − φ2 = π. The reason of the existence
of necessary condition φ1 − φ2 = 0 is that the torus is a genus one surface. Since when
φ1 − φ2 ̸= 0 or π, two spots on the torus will move toward φ1 − φ2 = π, we obtain
φ1 − φ2 = 0 is unstable.

• Let us consider a ring configuration of N spots at θS,j = ϑS,N and φS,j = (2j − 1)π/N
with the same strength Sj = Sc on the unit sphere for j = 1, . . . , N , which is called
the N -ring at ϑS,N . By the symmetry or (5.30), it is easy to confirm that N -ring at
the equator ϑN = π

2 of the sphere is an equilibrium. Theorem 5.2.1 and the numerical
simulations of (5.19) and (5.32) in Section 5.1 of [29] shows that 2-rings and 3-rings at
equator is stable, but N -rings at equator is unstable for N ≥ 4. For the case of torus, the
N -ring ϑ = 0 and ϑ = π are equilibria for α > 1 and there exist αm(N) and αM (N) such
that N -ring equilibria ϑ = ϑs ∈ (0, π) and ϑ = 2π − ϑs exist for α ∈ (αm(N), αM (N))
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for N ≥ 2. By our numerical computation, we found N -ring ϑ = π and ϑ = ϑs ∈ (0, π)
are unstable and the stability of N -ring ϑ = 0 depends on α: there exists αs(N) such
that N -ring ϑ = 0 is unstable for 1 < α < αs(N) and stable for α ≥ αs(N).

• For the case of sphere, when N = 8, numerical result in Section 5.1 of [29] showed that
there exist θS ≈ 55.6° such that the two twisted 4-rings (ϑS,1, ϑS,2) = (θS , 2π − θS) are
a stable equilibrium pattern (Figure 10 in [29]). Numerical result in [29] also indicated
that the two untwisted 4-rings on the sphere are unstable and the configuration tends to
the twisted two 4-rings (ϑS,1, ϑS,2) = (θS , 2π−θS) as time increases. In the meantime, for
the case of torus, the untwisted two N -rings equilibrium (ϑ1, ϑ2) = (ϑN (α), 2π−ϑN (α))
exists for α > 1 and is unstable as shown in Figure 3.12. The stability of the twisted
two N -rings equilibrium (ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α)) on the torus depends on α as
shown in Figure 3.12. And we found that there exist stable two N -rings equilibrium
(ϑ1, ϑ2) = (0, π) and stable special two N -rings equilibrium (ϑ1, ϑ2) = (ϑa(α), ϑb(α))
on the torus depending on α as shown in Figure 3.13, where ϑa ∈ (0, π), ϑb ∈ (π, 2π)
satisfying 2π < ϑa + ϑb < 3π.

• In [14, 29], it is suggested that there exists a relationship between elliptic Fekete points
and stable equilibrium on the sphere when − 1

log ϵ ≪ 1, which is reviewed as follows.

Let us consider the following regular perturbation expansion. For − 1
log ϵ ≪ 1 and given

spots cores (θj , φj) on the torus, j = 1, . . . , N , suppose that E ∼ O(1) and Sj ∼ O(1)
for j = 1, . . . , N , we then obtain the following regular perturbation expansion:

S = S0 +
1

log ϵ
S1 +

1

(log ϵ)2
S2 + · · · , (5.34)

where S = (S1, . . . , SN ) and Si = (S1,i, . . . , SN,i)
T for i = 0, 1, 2, . . .. Similarly, we have

χ = χ0 +O
(

1

log ϵ

)
, (5.35)

where χ = (χ(S1,0; f), . . . , χ(SN,0; f))
T . By substituting (5.34) and (5.35) into (2.29),

matching the leading order and next order of 1
log ϵ , we obtain S0 = 2πrRE

N e and S1 =

(I − e0)χ0 − (I − e0)(G −P+K +Q)S0. When S0 = 2πrRE
N e, we have (I − e0)χ0 = 0

and (I − e0)K = 0. Then, we obtain

S ∼ 2πrRE

N

(
e− 1

log ϵ
(I − e0)(G −P+Q)e

)
. (5.36)

Hence, under the assumption, we obtain Sj → Sc = 2πrRE
N as − 1

log ϵ → 0. Similarly,
for the case of the unit sphere, as shown in [29], when E ∼ O(1) and Sj ∼ O(1) for
j = 1, . . . , N , the regular perturbation expansion of (5.19) yields

S ∼ 2E

N
(e− 1

log ϵ
(I − e0)Le), (5.37)

where L is defined in (5.16). Let {xS,1, . . . ,xS,N} be a set of points on the unit sphere.
Then, elliptic Fekete points is the point set on the unit sphere such that this sets globally
minimizes the discrete logarithmic energy

V = −
N∑
i=1

N∑
j=i+1

log |xS,i − xS,j |. (5.38)
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If we ignore the constraint (5.19) and set Sj = 1 in (5.30), we obtain

dV

dσ
=

N∑
j=1

(
∂V

∂θS,j

dθS,j
dσ

+
∂V

∂φS,j

dφS,j

dσ

)
=

2

C(1)

N∑
j=1

(
α2
S,j,1 + α2

S,j,2

)
≤ 0, (5.39)

where C(1) < 0. Hence, it seems that there exists a relationship between elliptic Fekete
point set and equilibrium of (5.32) and (5.19) when 1

log ϵ → 0. [29] found that the cores
of the stable twisted two 4-rings (ϑS,1, ϑS,2) = (θS , 2π − θS) on the sphere is an elliptic
Fekete point set, where θS ≈ 55.6°. Jamieson-Lane et al. [14] concluded that equilibrium
spot configurations for N = 3, . . . , 10 in their numerical simulations having a large basin
of attraction are indeed elliptic Fekete point sets.

In the case of torus, let us define the energy function VTR,r
(θ1, . . . , θN , φ1, . . . , φN ) of

N -spot pattern as follow:

VTR,r
(θ1, . . . , θN , φ1, . . . , φN )

= −
N∑
j=1

N∑
i=j+1

G̃i(θj , φj))−
N∑
j=1

(
2πF (θj) +

1

4πA
K2(θj)−

1

2

∫ θj

0

sin θ

α− cos θ
dθ

)
.

(5.40)

The function VTR,r
is periodic satisfying VTR,r

(θ1, . . . . . . , θN , φ1, . . . , φN ) = VTR,r
(θ1, . . . , θj+

2π, . . . , θN , φ1, . . . , φN ) = VTR,r
(θ1, . . . , θN , φ1, . . . , φj+2π, . . . , φN ) for any j = 1, . . . , N .

If we fix Sj = 1 in (2.52) and ignore the constraint (2.29), VTR,r
satisfies

∂VTR,r

∂θj
= −rαj,1,

∂VTR,r

∂φj
= −(R− r cos θj)αj,2.

Hence, if we fix Sj = 1 in (2.52) and ignore the constraint (2.29), VTR,r
is regarded as a

Lyapunov function, since

dVTR,r

dσ
=

N∑
j=1

(
∂VTR,r

∂θj

dθj
dσ

+
∂VTR,r

∂φj

dφj

dσ

)
=

2

C(1)

N∑
j=1

(α2
j,1 + α2

j,2) ≤ 0. (5.41)

The local and global minima of the energy VTR,r
(θ1, . . . , θN , φ1, . . . , φN ) depend not only

on N , but also on α. Investigating the relationship of minima of the energy VTR,r
and

stable equilibria of (2.52) for − 1
log ϵ ≪ 1 is left open for future research.
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Chapter 6

Summary

By using the method of matched asymptotic expansions, we have constructed quasi-stationary
states consisting of localized spots appearing in the reaction-diffusion system (1.1) on the
surface of a torus. Under the assumption that these localized spots persist stably for a long
time, the ODEs describing the slow dynamics of the spot cores are derived in the slow-time
scale σ = ϵ2. Utilizing the analytic expression of the Green’s function of the Laplace–Beltrami
operator on the toroidal surface, we derive the ODEs analytically, thereby investigating the
existence of equilibria with a mathematical rigor. We have considered the five kinds of spot
configurations: spots at the outermost or the innermost, a single spot, two spots, the N -
ring configuration where N localized spots are equally spaced along a latitudinal line, and
the two N -rings configuration where N localized spots are equally spaced along a latitudinal
line and the other N localized spots are equally spaced along another latitudinal line. The
theoretical results agree with nonlinear evolutions of the BRD model (1.3) that are obtained
by numerical means, which are summarized and compared with the dynamics of results on
the sphere [14, 29].

• Spots at the outermost (θj = π) or the innermost (θj = 0) locations on the torus,

j = 1, 2, . . . , N are always equilibria in θ direction, i.e.,
dθj
dσ = 0 if θi = 0 or π for

i = 1, 2, . . . , N .

• The single spots at the outermost (θ1 = π) and the innermost (θ1 = 0) locations on the
torus are always equilibria for α > 1. On the other hand, there exist special locations
θ1 = ϑs(α) ∈ (0, π) and 2π − ϑs(α) ∈ (π, 2π) at which the single spot becomes an
equilibrium for 1 < α < αs ≈ 1.201. The single spot at θ1 = π is always linearly
unstable, and those at θ1 = ϑs(α) and 2π − ϑs(α) are stable as long as they exist. The
single spot at θ = 0 is unstable for 1 < α < αs, whereas its stability changes when
ϑs(α) → 0 as α→ αs. It is interesting to consider a geometric or physical interpretation
of this special angle ϑs(α), which is a future problem. Let us remember that a single
point on the sphere at any location is always a stable equilibrium [29].

• Quasi-stationary states consisting of two localized spots are necessarily on the axial
section of the torus, i.e., φ1 = φ2 or |φ2 − φ1| = π. We obtain φ1 = φ2 is unstable,
the spots will move to |φ2 − φ1| = 0 after perturbation. In the meantime, two spots
patterns on the sphere are equilibria if and only if spots centered at antipodal points
[29].

• The N -ring (N ≥ 2) at the outermost (θ = π) and the innermost (θ = 0) latitudinal
lines on the torus are equilibria for α > 1. We also obtain a range of the aspect ratio
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α ∈ (αm(N), αM (N)) such that there exists ϑN (α) ∈ (0, π) for N ≥ 2. We observe
the linear stability of these N -ring configurations of the BRD model on the torus. The
outermost N -ring is always unstable, while there exists an aspect ratio αs(N) such
that the innermost one is unstable (resp., neutrally stable) for 1 < α < αs(N) (resp.,
α ≥ αs(N)). N -ring at ϑN (α) and 2π − ϑN (α) are unstable equilibria as long as they
exist. Quasi-stationary solutions of the BRD model consisting of the unstable N -ring
are numerically investigated. The unstable N -ring spots are moving toward stable quasi-
stationary states having nonsymmetric configuration of N spots, indicating the existence
of more nontrivial spot equilibria that are stable. On the other hand, for the sphere
case, the N -ring at equator is a stable (resp., unstable) equilibrium for N ≤ 3 (resp.,
N ≥ 4).

• The twisted and untwisted two N -rings at (ϑ1, ϑ2) = (0, π) are equilibria on the torus
for α > 1. In addition, the strengths of two N -rings at (ϑ1, ϑ2) = (0, π) are not identical,
nor they are uniquely obtained. We also obtain the existence of equilibria for the twisted
and untwisted two N rings at (ϑ1, ϑ2) = (ϑN , 2π− ϑN ) with identical strength Sj = Sc,
j = 1, 2, . . . , 2N . For α > 1, there exists ϑN (α) such that the untwisted two N rings
at (ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α)) is an equilibrium and unstable. We also obtain a
range of the aspect ratio α ∈ (1, αd(N)) where there exists the twisted two N -rings
at (ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α)). Our numerical results obtain the stability of the
twisted two N rings at (ϑ1, ϑ2) = (ϑN (α), 2π − ϑN (α)) is complicated and we obtain
a bifurcation diagram showing the relationship between the twisted two N -rings at
(ϑ1, ϑ2) = (ϑN (α), 2π− ϑN (α)) and the twisted two N -rings at (ϑ1, ϑ2) = (0, π). In the
meantime, the two twisted 4-rings at (ϑ1, ϑ2) = (ϑN , 2π − ϑN ) on the sphere is stable
[29].

• By carrying the numerical simulation of (5.32) and (5.19), the stable equilibria of evo-
lution equation (5.32) coincide with elliptic Fekete point for N = 2, . . . , 10 is found in
[14, 29]. For the case of torus, we derive the energy VTR,r

related to evolution equation
(2.52), but the relationship between the minima of VTR,r

and equilibria of (2.52) is left
open for future research.
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Appendix A

Asymptotic Expansions of the
Green’s Function

We introduce the asymptotic expansion and the partial derivative of the Green’s function
the which are used in the derivation in Chapter 2. The asymptotic expansion of the Green’s
function (2.15) with respect to ϵ up to O(ϵ) is provided in what follows. Since

ζ(θ, φ)

ζ(θi, φi)
= ei(φ−φi)exp

(
−
∫ θ

θi

dη

α− cos η

)
= 1 + i(φ− φi)−

r

R− r cos θi
(θ − θi)−

1

2
(φ− φi)

2 − i
r

R− r cos θi
(φ− φi)(θ − θi)

+
1

2

(
r2

(R− r cos θi)2
+

r2 sin θi
(R− r cos θi)2

)
(θ − θi)

2 + · · ·

= 1− ϵ

R− r cos θi
y1 −

ϵ2

2(R− r cos θi)2
y22 +

ϵ2(1 + sin θi)

2(R− r cos θi)2
y21 (A.1)

+
iϵ

R− r cos θi
y2 − i

ϵ2

(R− r cos θi)2
y1y2 +O(ϵ3),

we obtain, as x → xi,

log

∣∣∣∣1− ζ(θ, φ)

ζ(θi, φi)

∣∣∣∣− log ρ

= log

∣∣∣∣−y1 − ϵy22
2(R− r cos θi)

+
ϵ(1 + sin θi)y

2
1

2(R− r cos θi)
+ i

(
y2 −

ϵy1y2
(R− r cos θi)

)
+O(ϵ2)

∣∣∣∣
+ log

∣∣∣∣ ϵ

R− r cos θi

∣∣∣∣− log ρ

=
1

2
log

(
(y21 + y22)

(
1 +

ϵ

(R− r cos θi)(y21 + y22)
(−y1y22 − (1 + sin θi)y

3
1 +O(ϵ))

))
+ log ϵ− log (R− r cos θi)− log ρ

= log ϵ− log (R− r cos θi)−
ϵ(1 + sin θi)y1
2(R− r cos θi)

+
ϵ sin θiy1y

2
2

2ρ2(R− r cos θi)
+O(ϵ2). (A.2)
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Regarding Wj(θ, φ), setting Ei,j = exp
(
−
∫ θj
θi

dη
α−cos η

)
and s = exp(−2πA), we obtain

hi,j,n =

∂ log

∣∣∣∣(1− e−2nπA ζ(θ,φj)
ζ(θi,φi)

)(
1− e−2nπA

(
ζ(θ,φj)
ζ(θi,φi)

)−1
)∣∣∣∣

∂θ

∣∣∣∣∣∣∣∣
θ=θj

=
1

α− cos θj

(
sn cos (φj − φi)Ei,j − s2nE2

i,j

1− 2sn cos (φj − φi)Ei,j + s2nE2
i,j

−
sn cos (φj − φi)E

−1
i,j − s2nE−2

i,j

1− 2sn cos (φj − φi)E
−1
i,j + s2nE−2

i,j

)

=
1

α− cos θj

(E−1
i,j − Ei,j)

(
−(1 + s2n)sn cos (φj − φi) + s2n(E−1

i,j + Ei,j)
)

(1 + s2n − sn cos (φj − φi)(Ei,j + E−1
i,j ))

2 + (sn sin (φj − φi)(Ei,j − E−1
i,j ))

2
,

(A.3)

wi,j,n =

∂ log

∣∣∣∣(1− e−2nπA ζ(θj ,φ)
ζ(θi,φi)

)(
1− e−2nπA

(
ζ(θj ,φ)
ζ(θi,φi)

)−1
)∣∣∣∣

∂φ

∣∣∣∣∣∣∣∣
φ=φj

=
sn sin (φj − φi)Ei,j

1− 2sn cos (φj − φi)Ei,j + s2nE2
i,j

+
sn sin (φj − φi)E

−1
i,j

1− 2sn cos (φj − φi)E
−1
i,j + s2nE−2

i,j

,

=
sin (φj − φi)s

n
((
Ei,j + E−1

i,j

)
(1 + s2n)− 4sn cos (φj − φi)

)
(1 + s2n − sn cos (φj − φi)(Ei,j + E−1

i,j ))
2 + (sn(Ei,j − E−1

i,j ) sin (φj − φi))2
,

(A.4)

ti,j =
∂ log

∣∣∣1− ζ(θ,φj)
ζ(θi,φi)

∣∣∣
∂θ

∣∣∣∣∣∣
θ=θj

=
1

α− cos θj

(1− cos (φj − φi)Ei,j) cos (φj − φi)Ei,j − sin2 (φj − φi)E
2
i,j

(1− cos (φj − φi)Ei,j)2 + (sin (φj − φi)Ei,j)2

=
1

α− cos θj

cos (φj − φi)Ei,j − E2
i,j

(1− cos (φj − φi)Ei,j)2 + (sin (φj − φi)Ei,j)2
,

(A.5)

and

oi,j =
∂ log

∣∣∣1− ζ(θj ,φ)
ζ(θi,φi)

∣∣∣
∂φ

∣∣∣∣∣∣
φ=φj

=
(1− cos (φj − φi)Ei,j) sin (φj − φi)Ei,j + sin (φj − φi) cos (φj − φi)E

2
i,j

(1− cos (φj − φi)Ei,j)2 + (sin (φj − φi)Ei,j)2

=
sin (φj − φi)Ei,j

(1− cos (φj − φi)Ei,j)2 + (sin (φj − φi)Ei,j)2
.

(A.6)

When θi = θj , we have Ei,j = E−1
i,j = 1 and sin (φj − φi) = 0 for φi = φj , (A.3) and (A.4)

yield

∂ logWj(θ, φj)

∂θ

∣∣∣∣
θ=θj

= 0,
∂ logWj(θj , φ)

∂φ

∣∣∣∣
φ=φj

= 0. (A.7)
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Appendix B

An Algorithm to Solve g(S) = 0

In order to construct the localized spot solution of BRD model (1.3), we need to solve the
nonlinear equation g(S) = 0 (2.29) for Sj , j = 1, . . . , N . We introduce the numerical method
to solve (2.29) as follows, which are used in the numerical computation of Chapter 3. The
parameters are set as ∆S = 10−8 and tol = 10−8.

(Step 0) Computing χ(S) for discrete values S = 0.001, 0.002, . . . , 8.000 by solving the
boundary value problem (2.53), we approximate the map χ(S) by using the cubic spline
interpolation. The initial guess is given by S(0) = (Sc, . . . , Sc)

T with Sc = 2πRrE/N
and set k = 0. This step is done only once.

(Step 1) Compute χ(S(k)) and χ(S(k)±∆Sej) for j = 1, . . . , N , where ej is the unit vector
whose jth component is 1. Each component of χ is obtained from the piecewise cubic
approximation of χ(S) constructed in Step 0.

(Step 2) Compute the Jacobi matrix J (S) = {Jij(S)}, i, j = 1, . . . , N of g(S) at S = S(k).
Each entity is approximated by the central finite difference.

Jij

(
S(k)

)
=
gi
(
S(k) +∆Sej

)
− gi

(
S(k) −∆Sej

)
2∆S

,

in which gi is the ith component of g.

(Step 3) Solve the linear equation J (S(k))∆g = g(S(k)) with respect to ∆g.

(Step 4) If |∆g| < tol, then S(k) is the approximate solution of S, and we go to Step 5.
Otherwise, we set S(k+1) = S(k) −∆g and k = k + 1. Then we go back to Step 1.

(Step 5) The constant v is computed from the approximate solution through (2.28).
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Appendix C

A Brief Introduction of Surface
Finite Element Method

In this chapter, we briefly introduce surface finite element method and give an example of the
discrete BRD model (1.3) by this method.

C.1 Piecewise linear hat function

Definition C.1.1. A k-simplex σ in Rn with 0 ≤ k ≤ n is a convex hull of (k + 1) ordered
vertices {v0, v1, . . . , vk}, where v0, v1, . . . , vk ∈ Rn satisfy that (v1 − v0, v2 − v0, . . . , vk − v0)
are linearly independent. Then, the k-simplex σ can be written as

σ =

{
k∑

i=0

λivi

∣∣∣∣∣
k∑

i=0

λi = 1, 0 ≤ λi

}
.

We use [v0, v1, . . . , vk] to represent the k-simplex σ with vertices {v0, v1, . . . , vk}. For
example, in R3, a 0-simplex is a vertex, 1-simplex is an edge, a 2-simplex is a triangle, and a
3-simplex is a tetrahedron.

Definition C.1.2. Let σa = [va0 , . . . , vai ], σb = [vb0 , . . . , vbj ] be simplices in Rn. Then σb is
said to be a face of σa, if {vb0 , . . . , vbj} ⊂ {va0 , . . . , vai}.

For example, [v0] and [v1] are the faces of [v0, v1].

Definition C.1.3. A simplicial complex K in Rn+1 is a collection of simplices σi in Rn+1

such that
(i) If simplex σ ∈ K, then every face of σ belongs to K,
(ii) If simplices α, β ∈ K, then α ∩ β = ∅ or α ∩ β is the common face of α and β.

The dimension of the largest dimensional simplex in K is called the dimension of K.

Definition C.1.4. n-dimensional simplicial complex M in Rn+1 is called simplicial surface
if M satisfies that for every k-simplex s1 ∈ M , 0 ≤ k < n, there exists a n-simplex s2 ∈ M
such that s1 is a face of s2.

Hence, a simplicial surface M in R3 is a set of closed triangles satisfying that the inter-
section of two different closed triangles in M is empty or a vertex of each of the triangles or
an edge of each of the triangles.
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Definition C.1.5. Let M be a simplicial surface in Rn+1 and set {vi}mi=0 denote the vertices
set of M . The piecewise linear hat function ϕi : M → R corresponding to vi is defined as
follow:

(i) For any vertex vj ,

ϕi(vj) = δij , (C.1)

where δ is Kronecker delta function.
(ii) For any k-simplex Γs = [vs0, vs1, . . . , vsk] ∈ M , ϕi : Γs → R is a linear function

defined as follows. For any p = (xp,1, xp,2, . . . , xp,n+1) ∈ Γs ∈ Rn+1, there exists a unique set
a0, . . . , ak ∈ R, such that p = a0vs0 + · · · akvsk. Then, ϕi(p) is defined by

ϕi(p) = ϕi(a0vs0 + · · · akvsk) = a0ϕi(vs0) + · · · akϕi(vsk). (C.2)

Since ϕi equals 1 at vi and equals 0 at other vertices, it looks like a hat. Let M be a
simplicial surface in R3. The set {vi}mi=0 is vertices set of M . By Definition C.1.5, we obtain
for triangle △vivjvk , ϕi : △vivjvk → R can be expressed by

ϕi(q) = 1−

∣∣∣−→qvi · −→h ∣∣∣
h2

, (C.3)

where h is the height of edge [vk, vj ] in △vivjvk as shown in Figure C.1 and
−→
h = −→pvi. Here p

is the perpendicular foot on the line of [vj , vk].

q

p

h

vi

vj vk

Figure C.1: The figure corresponds to (C.3) and Theorem C.2.3. h is the height of [vj , vk]
and p is the perpendicular foot.

Let u : M → R be a continuous scalar function, and {σk} be the triangle set of M . Let
IIh denote the Lagrange interpolation operator of M which is defined by

IIhu =

n∑
i=0

u(vi)ϕi, (C.4)

where ϕi is the piecewise linear hat function of vi.

C.2 Surface finite element method and approximation

In this section, based on [8, 9, 10], we introduce some basic notations of surface finite element
method. Let Γ be a compact smooth oriented connected surface in Rn+1. We suppose that
there exists a smooth level set function d(x), x ∈ Rn+1 satisfying

Γ = {x ∈ S|d(x) = 0}, (C.5)
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where S is an open set of Rn+1 which depends on d(x) satisfying ∇d ̸= 0 in S and d ∈ C2(S).
We can choose signed distance function to be d(x), and v(x) = ∇d(x) to be the unit normal
of Γ. Then, we choose S to satisfy that for any x ∈ S, the exists an unique y(x) ∈ Γ such
that

x = y(x) + d(x)v(y(x)). (C.6)

Definition C.2.1. The projection matrix P of Γ is defined by ∀x ∈ Γ, for any vector X ∈
Rn+1 such that

P (x)X = X − (X · v)v. (C.7)

And (i, j)-element of P (x) can be express by

P (x)ij = δij − v(x)iv(x)j . (C.8)

where δ is the Kronecker delta.

Let functions f ∈ C2(S) and g ∈ C1(S). Then, the gradient and Laplace–Beltrami
operator of f on Γ is defined by:

Definition C.2.2. The tangential gradient of f on Γ is defined by

∇Γf = ∇f − (∇f · v) v = P∇f. (C.9)

The components of the tangent gradient is denoted by ∇Γf = (D1f, . . . ,Dn+1f). Then, the
Laplace–Beltrami operator on Γ is defined by

△Γf = ∇Γ · ∇Γf =

n+1∑
i=1

DiDif. (C.10)

As proofed in [10], the Green’s identity of Laplace–Betrami △Γ is given by

Theorem C.2.1. ∫
Γ
g△Γf =

∫
∂Γ
g∇f · u−

∫
Γ
∇Γg · ∇Γf, (C.11)

where u is the unit normal on ∂Γ, tangential to Γ.

Let Γ be a compact smooth oriented connected surface in R3 and be approximated by a
simplicial surface Γh, a triangulated surface consisting of triangles, h denote the maximum
diameter of triangles in Γh and inner radius of triangles be bounded below by ch with some
constant c > 0. The vertices set of Γh is denoted by {vi}ni=1, where vi ∈ Γ and the piecewise
linear hat function corresponding to vi is denoted by ϕi for i = 1, 2, . . . , n. Suppose that for
every y ∈ Γ, there only exists a unique x ∈ Γh satisfying

x(y) = y + d(x(y))v(y). (C.12)

Then, from (C.6) and (C.12), there exists a bijective function between Γ and Γh. For any
function f ∈ C0(Γh), f

l denotes the lift of f onto Γ by

f l(y) = f(x(y)), y ∈ Γ. (C.13)

Similarly, for any function g ∈ C0(Γ), g−l denotes the inverse function onto Γh by

g−l(x) = g(y(x)), x ∈ Γh. (C.14)

Let us define operator IIlh : C0(Γ) → C0(Γ) by IIlhg = (IIhg
−l)l for g ∈ C0(Γ). The following

estimate bewteen g and IIlhg is derived in [10]
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Theorem C.2.2. For any g ∈W 2,2(Γ), we have

||g − IIlhg||L2(Γ) + h||∇Γ(g − IIlhg)||L2(Γ) ≤ ah2(||∇2
Γg||L2(Γ) + h||∇Γg||L2(Γ)), (C.15)

where a ∈ R is a constant independent of h, W k,p is Sobolev space, ∇2
Γf

l and ∇2
Γh
f denote

the second tagential derivatives matrix of f l and f . The component of ∇2
Γf

l and ∇2
Γh
f can

be express by (∇2
Γf

l)ij = DiDjf
l , (∇2

Γh
f)ij = Dh,iDh,jf . The L2-norm of the vector and

matrix denotes the L2-norm of its components.

Using Green’s identity (C.11) and the piecewise linear hat function of finite element
method, some partial differential equation can be approximated by linear system of equations.
For example, if Γ is a surface without boundary in R3 approximated by Γh with vertices set
{v1, . . . , vn}, we can approximate the heat equation at = △Γa on Γ as follows. Let ϕi denote
the piecewise linear hat function of vertex i of Γh , i = 1, . . . , n. Let ã(·, t) ∈ C2(Γh) be the
weak solution of the following equation: for i = 1, 2, . . . , n,∫

Γh

ϕiãtdS =

∫
Γh

ϕi△Γh
ãdS. (C.16)

By using Green’s identity (C.11) and ∂Γh = ∅, we obtain∫
Γh

ϕiãtdS = −
∫
Γh

∇Γh
ϕi∇Γh

ãdS, (C.17)

Setting

ã(·, t) =
n∑

i=0

ãi(t)ϕi(·), ãi(0) = a(vi, 0), i = 1, . . . , n, (C.18)

we obtain

M∂tâ(t) = −Nâ(t), (C.19)

where

â(t) =

ã1(t)...
ãn(t)

 , (C.20)

and the element of matrices M and N are

Mij =

∫
Γh

ϕiϕjdS, Nij =

∫
Γh

∇ϕi · ∇ϕjdS, i, j = 1, . . . , n. (C.21)

Another example about BRD model on the toroidal surface with the backward Euler method
is shown inappendix C.3. As shown in the above example, we need to compute

∫
Γh
ϕiϕjdS

and
∫
Γh

∇ϕi · ∇ϕjdS. The following facts are useful:
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Theorem C.2.3. For any triangle △vivjvk, the following facts hold.

(i) ∇ϕi =
−→
h |vjvk|

2h|△vivjvk|
, (C.22)

(ii)

∫
△vivjvk

∇ϕi · ∇ϕidS =
1

2
(cot∠vivjvk + cot∠vjvkvi), (C.23)

(iii)

∫
△vivjvk

∇ϕj · ∇ϕkdS = −1

2
cot∠vkvivj , (C.24)

(iv)

∫
△vivjvk

ϕ2i dS =
1

6
|△vivjvk| , (C.25)

(v)

∫
△vivjvk

ϕjϕkdS =
1

12
|△vivjvk| , (C.26)

where |△vivjvk| denotes the area of △vivjvk, |vjvk| denotes the length of edge [vj , vk]. The

height of △vivjvk corresponding to vi is denoted by h and we use
−→
h to denote the vector

of height, from p to vi. Here p is the perpendicular foot on the line of [vj , vk] as shown in
Figure C.1.

Proof. (i): By the definition of piecewise linear hat function, we obtain

∇ϕj =
−→
h

h2
=

−→
h |vjvk|
h2|vjvk|

=

−→
h |vjvk|

2h|△vivjvk|
.

(ii): From (C.22), we obtain∫
△vivjvk

∇ϕi · ∇ϕidS =

∫
△vivjvk

(
|vjvk|

2|△vivjvk|

)2

dS =
|vjvk|2

4|△vivjvk|
=

|vjvk|
2h

=
1

2
(cot∠vivjvk + cot∠vjvkvi).

(iii): Since the included angle between ∇ϕj and ∇ϕk is (π−∠vkvivj) and the area of △vivjvk
can be expressed by |△vivjvk| = 1

2 |vkvi||vivj | sin∠vkvivj , we obtain∫
△vivjvk

∇ϕj · ∇ϕkdS =

∫
△vivjvk

cos (π − ∠vkvivj)
|vkvi|

2|△vivjvk|
|vivj |

2|△vivjvk|
dS

= −1

2

|vkvi||vivj | cos∠vkvivj
|vkvi||vivj | sin∠vkvivj

= −1

2
cot∠vkvivj .

(iv): ∫
△vivjvk

ϕiϕidS =

∫ h

0

(η
h

)2 h− η

h
|vjvk|dη =

|vjvk|
h3

∫ h

0
hη2 − η3dη

=
|vjvk|
h3

(
1

3
h4 − 1

4
h4
)

=
1

12
h|vjvk| =

1

6
|△vivjvk| .

(v) Let fj , fk : [pj , pk] → R be the linear functions on the edge [pj , pk] satisfying

fj(pj) = a, fj(pk) = 0, fk(pj) = 0, fk(pk) = b
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and the length of [pj , pk] is denoted by l. Then, we obtain∫
pjpk

fjfkdx =

∫ l

0
a
(
1− x

l

)
b
x

l
dx = ab

∫ l

0

(
x

l
− x2

l2

)
dx

= ab

(
1

2
l − 1

3
l

)
=

1

6
abl.

Using the equation above, we obtain∫
△vivjvk

ϕjϕkdS =

∫ h

0

1

6

(
1− η

h

)2
|vjvk|

(
1− η

h

)
dη

=
1

6h3
|vjvk|

∫ h

0
(h− η)3dη =

1

12
|△vivjvk| .

C.3 Discrete approximation of the Brusselator reaction-diffusion
system on the toroidal surface

In this section, we introduce how to obtain the discrete equations of the BRD model (1.3) by
finite element method on the toroidal surface TR,r with the backward Euler method as follows.

Let T̃R,r denote the triangulation mesh with n vertices of the toroidal surface TR,r. Let ϕi de-
note the piecewise linear hat function of vertex i of mesh, i = 1, . . . , n. Let ũ(·, t), ṽ(·, t) be the
approximate solution of u(·, t) and v(·, t), ũ(t) =

∑n
i=1 ũi(t)ϕi(·) and ṽ(t) =

∑n
i=1 vi(t)ϕi(·),

where ũi(t) and ũi(v) denote the value of ũ and ṽ at vertex i of the mesh at time t satis-
fying ũi(0) = u(vi, 0) and ṽi(0) = v(vi, 0). We use the backward Euler method to compute
ũ(·, t), ṽ(·, t) numerically with time step ∆t. Then, ũt(·, t) is approximated by

ũt(·, t) ≈
ũ(·, t+∆t)− ũ(·, t)

∆t
.

Since (ũ(·, t+∆t)−ũ(·, t))2 = O(∆t2) and (ũ(·, t+∆t)−ũ(·, t))(ṽ(·, t+∆t)− ṽ(·, t)) = O(∆t2),
ũ2(·, t+∆t)ṽ(·, t+∆t) can be approximated by

ũ2(·, t+∆t)ṽ(·, t+∆t) = [ũ(·, t) + (ũ(·, t+∆t)− ũ(·, t))]2 [ṽ(·, t) + (ṽ(·, t+∆t)− ṽ(·, t))]
=ũ2(·, t)ṽ(·, t) + 2ũ(·, t)ṽ(·, t)ũ(·, t+∆t)

− 2ũ2(·, t)ṽ(·, t) + ũ2(·, t)ṽ(·, t+∆t)− ũ2(·, t)ṽ(·, t) +O(∆t2)

≈2ũ(·, t)ṽ(·, t)ũ(·, t+∆t) + ũ2(·, t)ṽ(·, t+∆t)− 2ũ2(·, t)ṽ(·, t).

Then, ũ(·, t)ṽ(·, t)ũ(·, t + ∆t), ũ(·, t)2ṽ(·, t + ∆t) and ũ(·, t)2ṽ(·, t) can be approximated by
k1(·, t,∆t), k2(·, t,∆t) and k3(·, t), respectively:

k1(·, t,∆t) =
n∑

i=1

ũi(t)ṽi(t)ũi(t+∆t)ϕi(·),

k2(·, t,∆t) =
n∑

i=1

ũ2i (t)ṽi(t+∆t)ϕi(·),

k3(·, t) =
n∑

i=1

ũ2i (t)ṽi(t)ϕi(·).
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Next, we consider the weak solution ũi(t+∆t), ṽi(t+∆t) of the following equations that for
i = 1, . . . n,∫

T̃R,r

ϕi
ũ(·, t+∆t)− ũ(·, t)

∆t
dS =

∫
T̃R,r

ϕiϵ
2△T̃R,r

ũ(·, t+∆t)dS +

∫
T̃R,r

ϕi(ϵ
2A− ũ(·, t+∆t))dS

+

∫
T̃R,r

ϕif(2k1(·, t,∆t) + k2(·, t,∆t)− 2k3(·, t))dS,

∫
T̃R,r

ϕiτ
ṽ(·, t+∆t)− ṽ(·, t)

∆t
dS =

∫
T̃R,r

ϕi△T̃R,r
ṽ(·, t+∆t)dS +

∫
T̃R,r

ϕi
1

ϵ2
ũ(·, t+∆t)dS

−
∫
T̃R,r

ϕi
1

ϵ2
(2k1(·, t,∆t) + k2(·, t,∆t)− 2k3(·, t)).

Here △T̃R,r
= ∇T̃R,r

· ∇T̃R,r
where ∇T̃R,r

is defined by (C.9) on each triangle. Let us define

p(·, t,∆t) = 1

∆t
ũ(·, t) + ϵ2A− 2fk3(·, t) =

n∑
i=1

pi(t,∆t)ϕi(·),

q(·, t,∆t) = τ

∆t
ṽ(·, t) + 2

ϵ2
k3(·, t) =

n∑
i=1

qi(t,∆t)ϕi(·),

where pi =
1
∆t ũi(t) + ϵ2A− 2fũ2i (t)ṽi(t) and qi =

τ
∆t ũi(t) +

2
ϵ2
ũ2i (t)ṽi(t). By Green’s identity

(C.11), we obtain∫
T̃R,r

ϕip(·, t,∆t)dS =

∫
T̃R,r

ϕi
ũ(·, t+∆t)

∆t
dS +

∫
T̃R,r

∇T̃R,r
ϕi · ∇T̃R,r

ũ(·, t+∆t)dS

+

∫
T̃R,r

ϕiũ(·, t+∆t)dS −
∫
T̃R,r

ϕif(2k1(·, t,∆t) + k2(·, t,∆t))dS,∫
T̃R,r

ϕiq(·, t,∆t)dS =

∫
T̃R,r

ϕiτ
ṽ(·, t+∆t)

∆t
dS +

∫
T̃R,r

∇T̃R,r
ϕi · ∇T̃R,r

ṽ(·, t+∆t)dS

−
∫
T̃R,r

ϕi
1

ϵ2
ũ(·, t+∆t)dS +

∫
T̃R,r

ϕi
1

ϵ2
(2k1(·, t,∆t) + k2(·, t,∆t))dS.

Then, we obtain the matrix form of discrete Brusselator RD system(
MA(t,∆t) +N MB(t)

MC(t) MD(t,∆t) +N

)(
U(t+∆t)
V (t+∆t)

)
=

(
MP (t,∆t)
MQ(t,∆t)

)
, (C.27)

where

U(t+∆t) =

ũ1(t+∆t)
...

ũn(t+∆t)

 , V (t+∆t) =

ṽ1(t+∆t)
...

ṽn(t+∆t)

 , P (t) =

p1(t)...
pn(t)

 , Q(t) =

q1(t)...
qn(t)

 ,

M =

X1,1 · · · X1,n
...

. . .
...

Xn,1 · · · Xn,n2

 , N =

Y1,1 · · · Y1,n
...

. . .
...

Yn,1 · · · Yn,n

 ,
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A(t,∆t) =


a1(t,∆t) 0 0 · · · 0

0 a2(t,∆t) 0 · · · 0
0 0 a3(t,∆t) · · · 0
...

...
...

. . .
...

0 0 0 · · · an(t,∆t)

 , B(t) =


b1(t) 0 0 · · · 0
0 b2(t) 0 · · · 0
0 0 b3(t) · · · 0
...

...
...

. . .
...

0 0 0 · · · bn(t)

 ,

C(t,∆t) =


c1(t,∆t) 0 0 · · · 0

0 c2(t,∆t) 0 · · · 0
0 0 c3(t,∆t) · · · 0
...

...
...

. . .
...

0 0 0 · · · cn(t,∆t)

 , D(t) =


d1(t) 0 0 · · · 0
0 d2(t) 0 · · · 0
0 0 d3(t) · · · 0
...

...
...

. . .
...

0 0 0 · · · dn(t)

 .

Here ai(t,∆t) =
1
∆t+1−2fũi(t)ṽi(t), bi(t) = −fũ2i (t), ci(t) = 1

ϵ2
(−1+2ũi(t)ṽi(t)), di(t,∆t) =

τ
∆t +

1
ϵ2
ũ2i (t), Xi,j =

∫
T̃R,r

ϕiϕjdS and Yi,j =
∫
T̃R,r

∇T̃R,r
ϕi · ∇T̃R,r

ϕjdS for i, j = 1, . . . , n. For

given ∆t and initial data u(·, 0) and v(·, 0), we have ũi(0) = u(vi, 0) and ṽi(0) = v(vi, 0),
i = 1, 2, . . . , n. Then, by (C.27) and Theorem C.2.3, we can obtain the numerical results of
ũi(t) and ṽi(t).
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