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Introduction

Let X be a smooth projective variety over an algebraically closed field K and f : X X
be a dominant rational map. The (first) dynamical degree δf of f is an invariant for estimating
the geometric complexity of the iterations fn of f . There are several equivalent definitions
of the dynamical degree, and here we introduce the method in [10] using the linear map of
f ∗ on the Néron-Severi group of X induced by f .

Let N1(X) be the group of all Cartier divisors on X modulo numerical equivalence. It
is a free Z-module of finite rank. We set N1(X)R = N1(X) ⊗Z R. Let p : Y → X be the
resolution of f such that g = f ◦ p is a morphism and Y is projective:

Y

X X.

g
p

f

Then the pull-back morphism f ∗ : N1(X) → N1(X) is defined by f ∗D := p∗(g
∗D) for

D ∈ N1(X). Note that this definition is independent of the choice of (Y, p). By abuse
of notation, we also denote by f ∗ the linear map on N1(X)R induced by f ∗. The (first)
dynamical degree δf of f is defined by

δf := lim
n→∞

(ρ((fn)∗ : N1(X)R → N1(X)R))
1
n ,

where ρ(·) is the spectral radius. By definition, we have δf ≥ 1.
In arithmetic dynamical systems, one of invariants related to the dynamical degree δf

is the arithmetic degree αf (P ), which estimates the asymptotic behavior of hX(f
n(P )) for

P ∈ X(Q) where hX is a height function on X. Kawaguchi and Silverman conjectured about
a relation between δf and αf in [20]. This conjecture is not completely proved, but there are
many affirmative answers for several cases (for details, see [16], [18], [19], [27], [36], etc.).

The arithmetic degree is usually defined over Q. Hence this conjecture is mainly discussed
on Q. But the dynamical degree can be defined over arbitrary field K. Thus, we extend the
defining field of the arithmetic degree and Kawaguchi-Silverman’s conjecture. In this paper,
we use the notion of adelic curves introduced by Chen and Moriwaki in [8]. An adelic curve S
is a field K equipped with the set of absolute valuesMK on K which is indexed by a measure
space (Ω,A, ν) and a map ϕ : Ω ∋ ω 7→ |.|ω ∈ MK , and verifies the following relation which
is called the product formula:

∀a ∈ K×,

∫
Ω

log |a|ω ν(dω) = 0.

5



6 CONTENTS

As examples of adelic curves, we can construct adelic structures for number fields, function
fields and finitely generated fields over Q or Fq. In particular, it is important that a finitely
generated field over Q or Fq forms an adelic curve because for any variety X over any field,
we can reduce the base field of X to a finitely generated field over Q or Fq. Hence by using
this framework, we can consider Kawaguchi-Silverman’s conjecture on any dynamical system
over arbitrary field. Of course, it depends on the choice of a finitely generated field as a
defining field and its adelic structure.

A height theory works on any adelic curve, but the notion of adelic curves is too general
to consider Kawaguchi-Silverman’s conjecture. For example, height functions on a trivially
valued field (which is an adelic curve that consists of only the trivial absolute value) are
very simple. In fact, the arithmetic degree calculated by a height function on a trivially
valued field is always equal to one. Hence we need to choose a class of adelic curves which is
convenient for this conjecture. In this paper, we use adelic curves which have the Northcott
property. It is a class which holds a condition such like the Northcott theorem on Pn(Q)
(for details, see [34]). In this way, once we fix a good adelic curve, we can expect a sufficient
background for Kawaguchi-Silverman’s conjecture. This is our motivation of this paper.

Height functions on a trivially valued field as above are simple and they do not have
the Northcott property. However Arakerov theory over a trivially valued field has many
interesting results. In this paper, we will see two topics on it. The first one is the bigness of
adelic Cartier divisors. Let X be a normal projective variety over a trivially valued field. On
classical algebraic geometry, one of tools to study big divisors is a volume function. Hence
we define a volume function of adelic Cartier divisor D on X as follows:

v̂ol(D) := lim sup
n→+∞

d̂eg+(nD)

nd+1/(d+ 1)!
,

where d = dimX. The invariant d̂eg+(nD) is one which plays a similar role to h0(X,nD)

(for details, see [4], [5] and [8]). An adelic Cartier divisor D is said to be big if v̂ol(D) > 0.
We will see the simple criterion of big adelic Cartier divisors and prove the properties of this
volume function:

Theorem A. Let D,E be adelic Cartier divisors. The arithmetic volume function has the
following properties:

(1) (integral formula).

v̂ol(D) = (d+ 1)

∫ ∞

0

FD(t) dt,

where FD is a function given by D.

(2) (limit existence).

v̂ol(D) = lim
n→∞

d̂eg+(nD)

nd+1/(d+ 1)!
.
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(3) (continuity). If D is big, then we have

lim
ϵ→0

v̂ol(D + ϵE) = v̂ol(D).

(4) (homogeneity). For a ∈ R>0,

v̂ol(aD) = ad+1v̂ol(D).

(5) (log concavity). If D,E are big, then we have

v̂ol(D + E)
1

d+1 ≥ v̂ol(D)
1

d+1 + v̂ol(E)
1

d+1 .

The second topic is the ampleness of adelic Cartier divisors. In this paper, we discuss
several results about ample adelic Cartier divisors (which does not mean that only the un-
derlying Cartier divisor is ample). We will see that one of them is related to height functions,
which is the simple criterion of ampleness:

Theorem B. An adelic Cartier divisor D is ample if and only if the height function han
D
(x) >

0 for all x ∈ Xan.

The above height function han
D

is an extension of the height function hD on X. Hence it
follows that height functions are deeply related to ampleness of adelic Cartier divisors.

Let S = (K, (Ω,A, ν), ϕ) be an adelic curve. For any adelic divisor D on X, we can define
a height function hD : X(K) → R. We fix an adelic divisor D whose underlying Cartier
divisor is ample, and take the height function hX := hD. We set h+X := max{hX , 1}. Let If
be the indeterminacy locus of f and

Xf (K) := {P ∈ X(K) | fn(P ) /∈ If for all n > 0}.

Let P be an element of Xf (K). We define the upper and lower arithmetic degrees of P with
respect to f as

αf (P ) := lim sup
n→∞

h+X(f
n(P ))

1
n ,

αf (P ) := lim inf
n→∞

h+X(f
n(P ))

1
n .

Note that the above definitions are independent of the choice of D. By definition, we have

1 ≤ αf (P ) ≤ αf (P ).

If αf (P ) = αf (P ), the arithmetic degree αf (P ) of P with respect to f is defined as αf (P ).

By using the arithmetic degree over an adelic curve, we can consider the following con-
jecture:
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Conjecture C (Kawaguchi-Silverman’s conjecture over adelic curves). Let S = (K,Ω, ν) be
an proper adelic curve, and P ∈ Xf (K).

(1) αf (P ) = αf (P ). In particular, the arithmetic degree αf (P ) exists.

(2) We assume that S has the Northcott property. If the orbit Of (P ) = {fn(P ) |n =
0, 1, . . . } of P is Zariski dense in X, then we have αf (P ) = δf .

In the original paper, Kawaguchi and Silverman [20] conjectured that the set {αf (Q) |Q ∈
Xf (K)} is finite. This set is finite for many cases, but unfortunately, Lesieutre and Satriano
found an example of a birational map f on P4 such that the set {αf (Q) |Q ∈ (P4)f (Q)} is
infinite. For details, see [23, Theorem 2]. Moreover, Kawaguchi and Silverman [20] conjec-
tured that the arithmetic degree is an algebraic integer. By [1], there exists a birational map
f on P2 such that the dynamical degree δf is transcendental. Hence, while this remains an
open problem, there might exist a transcendental arithmetic degree.

Another results consist of mainly two parts. The first one is to prove the fundamental
inequality

∀P ∈ Xf (K), αf (P ) ≤ δf .

This inequality is proved by using Matsuzawa’s method in [26].

Theorem D (c.f. [26, Theorem 1.4]). Let S = (K,Ω, ν) be a proper adelic curve. Let X be
a smooth projective variety over an algebraic closure K of K and f : X X be a dominant
rational map over K. For any ϵ > 0, there is a constant C > 0 such that

∀n ≥ 0,∀P ∈ Xf (K), hX(f
n(P )) ≤ C(δf + ϵ)nhX(P ).

In the second part, we prove extended Kawaguchi-Silverman’s conjecture for some cases:

Theorem E (c.f. [19, Theorem 3]). Let S = (K,Ω, ν) be a proper adelic curve. Let X be a
normal projective variety over an algebraic closure K of K and f : X → X be a morphism.
For any K-rational point P of X,

(1) αf (P ) = αf (P ). In particular, the limit αf (P ) exists.

(2) The arithmetic degree αf (P ) is an algebraic integer.

(3) The set {αf (Q) |Q ∈ X(K)} is finite.

Theorem F (c.f. [18, Theorem 2(a)]). Let S = (K, (Ω,A, ν), ϕ) be a proper adelic curve. Let
X be a normal projective variety over an algebraic closure K of K such that dimN1(X)R = 1,
and f : X → X be a morphism. Then for any P ∈ X(K), the arithmetic degree αf (P ) exists
and is equal to 1 or δf . Moreover, if S has the Northcott property and the orbit Of (P ) is
infinite, then we have αf (P ) = δf .
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Theorem G (c.f. [18, Theorem 2(b)]). Let S = (K, (Ω,A, ν), ϕ) be a proper adelic curve
with the Northcott property. Let f : An → An be a regular affine automorphism of degree
d ≥ 2 defined over an algebraic closure K of K. We denote by f ′ the restriction of f onto
Pn \ An. Then for P ∈ (Pn)f (K), we have

αf (P ) =


1 (Of (P ) is finite),

δf (Of (P ) is infinite and P ∈ An(K)),

δf ′ (Of (P ) is infinite and P ∈ (Pn \ An)f (K)).

Theorem H (c.f. [18, Theorem 2(c)]). Let S = (K, (Ω,A, ν), ϕ) be a proper adelic curve
with the Northcott property. Let X be a smooth projective surface over an algebraic closure
K of K and f : X → X be an automorphism. Then for P ∈ X(K)f , we have

αf (P ) =

{
1 (Of (P ) is finite or P ∈ Ef (K)),

δf (Of (P ) is infinite and P /∈ Ef (K)),

where Ef is the union of the f -periodic irreducible curves in X.

We will show these theorems by using slight modified methods in [18], [19] and [20].

In Chapter 1, we recall the basic results of algebraic geometry, normed vector spaces and
Berkovich spaces. Next, we introduce the notion of adelic curves and see some examples in
Chapter 2. In addition, we define a base change of an adelic curve and a height function
on it. In Chapter 3, we study height theory on arithmetic varieties over an adelic curve. It
contains the usual height theories over Q, for example, Weil height theory and Néron-Tate
theory. In Chapter 4, we see some results on Arakelov geometry over a trivially valued field.
We study properties of big adelic Cartier divisors, ample ones and volume functions. Finally
in Chapter 5, we restate extended Kawaguchi-Silverman’s conjecture and we prove our main
theorems.
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Chapter 1

Preliminary

1.1 Q- and R-divisors
LetX be a variety over a fieldK andK(X) be a function field of X. By abuse of notation,

we also denote the (constant) sheaf of rational functions on X by K(X). Firstly, we recall
the definitions of Cartier divisors and Weil divisors (for details, see [13] and [24]).

Definition 1.1.1. Let Div(X) := H0(X,K(X)×/O×
X), whose element is called a Cartier

divisor. By definition, for D ∈ Div(X), there is an open covering {Ui} of X such that D is
given by some non-zero rational function fi ∈ K(X)× on Ui and fi/fj ∈ OX(Ui ∩ Uj)× for
i ̸= j. A Cartier divisor D ∈ Div(X) is said to be effective if fi is regular on Ui, that is,
fi ∈ OX(Ui) for all i in the above setting. A non-zero rational function f ∈ K(X)× naturally
gives rise to a Cartier divisor, which is called a principal Cartier divisor (or simply a principal
divisor) and denoted by (f). We denote the group law on Div(X) in additive way. We say
that two Cartier divisors D1, D2 ∈ Div(X) are linearly equivalent if D1 − D2 is principal,
which is denoted by D1 ∼ D2. We set Pic(X) := Div(X)/∼, which is called the Picard group
of X.

For two Cartier divisors D1, D2, we write D1 ≥ D2 if D1 −D2 is effective. In particular,
we write D ≥ 0 if D is effective. For an open subset U of X, let D|U be the image of D by
the canonical restriction H0(X,K(X)×/OX) → H0(U,K(X)×/O×

X), which gives a Cartier
divisor on U .

We can associate any Cartier divisor D = {(Ui, fi)} ∈ Div(X) with a subsheaf OX(D) ⊂
K(X), which is given by OX(D)|Ui

:= f−1
i OX |Ui

. It is well-known that this construction
is independent of the choice of a representation {(Ui, fi)} of D, and OX(D) is an invertible
OX-module on X.

Proposition 1.1.2 (c.f. [13, Proposition 6.13] and [24, Proposition 1.18]). Let D1, D2 be
Cartier divisors.

(1) OX(D1) ≃ OX(D2) if D1 ∼ D2.

(2) OX(D1 +D2) ≃ OX(D1)⊗OX
OX(D2).

11
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We denote Γ(U,OX(D)) by Γ(U,D) for an open subset U of X. For any open subset U
of X, we have

Γ(U,D) = {f ∈ K(X)× | (D + (f))|U ≥ 0} ∪ {0} (1.1.1)

by definition.
Conversely, we can associate any invertible OX-module L with a Cartier divisor D such

that L ≃ OX(D). Let s be a non-zero rational section of L, that is, s ∈ Lη \ {0} where
η is the generic point of X. Let {Ui} be an open covering of X in which L is trivialized,
and ωi ∈ L(Ui) be a local basis of L for each i. Then s is denoted by fiωi on Ui for some
fi ∈ K(X). The data {(Ui, fi)} gives the required Cartier divisor, which is denoted by div(s).
For example, if we choose 1 as a rational section of OX(D), then we have div(1) = D by its
construction.

Next, we assume that X is normal. Let X(1) = {x ∈ X | codimX{x} = 1}. For x ∈ X(1),
let [x] := {x}, which is an irreducible closed subset of X and called a prime divisor.

Definition 1.1.3. Let WDiv(X) :=
⊕

x∈X(1) Z[x], whose element is called a Weil divisor.
For a Weil divisor

D =
∑
x∈X(1)

nx[x],

nx is denoted by ordx(D). We say that aWeil divisorD ∈ WDiv(X) is effective if ordx(D) ≥ 0
for all x ∈ X(1). For two Weil divisors D1, D2, we write D1 ≥ D2 if D1 −D2 is effective. In
particular, we write D ≥ 0 if D is effective. For a non-empty open subset U of X, let

D|U :=
∑

x∈X(1)∩U

ordx(D)[x],

which is called the restriction of a Weil divisor D on U .

If x ∈ X(1), OX,x is a discrete valuation ring since X is normal. Hence we have the
normalized discrete valuation ordx on K(X) associated with OX,x. For a non-zero rational
function f ∈ K(X)×, let

(f) :=
∑
x∈X(1)

ordx(f)[x].

This is a Weil divisor and such a divisor is called a principal Weil divisor (or simply a
principal divisor). We say that two Weil divisors D1, D2 ∈ WDiv(X) are linearly equivalent
if D1 −D2 is principal. Then we write D1 ∼ D2.

We can associate any Cartier divisor D ∈ Div(X) with a Weil divisor as follows: For any
x ∈ X(1), let f ∈ K(X) be a local equation of D around x. Then we set ordx(D) := ordx(f).
It is independent of the choice of a local equation. Hence we can define that

D :=
∑
x∈X(1)

ordx(D)[x].

This construction gives a homomorphism φ : Div(X) → WDiv(X).
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Proposition 1.1.4 (c.f. [24, Proposition 2.14]). (1) The homomorphism φ is injective. More-
over, φ is an isomorphism if X is locally factorial (which means that OX,x is UFD for
all x ∈ X). Hence we often identify a Cartier divisor with a Weil divisor.

(2) For any D1, D2 ∈ Div(X), D1 ∼ D2 as Cartier divisors if and only if D1 ∼ D2 as Weil
divisors.

(3) For any D ∈ Div(X), D ≥ 0 as Cartier divisors if and only if D ≥ 0 as Weil divisors.

We can associate any Weil divisor D with a subsheaf OX(D) ⊂ K(X), which is defined
by

OX(D)|U := {f ∈ K(X)× | (D + (f))|U ≥ 0} ∪ {0}
for any open subset U of X. By (1.1.1), if D is Cartier, the above construction gives the same
invertible OX-module OX(D). However OX(D) is not invertible if D is not Cartier. Note
that in this case, OX(D) is reflexive (which means that the canonical morphism OX(D) →
Hom(Hom(OX(D),OX),OX) is an isomorphism).

Let K = Q or R. Let us introduce the definition of K-divisors.

Definition 1.1.5. Let Div(X)K := Div(X) ⊗Z K, WDiv(X)K := WDiv(X) ⊗Z K and
K(X)×K := K(X)× ⊗Z K. An element of Div(X)K (resp. WDiv(X)K, K(X)×K) is called
a K-Cartier divisor (resp. a K-Weil divisor, a K-rational function) on X. Clearly, Cartier
divisors and Q-Cartier divisors (resp. Weil divisors and Q-Weil divisors) are R-Cartier divi-
sors (resp. R-Weil divisors). A non-zero K-rational function f ∈ K(X)×K naturally gives rise
to a K-Cartier divisor (or equivalently a K-Weil divisor), which is called a K-principal divisor
and denoted by (f). We say that two R-Cartier divisors (resp. R-Weil divisors) D1, D2 are
K-linearly equivalent if D1 −D2 is K-principal, which is denoted by D1 ∼K D2. A K-Cartier
divisor (resp. a K-Weil divisor) D is said to be effective if D is a linear combination of
effective divisors with positive coefficients in K. We write D1 ≥ D2 if D1 − D2 is effective.
In particular, we write D ≥ 0 if D is effective.

Similarly to Cartier divisors, for D ∈ Div(X)K, there is an open covering {Ui} of X
such that D is given by some non-zero K-rational functions fi ∈ K(X)×K on Ui and fi/fj ∈
(OX(Ui ∩ Uj)⊗Z K)× for i ̸= j.

Let D ∈ WDiv(X)K. By definition, we can write D =
∑

x∈X(1) kx[x], where kx ∈ K and
kx = 0 for all but finitely many x ∈ X(1). Then we define the round down of D as follows:

⌊D⌋ :=
∑
x∈X(1)

⌊kx⌋[x].

This is a Weil divisor and ⌊D⌋ = D if and only if D ∈ WDiv(X).
For D ∈ WDiv(X)K, the associated OX-module OX(D) is defined by OX(⌊D⌋). Then we

have H0(X,D) = {f ∈ K(X)× |D+(f) ≥ 0}∪{0}. We remark that D+(f) ≥ 0 if and only
if ⌊D⌋+ (f) ≥ 0 for any f ∈ K(X)×, and OX(2D) is not isomorphic to OX(D)⊗OX

OX(D)
in general.

Proposition 1.1.6 (c.f. [24, Theorem 3.2]). Let D ∈ WDiv(X)K. Then H0(X,D) is a
finite-dimensional vector space over K.
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1.2 Semiample, ample and big divisors

We recall the definitions of the semiampleness, ampleness and bigness of Cartier divisors.
Let X be a projective variety over a field K.

Definition 1.2.1. We say that a Cartier divisor D is semiample if OX(nD) is generated
by global sections for some n ∈ Z>0, that is, the canonical morphism H0(X,nD) ⊗ OX →
OX(nD) is surjective.

Definition 1.2.2. We say that D is ample if for a sufficiently large n > 0, there is a closed
immersion j : X ↪→ PnK such that OX(nD) ≃ j∗OPn

K
(1).

Definition 1.2.3. Let D be a Cartier divisor on X. Let h0(D) := dimK H
0(X,D) and

d = dimX. We define the volume vol(D) of D as follows:

vol(D) := lim sup
n→+∞

h0(nD)

nd/d!
.

We say that D is big if vol(D) > 0.

Later we will consider the volume of an R-Weil divisor. Hence we extends the above
definition.

Definition 1.2.4. Let D be an R-Weil divisor on a normal variety X. We define a function
hD : R+ → Z by hD(t) := dimK H

0(tD) = dimK H
0(⌊tD⌋). The volume of D is defined by

vol(D) := lim sup
t→+∞

hD(t)

td/d!
,

where d = dimX. We say that D is big if vol(D) > 0.

By Fulger, Kollár and Lehmann [11], the above definition agrees with one in Definition
1.2.3 if D is Cartier.

Finally we recall the well-known properties of the volume function vol(.) without a proof
(for details, see [22]).

Proposition 1.2.5. Let X be a proper normal variety and d = dimX. Let D,E be R-Weil
divisors on X.

(1) vol(D) = lim
t→+∞

hD(t)

td/d!
= lim

t→+∞

hD(t)

td/d!
.

(2) For a ∈ R>0, vol(aD) = advol(D).

(3) The volume function vol(.) is continuous, that is, vol(E) → vol(D) as E → D (which
means that each coefficients of E converge coefficients of D as an R-Weil divisor).

(4) The volume function vol(.) is d-concave on big divisors, that is, if D and E are big,
then

vol(D + E)1/d ≥ vol(D)1/d + vol(E)1/d.
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1.3 Normed vector space

In this section, we study fundamental properties of a normed vector space over a field
equipped with an absolute value. However we mainly consider a trivially valued field.

Throughout this section, let K be a field.

Definition 1.3.1. We say that a map |.| : K → R+ is an absolute value on K if it satisfies
the following conditions:

(1) ∀a ∈ K, |a| = 0 ⇔ a = 0.

(2) ∀a, b ∈ K, |a|.|b| = |ab|.

(3) (triangle inequality) ∀a, b ∈ K, |a+ b| ≤ |a|+ |b|.

If an absolute value |.| also satisfies the following stronger inequality

∀a, b ∈ K, |a+ b| ≤ max{|a|, |b|},

we say that |.| is non-Archimedean. Otherwise, |.| is said to be Archimedean.

Definition 1.3.2. We say that an absolute value |.| on K is trivial if it satisfies that |a| = 1
for any a ∈ K \ {0}. A field K equipped with the trivial absolute value |.| is called a trivially
valued field. Clearly, the trivial absolute value is non-Archimedean and a trivially valued
field is complete as a metric space.

Let V be a vector space over K.

Definition 1.3.3. A map ∥.∥ : V → R+ is said to be a (multiplicative) norm over (K, |.|) if
it satisfies the following conditions:

(1) ∀v ∈ V, ∥v∥ = 0 ⇔ v = 0.

(2) ∀a ∈ K and v ∈ V, ∥av∥ = |a|.∥v∥.

(3) (triangle inequality) ∀v, w ∈ V, ∥v + w∥ ≤ ∥v∥+ ∥w∥.

If a norm ∥.∥ also satisfies the following stronger inequality

∀v, w ∈ V, ∥v + w∥ ≤ max{∥v∥, ∥w∥},

we say that ∥.∥ is ultrametric. A pair (V, ∥.∥) is called a normed vector space.

Let V• =
⊕∞

n=0 Vn be a graded ring over K such that Vn is a vector space over K for all
n and V0 = K. Let |.| be an absolute value on K and ∥.∥n be a norm of Vn over (K, |.|) for
n ∈ Z≥0 such that ∥.∥0 = |.| on V0 = K.
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Definition 1.3.4. We say that

(V•, ∥.∥•) :=
∞⊕
n=0

(Vn, ∥.∥n)

is a normed graded ring over (K, |.|) if ∥vm.vn∥m+n ≤ ∥vm∥m.∥vn∥n for all vm ∈ Vm and
vn ∈ Vn.

Let W• =
⊕∞

n=0Wn be a V•-module such that Wn is a vector space over K for all n. Let
h ∈ Z>0. We say that W• is a h-graded V•-module if vm.wn ∈ Whm+n for all vm ∈ Vm and
wn ∈ Wn. If h = 1, W• is simply called a graded V•-module.

Let ∥.∥Wn be a norm on Wn over (K, |.|) for n ∈ Z≥0.

Definition 1.3.5.

(W•, ∥.∥W•) :=
∞⊕
n=0

(Wn, ∥.∥Wn)

is called a normed h-graded (V•, ∥.∥•)-module if ∥vm.wn∥Whm+n
≤ ∥vm∥m.∥wn∥Wn for all vm ∈

Vm and wn ∈ Wn. If h = 1, (W•, ∥.∥W•) is simply called a normed graded (V•, ∥.∥•)-module.

Next, we consider a norm induced by another norms. Let (V, ∥.∥V ) be a normed vector
space over (K, |.|).

Definition 1.3.6. Let W be a vector space over K. Let f : V → W be a surjective K-linear
map. Then we define the quotient norm ∥.∥W on W induced by ∥.∥V and f as follows:

∥w∥W := inf{∥v∥V | f(v) = w, v ∈ V } for ∀w ∈ W.

Note that if ∥.∥V is ultrametric, then ∥.∥W is also ultrametric.

Definition 1.3.7. Let (W, ∥.∥W ) be a normed vector space over (K, |.|). Then we define the
operator norm ∥.∥HomK(V,W ) on HomK(V,W ) as follows:

∥ϕ∥HomK(V,W ) := sup

{
∥ϕ(v)∥W
∥v∥V

∣∣∣∣ v ∈ V \ {0}
}

for ∀ϕ ∈ HomK(V,W ).

If (W, ∥.∥W ) = (K, |.|), then we denote HomK(V,K) by V ∨ and ∥.∥HomK(V,K) by ∥.∥∨V , which
is called the dual norm of ∥.∥V .

Definition 1.3.8. Let K ′ be an extension field of K and |.|′ be an absolute value on K ′

which is an extension of |.|. Let VK′ = V ⊗K K
′. Then VK′ is identified with HomK(V

∨, K ′).
Hence we equip VK′ with the operator norm ∥.∥HomK(V ∨,K′), which is denoted by ∥.∥V,K′ . This
norm ∥.∥V,K′ is called the scalar extension of ∥.∥V .

Remark 1.3.9. This scalar extension is called ϵ-extension of scalars in [8]. As another
definition, Chen and Moriwaki [8] define the notion of π-extension of scalars. For the relation
between two definitions, see [8, Section 1.3].
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In the following, let (V, ∥.∥) be an ultrametrically normed vector space over a trivially
valued field (K, |.|) and dimK(V ) < +∞.

Lemma 1.3.10. (1) Let v1, . . . , vn ∈ V . If ∥v1∥, . . . , ∥vn∥ are all distinct, then we have
∥v1 + · · ·+ vn∥ = max{∥v1∥, . . . , ∥vn∥}.

(2) #{∥v∥ | v ∈ V } ≤ dimK(V ) + 1.

Proof. See [8, Proposition 1.1.5] for the proofs.

We set

F t(V, ∥.∥) := {v ∈ V | ∥v∥ ≤ e−t} for t ∈ R.

Remark that F t(V, ∥.∥) is a vector space over K for any t ∈ R because |.| is trivial. Then
{F t(V, ∥.∥)}t∈R satisfies the following conditions:

Proposition 1.3.11. (1) For sufficiently positive t ∈ R, F t(V, ∥.∥) = {0}.

(2) For sufficiently negative t ∈ R, F t(V, ∥.∥) = V .

(3) For any t ≥ s, F t(V, ∥.∥) ⊆ F s(V, ∥.∥).

(4) The function R ∋ t 7→ dimK F t(V, ∥.∥) is left-continuous.

Proof. (1) and (2) follow from Lemma 1.3.10, and (3) and (4) are trivial by definition.

We set

λmax(V, ∥.∥) := sup{t ∈ R | F t(V, ∥.∥) ̸= {0}},
λmin(V, ∥.∥) := sup{t ∈ R | F t(V, ∥.∥) = V }.

By convention, λmax(V, ∥.∥) = −∞, λmin(V, ∥.∥) = +∞ if V = {0}. By Proposition 1.3.11,
we have λmax(V, ∥.∥) < +∞, and by Lemma 1.3.10, we can replace “sup” by “max” in the
above definition.

1.4 Analytification in the sense of Berkovich

Let K be a field equipped with an absolute value |.|. We assume that K is complete with
respect to |.|. Let X be a scheme over SpecK. We recall the analytification of X in the sense
of Berkovich (for details, see [2]).

Definition 1.4.1. The analytification of X in the sense of Berkovich, or Berkovich space
associated to X is the set of all pairs x = (p, |.|x) where p ∈ X and |.|x is an absolute value
on the residue field κ(x) := κ(p) which is an extension of |.|. We denote it by Xan. The map
j : Xan → X, (p, |.|x) 7→ p is called the specification map.
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Let U be a non-empty Zariski open subset of X. The subset Uan := j−1(U) of Xan is
called a Zariski open subset of Xan. A regular function f ∈ OX(U) on U define a function
|f | on Uan as follows:

|f |(x) := |f(j(x))|x for x ∈ Uan.

We also denote |f |(x) by |f |x.
We define a topology onXan as the most coarse topology which makes j and |f | continuous

for any Zariski open subset U of X and any f ∈ OX(U). This is called the Berkovich topology.
Note that Xan is Hausdorff (resp. compact) if X is separated (resp. proper) over SpecK.

Let f : X → Y be a morphism of schemes over SpecK. There is a continuous map
f an : Xan → Y an such that the following diagram is commutative:

X Y

Xan Y an.

f

j j

fan

Concretely, f an is constructed as follows: Let x = (p, |.|x) ∈ Xan and q = f(p) ∈ Y . We
remark that κ(y) = κ(q) is a subfield of κ(x) = κ(p). Then y = f an(x) is given by q = f(p)
and the absolute value |.|y on κ(q) which is the restriction of |.|x.

In the following, (K, |.|) is a trivially valued field. For x ∈ X, let xan = (x, |.|0) ∈ Xan

where |.|0 is the trivial absolute value on the residue field κ(x). This correspondence gives a
section of j, which is denoted by σ : X → Xan.

Now we introduce an important subset of Xan. We assume that X is normal projective
variety over SpecK. Let η ∈ X be the generic point of X and

X(1) = {x ∈ X | codimX{x} = 1}.

Let K(X) be the function field of X. Firstly, for x ∈ X(1), we set

(ηan, xan) :=
{
ξ ∈ Xan

∣∣ there is t ∈ (0,+∞) such that j(ξ) = η, |.|ξ = e−tordx(
.) on K(X)

}
and

[ηan, xan] := {ηan} ∪ (ηan, xan) ∪ {xan}.

We often denote the above t by t(ξ). Then the correspondence ξ 7→ t(ξ), ηan 7→ 0 and xan 7→
+∞ gives a homeomorphism from (ηan, xan) (resp. [ηan, xan]) to (0,+∞) (resp. [0,+∞]).
Hence we often identify (ηan, xan) (resp. [ηan, xan]) with (0,+∞) (resp. [0,+∞]).

We set Xan
div :=

∪
x∈X(1) [ηan, xan]. Then we can illustrate Xan

div by an infinite tree as follows:

ηan

xan
· · · · · ·
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We remark that Xan
div = Xan if dimX = 1.

Lemma 1.4.2. Xan
div is dense in Xan.

Proof. For the proof, it is sufficient to show that, for any regular function f on a Zariski
open set U in X and any x ∈ Uan, the value |f |(x) belongs to the closure W of {|f |(z) | z ∈
Xan

div∩Uan} ⊂ R+. If f has no pole on X, then f is regular on the whole X, so f is a constant
function and algebraic over K because X is normal and projective. Therefore |f |(z) = 1 on
Xan, so it is clear that |f |(x) ∈ W .

We next assume that f has poles on X \ U . In this case, there are y, y′ ∈ X(1) such that
f(y) = 0 and f has a pole at y′ because X is normal. Then, |f |(t) = e−at for t ∈ (ηan, yan),
|f |(t′) = ea

′t′ for t′ ∈ (ηan, y′an) for some a, a′ > 0 and |f |(ηan) = 1, which implies that
W = R+ and we complete the proof.

Let R>0 be the multiplicative group of positive real numbers. There is an action of R>0

to Xan. For r ∈ R>0 and x = (p, |.|x) ∈ Xan, we define

r∗x := (p, |.|rx).

We also denote r∗x by xr. This action is called the scaling action. The scaling action is free
faithful and preserves the subset [ηan, xan] for all x ∈ X(1).

Finally, we introduce the reduction map red : Xan → X. For x ∈ Xan, let κ̂(x) be the
completion of κ(x) with respect to |.|x and we denote the absolute value on κ̂(x) by |.|x by
abuse of notation. We set ox := {f ∈ κ̂(x) | |f |x ≤ 1} and mx := {f ∈ κ̂(x) | |f |x < 1}.
Then ox is a local ring and mx is the maximal ideal of ox. If |.|x is trivial on κ(x), then
ox = κ(x) and mx = {0}. Let px : Spec κ̂(x) → X be a K-morphism of schemes defined by
j(x), and ιx : Spec κ̂(x) → Spec ox be a K-morphism defined by the inclusion ox ↪→ κ̂(x). By
the valuation criterion of properness (for instance, see [13]), there is a unique K-morphism
ϕx : Spec ox → X such that px = ϕx ◦ ιx:

Spec κ̂(x) X

Spec ox SpecK.

px

ιx
∃!ϕx

Then we define red(x) ∈ X to be the image of mx by ϕx. The map red : Xan → X
defined by the above correspondence is called the reduction map. The morphism ϕx induces
a homomorphism OX,red(x) → ox. Hence we have

∀f ∈ OX,red(x), |f |x ≤ 1. (1.4.1)

We remark that j ̸= red. For example, for any x ∈ X, red(xan) = x and for any ξ ∈ (ηan, xan),
red(ξ) = x. It is known that red : Xan → X is anti-continuous, that is, for any open set U
of X, red−1(U) is closed in Xan.





Chapter 2

Adelic curve

2.1 Definition of adelic curves

Let K be a field and MK be the set of all absolute values on K. Let (Ω,A, ν) be a
measure space, where Ω is a set, A is a σ-algebra on Ω and ν is a measure on (Ω,A). Let
ϕ : Ω → MK be a map and we denote the image of ω ∈ Ω by |.|ω ∈ MK . We assume that
the function ω 7→ log |a|ω is A-measurable and ν-integrable for all a ∈ K×.

Definition 2.1.1. The data S = (K, (Ω,A, ν), ϕ) is called an adelic curve. Moreover, we
say that S is proper if it satisfies a product formula:

∀a ∈ K×,

∫
Ω

log |a|ω ν(dω) = 0.

We set

Ω∞ := {ω ∈ Ω | |.|ω is Archimedean},
Ωfin := {ω ∈ Ω | |.|ω is non-Archimedean},
Ω0 := {ω ∈ Ω | |.|ω is trivial}.

Clearly, we have Ω = Ω∞ ∪Ωfin and Ω0 ⊂ Ωfin. We denote the completion of K with respect
to |.|ω by Kω. For any ω ∈ Ω∞, the field Kω is isomorphic to R or C. By Ostrowski’s theorem
(for example, see [33, Chapter II, Theorem 4.2]), there is a real number κ(ω) ∈ (0, 1] such

that |.|ω = |.|κ(ω)∞ on Q where |.|∞ is the usual absolute value on Q. Then we can define a
function κ : Ω → (0, 1] by setting κ(ω) = 0 for all ω ∈ Ωfin.

Proposition 2.1.2. The function κ is A-measurable and integrable with respect to ν. In
particular, if infω∈Ω∞ κ(ω) > 0, then we have ν(Ω∞) <∞.

Proof. See [8, Proposition 3.1.2] for its proof.

From now on, we always assume that κ(ω) = 1 for all ω ∈ Ω∞, so ν(Ω∞) <∞.
We see some examples of adelic curves.

21
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Example 2.1.3 (Number fields). Let K be a number field. We set

ΩQ = {|.|∞} ∪ {|.|p | p is a prime number},

where |.|∞ is the usual Archimedean absolute value on Q and |.|p is the p-adic absolute value
on Q such that |p|p = 1/p. Let Ω be the set of absolute values of K such that the restriction
onto Q belongs to ΩQ and A be the discrete σ-algebra on Ω. Then there is a natural map
ϕ : Ω → MK . Let ν be the measure on (Ω,A) such that ν({ω}) = [Kω : Qω]. Then by the
usual product formula on K, the adelic curve (K, (Ω,A, ν), ϕ) is proper.

Example 2.1.4 (Function fields). Let C be a regular projective curve over a field k and K
be the rational function field of C. We define Ω as the set of all closed points of C equipped
with the discrete σ-algebra A. For x ∈ Ω, let ordx(·) : OC,x → Z ∪ {∞} be the discrete
valuation. We can uniquely extend this valuation onto K and let |.|x be the absolute value
defined by

∀a ∈ K×, |a|x := e−ordx(a).

This gives a map ϕ : Ω →MK . Let ν be the measure on (Ω,A) such that ν({x}) = [k(x) : k].
By the residue formula, we have

∀a ∈ K×,
∑
x∈Ω

[k(x) : k]ordx(a) = 0,

which says that (K, (Ω,A, ν), ϕ) is a proper adelic curve.

Example 2.1.5 (Copies of the trivial absolute value). Let K be any field and (Ω,A, ν) be
any measure space. We define the map ϕ such that Ω = Ω0. Then we can easily see that
(K, (Ω,A, ν), ϕ) is a proper adelic curve. In particular, we say that (K, (Ω,A, ν), ϕ) is a
trivially valued field if Ω is a single set.

Example 2.1.6 (Finitely generated field over Q). For simplicity, we consider the case of a
function field Q(T ). For a general case, see [8, Section 3.2.6], [9, Chapter 2] and [32, Section
2].

Let K = Q(T ) and we consider it as the field of all rational functions on P1
Q. For any

closed point x, we can define a discrete valuation ordx(.) on K. Let ∞ be the rational point
of P1

Q such that
ord∞(f/g) = deg(f)− deg(g)

for all polynomials f, g ∈ Q[T ] and g ̸= 0. Since P1
Q \ {∞} is isomorphic to A1

Q, we can
associate a closed point x ∈ P1

Q \ {∞} with an irreducible polynomial Fx ∈ Z[T ] such that
the coefficients of Fx are coprime. Let H(x) be the Mahler measure of Fx which is defined
by

H(x) := exp

(∫ 1

0

log |Fx(e2πt
√
−1)| dt

)
.

We fix a non-negative real number λ ≥ 0. Then for φ ∈ K, we define an absolute value |.|x
on K as

|φ|x := (exp(λ deg(Fx))H(x))−ordx(φ),
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and
|φ|∞ := exp(λ)deg(φ).

Let p is a prime number. For any polynomial

f = adT
d + · · ·+ a1T + a0 ∈ Q[T ],

we define an absolute value of f as max |ai|p where |.|p is the p-adic absolute value on Q such
that |p|p = 1/p. By abuse of notation, we denote it by |f |p. It is uniquely extended to an
absolute value on K.

Let [0, 1]∗ := {t ∈ [0, 1] | e2πt
√
−1 is transcendental}. For any t ∈ [0, 1]∗, we define an

absolute value |.|t on K as

|φ|t := |φ(e2πt
√
−1)|

for all φ ∈ K = Q(T ), where |.| is the usual absolute value on C.
We set Ωλ = Ωλ,h

⨿
P
⨿
[0, 1]∗ where Ωλ,h is the disjoint union of the set of all closed

points of PQ \ {∞} and {∞}, and P is the set of all prime numbers. Let ϕλ : Ωλ → MK

be a map such that ϕ(ω) = |.|ω for any ω ∈ Ωλ. We equip Ωλ,h and P with the discrete
σ-algebras, [0, 1]∗ with the restriction of the Borel σ-algebra on [0, 1], and Ωλ with the σ-
algebra Aλ generated by these σ-algebras. Let νλ be the measure on Ωλ such that ν({x}) = 1
for x ∈ Ωλ,h and x ∈ P , and the restriction on [0, 1]∗ coincides with the Lebesgue measure.
Then the date (K, (Ωλ,Aλ, νλ), ϕλ) gives a proper adelic curve (for details, see [8, Section
3.2.5] and [32, Section 2]).

2.2 Base change

Here we briefly recall the notion of base change of adelic curves. for details, see [8, Section
3.3, 3.4].

Let S = (K, (ΩK ,AK , νK), ϕK) be an adelic curve and L be an extension field of K. For
simplicity, we assume that L is a finite separable extension of K. For any ω ∈ ΩK , let ML,ω

be the set of all absolute values on L which extends the absolute values |.|ω on K. Let ΩL

be the disjoint union ⨿
ω∈ΩK

ML,ω.

Then we have a natural projection πL/K : ΩL → ΩK which sends an element of ML,ω to ω.
Since ML,ω is a subset of ML, we naturally get the map ϕL : ΩL → ML. We equip ΩL with
the σ-algebra AL generated by πL/K and real-valued functions ΩL → R, ω 7→ |a|ω for all
a ∈ L.

We next construct a measure νL on (ΩL,AL). We define the measure νL on (ΩL,AL) as
follows:

∀A ∈ AL, νL(A) :=

∫
ΩK

∑
x∈ML,ω

[Lx : Kω]

[L : K]
1A(x) νK(dx),

where 1A is the characteristic function of A. Then, SL = (L, (ΩL,AL, νL), ϕL) is an adelic
curve and we also denote it by S ⊗K L. Moreover, if S is proper, then so is SL.
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For a general algebraic extension L over K, let EL/K be the set of finite extension fields
of K in L. This set is ordered by the relation of inclusion and filtered. For any K ′ ∈ EL/K ,
we can construct the adelic curve S ⊗K K

′ = (K ′, (ΩK′ ,AK′ , νK′), ϕK′). By the same way in
the case of finite extensions, we define the sets ML,ω for each ω ∈ ΩK ,

ΩL :=
⨿
ω∈ΩK

ML,ω

and the canonical inclusion ϕL : ΩL → ML. For any K ′ ∈ EL/K , the restriction map gives
the projection map πL/K′ : ΩL → ΩK′ . We can easily show that

πL/K′ = πK′′/K′ ◦ πL/K′′

whereK ′ ⊂ K ′′ ∈ EL/K . Then ΩL is identified with the projective limit of {ΩK′}K′∈EL/K
in the

category of sets. We equip ΩL with the smallest σ-algebra AL such that the maps πL/K′ are
measurable for all K ′ ∈ EL/K . Then (ΩL,AL) is the projective limit of {(ΩK′ ,AK′)}K′∈EL/K

in the category of measurable spaces. By equipping (ΩL,AL) with a suitable measure νL, we
can define the adelic curve SL = (L, (ΩL,AL, νL), ϕL). But this process is very technical, we
omit it (for details, see [8, Section 3.4] and [9, Chapter 2]).

2.3 Height functions

Let S = (K, (Ω,A, ν), ϕ) be a proper adelic curve. Let K be an algebraic closure of K
and S ⊗K K = (K, (ΩK ,AK , νK), ϕK).

Definition 2.3.1. We define the map hS : (K)n+1 \ {(0, . . . , 0)} → R as follows:

∀(a0, . . . , an) ∈ (K)n+1\{(0, . . . , 0)}, hS(a0, . . . , an) :=

∫
ΩK

logmax{|a0|χ, . . . , |an|χ} νK(dχ).

By the product formula on S ⊗K K, we have

∀λ ∈ K
×
, hS(λa0, . . . , λan) = hS(a0, . . . , an).

Hence we can get the well-defined map hS : Pn(K) → R. For x ∈ Pn(K), the value hS(x) is
called the height of x with respect to S.

Example 2.3.2. Let S = (Q,Ω, ν) be the adelic curve in Example 2.1.3. For (a0, . . . , an) ∈
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Pn(Q), we take a number field K such that it contains all ai’s. Then we have

hS(a0, . . . , an) =

∫
ΩQ

logmax{|a0|πQ/K(χ), . . . , |an|πQ/K(χ)} νQ(dχ)

=

∫
ΩK

logmax{|a0|x, . . . , |an|x} νK(dx)

=

∫
Ω

∑
x∈MK,ω

[Kx : Qω]

[K : Q]
logmax{|a0|x, . . . , |an|x} ν(dω)

=
1

[K : Q]

∑
x∈ΩK

[Kx : Qx] logmax{|a0|x, . . . , |an|x}.

Here we denote [Kx : Qω] for all ω ∈ Ω and x ∈ MK.ω by [Kx : Qx]. Hence in this case, hS
coincides with the absolute logarithmic height on Pn(Q).

By using this height function, we define an important class of adelic curves:

Definition 2.3.3. We say that S has the Northcott property if the set

{a ∈ K |hS(1 : a) ≤ C}

is finite for any C ≥ 0.

For instance, the adelic curves of Example 2.1.3 and the case of λ > 0 in Example 2.1.6
have the Northcott property (for details, see [30, 31, 32]).

2.4 Adelic vector bundles

Let S = (K, (Ω,A, ν), ϕ) be an adelic curve.
Let V be a finite-dimensional vector space over K. We define a norm family ξ as a family

{∥.∥ω}ω∈Ω where ∥.∥ω is norm on VKω = V ⊗K Kω. A norm family ξ is said to be ultrametric
if the norm ∥.∥ω is ultrametric for any ω ∈ Ωfin. We define the dual of ξ as ξ∨ = {∥.∥ω,∗}ω∈Ω
where ∥.∥ω,∗ is the dual norm of ∥.∥ω on (VKω)

∨ = V ∨ ⊗K Kω for any ω ∈ Ω.
Before defining an adelic vector bundle, we need some notions of metric families, due to

Chen and Moriwaki (for details, see [8, Chapter 4]).

Definition 2.4.1. (1) A real-valued function f on Ω is said to be upper dominated if there
exists a ν-integrable function A(·) on Ω such that f(ω) ≤ A(ω) ν-almost everywhere.
Similarly, we say that f is lower dominated if −f is upper dominated. Finally, we say
that f is ν-dominated if |f | is upper dominated.

(2) A norm family ξ is called upper dominated (resp. lower dominated) if for any non-zero
element v ∈ V , log ∥v∥ω is upper dominated (resp. lower dominated).

(3) We say that ξ is dominated if ξ and ξ∨ are upper dominated.
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Remark 2.4.2. If ξ is dominated, then ξ is upper and lower dominated. However, an upper
and lower dominated metric family is not always dominated. For example, see [8, Remark
4.1.4].

Definition 2.4.3. We say that a norm family ξ is A-measurable if for any non-zero element
v ∈ V , log ∥v∥ω is A-measurable.

Now we define an adelic vector bundle.

Definition 2.4.4. Let V be a finite-dimensional vector space overK and ξ be a metric family.
We say that a couple (V, ξ) is an adelic vector bundle on S if ξ and ξ∨ are A-measurable and
if ξ is dominated. Moreover if dim(V ) = 1, it is called an adelic line bundle on S.



Chapter 3

Arithmetic variety

In this section, we fix a proper adelic curve S = (K, (Ω,A, ν), ϕ). For simplicity, we
assume that S is a trivially valued field or Ω0 = ∅. Let X be a geometrically integral
projective scheme over SpecK. For each ω ∈ Ω, we set Xω := X ×SpecK SpecKω.

3.1 Adelic Cartier divisors

For a Cartier divisor D on X, we denote by Dω the pull-back of D by the canonical
morphism Xω → X for all ω ∈ Ω.

Definition 3.1.1. Let ω be an element of Ω.

(1) Let gω be a function on a dense open subset of Xan
ω . We say that gω is a Green function

of Dω if for any non-empty Zariski open subset Uω of Xω and any local equation fω of
Dω on Uω, the function gω + log |fω| extends to a continuous function on Uan

ω .

(2) A Green function family g of D is a family {gω}ω∈Ω where gω is a Green function of
Dω.

Example 3.1.2. (1) Let s be a non-zero rational function on X. Then we can consider
s as a non-zero rational function on Xω for any ω ∈ Ω. The family {− log |s|ω}ω∈Ω
gives a Green function family of the principal Cartier divisor (s), which is denoted by
− log |s|.

(2) Let 0 be the zero divisor on X. Then each element gω of a Green function family
{gω}ω∈Ω of 0 is a continuous function on Xan

ω .

For two Green function families g = {gω}ω∈Ω and g′ = {g′ω}ω∈Ω of D, we define the local
distance of g and g′ at ω ∈ Ω as

dω(g, g
′) := sup

x∈Xan
ω

|gω − g′ω|(x).

Since X is projective, Xan
ω is compact for all ω ∈ Ω. Hence this value is well-defined.

27
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Let V be a finite-dimensional vector space over K and ξ = {∥.∥ω}ω∈Ω be a norm family
of V . We assume that there is a surjective morphism f : V ⊗OX → OX(D). Then for each
ω ∈ Ω, we obtain the norm |.|ω on OX(D)x induced by (VKω , ∥.∥ω). Let s be the rational
section of OX(D) such that D = div(s). Then gV ,ω = − log |s|ω gives a Green function of
Dω. The Green function family gV = {gV ,ω}ω∈Ω is called the quotient Green function family

of D induced by V = (V, ξ) and f .

Definition 3.1.3. (1) Let D be a very ample divisor on X. A Green function family g of
D is said to be dominated if there exists a quotient Green function family gV induced
by a finite-dimensional vector space V with a dominated norm family, and a closed
immersion X → P(V ) associated with D such that the local distance function

Ω ∋ ω 7→ dω(g, gV )

is ν-dominated.

(2) Let D be a Cartier divisor on X and g be a Green function family of D. We say that g
is dominated if there exist two very ample divisors D1 and D2 together with dominated
Green function families g1 and g2 of D1 and D2 , respectively, such that D = D1 −D2

and g = g1 − g2.

Remark 3.1.4. (1) If D is a very ample divisor on X, Definition 3.1.3 (1) and (2) are
equivalent (for details, see [8, Remark 6.1.10]).

(2) Let D be a Cartier divisor on X and gV be a quotient Green function family of D
induced by a normed vector space V = (V, ξ). We assume that ξ is dominated. Then
gV is dominated in the sense of Definition 3.1.3 (for details, see [8, Proposition 6.1.11]).

Example 3.1.5. For any s ∈ K(X)×, the Green function family − log |s| of (s) is dominated.
In fact, let V be a vector space of dimension one over K. Then the norm family {|.|ω}ω∈Ω of
V is dominated, and − log |s| is given by (V, {|.|ω}ω∈Ω) and V ⊗OX

∼= OX → OX .

Next, we define the notion of the measurability of Green function families. Here we use
the notation of Section 2.2. Let g be a Green function family of D. Let P ∈ X(K) be a closed
point of X outside of Supp(D). Then we can represent P as a K-morphism P : SpecL→ X
for some finite extension L of K. Let S ⊗K L = (L, (ΩL,AL, νL), ϕL). For each ω ∈ Ω, the
Berkovich analytification of SpecL with respect to ω is identified with ML,ω as a set. Since
ΩL =

⨿
ω∈ΩML,ω, we can consider the pull-back of g by P as a function on ΩL. We denote

this function by gL(P )(·), or simply g(P )(·). If SpecL′ → X is another representation of P
where L′ is a finite extension of L, we have

gL′(P ) = gL(P ) ◦ πL′/L. (3.1.1)

Definition 3.1.6. We say that a Green function family g = {gω}ω∈Ω of D is measurable
if the function g(P ) − log |s|(P ) is measurable with respect to A for all s ∈ K(X)× and
P ∈ X(K) outside of Supp(D + (s)).
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By the equation (3.1.1), the above definition does not depend on representations of P .
This definition is a little strange because it is defined by using the notion of Green function
families. Usually, the measurability is defined by using the metric family of the invertible
sheaf associated with the Green function family (for details, see [8, Section 6.1.4 and 6.2.3]).

Example 3.1.7. Let s ∈ K(X)× be a non-zero rational function on X. For P ∈ X(K)
outside of Supp(s), the function − log |s|(P ) is measurable. In fact, let SpecL → X be
a representation of P . Then we can consider s(P ) is a non-zero element of L. Hence by
the definition of adelic curves, the function ΩL ∋ ω 7→ − log |s|(P )(ω) = − log |s(P )|ω is
measurable. In particular, − log |s| is a measurable Green function family of (s).

Remark 3.1.8. (1) Let D be a Cartier divisor on X and gV be a quotient Green function
family of D induced by a normed vector space V = (V, ξ). We assume that the σ-
algebra A is discrete or K contains a countable subfield K0 such that K0 is dense in
Kω for all ω ∈ Ω. Then if ξ is A-measurable, gV is measurable in the sense of Definition
3.1.6 (for details, see [8, Proposition 6.1.30]).

(2) If Ω0 ̸= ∅, we need a further condition to define the measurability of Green function
families (for details, see [8, Section 6.1.3 and 6.1.4]).

Now we can define adelic Cartier divisors:

Definition 3.1.9. Let D be a Cartier divisor on X and g be a Green function family of
D. We say that a pair D = (D, g) is an adelic Cartier divisor on X if g is dominated and
measurable. The set of adelic Cartier divisors forms an abelian group, which is denoted by
D̂iv(X).

Example 3.1.10. Let s ∈ K(X)× be a non-zero rational function on X. By Example 3.1.5

and Example 3.1.7, the pair (̂s) = ((s),− log |s|) is an adelic Cartier divisor on X, which is
called a principal adelic Cartier divisor on X. Two adelic Cartier divisors D1 and D2 are

said to be linearly equivalent if D1 −D2 = (̂s) for some s ∈ K(X)×.

Next we consider the extension of scalars. Let C0
G(X) be the set of all Green function

families of the trivial Cartier divisor on X. Then C0
G(X) naturally has an R-vector space

structure. Let K denote either Q or R.

Definition 3.1.11. Let D̂iv(X)K be the set D̂iv(X)⊗ZK modulo the vector space generated
by the following elements:

(0, g1)⊗ λ1 + · · ·+ (0, gn)⊗ λn − (0, λ1g1 + · · ·+ λngn),

for all n ≥ 1 and gi ∈ C0
G(X). Then D̂iv(X)K forms a K-vector space. An element of

D̂ivK(X) is called an adelic K-Cartier divisor.
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3.2 Height functions

Let D = (D, g = {gω}ω∈Ω) be an adelic Cartier divisor. Let P ∈ X(K) and SpecL →
X be a representation of P . We assume that P /∈ Supp(D). Since g is dominated and
measurable, gL(P )(·) gives an νL-integrable function on ΩL. Hence we define the height of P
with respect to D as

hD(P ) :=

∫
ΩL

gL(P )(x) νL(dx).

By the equation (3.1.1), the height of P does not depend on the choice of L.

Lemma 3.2.1. Let s ∈ K(X)× and P ∈ X(K) \ Supp(s). Then we have h
(̂s)
(P ) = 0.

Proof. It follows from the properness of S.

Definition 3.2.2. For P ∈ X(K), we define the height of P with respect to D as

hD(P ) := h
D+(̂s)

(P )

for some s ∈ K(X)× with P /∈ Supp(D + (s)). By Lemma 3.2.1, this definition does not
depend on the choice of s.

This height function has the following properties:

Proposition 3.2.3. Let D = (D, g) and D
′
= (D′, g′) be adelic Cartier divisors on X.

(1) For any P ∈ X(K), we have hD+D
′(P ) = hD(P ) + hD′(P ).

(2) If D = D′, then we have h(D,g′) = h(D,g) + O(1), where O(1) is a bounded function on
X(K).

Proof. See [8, Proposition 6.2.2] for their proofs.

Example 3.2.4. Let Pn = ProjK[T0, . . . , Tn] be the n-dimensional projective space. We set
zi = Ti/T0 for i = 0, . . . , n and H = {T0 = 0}. For each ω ∈ Ω, let

g0,ω = logmax{1, |z1|ω, . . . , |zn|ω}.

Then (H, g0 = {g0,ω}ω∈Ω) is an adelic Cartier divisor on Pn and hS = h(H,g0).
Let D be a very ample divisor on X and π : X → Pn be a closed immersion associated

with OX(D). We have D = π∗H + (s) for some s ∈ K(X)× and define the Green function
family g of D as π∗g0 − log |s|. Then we obtain that

h(D,g) = hπ∗H+(s),π∗g0−log |s| = hS ◦ π,

which gives the usual height function on X.
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For K = Q or R, we define the height function hD of an adelic K-Cartier divisor D as

follows: We write D = a1D1+ · · ·+ anDn for some ai ∈ K and Di ∈ D̂iv(X) for i = 1, . . . , n.
Then we set

hD := a1hD1
+ · · ·+ anhDn

.

By Proposition 3.2.3, it is well-defined.
For Chapter 5, we need several propositions:

Proposition 3.2.5. Let D be an adelic Cartier divisor on X. Let s ∈ H0(X,D)\{0}. Then
there is a real number C such that hD(P ) > C for all P ∈ X(K) \ Supp(D + (s)).

Proof. See [8, Proposition 6.2.6] for its proof.

Corollary 3.2.6. Let D be an adelic Cartier divisor on X whose underlying Cartier divisor
D is ample. Then there exists a constant C such that hD(P ) > C for all P ∈ X(K).

Proof. For any positive integer n > 0, we have hnD = nhD. Hence by replacing D by nD,
we can assume that the linear system |D| is base point free. Let {s1, . . . , sm} be a basis of
H0(X,D). For each i = 1, . . . ,m, let Ci be a real number in Proposition 3.2.5 for si. For
any P ∈ X(K), we have P /∈ Supp(si) for some i and hD(P ) > Ci. Hence the constant C is
given by C = min{C1, . . . , Cm} for example.

Corollary 3.2.7. Let D and E be adelic Cartier divisors on X such that D is ample and
hD ≥ 1. Then there is a constant C > 0 such that

∀P ∈ X(K), hE(P ) ≤ ChD(P ).

Proof. Since D is ample, for sufficiently large n > 0, the Cartier divisor nD − E is ample.
By Corollary 3.2.6, there is a Green function family g of nD − E such that h(nD−E,g) > 0.
For any P ∈ X(K), we have

hE(P ) = hnD(P )− h(nD−E,g)(P ) +O(1)

< nhD(P ) +O(1).

Hence for sufficiently large C > 0, we get the conclusion.

Proposition 3.2.8. Let D be an adelic Cartier divisor on X such that D is ample. We
assume that S has the Northcott property. Then for all positive real numbers δ and C, the
set

{P ∈ X(K) |hD(P ) ≤ C, [K(P ) : K] ≤ δ}

is finite.

Proof. See [8, Proposition 6.2.3] for its proof.
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3.3 Canonical compactification of adelic Cartier divi-

sors

In this subsection, we assume that either the σ-algebra A is discrete or there is a countable
subfield K0 of K which is dense in Kω for all ω ∈ Ω.

Let π : X → X be a surjective morphism. We assume that there is a Cartier divisor on X,
a positive integer d > 1 and s ∈ K(X)× such that π∗D = dD+(s). By [8, Proposition 2.5.11],
there exists a Green function gω of Dω such that π∗g = dg− log |s|ω for all ω ∈ Ω. Moreover,
the Green family g = {gω}ω∈Ω of D is measurable and dominated by [8, Proposition 6.2.19].

Definition 3.3.1. We say that an adelic Cartier divisor D = (D, g) is the canonical com-

pactification of D with respect to π if it satisfies π∗(D) = dD + (̂s).

Remark 3.3.2. By considering the construction carefully, the notion of canonical compact-
ification can be extended to an adelic R-Cartier divisor and a positive real number d > 1.

As an example of canonical compactifications, we consider Néron-Tate theory, that is,
the case of abelian varieties. Let A be an abelian variety over SpecK. For an integer n, we
denote by [n] the multiplication morphism by n. Let a be a positive integer such that a > 1
and a is not divisible by the characteristic of K. We remark that [a] : A → A is surjective.
Let D be a symmetric divisor on A (which means that [−1]∗D ∼ D). Since [a]∗D ∼ a2D,
there is s ∈ K(A)× such that [a]∗D = a2D+ (s). Hence there exists a Green function family
g of D such that D = (D, g) is the canonical compactification of D with respect to [a]. We
set ĥD = hD. It is the Néron-Tate height on the setting over an adelic curve and it has the
following property:

Proposition 3.3.3. (1) For any integer n, we have

∀P ∈ A(K), ĥD([n]P ) = n2ĥD(P ).

(2) For any P,Q ∈ A(K), we have

ĥD(P +Q) + ĥD(P −Q) = 2ĥD(P ) + 2ĥD(Q).

The height ĥD : A(K) → R is a quadratic form. The associated pairing ⟨·, ·⟩D :
A(K)× A(K) → R is defined by

∀P,Q ∈ A(K), ⟨P,Q⟩D :=
ĥD(P +Q)− ĥD(P )− ĥD(Q)

2
,

and it is bilinear and ⟨P, P ⟩D = ĥD(P ).

Proof. We can prove the assertions in a similar way as in [14, Theorem B.5.1].
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Corollary 3.3.4. Let X be a smooth projective variety over SpecK. Let D and E be adelic
Cartier divisors on X such that D is ample, hD ≥ 1 and E is numerically equivalent to 0.
Then there is a constant C > 0 such that

∀P ∈ X(K), hE(P ) ≤ C
√
hD(P ).

Proof. By [25, Theorem 4], nE is algebraically equivalent to 0 for some positive integer n.
Then we can prove the assertion in a similar way as in [14, Theorem B.5.9].

Remark 3.3.5. In Corollary 3.3.4, we can drop the assumption of smoothness of X (for
details, see [26, Appendix B]).





Chapter 4

Arakelov geometry over a trivially
valued field

In this section, we study some topics in Arakelov geometry over a trivially valued field.
Here, we introduce the arithmetic volume function and the bigness of adelic R-Cartier divi-
sors, and study their properties. Throughout this section, let K be a trivially valued field
and X be a normal projective variety over SpecK.

4.1 Adelic R-Cartier divisors

Let K = Q,R or Z. Let D be a K-Cartier divisor on X. In the trivially valued field case, a
Green function family of D consists of only one function, so we call it Green function simply.
Let P̂ic(X) be D̂iv(X) modulo linearly equivalence and it is called the arithmetic Picard
group. An adelic K-Cartier divisor (D, g) is effective if D is effective and g is a non-negative.
We denote it by (D, g) ≥ 0.

Proposition 4.1.1 (c.f. [6, Proposition 2.6]). Let (D, g) be an effective adelic R-Cartier
divisor on X. Then the function e−g extends to a non-negative continuous function on Xan.

Proof. Let U be a non-empty Zariski open subset of X and f be a local equation of D on
U . Since g + log |f | extends a continuous function on Uan, e−g = |f |.e−(g+log |f |) extends
a non-negative continuous function on Uan. We remark that |f | is a continuous function
on Uan because D is effective. By gluing continuous functions, e−g extends a non-negative
continuous function on Xan.

By Proposition 4.1.1, we often consider a Green function of an effective R-Cartier divisor
as a map Xan → R ∪ {+∞}.

Let D = (D, g) be an adelic R-Cartier divisor on X. Then the set of “global sections”
H0(D) is given by

H0(D) = {f ∈ K(X)× |D + (f) ≥ 0} ∪ {0}.

35
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Let s be a non-zero element of H0(D). By Proposition 4.1.1, the function |s|e−g = e−g+log |s|

extends to a non-negative function on Xan. We denote this function by |s|g : Xan → R+.
Then we define

∥s∥g := sup
x∈Xan

|s|g(x).

Note that ∥s∥g exists since Xan is compact. The map ∥.∥g : H0(D) → R+ gives an ultra-
metric norm on H0(D) over K and it coincides with the supremum norm induced by the
continuous metric on OX(D) corresponding to g. Moreover, by definition, it is easy to see
that

⊕∞
n=0(H

0(nD), ∥.∥ng) is a normed graded ring over K.
Let us recall the notations in Section 1.3: for a normed vector space (V, ∥.∥),

F t(V, ∥.∥) = {v ∈ V | ∥v∥ ≤ e−t} for t ∈ R,
λmax(V, ∥.∥) = sup{t ∈ R | F t(V, ∥.∥) ̸= {0}},
λmin(V, ∥.∥) = sup{t ∈ R | F t(V, ∥.∥) = V }.

We set

λmax(D, g) := λmax(H
0(D), ∥.∥g),

λmin(D, g) := λmin(H
0(D), ∥.∥g),

and

λasymax(D, g) := lim sup
n→+∞

1

n
λmax(nD, ng).

Since
⊕∞

n=0(H
0(nD), ∥.∥ng) is a normed graded ring, the sequence {λmax(nD, ng)}n is super-

additive, that is,

λmax((m+ n)D, (m+ n)g) ≥ λmax(mD,mg) + λmax(nD, ng) for ∀m,n ∈ Z+.

Hence by Fekete’s lemma, we have

λasymax(D, g) = lim
n→+∞

1

n
λmax(nD, ng) = sup

n≥1

1

n
λmax(nD, ng).

Later, we will show that λasymax(D, g) < +∞.

Definition 4.1.2. Let (D, g) be an adelic R-Cartier divisor. We say that a non-zero global
section s ∈ H0(D) \ {0} is a small section if ∥s∥g ≤ 1 or equivalently s ∈ F0(H0(D), ∥.∥g).
Moreover, if ∥s∥ < 1, it is called a strictly small section.

Proposition 4.1.3. Let D = (D, g) be an adelic R-Cartier divisor on X. Then we have

F0(H0(D), ∥.∥g) =
{
s ∈ K(X)×

∣∣∣D + (̂s) ≥ 0
}
∪ {0}.

Proof. Let s ∈ H0(D) \ {0}. By definition,

∥s∥g ≤ 1 ⇔ e−g+log |s| ≤ 1 on Xan

⇔ g − log |s| ≥ 0 on Xan,

as required.

Small sections play a similar role as global sections in algebraic geometry. Therefore we
are interested in the asymptotic behavior of F0(H0(D), ∥.∥ng) as n→ +∞.



4.2. ASSOCIATED R-WEIL DIVISORS 37

4.2 Associated R-Weil divisors

In this section, we use the notations in Section1.4.

Definition 4.2.1. Let (D, g) be an adelic R-Cartier divisor on X. For any x ∈ X(1),

µx(g) := inf
ξ∈(ηan,xan)

g(ξ)

t(ξ)
∈ R ∪ {−∞}.

Clearly µx(g) ≥ 0 if and only if g ≥ 0 on (ηan, xan). Moreover µx(g) = −∞ if and only if
g(ηan) < 0, which implies that if µx(g) = −∞ for some x ∈ X(1), then µx(g) = −∞ for every
x ∈ X(1).

The above invariant µx(g) has following properties:

Proposition 4.2.2 (c.f. [6, Proposition 5.7]). Let (D, g) be an adelic R-Cartier divisor on
X. For all but finitely many x ∈ X(1), we have µx(g) ≤ 0.

Proof. Let U be a non-empty Zariski open subset of X such that g is a continuous function
on Uan. Then g is continuous on [ηan, xan] for all x ∈ U ∩X(1). Since [ηan, xan] is compact,
g|[ηan,xan] is bounded above. Hence we have µx(g) ≤ 0 for for all x ∈ U ∩X(1), which implies
the assertion because X(1) \ U is a finite set.

Proposition 4.2.3 (c.f. [6, Lemma 5.8]). Let (D, g) be an adelic R-Cartier divisor on X
and x ∈ X(1).

(1) For any s ∈ K(X)×R , we have

µx(g − log |s|) = µx(g) + ordx(s).

(2) We have µx(g) ≤ ordx(D).

Proof. (1) It follows from the definition of Xan
div that

− log |s|(ξ) = t(ξ)ordx(s), ξ ∈ (ηan, xan)

for all s ∈ K(X)×R . Hence we obtain that

µx(g − log |s|) = inf
ξ∈(ηan,xan)

g(ξ)− log |s|(ξ)
t(ξ)

= µx(g) + ordx(s).

(2) Let f ∈ K(X)×R be a local equation of D around x. Then g + log |f | extends to
a continuous function on [ηan, xan]. Since (g + log |f |)|[ηan,xan] is bounded above, we have
µx(g + log |f |) ≤ 0. Hence by (1), we get µx(g) ≤ ordx(D).

Now we introduce an important divisor.
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Definition 4.2.4. Let (D, g) be an adelic R-Cartier divisor on X. We say that (D, g) is
µ-finite if µx(g) = 0 for all but finitely many x ∈ X(1), which is equivalent to µx(g) ≥ 0
for all but finitely many x ∈ X(1) by Proposition 4.2.2. If (D, g) is µ-finite, it follows from
definition that µx(g) ∈ R for all x ∈ X(1). Hence we can define an R-Weil divisor on X as
follows:

Dµ(g) :=
∑
x∈X(1)

µx(g)[x].

It is called an R-Weil divisor associated with (D, g). Note that Dµ(g) may not be an R-Cartier
divisor.

For example, if (D, g) has a Dirichlet property (which means that (D, g) is R-linearly
equivalent to an effective adelic R-Cartier divisor), then (D, g) is µ-finite.

By Proposition 4.2.3, we have Dµ(g) ≤ D and

(D + (s))µ(g−log |s|) = Dµ(g) + (s). (4.2.1)

Proposition 4.2.5. Let (D, g) be a µ-finite adelic R-Cartier divisor on X. Then (D, g) is
effective if and only if Dµ(g) is effective.

Proof. We first assume that (D, g) is effective. Then g is non-negative on Xan, so µx(g) ≥ 0
for any x ∈ X(1), which implies Dµ(g) is effective.

Conversely we suppose that Dµ(g) is effective. Then g is non-negative on Xan
div, but X

an
div is

dense in Xan by Lemma 1.4.2, so it follows that g is non-negative on the whole Xan. Moreover
by Proposition 4.2.3, we have

ordx(D) ≥ µx(g) ≥ 0

for any x ∈ X(1), which completes the proof.

By the above proposition and the equation (4.2.1), we have the following corollary:

Corollary 4.2.6. H0(Dµ(g)) = F0(H0(D), ∥.∥g) = {s ∈ H0(D) | ∥s∥g ≤ 1}.

4.3 Canonical Green functions

For any R-Cartier divisor D, we can naturally give a Green function of D as follows: For
any x ∈ Xan, let f ∈ K(X)×R be a local equation of D around red(x) ∈ X. Then we define

gcD(x) := − log |f |x.

This definition is independent of the choice of a local equation. In fact, let f ′ ∈ K(X)×R be
another local equation. Then there is an element a ∈ (OX,red(x))

×
R such that f ′ = af . Since

|a|x = 1 by (1.4.1), we have − log |f ′|x = − log |f |x.

Proposition 4.3.1. The function gcD is a Green function of D.
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Proof. It is enough to show that for any non-empty Zariski open subset U of X and local
equation f of D on U , gcD + log |f | extends to a continuous function on Uan. Let x ∈ Uan. If
red(x) ∈ U , then gcD(x) = − log |f |x. Hence we have gcD(x) + log |f |x = 0. Next, we assume
that red(x) /∈ U . Let U ′ be a non-empty Zariski open neighborhood of red(x) and f ′ be a
local equation of D on U ′. Then we have gcD(x) = − log |f ′|x We remark that j(x) ∈ U ′,
hence U ∩U ′ ̸= ∅. There is a non-zero regular function u ∈ (OX(U ∩U ′))×R such that f ′ = uf
on U ∩ U ′. Therefore we obtain that gcD(x) + log |f |x = − log |u|x, which is continuous on
Uan ∩ U ′an. Finally, let y ∈ Uan ∩ U ′an such that red(y) ∈ U . Since u ∈ (OX,red(y))

×
R , we have

|u|y = 1 by (1.4.1). Hence gcD(y) + log |f |y = − log |u|y = 0, which completes the proof.

Remark 4.3.2. Proposition 4.3.1 also prove the existence of Green functions of Cartier
divisors in the case of a trivially valued field.

Definition 4.3.3. The function gcD is called the canonical Green function of D.

Proposition 4.3.4. (1) For any s ∈ K(X)×R , g
c
(s) = − log |s|.

(2) For any D,D′ ∈ Div(X)R and a, a′ ∈ R, gcaD+a′D′ = agcD + a′gcD′.

Proof. (1) Since (s) is globally defined by s, it follows from the definition of the canonical
Green function.

(2) Let x ∈ Xan and f, f ′ be local equations of D,D′ around red(x) respectively. Then

faf ′a′ is a local equation of aD + a′D′ around red(x). Hence we have

gcaD+a′D′(x) = − log |faf ′a′ |x = −a log |f |x − a′ log |f ′|x = agcD(x) + a′gcD′(x).

Using the canonical Green function, we can define the following injective homomorphism:

φ : Div(X) → D̂iv(X), D 7→ (D, gcD).

By Proposition 4.3.4, it induces an injective homomorphism ϕ : Pic(X) → P̂ic(X) such that
the following diagram is commutative:

Div(X) D̂iv(X)

Pic(X) P̂ic(X).

φ

φ

4.4 Height functions

Here we see the height function on Xan associated with an adelic R-Cartier divisor, which
is introduced by Chen and Moriwaki [6].
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Definition 4.4.1. Let (D, g) be an adelic R-Cartier divisor on X. We set han(D,g) := g − gcD,

which is called a hight function on Xan associated with (D, g).

Proposition 4.4.2 (c.f. [6, Proposition 4.3]). Let D and D
′
be adelic R-Cartier divisors on

X.

(1) For any s ∈ K(X)×R , h
an

(̂s)
= 0 on Xan.

(2) For any a, a′ ∈ R, han
aD+a′D

′ = ahan
D

+ a′han
D

′ on Xan.

Proof. It immediately follows from Proposition 4.3.4.

By using the map σ : X → Xan in Section 1.4, we can consider X is a subset of Xan.
Hence we can compare this height function han

D
and hD in Section 3.2.

Proposition 4.4.3. Let D be an adelic Cartier divisor on X.

hD = han
D

◦ σ.

Proof. By definition, it is sufficient to show that gcD(x) = 0 for all x ∈ X. Let x ∈ X and
f ∈ K(X)×R be a local equation of D around red(σ(x)). Then we have

gcD(x) = − log |f |σ(x).

Since red(σ(x)) = x and |.|σ(x) is trivial, we get the conclusion.

For any adelic R-Cartier divisor (D, g) on X, han(D,g) is a continuous function on Xan.
Hence we have the following homomorphism:

ψ : D̂iv(X) → C0(Xan), (D, g) 7→ han(D,g),

where C0(Xan) is the set of all continuous functions onXan. This homomorphism is surjective.

In fact, let ρ : C0(Xan) → D̂iv(X) be a homomorphism such that u 7→ (0, u). Then we have
ψ◦ρ(u) = u for all u ∈ C0(Xan). By Proposition 4.4.2, it induces a surjective homomorphism

ψ : P̂ic(X) → C0(Xan) such that the following diagram is commutative:

D̂iv(X) C0(Xan)

P̂ic(X)

ψ

ψ .

Theorem 4.4.4. The following sequence is exact:

0 Pic(X) P̂ic(X) C0(Xan) 0.
φ ψ

In particular, P̂ic(X) ≃ Pic(X)⊕ C0(Xan).
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Proof. Since ψ ◦ φ = 0 by definition, we have ψ ◦ φ = 0. Let (D, g) ∈ D̂iv(X) such that
ψ(D, g) = 0. Then there are H ∈ Div(X) and s ∈ K(X) such that (D, g) = (H, gcH) +
(s,− log |s|). By Proposition 4.3.4, we get g = gcH − log |s| = gcD, which implies that (D, g) =
ϕ(D). Hence we obtain that Imϕ = Kerψ.

Finally, we denote by ρ the composition of ρ : C0(Xan) → D̂iv(X) and the natural

homomorphism D̂iv(X) → P̂ic(X). Then it follows from ψ ◦ ρ = id that this exact sequence
is splitting.

For X = SpecK, the Berkovich space Xan associated with X is a single point. Hence we
have C0(Xan) = R, which implies that

P̂ic(X) ≃ R.

This result corresponds to the fact that the Picard group of P1 is isomorphic to Z and the
arithmetic Picard group of SpecZ is isomorphic to R.

4.5 Scaling action for Green functions

We saw that the multiplicative group R>0 acts Xan (see Section 1.4). Here we see that
it also acts the set of Green functions of D. Let (D, g) be an adelic R-Cartier divisor on X.
For r ∈ R>0, we define

r∗g(x) := rg(x1/r).

Note that x1/r = (1/r)∗x = (p, |.|1/rx ) for x = (p, |.|x) ∈ Xan. The function r∗g is also a Green
function of D. In fact, let U be a non-empty Zariski open subset of X and f be a local
equation of D on U . Then we have

r∗g(x) + log |f |x = rg(x1/r) + r log |f |1/rx = r(g(x1/r) + log |f |x1/r)

on Uan, which is continuous. This action is also called the sacling action.

Proposition 4.5.1. Let D be an R-Cartier divisor on X, and g and g′ be Green functions
of D.

(1) The scaling action is linear, that is, for r ∈ R>0,

r∗(g + g′) = r∗g + r∗g′.

(2) The scaling action preserves the canonical Green function gcD.

Proof. (1) It is clear by definition.
(2) Let x ∈ Xan and f be a local equation of D around red(x). Then gcD(x) = − log |f |x.

Hence we have

r∗gcD(x) = −r log |f |x1/r = −r log |f |1/rx = − log |f |x = gcD(x)

for any r ∈ R>0.



42 CHAPTER 4. ARAKELOV GEOMETRY OVER A TRIVIALLY VALUED FIELD

4.6 Big adelic R-Cartier divisors

4.6.1 Definition

We introduce the counterparts of h0(D) and vol(.) in Arakelov geometry, which is given
by Chen and Moriwaki [6]. We set

d̂eg+(D, g) :=

∫ +∞

0

dimK F t(H0(D), ∥.∥g) dt,

and

v̂ol(D, g) := lim sup
n→+∞

d̂eg+(nD, ng)

nd+1/(d+ 1)!
,

where d = dimX.

Definition 4.6.1. An adelic R-Cartier divisor (D, g) is said to be big if v̂ol(D, g) > 0.

Proposition 4.6.2. Let (D, g) be an adelic R-Cartier divisor on X. If (D, g) is big, then
(D, g) is µ-finite, Dµ(g) is big and λasymax(D, g) > 0. In particular, D is big.

Proof. If (D, g) is big, (D, g) is Q-linearly equivalent to an effective adelic R-Cartier divisor,
which implies that (D, g) is µ-finite. By definition, for any integer n > 0, we have

d̂eg+(nD, ng) ≤ dimk F0(H0(nD), ∥.∥ng)max{λasymax(nD, ng), 0}.

Therefore we obtain that

v̂ol(D, g) ≤ (d+ 1)vol(Dµ(g))max{λasymax(D, g), 0},

by Corollary 5.3.5. Since v̂ol(D, g) > 0, it follows that vol(Dµ(g)) > 0 and λasymax(D, g) > 0.

4.6.2 Existence of limit of the arithmetic volume

Firstly, we define

νmax(D, g) := sup{t ∈ R | (D, g − t) is µ-finite}.

Lemma 4.6.3. Let (D, g) be an adelic R-Cartier divisor on X. We have

λasymax(D, g) ≤ νmax(D, g) ≤ g(ηan).

Proof. Clearly we can assume λasymax(D, g) ∈ R. For a sufficiently large integer n > 0, there is
a non-zero element s ∈ H0(nD) \ {0} such that ∥s∥ng ≤ e−λmax(nD,ng), which is equivalent to
∥s∥ng−λmax(nD,ng) ≤ 1. Therefore (D, g − λmax(nD, ng)/n) is effective, which implies

1

n
λmax(nD, ng) ≤ νmax(D, g).
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Taking a supremum, we get λasymax(D, g) ≤ νmax(D, g).
Next we show νmax(D, g) ≤ g(ηan). For any ϵ > 0, g(ζ)− (g(ηan) + ϵ) is negative around

ζ = ηan. So we have µx(g − (g(ηan) + ϵ)) = −∞ for any x ∈ X(1), which implies that
(D, g − (g(ηan) + ϵ)) is not µ-finite and νmax(D, g) ≤ g(ηan) + ϵ. Since ϵ is arbitrary, we
conclude that νmax(D, g) ≤ g(ηan).

Remark 4.6.4. The above inequality is sometimes strict. For example, let X = P1
K =

ProjK[T0, T1], z = T1/T0, D = {T0 = 0} and x∞ = (0 : 1). Let g1 = 2 logmax{2, |z|} −
logmax{1, |z|}. Then g1(ξ) = 2 log 2 for ξ ∈ [ηan, xan] for x ̸= x∞ and

g1(ξ) =

{
2 log 2− ξ (0 ≤ ξ ≤ log 2),

ξ (log 2 ≤ ξ),

on [ηan, xan∞]. Hence we have

µx(g1 − t) =

{
0 (x ̸= x∞),

log 2− t (x = x∞),

for t ≤ 2 log 2 and µx(g1 − t) = −∞ for t > 2 log 2 and all closed point x of X. Therefore we
obtain that λasymax(D, g) = log 2 and νmax(D, g) = 2 log 2.

Next, we set

h(ξ) =

{
−ξ (0 ≤ ξ ≤ 1),

−1 (1 ≤ ξ),

for ξ ∈ [ηan, xan] and all closed point x of X, which is a continuous function on Xan. We
define a Green function g2 of D as logmax{1, |z|}+ h. Then we have

µx(g2 − t) =

{
0 (x ̸= x∞),

1 (x = x∞),

for t ≤ −1,

µx(g2 − t) =

{
−1− t (x ̸= x∞),

−t (x = x∞),

for −1 ≤ t ≤ 0 and µx(g2 − t) = −∞ for t > 0 and all closed point x of X. Hence we obtain
that νmax(D, g2) = −1 and g(ηan) = 0.

For any integer n > 0, let

P (D,g)
n (t) :=

dimK Fnt(H0(nD), ∥.∥ng)
nd/d!

,

where d = dimX. If there is no confusion, we write it simply Pn(t). By definition, if (D, g)
is µ-finite,

Pn(0) =
dimK F0(H0(nD), ∥.∥ng)

nd/d!
=

dimK H
0(nDµ(g))

nd/d!
,
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so we have

lim
n→+∞

Pn(0) = vol(Dµ(g)). (4.6.1)

Lemma 4.6.5. Let (D, g) be an adelic R-Cartier divisor on X. For any ϵ ∈ R, we have

P (D,g−ϵ)
n (t) = P (D,g)

n (t+ ϵ).

Proof. For any s ∈ H0(nD), it follows that

∥s∥n(g−ϵ) ≤ e−nt ⇔ ∥s∥ng ≤ e−n(t+ϵ).

Hence we get

dimK Fnt(H0(nD), ∥.∥n(g−ϵ)) = dimK Fn(t+ϵ)(H0(nD), ∥.∥ng),

which implies that P
(D,g−ϵ)
n (t) = P

(D,g)
n (t+ ϵ).

In particular,

P (D,g)
n (t) = P (D,g−t)

n (0),

and hence by the equation (4.6.1), we obtain that

lim
n→+∞

Pn(t) = vol(Dµ(g−t)) (4.6.2)

for any t < νmax(D, g).
If we define

F(D,g)(t) :=

{
vol(Dµ(g−t)) (t < λasymax(D, g)),
0 (t > λasymax(D, g)),

then we have the following theorem by the equation (4.6.2):

Theorem 4.6.6. Let (D, g) be an adelic R-Cartier divisor on X. The sequence {Pn(t)}n≥1

converges pointwise to F(D,g)(t) on R \ {λasymax(D, g)}.

The sequence {Pn(t)}n≥1 is uniformly bounded on (0, λasymax(D, g)). In fact, Pn(t) is mono-
tonically decreasing function with respect to t and Pn(0) is bounded with respect to n. Hence
we get the main theorem in this section by using bounded convergence theorem:

Theorem 4.6.7. Let (D, g) be an adelic R-Cartier divisor on X. We have

v̂ol(D, g) = lim
n→+∞

d̂eg+(nD, ng)

nd+1/(d+ 1)!

= (d+ 1)

∫ λasymax(D,g)

0

F(D,g)(t) dt.



4.6. BIG ADELIC R-CARTIER DIVISORS 45

Proof. By definition,

d̂eg+(nD, ng) =

∫ λmax(nD,ng)

0

dimK F t(H0(nD), ∥.∥ng) dt.

Substituting t for nt, we have

d̂eg+(nD, ng) = n

∫ 1
n
λmax(nD,ng)

0

dimK Fnt(H0(nD), ∥.∥ng) dt.

Therefore we get

d̂eg+(nD, ng)

nd+1/(d+ 1)!
= (d+ 1)

∫ λasymax(D,g)

0

Pn(t) dt.

We remark that λmax(nD, ng)/n ≤ λasymax(D, g) and Pn(t) = 0 if t > λmax(nD, ng)/n. Hence
by using bounded convergence theorem, we get the conclusion.

Corollary 4.6.8. The arithmetic volume v̂ol(.) is (d + 1)-homogeneous. Namely, for any
adelic R-Cartier divisor (D, g) and a ∈ R>0, we have

v̂ol(aD, ag) = ad+1v̂ol(D, g).

Proof. We have λasymax(aD, ag) = aλasymax(D, g) and F(aD,ag)(at) = adF(D,g)(t) because the alge-
braic volume is d-homogeneous. Therefore by Theorem 4.6.7, we have

v̂ol(aD, ag) = (d+ 1)

∫ λasymax(aD,ag)

0

F(aD,ag)(t) dt

= a(d+ 1)

∫ λasymax(D,g)

0

adF(D,g)(t) dt

= ad+1v̂ol(D, g).

Finally, we prove a simple criterion of the bigness of an adelic R-Cartier divisor.

Theorem 4.6.9 (c.f. [3, Lemma 1.6] and [6, Proposition 4.10]). Let (D, g) be an adelic R-
Cartier divisor on X. We assume that D is big. Then the following conditions are equivalent:

(1) (D, g) is big.

(2) λasymax(D, g) > 0.

(3) For ∀n≫ 0, there is a strictly small section of H0(nD).
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Proof. (1) ⇒ (2) It follows from Proposition 4.6.2.
(2) ⇒ (1) It is sufficient to show that Dµ(g) is big. In fact, if Dµ(g) is big, Dµ(g−t) is also

big for t < λasymax(D, g) because λ
asy
max(D, g − t) = λasymax(D, g)− t for t ∈ R. Then we have

v̂ol(D, g) = (d+ 1)

∫ ∞

0

vol(Dµ(g−t)) dt > 0

by Theorem 4.6.7. Now we prove that Dµ(g) is big. Since D is big, there is an ample divisor
A such that mD−A is effective for some m ∈ Z>0. Let s ∈ H0(mD−A) \ {0} be a non-zero
section such that the map H0(kA) → H0(kmD) is given by multiplication by s⊗k for all
k > 0. We denote the image of the map H0(kA) → H0(kmD) by Vk and V0 = K. Since the
graded ring

⊕∞
k=0 Vk is finitely generated, there is a ∈ R such that ∥v∥kmg ≤ e−akm for all

v ∈ Vk and a sufficiently large k > 0. Let ϵ be a real number such that 0 < ϵ < λasymax(D, g).
Then we can find p ∈ Z>0 such that there is a non-zero element sp ∈ H0(pD) \ {0} with
∥vp∥pg ≤ e−pϵ and p > −am/ϵ because ϵ < λmax(pD, pg)/p for a sufficiently large p > 0. The
imageWk of the composition of the map H0(kA) → H0(kmD) → H0(k(m+p)D) is given by
multiplication by (ssp)

⊗k for all k > 0. Hence for any w ∈ Wk, we can write w = v ⊗ (sp)
⊗k

with v ∈ Vk and we have

∥w∥k(m+p)g ≤ ∥v∥kmg.∥sp∥kpg ≤ e−akme−kpϵ = e−k(am+pϵ) ≤ 1,

which implies that Wk ⊂ H0(k(m + p)Dµ(g)) for a sufficiently large k > 0. Therefore we
obtain that vol((m+ p)Dµ(g)) ≥ vol(A) > 0, which is required.

(2) ⇒ (3) Since λasymax(D, g) > 0, we have λmax(nD, ng) > 0 for a sufficiently large n > 0.
Hence there is a non-zero section s ∈ H0(nD) \ {0} such that ∥s∥ng ≤ e−λmax(nD,ng) < 1.

(3) ⇒ (2) Let s be a strictly small section of H0(nD). Then we have λmax(nD, ng) ≥
− log ∥s∥ng > 0. Therefore we obtain that λasymax(D, g) ≥ λmax(nD, ng)/n > 0.

4.6.3 Continuity of F(D,g)(t)

Firstly, we will prove a very useful lemma:

Lemma 4.6.10. Let C be a convex cone and let f : C → R be a concave function. Namely,
for any v, v′ ∈ C and a, a′ ≥ 0,

f(av + a′v′) ≥ af(v) + a′f(v′).

If g(t) := v+tv′ is a map from some open interval (a, b) ⊂ R to C for fixed elements v, v′ ∈ C,
then f ◦ g is a concave function on (a, b). In particular, f ◦ g is continuous on (a, b).

Proof. For any t, t′ ∈ (a, b) and 0 ≤ ϵ ≤ 1, we have

f ◦ g(ϵt+ (1− ϵ)t′) = f(v + (ϵt+ (1− ϵ)t′)v′)

= f(ϵ(v + tv′) + (1− ϵ)(v + t′v′))

≥ ϵf(v + tv′) + (1− ϵ)f(v + t′v′)

= ϵf ◦ g(t) + (1− ϵ)f ◦ g(t′),

as required.
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For an adelic R-Cartier divisor (D, g), it follows immediately from the above lemma that
µx(g − t) is a continuous concave function on (−∞, λasymax(D, g)) for every x ∈ X(1). Hence
we get the following proposition:

Proposition 4.6.11. Let (D, g) be an adelic R-Cartier divisor on X. For any t, t′ <
λasymax(D, g) and 0 ≤ ϵ ≤ 1, we have

Dµ(g−(ϵt+(1−ϵ)t′)) ≥ ϵDµ(g−t) + (1− ϵ)Dµ(g−t′).

Theorem 4.6.12. Let (D, g) be an adelic R-Cartier divisor on X and d = dimX. Then
F(D,g)(t) is a d-concave function on (−∞, λasymax(D, g)), that is, F(D,g)(t)

1/d is concave on
(−∞, λasymax(D, g)). In particular, F(D,g)(t) is continuous on R \ {λasymax(D, g)}.

Proof. By definition,
F(D,g)(t) = vol(Dµ(g−t))

for t < λasymax(D, g). Since the algebraic volume is d-concave on a big cone, for any t, t′ <
λasymax(D, g) and 0 ≤ ϵ ≤ 1, we have

F(D,g)(ϵt+ (1− ϵ)t′)
1
d = vol(Dµ(g−(ϵt+(1−ϵ)t′)))

1
d

≥ vol(ϵDµ(g−t) + (1− ϵ)Dµ(g−t′))
1
d (by Proposition 4.6.11)

≥ ϵ vol(Dµ(g−t))
1
d + (1− ϵ)vol(Dµ(g−t′))

1
d

= ϵF(D,g)(t)
1
d + (1− ϵ)F(D,g)(t

′)
1
d ,

as desired.

Remark 4.6.13. In general, we cannot extend F(D,g) to a continuous function on whole R.
For example, let X = P1

K = ProjK[T0, T1], z = T1/T0, D = {T0 = 0} and x∞ = (0 : 1). Let
g = logmax{1, |z|}. Then we have

µx(g − t) =

{
0 (x ̸= x∞),

1 (x = x∞),

for t < λasymax(D, g) = 0. Hence we obtain that

F(D,g)(t) =

{
1 (t < 0),

0 (t > 0).

4.6.4 Continuity of the arithmetic volume

First of all, we will prove the continuity of λasymax(D, g) for an adelic R-Cartier divisor
(D, g).

Lemma 4.6.14. Let (D, g), (D′, g′) be adelic R-Cartier divisors on X. We have

λasymax(D +D′, g + g′) ≥ λasymax(D, g) + λasymax(D
′, g′).
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Proof. For any integers n, n′ > 0, there are non-zero elements s ∈ H0(nD) \ {0} and s′ ∈
H0(n′D′) \ {0} such that

∥s∥ng ≤ e−λmax(nD,ng) and ∥s′∥n′g′ ≤ e−λmax(n′D′,n′g′).

Since s⊗n
′ ⊗ s′⊗n ∈ H0(nn′(D +D′)) \ {0}, we have

∥s⊗n′ ⊗ s′⊗n∥nn′(g+g′) ≤ (∥s∥ng)n
′
(∥s′∥n′g′)

n ≤ e−n
′λmax(nD,ng)−nλmax(n′D′,n′g′),

which implies

1

nn′λmax(nn
′(D +D′), nn′(g + g′)) ≥ 1

n
λmax(nD, ng) +

1

n′λmax(n
′D′, n′g′).

Since λasymax(D, g) ≥ λmax(nD, ng)/n, we get

λasymax(D +D′, g + g′) ≥ 1

n
λmax(nD, ng) +

1

n′λmax(n
′D′, n′g′).

Taking a supremum with respect to n and n′, we complete the proof.

Proposition 4.6.15. Let D = (D, g), D
′
= (D′, g′) be adelic R-Cartier divisors on X. We

assume D is big. Then λ(t) := λasymax(D+ tD
′
) is a real-valued function on some open interval

(a, b) ⊂ R containing 0, and concave on (a, b). In particular λ(t) is continuous on (a, b).

Proof. Since D is big, D + tD′ is big for |t| ≪ 1, which implies that λ(t) is definable on a
sufficiently small open neighborhood of 0. Moreover, using Lemma 4.6.14, we can prove the
concavity of λ(t) by Lemma 4.6.10.

Next, we prove the continuity of the arithmetic volume v̂ol(.). Let (D, g), (D′, g′) be adelic
R-Cartier divisors on X and we assume D is big. We set

(Dϵ, gϵ) := (D, g) + ϵ(D′, g′),

and

Fϵ(t) :=

{
vol((Dϵ)µ(gϵ−t)) (t < λasymax(Dϵ, gϵ)),
0 (t > λasymax(Dϵ, gϵ)).

We remark that this function is well-defined if |ϵ| ≪ 1 by Proposition 4.6.15.

Proposition 4.6.16. The function Fϵ(t) converges pointwise to F(D,g)(t) on R\{λasymax(D, g)}
as |ϵ| → 0. More precisely, for any t ∈ R \ {λasymax(D, g)}, Fϵ(t) is continuous with respect to
ϵ on a sufficiently small open neighborhood of ϵ = 0.

Proof. We first assume t > λasymax(D, g). By Proposition 4.6.15, there is δ > 0 such that
λasymax(Dϵ, gϵ) < t if |ϵ| < δ. Then Fϵ(t) = F(D,g)(t) = 0, which is required.
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Next we assume t < λasymax(D, g). Similarly, there is δ > 0 such that λasymax(Dϵ, gϵ) > t if
|ϵ| < δ. Then Fϵ(t) is d-concave with respect to ϵ on (−δ, δ), where d = dimX. In fact, by
Lemma 4.6.10, for any ϵ, ϵ′ ∈ (−δ, δ) and 0 ≤ ζ ≤ 1, we have

(Dζϵ+(1−ζ)ϵ′)µ(gζϵ+(1−ζ)ϵ′−t) ≥ ζ(Dϵ)µ(gϵ−t) + (1− ζ)(Dϵ′)µ(gϵ′−t).

Therefore Fϵ(t) is d-concave with respect to ϵ on (−δ, δ) because Fϵ(t) = vol((Dϵ)µ(gϵ−t)) and
the algebraic volume is d-concave. In particular, Fϵ(t) is continuous with respect to ϵ on
(−δ, δ).

Since Fϵ(t) is monotonically decreasing with respect to t and Fϵ(0) is bounded, Fϵ(t) is
uniformly bounded with respect to ϵ, and

v̂ol(Dϵ, gϵ) = (d+ 1)

∫ +∞

0

Fϵ(t) dt

by Theorem 4.6.7, we get the continuity of the arithmetic volume by bounded convergence
theorem:

Theorem 4.6.17. Let D = (D, g), D
′
= (D′, g′) be adelic R-Cartier divisors on X. We

assume D is big. Then v̂ol(D + ϵD
′
) converges to v̂ol(D) as |ϵ| → 0.

4.6.5 Log concavity of the arithmetic volume

Firstly, we will prove some inequalities:

Lemma 4.6.18. Let a, b, p and ϵ be real numbers such that a, b ≥ 0, p > 0 and 0 < ϵ < 1.
Then we have the following inequality:

(ϵap + (1− ϵ)bp)
1
p ≥ aϵb1−ϵ ≥ min{a, b}.

Proof. If ab = 0, the assertion is clear, so we assume that a, b > 0. Moreover, the inequality
aϵb1−ϵ ≥ min{a, b} is also clear. Now, we will show the first inequality. Since log x is concave
on (0,+∞), we have

log(ϵx+ (1− ϵ)y) ≥ ϵ log x+ (1− ϵ) log y

for any x, y > 0. Substituting x for ap and y for bp,

log(ϵap + (1− ϵ)bp) ≥ ϵ log ap + (1− ϵ) log bp ⇐⇒ log(ϵap + (1− ϵ)bp)
1
p ≥ log aϵb1−ϵ

⇐⇒(ϵap + (1− ϵ)bp)
1
p ≥ aϵb1−ϵ,

as required.

Lemma 4.6.19. Let C be a convex cone. Let f : C → (0,+∞) be a non-negative d-
homogeneous function for some d > 0, that is,

f(av) = adf(v)

for any a > 0 and v ∈ C. Then the following conditions are equivalent:
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(1) f is d-concave, that is,

f(ϵv + (1− ϵ)v′)
1
d ≥ ϵf(v)

1
d + (1− ϵ)f(v′)

1
d

for every v, v′ ∈ C and 0 ≤ ϵ ≤ 1.

(2) f(ϵv + (1− ϵ)v′) ≥ min{f(v), f(v′)} for every v, v′ ∈ C and 0 ≤ ϵ ≤ 1.

Proof. Firstly, we assume (1) and we can assume min{f(v), f(v′)} = f(v). Then we have

f(ϵv + (1− ϵ)v′)
1
d ≥ ϵf(v)

1
d + (1− ϵ)f(v′)

1
d ≥ f(v)

1
d .

Raising both sides to d-th power, we have

f(ϵv + (1− ϵ)v′) ≥ f(v) = min{f(v), f(v′)}.

Next we suppose (2). If we set

w = f(v)−
1
dv, w′ = f(v′)−

1
dv′, ϵ =

f(v)
1
d

f(v)
1
d + f(v′)

1
d

,

we have

ϵw + (1− ϵ)w′ =
1

f(v)
1
d + f(v′)

1
d

(v + v′),

min{f(w), f(w′)} = 1.

By the inequality (2) for w,w′ and ϵ, we have

(f(v)
1
d + f(v′)

1
d )−df(v + v′) ≥ 1 ⇐⇒f(v + v′) ≥ (f(v)

1
d + f(v′)

1
d )d

⇐⇒f(v + v′)
1
d ≥ f(v)

1
d + f(v′)

1
d ,

which implies the inequality (1) because f is d-homogeneous.

Moreover, we will use the following inequality so called “Prékopa-Leindler inequality” (for
details, see [12]).

Theorem 4.6.20 (Prékopa-Leindler inequality). Let 0 < ϵ < 1 and f, g, h : Rn → [0,+∞)
be measurable functions. We assume

h(ϵx+ (1− ϵ)y) ≥ f(x)ϵg(y)1−ϵ

for any x, y ∈ Rn. Then we have ||h||1 ≥ ||f ||ϵ1||g||1−ϵ1 , that is,∫
Rn

h dν ≥
(∫

Rn

f dν

)ϵ(∫
Rn

g dν

)1−ϵ

where ν is the Lebesgue measure on Rn.
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Now, we start to prove the log concavity of v̂ol(.).

Theorem 4.6.21. The arithmetic volume v̂ol(.) is (d + 1)-concave for d = dimX. More
precisely, for any big adelic R-Cartier divisors (D, g), (D′, g′), we have

v̂ol(D +D′, g + g′)
1

d+1 ≥ v̂ol(D, g)
1

d+1 + v̂ol(D′, g′)
1

d+1 .

Proof. For 0 < ϵ < 1, we set

(Dϵ, gϵ) := ϵ(D, g) + (1− ϵ)(D′, g′),

and

Θ(D,g)(t) :=

{
(d+ 1)vol(Dµ(g−t)) (0 ≤ t < λasymax(D, g)),
0 (otherwise).

Then, we have

v̂ol(D, g) = ||Θ(D,g)||1, v̂ol(D′, g′) = ||Θ(D′,g′)||1, v̂ol(Dϵ, gϵ) = ||Θ(Dϵ,gϵ)||1 (4.6.3)

by Theorem 4.6.7. We claim that

Θ(Dϵ,gϵ)(ϵx+ (1− ϵ)y) ≥ Θ(D,g)(x)
ϵΘ(D′,g′)(y)

1−ϵ for any x, y ∈ R. (4.6.4)

In fact, if x < 0, λasymax(D, g) ≤ x, y < 0 or λasymax(D
′, g′) ≤ y, we obtain that Θ(D,g)(x) = 0 or

Θ(D′,g′)(y) = 0, so the inequality (4.6.4) is clear in this case. And if 0 ≤ x < λasymax(D, g) and
0 ≤ y < λasymax(D

′, g′), it follows that

µz(gϵ − (ϵx+ (1− ϵ)y)) ≥ ϵµz(g − x) + (1− ϵ)µz(g
′ − y)

for any z ∈ X(1), which implies that

(Dϵ)µ(gϵ−(ϵx+(1−ϵ)y)) ≥ ϵDµ(g−x) + (1− ϵ)D′
µ(g′−y).

Since the algebraic volume is d-concave, we obtain

vol((Dϵ)µ(gϵ−(ϵx+(1−ϵ)y)))
1
d ≥ ϵ vol(Dµ(g−x))

1
d + (1− ϵ)vol(D′

µ(g′−y))
1
d .

By Lemma 4.6.18, we get

vol((Dϵ)µ(gϵ−(ϵx+(1−ϵ)y))) ≥ vol(Dµ(g−x))
ϵvol(D′

µ(g′−y))
1−ϵ,

which is equivalent to the inequality (4.6.4). Therefore by Prékopa-Leindler inequality,
we have ||Θ(Dϵ,gϵ)||1 ≥ ||Θ(D,g)||ϵ1||Θ(D′,g′)||1−ϵ1 . By Lemma 4.6.18 again, it follows that
||Θ(Dϵ,gϵ)||1 ≥ min{||Θ(D,g)||1, ||Θ(D′,g′)||1}, which is the inequality

v̂ol(Dϵ, gϵ) ≥ min{v̂ol(D, g), v̂ol(D′, g′)}

by (4.6.3). Since the arithmetic volume is (d+1)-homogeneous by Corollary 4.6.8, we obtain
that

v̂ol(Dϵ, gϵ)
1

d+1 ≥ ϵ v̂ol(D, g)
1

d+1 + (1− ϵ)v̂ol(D′, g′)
1

d+1 ,

by Lemma 4.6.19, which completes the proof.
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4.7 Ample adelic Cartier divisors

4.7.1 Plurisubharmonic Green functions

Let (D, g) be an adelic Cartier divisor on X. Let {gn}n∈Z>0 be a sequence of Green
functions of D. We say that {gn}n∈Z>0 converges to g uniformly on Xan if the sequence

∥g − gn∥sup := sup
x∈Xan

|g(x)− gn(x)|

converges to 0.

Definition 4.7.1. Let (D, g) be an adelic Cartier divisor on X. We assume that D is
semiample. We say that g is plurisubharmonic if there is a sequence {en}n∈Z>0 of positive
integers and a sequence {V n}n∈Z>0 of a finite-dimensional ultrametrically normed vector
space over a tirivially valued field K such that there is a surjective morphism fn : Vn⊗OX →
OX(enD) and the sequence {

1

en
log |1|quot

V n

}
n∈Z>0

converges to g uniformly on Xan, where 1 is a rational section of OX(D).

Several properties can be observed for plurisubharmonic Green functions. But we only
recall them without proofs (for details, see [7] and [8]).

Proposition 4.7.2. Let (D, g) and (D′, g′) be adelic Cartier divisors on X. We assume that
D and D′ are semiample.

(1) If g and g′ are plurisubharmonic, then g + g′ is also plurisubharmonic.

(2) Let {gn}n∈Z>0 be a sequence of plurisubharmonic Green functions of D. If {gn}n∈Z
converges to g uniformly on Xan, then g is also plurisubharmonic.

(3) The following conditions are equivalent:

(a) g is plurisubharmonic.

(b) ng is plurisubharmonic for all n ∈ Z>0.

(c) ng is plurisubharmonic for some n ∈ Z>0.

Proof. See [6, Proposition 2.11] for their proofs.

We assume that OX(D) is generated by global sections. Then there is a surjective mor-
phism f : H0(X,nD) ⊗ OX → OX(nD) for all n ∈ Z>0. Hence we have a quotient Green
function gn of nD induced by (H0(X,nD), ∥.∥ng) and f .

Proposition 4.7.3 (c.f. [8, Proposition 2.2.22]).

(1) ng ≥ gn on Xan.
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(2) gm+n ≥ gm + gn on Xan.

(3) ∥.∥ng = ∥.∥gn on H0(X,nD).

Proof. See [7, Lemma 3.5] for their proofs.

Finally we see that the canonical Green function of a semiample Cartier divisor is plurisub-
harmonic. Let (D, g) be an adelic Cartier divisor on X and we assume that D is semiample.

Proposition 4.7.4. If g is plurisubharmonic, then r∗g is also plurisubharmonic for all r ∈
R>0.

Proof. Since g is plurisubharmonic, g is the uniform limit of Green functions induced by
ultrametrically normed vector spaces (Vn, ∥.∥n). Then r∗g is the uniform limit of Green
functions induced by (Vn, ∥.∥rn), so it is plurisubharmonic by definition.

Proposition 4.7.5. The sequence {r∗g}r∈R>0 converges to gcD uniformly on Xan as r → 0.

Proof. We set u = g − gcD, which is a continuous function on Xan. Since r∗g = r∗(gcD + u) =
gcD + r∗u by Proposition 4.5.1, we have

∥r∗g − gcD∥sup = ∥r∗u∥sup = r∥u∥sup,

which completes the proof.

Proposition 4.7.6. The canonical Green function gcD is plurisubharmonic.

Proof. By replacing g by gn/n for some n ∈ Z>0 if necessary, we can assume that g is
plurisubharmonic. By Proposition 4.7.4 and 4.7.5, gcD is the uniform limit of the sequence
{(1/n)∗g}n∈Z>0 of plurisubharmonic Green functions. Hence gcD is plurisubharmonic by
Proposition 4.7.2.

4.7.2 Ample adelic Cartier divisors

In this section, we assume that K is perfect.

Definition 4.7.7. We say that an adelic Cartier divisor (D, g) is vertically ample if D is
ample and g is plurisubharmonic. Moreover, if λmin(nD, ng) > 0 for any sufficiently large
integer n > 0, (D, g) is said to be ample.

Remark 4.7.8. This definition is equivalent to the one in [8]. More precisely, we have
“Nakai-Moishezon’s criterion” for ample adelic Cartier divisors as follows: An adelic Cartier
divisor (D, g) on X is ample if and only if for any closed subvariety Y of X, the restriction
(D|Y , g|Y an) of (D, g) on Y is big, and g is plurisubharmonic.

For the criterion of ampleness, we introduce the following invariant:
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Definition 4.7.9. Let (D, g) be an adelic R-Cartier divisor on X. We define

νmin(D, g) := sup{t ∈ R |Dµ(g−t) = D}.

Proposition 4.7.10. Let (D, g) be an adelic Cartier divisor on X. We assume D is ample.
Then the following conditions are equivalent:

(1) For ∀n≫ 0, λmin(nD, ng) > 0.

(2) For ∀n > 0, λmin(nD, ng) > 0.

(3) νmin(D, g) > 0.

Proof. (1) ⇒ (3) Since D is ample, there is n0 ∈ Z>0 such that λmin(n0D,n0g) > 0 and

Symn(H0(X,n0D)) → H0(X,nn0D)

is surjective for all n ∈ Z>0. Let ϵ be a real number such that 0 < n0ϵ < λmin(n0D,n0g) and
g′ = g − ϵ. Then we have λmin(n0D,n0g

′) = λmin(n0D,n0g) − n0ϵ > 0. Let s1, . . . , sm be a
basis of H0(X,n0D) and we set C = max{∥s1∥n0g′ , . . . , ∥sm∥n0g′} < 1. Since H0(X,nn0D) is
generated by {sa11 , . . . , samm }a1+···+am=n, we have

λmin(nn0D,nn0g
′) ≥ −n logC (4.7.1)

for all n ∈ Z>0.

Claim 1. There is a real number A ∈ R such that λmin(nD, ng
′) ≥ A− (n/n0) logC for all

n ∈ Z≥0.

Proof. Since R =
⊕∞

n=0H
0(X,nD) is a finitely generated graded S =

⊕∞
n=0H

0(X,nn0D)-
module, there is a generator m1, . . . ,ml of R over S. Let di be the degree of mi. By the
equation (4.7.1), for each n ∈ Z>0, we have a basis xn,1, . . . , xn,in of H0(X,nn0D) such that
∥xn,j∥nn0g′ ≤ Cn for j = 1, . . . , in. Then H0(X,nD) is generated by elements of the form
xi,jmk with in0 + dk = n. We set

B = max
k=1,...,l

{∥mk∥dkg′C−dk/n0}.

Then we have

∥xi,jmk∥ng′ ≤ ∥xi,j∥in0g′∥mk∥dkg′ ≤ Ci∥mk∥dkg′
= C(n−dk)/n0∥mk∥dkg′ ≤ BCn/n0

for xi,jmk ∈ H0(X,nD). Since H0(X,nD) is generated by such an element, we obtain that
λmin(nD, ng

′) ≥ − logB − n/n0 logC.
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Since logC < 0, there is N ∈ Z>0 such that λmin(nD, n(g − ϵ)) > 0 for all n ≥ N , which
implies that

H0(X,nD) = F0(H0(X,nD), ∥.∥n(g−ϵ)) = H0(X,nDµ(g−ϵ))

for n ≥ N . Hence we have vol(D) = vol(Dµ(g−ϵ)). Since D ≥ Dµ(g−ϵ) and K is perfect, we
have D = Dµ(g−ϵ) by [11]. Therefore, we obtain that νmin(D, g) ≥ ϵ > 0.

(3)⇒ (2) Let ϵ be a real number such that 0 < ϵ < νmin(D, g). SinceD = Dµ(g−ϵ), we have
∥s∥n(g−ϵ) ≤ 1 for all s ∈ H0(X,nD) and n ∈ Z>0, which is equivalent to ∥s∥ng ≤ e−nϵ < 1.
Thus (2) follows.

(2) ⇒ (1) It is clear.

Corollary 4.7.11. Let (D, g) be an adelic Cartier divisor on X. We assume that D is ample
and g is plurisubharmonic. Then (D, g) is ample if and only if νmin(D, g) > 0.

Finally, we see the ampleness of (D, g) in terms of the height function defined by (D, g).

Proposition 4.7.12. Let (D, g) be an adelic R-Cartier divisor on X. Then we have

min
x∈Xan

han(D,g)(x) = νmin(D, g).

Proof. Firstly, we show that
µx(g

c
D) = ordx(D) (4.7.2)

for all x ∈ X(1). Let f be a local equation of D around red(x). Then we have

µx(g
c
D) = inf

ξ∈(ηan,xan)

− log |f |ξ
t(ξ)

= inf
ξ∈(ηan,xan)

ordx(f)t(ξ)

t(ξ)
= ordx(D).

Let a be a real number. For x ∈ X(1), we obtain that

µx(g − a) = inf
ξ∈(ηan,xan)

g(ξ)− gcD(ξ)− a+ gcD(ξ)

t(ξ)

= inf
ξ∈(ηan,xan)

han(D,g)(ξ)− a

t(ξ)
+ ordx(D) = µx(h

an
(D,g) − a) + ordx(D)

by the equation (4.7.2). Hence it follows that

Dµ(g−a) = 0µ(han
(D,g)

−a) +D.

Since 0µ(han
(D,g)

−a) ≤ 0, and 0µ(han
(D,g)

−a) = 0 if and only if han(D,g) − a ≥ 0 on Xan, we have

minx∈Xan han(D,g)(x) = νmin(D, g).

By the above proposition, we have the following corollary:

Corollary 4.7.13 (Theorem B). Let (D, g) be an adelic R-Cartier divisor on X. Then
han(D,g) > 0 on Xan if (D, g) is ample. In particular, a vertically ample adelic Cartier divisor

(D, g) on X is ample if and only if han(D,g) > 0 on Xan.
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4.7.3 Plurisubharmonic approximation

In algebraic geometry, as a theorem related to the ampleness and bigness, there is the
Fujita’s approximation theorem. It states that the volume of a big divisor D can be ap-
proximated by the one of a ample divisor A such that D − A is effective. We expect that
a similar theorem holds for a trivial valued case. We only have a partial answer, that is,
the volume of an adelic Cartier divisor D = (D, g) can be approximated by replacing g by
a plurisubharmonic Green function g′ of D such that g ≥ g′. We believe that it might be
useful for complete proof of Fujita’s approximation theorem.

Theorem 4.7.14. Let (D, g) be an adelic Cartier divisor. We assume that OX(D) is gener-
ated by global sections. For each n ≥ 1, let gn be the quotient Green function of nD induced
by (H0(X,nD), ∥.∥ng). Then we have the followings:

(1) lim
n→+∞

λasymax(D, gn/n) = λasymax(D, g).

(2) lim
n→+∞

v̂ol(D, gn/n) = v̂ol(D, g).

(3) If D is ample and νmin(D, g) > 0, we have νmin(D, gn/n) > 0 for ∀n≫ 0.

Proof. (1) By Proposition 4.7.3 (1), we have λasymax(D, gn/n) ≤ λasymax(D, g). By the definition
of λasymax(D, g), for any ϵ > 0, there is a positive integer N > 0 such that λasymax(D, g) − ϵ ≤
λmax(nD, ng)/n for any integer n ≥ N . Since λmax(nD, gn) = λmax(nD, ng) by Proposition
4.7.3 (3), we have

λasymax(D, g)− ϵ ≤ λmax(nD, gn)/n ≤ λasymax(D, gn/n), for ∀n ≥ N,

which completes the proof.

(2) If (D, g) is not big, then we have v̂ol(D, gn/n) = v̂ol(D, g) = 0 for every positive

integer n > 0 because v̂ol(D, gn/n) ≤ v̂ol(D, g) by Proposition 4.7.3 (1). So we assume
(D, g) is big. By Theorem 4.6.7, we obtain that

v̂ol(D, g) = (d+ 1)

∫ λasymax(D,g)

0

vol(Dµ(g−t)) dt.

In addition, the Green function of nD induced by the surjective morphism H0(nD)⊗OX →
OX(nD) and ng− t for all t ∈ R is gn− t. Hence, once we show that vol(Dµ(gn/n)) converges
to vol(Dµ(g)) as n→ ∞, we get the required result.

Firstly, we can assume that (D, g1) is big by replacing D by mD for a sufficiently large
m > 0 by (1). For any x ∈ X(1), we have µx(gn+m) ≥ µx(gn) + µx(gm) for any n,m > 0 by
Proposition 4.7.3 (2). Hence {µx(gn)}n≥1 is superadditive, which implies that there exists

µx(g∞) := lim
n→+∞

µx(gn/n) = sup
n≥1

µx(gn/n). (4.7.3)
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Since µx(g1) ≤ µx(gn/n) ≤ µx(g) for all n > 0 by Proposition 4.7.3, we have µx(gn/n) = 0
for all but finitely many x ∈ X(1). Therefore the R-Weil divisor

D∞ :=
∑
x∈X(1)

µx(g∞)[{x}]

is well-defined by (4.7.3). Moreover, it satisfies that Dµ(gn/n) ≤ D∞ ≤ Dµ(g) for all n > 0
by (4.7.3) and Proposition 4.7.3 (1), and vol(Dµ(gn/n)) → vol(D∞) as n → +∞ because
of the continuity of the algebraic volume. On the other hand, for each n > 0 we have
H0(Dµ(gn)) ⊆ H0(nD∞) ⊆ H0(nDµ(g)). By Proposition 4.7.3 (3), we have H0(Dµ(gn)) =
H0(nDµ(g)) for all n > 0, which implies

⊕
n≥1H

0(nD∞) =
⊕

n≥1H
0(nDµ(g)). Hence we

obtain that vol(D∞) = vol(Dµ(g)). So we get vol(Dµ(gn/n)) → vol(Dµ(g)) as n→ +∞.
(3) Since λmin(nD, ng) = λmin(nD, gn) for all n ∈ Z>0 by Proposition 4.7.3 (3), it follows

from Proposition 4.7.10.

Immediately we have the following corollary:

Corollary 4.7.15 (Plurisubharmonic approximation). Let (D, g) be a big adelic Cartier
divisor with an ample divisor D. For any ϵ > 0, there is a plurisubharmonic Green function
g′ of D such that g′ ≤ g and

v̂ol(D, g′) ≥ v̂ol(D, g)− ϵ.

Moreover, if νmin(D, g) > 0, we can choose g′ such that (D, g′) is ample.

Proof. The first assertion easily follows from Theorem 4.7.14 (2). The last one is given by
Corollary 4.7.11 and Theorem 4.7.14 (3).





Chapter 5

Kawaguchi-Silverman’s conjecture
over adelic curves

Throughout this chapter, we fix a proper adelic curve S = (K, (Ω,A, ν), ϕ). For simplicity,
we assume that Ω0 = ∅.

5.1 Conjecture

Let X be a smooth projective variety over an algebraic closure K of K and f : X X
be a dominant rational map. We denote by If the indeterminacy locus of f and set

Xf (K) := {P ∈ X(K) | fn(P ) /∈ If for all n > 0}.

We take a height function hX associated with some adelic Cartier divisor D on X whose
underlying Cartier divisor D is ample. Let h+X := max{hX , 1}. First, we recall the arithmetic
degree.

Definition 5.1.1. For P ∈ Xf (K), we define the upper and lower arithmetic degrees of P
with respect to f as

αf (P ) := lim sup
n→∞

h+X(f
n(P ))

1
n ,

αf (P ) := lim inf
n→∞

h+X(f
n(P ))

1
n .

Note that the above definitions are independent of the choice of D. In fact, let D
′
be another

adelic Cartier divisor on X whose underlying divisor D′ be ample. We denote the height
function associated with D

′
by h′X , we set h′+X = max{h′X , 1}. By Corollary 3.2.7, there are

positive constants c1 and c2 such that

c1h
′+
X ≤ h+X ≤ c2h

′+
X .

59
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Hence by taking a limit, we obtain that

αf (P ) = lim sup
n→∞

h′+X (fn(P ))
1
n ,

αf (P ) = lim inf
n→∞

h′+X (fn(P ))
1
n .

By definition, we have
1 ≤ αf (P ) ≤ αf (P ).

If αf (P ) = αf (P ), the arithmetic degree αf (P ) of P with respect to f is defined as αf (P ).

Here, we restate the conjecture over adelic curves:

Conjecture 5.1.2 (Conjecture C). Let S = (K, (Ω,A, ν), ϕ) be a proper adelic curve. Let
X be a smooth projective variety over an algebraic closure K of K and f : X X be a
dominant rational map. For any P ∈ Xf (K),

(1) The arithmetic degree αf (P ) = limn→∞ h+X(f
n(P ))1/n exists.

(2) We assume that S has the Northcott property. If the orbit Of (P ) = {fn(P ) |n =
0, 1, . . . } of P is Zariski dense, then we have αf (P ) = δf .

In Conjecture 5.1.2 (2), we cannot drop the assumption that S has the Northcott property
even if f is a morphism. Here is an easy example:

Example 5.1.3. Let S be an adelic curve in Example 2.1.4. We assume that C = P1, that
is, K = k(t). Then S does not have the Northcott property. In fact, hS(1 : a) = 0 for all
a ∈ k.

Let f : P1 → P1 be the morphism defined by x 7→ x2 for x ∈ P1. Then we have
δf = 2. On the other hand, let n ∈ P1(k) ⊂ P1(K) be an integer which is not divisible
by the characteristic of k. Then Of (P ) = {n2m |m = 1, 2, . . . } is Zariski dense in P1 and
αf (n) = 1 < 2 = δf .

For another examples, see [28, Example 3.7].

5.2 Fundamental inequality

Firstly, we prove the fundamental inequality about the arithmetic degree and the dynam-
ical degree.

Theorem 5.2.1 (Theorem D). Let X be a smooth projective variety over an algebraic closure
K of K and f : X X be a dominant rational map over K. For any ϵ > 0, there is a
constant C > 0 such that

∀n ≥ 0,∀P ∈ Xf (K), h+X(f
n(P )) ≤ C(δf + ϵ)nh+X(P ).

In particular, we have
αf (P ) ≤ δf .
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Proof. Let (D1, gD1), . . . , (Dr, gDr) be adelic Cartier divisors on X whose underlying divisors
are very ample and make a basis of N1(X)R where r = dimN1(X)R. Let H be an ample
divisor on X such that H ±Di are ample for i = 1, . . . , r. We choose non-negative numbers
c1, . . . , cr which satisfy

H ≡
r∑

k=1

ckDk.

Let p : Y → X be a resolution of f with a projective variety Y such that f ′ = f ◦ p is a
morphism:

Y

X X

f ′
p

f

We denote the exceptional locus of p by Exc(p). By the negativity lemma (for example, see
[21, Lemma 3.35]),

Zi := p∗p∗f
′∗Di − f ′∗Di

is effective and Supp(Zi) ⊂ Exc(p) for i = 1, . . . , r. We set Fi := f ′∗Di for i = 1, . . . , r. Then
we can write

Zi = p∗p∗Fi − Fi (5.2.1)

for i = 1, . . . , r.
As F1, . . . , Fr are linearly independent over R, we can choose Cartier divisors Fr+1, . . . , Fs

on Y such that F1, . . . , Fs form a basis of N1(Y )R where s = dimN1(Y )R.
We can take an ample Q-divisor H ′ on Y such that p∗H −H ′ is effective and its support

is contained in Exc(p). In fact, let G be an effective p-exceptional divisor such that −G is
p-ample. Then, H ′ = −G/n+ p∗H is required one for sufficiently large n. We set

p∗Fj ≡
r∑

k=1

bkjDk

for j = 1, . . . , s. Let A and B be s× r matrix and r × s matrix respectively such that

A =

r︷ ︸︸ ︷

1



s

. . .

1
0 0

. . .

0 0

and B = (bij). We set D =

(D1

...
Dr

)
, F =

( F1

...
Fs

)
, c =

( c1
...
cr

)
and Z =

( Z1

...
Zr

)
. Then we have

f ′∗D ≡ tAF , p∗F ≡ tBD, f ′∗H ≡ ⟨Ac,F ⟩,
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where ⟨., .⟩ is the usual inner product. Let
E := f ′∗H − ⟨Ac,F ⟩, (5.2.2)

Ej := p∗Fj −
r∑

k=1

bkjDk, (5.2.3)

for j = 1, . . . , s. Note that they are numerically equivalent to zero.
By Corollary 3.2.6, we can find a Green function gH of H such that{

h(H,gH) ≥ 1,

h(H,gH) ≥ |h(Di,gDi
)|,

(5.2.4)

for i = 1, . . . , r. We define a Green function family g′Fi
of Fi by g

′
Fi

= gDi
◦ f ′ for i = 1, . . . , r,

and take a Green function family g′Fj
of Fj arbitrary for j = r + 1, . . . , s. Moreover, we can

fix a Green function family gp∗Fj
of p∗Fj for j = 1, . . . , s such that

h(Zi,gp∗Fi
◦p−g′Fi

) ≥ 0 on Y \ Zi

for i = 1, . . . , r by Proposition 3.2.5. Let g′E and gEj
be Green function families of E and Ej

which are defined by equations (5.2.2) and (5.2.3) for j = 1, . . . , s, respectively, that is,
g′E = gH ◦ f ′ −

r∑
k=1

ckg
′
Fk
,

gEj
= gp∗Fj

−
r∑

k=1

bkjgDk
.

Let g′H′ be a Green function of H ′ such that h(H′,g′
H′ ) ≥ 1 and g′p∗H−H′ be a Green function

of p∗H −H ′ such that h(p∗H−H′,g′
p∗H−H′ ) ≥ 0 on Y \ Exc(p). Since

h(p∗H,gH◦p) = h(p∗H−H′,gp∗H−H′ ) + h(H′,g′
H′ ) +O(1),

there is a constant γ ≥ 0 such that

h(p∗H,gH◦p) ≥ h(p∗H−H′,gp∗H−H′ ) + h(H′,g′
H′ ) − γ. (5.2.5)

By Corollary 3.3.4, there exists a constant C > 0 such that
|h(E,g′E)| ≤ C

√
h(H′,g′

H′ ),

|h(Ej ,gEj
)| ≤ C

√
h(H,gH),

(5.2.6)

for j = 1, . . . , s.



5.2. FUNDAMENTAL INEQUALITY 63

Let P be an element of Xf (K). We remark that p−1(f i(P )) is well-defined and it is not
contained in Exc(p) for i ≥ 0. For a positive integer n,

h(H,g)(f
n(P )) = h(f ′∗H,g◦f ′)(p

−1(fn−1)(P ))

= h(f ′∗H,g◦f ′)(p
−1(fn−1)(P ))− ⟨Ac,hp∗p∗F ⟩(p−1(fn−1(P )))

+ ⟨Ac,hp∗F ⟩(fn−1(P ))

= ⟨Ac,hF − hp∗p∗F ⟩(p−1(fn−1(P ))) + h(E,g′E)(p
−1(fn−1(P )))

+ ⟨BAc,hD⟩(fn−1(P )) + ⟨Ac,hE′⟩(fn−1(P )) (by (5.2.2), (5.2.3))

= ⟨c,−hZ⟩(p−1(fn−1(P ))) + h(E,g′E)(p
−1(fn−1(P )))

+ ⟨BAc,hD⟩(fn−1(P )) + ⟨c, tAhE′⟩(fn−1(P )), (by (5.2.1)) (5.2.7)

where hD′ = (hD′) for D′ = p∗p∗F, p∗F, F,D,E
′ and Z. Since hZi

≥ 0 on Y \ Exc(p) for
i = 1, . . . , r, we have

h(H,gH)(f
n(P ))

≤ h(E,g′E)(p
−1(fn−1(P ))) + ⟨BAc,hD⟩(fn−1(P )) + ⟨c, tAhE′⟩(fn−1(P ))

≤ C
√
h(H′,g′

H′ )(p
−1(fn−1(P ))) + r2∥c∥∥BA∥h(H,gH)(f

n−1(P ))

+ r∥cC∥
√
h(H,gH)(fn−1(P )), (by (5.2.4), (5.2.6))

where ∥.∥means vector norm or matrix norm on real vector spaces. Moreover, since h(p∗H−H′,h′′) ≥
0 on Y \ Exc(p) and (5.2.5), it follows that

h(H,gH)(f
n(P )) ≤ r2∥c∥∥BA∥h(H,gH)(f

n−1(P )) + r∥c∥C
√
h(H,gH)(fn−1(P ))

+ C
√
h(H,gH)(fn−1(P )) + γ. (5.2.8)

For a linear map F : N1(X)R → N1(X)R, we denote by M(F ) the representation matrix
of F with respect to Di’s. Then we have BA =M(f ∗). Let R(f) := max{1, r2∥c∥∥M(f ∗)∥}.
By dividing the inequality (5.2.8) by R(f)n, we obtain that

h(H,gH)(f
n(P ))

R(f)n
≤ r2∥c∥∥BA∥

R(f)n
h(H,gH)(f

n−1(P )) +
r∥c∥C
R(f)n

√
h(H,gH)(fn−1(P ))

+
C

R(f)n

√
h(H,gH)(fn−1(P )) + γ

≤
h(H,gH)(f

n−1(P ))

R(f)n−1
+ r∥c∥C

√
h(H,gH)(fn−1(P ))

R(f)n−1

+ C

√
h(H,gH)(fn−1(P ))

R(f)n−1
+ γ.
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By [26, Appendix Lemma A.1], there is a constant C1 which is independent of n and P such
that

h(H,gH)(f
n(P ))

R(f)n
≤ C1n

2h(H,gH)(P ),

that is,

h(H,gH)(f
n(P )) ≤ C1n

2R(f)nh(H,gH)(P ). (5.2.9)

Let ϵ > 0 be an arbitrary positive number. Since limk→∞ ∥M((fk)∗)∥1/k = δf , there is a
positive integer k > 0 such that

∥M((fk)∗)∥
(δf + ϵ)k

r2∥c∥ < 1. (5.2.10)

By the inequality (5.2.9) for fk, we have

h(H,gH)(f
kn(P )) ≤ C1n

2

(
R(fk)

(δf + ϵ)k

)n
(δf + ϵ)knh(H,gH)(P ).

Since R(fk) = max{1, r2∥c∥∥M((fk)∗)∥} and by the inequality (5.2.10), it follows that

R(fk)

(δf + ϵ)k
< 1.

Hence there is a constant C2 > 0 such that

C1n
2

(
R(fk)

(δf + ϵ)k

)n
≤ C2

for all n. Then we obtain that

h(H,gH)(f
kn(P )) ≤ C2(δf + ϵ)knh(H,gH)(P ).

By Corollary 3.2.7, there is a constant C3 > 0 such that

h+X ≤ C3h(H,gH), h(H,gH) ≤ C3h
+
X .

Hence we have

h+X(f
kn(P )) ≤ C3h(H,gH)(f

kn(P )) ≤ C2C3(δf + ϵ)knh(H,gH)(P ) ≤ C2C
2
3(δf + ϵ)knh+X(P ).

By the same argument as the proof after [26, Lemma 3.3], we get the conclusion.

Remark 5.2.2. If f is a morphism, we have a little stronger inequality and we can drop the
assumption of smoothness of X (for details, see [26]).



5.3. MORPHISM CASE 65

5.3 Morphism case

We prove (1) in Conjecture 5.1.2 when f is a morphism by using methods in [19].

Theorem 5.3.1 (Theorem E). Let S = (K, (Ω,A, ν), ϕ) be a proper adelic curve. Let X be
a normal projective variety over an algebraic closure K of K and f : X → X be a morphism.
For P ∈ X(K), we have

(1) αf (P ) = αf (P ). In particular, the limit αf (P ) = limn→∞ h+X(f
n(P ))1/n exists.

(2) The arithmetic degree αf (P ) is an algebraic integer.

(3) The set {αf (Q) |Q ∈ X(K)} is finite.

Before starting proof, we recall the canonical height theory associated with Jordan blocks
in Pic(X)C introduced by [19].

Proposition 5.3.2 (c.f. [19, Theorem 13]). Let λ be a complex number. Let D0, D1, . . . , Dl ∈
D̂iv(X)C be adelic divisors which satisfy the Jordan block condition in Pic(X)C:

f ∗D0 ∼ λD0, f
∗D1 ∼ λD1 +D0, . . . , f

∗Dl ∼ λDl +Dl−1,

where the symbol “∼” means C-linearly equivalence.

(1) There exists a constant C > 0 such that

∀n ≥ 0,∀P ∈ X(K), ∥hD(fn(P ))∥ ≤ Cnlmax{|λ|, 1}n(∥hD(P )∥+ 1),

where hD(Q) = (hD0
(Q), . . . , hDl

(Q)) for Q ∈ X(K).

(2) Suppose that |λ| > 1. Then there exists a function ĥD : X(K) → Cl+1 such that

ĥD ◦ f = ΛĥD

and

ĥD = hD +O(1),

where

Λ =


λ 0 · · · · · · 0

1 λ
...

...
. . .

...
... λ 0
0 · · · · · · 1 λ

 .
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Proof. (1) We set {
E0 := f ∗D0 − λD0,

Ei := f ∗Di − (λDi +Di−1),

for 1 ≤ i ≤ l and hE := (hE0
, . . . , hEl

). Note that E0, . . . , El are linearly equivalent to zero.
By definition, the function hE satisfies that

hE = hD ◦ f − ΛhD.

Thus for n ≥ 1, we can see

hD(fn(P )) = ΛhD(fn−1(P )) + hE(f
n−1(P ))

= Λ2hD(fn−2(P )) + ΛhE(f
n−2(P )) + hE(f

n−1(P ))

...

= ΛnhD(P ) +
n−1∑
k=0

Λn−k−1hE(f
k(P )).

By [19, Lemma 12(a)], we have

∀k ≥ 0, ∥Λk∥ ≤ klmax{|λ|, 1}k. (5.3.1)

Since E0, . . . , El are linearly equivalent to zero, the height functions hE0 , . . . , hEl
are bounded.

Hence there exists a constant C > 0 such that

∀Q ∈ X(K), ∥hE(Q)∥ ≤ C. (5.3.2)

Thus we obtain that

∥hD(fn(P ))∥

≤ ∥ΛnhD(P )∥+
n−1∑
k=0

∥Λn−k−1hE(f
k(P ))∥

≤ (l + 1)∥Λn∥∥hD(P )∥+
n−1∑
k=0

(l + 1)∥Λn−k−1∥∥hE(f
k(P ))∥ (by (5.3.1))

≤ (l + 1)nlmax{|λ|, 1}n∥hD(P )∥+ (l + 1)
n−1∑
k=0

C(n− k − 1)lmax{|λ|, 1}n−k−1 (by (5.3.2))

≤ (l + 1)nlmax{|λ|, 1}n∥hD(P )∥+ (l + 1)Cnlmax{|λ|, 1}n,

which completes the proof.
(2) We set

ĥD := hD +
∞∑
n=0

Λ−n−1hE ◦ fn.
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We claim that ĥD is absolutely convergent. We write Λ = λI + N , where I is the identity
matrix. Note that N l+1 = 0. Then we have

∥Λ−n∥ = ∥(λI +N)−n∥

=

∥∥∥∥∥
l∑

k=0

(
−n
k

)
λ−n−kNk

∥∥∥∥∥
≤ |λ|−n(l + 1) max

0≤k≤l

∣∣∣∣(−nk
)∣∣∣∣

≤ (l + 1)nl|λ|−n.

Hence we obtain that

∞∑
n=0

∥Λ−n−1hE(f
n(P ))∥ ≤ (l + 1)

∞∑
n=0

∥Λ−n−1∥∥hE(f
n(P ))∥

≤ (l + 1)2C
∞∑
n=0

nl|λ|−n−1.

Since |λ| > 1,
∑∞

n=0 n
l|λ|−n−1 is convergent, which implies that ĥD is absolutely convergent

and ĥD − hD is a bounded function. Finally, we have

ĥD ◦ f = hD ◦ f +
∞∑
n=0

Λ−n−1hE ◦ fn+1

= hD ◦ f +
∞∑
n=1

Λ−nhE ◦ fn

= hD ◦ f − hE +
∞∑
n=0

Λ−nhE ◦ fn

= ΛhD + Λ
∞∑
n=0

Λ−n−1hE ◦ fn = ΛĥD.

This calculation works well because the series defining ĥD is absolutely convergent.

Proof of Theorem 5.3.1. Let H be an ample adelic Cartier divisor such that hH ≥ 1. By [19,
Lemma 19], there is a monic polynomial Pf (t) ∈ Z[t] such that

∀D ∈ Pic(X), Pf (f
∗)(D) ∼ 0.

Let d = degPf (t) and V be a subspace of Pic(X)Q spanned by H, f ∗H, . . . , (f ∗)d−1H. Since
Pf (f

∗)(H) ∼ 0, V is an f ∗-invariant and finite-dimensional subspace of Pic(X)Q.
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Let D10, D11, . . . , D1ρ(1), D20 . . . , Dκρ(κ) ∈ Div(X)C such that the classes of these divisors
give a basis of V and the associated matrix f ∗|V is the following Jordan normal form:

Λ1

Λ2

. . .

Λκ

 ,

where Λi is a Jordan block of size ρ(i)+1 such that (Λi−λiIρ(i)+1)
ρ(i)+1 = 0 for the eigenvalue

λi ∈ C, the identity matrix Iρ(i)+1 and 1 ≤ i ≤ κ. Then the above divisors satisfy that

f ∗Di0 ∼ λiDi0

and
f ∗Dij ∼ λiDij +Di,j−1

for all 1 ≤ i ≤ κ and 1 ≤ j ≤ ρ(i). We fix Green function families of these divisors.
By relabeling these divisors, we can assume that

|λ1| ≥ |λ2| ≥ · · · ≥ |λσ| > 1 ≥ |λσ+1| ≥ · · · ≥ |λκ|.

By Proposition 5.3.2(2), there are canonical height functions ĥDij
for 1 ≤ i ≤ σ such that

ĥDij
= hDij

+O(1)

and

ĥDij
(fn(P )) =

j∑
k=0

(
n

k

)
λn−ki ĥDik

(P ). (5.3.3)

On the other hand, for σ < i ≤ κ, there exists a constant C > 0 such that

|hDij
(fn(P ))| ≤ Cnl

by Proposition 5.3.2(1) and |λi| ≤ 1. Hence we have

lim sup
n→∞

|hDij
(fn(P ))|

1
n ≤ 1. (5.3.4)

Firstly, we assume that there are non-negative integers 1 ≤ i′ ≤ σ and 0 ≤ j′ ≤ ρ(i′) such
that

ĥDij
(P ) = ĥDi′k

(P ) = 0 (5.3.5)

for 1 ≤ i ≤ i′ − 1, 0 ≤ j ≤ ρ(i) and 0 ≤ k < j′, and ĥDi′j′
(P ) ̸= 0. Then by the equation

(5.3.3), we have

ĥDi′j′
(fn(P )) =

j′∑
k=0

(
n

k

)
λn−ki′ ĥDi′k

(P ) = λni′ĥDi′j′
(P ).
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By a similar proof of [19, Lemma 18], we obtain that

αf (P ) ≥ lim inf
n→∞

|hDi′j′
(fn(P ))|

1
n ≥ lim inf

n→∞
|ĥDi′j′

(fn(P ))−O(1)|
1
n

= lim inf
n→∞

|λni′ĥDi′j′
(P )−O(1)|

1
n = |λi′|.

Here we use the assumption that |λi′| > 1 and ĥDi′j′
(P ) ̸= 0.

We write the ample divisor H defining V as

H ∼
∑
i,j

cijDij

where cij ∈ C. Since |λi′j′ | > 0, there exists a positive number ϵ > 0 such that ϵ < |λi′j′ |. By
Proposition 5.3.2, we have

|hDij
(fn(P ))| ≤ O(nρ(i)|λi|n) (5.3.6)

for 1 ≤ i ≤ i′. Moreover, it follows from the inequality (5.3.4) that

|hDij
(fn(P ))| = O((1 + ϵ)n) (5.3.7)

for σ < i ≤ κ. Then we obtain that

hH(f
n(P )) =

∑
i,j

cijhDij
(fn(P ))

=
σ∑
i=1

ρ(i)∑
j=0

cijhDij
(fn(P )) +

κ∑
i=σ+1

ρ(i)∑
j=0

cijhDij
(fn(P ))

=
σ∑
i=1

ρ(i)∑
j=0

cijĥDij
(fn(P )) +O(1) +O((1 + ϵ)n) (by (5.3.7))

=
σ∑
i=1

ρ(i)∑
j=0

cijĥDij
(fn(P )) +O((1 + ϵ)n) (5.3.8)

=
σ∑
i=i′

ρ(i)∑
j=0

cijĥDij
(fn(P )) +O((1 + ϵ)n) (by (5.3.5))

=
σ∑
i=i′

ρ(i)∑
j=0

cijĥDij
(fn(P )) +O((1 + ϵ)n)

≤
σ∑
i=i′

O(nρ(i)λni ) +O((1 + ϵ)n) (by (5.3.6)).

Since |λi′ | ≥ · · · ≥ |λσ| and ϵ < |λi′ | − 1, we have

hH(f
n(P )) ≤ O(nρλni′)
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for some positive integer ρ > 0, which implies that

αf (P ) ≤ |λi′|

because |λi′| > 1. Hence in the case of ĥDi′j′
(P ) ̸= 0 for some i′, j′, it follows that

αf (P ) = lim
n→∞

hH(f
n(P ))

1
n = |λi′|.

Finally, we assume that
∀i, j, ĥDi,j

(P ) = 0,

which implies that
∀n ≥ 0,∀i, j, ĥDi,j

(fn(P )) = 0

by the equation (5.3.3). Then by the inequality (5.3.8), we have

hH(f
n(P )) = O((1 + ϵ)n).

Hence we obtain that
αf (P ) = lim sup

n→∞
hH(f

n(P ))
1
n ≤ 1 + ϵ.

Since ϵ is an arbitrary small positive number, we get αf (P ) ≤ 1.
The above discussion says that the arithmetic degree αf exists and is equal to 1 or the

absolute value of some eigenvalue of f ∗|V . Since Pf (f
∗) annihilates Pic(X)Q, the minimal

polynomial of f ∗|V divides Pf (t) ∈ Z[t]. Hence the arithmetic degree is equal to 1 or the
absolute value of some root of Pf (t), which is an algebraic integer.

5.4 Simple case

In this section, we prove Conjecture 5.1.2 for the simplest case: f is a surjective morphism
and the Picard number of X is equal to one.

Theorem 5.4.1 (Theorem F). Let S = (K, (Ω,A, ν), ϕ) be a proper adelic curve. Let X be
a normal projective variety over an algebraic closure K of K such that dimN1(X)R = 1 and
f : X → X be a morphism. Then for any P ∈ X(K), the arithmetic degree αf (P ) exists and
is equal to 1 or δf . Moreover, if S has the Northcott property and the orbit Of (P ) is infinite,
we have αf (P ) = δf .

Proof. If Of (P ) is finite or δf = 1, then it follows from the definition and Theorem 5.2.1 that
αf (P ) = 1. Hence we assume that Of (P ) is infinite and δf > 1. Let H be an adelic Cartier
divisor such that H is ample and hH ≥ 1. By Theorem 5.2.1 again, we have αf (P ) ≤ δf .
Thus it is sufficient to prove the opposite inequality αf (P ) ≥ δf . Since dimN1(X)R = 1 and
f is a morphism, we obtain that

(fn)∗H ≡ (f ∗)nH ≡ δnfH
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for all n ≥ 0. We set E := f ∗H − δfH, which is numerically equivalent to zero. We define
a Green function family gE of E by the definition of E. By Corollary 3.3.4, there exists a
constant C > 0 such that

∀Q ∈ X(K), |hE(Q)| ≤ C
√
hH(Q), (5.4.1)

where E = (E, gE). Since δf > 1, we can fix ϵ > 0 such that√
δf + ϵ < δf .

By Theorem 5.2.1, there exists a constant C ′ > 0 such that

∀k ≥ 0, hH(f
k(P )) ≤ C ′(δf + ϵ)khH(P ). (5.4.2)

Firstly, we prove the following claim:

Claim 2. For any Q ∈ X(K), the limit

ĥX(Q) = lim
n→∞

hH(f
n(Q))

δnf

exists. Moreover, ĥX satisfies that

∀Q ∈ X(K), ĥX(f(Q)) = δf ĥX(Q)

and there exists a constant C ′′ > 0 such that

∀Q ∈ X(K), |ĥX(Q)− hH(Q)| ≤ C ′′
√
hH(Q).

Proof. Let m,n be non-negative integers such that m > n. Then we have∣∣∣∣∣hH(fm(Q))δmf
− hH(f

n(Q))

δnf

∣∣∣∣∣ =
∣∣∣∣∣

m∑
k=n+1

hH(f
k(Q))

δkf
− hH(f

k−1(Q))

δk−1
f

∣∣∣∣∣
≤

m∑
k=n+1

1

δkf

∣∣hH(fk(Q))− δfhH(f
k−1(Q))

∣∣
=

m∑
k=n+1

1

δkf

∣∣hE(fk−1(Q))
∣∣

≤
m∑

k=n+1

C

δkf

√
hH(f

k−1(Q)) (by (5.4.1))

≤
m∑

k=n+1

C
√
C ′

δkf

(√
δf + ϵ

)k−1

(by (5.4.2)).
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Hence we obtain that∣∣∣∣∣hH(fm(Q))δmf
− hH(f

n(Q))

δnf

∣∣∣∣∣ ≤ C
√
C ′

δf

m∑
n=k+1

(√
δf + ϵ

δf

)k−1

. (5.4.3)

Because of the choice of ϵ, the right side of the inequality (5.4.3) converges to zero as m,n→
∞, which shows that ĥX(Q) exists. The second equation ĥX(f(Q)) = δf ĥX(Q) immediately
follows from the definition. By taking m → ∞ and n = 0 in (5.4.3), we complete the
proof.

By Claim 2, we have

hH(f
n(P )) ≥ ĥX(f

n(P ))− C ′′
√
hH(f

n(P ))

= δnf ĥX(P )− C ′′
√
hH(f

n(P )).

It follows from the inequality (5.4.2) that

hH(f
n(P )) ≥ δnf ĥX(P )− C ′

√
C ′′(δf + ϵ)nhH(P ). (5.4.4)

By definition, we obtain that ĥX(P ) ≥ 0. If ĥX(P ) = 0, by the inequality (5.4.4), we have

0 = ĥX(f
n(P )) ≥ hH(f

n(P ))− C ′′
√
hH(f

n(P )).

Hence we get hH(f
n(P )) ≤ C ′′2 for all n, which implies that αf (P ) = 1. We assume that

ĥX(P ) > 0. Since
√
δf + ϵ < δf , by taking n-th roots of the inequality (5.4.4) and letting

n→ ∞, we have

αf (P ) = lim inf
n→∞

hH(f
n(P ))

1
n ≥ δf .

Finally, if S has the Northcott property, the condition that Of (P ) is infinite implies that
the height hH(f

n(P )) is not bounded above by [8, Proposition 6.2.3].

5.5 Regular affine automorphism case

Let us recall the definition of a regular affine automorphism, due to Sibony (for details,
see [35]).

Definition 5.5.1. Let f : An → An be an automorphism. By abuse of notation, we also
denote by f and f−1 rational maps Pn Pn which is the extensions of f and f−1, respectively.

(1) The degree of f is the maximal degree of defining polynomials of f .

(2) Let If and If−1 be the indeterminacy loci in Pn of f and f−1. We say that f is a regular
affine automorphism if If ∩ If−1 = ∅.
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Theorem 5.5.2 (Theorem G). Let S = (K, (Ω,A, ν), ϕ) be a proper adelic curve with the
Northcott property. Let f : An → An be a regular affine automorphism of degree d ≥ 2 defined
over an algebraic closure K of K. We denote by f ′ the restriction of f onto Pn \ An. Then
for P ∈ Pn(K)f , we have

αf (P ) =


1 (Of (P ) is finite),

δf (Of (P ) is infinite and P ∈ An(K)),

δf ′ (Of (P ) is infinite and P ∈ (Pn \ A)n(K)f ).

Before proving Theorem 5.5.2, we extend the canonical height theory of regular affine
automorphisms in [17].

Proposition 5.5.3 (c.f. [17, Theorem 6.3]). Let S = (K, (Ω,A, ν), ϕ) be a proper adelic
curve with the Northcott property. Let f : An → An be a regular affine automorphism of
degree d ≥ 2 defined over K. Then for any P ∈ An(K), the limit

ĥf (P ) = lim
k→∞

hH(f
k(P ))

dk

exists. Moreover, we have

ĥf (P ) = 0 ⇐⇒ Of (P ) is finite.

Proof. We set An = SpecK[T1, . . . , Tn] and Pn = ProjK[T0, T1, . . . , Tn]. Let H = {T0 = 0}
be an ample divisor on Pn and g = {gχ}χ∈ΩK

be a Green function family of H defined by

gχ(T ) = logmax{|T0|χ, |T1|χ, . . . , |Tn|χ}

for χ ∈ ΩK . It follows from the definition that

hH(f
k(P )) =

∫
ΩK

logmax{1, |f1,k(P )|χ, . . . , |fn,k(P )|χ} νK(dχ)

for P ∈ An(K), where fk = (f1,k, . . . , fn,k) for k ≥ 1. Hence we have

hH(f
k(P ))

dk
=

∫
ΩK

1

dk
logmax{1, |f1,k(P1)|χ, . . . , |fn,k(P )|χ} νK(dχ).

For each χ ∈ ΩK , the limit

Gχ(P ) = lim
k→∞

1

dk
logmax{1, |f1,k(P1)|χ, . . . , |fn,k(P )|χ}

exists by [17] if χ is non-Archimedean and [35] if χ is Archimedean. To complete the proof,
we need to estimate Gχ more precisely. We write f = (f1,1, . . . , fn,1) : An → An as

fi,1 :=
∑

α∈I,|α|≤d

ai,αT
α (i = 1, . . . , n),
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where I = Zn≥0, and for α = (α1, . . . , αn), |α| = α1 + · · · + αn and Tα = Tα1
1 · · ·Tαn

n . Note
that we have

Gχ(P ) = lim
k→∞

1

dk
gχ(f

k(P ))

and

hH(P ) =

∫
ΩK

gχ(P ) νK(dχ).

Now we start to estimate Gχ.
Firstly, we assume that χ is non-Archimedean. By the stronger triangle inequality, we

obtain that
|fi,1(P )|χ ≤ max

|α|≤d
{|ai,α|χ|Pα|χ} ≤ max

|α|≤d
{|Pα|χ}max

|α|≤d
{|ai,α|χ}

for each i, where |Pα|χ = |P1|α1
χ · · · |Pn|αn

χ . Hence it follows that

gχ(f(P )) ≤ logmax
|α|≤d

{1, |Pα|χ}+ logmax
i,α

{1, |ai,α|χ}

≤ logmax
i

{1, |Pi|dχ}+ logmax
i,α

{1, |ai,α|χ}

= dgχ(P ) + logmax
i,α

{1, |ai,α|χ},

which implies that

Gχ(P ) ≤ gχ(P ) +
1

d− 1
logmax

i,α
{1, |ai,α|χ}.

Next, we suppose that χ is Archimedean. This case is slightly complicated. By the triangle
inequality, we have

|fi,1(P )|χ ≤
∑
|α|≤d

|ai,α|χ|Pα|χ ≤ max
|α|≤d

{|Pα|dχ}
∑
|α|≤d

|ai,α|χ

≤ max
j

{1, |Pj|dχ} ·
d∑
j=0

(
j + n− 1

n− 1

)
max
α

{1, |ai,α|χ}.

Hence it follows that

gχ(f(P )) ≤ dgχ(P ) + logmax
i,α

{1, |ai,α|χ}+ log
d∑
j=0

(
j + n− 1

n− 1

)
,

which implies that

Gχ(P ) ≤ gχ(P ) +
1

d− 1
logmax

i,α
{1, |ai,α|χ}+

1

d− 1
log

d∑
j=0

(
j + n− 1

n− 1

)
.

By the above discussions, we conclude that

Gχ(P ) ≤ gχ(P ) +
1

d− 1
logmax

i,α
{1, |ai,α|χ}+ C1ΩK,∞

,
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where C = 1
d−1

log
∑d

j=0

(
j+n−1
n−1

)
. Since ν(Ω∞) <∞, the right side functions are νK-integrable

on ΩK . Hence we obtain that

lim
k→∞

hH(f
k(P ))

dk
= lim

k→∞

∫
ΩK

1

dk
logmax{1, |f1,k(P )|χ, . . . , |fn,k(P )|χ} νK(dχ)

=

∫
ΩK

lim
k→∞

1

dk
logmax{1, |f1,k(P )|χ, . . . , |fn,k(P )|χ} νK(dχ)

=

∫
ΩK

Gχ(P ) νK(dχ)

by the Lebesgue’s dominated convergence theorem.
The last assertion is given by a similar proof of [15, Theorem 4.2].

Proof of Theorem 5.5.2. If Of (P ) is finite, it follows from the definition that αf (P ) = 1.
Hence we assume that Of (P ) is infinite. Firstly, let P be a K-rational point of An. By
Proposition 5.5.3, we have

ĥf (P ) = lim
k→∞

hH(f
k(P ))

dk
> 0.

Hence there exists an integer N such that

∀k ≥ N,
hH(f

k(P ))

dk
≥ ĥf (P )

2
.

Then we get

αf (P ) = lim inf
k→∞

hH(f
k(P ))

1
k ≥ lim inf

k→∞

(
ĥf (P )

2
dk

) 1
k

= d,

which implies that αf (P ) ≥ δf . Note that d = δf . By Theorem 5.2.1, we obtain that
αf (P ) = δf .

Next we assume that P ∈ (Pn \ An)(K). We write X = If−1 . By abuse of notation, we
also denote by f ′ the restriction of f onto X, which is a morphism since If ∩X = ∅. By [18,
Proposition 9], f ′ is surjective and f(P ) ∈ X(K). Let p : X̃ → X be the normalization of X
and f̃ ′ : X̃ → X̃ be the induced morphism by f ′. Let D be an adelic Cartier divisor on X
whose underlying Cartier divisor is ample. Since p is a finite morphism, p∗D is also ample.
Let Q ∈ p−1(f(P )) ⊂ X̃(K). Then we have

hp∗D(f̃
′k(Q)) = hD(p ◦ f̃ ′k(Q)) = hD(f

′k(f(P ))),

which implies that αf̃ ′(Q) exists if and only if αf ′(f(P )) exists, and that αf̃ ′(Q) = αf ′(f(P ))
if they exist. Moreover, since the dynamical degree is a birational invariant, we have δf ′ = δf̃ ′ .
By the above discussion, we can assume that X is normal. By [18, Proposition 9] again, we
have a surjective morphism Pl → X where l = dimX. Hence we obtain that dimN1(X)R =
dimN1(Pl)R = 1. So it follows from Theorem 5.4.1 that αf ′(f(P )) = δf ′ . By choosing a very
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ample divisor H on Pn which is also very ample on X for computing the arithmetic degree,
we have

αf (f(P )) = αf ′(f(P )) = δf ′ .

Finally, we obtain that

αf (f(P )) = lim
k→∞

h+X(f
k+1(P ))

1
k

= lim
k→∞

(
h+X(f

k+1(P ))
1

k+1

)1+ 1
k

= lim
k→∞

h+H(f
k(P ))

1
k = αf (P ),

which completes the proof.

5.6 Surface automorphism case

In this section, we consider the case of surfaces.

Definition 5.6.1. Let X be a smooth projective surface over a field and f : X → X be an
automorphism. Let C be an irreducible curve in X. We say that C is f -periodic if fn(C) = C
for some n > 0. We denote the union of all f -periodic curves in X by Ef .

Theorem 5.6.2 (Theorem H). Let S = (K, (Ω,A, ν), ϕ) be a proper adelic curve with the
Northcott property. Let X be a smooth projective surface over an algebraic closure K of K
and f : X → X be an automorphism. Then for P ∈ X(K)f , we have

αf (P ) =

{
1 (Of (P ) is finite or P ∈ Ef (K)),

δf (Of (P ) is infinite and P /∈ Ef (K)).

To prove this theorem, we construct the canonical height function on X in several steps.
These proofs are the extension of ones in [16].

Proposition 5.6.3. Let X be a smooth projective surface over a field and f : X → X be an
automorphism with δf > 1.

(1) There are non-zero nef classes ν+, ν− ∈ N1(X)R such that

f ∗(ν+) = δfν+, f ∗(ν−) = δ−1
f ν−.

(2) We have (ν+)
2 = (ν−)

2 = 0.

(3) Let ν := ν+ + ν−. Then we have ν is nef and big. Moreover,

f ∗(ν) + (f−1)∗(ν) = (δf + δ−1
f )ν.
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Proof. (1) Firstly, we consider the eigenvalues of f ∗. By the Hodge index theorem, the
signature of N1(X)R is (1, ρ− 1). Hence by [29, Lemma 3.1], f ∗ has at most one eigenvalue
λ such that |λ| > 1. Since δf is the maximum of absolute values of eigenvalues of f ∗, we have
λ = δf . By the same way for (f−1)∗, the set of eigenvalues of f ∗ is

{δf , δ−1
f , α1, . . . , αl},

where |αi| = 1 for all i.
Let β ∈ N1(X)R be an ample class. Let ν ′+ be an eigenvector of f ∗ with eigenvalue δf .

Since δf is the only one eigenvalue of f ∗ whose absolute value is greater than 1, the sequence
{(f ∗)n(β)/δnf } converges to cν ′+ for some c ̸= 0 as n → ∞. We set ν+ = cν ′+, which is
nef because (f ∗)n(β)/δnf is ample for all n. By similar way, we can take nef class ν− as the

eigenvector of f ∗ with eigenvalue δ−1
f .

(2) We have

δ2f (ν+)
2 = (f ∗(ν+))

2 = (ν+)
2,

which implies that (ν+)
2 = 0. Similarly, we have (ν−)

2 = 0.
(3) Let x, y1, . . . , ym be the basis of N1(X)R such that

(x, x) = 1, (yi, yi) = −1, (x, yi) = 0 (for all i), (yi, yj) = 0 (for i ̸= j).

We set

ν+ = ax+ b1y1 + · · ·+ bmym,

ν− = a′x+ b′1y1 + · · ·+ b′mym.

and

y = b1y1 + · · ·+ bmym, y′ = b′1y1 + · · ·+ b′mym.

Since ν+ and ν− are nef, we have a ≥ 0 and a′ ≥ 0. By (2), we obtain that

(ν2+) = ((ax+ y)2) = a2 + (y2) = 0,

which implies that (y2) = −a2. Similarly, (y′2) = −a′2. Again by (2), we get

(ν2) = (ν2+) + 2(ν+, ν−) + (ν2−) = 2(ν+, ν−) = aa′ − ỹ · ỹ′,

where ỹ = (b1, . . . , bm), ỹ
′ = (b′1, . . . , b

′
m) and ỹ · ỹ′ = b1b

′
1 + · · · + bmb

′
m, which is the usual

inner product of a real vector space. If ỹ · ỹ′ < 0, there is nothing to prove. We assume that
ỹ · ỹ′ ≥ 0. By the Cauthy-Schwartz inequality, we have

ỹ · ỹ′ ≤
√

(ỹ · ỹ)(ỹ′ · ỹ′) =
√

(−(y2))(−(y′2)) =
√
a2a′2 = aa′.

Hence it follows that

(ν2) = aa′ − ỹ · ỹ′ ≥ aa′ − aa′ = 0.
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Since ν+ and ν− are linearly independent, this inequality is strict. Thus ν is big. Finally, we
have

f ∗(ν) + (f−1)∗(ν) = f ∗(ν+) + f ∗(ν−) + (f−1)∗(ν+) + (f−1)∗(ν−)

= δfν+ + δ−1
f ν− + δ−1

f ν+ + δfν−

= (δf + δ−1
f )(ν+ + ν−) = (δf + δ−1

f )ν,

as required.

Proposition 5.6.4. Let X be a smooth projective surface over a field and f : X → X be an
automorphism with δf > 1.

(1) Let ν ∈ N1(X)R be a nef and big class in Proposition 5.6.3. Let C be an irreducible
curve on X. Then C is f -periodic if and only if ([C], ν) = 0.

(2) There are only finitely many f -periodic curves on X.

Proof. See [16, Proposition 3.1] for their proofs.

Proposition 5.6.5. Let X be a smooth projective surface over a field and f : X → X be an
automorphism with δf > 1.

(1) There are R-Cartier divisors D+ and D− on X such that

[D±] = ν±, f ∗(D±) ∼R δ
±
f D±.

(2) We set D = D+ +D−. Then we have

[D] = ν, f ∗(D) + (f−1)∗(D) ∼R (δf + δ−1
f )D.

Proof. See [16, Lemma 3.8] for their proofs.

Proposition 5.6.6 (c.f. [16, Theorem 5.2]). Let S = (K, (Ω,A, ν), ϕ) be a proper adelic
curve with the Northcott property, X be a smooth projective surface over an algebraic closure
K of K and f : X → X be an automorphism with δf > 1. Let D be a nef and big R-Cartier
divisor in Proposition 5.6.5 and Ef be the union of all f -periodic curves on X. Then there
is a Green function family g of D which satisfies the following properties:

(1) ∀P ∈ X(K), h(D,g)(f(P )) + h(D,g)(f
−1(P )) = (δf + δ−1

f )h(D,g)(P ).

(2) ∀P ∈ Ef (K), h(D,g)(P ) = 0.

(3) ∀P ∈ X(K), h(D,g)(P ) ≥ 0.

(4) For all positive real numbers δ and C, the set

{P ∈ (X \ Ef )(K) |h(D,g)(P ) ≤ C, [K(P ) : K] ≤ δ}

is finite.
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(5) Let P ∈ (X \ Ef )(K). Then h(D,g)(P ) = 0 if and only if Of (P ) is finite.

Proof. (1) Let D+ and D− be nef R-Cartier divisors in Proposition 5.6.5. Then we have

f ∗(D+) ∼R δfD+, (f−1)∗(D−) ∼R δfD−. (5.6.1)

Let D+ = (D+, g+) and D− = (D−, g−) be the canonical compactifications of D+ and D−
with respect to f and f−1, respectively (see Section 3.3 for notations). By the equations
(5.6.1), we have

hD+
(f(P )) = δfhD+

(P ), hD−
(f(P )) = δ−1

f hD+
(P ).

We set D := D+ +D−. Then the height function hD clearly satisfies (1).

(2) Let P be a K-rational point of Ef . Let C be an irreducible component of E such
that P ∈ C(K). Since C is f -periodic, we have fn(C) = C for some n. Let D′ be an
R-Cartier divisor on X which is R-linearly equivalent to D and Supp(C) ̸⊂ Supp(D′). We

set L := D
′|C . Let φ : C̃ → C be the normalization and L̃ := φ∗(L). Then a morphism fn

induces an automorphism f̃n : C̃ → C̃. It follows from the equations (5.6.1) that

f̃n(L̃) + f̃−n(L̃) ∼R (δnf + δ−nf )L̃,

which implies that L̃ ∼R 0 by [16, Lemma 5.3]. Hence the height function hL on C̃ is a
bounded function. Moreover, this height function also satisfies the equation in (1), we have

hD(P ) = hL(P ) = 0.

(3) By (2), it is sufficient to show that

∀P ∈ (X \ Ef )(K), hD(P ) ≥ 0.

By [16, Proposition 1.3 (2)], there is an effective divisor Z and sufficiently small ϵ > 0 such
that Supp(Z) ⊂ Supp(Ef ) and D − ϵZ is ample. Let gZ be a Green function family of Z.
By Proposition 3.2.5, there is a constant c1 such that

∀P ∈ (X \ Ef )(K), h(Z,gZ) > c1. (5.6.2)

Moreover by Corollary 3.2.6, there exists a constant c2 such that

∀P ∈ X(K), hD − ϵh(Z,gZ) > c2.

Then by (1), we have

hD(P ) =
1

δnf + δ−nf
(hD(f

n(P )) + hD(f
−n(P )))

=
1

δnf + δ−nf
{(hD(fn(P ))− ϵh(Z,gZ)(f

n(P ))) + ϵh(Z,gZ)(f
n(P ))

+ (hD(f
−n(P ))− ϵh(Z,gZ)(f

−n(P ))) + ϵh(Z,gZ)(f
−n(P ))}

>
2(ϵc1 + c2)

δnf + δ−nf
.
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By letting n→ ∞, we get the conclusion.

(4) Let P ∈ (X \Ef )(K) such that hD ≤ C and [K(P ) : K] ≤ δ. Then by the inequality
(5.6.2), we have

hD(P )− ϵh(Z,gZ) ≤ C − ϵc1.

Hence we obtain that

{P ∈ (X \ Ef )(K) |h(D,g)(P ) ≤ C, [K(P ) : K] ≤ δ}
⊂ {P ∈ X(K) |h(D,g)(P )− ϵh(Z,gZ) ≤ C − ϵc1, [K(P ) : K] ≤ δ}.

Since D − ϵZ is ample, the latter set is finite by Proposition 3.2.8.

(5) Let P ∈ (X \ Ef )(K). Firstly we assume that hD(P ) = 0. Then by (1) and (3), we
have hD(f

n(P )) = 0 for all n ∈ Z, which implies that

Of (P ) ⊂ {P ∈ (X \ Ef )(K) |h(D,g)(P ) ≤ 0, [K(P ) : K] ≤ δ}

for some δ. Hence by (4), the set Of (P ) is finite. Conversely, we suppose that Of (P ) is
finite. Then we can find some integer n such that fn(P ) = P . By (1), we conclude that
hD(P ) = 0.

Proposition 5.6.7 (c.f. [16, Proposition 5.3]). We use the notation in Proposition 5.6.6.

(1) ∀P ∈ X(K), hD+
(P ) ≥ 0 and hD−

(P ) ≥ 0.

(2) For P ∈ (X \ Ef )(K), we have

hD+
(P ) = 0 ⇔ hD−

(P ) = 0 ⇔ hD(P ) = 0.

Proof. (1) By Proposition 5.6.6 (3), we have

hD+
(P ) = δ−nf hD+

(fn(P ))

= δ−nf (hD(f
n(P ))− hD−

(fn(P )))

≥ −δ−nf hD−
(fn(P )) = −δ−2n

f hD−
(P ).

By letting n→ ∞, we obtain that hD+
(P ) ≥ 0. Similarly, we get hD−

(P ) ≥ 0.
(2) Firstly we assume that hD+

(P ) = 0. Then we obtain that

hD(f
n(P )) = hD−

(fn(P )) = δ−nf hD−
(P ).

Hence it follows that

Of (P ) ⊂ {Q ∈ (X \ Ef )(K) |hD(Q) ≤ hD−
(P ), [K(Q) : K] ≤ [K(P ) : K]}.

By Proposition 5.6.6(4), the set Of (P ) is finite, which implies that hD(P ) = 0 by Proposition
5.6.6 (5). Moreover we have hD−

(P ) = 0. Similarly, hD−
(P ) = 0 implies that hD(P ) =

hD+
(P ) = 0. Finally, we assume that hD(P ) = 0. Since hD(P ) = hD+

(P ) + hD−
(P ), we

clearly get hD+
(P ) = hD−

(P ) = 0 by (1).
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Now, we start to prove Theorem 5.6.2.

Proof of Theorem 5.6.2. If δf = 1 or Of (P ) is finite, we clearly get αf (P ) = 1. Hence we
assume that δf > 1 and Of (P ) is infinite.

We suppose that Ef is nonempty. Let fE : Ef → Ef be the restriction of f on Ef .
We write Ef =

∪
Ci where Ci is an f -periodic curve. By Proposition 5.6.4 (2), this union

is finite. Hence we can find some integer m such that fmE ∈ Aut(Ci) for all i. Since any
automorphism of a curve has dynamical degree 1, we have αfm(P ) = αfmE (P ) = 1 for all

P ∈ Ef (K).
We assume that P /∈ Ef (K). Let D,D+ and D− be adelic R-Cartier divisors in Proposi-

tion 5.6.6, and H be an adelic Cartier divisor on X whose underlying Cartier divisor is ample
and hH ≥ 1. By Corollary 3.2.7, we have

αf (P ) = lim inf
n→∞

hH(f
n(P ))1/n

≥ lim inf
n→∞

hD(f
n(P ))1/n

= lim inf
n→∞

(hD+
(fn(P )) + hD−

(fn(P )))1/n

= lim inf
n→∞

(δnfhD+
(P ) + δ−nf hD−

(P ))1/n

= δf .

Hence we obtain that αf (P ) = δf . Note that hD+
(P ) > 0 by Proposition 5.6.7.
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