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Abstract

In this thesis, based on the higher-order matched asymptotic expansion with the analytic
expression of the Green’s function of the Laplace-Beltrami operator on the toroidal surface,
we study the quasi-stationary states consisting of localized spots in a reaction-diffusion system
on the surface of a torus with major radius R and minor radius . Under the assumption
that these localized spots persist stably, we analytically obtain the evolution equation of
slow dynamics for the centers of localized spot patterns on the toroidal surface. Owing to
the analytic representation of the evolution equation, we investigate the existence of equilibria
with a single spot, two spots, N-ring configuration where N localized spots are equally spaced
along a latitudinal line with a mathematical rigor and two N-rings configuration on the surface
of torus. We show that localized spots at the innermost/outermost locations of the torus are
equilibria for any aspect ratio a = % In addition, we obtain there exists a range of the aspect
ratio in which localized spots stay at a special location of the torus and for the case of a single
spot, this special location is stable. The theoretical results and the linear stability of these
spot equilibria are confirmed by solving Brusselator reaction-diffusion model by numerical
means. We also list some numerical simulations about spot division of Brusselator reaction-
diffusion model on the torus and compare the existence and spot dynamics of spot equilibria
on the toroidal surface with the unit sphere. This thesis is an extension of the study of [26]
and we add some new results.






Acknowledgments

I wish to thank my supervisor Prof. Takashi Sakajo for his support and guidance during my
study.

I would like to thank Prof. Axel Voigt for offering me a great opportunity to stay at
Technische Universitat Dresden and to study the C++4 AMDIS (Adaptive MultiDimensional
Simulations) library there. I would also like to thank Dr. Sebastian Reuther for his kind
technical assistance in numerial simulations by AMDIS.

I would like to express my gratitude to my parents. Without their understanding, support,
and encouragement, I would not have completed this thesis.

iii






Contents

[Abstractl

[Acknowledgments|

Contents|

[List of Figures|

(1__Introduction |

2 Quasi-stationary Spot Solution on the Surface of a Torus |

[2.1 Construction of localized spots| . . . . . . ... . ... ... ... ...
[2.2  Stability of localized spots| . . . . . ... ... ... oo
[2.3  Derivation of evolution equation for spot cores| . . . . ... . ... ... ...

[2.4  Validation of the theory tor Brusselator reaction-diffusion system| . . . . . . . .

[3 Dynamics of Quasi-stationary Localized Spots |
[B.1 0, =0o0rm| ... ... ...
3.2 Asinglespot|. . . . . . . . e
3.3 Twospots| . . . .« .
[3.4 The N-ring configuration | . . . . . . . . . ... .o

[3.5  The two N-rings configuration | . . . . . . .. . .. .. ... ... ... ...
[3.5.1 Two N-rings at (¥1,92) = (0,7) . . . ... ... ... ... ... ...
[3.5.2 Two N-rings at (V1,92) = (Un,20r —On)| - . - - . . o oo 0oL

[> Comparison between the Spots on the Sphere and Torus |

5.1  Quasi-stationary spot solution on the sphere|. . . . . . .. ... ... ... ...

5.2 Dynamics of quasi-stationary localized spots on the sphere and torus| . . . . . .

[6 Summary |

[A Asymptotic Expansions of the Green’s Function|

B An Algorithm to Solve g(S) = 0

iii

vii

11
12
14

17
17
19
21
22
26
26
27

37

43
43
48

51

53

55



[C.1 Piecewise linear hat functionl . . . . . . . .. . .. ... ... .. .. ... ... 57
[C.2  Surtace finite element method and approximation|. . . . . . . .. ... ... .. 58
[C.3 Discrete approximation of the Brusselator reaction-diffusion system on the |

[ toroidal surface | . . . . . .. 62
65

[References|

vi



List of Figures

2.1 u(p) and v(p) of core problem| . . . . ... ... 15

22 Mmaz OF BBA - - - o 16

33 CS)| -« o 16
|3.1 Evolution from a single spot ¢; = 0 on the torus Ty110[ . . .. ... ... ... 20
3.2 Evolution from a single spot #; = 7 on the torus T1310] - . . . . . . . .. ... 21
3.3 Amaz(a) for the N-ring on the torus| . . . . . ... ... ... ... ... .. 25
(3.4 Evolution from the 5-ring v/s = 7 on the torus Tooos . . . ... .. ... ... 26
E’).S Evolution from the 5-ring J5 = 0 on the torus Tg.l’(ﬁ ............... 27

} volution from the 5-ring J5 = 1.1 on the torus of T1 705 - - - -« . . . . . .. 28

3.7 Si(a) and \,4. of the twisted two 1-rings (91, 92) = (0, 7) of the BRD model |

[ on the torusl . . . . . . . . L 29
B8 enola) and enr(a) - - o oo 31
.9 Evolution from the two ring ¥ = 0 on the torus 1092505 - - « - « - « « -« . . . 32
3.10 Evolution from the twisted two l-rings (V1,v2) = (0p,2m — 6p) on the torus |

| T0,825,0,5| ........................................ 33
[3.11 Evolution from the untwisted two 1-rings (91, 92) = (0o, 2 — 6y) on the torus |

| Tioos] - - - - - - - . 33
[3.12 N\pop(cr) of two N-rings| . . . . . . . . ... 34
[3.13 Bifurcation diagram of ¢; for the twisted two 2-rings| . . . . . . . ... ... .. 34
[3.14 Evolution from the twisted two 2-rings (¢1,v2) = (0y, 2w — 6p) on the torus |

| Tiss0s] - - - - ool 35
[3.15 Evolution from the twisted two 4-rings (V;,v2) = (0o, 2w — 6p) on the torus |

| To.75 0.5| ........................................ 35
[3.16 Evolution of u from the twisted two 4-rings (1, ¥2) = (0, 2 — ) on the torus |

| To.75 0.5| ........................................ 36
4.1 Evolution from one spot ¥ = 0 from 57 = 3 to 51 = 14 on the torus Ty 7505 . . 38
4.2 Evolution from one spot J =0 from S7 = 3 to 57 = 14 on the torus Togos . . 39
4.3 Evolution from one spot J = 7 from S; = 3 to 51 = 14 on the torus To g5 . . 40
4.4 Evolution from one spot J =0 from S7 = 3 to 57 = 20 on the torus To o5 . . 41
[C.1 The figure corresponds to (C.3) and Theorem [C.2.3[. . . . . .. ... ... ... 58

vii






Chapter 1

Introduction

Self-organizing beautiful patterns of localized spot-like structures appear ubiquitously in many
phenomena including animal skin, chemical reaction, cellular differentiation and many others.
In order to clarify the mechanism of spot patterns theoretically, it is helpful to construct
phenomenological models describing the dynamics of those localized spot structures. A well-
known model for localized spot structures is obtained from reaction-diffusion (RD) systems,
in which spatially homogeneous steady states self-organize into localized spot structures due
to Turing instability [30]. The localized spot patterns of reaction-diffusion systems is widely
observed and applied in chemistry [6l, 19, 22, 28] [34], biology [11}, 18| 211, 27], physics [1, 2].
More examples of localized patterns in reaction-diffusion systems are also found in [35].

In order to construct localized patterns and analyze dynamics of localized patterns of
RD systems, the method of matched asymptotic expansions is often used in the studies of
RD systems. By using this method, the localized spot patterns and spot dynamics of the
Gierer-Meinhardt RD model [12, 13] and the Gray-Scott RD model [7], [16] are analyzed in
1D domain. For the case of 2D domain: a bounded domain of plane, this method is used
to construct localized spot patterns of the Gierer—Meinhardt RD model [15], the Gray—Scott
RD model [5], the Schnakenburg RD model [17], and to analyze their dynamics and stability
analytically. In addition, by using the method of matched asymptotic expansions to analyze
spot patterns of Schnakenburg RD model on the 2D domain, Kolokolnikov et al. [I7] obtained
that the direction of the self-replication should be perpendicular to the direction of the motion.
Unlike the studies in 1D and 2D domain, only a few studies analyzed the dynamics of localized
spot on the surface. Using the method of matched asymptotic expansions, Rozada et al.
[24] constructed the quasi-equilibrium solutions of spot pattern on the sphere and obtain
spot self-replication instability, competition instability and oscillatory instability. Using the
higher-order matching, Trinh and Ward [29] obtained evolution equation of slow dynamics for
spot patterns on the sphere. Some detailed results for the existence and bifurcation structure
of N-spot patterns are also obtained in [29]. In the meantime, another remarkable geometric
feature of compact surfaces is the existence of handle structures. Hence, it is interesting to
investigate how the handles affect the dynamics and the stability of localized spot patterns.
One of the simplest compact surfaces is a toroidal surface with major radius R and minor
radius r. Different from the surface of a sphere, it has not only nonconstant curvature but also
a handle that is measured by the aspect ratio « = R/r. Tzou and Tzou [32] have proposed
an analytic-numerical method for computing the Green’s function for Helmholtz operators
on curved surfaces, which is applied to derive an ODE describing a slow dynamics of N
localized spots for Schnakenberg reaction-diffusion model. With this model, they numerically
investigate the stability of one and two localized spots. Sakajo and Wang [26] utilized the



explicit analytic formula of the Green’s function of the Laplace-Beltrami operator on the
toroidal surface and obtained the existence and slow dynamics of localized quasi-equilibrium
multispot patterns on the toroidal surface, and analyzed equilibria of 1-spot, 2-spot, N-ring
spot pattern and their stabilities.

In this thesis, we consider a reaction-diffusion system of the following form on a surface

M.
1
up = A pu + €A+ F(u,v), T = Apmu + B+ 5 FY(u,v), (1.1)
€

where Ay is the Laplace—Beltrami operator on M, and the reaction terms F“(u,v) and
FV(u,v) are specified by

n n
FU(u,v) = ayu + u? Z a; ju'vd, F¥(u,v) = biu + u? Z b ju'vd. (1.2)
,5=0 ,j=0

Here, we assume that a; < 0, 7 > 0, n € Ng, A, B,b1,a;;,b;; € R are independent of e
and 0 < € <« 1. We define the parameter £ = B — Z—llA > 0 for later use. One example of
is Brusselator reaction-diffusion (BRD) model which is used as a mathematical model
of reaction mechanism [23, [31]. It is specified by

1
up = EApu + A —u+ fuv, TV = AMU+3(U7U2’U), (1.3)
€

in which F%(u,v) = —u + fu®v, F'(u,v) = v —u?v, A > 0 and B = 0 in with an
additional parameter 0 < f < 1 satisfying 7 = # Note that the model is considered on
a bounded domain of plane [4, B3] as well as on the unit sphere [24] 29]. Another example
of reaction-diffusion system model is Schnakenberg model [32], in which 7 > 0, A =0,
B >0, F¥(u,v) = —u + v?v and F"(u,v) = —u?v.

This thesis is an extension of the study of [26]. In Chapter [2] based on the higher-order
matched asymptotic expansion, we derive the quasi-equilibrium solutions of localized spot
pattern and an ODE describing the slow dynamics of localized spot centers of the reaction-
diffusion system on a toroidal surface. In Chapter [3, using the ODE, we show that
localized spots at the innermost or outermost locations of the torus are equilibria for any
aspect ratio a = g. Furthermore, we investigate the existence of equilibria having one spot,
two spots, N-ring and two N-rings configuration. The linear stability of these equilibria are
discussed. Section [3.I]and Section [3.5] are new results, and Sections 3.2 to 3.4 have been pub-
lished in [26]. The explicit analytic formula of the Green’s function of the Laplace-Beltrami
operator on the toroidal surface [25] is used in the derivation. This is different from the
derivation by [32], in which the Helmholtz Green’s function is constricted numerically. Owing
to the analytic formula, we can conduct rigorous mathematical analysis of the spot dynamics.
We also carry out numerical simulations of the BRD model , which are compared with
our theoretical results. In Chapter {4}, we list some numerical simulations about spot division
of BRD model on the torus. In Chapter [5, based on the study [24] 14} 29] of the BRD
model on the unit sphere, we derive the quasi-equilibrium solutions of localized spot
pattern, evolution equation of slow dynamics of RD model and compare the existence
and spot dynamics of equilibria on the toroidal surface with on the unit sphere. This chapter
is new content. The last chapter is a summary. In Appendix [A] we show the asymptotic
expansions of the Green’s function which are used in deriving the quasi-equilibrium solutions
of localized spot. In Appendix [B] an algorithm computing equilibria and their stability nu-
merically is shown. In Appendix [C] we briefly introduce the surface finite element method



and give an example of discrete approximation of the BRD model by using this method. In
this thesis, the theoretical results of spot dynamics are confirmed by solving the numerical
evolution of the BRD model (1.3) by Adaptive MultiDimensional Simulations [36} 37].






Chapter 2

Quasi-stationary Spot Solution on
the Surface of a Torus

Let Tg, denote the toroidal surface with major radius R and minor radius r that is embedded
in the Euclidean space E3.

Tr, = {x € E*|x = (R —rcos ) cos p, (R — 7 cos 0) sin p, rsin )}, (2.1)

where (0, ¢) € (R/27Z) x (R/277Z) is the toroidal coordinates. Let us consider the reaction-
diffusion model (1.1)) on the torus M = T, where the Laplace-Beltrami operator is specified
by

1 0 0 1 0?
- | (R— 0)— .
r2(R — rcosf) 00 << reos )80> * (R —rcosf)? 0p?

ATR,T =

2.1 Construction of localized spots

Following the asymptotic analysis in [24], we construct a quasi-stationary solution of RD model
(1.1) on the toroidal surface in the limit of ¢ — 0. Suppose that the quasi-stationary spot
solution solution at a scaled time o = €2t consists of N localized spots located at (6;(c), ¢;(7)),

j=1,...,N. Since g—z = (rsinf cos ¢, rsin @ sin ¢, r cos #) and g—z = (—(R—rcosf)sinp, (R—
rcosf) cos ¢, 0), we obtain g—f’g’ : % =0, g—i =r and ‘g—i‘ = (R—rcosf). Then, we introduce
a local coordinate y = (y1,y2) of O(¢e) around the jth spot as follows.

yi(0,0) =re 10— 0;(0)),  yalp.0) = (R—rcosb(a))e (¢ — p;(0)). (2.2)

It follows from

9 (R - 9)3 _lﬁi_i_ii?
r2(R — rcosf) 00 Y  eR—rcos00y €20y}

1 0? (R —rcosf;)* &? 1 2sin 6 o\ 02
— 29 2 2/p_ 292 2\ T p_ 63/1""0(6) Wk
(R —rcosh)? 0p e2(R—rcosh)?0y; € R —rcosf 0y3
sin @ sin 0; O(e)

R —rcosf - R —rcost;



that we obtain

1 [ 02 0? esinf; 0 2ey; sinf; 02
yaN - - (= 3y = 4 =7 = _ =) 7 2
Trr = &2 <8y% * oy3 + R —rcosb;0y; R —rcosb; Oy3 +0(e )> (2.3)
1
:6(Ay+€/v}+o(€2))’
where Ay a o7 + ay and

Sinej 0 82
= [ oy 2 ).
Ay R —rcost; <8y1 Yy 83/%)

With the local coordinates y = (y1,y2) and the scaled time o in the inner region of the jth
spot, the solutions v and v of RD model (I.1)) can be expressed by u(y1,y2,0) and v(y1,y2,0).
Owing to |p — ¢;| < O(e) in the jth inner spot, we obtain

@ _ Ou Qy1 o n Ou Oys Jo 4 Ou Oou Oo
ot Oyy 0o Ot ' dys Do Ot = Do Ot

d9 ou dy; ou i Ou ou (2.4)
= —— — (R - 0;)e—L — — 0 R :
“Io i (R —1rcosbj)e Ao 91 + e(p — pj)rsinb; d 9 +€ e
= eﬁju + O( )
and similarly
ov
a = Gﬁj’U + 0(62)’
where a0, 4 3 g
¥j
Li=— R — 0;))— |-V Vy=|=—,—. 2.5
J ( Qo i T Ccos ])do_) Y Y (81/1’07;2) (2.5)
The solutions of ([1.1]) near the jth spot are expanded with respect to € as follows.
U(yl,y%a) - Zenujn) U(ylayQaU) - Zﬁn’l)jn. (26)
n=0 n=0

We here deﬁne wj, = (u]n,v]n)T In the inner region near the jth spot, substituting (2 ,
and (| into ( , we obtain the equation for the quasi-steady solution at the leadlng
order of € on y € R2.

Ayujo + F*(ujo, vjo) =0,  Ayvjo + F*(uj0,vj0) = 0. (2.7)

At the next order, by introducing P = Ay + M;, where M; = a%;t ~(u50,050) % av = (uj0,250) :
Bu (u]()?vjo) Bv (uJOﬂ)]O)

the following equation for wj; is derived.

Lo
Pwji = Aywji + Mjw;; = —./\/'j'wjo + ( ](;L]O> . (2.8)

In order to construct radially symmetric localized solutions u;o(p) and vjo(p) of the equation

(2.7) where p = |y|, let us consider the following boundary value problem:

Apujo + F“(ujo,vjo) =0, ApUjo + F”(ujo,vjo) =0, 0<p<oo,

2.9
ugo((]) = 90(0) =0, ujo — 0, wjo ~ Sjlogp+ x(S;) +o(l) as p— oo, (2:9)

6



where x(S;) is a constant independent of p, A, = 0,, + %8,,, and ujg is exponentially small
as p — oo. This is called the core problem, in which parameter S; is referred to as the
strength of the jth spot. On the other hand, we consider the solutions of RD model in
the region outside of the spot with the scale of O(e). The Taylor expansion of x(f, ¢) in the
neighborhood of z; = ((R — r cos 0;) cos ¢j, (R — r cos 0;) sin p;, r sin 0;) is given by |z—x;|* =
62(yTMfij)+(’)(e3), where (0, ¢) = ((R — rcosf) cos g, (R — rcosf)sinp,rsinf) and M;
is defined by

cos pjsinf; —singp;
M; = | singp;sinf; cosyp; |. (2.10)
cos 0; 0

It follows from MJTMj = I and yTy = p? that we obtain |z — x;| = ep + O(¢?). Owing to
the quasi-stationarity of the solution, u should satisfy u; = 0 and ATR,TU = 0 in the region
separated from O(e) neighborhoods of the localized spots at {x1, .. @ N} In the outer region
of the spots, since the nonlinear term is negligible, we obtain u ~ —<£ 4 for ay # 0. Combining
the inner and outer approximations of u, we have the following asymptotlc expression of u in
the outer region:

9 A
un~—2 =+ E Uusj0-
ai
j=1

Regarding the equation for v in the outer region, we have B + E%F Y~ B + Zu~FEin
the outer region of spots, since the nonlinear terms are negligibly small. Since ]a: — x| ~ ep,
uj ~ ujo and vj ~ vjo in the inner region of the jth spot, the contribution in F*(u,v) from
the jth localized spots to the outer region is approximated by the delta function bd(x — ;)
whose weight b is obtained by integrating the nonlinear term in the disk of radius e€p around
the jth spot.

2m o]
b=c¢ / d9/ Y(ujo, vjo)pdp = —2me? / (POppvjo + Opvjo)dp
0
= —2m€” [pOvjol° = —2me>S;.

Hence, by combining the inner and outer approximations for B + E%F Y(u,v), we obtain

N
1
B4 = FY ~E - Sz — x5). .
+ 62F (u,v) ~ E QWZS](S(CC x;) (2.11)
7=1
Using (2.11)) and the far-field behavior of the inner solution (2.9)), we finally obtain the fol-
lowing outer problem for v subject to the matching condition:

N
ATRyTv—i—E:QWZde(a:—mj), lx —xj| > O(e), j=1,...,N, (2.12)
j=1
v ~vjo + evjr ~ Sjlogp+ x(S;) + evji +o(1), |z—x;| - O(e), j=1,...,N. (2.13)

To solve ([2.12)), we make use of the Green’s function G(x;xo) associated with the toroidal
surface, satisfying

1

w2pe  C@me) = Gl@ox). (2.14)

Aty G(x;20) = —6(2 — T0) +



According to [25], the Green’s function on the toroidal surface is explicitly represented by

G(x;xp) = ~L log |P

¢ 1 1 1
(£)] - 7O - Pt~ g KOO + LK) - K@)

27 Co 47 47
(2.15)
where
KO = [ 0= [ 0. - e (K(0) € ©
~Jo a—cosy’  4m2a Jy a —cosy G p)=em e
(2.16)

and A = (a® —1)7'/2 with a = R/r. Note that the variables x, (,¢) and ¢ are related to
each other through the relations (2.1)) and (2.16). In (2.15), the function P({) denotes the
SchottkyKlein prime function associated with the annular domain D = {¢ € Cle™?™ <

¢l <1}

PQ)=1-¢J (@ —e?m) (1—e ™). (2.17)

n>1

If S; satisfies Z;VZI S; = 2rrRE, the solution of |i is expressed by

N
v = —Qﬂ'ZSjG(CIJ;CBj) +7T (2.18)
j=1

with a constant ¥ to be determined. In order to compute U, we match the behavior of the
outer solution as |& — x| — O(e) and the far-field behavior of the inner solution
of the jth spot as p — oco. Let us rewrite Gj(x) = G(x; ;) for j = 1,2,..., N, which is
divided into three parts:

21Gj(x) = —log |1 — Cc(éi:;)) —log W;(0,¢) — Q;(8), (2.19)
where
) _ _ e—2n7rA C(Q, 30) . €—2n7r.A C(ev 90) -
Wil ¢) = Tg <1 (05, ‘Pj)) <1 <C(9j790j)> ) 7 (2.20)
Q;(0) = 2r (F(H) + F(6;) + ﬁK(O)K(Gj) - iK(Q) + 47TK(9 )) (2.21)

As © — x;, it follows from (A.2) in Appendix |A]that we obtain

(0, ¢)
C(%’?‘P]‘)

€(1+sinb;)y; esinf;y1y3
2(R —rcosb;)  2p*(R —rcosb)

log |1 — =logp +loge —log (R — rcosf;) —

+ O(€?).



Owing to (2.22)) and (A.7) in Appendix |A] we also have

d(log W (0, p;
log W;(0, ¢) =log W;(0;, ;) + (log aje( ©1)) (0 —0))
0=0;
O(log W, (6,
+ ( 8](] 90)> (SD*(Pj)+O(€2)
¥ =0;
=k +O(%),
0Q); €Y
Q0 =,6) + 2] 00+ 01 = 4, + Q40 L + 0,
0=0,
where k = log W;(0;, ;) = 2log ([, (1- 6727””4)), ¢; = Q;(0;) and
rogy L afl—sing 1 ‘ 1 1 1
@(0) = 2o oo — cos B QWAK(Hj)a—COSQ + 2a —cosf’ (2.22)

Hence, as © — xj, we have

e(l+sinf)yr  esinyyl
Q(R—TCOSGj) 2p2(R—7“0059j)

2nGj(z;) = —log p —loge + log (R — rcosf;) +
€
— k=g — Q(6) 1 + O(e),
On the other hand, by Taylor expansion, as * — x; for ¢ # j, we have

an (03 90) T GG](Q’ SO)

27TGj($) ~ 27TGj($i) + 27 o0 8@

(0 —6;)+2
(QVW):(0i1@i)

(A - NI
- <G.71 + V(H#P)GJ‘(G#’O):(QZHM) < r ’ R — rcos 07,)) ’

where C~¥j = —27G}, C:’jz- = éj(xi), and V(g ) = (%,%). Then, as | — ;| = O(e), by
matching the outer solution (2.18)) of v and the far-field behavior of the inner solution (2.13))
of the jth spot, we have

(80 - %’)
(0,0)=(03,04)

N
—27rz SiGi(x) +v ~ Sjlogp + x(S;) + evj1, x—x;| = Oe),
i=1

which implies

e(1+sinb;)y, e sin 0193
2(R—rcost;)  2p*(R—rcosby)

.(W1fﬂz>)+v
(0,0)=(0;,5) r 'R — cos 9]'

S; <1ogp+loge—log (R—rcosb;) — > + Sk + S;q;

N
€S, ~ ~
+ T]Q;'(ej)?/l + Z Si (Gij + Vi, Gi
i=1
i#]
~ S;logp + x(S;) + evj1.

(2.23)
Matching the leading order of ([2.23]), we obtain

N
x(S;) = Sj(loge —log (R —rcosb;) + k + ¢;) —I-W—FZSZ@U, j=1,...,N. (2.24)
i#]



Let us recall that the expression ([2.18]) is valid under the assumption that

N

> 8; =2rrRE. (2.25)
j=1
Hence, the matrix form of and ([2.25) is given by
x(S)—(G+ (loge)] —P+K+Q)S =ve, e'S=2nrRE, (2.26)
where
0 G - Gin
S1 1 x(S1) G :
S = S, o e=1 ], x(S)= ., G= .21 ’
SN 1 X(Sn) .
GNl et 0 (2.27)
D1 0 k 0 q1 0
p k q
P = ’ ) IC = ) Q - ?
0 PN 0 k 0 gN

Here, p; = log (R — rcosf;) and q; = Q;(0;) for j = 1,2,...,N. Since IS = Z;V:1 S; =
27rRE and e’'e = N, by taking the inner product between e’ and the first equation of (2.26]),
we have the following formula deriving the constant ¥ from S and x(.S).

7= (e7X(S) ~ (70 + (g )e” I — "P + 'K + €T Q)S)
a %Ebge + %(eTx(S) —(e'G—e"P+e"K+e"Q)S). (2.28)

Substituting (2.28]) into (2.26)), we have

2mrRE .
N bl

S+ (I—e)(G-P+K+Q)S = ——(I—eq)x(S) +

2.29
log e loge ( )

where ey = %eeT is the matrix whose components are all % The equation 1) gives rise

to a nonlinear equation g(S) = 0 for S. Suppose that there exist solutions S;, ujo(p), vio(p),
j=1,...,N,of (2.29) and (2.9)) for given N spot centers (05, ¢;). In addition, if the solutions
ujo(p) and vjo(p) are spot-shaped for j = 1,2..., N, then the localized spot solutions uqe and
vge of RD model (1.1]) are represented by

A N
Uge ~ _62;1 +) ujo(e o — ), (2.30)
j=1

vjo(e e — ;) |z — x| < O(e),

o~ N 2.31
Ya =21 ) S;G(z;xj) + 7, |z —x; > O(e). (2:31)
j=1
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2.2 Stability of localized spots

We assume that the quasi-equilibrium solution of (2.30]) and ([2.31)) is stable up to eigenvalues
of O(1) when we derive the evolution equation for spot cores in the next section. Hence, we
discuss the stability of the quasi-stationary spot solutions uqe and vg based on the analysis
in [24]. Substituting u = uqe + €M), v = vqe + eM¢ into RD model and linearizing the
equation, we obtain the following eigenvalue problem:

oF" oOF"
62ATRJ¢ + 7(“%7 Vge)¥) + W(uqm Vge) = A,

oFv oF"v
o (uqe,vqe)ﬂ’WL 90 (quavqe)¢) = TAQ.

Since we are concerned with the stability of a localized spot in the inner region of the jth
spot, we expand

) (2.32)
ATR,T¢ + ? <

o0 oo
Uge (Y1, Y2,0) = Z €"Wjn, Vge(Y1,Y2,0) = Z €"Vjp,. (2.33)
n=0 n=0
Note that we have uge ~ ujo and vqe ~ vjg in the inner region of the jth spot with the strength
S; as the leading order. Assume now that u;o and vjo are radially symmetric functions, say
ujo(p) and vjo(p) which are solutions of the core problem ([2.9). Using the local coordinates
(2.2) and ([2.3)) in the inner region of the jth spot, the eigenvalue problem (2.32)) is reduced to
u u
E(uj()a vjo)Y + W(ujo’ vjo)¢ + O(e) = A,
v v

oF
Ny + W(%’Oa vjo)Y + W(ujm j0)¢ + O(e) = €T

Furthermore, we assume 7A < O(e?) and neglect the O(¢) term. Then, we obtain the
eigenvalue problem at the leading order.

6 F OF"

Byt + = (ujo, vjo)¥ + ——(ujo, vjo)p = Ay,
GF” OF" (2.35)
Dy + — = (50, vj0)t + 5~ (ujo, vjo)$ = 0.

By the separation of variables with 1) = 1//1\(/))61'“"’” and ¢ = ngS(p)eiwm around the inner region
of the jth spot in the coordinates y = (y1,y2) = (pcosw, psinw) and m = 0,1,2..., the
equations (2.35)) are reduced to those for the shape of the jth spot.

2 ru Y OFY o~
( f )(ujo,vj(])?ﬁ + W(“jOyij)ﬁb =

Dyt +
Y (2.34)

A — 212 + (a1 — N +
(2.36)

v v
~

~ m2 F
A ?fﬁ + W(Ujoyvjo)w + e

where f*(u,v) =377 Oa”u‘vj Owing to the existence of (a1 — )15 in the equation (2
for w, we 1mp0se that 1/1 — 0 as p — oo if Re\ > a;. The far-field condition for w is given by

0) gb’ =0 and 1/1 — 0 as p — oco. In what follows, we consider the modes m > 2, since
(w ¢) = (0p ujo, 0,vj0) is the solution of 1.} corresponding to the A = 0 for m = 1, which is

obtained by differentiating core problem 1.’ Hence, owing to the existence of ——ng in the

(wjo, vjo)é = 0,

equatlon - for gb, the boundary condltlon for qS is given by qS — 0 as p — oo for m > 2.
By solving the eigenvalue problem ([2.36]) numerically, we can observe the stability of the jth
spot.

11



2.3 Derivation of evolution equation for spot cores

Based on the asymptotic analysis in [29], the evolution equation of N spot centers is derived
from the second-order inner core problem ({2.8]) with the operator £; containing the temporal
derivative in terms of 0. The boundary condition of vj1(y1,y2,0) as p — oo is obtained by

matching the next order O(e) in (2.23)).

1 (1 +siné;)y sin 0913
=5 -Q.0:)y1 — 2 =2
Uj1 =0 <TQJ( i)y 2(R — 1 cos6;) * 2p%(R — rcosb;)

N
~ U1 Y2
+3 81V, Gil0,0) ( R—H)

=1

i#j

S sin 0,11 y3 .
_y. J S TiI1Y2 =1,2,...,N 2.37
]+2p2(R—TCOSHj)’ J ,, T ( )

where
o (1 (1+sinb;)y n Y2
=5 (R0 - ) o 35w G- (2t
#J

Regarding the boundary condition of u;i(y1,y2,0), owing to u ~ —€e2A/ay as p — oo, the
O(e) term of u in (2.6) becomes uj; = 0 as p — oo for wj1 = (uj1,v;1)T. This gives rise to
the following boundary value problem:
,Cjuj'g 2
Pwji = Aywji + Mjwj = —Njwjo + | 77 ).y = (y1,52) € R,
(2.38)

0
Wj1 ~ | S; sinb; as p:\y]%oo
’ ( JQR rcos@ y1y2+Y>
We solve this equation by considering the decomposition of wj1,

uj1 a ufy ¢ _ (uh
J— — € C— J — J
wjl = ) = wjl + wjl, wj'l = e s wjl = d s (239)

where w7, and 'w?l satisfy the following inhomogeneous boundary value problems:

Lo
Pw$y = —Njwjo, P'wjll = ( jgjo) . yeR? (2.40)
w s % w? < 0 > p=lyl = (2.41)
7 2,;2 R Slrncosé) yly? 7 QY ’ ‘ .
Here, the function a; = (aj71,aj72)T is introduced so that aj -y =Y, for j = 1,2,..., N.

Each o is a function from (61, 0s,...,0n, 01,02, - ¢n) € RV to R?, and it is explicitly
given by

o8,

1
a 1
J— 75 T 0
o5 = <a 2) Z ( 1 ac)
I R—rcosf; Oy

zsﬁj

Loy (6) _ (hsings)
+ Sj (TQ]'(GJ) OQ(R—TCOSJGj)> . (2_42)

(0,0)=(85.,5)
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sin 0; yg dwjo Owjoy . .
R=rcos?; (—F 5, +y1y27,,) is the solution of the first equation,

which contains no temporal derivative term. Hence, it has nothing to do with the spot
dynamics. Hence, we construct the evolution equation for the jth spot by solving the second
equation of (2.40f) for 'w?l. By differentiating , we obtain Paéuyio =0 for ¢ = 1,2, which
means the dimension of the null-space of the adjoint operator P* = (A, + _/\/l?) is at least
two. Let us consider the homogeneous adjoint problem P*W¥ = 0, which is solved by the

separation of variables in terms of the local coordinates y = (pcosw, psinw)?,

As shown in [32], w§; =

¥(p) = POT). Plo) = (1)) 243

where T'(w) = cosw or sinw. Substituting (2.43) into the equation, we obtain the equation
for P(p)

1 T
ApP——2P+MJTP:0, P0)=0, P~ <_,> ,  p— oo. (2.44)
P

The boundary condition of P as p — oo is obtained as follows. Owing to (2.8) with ujo — 0
and ujovjo — 0 as p — oo, M]T should satisfy

T ar b
M; —><0 0), p — 00. (2.45)
This yields A,Py — p™2P, = 0 as p — oo and we thus have P, = O(p~!) as p — oc.
Normalizing P so that Py ~ % as p — oo, we have P; ~ _% as p — oo. Hence, we obtain
another boundary condition P ~ (—%, %)T as p — oo.

Let B, = {y||y| < k}. By using Green’s second identity to w?l and ¥, we obtain

A= lim [xpTPw;ll - (w;ll)TP*\p] dy (2.46)

KR— 00 B
K

= lim [‘I'T(Ay + Mj)W?1 - (wﬁ)T(Ay + M;F)‘I’ dy

R—00 BK,
2
= lim [ (970w - (w?l)Tap\Ir)) pdw. (2.47)

K=o [ pP=K

Using the far-field asymptotic behavior as p — oo,

_ b
wdy ~ < 0 > - ( o ) W~ < gw) T(w), (2.48)
a;-y Qj1pCosSwW + ajopsinw 5
we calculate (2.47)) as

2y if T(w) = cosw,

2
A= / (2a,1 cosw + 2aj 2 sinw)T'(w)dw = { (2.49)
0

2o if T(w) = sinw.
On the other hand, since P*¥ = 0, substituting (2.40) into the left-hand side of (2.46) and

13



using 881;]-10 = agz)o cosw, %IZJ; = 835;0 sinw, we obtain
2
A= lim \IITPw dy = pP1(p)T(w)Ljujodpdw
r—oo g Jl J
m 8 de; Ou;

= / / pPi(p ( 1 8p0 cosw + (R — rcos6;) di] g;o sinw) dpdw  (2.50)
B —7°7er$, if T(w) = cosw,

—(R —rcos ej)wcj%, if T(w) = sinw.

Here, the constant C; is defined by

> 8u0
C~:/ = P (p)dp. 2.51
i= ) P, (p)dp (2.51)

We note that since the solution ujo of (2.9) depends on the strength S; and the parameters
F" F?, so does C;. Equating (2.49) and (2.50) for T'(w) = cosw and T'(w) = sinw, we obtain
the equation of the jth spot,

40; _ 2051 dej 2042 (2.52)
do rC; ' do (R—r1cosb;)C; '

The evolution equation is valid as long as the localized spots of RD model ((1.1) with the
strengths S persist stably for a long time, and the constant C; has a fixed sign independently
of S;. These conditions are validated numerically for BRD model (|1.3)) in the next section.

2.4 Validation of the theory for Brusselator reaction-diffusion
system

We construct quasi-stationary solutions uqe and vge for BRD model by numerical means
to validate the existence of stable localized spots. That is to say, we determine the source
strength § € RY, x € RY and v € R so that they satisfy , (2.28) and (2.29) and check
its stability. Let us first consider the following boundary value problem on 0 < p < pg for
po > 1 for a given scalar S.

Ny — U+ fu*t =0, A0+ 1 — %0 =0, 0<p<po,
O =TO =0, ) =0, and T(m) =S (25
0

Taking py = 20, we solve this equation with the COLNEW method [3] in the bvpSolve R
library [20]. We then set X(S) = v(pg) — Slogpo. This defines a map ¥ : S € R — X(S5) €
R. Then, for the jth component S; of S, we obtain the approximation x(S5;) ~ X(5j).
Consequently, 2 and v are the approximate solutions w;g and vjo of with S;. In addition,
it is important to observe that the shape of the solution depends on the parameters f and S.
Figure [2.1|f]) shows that the radial solution u(p) is localized When S = 2, but it tends to be
volcano-shaped as S increases for f = 0.7. As a matter of fact, it is numerically confirmed
that the radial solution remains localized for S < 3.44. Since the solution is assumed to be
localized in the present asymptotic analysis, we need to restrict our attention to small S.
The algorithm solving g(S) = 0 is described in Appendix [Bl The plot of X(S) for various
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Figure 2.1: @ Numerical solution (p) of the approximate core problem (2.53) for BRD
model (L.3) with f = 0.7 and various S. (b)) The constant X(5) in (2.9) that is obtained by
solving g(S) = 0 numerically for f = 0.3,0.5,0.7,0.9 and S € [0.1,8.0].

f is shown in Figure 2.1](b). Note that Figure 2.1j(a)) and (b are the same as those in [24],
although the chosen parameters are different.

Next, we confirm the stability of the localized spot solutions of the BRD model (|1.3))
described in Section With F(u,v) = —u + fu?v and F(u,v) = u — u?v, the linearized
problem ([2.36) is reduced to

~ m2 ~ ~ ~ ~ ~ m2A ~ ~ ~
pr—?d)—(1+)\)¢+2fujovjow+fuj20¢ =0, Apgé—?d)—i-w—Qujovjo@b—u?Ogb =0. (2.54)

The boundary condition is given by zZ’(O) =¢(0)=0,¢ — 0and ¢ — 0 as p — occ. For the
approximate solutions ujo and v;g of the core problem and given m, we solve by
using the finite central differences on 0 < p < pg = 20, which gives rise to a generalized matrix
eigenvalue problem. We pay attention to the eigenvalue of having the largest real part,
say the principal eigenvalue Apq.. Figure shows the real part of \,,q; for fixed f = 0.7
and m = 2,3, 4, which is the same plot as that in [24]. It indicates that A4, is negative for
small S and gets larger as S increases monotonically, and it finally becomes positive for large
S. Hence, there exists a unique threshold, denoted by %,,(f), where the principal eigenvalue
becomes zero. If S > ¥, (f), since the principal eigenvalue is real, the spot becomes unstable,
while it is stable for S < 3,,(f). Since Yao(f) < X3(f) < X4(f) for f = 0.7, the spot is
unstable for any modes of perturbations with m > 2 if § > ¥o(f). It is important to notice
that the stability of the localized spot depends not on the locations but on the strength S,
the parameter f, and the mode m.

Finally, the value of C; is computed. We solve the following boundary value problem on
0 < p < po with pg > 1 to approximate (Py, P,) satisfying .

1~ - - DU
Appl — 7P1 + (2fuv - 1)P1 + (1 — 2UU)P2 =0, APPQ — 7P2 + fu2P1 — U2P2 =0,
p P

_ _ . L .
P1(0) = P5(0) =0, Pi(po) = o Palpo) = .
(2.55)
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Amax
—0.25 A

—0.50 A
—0.75 A

—1.00 A

Figure 2.2: Plots of the principal eigenvalue A4 of 1) when f = 0.7 and S; € [0.01, §]
for m = 2,3, 4.

With P, and @ obtained in this way, we can define a map C: S € R+— C(S) € R by

c= /O " i (0) Pi(p)dp. (2.56)

We thus have C; =~ C(5;) for given S;. Figure shows the plot of C(S) of the BRD model
with f = 0.7, which is the same plot as that in [29]. Let us note that C; is independent
of the location of the jth spot by construction, and it is always negative for 0 < .S < ¥9(0.7).
Consequently, we conclude that the stable localized spots with 0 < S < ¥3(0.7) with a
negative C exist, where the equation of the spot cores remains valid.

60+

40

s

Figure 2.3: Plot of C(S) of the BRD model (1.3) for f = 0.7 and S € [0.1,8]. The vertical
dotted line represents S = Yo(f), which determines the stability of the quasi-steady spot
solution. For S > ¥5(f), it is unstable. For 0 < S < ¥a(f), we observe C < 0.

N
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Chapter 3

Dynamics of Quasi-stationary
Localized Spots

In this chapter, under the assumption that localized N spots persist stably and C; < 0 for
j=1,..., N, we study the equilibrium states of evolution equation (2.52), meaning that N
spots of RD model (1.1)) are in a quasi-equilibrium state moving very slowly with O(e~2) time
scale. Since C; < 0 and R —rcosf; > 0, the N spots configuration centered at (6;, ;) is an
equilibrium state if and only if o1 = a2 = 0, 7 = 1,..., N. It is important to note that
a1 and a2 are independent of the choice of the reaction terms F* and F" if we ignore the
constraint (2.29). On the other hand, we need to specify the reaction terms to discuss the
linear stability, since the matrix generally depends on 9% and 9% j=1,2 N, except

) 50, g b 74y ey IV, p
the one-spot case. The theoretical results are compared with the nonlinear evolutions of the
BRD model (1.3) that are obtained numerically.

31 6;=0o0rm

When spots are located at the innermost or the outermost locations of the torus, i.e ; = 0
or w for j = 1,2,..., N, by the symmetry of the torus, independent of ¢;, the spots should

satisfy % =0 for j = 1,2,...,N. This result can be confirmed by computing 1' as
follows.

Theorem 3.1.1. Suppose that 0; = O or 7 for j = 1,2,..., N and there exists Sj,j =1,...,N

satisfying (2.29). Then, wherever the location of ¢; is, we have a;; = 0 for j = 1,2,..., N.
do); .

Hence, 32 =0 for j=1,2,...,N.

Proof. Tt follows from (2.52) and (2.42)) that

SZ' 6@ 1 ’ (1+Sin(9')
— = 200 — —~— "I 1
@ Z r 0 +5 <7‘Q7( i) 2(R—rcosbj) )’ (3.1)
l.;l (0.0)=(95%5)
i
where a(%’ OO0 hijm + ti; + Qi(6;). Here Q), hi;n and t; ; are defined by (2.22)),
IRV AN R .
A.3)) and (A.5). It follows from (2.22]) that %Q;(ﬂj) - 2((1};?7% = 0 when 6; = 0 or 7, since

K(0) =0and K(m) = —1A. When 0; =6; =0 or 6; = §; = 7, from (A.3) and (A.5)), we have
hi,j,n = hjﬂ',n = 0, ti,j = tjﬂ' = —m and Q;(QJ) = Q;(@Z) = Q;(QJ) = W. Hence,
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when 6; =0; =0or §; =60; =, we obtain 2 oot (HJ, ¢;) = 0. Next, we show that when 6; =0
dG 55~ (0, 0i) = 0. Setting

0.
E;; =exp </ ’ dn> and s =exp(—2nA),
0;

o — Ccosn

and 6; = 7, we obtain %—9(9], ;) =

we have E; ; = E;Z1 =exp(—7mA) = s2 when 6; = 0 and 0; = m. Since s < 1, we obtain
lim s¥ = 0. Then, it follows from (2.22), (A.3) and (A.5) that

k—o0

sgcos(w‘—go')—s?’ S%COS(QO'—SO‘)_Sl
(Oé — COS Gj) Z hi,jﬂ - 3 J : - 1 : :
= 1= 2sTcos (g — i) + 57 1 2stcos () — i) + 5!

n ( s%c(;s (pj — i) — 5° _ S%COSS (pj — i) — 5° ) +
1 —2sz2cos(p; — i) +5° 1—2s2cos(pj — i) + 3
s2c0s (p; — i) — 5"
I 9252 oS (pj — i) + st
ol

1
52¢08 (pj — i) —

1 ;

1 —2szcos (p; — ¢;) + st
1 1

(a — cos0;)Q;(0;) = — %(Oﬂj —sinf;) — mK

(v —cosbj)t; j =

),

and

s%cos(gg—(p‘)—sl s%cos(<p~—<p')—s3
(a0 — cos b;) Z hjim = — . - T :
=i 1—2s2cos(p; — i) +s' 1 —2s2cos(pj — p;i) + s

+ ( S%COSS (pj—pi) =8> Sgcis (0 — i) = ) +
1—2s2cos(p; — i)+ 83 1—2s2cos(pj — ;) + 53
s3c0s (p; — i) — st
1 —2s7cos (pj — i) + st

-3 ) o1 i NS |
(v — cosb;)t;; = 5 QC(iS (pj — i) — s o sac(is (pj —pi)—s 7
1 —2s"2cos (¢; — i) +s71 1 —2s2cos (p; — ;) + st
1 . 1
(o — cos Hl)Q;(GZ) =— %(aﬁi —sinf;) — 5 AK(Q )+ 5= 1.
8G

Then, we obtain 88; (05, ¢5) = =7 (0i, i) = 0 and

(0,0)=(8;.,5)

Similarly, we obtain «;; = 0. Hence, we obtain % = aj1 = 0 when 6 =0orm j=

1,...,N. O
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3.2 A single spot

Suppose that the spot is located at (01, ¢1) with the strength S; on the toroidal surface. For
one spot, S1 = 2nrRE is the solution of and independent of (61, p1). We then find the
equilibrium state, in which the spot is in a quasi-equilibrium state moving very slowly with
O(e2) time scale. This is the solution of

a11(61) =

Sl <_Oé(91 — sin91 _ K(Ql) _ sin01

2ma 2r A 2 > ’ o1,2(01) =0,

r(a — cosbh)

where K (61) = —2Aarctan (/2] tan %1) Since a2 always vanishes, it is sufficient to solve

the equation aq1(01) = 0 for 6;.

Theorem 3.2.1. There exists a unique as > 1 such that the following holds. For 1 < o < a,
there exists a unique ¥s(a) € (0,7) such that the single spots at 1 = 0,9s(a), 7,21 — J4(cv)
are equilibria. Then the spots at §; = 0 and 7 are unstable, while those at §; = ¥s(a) and
2w — J4() are stable. On the other hand, for oy < a, there exist the stable spot at ; = 0
and the unstable spot at 6; = .

Proof. When the spot is located at the innermost and the outermost points of the torus, i.e.
01 = 0 and 6; = 7, as shown in Theorem a1,1(0) = ay,1(m) = 0. We now find the other
equilibrium. Let us rewrite

S151(61)

70&91 —sin91 o K(Ql) _ Sin91
r(a —cosfy)’ '

o1(01) = 2T 2 A 2

B1(01) =

The zeros of §1(61) = 0 are equivalent to those of aq,1(f1) = 0 owing to o — cos6y > 0. It
follows from

—cosf 1 1 cos 6
/ 0.) = — (6] COS U1 B 1 ‘
Ar6) 2o 27 A o — cos 01 2 (3.3)
that there exist 0, € [0, 27) satisfying 3] (0y) = 0 if and only if § = 0, satisfies
a— Ala — cos0)?* — raAcosf(a — cosf) = 0. (3.4)

With 2 = cos 6, it gives rise to the quadratic equation o — A(a — )% — raAz(a — x) = 0. It

has the solutions 1 = \/v + 02 + § and x93 = —+/7 + 02 + 0, where
a? —ava? -1 Ta? — 2

T Ta—1 >0, 6_2(7ra71)>0‘
Note that x2 < x;. Hence, owing to the one-to-one correspondence between =z € [—1,1]
and 6 € [0, 7] and the symmetry = = cosf = cos(2m — 6), has two solutions at most in
6 € (0, 7) and two solutions at most in 6 € (m, 27) corresponding to z; and x. It is easy to see
g = —/7+ 6246 <0< 1. Since 9 = —/v + 02+8 > —1, it is reduced to 142§ > -, which
is equivalent to —ava? —1 < (a+ 1)((m —1)a— 1). This inequality always holds true owing
to (a4 1)((r —1)a—1) > 0 for & > 1. Hence, we obtain —1 < 25 < 1. We then consider the

range of o where x1 < 1. Let us first confirm that § < 1 for 1 < a < /1 + 4 + HT’T ~ 2.3677.

T2

In this range, z; < 1 is reduced to v < 1 — 24, which is equivalent to

(a —1)((7? +2m)a® — 2+ 7)%a® + 3+ 2m)a — 1) < 0.

19



Since the cubic equation (72 + 27)a® — (2 + 7)%a? + (3 + 27)a — 1 = 0 has only one real
solution, say a = ag =~ 1.2010, we obtain z; < 1 for a € (1,a5). Hence, owing to —1 <
19 < 1 < 1y for a > ag, the equation 3;(6)) = 0 has the solutions 6, = cos™ ! z9 € (0,7) and
2m —cos ! xy € (m,27). Accordingly, since 81(0) = B1(w) = 0, there is no solution of 3 (#) = 0
except = 0, 7. In addition, it follows from £](0) < 0 and S} (7) > 0 for a > s that the spot
at #; = 0 is stable and that at #; = m is unstable. On the other hand, since —1 < 2o < x1 < 1
for a € (1, as), has two solutions in (0, 7) and the other two solutions in (m, 27), which
indicates that there exists ¥s(a) € (0,7) such that one spot solutions at 6; = 0, J4(«), m,
and 2m — ¥s(«) are the solutions of 81(61) = 0 by the continuity of 5. Owing to S](7) > 0,
we also obtain 51(0) > 0, 81(9s(a)) < 0 and B} (2m — ¥s(a)) < 0. Hence, the single spots at
61 = 0 and 7 are unstable, while those at J5(«), 2 — J5(«) are stable. O

To confirm the linear stability of the one-spot case, we solve BRD model numerically
from the initial condition and having one spot on the torus of (R,r) = (1.1,1.0)
and (R,7) = (1.3,1.0). The numerical parameters are given by f = 0.7, ¢ = 0.05, S = 3,
A= f - After computing the solution up to ¢t = 100 when the localized spot is formed, we
add a 2% random perturbation to the solution. For o = 1.1 < ay, the present theory expects
that the spot at ¥4(1.1) ~ 0.64295 is stable, whereas that at # = 0 and 7 are unstable.
Figure shows that the spot centered at 6; = 0 is moving toward the stable one spot at
01 = 95(1.1) after the perturbation. When oo = 1.3 > «, the spot at 1 = 0 is stable and that

at 01 = 7 is unstable. Figure [3.2] confirms that the spot centered at ; = 7 is moving toward
01 = 0 after a long-time evolution.
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Figure 3.1: Evolution of the BRD model (1.3) from a one-spot initial condition (2.30) and
(2.31]) centered at 81 = 0 and ¢; = 7 on the torus of R = 1.1 and » = 1.0, i.e., « = 1.1. The

numerical parameters are f = 0.7, e = 0.05, 51 = 3, A = 27‘?}%. The red horizontal dotted

line represents the reference lines of ¥4(1.1) &~ 0.64295. Since the spot is unstable, it starts
moving toward ¥(1.1).
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Figure 3.2: Evolution of the BRD model (1.3) from a one-spot initial condition (2.30)) and
(2.31)) centered at #; = m and p; = 7w on the torus of R = 1.3 and r = 1.0, i.e., a = 1.3. The

numerical parameters are the same as Figure [3.1] The unstable spot starts moving toward
the stable spot at § = 0 as expected.

3.3 Two spots

Suppose that two spots are centered at (61, ¢1) and (62, p2) on the toroidal surface. Then the

source strengths S7 and Se > 0 satisfy S; + Sy = 2rRrE owing to (2.25). Then, we have the
following theorem.

Theorem 3.3.1. Suppose that 0 < g < 1 < 27w, Two spots pattern is an equilibrium only
if o1 — @2 = 7 or 0. Moreover, ¢ — o = 0 is unstable.

Proof. 1t follows from (12.42) with (A.4) and (A.6) that o 2 is given by

. Sy OGy
12 =
’ R —rcosfy O
L% 000~ (01.01)
B So Ey1sin (01 — ¢2) So -
- R-— 21 12 ain? + = > woim,
R —rcosby (1 — Eyqcos(p1 — ¢2))? + B3 sin® (p1 —p2) R —rcosb £~
(3.5)
where
sin (g1 — p2)s™ <<E271 + E2—11) (1 + s%7) — 452" cos (g1 — gpg))
W2,1,n =

(14520 — 57 cos (p1 — pa) (Ban + By )% + (s"(Bz,1 — By 1) sin (o1 — ¢2))?

with s = exp(—2m.A) < 1. Since (Ea +Ei%)(1+s2”)—432” cos (1 — pa) > 2(1+52")—48%" >
0, we obtain a1 2 = 0 if and only if o1 — 9 = k7, k € Z. Similarly, we have o 2 = 0 if and only
if o1 — @9 = km, k € Z. Under the supposition that 0 < @9 < 1 < 27, we have 1 — 2 =0
or m. The linear stability of ¢p; = o = 7 is unstable. Indeed, with a small perturbation to
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the spot centers at (61,02, 01 = Ap, p2 = —Ag) where Ay > 0, by (3.5), we have aj2 > 0
and a2 < 0. Hence, the two spots thus tend to ¢1 — ¢ = 7, which means ¢1 — p2 = 0 is
unstable. 0

3.4 The N-ring configuration

Let us consider a ring configuration of N spots at 6; = Jx and ¢; = (2j — 1)m/N on the
toroidal surface for j = 1,..., N, which is called the N-ring at 9. Then the strengths of the
N spots become identical according to 1) and are set as S; = 5. = w, which means
that the existence of the N-ring is independent of the choice of the reaction terms F* and

Fv. It follows from with ( and (| - that we have

Sc N 8log‘1 — <(0;,¢)

ROED) 0log Wi(0;, %)
Qjog= "+ + ———""- =0. 3.6
J R —rcosb; P Oy oy . (3:6)
i#] p=p;
From (12.42)), we have
C(0,5)
N S N alog‘l— lf;l) N Olog Wi (0, ¢;) QU6
Py 09 a9 g
=1 J
i#] 0=0,
Se ( 1+ sinb;
=< (@) — —— "7 )
L <Q3(]) 2(a—cost)>
From (A.3) and (A.5)) with 6; = 6;, we obtain
C(0:¢;)
dlog Wi(6, ¢;) _ 0log ‘1 ~ 0o L 1
06 00, ’ 80 2(av — cosb;)

Substituting 6; = ¥, we have

aj1(¥) = 57 <N <Q’1 ) -55 _1COS 0)> - Q(QSincis 19)>

Se 1 N N 1.
i — <_27ra(m9 sinv) — mK(ﬁ) - 251n19>.

As shown in Theorem we have aj1 = 0 for j = 1,2,..., N, when 9 = 0 or w. Hence,
the N-ring at the innermost/outermost locations of the torus becomes an equilibrium state
of N spots for any a > 1. For ¥ # 0, 7, it is sufficient to consider the existence of equilibrium
N-ring at ¢ € (0,7) by symmetry. We thus have the following theorem.

Theorem 3.4.1. The N-rings at 9y = 0 and 7 are equilibria for any a > 1. For N > 2
there are a,,(N) and aps(N) with 1 < @, (V) < apr(N) for which the following is satisfied.
For a € (o (N), apr(N)), there exists a unique 9 (a) € (0, 7) such that the N-ring at ¥y ()
becomes an equilibrium. Moreover, lim,\ 4, (v) U~ (@) = m and lim, »,,, vy In (o) = 0.
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Proof. Let us define By (6) = — 52 (af —sinf) — %K(@) — 1sinf. Owing to —2— # 0 for

2T

a>1, a;1(0) =0 is equivalent to Sx(#) = 0. Owing to

1 N 1
B (0) = pa— <_27ra (o — cos )% + Y f(a — cos (9)) ,
we introduce my (7, @) = — 5= (a—x)? + % — 1z(a—x) by the change of variable, z = cos .

Then my(z,«) = 0 becomes a quadratic equation with respect to x, whose discriminant

D(N, «) is given by
(1 _ ii) Cl - a) (3.7)
N

N
o? — (1 — N) — (3.8)

When o > X it follows from that D(N, a) > 0 owing to i < «. On the other hand, for
a< yields D(N,a) > 0. Hence, my(z) = 0 has two real roots, and so does By (0) = 0
for 6 € [0, 7] owing to a — cosf € [a — 1, + 1]. Hence, it follows from Sy (0) = Sn(m) =0
that Sx(f) = 0 has one unique solution ¥y (a) € (0,7) if and only if 53 (0)8 (7) > 0. This
condition is confirmed by checking my(—1,a)mpy(1,a) > 0 owing to o — cos @ > 0. Since

N N 1 N N 1
La)=—-(a-17*4———(a—1 —lLa)=——(a+1)*4 — 4 -(a+1
m(le) = -5 (a1 g —glanl, ma(-ha) = —5lat )i s F5latl),
we have
d (1,0) N n N n Na 1
da A5 o 2ma? 27Vl —1 2
d ey Ny N Na 1
da N T T T o2 mvaZ—1 2
and ) )
d d N 2 _3
(L a) = oam(=1,0) = o <_a3 —(a®=1) 2) <0
On the other hand, it follows from
g}\"mlmzv(l,a) =0, lim my(1, @) = —oo,
1
lim ~——my(1,a) = lim ~—my(La) = —=
lim g (L) =co, - lim arima(l,a) = -3

that there exists a unique aps(N) > 1 such that my(1,a) > 0 for 1 < a < aps(N), while
mpy(l,a) <0 for @ > apr(N). Similarly, since

I o) =-""41<0, Ii “1,0) =
al\mlmN( , Q) - +1<0, al_)IglomN( , Q) = 00,
il\ml @mN(—l,a) = 00, Oéh_)n;o ﬁm]\;(—l,a) =5

there exists a unique a;,(N) > 1 such that my(—1,a) < 0 for 1 < a < a,(N), and
my(—1,a) > 0 for a > a,;,(N).
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With ag = % > 1 for N > 2, we have

N Nyaz -1 1
(1, a0) = —go—(ag — D2+ 2L~ 2 (ag - 1)
o 1 . 15 1
= a0 ([ 124 a2 —1) = Z(ap—1
2 < Smag 20 T 5V 3(@0—1)

1 oY 1 1
= —4(a —1)2+ f«/ag— L= olao—1) =7 <_(a3_ 1) +apy/ad — 1) > 0.

Recalling that my(1,a) > 0 for 1 < a < apr(INV), we have op = % < ap(N). On the other
hand, let us notice my(—1,ap(N)) = my(—1,ap(N))—mpy (1, aps(N)) = aM(N)—% > 0.
We thus have a,,(N) < ap(N), since my(—1,«) is monotone increasing. Moreover, by
my(—1l,a) = 0 at @ = ap(N) and my(l,a) = 0 at a = ap(N), it is easy to see that
limgN o, (v) Un (@) = 7 and lim, »,,, vy In (o) = 0 owing to the one-to-one correspondence
of z = cos @ for 6 € [0, 7]. O

We observe the linear stability of the N-ring configuration of the BRD model ([1.3)) for
N = 2,...,6 on the torus of (R,r) = (5, %) with a = [1.01,10] by numerical means. The

parameters are f = 0.7, ¢ = 0.05, S, = 1.5, and A = QIX%;. We compute the eigenvalues

of the linearized matrix of ((%j and % for j = 1,2,..., N at the equilibria, thereby
observing the principal eigenvalue, say Apq.. We note that 0 is always an eigenvalue of this
equilibrium originated from the invariance of the infinitesimal translation of the torus in the
¢ direction. Figure shows the real part of the principal eigenvalue, indicating that
there exists a (V) such that the N-ring at ¥ = 0 is neutrally stable for a > a,(V), and it is
unstable otherwise. Figure shows that the N-ring at 1 = 7 is always unstable. The real
part of the principal eigenvalue Apqz(cr) for the N-ring at In () € (0,7) with N =2,...,6
in the range of a € (aum(IN),an(NN)) is shown in Figure 3.3[d). This indicates that it is
unstable. Let us compare the result with that of the one-spot case in the previous section,
which is equivalent to the 1-ring. According to theorem we find that the stable 1-ring
at ¥1(a) = Us(a) exists for 1 < ap(1) = as(1) = ag, although a,,(1) is not defined. On the
other hand, Figure indicates that o, (N) < apy(N) < ag(N) for N > 2. Moreover, the
stability of the 1-ring at 1 («) is stable, whereas the N-ring at ¥y («) for N > 2 is unstable.

We solve BRD model numerically for the localized 5-ring initial condition
and on the torus of (R,r) = (1.7,0.5), (R,7) = (2.1,0.5), and (R,r) = (2.2,0.5) with
f=0.7,€e=0.05S.=15and A = QJXJS%CT. After solving the equations until the localized spots
are formed, we add a 2% random perturbation to the solution. For the 5-ring, the parameters
are o, (5) & 2.990, ap(5) ~ 3.495, as(5) ~ 4.296. Let us remember that the 5-ring at ¥ = 7
is always unstable and that at ¥ = 0 is stable for « = 4.4 > «a4(5). As a matter of fact,
Figure [3.4) shows that the spots centered at ¥ = 7 are moving toward those at ¥ = 0 after
a long-time evolution. On the other hand, since the 5-ring at ¥ = 0 becomes unstable for
a = 4.2 < a4(5), the spots centered at ¢ = 0 initially are moving toward another quasi-
equilibrium solution consisting of nonsymmetric spot centers after the perturbation as shown
in Figure When a = 3.4 € (am(5), an(5)) where an unstable 5-ring at ¥5(a) exists, we
confirm in fig. that the unstable 5-ring at J5(a) moves toward another quasi-equilibrium
state.
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Figure 3.3: The real part of the principal eigenvalue A4, () for the N-ring for N =2,...,6

on the torus of (R, r) = (5, %), a € [1.01,10]. The numerical parameters are f = 0.7, ¢ = 0.05,
S.=1.5,and A= 2N7r%‘; @ Amaz (@) for the N-ring at 9 = 0. @ Amaz (@) for the N-ring at

v =. Each curve is the plot of Apeq () for the N-ring at 9y (a) € (0,7) in the range of
a € (am(N),ap(N)). The plots of A\jpaz () in Figure [3.3((a)) and @ are shown for reference.
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Figure 3.4: Evolution of the BRD model (1.3) from the 5-ring initial condition ([2.30) and
(2.31]) centered at §; = m and p; = @,j =1,2,...,5 on the torus of R = 2.2 and » = 0.5.
The numerical parameters are f = 0.7, ¢ = 0.05, S, = 1.5, A = 25

5.7~ The spots approach a
quasi-stationary state having spots at 6; =0, j = 1,2,...,5.

3.5 The two N-rings configuration

We consider the quasi-equilibrium state of two kinds of two N-rings, where N localized spots
are equally spaced along latitudinal line 6; = ¢; with strength Sy for j =1,3,...,2N —1 and
the other N localized spots are equally spaced along latitudinal line 6; = ¥ with strength
Se for j = 2,4,...,2N. Two special configuration are considered. The first case is called
untwisted two N-rings satisfying o1 = 2 = (2§ — 2)7/N for j =1,2,..., N. The second

case is called twisted two N-rings ¢2;_1 = (2§ — 2)n/N and ¢o; = (25 — 1)7/N for j =
1,2,...,N.

3.5.1 Two N-rings at (4,92) = (0, 7)

Let us consider untwisted and twisted two N-rings at (J1,92) = (0, 7) on the toroidal surface.

As shown in Theorem in both cases, we have aj1 =0, j =1,2,...,2N. It follows from
(2.42) with (A.4) and (A.6) that, by the symmetry of two N-rings, in both cases, we obtain

N __C(825-1,)
i1y — S1 dlog )1 i1 1) n 0log Wa;_1(025-1, )
7754 T R — rcos 0251 po dy Oy =21
i) P=P2j5—-1
N _ C(GQ'—leO)
S5 dlog ’1 (G272 n 0log Wi (021, ¢) -0
R — rcos b P oy - I o=p2j_1
=251

Similarly, we can obtain apj2 = 0 for j = 1,2,..., N. Hence, if there exist S;, j = 1,2,...,2N
satisfying (2.29)), the untwisted and twisted two N-rings at (91,72) = (0,7) are equilibria.
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Figure 3.5: Evolution of the BRD model (1.3) from the 5-ring initial condition ([2.30) and
(2.31]) centered at §; = 0 and ¢; = @, j=1,2,...,50n the torus of R = 2.1 and r = 0.5.
The numerical parameters are the same as Figure [3.4, The 5-ring at ¥ = 0 starts moving

toward another equilibrium point, since it is unstable.

When the two N-rings are not on the symmetric latitude, S; and S3 no longer have the same
value in general, which makes the situation more complicated. As an example, we compute
the strengths of two 1-ring, i.e. (01,01) = (0,0) and (02,92) = (7, ) for the BRD model
on the torus of (R,r) = (%, 3) for a € [1.01, 2] numerically with the parameters f = 0.7
e=0.05and A= 33— ie., S+ S5, = 3. Figure (a) shows that the strength Si(«) is not
unique for o > ay ~ 1.021. For each value of S;(a) on this curve, the largest real part of
the eigenvalue Apqq is shown in Figure [3.7|b). The case 1 is unstable for o € [1.1,2]. When
a = a4 ~ 1.021, unstable case 2 and case 3 appear. As « increase, case 2 and case 3 change
their stabilities. Then, as « increase, these two cases become unstable again.

3.5.2 Two N-rings at (V1,92) = (Un, 27 — Vn)

Let us consider untwisted and twisted two N-rings at (¢1,92) = (Y, 27w — ) on the toroidal
surface for 9 € (0,7). In both cases, the strengths of the IV spots become identical according
to (2.29). Hence, they are set as S; = S, = % for j =1,2,...,2N, which means that the
existence of the untwisted and twisted two N-rings at (91, 92) = (Y, 2r—9 ) are independent
of the choice of the reaction terms F“ and FV. As similar to the untwisted and twisted two
N-rings (¥1,92) = (0,7), we obtain ajo = 0 for j =1,2,...,2N in the untwisted and twisted
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Figure 3.6: Evolution of the BRD model

from the 5-ring initial condition ([2.30)) and
1) centered at 0; = 1.1 and ¢; = (23 1 j=1,2,.

, ,5 on the torus of R = 1.7 and
r = 0.5. The numerical parameters are the same as Flgure At t = 2000, the solution

is close to the 5-ring at ¥5(3.4) € (0,7). The unstable 5-ring starts moving toward another
equilibrium state since it is unstable.

two N-rings (¢1,v92) = (9,271 —¥n), by the symmetry of two N-rings. From ([2.42)), we have

N ¢(0,p25—1)
. 8log‘1 T2 1022 1) i dlog Wa;i—1(8, p25-1) Qb (025 1)
2j—1,1 ‘ 90 90 o 2i—1\Y25-1
=1 2j—1
i2] b=b2j1
S, , 1+ sin 92j71
e (B 1) —
+ r <Q2]_1( 2-1) 2(04 —cosfa;_1)
7302 1)
S, o [ 9log ’1 921 o) n 0log Wo;(0, p2;-1)

+ Q5;(025-1)
0=02;_1

T 4 00

ol
=1

0=02;_1

By the symmetry of two N-rings, we have a11 = az1 = -+ = qan—1,1 = —Q21 = —Qy1 =
- = —agn,1. Then, we first consider the existence of the untwisted two N-rings at (91, 92)

(Un(a),2m — Iy (ar)) that is in a quasi-stationary state. Let Ep = exp ( om0 a—(iZS’r])' We
then obtain Ep € (1,s7!) and E, ' € (s,1) for § € (0,7). Owing to Ep /st as 6 \, 0, it
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Figure 3.7: @ The strength Sp(«) for the spot (01,¢1) = (0,0) of the twisted two 1-rings
(¥1,92) = (0,7) of the BRD model on the torus of (R,r) = (%,3) for a € [1.01,2].
They are obtained by solving numerically with the parameters f = 0.7 ¢ = 0.05 and
A= 3 satisfying Si(a) + S2(a) = 3. When o > ay ~ 1.021, we have three solutions. (b)

2 Rr>
The real part of the principal eigenvalue A4, corresponding to the strength in Figure 1D

follows from (A.3) and @21 = @2, that

e amALn ) (1 om0 1)) T
810g’(1 ¢ 4(923',:02j)> <1 € (C(QQJ"‘JP?J')) >’

hojoj—1,1 = lim
27,25—1,1 N 90
0=02; 1
-1
. 1 -S (EOQj,l - E92j71)
= lim = +00.
O2j-1N\0 @ —cosblaj1 1 4 g2 ¢ (E92j_1 o 1)
i
From ([A.3)), we have
b s s (o )+ EL By
Nn—00 hi,j,n n—00 _(1 + 82”)5’” oS (Soj _ 901') + 82”(E;j1 + Ei,j) .

Hence, the other terms in ap;_11 remain bounded as ¢ \, 0, we obtain agj_11 — +oo.
Similarly, since Ep \ 1 as 0  m, from (A.5]), we obtain

_ C(O,p25-1)
lim Olog |1 C(02;,2;) - lim 1 E92j—1 -
0251 /' 00 02j_1,/'m Ot — COS 92j_1 1-— E92j_1

0=02;_1

and the other terms in ;11 are bounded. Hence, (}gn Q1,1 — —00. Since o1 is continu-
™

ous function of ¥, there exist ¥n () € (0,7) such that agj_11 = agj1 =0forj=1,2,..., N,
for any a > 1.

Next, we consider the existence of the twisted two N-rings at (V1,72) = (In(a),27 —
Yn(a)) that is in a quasi-stationary state. When J = 0 or m, the twisted two N-rings at
(01,92) = (In(),2m —In()) is a 2N-ring with Jon = 0 or m. The twisted two N-rings at
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(91,792) = (Un(a),2m —In()) is a equilibrium if and only if a1 ; = 0. Hence, it is sufficient
to consider the equation

2N
Se 1 1 .
ap1(0) = p— ((a —cos0)Q(0) — 5(1 +sinf) + ; (tig + hig + (a0 — cos 9)@;(9)))
=0,
where t; = (o — cosf)t;1 and h; = (o — cosf)h;;. Here 6; = 03 = -+ = oy = 0,
Oy =60y =--- =0y =27 — 6 and t;1, hi are defined in (A.3) and (A.5). When 6; = 0, we

have t; = —% and h; = 0. Hence, from , and || we obtain

Se 1 2N
a1.1(9) "1 a—cosf (_

+SC 1

r o — cosf

. 1 . 1
27Ta(a0 —sinf) — 5(1 +sinf) + 2N — 5(]\[ - 1))

N
Z (t2in + hoi1)
i1

r o — cosf TQ —
1=

N
Se 1 N . 1 . 3
_Pe_ - (—(a& —sinf) — 3 sin 6 + §N + Z (t2iq + h2i71)> .

Let us here introduce the function Sy (6, «) by

~ dag1(0)
o) ="45 "
5. 1 N
SC (r a—cos@) N . 1 . 3
= mt‘lN(@,a) + T <_m( 0 — Sln9) — 5 sin 6 + §N + ; (t2],1 —+ h2],1)> R
where
d( N 1 3. &
€N(9, O[) :(Oé — COS 0)@ <_m( 0 — sin 9) — 5 sin 6 + §N =+ Z (t2j,1 + th’1)>
=1

N 1 d (<
=— %(a —cosf)? — 5 cos O(aw — cos ) + (o — cos 0)@ <; (o1 + th’1)> .

Notice that aq,1(#) vanishes at § = 0, 7, and it is continuous. Hence, if By (0, o) Sn (7, ) > 0,
there must exist In () € (0,7) such that ag1(9In(e)) = 0. The condition is equivalent to
en(0,a)en(m,a) > 0 owing to Sn(0,) = T(as%l)ge]v((),a) and By (m, a) = r(asﬁeN(ﬂ',a).
The plots of exg(a) = en(0,a) and ey () = en(m, o) are shown in Figure indicating
that there exist ag(N) for N =1,...,5, such that for 1 < o < ag(IN), the twisted two N-rings
(01,92) = (Un (), 2m — Iy (a)) becomes an quasi-stationary state.

We confirm the existence of two 1-rings by solving the BRD model from the initial

condition 1' and l’ The numerical parameters are ¢ = 0.05, f = 0.7, A = T:i%r'

The center of the two spots at the initial moment is (61, 1,62, ¢2) = (0, 5,0, 37”) with S; =
Sy = 1.5 on the torus of (R,r) = (0.925,0.5), i.e. a = 1.85. After the localized two spots
are formed, we add a 2% random perturbation to check the stability. Figure shows that
when a = 1.85 < a(2) ~ 1.89, the 2-ring at #; = #3 = 0 is unstable and moves toward the
stable quasi-stationary state the twisted two 1-rings at (91,92) = (91(1.85), 27 — 91(1.85))

as expected. On the other hand, when o = 1.65 < ay(1) ~ 1.76, the twisted two 1-rings
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Figure 3.8: Plots of ey () = en(0, ) and ey () = en(m, ) for 1.01 < a < 20, showing
enx(a) > 0 and ey o(a) are monotone decreasing.

(01,92) = (¥1(1.65), 2w —01(1.65)) are unstable and moving toward a quasi-stationary state of
the twisted two 1-rings at (1,92) = (7, 0) after a long-time evolution as shown in Figure[3.10]
The center of the two spots of another example at the initial moment is the untwisted two
1-rings at (¥1,92) = (0o, 2™ — 6p) on the torus of (R, r) = (0.6,0.5) with S; = Sy = 1.5 and
6o ~ 0.8934, which is the numerical solution of a1(6p,2m — 6y, 7,m) = 0. The numerical
parameters are f = 0.7, ¢ = 0.05, A = T?}%r’ p1 = 5,2 = 3777, S1 = S2 = 1.5. As shown
in Figure the two spots are moving towards a stable quasi-stationary state, the twisted
two 1-rings at (¢1,J2) = (9.(1.2), 27 — 6.(1.2)).

We observe the linear stability of the untwisted and twisted two N-rings configuration of
the BRD model (1.3) for N = 1,...,5 on the torus of (R,7) = (%, 3) with a = [1.01, 10] by

272
numerical means. The parameters are e = 0.05, f = 0.7, S, =1.5and A = %' We compute

the eigenvalues of the linearized matrix of % and % for j = 1,2,...,2N at the
equilibria, thereby observing the real part of principal eigenvalue, say Apq.. Figure @
shows the real part of the principal eigenvalue of the untwisted two N-rings at (¥1,92) =
(Un(a),2m — In(a)), indicating that these cases are unstable for a > 1. Figure [3.12[b)
shows the real part of the principal eigenvalue of the twisted two N-rings at (9¥1,92) =
(In(a),2m — In(ar)). There exist two unstable peaks for N > 1. By the numerical results,
there exists a.(N) such that the twisted two N-rings at (¥1,92) = (In(a),2r — In(a))
only exist when a € (1,@e(N)). When a — (), a supercritical pitchfork bifurcation
occurs: the twisted two N-rings (V1,92) = (Vn(«), 27 — In(a)) vanish and 2N-ring ¥ = 0
change its stability. The bifurcation diagram of 6; with respect to stable equilibria about
the second peak of the twisted two 2-rings of the BRD model is shown in Figure (3.13
for a € [1.5,5] with parameters ¢ = 0.05, f = 0.7,S. = 1.5. The equilibria in Figure |3.13
are located at (¢1,92,93,04) = (0,5,7, 37”) There exist four special twisted two 2-rings
equilibria, (91,92) = (Ya,%), (Up,V4a), (=04, =) and (=¥, —0,) where J,(c) € (0,7),
Ip(ar) € (m, 2m) satisfying 2w < ¥4 () +9p () < 37. As « increases, there exists a supercritical
pitchfork bifurcation such that the twisted two 2-rings (91, ¥2) = (Y2, 2mr—102) and (27 —1J2, ¥2)
change their stability. By the bifurcation, there appear those four special twisted two 2-
rings equilibria appear. As « increases, another supercritical pitchfork bifurcation happens,
those four special equilibria vanish and the twisted 2-rings (91,72) = (0,7) and (7, 0) change
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Figure 3.9: Evolution of the BRD model (1.3) from the initial condition (2.30) and (2.31))

consisting of two spots centered at 81 = 0y = 0 and ¢; = g,npg = 37” on the torus of
R = 0.925 and r = 0.5. The numerical parameters are f = 0.7, ¢ = 0.05, A = % and

Sc = 1.5. The 2-ring starts moving toward (61, 602) = (91(1.85), 27 —9;(1.85)). The horizontal
dotted line represents the reference lines of ¥;(1.85) ~ 0.3067 and 27 — 9, (1.85) ~ 5.9765.

their stability. Then, as « increases, we observe the opposite process: another supercritical
pitchfork bifurcation happens, those four special equilibria appear and the twisted 2-rings
(91,92) = (0,7) and (m,0) change their stability and, as a increases, another supercritical
pitchfork bifurcation happens, those four special equilibria vanish and the twisted 2-rings
(01,02) = (V2,27 — ¥2) and (27 — ¥2,12) change their stability. And there exists another
supercritical pitchfork bifurcation such that two 2-rings vanish and 4-ring § = 0 change its
stability which bifurcation is as(2/N) introduced in Section By our numerical results, we
obtain the similar four special equilibria and supercritical pitchfork bifurcations in the second
peak when N = 3,4,5 and first peak when N = 1 in Figure @ To confirm the linear
stability of second peak, we solve the BRD model numerically from the twisted two
2-rings at (¥1,92) = (¥2(2.5), 2w —92(2.5)) on the torus of (R,r) = (1.25,0.5). The numerical
parameters are given by € = 0.05, f = 0.7, S, = 1.5, A= %. After computing the solution
up to t = 1000 when the localized spot is formed, we add a 2% random perturbation to the
solution. Figure shows that the these two 2-rings are moving toward the twisted two
2-rings at (¥1,92) = (0,7) after the perturbation as we expected.

For the first peak in Figure (]E[) for N = 2,3,4,5, we observe the unstable two twisted
2N-rings (U1,72) = (In(),2m — In(r)) move to a certain special location after the pertur-
bation. For example, We solve the BRD model numerically for the twisted two 4-rings
(01,92) = (Va(a),2m — Y4(cr)) on the torus of (R,r) = (0.75,0.5) with f = 0.7, ¢ = 0.05,
S.=15 A= % and Y4 ~ 1.8647. When ¢ = 1000, we add a 2% random perturbation to
the solution. For @ = 1.5, as show in Figure @, these twisted two 4-rings are unstable.
Figure [3.15|shows that this two 4-rings pattern is unstable after a long-time evolution, and it
is moving to a special location. To show this sepcial pattern more specifically, the evolution
of this simulation on the 3D torus model is shown in Figure [3.16
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Figure 3.10: Evolution of BRD model from the initial condition and con-
sisting of two spots centered at (61,02) = (6,21 — 0p) and @1 = I, 2 = X on the torus of
R = 0.825 and r = 0.5, where 6y ~ 0.7378 is the solution of ay 1(6p, 27 — 6y, 7,0) = 0. The
numerical parameters are f = 0.7, ¢ = 0.05, S. = 1.5 and A = WSC At first, two spots move
toward a quasi-stationary state of two spots at (¥, 27 — ). The two spots become unstable
and starts moving toward (61,02) = (7, 0).
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Figure 3.11: Evolution of the BRD model . from the initial condition and -
centered at (01,02, v1,¢2) = (0p,2m — Oy, 7, m) on the torus of R = 0.6 and r = 0. 5 where

~ 0.8934. The numerical parameters are f = 0.7, ¢ = 0.05, S, = 1.5 and A = 27rR7" The
two-spot configuration becomes unstable and is moving toward @1 — 2 = m. The horizontal

dotted line represents the reference lines of 9.(1.2) ~ 1.0970 and 27 — ¥.(1.2) ~ 5.1862 which
is the numerical solution of o ;1 (¥c, 27 — V., m,0) = 0.
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Figure 3.12: The real part of the principal eigenvalue Aq. (<) for the untwisted and twisted

two N-rings at (91,92) = (In(a),2m — In(a)), N =1,...,5 on the torus of (R,r) = (%, 3)
with o € [1.01,10]. The numerical parameters are ¢ = 0.05, f = 0.7, S, = 1.5 and A = J:]%f.
(E[) The untwisted two N-rings. @ The twisted two N-rings.

6, of 4-ring 9, =0
==== 0;0f4-ring 9,=0

6, of (9a(a), 9p(a)

6, of (m, 0)

—=== 6, 0f (m,0)

6, of (9,(a), 2m — 8,(a))
—— == 0 of (95(a), 2 — 9,(a))

Figure 3.13: A part of bifurcation diagram with respect to 6; of the twisted two 2-rings with
a € [1.5,5.0]. The numerical parameters are ¢ = 0.05, f = 0.7, S, = 1.5 and A = %. The
solid line represents the stable solutions and the dotted line depicts the unstable solutions.
The equilibria are located at (1,92, ¢3,04) = (0, 5,7, 37”) The black line represents the
4-ring ¥4 = 0. The green line represents the twisted two 2-rings at (J2(a), 2m — ¥2(«r)) and
(2m — Y2(ar),¥2()). The blue line represents the twisted two 2-rings at (¥1,92) = (0,7) and
(m,0). The red line represents special twisted two 2-rings solutions with (¢1,v92) = (¥4, %),
(Ip,94), (=04, =) and (=, —1,) where J4(a) € (0,7),9p(a) € (m,27) and 27 < Y4(a) +

Ip(a) < 3.
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centered at (91,92,03,94,901,@2,(,03,904) = (90,27‘( — 0y, 0y, 2T — 90,0,%,7‘( %T) on the torus

of R = 1.25 and r = 0.5, where 6y =~ 1.2854. The numerical parameters are ¢ = 0.05,

f =078 =15and A = =3 When ¢t = 1000, we add a 2% random perturbation

TRr:
to the solution. The two 2-rings configuration becomes unstable and is moving toward

(01,09,05,04) = (m,2m,7,2m).
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Figure 3.15: Evolution of the BRD model (1.3 from the initial condition (2.30) and (2.31))
centered at the two twisted 4-rings (¥1,92) = (6o, 27 — 6p) on the torus of R = 0.75 and

r = 0.5, where 6y ~ 1.8647. The numerical parameters are f = 0.7, ¢ = 0.05, S, = 1.5 and
A= -8 When t = 1000, we add a 2% random perturbation to the solution. The two 4-rings

TRr®
configuration becomes unstable and is moving toward a special position.
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Figure 3.16: Evolution of u of the BRD model centered at the two twisted 4-rings
(01,92) = (0,27 — 6p) on the torus of R = 0.75 and r = 0.5, where 6y ~ 1.8647. The
numerical parameters and the initial condition are the same as Figure The two 4-rings
configuration becomes unstable and is moving toward a special position. The right-handed
coordinates are shown in each figure.

36



Chapter 4

Some Numerical Simulations of
Brusselator Reaction-diffusion
model

In this chapter, we list some numerical simulations about spot division of BRD model
on the torus which are left open for future research. The numerical parameters of numerical
simulations are given by f = 0.7, e = 0.05, A = 25@ and when ¢t < 100, S; = 3. The the
initial condition is given by (2.30) and (2.31]).

The first experiment is shown in Figure The initial condition is one spot at (61, 1) =
(0,7) on the torus of (R,r) = (0.75,0.5). When ¢t > 100, we set S; = 14. Fist, this spot
is divided into four spots. Then, each spot is divided into two spots and a pattern of eight
spots is formed. When ¢t = 1000, the pattern is close to the unstable untwisted two 4-rings
at (U1,2m —91). When t = 5500, the pattern is close to the unstable twisted two 4-rings at

(01,27 — ¥1). After a long-time evolution, the pattern is moving toward a special position

8
3 9.
which is similar to the stable pattern shown in Figure |3.15| although A = EQJ;};T is different

between these two simulations : 238':1 S;=121n FigureM and Z?:l S;j=141in Figure

The second experiment is shown in Figure The initial condition is one spot at
(01,91) = (0,m) on the torus of (R,r) = (2.0,0.5). When ¢t > 100, same as the first ex-
periment, we set S; = 14. Different from the division process in the first experiment, one
spot is first divided into two spots. Then, each spot is divided into three spots. From ¢ = 180
to t = 230, it seems that two spots at § = 0 is divided into six spots, but new spots vanish.
Finally, two spots at 8 = 0 split in the ¢ direction, and we obtain a pattern of eight spots.
From ¢t = 180 to t = 240, these two spots at § = 0 are moving in the ¢ direction. Hence,
the direction of division of these two spots are parallel to the direction of the motion. In
the meantime, as shown in [I7], when S; ~ Xa(f), the direction of the self-replication should
be perpendicular to the direction of the motion. Hence, when S; > 35(f), the direction of
self-replication could be different.

The third experiment is shown in Figure[4.3] The initial condition is one spot at (61, ¢1) =
(m,m) on the torus of (R,r) = (2.0,0.5). When ¢ > 100, same as the above two experiment, we
set S1 = 14. This spot is first divided into four symmetric spots with S, = 3.5 > ¥5(f) =~ 3.2.
Hence, these four spots pattern is unstable. Since these four spots are symmetric, each spot
should be divided into two spots. It seems that each spot is divided into two spots, but two of
them vanish and we finally obtain a pattern of six spots. The reason of vanishing phenomenon
arises because of our torus model: the vertices of model are not symmetric. Hence, we found
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that spot division may be unstable.

The fourth experiment is shown in Figure The initial condition is one spot at (01, 1) =
(0,7) on the torus of (R,r) = (2.0,0.5). When ¢ > 100, we set S; = 20. As similar to the
division process in the second experiment, one spot is first divided into two spots, and then
each spot is divided into three spots. But different from the division process in the second
experiment, the two spots at 6 = 0 do not split in the ¢ direction, but are divided into six
spots. Finally, each spot at § = 0 is divided into three spots again, and we obtain a pattern
of fourteen spots.

a=1.5,t=115

V 07
o6
os
04
03
02

o N

0 L8 n 3n 2n
2 7
4

06

04

a=1.5,t=1000 a=1.5,t=5500 a=1.5,t=10000

2n

08 08
n
2

06 06
© n

04 04
n

02 2 02

9 n 3
0 g n £:2 2n
9

a=1.5,t=15000 a=1.5,t=17000 a=1.5,t=20000 a=1.5,t=50000

2n 2n

08 o5 08
3 n
T z

06 05 06
© @ n

04 04 04
n n
2 2

02 02 02

[ N By 0 s s
0 3 n 4 2n 0 3z n E 2n
® @

Figure 4.1: Evolution of the BRD model from one spot centered at (61, ¢1) = (0,7) on
the torus of R = 0.75 and r = 0.5. The numerical parameters are f = 0.7, ¢ = 0.05, A = 25}%.
When t < 100, S; = 3. When t = 100, we set S1 = 14. Then, the division of spot is observed
and a pattern of eight spots is formed. After a long-time evolution, the pattern is moving

toward a special position which is similar to the stable pattern shown in Figure

L
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Figure 4.2: Evolution of the BRD model (1.3 from one spot centered at (61,¢1) = (0,7) on
the torus of R = 2.0 and r = 0.5. The numerical parameters are f = 0.7, ¢ = 0.05, A = %.
When t < 100, S; = 3. When t = 100, we set S1 = 14. Then, the division of spot is observed

and a pattern of eight spots is formed.
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a=4.0,t=120

Figure 4.3: Evolution of the BRD model (1.3) from one spot centered at (61, 1) = (7, 7) on
the torus of R = 2.0 and r = 0.5. The numerical parameters are f = 0.7, ¢ = 0.05, A = %.
When t < 100, S; = 3. When t = 100, we set S1 = 14. Then, the division of spot is observed

and a pattern of six spots is formed.
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Figure 4.4: Evolution of the BRD model (1.3 from one spot centered at (61,¢1) = (0,7) on

the torus of R = 2.0 and r = 0.5. The numerical parameters are f = 0.7, ¢ = 0.05, A =

2w Rr*

When t < 100, S7 = 3. When t = 100, we set S; = 20. Then, the division of spot is observed

and a pattern of fourteen spots is formed.
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Chapter 5

Comparison between the Spots on
the Sphere and Torus

5.1 Quasi-stationary spot solution on the sphere

In [24], 29], quasi-stationary spot solutions and their dynamics of the BRD model on the
unit sphere are considered on the unit sphere endowed with the spherical coordinate system
in R3,
x5(fs, ps) = (cos g sin fg, sin g sin Og, cos Og)”

for the longitudinal angular coordinate g € [0,27) and the latitudinal coordinate s € (0, ).
Two poles # = 0 and § = 7 are not contained in this parameterization, but we can rotate
the sphere so that there is no spot at the poles. In this section, following the asymptotic
analysis in [24] 29], we extend quasi-stationary spot solutions and the evolution equation of
the spots of RD model on the unit sphere. Let (fs,, ps,;) denote the core of jth spot on
the unit sphere and xg; = x5(fs,;, ps;). Since ‘?fTS = (cos pg cos g, sin pg cos fg, —sin fg),
=1 and

dzs _ dzs  Omg _ 0, ‘ams 8:1:5

Dos = (—sin g sinfg, cos pg sinfg,0), we have e Dpr =

Then, we introduce the following local coordinate s = (s1, s2)” near the jth spot on the unit
sphere:

1 sin 0
51(05.0) = (05 — 0,4(0)),  s2(s5.0) = = (s —@s;(0), p=1/st+sd, (51)

= sinfg.

where o = €?t. The Laplace-Beltrami operator on the unit sphere is defined by

1 9? 1 9 0
Ag = 7 2
ST Gn? 05 %05 | sinls 005 (Sm bs 895> (5:2)

It follows from the local coordinate (5.1]) that Laplace-Beltrami operator can be approximated
by

As = (Bu+ sy +0(&) 63

where Ag = 852 + 652 and

0 0?
NS,j = cot 057] (asl 281 852>
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Owing to |ps — ¢s ;| < O(e) in the jth inner spot, we obtain

ou  Ou ds1 00  Ou Dse Do Ou do )
9 99 00 0f T sy 00 0t T oo ot LsatOE) (5.4)

and similarly

ov
5 = eLsju+O(),
where ; 5 b
o (dOs; des,; (9 0
ES,] — < do , SIN 95,] do V57 vs — 8817 882 . (55)

Here Ng; and Lg; is different from Nj and L£; of the torus case, since they depend on the
local coordinates. The solutions of ([1.1]) near the jth spot are expanded with respect to € as
follows.

oo o0
u(s1,82,0) = Z €"Ujn, v(s1,82,0) = Ze”vjn. (5.6)
n=0 n=0

Since the core problem on the sphere is identical to that on the torus, we have the following
results that are the same as those in the torus case:

N
2.A
u~—€e"— 4+ E Uuj0,
ai -
J=1

and

N

Agv+E =21 Sid(w—m;), |x—ax>0(), j=1,...,N, (5.7)
j=1

v~ vjo + evj1 ~ Sjlog p+ x(Sj) + evj1 +o(1), |x—=x;| = O(e), j=1,...,N, (5.8)

where £ = B — %A. At next order, if we replace N; and L; of the torus case with Mg ; and
Ls ;, by introducing Pg = A+ M, the next order equation is identical to that on the torus:

Lgiu;
Ps’wﬂ = Aswjl + Mj'wjl = —Ns,j’wjo + < S’(J) ]0> , (5-9)

where wj, = (Ujn, vjn)T and M is defined in (2.8). The source-neutral Green’s function on
the unit sphere, which is the solution of AgL(xg;xs0) = —6(xs—xs0)+ ﬁ and fS Gdx =0,
is given by

1
L(zs;®so) = —5_logles — @s| + Ro, (5.10)

where Ry = ;= (log4 — 1). Then, by introducing L;(zs) = log |zs — ;| the solution of (5.8)
is

N N
v = Z SijLj(xs) —4mRoE + 7, where Z S; =2FE. (5.11)
j=1 =1

By local coordinate (5.1)), Trinh and Ward [29] shows the following results.
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Theorem 5.1.1. (Lemma 1 in [29]) Suppose that 6; € (0,7). Then for |xg — g ;| = O(e)
and |s| = O(1), we have

2
x5 — xg, = eJjs + O(e?), s — @] =ep+ ;—8183 cot Os,j, (5.12)
p

where J; is the 3 x 2 matrix defined by

gT _ (cos¢s; cosflg; sinpgjcostls; —sinfg; .
J —sinpg; COS g, j 0

Then, using Theorem and matching the leading order and next order of € of (5.8) as
x5 — xg; for j=1,..., N, we obtain

N
S; 10ge—47rR0E+@+ZSZ-LZ-j = X(S)), (5.13)
=1
i£]
S; N )
L Pd 2 ' A ‘ . 1
Vi1 = ﬁswz cot g ; + Z S; V(QSWS)LZ|(«95,<ps)=(05,j,sos,j) (sl, Sinfs, 32> , as|p| = oo,

=1

where L;; = log |xs; — xg;|. Since S; and T depends on the Green’s function on the surface,
the algebraic system of S; and v of the torus case and the sphere case are different. By ((5.13))
and Zjvzl S; = 2E, we obtain following the nonlinear algebraic system for S;, j = 1,2,..., N:

(I — eg)LS — —— (I —eg)x = “Le, (5.15)

S
+ loge loge N

where ey = %eeT is the matrix whose components are all % and
Ly - ILin

S 1 x(51) . .
S = , e=1:1, X(S) = : , L=

Loy
SN 1 X(SN)

(5.16)
Ly -+ 0
Then, U is given by

2F loge

v =

1
+47RE + N(QTX -e'Ls).

Suppose (5.15)) has a solution. Then, there is a quasi-equilibrium solution uqe and vge for RD
model (1.1)):

N
Uge ~ —€E+ > uj(e ! og — zg,1), (5.17)
j=1
Uj(€_1|x5 - mSJD? |m5 - mS,j’ = 0(6)7
Vge ~ & N 5.18
4 SiLi(xs) — ATRoE +7, |xgs — s > O(e). (5.18)
=1
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For the BRD model (1.3)), we have E = A. Hence, quasi-equilibrium solution of the BRD
model ([1.3)) can be expressed as follow:
(Principal Result 2.1 in [24]) Let € — 0. Suppose that the nonlinear algebraic system

2A

1 1
S+—(I—ey)LS— —(I— = — 5.19
+1Og€( €o) 10ge( )X = e (5.19)
for the source strengths Sj, j = 1,--- , N, has a solution. Then, there is a quasi-equilibrium

solution uge and vge for the Brusselator model (1.3) with leading-order uniformly valid asymp-
totics given by

N
Uge ~ —EA+Y (e @ — @), (5.20)
j=1
vi(e s — ), [zs — @s,5] = O(e),
v~ N - (5.21)
> SjL(ms; xs;) —4rRyA+ 7, |xg— .’BSJ" > O(e),
i=1
where v is given by
2A1 1
D= — ]\?gﬁ +4rRA+ 1(e"x — €"LS). (5.22)

To obtain the evolution equation for the slow spot dynamics, let us consider the following

problem followed from (5.9)) and ([5.14)):

Lg iu;
1

N
S; 2
vj1 = 558185 cot 0 + Z S; v(esv‘PS)Li‘(Gs,w):(es,j,cps,j) : (817 sin O,

22 52> , as |p] = 0.

=1
1#]
(5.24)

Since the boundary condition depends on the Green’s function of surface, the boundary con-
dition ([5.24]) of the sphere is different from the boundary condition of the torus (2.38). As
similar to that on the torus, this equation is solved by considering the decomposition of wj;.

Uj1 d usy d Ud1

Lo (W) e R (Y%

wj1 = <vj1> =wj +wj, Wi = (v*ﬁ) y Wy = <qu1> ) (5.25)
j j

e d :
where wj; and wf; satisfy

Lg iu;
Pswj) = —Nsjwjo, Pswj = ( ki ]O> , sER? (5.26)
0 0
wi ~ | s, o wh ~ , p=|s] — o0 5.27
7 <2,32515§ 60t9s,j> " (as,j'8> p=1el (5.27)

Here, the function o = (a1, asj2)7 is given by

. N oL

Sq1) _ a0

asj = =35 1oL
@s,5,2 =1

sinfs j Ops
i#]

(5.28)

(0s,p5)=(05,5,¢5,5)

46



The difference between o ; of the sphere case and o of the torus case is generated by the
Green’s functions and the local coordinates of the sphere and the torus. As shown in [29],

wj"f1 = 2 cot9 S, 8s 9 1 5189 cot Os,; g’jo is a solution of the first equation. The rest of the
computation is s1m11arly to that on the torus. Replacing N; and £; with Ng; and Lg; in the
derivation of (2.49) and (2.50), we obtain the following evolution equation of RD model (L.I).
The following results derived in [29] shows the evolution equation of spots of the BRD model
on the sphere, but it still holds for RD model .

(Principal Result 2 in [29]) Let ¢ — 0. Provided that there are no O(1) timescale in-
stabilities of the quasi-equilibrium spot pattern, the time-dependent spot locations, x; =
(cos p; sin B, sin @; sin 0, cos Oj)T, vary on the slow time-scale o = €t, and satisfy the differ-
ential algebraic system:

dfs 2 : dep; 2 ;
daﬁ =g, st smes,jd—af =g s J= 1,2,...,N, (5.29)

where C; is defined in (2.51) and
a N oL;
S,7,1 00
(259) - > e
S.3,2 sinfg ; 8(,03

By using cosine law |zg; — xsj|* = 2(1 — cos;;), where ;5 is the angle between xg; and
xg ; satisfying

(5.30)

(0s,p5)=(05,5,¢5,5)

cos y;; = cosfg; cosBg j +sinfg;sinbg jcos (vsi — ©s,j),

(5.30) can be expressed by

N
dfs,; 1 i : .
= Cj Zzl W(sm fs jcosfs j — cosfg ;sinbg jcos (s — ¢s;)),
i (5.31)
sin&sjdgps’j = —i Z L sinfg ; sin (¢s; — ¢s.5),
¥ do Cj — 1 — cos;j ’ ’ ’
i#]
for j =1,2,...,N. Writing g ; as a column vector, (5.31)) is equivalent to
de,j zmSz T .
= I Q) Z T —ws Q; =zszl;, j=12,...,N. (5.32)
@#J

Since C(S) only depends on reaction terms of RD model (1.1)), C(S) of the sphere case and
the torus case are the same. Hence, the difference of the evolution equations of spots on the
torus and sphere is only caused by the difference in the Green’s functions and
local coordinates of torus and sphere. Since the Green’s function on the torus is difficult to
express to the function of  and x; as log|xs — xg ;| on the sphere, the evolution equation

(2.52) on the torus is difficult to obtain the form as (5.32]).
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5.2 Dynamics of quasi-stationary localized spots on the sphere
and torus

We compare the existence and stability of a single spot, two spots, N-ring and twisted and
untwisted two N-rings on the unit sphere and torus. The comparison is based on our analysis
and numerical simulations in Chapter of the BRD model on the torus and the numerical
simulations of of the BRD model on the unit sphere carried in [14, 29]. For
2 < N < 10, the numerical simulations of (5.19) and (5.32)) of the BRD model was
carried in [14] 29] with parameter f = 0.5 and ¢ = 0.02. In [I4] 29], to generate N initial
points, uniformly distributed random variables hg, and hy in (0, 1) were generated. Then, the
spherical coordinates of initial spot center is given by g = cos™(2hg, — 1) and ¢g = 2mh,.

e Since the sphere has rotation invariance, the single spot is a stable equilibrium no matter
where this spot is. In the meantime, torus is not constant curvature and the Green’s
function on the surface depends on the geometric property of the surface. For the case
of torus, as shown in the proof of Theorem there exists bifurcation ay ~ 1.2010
such that for 1 < a < ag, the single spot (61, 1) on the torus is an equilibrium if and
only if 81 = 0,V4(«), 7, 2w — Js(«) where ¥s(a) € (0, 7). The spots at 64 =0 and 1 =«
on the torus are unstable, while those at 6; = J5(a) and 27 — J4(«) are stable. For
a > ag, the single spot (01, 1) on the torus is an equilibrium if and only if §; = 0 or
01 = m, the spot at 1 = 0 is stable and the spot at #; = 7 is unstable.

e For any two spot cores (051, ¢s,1) and (052, ¢s2) on the sphere, we can rotate the sphere
such that these cores are symmetric. Hence, for any two spots pattern, S1 = Sy = F is
a solution of (5.19)). Then, Trinh and Ward [29] obtained the following result.

Theorem 5.2.1. (Lemma 4 in [29]) Let 71 2 = v1,2(0) denote the angle between the spot
centers g and g2, i.e. :13:52%5,1 = cos71,2. Then, provided that S1 = Sy = E < Xa(f)
, we have for all time o = €%t > 0 that

cos (71,2/2) = cos (7172(0)/2)67EU/|C(E)|. (5.33)

Since 12 — 7 as 0 — oo for any 71 2(0), the steady-state two-spot pattern will have
spots centered at antipodal points on the sphere for any initial configuration of spots.

Hence, any initial two-spot pattern on the sphere will move to be v12 = 7, the antipo-
dal points on the sphere. Let us remember that the necessary condition of two spot
equilibrium on the torus is ¢1 — w9 = 0 or ¢1 — s = . The reason of the existence
of necessary condition ¢; — 2 = 0 is that the torus is a genus one surface. Since when
w1 — 2 # 0 or 7, two spots on the torus will move toward @1 — @9 = 7, we obtain
©1 — 2 = 0 is unstable.

e Let us consider a ring configuration of N spots at 0g; = Jsn and ¢g; = (2j — 1)7/N
with the same strength S; = S. on the unit sphere for j = 1,..., N, which is called
the N-ring at ¥g . By the symmetry or (5.30)), it is easy to confirm that N-ring at
the equator ¥ = T of the sphere is an equilibrium. Theorem and the numerical
simulations of (5.19)) and (5.32)) in Section 5.1 of [29] shows that 2-rings and 3-rings at
equator is stable, but N-rings at equator is unstable for N > 4. For the case of torus, the
N-ring ¢ = 0 and ¥ = 7 are equilibria for a > 1 and there exist a,,(N) and apr(N) such
that N-ring equilibria ¥ = ¥5 € (0,7) and ¢ = 27 — ¥y exist for a € (am(N), ap(N))
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for N > 2. By our numerical computation, we found N-ring ¢ = 7 and ¢ = ¥s € (0, 7)
are unstable and the stability of N-ring ¥ = 0 depends on «: there exists a;(V) such
that N-ring ¥ = 0 is unstable for 1 < a < (V) and stable for o > as(N).

For the case of sphere, when N = 8, numerical result in Section 5.1 of [29] showed that
there exist g ~ 55.6° such that the two twisted 4-rings (¥s,1,952) = (fs,2m — O5) are
a stable equilibrium pattern (Figure 10 in [29]). Numerical result in [29] also indicated
that the two untwisted 4-rings on the sphere are unstable and the configuration tends to
the twisted two 4-rings (951, 9s2) = (fs,2m—0g) as time increases. In the meantime, for
the case of torus, the untwisted two N-rings equilibrium (9¥1,72) = (Vn(a), 27 — In())
exists for @ > 1 and is unstable as shown in Figure [3.12] The stability of the twisted
two N-rings equilibrium (¥1,92) = (In(a),2m — In(a)) on the torus depends on « as
shown in Figure And we found that there exist stable two N-rings equilibrium
(91,92) = (0,7) and stable special two N-rings equilibrium (¥1,9%2) = (Va(), Jp(cv))
on the torus depending on « as shown in Figure where ¥, € (0,7), ¥p € (m,2m)
satisfying 27 < ¥, + 9y < 37.

In [I4) 29], it is suggested that there exists a relationship between elliptic Fekete points

and stable equilibrium on the sphere when —101g€ < 1, which is reviewed as follows.

Let us consider the following regular perturbation expansion. For —ﬁ < 1 and given
spots cores (6}, ;) on the torus, j = 1,..., N, suppose that £ ~ O(1) and S; ~ O(1)
for j =1,..., N, we then obtain the following regular perturbation expansion:

1 1

S=S8 S
ot loge ! + (log€)?

So4---, (5.34)

where S = (S1,...,Sv) and S; = (S14,...,5n,)T for i =0,1,2,.... Similarly, we have

1
X=X0+0< >, (5.35)
log e
where x = (X(S1.0; f),---»x(Sno0; f))T. By substituting (5.34)) and (5.35) into (2.29)),
matching the leading order and next order of lo}ge’ we obtain Sy = ZLA?’EB and S; =

(I —eo)xo— (I —e)(G—P+K+ Q)So. When Sy = ZZE e we have (I — eg)xo = 0
and (I —ep)K = 0. Then, we obtain

2rrRE 1
S~ - —{ - -P . .
~ <e loge( e)(G + Q)e> (5.36)
Hence, under the assumption, we obtain S; — S. = 2mrRE o —ﬁ — 0. Similarly,

og
for the case of the unit sphere, as shown in [29], when E ~ O(1) and S; ~ O(1) for
j=1,..., N, the regular perturbation expansion of ([5.19)) yields

2F 1
e _— —_—
loge

where L is defined in (5.16). Let {xg1,...,Zgn} be a set of points on the unit sphere.
Then, elliptic Fekete points is the point set on the unit sphere such that this sets globally
minimizes the discrete logarithmic energy

N N
V=- Z Z log |xs; — xs ;| (5.38)

i=1 j=i+1

(I —eg)Le), (5.37)
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If we ignore the constraint (5.19)) and set S; =1 in (5.30)), we obtain

av i < oV dfs; OV dps, al

— 2 2 2
o = j i) <0 5.39
do = 00s; do * Ops,j do ) C(1) ; (@51 + 05 2) <0, (5.39)

where C(1) < 0. Hence, it seems that there exists a relationship between elliptic Fekete
point set and equilibrium of q5.32[) and (]5.19[) when @ — 0. [29] found that the cores
of the stable twisted two 4-rings (¥ 1,7s2) = (65,27 — fg) on the sphere is an elliptic
Fekete point set, where g ~ 55.6°. Jamieson-Lane et al. [I4] concluded that equilibrium
spot configurations for N = 3, ..., 10 in their numerical simulations having a large basin
of attraction are indeed elliptic Fekete point sets.

In the case of torus, let us define the energy function Vr, (61,...,0n,01,...,¢N) of
N-spot pattern as follow:

VTR’T(Hla-'~39Na§017"'790N)

" S G >~ (2nF (0 TR L. LU
——Z Z i( J&@j))‘Z( @ (j)+m (j)_z/o pREp— )
J=li=j+1 Jj=1
(5.40)
The function Vr,,  is periodic satisfying Vr, (01, ... .. JON 1, on) = Vg (01, ..., 05+

27, ON 1, oN) = Vg (01, 0N, 01, 0512, ) forany =1, N.
If we fix Sj =1 in (2.52) and ignore the constraint (2.29), V1 = satisfies

Vi, Vi,
00, b -

—(R —rcosbj)aja.

Hence, if we fix S; = 1 in (2.52)) and ignore the constraint (2.29), Vr,  is regarded as a
Lyapunov function, since

80j do 8@j do

dVTR,'r N GVTR’T dej aVTRV,,‘ d()Dj 2 N 2 2
. 3 < + > = & Z(%1 +ajy) <0. (5.41)

j=1 7j=1

The local and global minima of the energy Vr,, (01,...,0n,¢1,...,pN) depend not only
on N, but also on a. Investigating the relationship of minima of the energy Vrp and
stable equilibria of 1D for — lge <« 1 is left open for future research.

lo
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Chapter 6

Summary

By using the method of matched asymptotic expansions, we have constructed quasi-stationary
states consisting of localized spots appearing in the reaction-diffusion system on the
surface of a torus. Under the assumption that these localized spots persist stably for a long
time, the ODEs describing the slow dynamics of the spot cores are derived in the slow-time
scale o = €2. Utilizing the analytic expression of the Green’s function of the Laplace-Beltrami
operator on the toroidal surface, we derive the ODEs analytically, thereby investigating the
existence of equilibria with a mathematical rigor. We have considered the five kinds of spot
configurations: spots at the outermost or the innermost, a single spot, two spots, the N-
ring configuration where N localized spots are equally spaced along a latitudinal line, and
the two N-rings configuration where N localized spots are equally spaced along a latitudinal
line and the other N localized spots are equally spaced along another latitudinal line. The
theoretical results agree with nonlinear evolutions of the BRD model that are obtained
by numerical means, which are summarized and compared with the dynamics of results on
the sphere [14] 29].

e Spots at the outermost (§; = m) or the innermost (¢; = 0) locations on the torus,
j = 1,2,...,N are always equilibria in 6 direction, i.e., % =0if 6; = 0 or w for
i=1,2,...,N.

e The single spots at the outermost (#; = 7) and the innermost (6; = 0) locations on the
torus are always equilibria for & > 1. On the other hand, there exist special locations
01 = 95(a) € (0,7) and 27 — J4(a) € (m,27) at which the single spot becomes an
equilibrium for 1 < a < ag = 1.201. The single spot at #; = « is always linearly
unstable, and those at 6; = J5(«) and 27 — J5() are stable as long as they exist. The
single spot at § = 0 is unstable for 1 < a < «g, whereas its stability changes when
Us(a) = 0 as a — . It is interesting to consider a geometric or physical interpretation
of this special angle Js(«), which is a future problem. Let us remember that a single
point on the sphere at any location is always a stable equilibrium [29].

e Quasi-stationary states consisting of two localized spots are necessarily on the axial
section of the torus, i.e., p1 = @2 or |p2 — 1| = m. We obtain ¢1 = @9 is unstable,

the spots will move to |2 — 1| = 0 after perturbation. In the meantime, two spots
patterns on the sphere are equilibria if and only if spots centered at antipodal points
[29].

e The N-ring (N > 2) at the outermost (f = 7) and the innermost (6 = 0) latitudinal
lines on the torus are equilibria for &« > 1. We also obtain a range of the aspect ratio
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a € (am(N),ap(N)) such that there exists Iy (a) € (0,7) for N > 2. We observe
the linear stability of these N-ring configurations of the BRD model on the torus. The
outermost N-ring is always unstable, while there exists an aspect ratio as(N) such
that the innermost one is unstable (resp., neutrally stable) for 1 < a < as(N) (resp.,
a > ag(N)). N-ring at 9y («) and 27 — 9 (a) are unstable equilibria as long as they
exist. Quasi-stationary solutions of the BRD model consisting of the unstable N-ring
are numerically investigated. The unstable N-ring spots are moving toward stable quasi-
stationary states having nonsymmetric configuration of NV spots, indicating the existence
of more nontrivial spot equilibria that are stable. On the other hand, for the sphere
case, the N-ring at equator is a stable (resp., unstable) equilibrium for N < 3 (resp.,
N > 4).

The twisted and untwisted two N-rings at (U1,92) = (0, 7) are equilibria on the torus
for a > 1. In addition, the strengths of two N-rings at (1, 192) = (0, 7) are not identical,
nor they are uniquely obtained. We also obtain the existence of equilibria for the twisted
and untwisted two N rings at (¥1,92) = (U, 27 — ¥ ) with identical strength S; = S,
j=1,2,...,2N. For a > 1, there exists Jx(«) such that the untwisted two N rings
at (¥1,72) = (Un(a),2m — In(a)) is an equilibrium and unstable. We also obtain a
range of the aspect ratio a € (1,a4(NN)) where there exists the twisted two N-rings
at (¥1,72) = (Un(a),2m — In(a)). Our numerical results obtain the stability of the
twisted two N rings at (¢1,%2) = (In(a),2m — In(«)) is complicated and we obtain
a bifurcation diagram showing the relationship between the twisted two N-rings at
(91,92) = (Un(), 27 —In()) and the twisted two N-rings at (91,92) = (0, 7). In the
meantime, the two twisted 4-rings at (¥1,92) = (In, 27 — Un) on the sphere is stable
[29].

By carrying the numerical simulation of and , the stable equilibria of evo-
lution equation coincide with elliptic Fekete point for NV = 2,...,10 is found in
[14, 29]. For the case of torus, we derive the energy Vr,  related to evolution equation
, but the relationship between the minima of Vr, —and equilibria of is left
open for future research.
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Appendix A

Asymptotic Expansions of the
Green’s Function

We introduce the asymptotic expansion and the partial derivative of the Green’s function
the which are used in the derivation in Chapter [2l The asymptotic expansion of the Green’s
function ([2.15)) with respect to € up to O(e) is provided in what follows. Since

C(97 @) i(p—i) < /9 d77 >
=e€ vexp | — _
C(0:, i) g; O —COSN

r 1 r
=1+1i(p— i) — - 5 i) — (P — ) (0 = 0
tile— i) = o= TCOSQ(G 0:;) — 2(90 i) R—rcos&i(@ ©i)(0 — 0;)
+1 72 + r? sin 0;
2 \(R—rcosb;)> (R—rcosb;)
€ €2 €2(1 + sin 6;)
=1- — 3 2 Al
R—rcos&iyl 2(R — rcosb;)? y2+2(R—rcos€) 241 (A-1)
+7;76 —Z‘; _|_O( 3)
R—rcos@z-y2 (R—rcos@i)ley2 <)
we obtain, as © — x;,
¢(0, )
log‘l— —logp
2 : 2
€y5 e(1+sinb;)y; . €Y1Y2 9
— Jog |—y; — -y
©8 2(R—rcos6i)+2(R—rcos«9i)+Z b2 (R —rcosb;) +0(€)
+1log | ————| —1lo
& R — rcosb; &P
1 €
=-1 T+ (1 —y1y5 — (1 +sind;)y + O
5 108 ((yl +yg)< +(R—rc089i)(y%+y%)( y1y3 — (L +sinb;)y7 + O(e))
+loge —log (R — rcosb;) —logp
1+ siné; in 0;1y4
zloge—log(R—rcosﬁi)—6< + sin i)y € oI Viy1Y2 + O(é%). (A.2)

2(R—rcosb;)  2p*(R—rcosb;)
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Regarding W; (0, ¢), setting E; ; = exp (— f:ij dn ) and s = exp(—27m.A), we obtain

a—cosn
—onm A C(0,95) —onmA [ C(0p)
Olog| (1 - AT (1 e (@) ) ‘
hijn = 90
0=0,
(el ey B sl p)B) B
a—cos; \ 1—2s"cos(p; —@i)Eij+ SQ"EZ%j 1 —2s"cos (p; — %)EZ; + SQ”E;f
. (B} - Eij) (—(1 +57)s" cos (9j — i) + s* (B + Ez;j))
o —cosb; (1+ s — s cos (¢ — i) (Eij + Ez_jl))2 + (s sin (p; — i) (Bij — Ez'jjl))y
(A.3)
—onm A C(0;,9) —onmA [ C(050) )\
Olog | (1~ e Aggns) ) (1 - e () ) ‘
Wijn = dp
p=0;
o s™sin ((pj - Spi)Ei,j + s" sin ((pj - SOZ)Ez_Jl (A4)
= 1 — 25" cos (QOJ — sz)EZ,j € SQnEiz,j 1 — 2s™ cos (QDJ — Sol)E;jl + SQHE;J27
sin (¢; — ¢i)s" ((E” + Efjl) (1+ s%") — 45" cos (¢j — %))
= (14 820 — sncos (pj — i) (Eij + E;jl))Q + (s™(E;; — E;jl)sin (pj — ©i))?’
¢(8,5)
o e -6
7,7 89
0=0;
1 (I =cos(pj — wi)Eij)cos (v — i) Eij —sin® (9 — ¢i) B (A.5)
o — cosb; (1 —cos (wj — i) Ei j)? + (sin (¢ — i) Ei j)?
B 1 cos (pj — wi)Eij — E};
a —cosf; (1 —cos(pj — ¢i)Ei;)?+ (sin(¢; — i) Ei ;)%
and
dlog ‘1 C(ai%)
07'7] =

dp

P=;
(1 — cos (pj — i) By j)sin (9 — i) Bij +sin (p; — gi) cos (0; — i) B (A.6)
(1 —cos (¢p; — ¢i)Ei ;)% + (sin (¢; — i) E; j)?
sin (¢, — i) Eij
(1 —cos(pj — pi)Ei )%+ (sin(p; — i) Eij)?

When 6; = 0;, we have E; ; = E'l_]1 =1 and sin (p; — ;) = 0 for ¢; = ¢, 1} and 1’
yield

Qg Wib.g))|  _ DlorWi(6;.¢)

, —0. AT
w2, 7 (A7)

o=p;
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Appendix B

An Algorithm to Solve g(S) =0

In order to construct the localized spot solution of BRD model , we need to solve the
nonlinear equation g(S) =0 for S, j =1,..., N. We introduce the numerical method
to solve as follows, which are used in the numerical computation of Chapter The
parameters are set as AS = 1078 and tol = 1075.

(Step 0) Computing X(S) for discrete values S = 0.001,0.002,...,8.000 by solving the
boundary value problem (2.53), we approximate the map X () by using the cubic spline
interpolation. The initial guess is given by S = (S,,...,S.)T with S, = 2nrRrE/N
and set kK = 0. This step is done only once.

(Step 1) Compute x(S*)) and x(S*) + ASe;) for j =1,..., N, where e; is the unit vector
whose jth component is 1. Each component of x is obtained from the piecewise cubic
approximation of Y () constructed in Step 0.

(Step 2) Compute the Jacobi matrix J(S) = {Ji;(S)}, 4,5 =1,..., N of g(S) at § = S*).
Each entity is approximated by the central finite difference.

. k N — . k) _ .
I (s<k>) _ i (s )+ASe])2AgZ (St ASeJ)7

in which g; is the ¢th component of g.
(Step 3) Solve the linear equation J(S®*))Ag = g(S™*)) with respect to Ag.

(Step 4) If |Ag| < tol, then S() is the approximate solution of S, and we go to Step 5.
Otherwise, we set S*+1) = §*k) _ Ag and k = k + 1. Then we go back to Step 1.

(Step 5) The constant U is computed from the approximate solution through (2.28)).
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Appendix C

A Brief Introduction of Surface
Finite Element Method

In this chapter, we briefly introduce surface finite element method and give an example of the
discrete BRD model ([1.3]) by this method.

C.1 Piecewise linear hat function

Definition C.1.1. A k-simplex ¢ in R” with 0 < k& < n is a convex hull of (k + 1) ordered
vertices {vg,v1,...,v;}, where vg,vy,..., v € R™ satisfy that (vi — vg,v2 — vo,..., vk — Vo)
are linearly independent. Then, the k-simplex ¢ can be written as

k k
o= {Z)\m Y a=10< )\}
=0 1=0

We use [vg,v1,...,v;] to represent the k-simplex o with vertices {vg,v1,...,v;}. For
example, in R3, a 0-simplex is a vertex, l1-simplex is an edge, a 2-simplex is a triangle, and a
3-simplex is a tetrahedron.

Definition C.1.2. Let 04 = [Vay, - - -, Va,], b = [Vpg, - - -, U;] be simplices in R™. Then oy is
said to be a face of o4, if {vpy, ..., vp;} C {Vag,- -+, va, }-

For example, [vg] and [v1] are the faces of [vg, v1].

Definition C.1.3. A simplicial complex K in R™*! is a collection of simplices o; in R™*!
such that

(1) If simplex o € K, then every face of o belongs to K,

(i) If simplices a, f € K, then aN B =0 or a N 3 is the common face of o and f.

The dimension of the largest dimensional simplex in K is called the dimension of K.

Definition C.1.4. n-dimensional simplicial complex M in R™! is called simplicial surface
if M satisfies that for every k-simplex s; € M, 0 < k < n, there exists a n-simplex so € M
such that s1 is a face of ss.

Hence, a simplicial surface M in R3 is a set of closed triangles satisfying that the inter-
section of two different closed triangles in M is empty or a vertex of each of the triangles or
an edge of each of the triangles.
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Definition C.1.5. Let M be a simplicial surface in R"™! and set {v;}", denote the vertices
set of M. The piecewise linear hat function ¢; : M — R corresponding to v; is defined as
follow:

(i) For any vertex vj,

¢i(vj) = dijy (C.1)

where 0 is Kronecker delta function.

(ii) For any k-simplex T's = [vs0,Vs1,...,0sk] € M, ¢; : I's — R is a linear function
defined as follows. For any p = (zp1,2p2,...,Tpnt1) € I's € R+ there exists a unique set
ag, - . .,ar € R, such that p = agvsp + - - - apvsg. Then, ¢;(p) is defined by

¢i(p) = di(agvso + - - - apvsk) = aodi(vso) + - - - axPi(Vsk)- (C.2)

Since ¢; equals 1 at v; and equals 0 at other vertices, it looks like a hat Let M be a
simplicial surface in R3. The set {v;}I" is vertices set of M. By Definition we obtain
for triangle Ay, ;05 @i+ Dujvju, — R can be expressed by

]qu ‘ (C.3)

%
where h is the height of edge [vy,v;] in Avvjvi, as shown in Figure and h = 1%; Here p
is the perpendicular foot on the line of [vj, vy].

Ui

vy Vg

p

Figure C.1: The figure corresponds to (i and Theorem h is the height of [v;, vk]
and p is the perpendicular foot.

Let u : M — R be a continuous scalar function, and {0} be the triangle set of M. Let
II;, denote the Lagrange interpolation operator of M which is defined by

n

Myu =Y u(vy) s, (C.4)

=0

where ¢; is the piecewise linear hat function of v;.

C.2 Surface finite element method and approximation

In this section, based on [8, 9] [10], we introduce some basic notations of surface finite element
method. Let I' be a compact smooth oriented connected surface in R"*!. We suppose that
there exists a smooth level set function d(z), z € R""! satisfying

I = {z € S|d(z) = 0}, (C.5)
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where S is an open set of R"*! which depends on d(z) satisfying Vd # 0 in S and d € C?(S).
We can choose signed distance function to be d(x), and v(x) = Vd(x) to be the unit normal
of T'. Then, we choose S to satisfy that for any x € S, the exists an unique y(z) € I" such
that

z = y(x) +d(x)v(y(z)). (C.6)

Definition C.2.1. The projection matrix P of I" is defined by Vz € I, for any vector X €
R™*! such that

Pz)X =X — (X -v)v. (C.7)
And (i, j)-element of P(x) can be express by
P(.CI?)U = (513‘ - v(:r)w(x)j. (C8)

where 0 is the Kronecker delta.

Let functions f € C2?(S) and g € C'(S). Then, the gradient and Laplace Beltrami
operator of f on I' is defined by:

Definition C.2.2. The tangential gradient of f on I'" is defined by

Vef=Vf—(Vf-v)v=PV]f. (C.9)
The components of the tangent gradient is denoted by Vrf = (D f,...,D, 1 f). Then, the
Laplace—Beltrami operator on I' is defined by

n+1
Arf=Vr-Vrf=> DDf. (C.10)

=1
As proofed in [I0], the Green’s identity of Laplace-Betrami Ar is given by
Theorem C.2.1.

/FQAFf _ /ﬁgw-u— /ergvrf, (C.11)

where u is the unit normal on JI', tangential to T

Let T be a compact smooth oriented connected surface in R? and be approximated by a
simplicial surface I'y, a triangulated surface consisting of triangles, h denote the maximum
diameter of triangles in I', and inner radius of triangles be bounded below by ch with some
constant ¢ > 0. The vertices set of I'j, is denoted by {v;}!' ;, where v; € I' and the piecewise

linear hat function corresponding to v; is denoted by ¢; for i = 1,2,...,n. Suppose that for
every y € I', there only exists a unique x € I'y, satisfying
z(y) =y + d(z(y))v(y). (C.12)

Then, from (C.6) and (C.12)), there exists a bijective function between I' and T'j. For any
function f € C°(I'y,), f' denotes the lift of f onto I' by

fly) = f(2(y)), yeT. (C.13)
Similarly, for any function g € C%(T), g~! denotes the inverse function onto I'j, by
g '(x) = g(y(x)), @ €T (C.14)

Let us define operator II,, : CO(I') — CO(T") by Il',g = (g~ ") for g € CO(T). The following
estimate bewteen g and II} g is derived in [10]
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Theorem C.2.2. For any g € W?2(I'), we have
g — ]IlthL2(F) + h|[Vr(g — HZQ)HB(F) < ah2(|W12“9HL2(F) + h||VF9HL2(F)), (C.15)

where a € R is a constant independent of h, W*P is Sobolev space, V% f! and V%h f denote
the second tagential derivatives matrix of f! and f. The component of Vi f* and V%h f can
be express by (VZf);; = D;D; f!, (V%hf)ij = Dy ;D jf. The L?norm of the vector and
matrix denotes the L?-norm of its components.

Using Green’s identity (C.11) and the piecewise linear hat function of finite element
method, some partial differential equation can be approximated by linear system of equations.
For example, if I is a surface without boundary in R? approximated by I';, with vertices set

{v1,...,vn}, we can approximate the heat equation a; = Ara on I' as follows. Let ¢; denote
the piecewise linear hat function of vertex i of I'y , i = 1,...,n. Let a(-,t) € C%(T') be the
weak solution of the following equation: for i =1,2,...,n,
oia;dS = ¢;Ar, adS. (C.16)
Ty Ty

By using Green’s identity (C.11)) and 9T'y, = (), we obtain

oiadS = — Vr, ¢iVr,ads, (C.17)
Ty Ty,
Setting
i=0
we obtain
Moa(t) = —Naf(t), (C.19)
where
a(t)
at)=1 + |, (C.20)
n(t)

and the element of matrices M and N are

M;; = / ¢i;dS, Ni; = Vi -Vo;dS, i,j=1,...,n. (C.21)
Ty Tn

Another example about BRD model on the toroidal surface with the backward Euler method
is shown inappendix As shown in the above example, we need to compute th ¢ip;dS

and th V¢, - V¢;dS. The following facts are useful:
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Theorem C.2.3. For any triangle Av;vjv, the following facts hold.

_>
h lvjor|
2h| Avivjog|’

1
(41) /A Vi - V¢;dS = §(cot Zvjvjvy + cot Lvjuv;),
ViV Vg

(i) Vo=

1
(ZZZ) / V¢] - VorpdS = —= cot Avkvivj,
Av;vjug 2
1
(iv) / $2dS = — |Avivjug|
Avjvjvg 6

1
(v) / bi0rdS = = |Avgvjui
Avvjug 12

(C.22)
(C.23)
(C.24)
(C.25)

(C.26)

where |Av;vjui| denotes the area of Awvvjug, |vjug| denotes the length of edge [vj,v]. The

height of Av;vjvy corresponding to v; is denoted by h and we use h to denote the vector
of height, from p to v;. Here p is the perpendicular foot on the line of [v;,vy] as shown in

Figure [C1]

Proof. (i): By the definition of piecewise linear hat function, we obtain
- = -

R B R 3

h?  R2lvjug|  2h|Avivjug|

Vo; =

(ii): From (C.22)), we obtain

2
/ Vo; - V;dS = <W> ds — "Ujvk|2 o ]vjvk|
Av;vjug Avivjoy

2\Avivjvk\ 4]Avivjvk] N 2h

1
= §(cot Zv;vjvy + cot Lvjugv;).

(iii): Since the included angle between V¢; and V¢, is (7 — Zugviv;) and the area of Avjv vy

can be expressed by |Av;vjvg| = 3|vgvs||vivs| sin Zvgvv; , we obtain

VRV ViU,
/ V; - VorpdS = cos (m — Zugvivj) 5 A’ k‘ Z" 5 A| l‘ j‘|
Avjvjvg Avjvjvg ’ Ulv]vk‘ ’ UZUJ'U]{;’
_ 1 [URvs] Vi c.os Z0;0; _ 1 cot Logiv;.
2 |vgws||vivs| sin Zogwv; 2

(iv):

h 2 ) — . h
n Ui |Ugvk\ 2 3
¢igidS =/ - vjvg|dn = / hn” —n>dn
/Avivjvk 0 <h) h | ! ‘ h3 0

vivg| (1 1 1 1
= |23‘ <3h4 - 4h4> = Eh\vﬂ)k| =3 | Avjvjug] .

(v) Let fj, fr : [pj, pk] — R be the linear functions on the edge [p;, py] satisfying

fi(p;) = a, fi(pk) = 0, fr(p;) =0, fu(pr) = b
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and the length of [p;, pi] is denoted by I. Then, we obtain

l U/ g2
frdr = 1——)b=dz=ab - — —]d
[ otte= [La(1=F)oqae=an [ (-5 )
:ab<l—l> fabl

Using the equation above, we obtain

[ emas= [1E (=) o (=) ay

1
= arstoral [ (= ndn = g =

C.3 Discrete approximation of the Brusselator reaction-diffusion
system on the toroidal surface

In this section, we introduce how to obtain the discrete equations of the BRD model by
finite element method on the toroidal surface Tg, with the backward Euler method as follows.
Let T r,» denote the triangulation mesh with n vertices of the toroidal surface Tg . Let ¢; de-
note the piecewise linear hat function of vertex i of mesh, ¢ = 1,...,n. Let u(-,t),v(-,t) be the
approximate solution of u(-,t) and v(-,t), u(t) = Y i wi(t)pi(-) and v(t) = >, vi(t)i(-),
where u;(t) and u;(v) denote the value of w and v at vertex i of the mesh at time ¢ satis-
fying u;(0) = u(v;,0) and v;(0) = v(v;,0). We use the backward Euler method to compute
u(-,t),v(,t) numerically with time step At. Then, u(-,t) is approximated by

U(-,t+ At) — (-, t)
At '

Since (@ (- t+At) —u(-,1)? = O(A?) and (U(-, t+At)—u(-, 1)) (0(-, t+At)—v(-, 1)) = O(At?),
u?(-,t + At)v(-,t + At) can be approximated by

at('>t) ~

ﬁQ(-, t+ At)o(-, t+ At) =[ua(-, t) + (u(-, t + At) — (-, t))]2 [0(-,t) + (0(-, t + At) — (-, 1))]
=02 (-, )0(-,t) + 2u(-, t)o(-, t)u(-, t + At)
— 202, )0(-, t) + T2 (-, )T(-, t + At) — T2 (-, 1)0(-, ) + O(AL?)
~2u(-, t)o(-, t)u(-, t + At) + 62(-, Ho(-,t+ At) — 262(-, t)o(-,t).

Then, u(-,t)o(-, t)u(-,t + At), u(-,t)?0(-,t + At) and u(-,)?v(-,t) can be approximated by
ky(-,t, At), kao(-,t, At) and k3(-,t), respectively:
k(o t, AL) = ()T (4wt + At)di(-),
i=1
-t At) Zu )i (t + At)gi (),

= Zﬂ?(t)v )¢i(-)
i=1
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Next, we consider the weak solution u;(t + At), v;(t + At) of the following equations that for

1=1,...n,

U+ AL) — (-, 1)

Y dS = [ ¢ie®Ns u(-,t+A)AS+ | ¢i(€A—u(-,t+ At))dS
TR,?" At TRJ" fr
+ | ¢if(2k1(',t, At) +k2(',t, At) —2]€3(-,t))d5,
TR,T‘
(-t + At) —0(-,t _ 1
. OiT ( Ai ( )dS = . gbiAﬁR,rv(‘?t + At)dS + . qbie—zu(-,t + At)dS
R,r R,r R,r

TR,T

Here A@R’T = VﬁR’r . VTTR,T where VﬁRm is defined by Qj on each triangle. Let us define

Pt AL = 0 + @A 2Tk, 1) = D pilt, A,
=1

q(-,t, At) = é'ﬁ(-,t) + 6%’?3(‘715) = ailt, At)gi(),
=1

¢l€i2(2kl(’ ta At) + kQ(" t’ At) - 2]{:3(.’ t))

where p; = 2U;(t) + €2A — 2fu (t)v;(t) and ¢; = Lu;(t) + E%ﬁf(t)ﬁ(t) By Green’s identity

(C.11)), we obtain

TR,T TR,T

At

+ [ gt +AN)dS — | @i f(2ki(-t, At) + ka(, ¢, At))dS,

TR,’V‘

ds + /~ Vﬁ‘R o; - VTR o(-,t+ At)dS
Tr,r " "

TR,T

¢iq(~,t, At)dS =/ qbﬂ'

TR,T TR,’I‘

At

TR,’I‘

Then, we obtain the matrix form of discrete Brusselator RD system

)(

v1(t + At)

MA(t,At) + N MB(t)
MC(t) MD(t,At) + N
where
uy (t + At)
Ut + At) = : . V(t+AY) =
un(t + At)
X110 Xin Y11
M = . , N = :
Xn,l T Xn7n2 Yn,l

U t+ At)

V(o t + At)

1

Un(t + At)

ds+ [

TR,’V‘

ds+ |

U(t+ At)
V(t+ At)

Yl,n

MP(t, At)
(MQ(t, At)

VﬁRmd)i . VﬁRmﬂ(',t + At)dS

).

1
i (2k1(-, 1, At) + ka(-,t, At))dS,
€

(C.27)



a1 (t, At) 0 0 0 bi(t) 0 0o -~ 0

0 as(t, At) 0 0 0 bet) O 0

A(t, At) = 0 0 asg(t,At) --- 0 , B(t) = 0 0 b3(t) --- 0
0 0 0 an(t, At) 0 0 0 bn(t)

c1(t, At) 0 0 0 di(t) 0 0 0

0 ca(t, At) 0 0 0 do(t) O 0

C(t, At) = 0 0 cs(t, At) -+ 0 ., Dt)=| O 0 ds(t) 0
0 0 0 co et At) 0 0 0 - dp(t)

Here ai(t, At) = A%+1—2f’zli(t)’6i(t), bl(t) = —fﬂ%(t), Ci(t) = %2(—14-217%‘(25)’171‘(15)), di(t, At) =
& + %21712(75), Xij= fﬁR,r ¢i;dS and Y; ; = ‘[TFRJ' V’JTR,TQS/L' . Vﬁ‘Rﬂ.gbde fori,7=1,...,n. For
given At and initial data wu(-,0) and v(-,0), we have u;(0) = w(v;,0) and v;(0) = v(v;,0),
i=1,2,...,n. Then, by (C.27) and Theorem we can obtain the numerical results of
ﬁz(t) and 5l(t)
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