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Introduction

Let X be a smooth projective variety over an algebraically closed field K and f: X --+ X
be a dominant rational map. The (first) dynamical degree d; of f is an invariant for estimating
the geometric complexity of the iterations f™ of f. There are several equivalent definitions
of the dynamical degree, and here we introduce the method in [10] using the linear map of
f* on the Néron-Severi group of X induced by f.

Let N'(X) be the group of all Cartier divisors on X modulo numerical equivalence. It
is a free Z-module of finite rank. We set N'(X)g = N'(X) ®z R. Let p: Y — X be the
resolution of f such that ¢ = f o p is a morphism and Y is projective:

Y
px
)l( I x

Then the pull-back morphism f* : N'(X) — N'(X) is defined by f*D := p,(¢*D) for
D € N'(X). Note that this definition is independent of the choice of (V,p). By abuse
of notation, we also denote by f* the linear map on N'(X)g induced by f*. The (first)
dynamical degree o7 of f is defined by

G = Jin (p((f")": N} (X)e > N'(X)w)),

where p(-) is the spectral radius. By definition, we have 6, > 1.

In arithmetic dynamical systems, one of invariants related to the dynamical degree d;
is the arithmetic degree a(P), which estimates the asymptotic behavior of hx(f"(P)) for
P € X(Q) where hy is a height function on X. Kawaguchi and Silverman conjectured about
a relation between d; and ay in [20]. This conjecture is not completely proved, but there are
many affirmative answers for several cases (for details, see [16], [18], [19], [27], [36], etc.).

The arithmetic degree is usually defined over Q. Hence this conjecture is mainly discussed
on Q. But the dynamical degree can be defined over arbitrary field K. Thus, we extend the
defining field of the arithmetic degree and Kawaguchi-Silverman’s conjecture. In this paper,
we use the notion of adelic curves introduced by Chen and Moriwaki in [8]. An adelic curve S
is a field K equipped with the set of absolute values Mk on K which is indexed by a measure
space (2, A,v) and a map ¢ : Q > w > ||, € Mg, and verifies the following relation which
is called the product formula:

Va € K*, /log laly v(dw) = 0.
Q
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As examples of adelic curves, we can construct adelic structures for number fields, function
fields and finitely generated fields over Q or [F,. In particular, it is important that a finitely
generated field over Q or F, forms an adelic curve because for any variety X over any field,
we can reduce the base field of X to a finitely generated field over Q or F,. Hence by using
this framework, we can consider Kawaguchi-Silverman’s conjecture on any dynamical system
over arbitrary field. Of course, it depends on the choice of a finitely generated field as a
defining field and its adelic structure.

A height theory works on any adelic curve, but the notion of adelic curves is too general
to consider Kawaguchi-Silverman’s conjecture. For example, height functions on a trivially
valued field (which is an adelic curve that consists of only the trivial absolute value) are
very simple. In fact, the arithmetic degree calculated by a height function on a trivially
valued field is always equal to one. Hence we need to choose a class of adelic curves which is
convenient for this conjecture. In this paper, we use adelic curves which have the Northcott
property. It is a class which holds a condition such like the Northcott theorem on P™(Q)
(for details, see [34]). In this way, once we fix a good adelic curve, we can expect a sufficient
background for Kawaguchi-Silverman’s conjecture. This is our motivation of this paper.

Height functions on a trivially valued field as above are simple and they do not have
the Northcott property. However Arakerov theory over a trivially valued field has many
interesting results. In this paper, we will see two topics on it. The first one is the bigness of
adelic Cartier divisors. Let X be a normal projective variety over a trivially valued field. On
classical algebraic geometry, one of tools to study big divisors is a volume function. Hence
we define a volume function of adelic Cartier divisor D on X as follows:

DY — T E‘%Jr(nb)

where d = dim X. The invariant deg . (nD) is one which plays a similar role to h°(X,nD)

(for details, see [4], [5] and [8]). An adelic Cartier divisor D is said to be big if \751(3) > 0.
We will see the simple criterion of big adelic Cartier divisors and prove the properties of this
volume function:

Theorem A. Let D, E be adelic Cartier divisors. The arithmetic volume function has the
following properties:

(1) (integral formula).
ol(D) = (d+ 1) / Fo(t) dt,
0
where Fy is a function given by D.

(2) (limit existence).
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(3) (continuity). If D is big, then we have

limvol(D + €E) = vol(D).

e—0
(4) (homogeneity). For a € R.y,
vol(aD) = a**'vol(D).

(5) (log concavity). If D, E are big, then we have

—

vol(D + E) @1 > vol(D) @1 + vol(E) .

The second topic is the ampleness of adelic Cartier divisors. In this paper, we discuss
several results about ample adelic Cartier divisors (which does not mean that only the un-
derlying Cartier divisor is ample). We will see that one of them is related to height functions,
which is the simple criterion of ampleness:

Theorem B. An adelic Cartier divisor D is ample if and only if the height function h%“(x) >
0 for all x € X",

The above height function A%} is an extension of the height function iy on X. Hence it
follows that height functions are deeply related to ampleness of adelic Cartier divisors.

Let S = (K, (9, A,v), ) be an adelic curve. For any adelic divisor D on X, we can define
a height function hg : X(K) — R. We fix an adelic divisor D whose underlying Cartier
divisor is ample, and take the height function hy := hp. We set h} := max{hx,1}. Let I;
be the indeterminacy locus of f and

X;(K):={P e X(K)|f"(P) ¢ I; for all n > 0}.

Let P be an element of X;(K). We define the upper and lower arithmetic degrees of P with
respect to f as

a;(P) = limsup k% (f"(P))".,
a,(P) = liminf A ( FHP))w

Note that the above definitions are independent of the choice of D. By definition, we have
1 < ay(P) <ag(P).
If a;(P) = a@;(P), the arithmetic degree ay(P) of P with respect to f is defined as a;(P).

By using the arithmetic degree over an adelic curve, we can consider the following con-
jecture:
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Conjecture C (Kawaguchi-Silverman’s conjecture over adelic curves). Let S = (K, v) be

an proper adelic curve, and P € X(K).
(1) a;(P)=1a;(P). In particular, the arithmetic degree ay(P) exists.

(2) We assume that S has the Northcott property. If the orbit O;(P) = {f*(P)|n =
0,1,...} of P is Zariski dense in X, then we have as(P) = dy.

In the original paper, Kawaguchi and Silverman [20] conjectured that the set {af(Q) | Q €
X;(K)} is finite. This set is finite for many cases, but unfortunately, Lesieutre and Satriano
found an example of a birational map f on P* such that the set {a/(Q)|Q € (P*);(Q)} is
infinite. For details, see [23, Theorem 2|. Moreover, Kawaguchi and Silverman [20] conjec-
tured that the arithmetic degree is an algebraic integer. By [1], there exists a birational map
f on P? such that the dynamical degree 0, is transcendental. Hence, while this remains an
open problem, there might exist a transcendental arithmetic degree.

Another results consist of mainly two parts. The first one is to prove the fundamental
inequality

\V/PGXJC(K), Oéf(P)S(sf.
This inequality is proved by using Matsuzawa’s method in [26].
Theorem D (c.f. [26, Theorem 1.4]). Let S = (K,Q,v) be a proper adelic curve. Let X be

a smooth projective variety over an algebraic closure K of K and f : X --+ X be a dominant
rational map over K. For any e > 0, there is a constant C' > 0 such that

Vn > 0,VP € X;(K), hx(f"(P)) < C(§;+¢€)"hx(P).
In the second part, we prove extended Kawaguchi-Silverman’s conjecture for some cases:

Theorem E (c.f. [19, Theorem 3]). Let S = (K,Q,v) be a proper adelic curve. Let X be a
normal projective variety over an algebraic closure K of K and f: X — X be a morphism.
For any K-rational point P of X,

(1) @y (P) = a;(P). In particular, the limit ay(P) erists.
(2) The arithmetic degree ap(P) is an algebraic integer.
(3) The set {a;(Q)|Q € X(K)} is finite.

Theorem F (c.f. [18, Theorem 2(a)]). Let S = (K, (2, A, v), ¢) be a proper adelic curve. Let
X be a normal projective variety over an algebraic closure K of K such that dim N*(X)g = 1,
and f : X — X be a morphism. Then for any P € X (K), the arithmetic degree ayp(P) exists
and is equal to 1 or d;. Moreover, if S has the Northcott property and the orbit O¢(P) is

infinite, then we have oy (P) = 0.
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Theorem G (c.f. [18, Theorem 2(b)]). Let S = (K,(Q2,A,v),¢) be a proper adelic curve
with the Northcott property. Let f : A" — A" be a regular affine automorphism of degree
d > 2 defined over an algebraic closure K of K. We denote by f' the restriction of f onto
P™\ A". Then for P € (P");(K), we have

1 (Of(P) is finite),
ap(P) =< 8¢ (O4(P) is infinite and P € A"(K)), B
dp (Of(P) is infinite and P € (P™\ A™)¢(K)).

Theorem H (c.f. [18, Theorem 2(c)]). Let S = (K, (2, A,v),¢) be a proper adelic curve
with the Northcott property. Let X be a smooth projective surface over an algebraic closure
K of K and f : X — X be an automorphism. Then for P € X (K);, we have

oy (P) = 1 (O4(P) is finite or P € E4(K)),
! §;  (O4(P) is infinite and P ¢ E;(K)),

where Ey is the union of the f-periodic irreducible curves in X.

We will show these theorems by using slight modified methods in [18], [19] and [20].

In Chapter 1, we recall the basic results of algebraic geometry, normed vector spaces and
Berkovich spaces. Next, we introduce the notion of adelic curves and see some examples in
Chapter 2. In addition, we define a base change of an adelic curve and a height function
on it. In Chapter 3, we study height theory on arithmetic varieties over an adelic curve. It
contains the usual height theories over Q, for example, Weil height theory and Néron-Tate
theory. In Chapter 4, we see some results on Arakelov geometry over a trivially valued field.
We study properties of big adelic Cartier divisors, ample ones and volume functions. Finally
in Chapter 5, we restate extended Kawaguchi-Silverman’s conjecture and we prove our main
theorems.
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Chapter 1

Preliminary

1.1 Q- and R-divisors

Let X be a variety over a field K and K (X) be a function field of X. By abuse of notation,
we also denote the (constant) sheaf of rational functions on X by K(X). Firstly, we recall
the definitions of Cartier divisors and Weil divisors (for details, see [13] and [24]).

Definition 1.1.1. Let Div(X) := HY(X, K(X)*/O%), whose element is called a Cartier
divisor. By definition, for D € Div(X), there is an open covering {U;} of X such that D is
given by some non-zero rational function f; € K(X)* on U; and f;/f; € Ox(U, NU;)* for
i # j. A Cartier divisor D € Div(X) is said to be effective if f; is regular on U;, that is,
fi € Ox(U;) for all i in the above setting. A non-zero rational function f € K(X)* naturally
gives rise to a Cartier divisor, which is called a principal Cartier divisor (or simply a principal
divisor) and denoted by (f). We denote the group law on Div(X) in additive way. We say
that two Cartier divisors Dy, Dy € Div(X) are linearly equivalent if Dy — Do is principal,
which is denoted by D; ~ Dy. We set Pic(X) := Div(X)/~, which is called the Picard group
of X.

For two Cartier divisors Dy, Dy, we write Dy > Dy if Dy — Dy is effective. In particular,
we write D > 0 if D is effective. For an open subset U of X, let D|y be the image of D by
the canonical restriction H°(X, K(X)*/Ox) — H(U, K(X)*/O%), which gives a Cartier
divisor on U.

We can associate any Cartier divisor D = {(U;, f;)} € Div(X) with a subsheaf Ox (D) C
K(X), which is given by Ox(D)|y, := f; 'Ox|p,. It is well-known that this construction
is independent of the choice of a representation {(U;, f;)} of D, and Ox (D) is an invertible
Ox-module on X.

Proposition 1.1.2 (c.f. [13, Proposition 6.13] and [24, Proposition 1.18]). Let Dy, Dy be
Cartier divisors.

(1) Ox(Dl) ~ Ox(Dg) Zf D1 ~ DQ.
(2) Ox(Dl -+ Dg) ~ Ox(D1> ®0X Ox<D2)

11
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We denote I'(U, Ox (D)) by I'(U, D) for an open subset U of X. For any open subset U
of X, we have
LU, D) ={f € K(X)* | (D + (f)lv = 0} U{0} (1.1.1)

by definition.

Conversely, we can associate any invertible Ox-module £ with a Cartier divisor D such
that £ ~ Ox(D). Let s be a non-zero rational section of £, that is, s € £, \ {0} where
n is the generic point of X. Let {U;} be an open covering of X in which £ is trivialized,
and w; € L(U;) be a local basis of L for each i. Then s is denoted by fiw; on U; for some
fi € K(X). The data {(U;, f;)} gives the required Cartier divisor, which is denoted by div(s).
For example, if we choose 1 as a rational section of Ox(D), then we have div(1) = D by its
construction.

Next, we assume that X is normal. Let XM = {z € X | codimx{z} = 1}. For z € X1,
let [z] := {z}, which is an irreducible closed subset of X and called a prime divisor.

Definition 1.1.3. Let WDiv(X) := €, v Z[x|, whose element is called a Weil divisor.
For a Weil divisor
D= Z nglx,

zeX @)

n, is denoted by ord,. (D). We say that a Weil divisor D € WDiv(X) is effective if ord, (D) > 0
for all z € XM, For two Weil divisors Dy, Dy, we write Dy > Dy if Dy — D, is effective. In
particular, we write D > 0 if D is effective. For a non-empty open subset U of X, let

Dly:= Y ord,(D)[x],

zeXMNU
which is called the restriction of a Weil divisor D on U.

If z € XM, Ox, is a discrete valuation ring since X is normal. Hence we have the
normalized discrete valuation ord, on K(X) associated with Ox,. For a non-zero rational
function f € K(X)*, let

(f) = > ordy(f)[z].

xeXxX @)

This is a Weil divisor and such a divisor is called a principal Weil divisor (or simply a
principal divisor). We say that two Weil divisors Dy, Dy € WDiv(X) are linearly equivalent
if Dy — D5 is principal. Then we write Dy ~ Ds.

We can associate any Cartier divisor D € Div(X) with a Weil divisor as follows: For any
z€ XD let f € K(X) be alocal equation of D around z. Then we set ord, (D) := ord,(f).
It is independent of the choice of a local equation. Hence we can define that

D:= > ordy(D)[a].

xEX(l)

This construction gives a homomorphism ¢ : Div(X) — WDiv(X).
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Proposition 1.1.4 (c.f. [24, Proposition 2.14]). (1) The homomorphism ¢ is injective. More-
over, ¢ is an isomorphism if X is locally factorial (which means that Ox . is UFD for
all z € X ). Hence we often identify a Cartier divisor with a Weil divisor.

(2) For any Dy, Dy € Div(X), Dy ~ Dy as Cartier divisors if and only if Dy ~ Dy as Weil

divisors.

(8) For any D € Div(X), D > 0 as Cartier divisors if and only if D > 0 as Weil divisors.

We can associate any Weil divisor D with a subsheaf Ox (D) C K(X), which is defined
by
Ox(D)|y = {f € K(X)*[(D+ (f)|v = 0} U {0}
for any open subset U of X. By (1.1.1), if D is Cartier, the above construction gives the same
invertible Ox-module Ox (D). However Ox (D) is not invertible if D is not Cartier. Note

that in this case, Ox(D) is reflexive (which means that the canonical morphism Ox (D) —
Hom(Hom(Ox (D), Ox),Ox) is an isomorphism).

Let K= Q or R. Let us introduce the definition of K-divisors.

Definition 1.1.5. Let Div(X)g = Div(X) ®z K, WDiv(X)x := WDiv(X) ®z K and
K(X)g = K(X)* ®z K. An element of Div(X)g (resp. WDiv(X)g, K(X)g) is called
a K-Cartier divisor (resp. a K-Weil divisor, a K-rational function) on X. Clearly, Cartier
divisors and Q-Cartier divisors (resp. Weil divisors and Q-Weil divisors) are R-Cartier divi-
sors (resp. R-Weil divisors). A non-zero K-rational function f € K(X)g naturally gives rise
to a K-Cartier divisor (or equivalently a K-Weil divisor), which is called a K-principal divisor
and denoted by (f). We say that two R-Cartier divisors (resp. R-Weil divisors) Dy, Dy are
K-linearly equivalent if Dy — Dy is K-principal, which is denoted by D; ~g Dy. A K-Cartier
divisor (resp. a K-Weil divisor) D is said to be effective if D is a linear combination of
effective divisors with positive coefficients in K. We write Dy > D, if D1 — D, is effective.
In particular, we write D > 0 if D is effective.

Similarly to Cartier divisors, for D € Div(X )k, there is an open covering {U;} of X
such that D is given by some non-zero K-rational functions f; € K(X)g on U; and f;/f; €
(Ox(UZ N U]) X7 K)X for ¢ 7é ]

Let D € WDiv(X)g. By definition, we can write D = > _ ) kz[x], where k, € K and
k, = 0 for all but finitely many z € X(I). Then we define the round down of D as follows:

D)= 3 kel
zex™
This is a Weil divisor and | D| = D if and only if D € WDiv(X).
For D € WDiv(X )k, the associated Ox-module Ox (D) is defined by Ox (| D). Then we
have HY(X, D) = {f € K(X)*| D+ (f) > 0}U{0}. We remark that D+ (f) > 0 if and only
if | D]+ (f) >0 forany f € K(X)*, and Ox(2D) is not isomorphic to Ox (D) ®e, Ox(D)

in general.

Proposition 1.1.6 (c.f. [24, Theorem 3.2]). Let D € WDiv(X)g. Then H°(X,D) is a

finite-dimensional vector space over K.



14 CHAPTER 1. PRELIMINARY

1.2 Semiample, ample and big divisors

We recall the definitions of the semiampleness, ampleness and bigness of Cartier divisors.
Let X be a projective variety over a field K.

Definition 1.2.1. We say that a Cartier divisor D is semiample if Ox(nD) is generated
by global sections for some n € Z, that is, the canonical morphism H°(X,nD) ® Ox —
Ox(nD) is surjective.

Definition 1.2.2. We say that D is ample if for a sufficiently large n > 0, there is a closed
immersion j : X < P} such that Ox(nD) =~ j*Ops (1).

Definition 1.2.3. Let D be a Cartier divisor on X. Let h°(D) := dimy H°(X, D) and
d = dim X. We define the volume vol(D) of D as follows:

, ho(nD)
vol(D) := 113?010}) iyl

We say that D is big if vol(D) > 0.

Later we will consider the volume of an R-Weil divisor. Hence we extends the above
definition.

Definition 1.2.4. Let D be an R-Weil divisor on a normal variety X. We define a function
bp : Ry — Z by bp(t) := dimg H(tD) = dimg H([tD]). The volume of D is defined by

: bo(?)
(D) =1 —=
vlP =
where d = dim X. We say that D is big if vol(D) > 0.

By Fulger, Kollar and Lehmann [11], the above definition agrees with one in Definition
1.2.3 if D is Cartier.

Finally we recall the well-known properties of the volume function vol(-) without a proof
(for details, see [22]).

Proposition 1.2.5. Let X be a proper normal variety and d = dim X. Let D, E be R-Weil
divisors on X.

- hp(t) _ L bp(t)
(1) vol(D) = t£+moo % B tginoo th/d! ’

_
>0 - .
(2) For a € R.q, vol(aD) = a“vol(D)

(3) The volume function vol(-) is continuous, that is, vol(E) — vol(D) as E — D (which
means that each coefficients of E converge coefficients of D as an R-Weil divisor).

(4) The volume function vol(-) is d-concave on big divisors, that is, if D and E are big,
then
vol(D + E)Y? > vol(D)Y¢ + vol(E)/?.



1.3. NORMED VECTOR SPACE 15

1.3 Normed vector space

In this section, we study fundamental properties of a normed vector space over a field
equipped with an absolute value. However we mainly consider a trivially valued field.
Throughout this section, let K be a field.

Definition 1.3.1. We say that a map |-| : K — R, is an absolute value on K if it satisfies
the following conditions:

(1) Vae K, |a|=0<a=0.
(2) Ya,be K, |al|-|b| = |ab|.
(3) (triangle inequality) Ya,b € K, |a+b| < |a| + |b|.
If an absolute value || also satisfies the following stronger inequality
Va,b € K, |a+ b <max{lal,|b|},
we say that |-| is non-Archimedean. Otherwise, |-| is said to be Archimedean.

Definition 1.3.2. We say that an absolute value |-| on K is trivial if it satisfies that |a| = 1
for any a € K'\ {0}. A field K equipped with the trivial absolute value || is called a trivially
valued field. Clearly, the trivial absolute value is non-Archimedean and a trivially valued
field is complete as a metric space.

Let V be a vector space over K.

Definition 1.3.3. A map ||-|| : V — Ry is said to be a (multiplicative) norm over (K, |-|) if
it satisfies the following conditions:

(1) YoeV, |v]|=0<v=0.
(2) Vae Kandv eV, J|av| = |al-|v|
(3) (triangle inequality) Yv,w € V, ||lv+w| < ||v| + |Jw]|.
If a norm ||-|| also satisfies the following stronger inequality
Vo,w eV, v+ w|| < max{]vf], w]},
we say that ||-|| is ultrametric. A pair (V,||-||) is called a normed vector space.

Let Vo = ;- Vs be a graded ring over K such that V,, is a vector space over K for all
n and Vo = K. Let || be an absolute value on K and ||-||,, be a norm of V,, over (K, |-|) for
n € Zso such that ||-[[p = |-] on Vo = K.
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Definition 1.3.4. We say that

o0

(Vas [I-lle) = D Vo I111)

n=0

is a normed graded ring over (K, |-|) if |vmVnllmin < ||Vmllm:||vnlln for all v, € Vi, and
v, € V,.

Let Wy = @Zo:o W, be a V,-module such that W, is a vector space over K for all n. Let
h € Z~o. We say that W, is a h-graded V,-module if v,,-w, € Wy, for all v,, € V,,, and
w, € W,. It h =1, W, is simply called a graded V,-module.

Let ||-|lw, be a norm on W, over (K, |-|) for n € Zx.

Definition 1.3.5.

oo

(W, ll-llwa) = W, lI-llw..)

n=0
is called a normed h-graded (Vs ||-|lo)-module if ||V wn|lw,,, .. < [[Vm|lm||wn|lw, for all v, €
Vi and w, € W,,. If h =1, (W, ||||w.) is simply called a normed graded (Vs, ||-||s)-module.

Next, we consider a norm induced by another norms. Let (V) ]-|[v/) be a normed vector
space over (K |-|).

Definition 1.3.6. Let W be a vector space over K. Let f: V — W be a surjective K-linear
map. Then we define the quotient norm ||-|lw on W induced by |||y and f as follows:

|lwllw = inf{||v|lv | f(v) =w, ve V} forVw e W.
Note that if |||y is ultrametric, then ||-||w is also ultrametric.

Definition 1.3.7. Let (W, ||-|lw) be a normed vector space over (K, |-|). Then we define the
operator norm ||-||Hom (v,wy on Hompg (V, W) as follows:

o () [lw

[v]lv

| Pl tom (v, = sup{ ‘ veV\ {0}} for V¢ € Homg (V, W).
If (W, ]|-llw) = (K, |-]), then we denote Homg (V, K') by V" and ||-||tiomg (v,x) by |||/, which
is called the dual norm of ||-||v.

Definition 1.3.8. Let K’ be an extension field of K and |-|" be an absolute value on K’
which is an extension of |-|. Let Vir =V @k K'. Then Vi is identified with Hom g (VY K').
Hence we equip Vi with the operator norm || ||tomy (vv,x7), which is denoted by ||-||v,x-. This
norm ||-||v.x is called the scalar extension of ||-||v.

Remark 1.3.9. This scalar extension is called e-extension of scalars in [8]. As another
definition, Chen and Moriwaki [8] define the notion of m-extension of scalars. For the relation
between two definitions, see [8, Section 1.3].
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In the following, let (V,||-||) be an ultrametrically normed vector space over a trivially
valued field (K, ||) and dimg (V) < +oc.

Lemma 1.3.10. (1) Let vy,...,v, € V. If ||vi|l,..., ||va]l are all distinct, then we have
[o1 4+ -+ + on|| = max{[Joa][, ..., [[on][}-

(2) #{||lv|||v e V} < dimg(V) + 1.
Proof. See [8, Proposition 1.1.5] for the proofs. O

We set
FV ) ={veV]|u|] <e} forteR.

Remark that F*(V,||-||) is a vector space over K for any ¢ € R because || is trivial. Then
{FUV, ||-|) }er satisfies the following conditions:

Proposition 1.3.11. (1) For sufficiently positive t € R, F*(V, ||-||) = {0}.
(2) For sufficiently negative t € R, F{(V,||-]|) = V.
(3) Foranyt = s, F/(V,|[-Il) € F*(V, [-1])-
(4) The function R 3 t — dimg FL(V,||||) is left-continuous.
Proof. (1) and (2) follow from Lemma 1.3.10, and (3) and (4) are trivial by definition. [

We set

Amax(V; [|]]) == sup{t € R| F'(V, ||-]) # {0}},
min(V, [|-]]) = sup{t € R| F'(V ||-]) =V}

By convention, Apax(V, [||]) = —00, Amin(V; |||]) = 400 if V' = {0}. By Proposition 1.3.11,
we have Apax(V, ||-]|) < 400, and by Lemma 1.3.10, we can replace “sup” by “max” in the
above definition.

1.4 Analytification in the sense of Berkovich

Let K be a field equipped with an absolute value |-|. We assume that K is complete with
respect to |-|. Let X be a scheme over Spec K. We recall the analytification of X in the sense
of Berkovich (for details, see [2]).

Definition 1.4.1. The analytification of X in the sense of Berkovich, or Berkovich space
associated to X is the set of all pairs x = (p,|-|) where p € X and |-|, is an absolute value
on the residue field k(x) := x(p) which is an extension of |-|. We denote it by X?". The map
j:X* — X, (p,||.) — pis called the specification map.
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Let U be a non-empty Zariski open subset of X. The subset U := j7}(U) of X" is
called a Zariski open subset of X**. A regular function f € Ox(U) on U define a function
|f] on U as follows:

\fl(x) = |f(j(x))|, forxe U™.

We also denote |f|(z) by |f].-

We define a topology on X" as the most coarse topology which makes j and | f| continuous
for any Zariski open subset U of X and any f € Ox(U). This is called the Berkovich topology.
Note that X" is Hausdorff (resp. compact) if X is separated (resp. proper) over Spec K.

Let f : X — Y be a morphism of schemes over Spec K. There is a continuous map
0 X — Y2 such that the following diagram is commutative:

x5y

bl

xan & yan
Concretely, f* is constructed as follows: Let z = (p,|-|,) € X* and ¢ = f(p) € Y. We
remark that x(y) = k(q) is a subfield of k(x) = k(p). Then y = f*(x) is given by ¢ = f(p)
and the absolute value |-|, on x(g) which is the restriction of |-|,.

In the following, (K, |-|) is a trivially valued field. For x € X, let 2** = (x,[-]o) € X™®
where [-]o is the trivial absolute value on the residue field x(z). This correspondence gives a
section of j, which is denoted by o : X — X".

Now we introduce an important subset of X®'. We assume that X is normal projective
variety over Spec K. Let n € X be the generic point of X and

XW = {z € X|codimy{z} = 1}.
Let K(X) be the function field of X. Firstly, for z € X! we set

(™, 2™) := {& € X* | there is t € (0,+00) such that j(§) =n,|-|¢ = e~tord=() op K(X)}

and
[,’,’an’ xan] = {,r/an} U (nan’ xan) U {:L,an}'
We often denote the above t by ¢(£). Then the correspondence & +— t(£), n** +— 0 and 2" —
+oo gives a homeomorphism from (n**,z*") (resp. [**,2*"]) to (0,400) (resp. [0, +00]).
Hence we often identify (n*", z*") (resp. [p*", 2*"]) with (0, +o00) (resp. [0, +o<]).
We set X3 := |, cxa 7™, 2*"]. Then we can illustrate X3 by an infinite tree as follows:

an

U

xan
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We remark that X3 = X*" if dim X = 1.
Lemma 1.4.2. X3! is dense in X"

Proof. For the proof, it is sufficient to show that, for any regular function f on a Zariski
open set U in X and any = € U, the value |f|(x) belongs to the closure W of {|f|(2)]|z €
X nU*} C Ry, If f has no pole on X, then f is regular on the whole X, so f is a constant
function and algebraic over K because X is normal and projective. Therefore |f|(z) = 1 on
X so it is clear that |f|(z) € W.

We next assume that f has poles on X \ U. In this case, there are y,y’ € X such that
f(y) =0 and f has a pole at ¢’ because X is normal. Then, |f|(t) = e~ for t € (n**, y™"),
IfI(t) = et for t' € (n*,y/™) for some a,a’ > 0 and |f|(n™) = 1, which implies that
W =R, and we complete the proof. ]

Let R.( be the multiplicative group of positive real numbers. There is an action of R
to X?". For r € Ry and =z = (p, |-|) € X*", we define

e = (p ).

We also denote r*x by z". This action is called the scaling action. The scaling action is free
faithful and preserves the subset [7**, 2%"] for all z € X,

Finally, we introduce the reduction map red : X* — X. For z € X" let K(z) be the
completion of k(x) with respect to |-|, and we denote the absolute value on K(x) by ||, by
abuse of notation. We set o, := {f € &(x)||fl. < 1} and m, = {f € kK(z)||f|. < 1}.
Then o, is a local ring and m, is the maximal ideal of o,. If ||, is trivial on k(z), then
0, = k(x) and m, = {0}. Let p, : Speck(x) — X be a K-morphism of schemes defined by
j(x), and ¢, : Spec K(x) — Spec o, be a K-morphism defined by the inclusion o, < k(z). By
the valuation criterion of properness (for instance, see [13]), there is a unique K-morphism
¢ : Speco, — X such that p, = ¢, 0 1,:

Speck(z) —2— X

5
oy -7

Speco, — Spec K.

Then we define red(z) € X to be the image of m, by ¢,. The map red : X** — X
defined by the above correspondence is called the reduction map. The morphism ¢, induces
a homomorphism Ox eq(z) —+ 0,. Hence we have

vf € OX,red(z)v ‘flx <1 (141)

We remark that j # red. For example, for any = € X, red(z*") = x and for any & € (n**, 2*"),
red({) = x. It is known that red : X* — X is anti-continuous, that is, for any open set U
of X, red *(U) is closed in X"
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Adelic curve

2.1 Definition of adelic curves

Let K be a field and My be the set of all absolute values on K. Let (2,.4,v) be a
measure space, where € is a set, A is a o-algebra on ) and v is a measure on (€2, A). Let
¢ : Q — Mg be a map and we denote the image of w € Q by |-|, € Mg. We assume that
the function w +— log |al, is A-measurable and v-integrable for all a € K*.

Definition 2.1.1. The data S = (K, (2, A,v), ¢) is called an adelic curve. Moreover, we
say that S is proper if it satisfies a product formula:

Va € K*, / log |a], v(dw) = 0.
Q

We set

Qo :=={w € Q|| |, is Archimedean},
Qpn = {w € Q||| is non-Archimedean},
Q= {w € Q||| is trivial}.
Clearly, we have 2 = Q. U Qg, and €y C Qg,. We denote the completion of K with respect

to ||, by K. For any w € Q, the field K, is isomorphic to R or C. By Ostrowski’s theorem
(for example, see [33, Chapter II, Theorem 4.2]), there is a real number x(w) € (0, 1] such

that ||, = |-|§c(,w) on Q where || is the usual absolute value on Q. Then we can define a
function x :  — (0, 1] by setting x(w) = 0 for all w € Qgy,.

Proposition 2.1.2. The function k is A-measurable and integrable with respect to v. In
particular, if inf,ecq kK(w) > 0, then we have V() < 00.

Proof. See [8, Proposition 3.1.2] for its proof. ]

From now on, we always assume that k(w) = 1 for all w € Q. so v(Q) < cc.
We see some examples of adelic curves.

21
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Example 2.1.3 (Number fields). Let K be a number field. We set
Qo ={|'|lec} U{|'l, | p is & prime number},

where |-|» is the usual Archimedean absolute value on Q and |-|, is the p-adic absolute value
on Q such that |p|, = 1/p. Let Q be the set of absolute values of K such that the restriction
onto Q belongs to {2g and A be the discrete o-algebra on 2. Then there is a natural map
¢ : Q — Mg. Let v be the measure on (2, A) such that v({w}) = [K, : Q,]. Then by the
usual product formula on K, the adelic curve (K, (92, .4,v), ¢) is proper.

Example 2.1.4 (Function fields). Let C be a regular projective curve over a field k and K
be the rational function field of C'. We define €2 as the set of all closed points of C' equipped
with the discrete o-algebra A. For x € Q, let ord,(-) : O¢, — Z U {oco} be the discrete
valuation. We can uniquely extend this valuation onto K and let |-|, be the absolute value
defined by

Va € K*, |a|, == e =@,

This gives a map ¢ :  — M. Let v be the measure on (2, A) such that v({z}) = [k(z) : k].
By the residue formula, we have

Va € K™, Z[k(a:) : klord,(a) = 0,

e
which says that (K, (2, .4,v), ¢) is a proper adelic curve.

Example 2.1.5 (Copies of the trivial absolute value). Let K be any field and (€2, A, v) be
any measure space. We define the map ¢ such that 2 = Qy. Then we can easily see that
(K, (Q,A,v),¢) is a proper adelic curve. In particular, we say that (K, (Q,A,v),¢) is a
trivially valued field if ) is a single set.

Example 2.1.6 (Finitely generated field over Q). For simplicity, we consider the case of a
function field Q(7"). For a general case, see [8, Section 3.2.6], [9, Chapter 2] and [32, Section
2].

Let K = Q(T') and we consider it as the field of all rational functions on Pg. For any
closed point z, we can define a discrete valuation ord,(-) on K. Let co be the rational point
of Pg such that

ordso(f/g) = deg(f) — deg(g)

for all polynomials f,g € Q[T] and g # 0. Since Pg, \ {oco} is isomorphic to Ag, we can
associate a closed point = € Py, \ {oco} with an irreducible polynomial F, € Z[T] such that
the coefficients of F, are coprime. Let H(x) be the Mahler measure of F, which is defined

by X
H(x) :=exp (/ log | F,(e2™V 1) dt) :
0

We fix a non-negative real number A > 0. Then for ¢ € K, we define an absolute value ||,
on K as

[ple := (exp(Adeg(F,)) H (x)) =),
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and

[Ploo = exp(A) P,

Let p is a prime number. For any polynomial
f=adl"+ -+ aT +a € QT],

we define an absolute value of f as max |a;|, where |-|, is the p-adic absolute value on Q such
that |p|, = 1/p. By abuse of notation, we denote it by |f|,. It is uniquely extended to an
absolute value on K.

Let [0,1], := {t € [0,1]] >V~ is transcendental}. For any ¢t € [0,1],, we define an
absolute value |-|; on K as

[l = l(e™ )]

for all ¢ € K = Q(T), where |-| is the usual absolute value on C.

We set Q) = Q\, [[PIII0, 1] where €, is the disjoint union of the set of all closed
points of Py \ {oo} and {oo}, and P is the set of all prime numbers. Let ¢y : Qy — Mg
be a map such that ¢(w) = ||, for any w € Q2. We equip 2, and P with the discrete
o-algebras, [0, 1], with the restriction of the Borel o-algebra on [0,1], and Q) with the o-
algebra A, generated by these g-algebras. Let vy be the measure on 2 such that v({z}) =1
for x € Q) ), and x € P, and the restriction on [0, 1], coincides with the Lebesgue measure.
Then the date (K, (2, Ax, V), ¥x) gives a proper adelic curve (for details, see [8, Section
3.2.5] and [32, Section 2]).

2.2 Base change

Here we briefly recall the notion of base change of adelic curves. for details, see [8, Section
3.3, 3.4].

Let S = (K, (Qk, Ak, vk ), @) be an adelic curve and L be an extension field of K. For
simplicity, we assume that L is a finite separable extension of K. For any w € Q, let My,
be the set of all absolute values on L which extends the absolute values |-|, on K. Let €
be the disjoint union

1T M.

wEN K
Then we have a natural projection 7 /x : 1 — Qg which sends an element of My, to w.
Since M, is a subset of My, we naturally get the map ¢r, : 0, — M. We equip 2, with
the o-algebra A, generated by 7k and real-valued functions €, — R,w + |al, for all
a € L.
We next construct a measure vy, on (2,.4r). We define the measure v, on (Qr,.Ar) as
follows:

vAedn m= [ Y ) ),

QKmGNQW, u;il(

where 1,4 is the characteristic function of A. Then, S; = (L, (., A, v1), ¢r) is an adelic
curve and we also denote it by S ® g L. Moreover, if S is proper, then so is 5.



24 CHAPTER 2. ADELIC CURVE

For a general algebraic extension L over K, let £,k be the set of finite extension fields
of K in L. This set is ordered by the relation of inclusion and filtered. For any K’ € &1k,
we can construct the adelic curve S @ K' = (K', (Qk/, Ak, Vi), ¢). By the same way in
the case of finite extensions, we define the sets M, for each w € (g,

and the canonical inclusion ¢, : Q0 — Mp. For any K’ € &k, the restriction map gives
the projection map /s : Q2 — Qgs. We can easily show that

7TL/K/ = 7TKH/K/ (@] 7I'L/K//
where K’ C K" € €. Then € is identified with the projective limit of {Qx }roee, . in the
category of sets. We equip €2, with the smallest o-algebra Ay, such that the maps 7 /x are
measurable for all K" € £)x. Then (Q, Ar) is the projective limit of {(Qx/, Ax/)}rree,
in the category of measurable spaces. By equipping (€21,.4;) with a suitable measure vy, we

can define the adelic curve Sy, = (L, (2, AL, v1), ¢1). But this process is very technical, we
omit it (for details, see [8, Section 3.4] and [9, Chapter 2]).

2.3 Height functions

Let S = (K, (2, A,v),$) be a proper adelic curve. Let K be an algebraic closure of K
and S ®x K = (K7 (va .A?, VF)? ¢?>

Definition 2.3.1. We define the map hg : (K)"*\ {(0,...,0)} — R as follows:

Y(ag,...,a,) € (K)"™{(0,...,0)}, hs(ag,...,a,) = /log max{|aoly, - - -, ||y} v (dx).

QK
By the product formula on S @ K, we have
VAe K", hs(Aao, ..., an) = hs(ag, ..., a).

Hence we can get the well-defined map hg : P*(K) — R. For € P"(K), the value hg() is
called the height of x with respect to S.

Example 2.3.2. Let S = (Q, 2, v) be the adelic curve in Example 2.1.3. For (ay,...,a,) €
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P*(Q), we take a number field K such that it contains all a;’s. Then we have

h(ag, - .., an) = /Q log max[doley (- - -+ lnlg o0} g(dX)
Q

:/ log max{|ag|z, - - -, |an|z} Vi (dx)
Qx

K, :Q,
— /Q Z % log max{|ao|z, - - -, |an|s} v(dw)
IEMK’QJ ’
1
— X 0 Z (K, : Q] log max{|ag|s, ..., |an|:}-
) rEQK

Here we denote [K, : Q,] for all w € Q and x € Mg, by [K, : Q.]. Hence in this case, hg

coincides with the absolute logarithmic height on P"*(Q).
By using this height function, we define an important class of adelic curves:

Definition 2.3.3. We say that S has the Northcott property if the set
{a € K|hg(l:a)<C}
is finite for any C' > 0.

For instance, the adelic curves of Example 2.1.3 and the case of A > 0 in Example 2.1.6
have the Northcott property (for details, see [30, 31, 32]).

2.4 Adelic vector bundles

Let S = (K, (2, A,v), ¢) be an adelic curve.

Let V' be a finite-dimensional vector space over K. We define a norm family £ as a family
{l|*l|w }wea where ||-||,, is norm on Vi, =V @k K. A norm family ¢ is said to be ultrametric
if the norm ||-||,, is ultrametric for any w € Qg,. We define the dual of £ as £ = {||"||w.« fwea
where ||-||o.« is the dual norm of |-||,, on (Vk,)¥ = VY @k K, for any w € Q.

Before defining an adelic vector bundle, we need some notions of metric families, due to
Chen and Moriwaki (for details, see [8, Chapter 4]).

Definition 2.4.1. (1) A real-valued function f on (2 is said to be upper dominated if there
exists a v-integrable function A(-) on Q such that f(w) < A(w) v-almost everywhere.
Similarly, we say that f is lower dominated if — f is upper dominated. Finally, we say
that f is v-dominated if | f| is upper dominated.

(2) A norm family ¢ is called upper dominated (resp. lower dominated) if for any non-zero
element v € V, log ||v||,, is upper dominated (resp. lower dominated).

(3) We say that £ is dominated if £ and £ are upper dominated.



26 CHAPTER 2. ADELIC CURVE

Remark 2.4.2. If £ is dominated, then £ is upper and lower dominated. However, an upper
and lower dominated metric family is not always dominated. For example, see [8, Remark
4.1.4].

Definition 2.4.3. We say that a norm family ¢ is A-measurable if for any non-zero element
v eV, log|lv||, is A-measurable.

Now we define an adelic vector bundle.

Definition 2.4.4. Let V be a finite-dimensional vector space over K and £ be a metric family.
We say that a couple (V,€) is an adelic vector bundle on S if £ and £V are A-measurable and
if ¢ is dominated. Moreover if dim(V') = 1, it is called an adelic line bundle on S.



Chapter 3

Arithmetic variety

In this section, we fix a proper adelic curve S = (K, (92, A,v),¢). For simplicity, we
assume that S is a trivially valued field or €y = (). Let X be a geometrically integral
projective scheme over Spec K. For each w € Q, we set X, := X Xgpec x SPeC K.

3.1 Adelic Cartier divisors

For a Cartier divisor D on X, we denote by D, the pull-back of D by the canonical
morphism X, — X for all w € €.

Definition 3.1.1. Let w be an element of €2.

(1) Let g, be a function on a dense open subset of X2*. We say that g, is a Green function
of D, if for any non-empty Zariski open subset U, of X, and any local equation f, of
D,, on U,, the function g, + log|f,| extends to a continuous function on U2".

(2) A Green function family g of D is a family {g,}.cq where g, is a Green function of
D,.

Example 3.1.2. (1) Let s be a non-zero rational function on X. Then we can consider
s as a non-zero rational function on X, for any w € Q. The family {—log|s|,}wea
gives a Green function family of the principal Cartier divisor (s), which is denoted by
—log|s|.

(2) Let 0 be the zero divisor on X. Then each element g, of a Green function family
{9w }wea of 0 is a continuous function on X2".

For two Green function families g = {g, }weq and ¢’ = {¢), }weq of D, we define the local
distance of g and ¢" at w € Q) as

dw(9,9") = sup |gw — g.|(x).

zeXan

Since X is projective, X2" is compact for all w € ). Hence this value is well-defined.

27
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Let V be a finite-dimensional vector space over K and £ = {||-||, }weq be a norm family
of V. We assume that there is a surjective morphism f: V ® Ox — Ox (D). Then for each
w € , we obtain the norm |-|, on Ox (D), induced by (Vk_,||'||lo). Let s be the rational
section of Ox (D) such that D = div(s). Then gy, = —log|s|, gives a Green function of
D,,. The Green function family gy = {gy, }weq is called the quotient Green function family

of D induced by V = (V,€) and f.

Definition 3.1.3. (1) Let D be a very ample divisor on X. A Green function family g of
D is said to be dominated if there exists a quotient Green function family gy induced
by a finite-dimensional vector space V with a dominated norm family, and a closed
immersion X — P(V') associated with D such that the local distance function

Q>3 w—dyg,9v)
is v-dominated.

(2) Let D be a Cartier divisor on X and g be a Green function family of D. We say that ¢
is dominated if there exist two very ample divisors D; and D, together with dominated
Green function families g; and go of Dy and D, , respectively, such that D = D; — Dy

and g = g1 — go.

Remark 3.1.4. (1) If D is a very ample divisor on X, Definition 3.1.3 (1) and (2) are
equivalent (for details, see [8, Remark 6.1.10]).

(2) Let D be a Cartier divisor on X and gy be a quotient Green function family of D
induced by a normed vector space V = (V,&). We assume that £ is dominated. Then
gy is dominated in the sense of Definition 3.1.3 (for details, see [8, Proposition 6.1.11]).

Example 3.1.5. For any s € K(X)*, the Green function family — log |s| of (s) is dominated.
In fact, let V' be a vector space of dimension one over K. Then the norm family {|-|, }ueq of
V' is dominated, and — log |s| is given by (V, {|-|u}wen) and V @ Ox = Ox — Ox.

Next, we define the notion of the measurability of Green function families. Here we use
the notation of Section 2.2. Let g be a Green function family of D. Let P € X (K) be a closed
point of X outside of Supp(D). Then we can represent P as a K-morphism P : Spec L — X
for some finite extension L of K. Let S @ L = (L,(Qy, AL,v1), ¢r). For each w € Q, the
Berkovich analytification of Spec L with respect to w is identified with M}, ,, as a set. Since
Qr, = [lyeq Mrw, we can consider the pull-back of g by P as a function on 2. We denote
this function by gr(P)(-), or simply g(P)(-). If Spec L’ — X is another representation of P

where L’ is a finite extension of L, we have
g (P) = gr(P)omp L. (3.1.1)

Definition 3.1.6. We say that a Green function family ¢ = {g,}weq of D is measurable
if the function g(P) — log|s|(P) is measurable with respect to A for all s € K(X)* and

P € X(K) outside of Supp(D + (s)).
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By the equation (3.1.1), the above definition does not depend on representations of P.
This definition is a little strange because it is defined by using the notion of Green function
families. Usually, the measurability is defined by using the metric family of the invertible
sheaf associated with the Green function family (for details, see [8, Section 6.1.4 and 6.2.3]).

Example 3.1.7. Let s € K(X)* be a non-zero rational function on X. For P € X(K)
outside of Supp(s), the function —log |s|(P) is measurable. In fact, let Spec L — X be
a representation of P. Then we can consider s(P) is a non-zero element of L. Hence by
the definition of adelic curves, the function Q; > w — —log|s|(P)(w) = —log|s(P)|, is
measurable. In particular, —log |s| is a measurable Green function family of (s).

Remark 3.1.8. (1) Let D be a Cartier divisor on X and gy be a quotient Green function
family of D induced by a normed vector space V = (V,£). We assume that the o-
algebra A is discrete or K contains a countable subfield K, such that K; is dense in
K, for all w € 2. Then if { is A-measurable, gy is measurable in the sense of Definition
3.1.6 (for details, see [8, Proposition 6.1.30]).

(2) If Qo # (), we need a further condition to define the measurability of Green function
families (for details, see [8, Section 6.1.3 and 6.1.4]).

Now we can define adelic Cartier divisors:

Definition 3.1.9. Let D be a Cartier divisor on X and g be a Green function family of
D. We say that a pair D = (D, g) is an adelic Cartier divisor on X if g is dominated and
measurable. The set of adelic Cartier divisors forms an abelian group, which is denoted by
Div(X).

Example 3.1.10. Let s € K(X)* be a non-zero rational function on X. By Example 3.1.5

and Example 3.1.7, the pair (/s\) = ((s), —log|s]) is an adelic Cartier divisor on X, which is
called a principal adelic Cartier divisor on X. Two adelic Cartier divisors D; and D, are

said to be linearly equivalent if D; — Dy = (s) for some s € K (X)*.
Next we consider the extension of scalars. Let C&(X) be the set of all Green function
families of the trivial Cartier divisor on X. Then CZ(X) naturally has an R-vector space

structure. Let K denote either Q or R.

Definition 3.1.11. Let E(X)K be the set BE(X) ®z K modulo the vector space generated
by the following elements:

(0,91) @A + -+ +(0,9,) @Ay — (0, A101 + -+ + M),

for all n > 1 and ¢; € C%(X). Then ]SR/(X )k forms a K-vector space. An element of
Divg(X) is called an adelic K-Cartier divisor.
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3.2 Height functions

Let D = (D, g = {go}wea) be an adelic Cartier divisor. Let P € X(K) and Spec L —
X be a representation of P. We assume that P ¢ Supp(D). Since g is dominated and
measurable, g (P)(-) gives an v-integrable function on Q7. Hence we define the height of P

with respect to D as
ho(P) = [ au(P)(@) vi(da).
L

By the equation (3.1.1), the height of P does not depend on the choice of L.

Lemma 3.2.1. Let s € K(X)* and P € X(K) \ Supp(s). Then we have h(SA)(P) =0.
Proof. Tt follows from the properness of S. m
Definition 3.2.2. For P € X(K), we define the height of P with respect to D as

hi(P) = hy, 5 (P)

for some s € K(X)* with P ¢ Supp(D + (s)). By Lemma 3.2.1, this definition does not
depend on the choice of s.

This height function has the following properties:
Proposition 3.2.3. Let D = (D, g) and D = (D', q") be adelic Cartier divisors on X .

(1) For any P € X(K), we have hy, (P) = h(P) + hyy (P).

(2) If D = D', then we have h(p gy = hpg) + O(1), where O(1) is a bounded function on
X(K).

Proof. See [8, Proposition 6.2.2] for their proofs. O

Example 3.2.4. Let P"* = Proj KTy, ..., T,] be the n-dimensional projective space. We set
2z =T;/Ty for i =0,...,n and H = {Ty = 0}. For each w € Q, let

Gow = logmax{1, |21]w, .- -, |%nlw}-

Then (H, go = {gow}wen) is an adelic Cartier divisor on P* and hg = hm,g)-

Let D be a very ample divisor on X and 7 : X — P" be a closed immersion associated
with Ox (D). We have D = n*H + (s) for some s € K(X)* and define the Green function
family g of D as m*gg — log |s|. Then we obtain that

h(p,g) = NxHo4(s) 7 go—log|s] = s © T,

which gives the usual height function on X.
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For K = Q or R, we define the height function hg of an adelic K-Cartier divisor D as
follows: We write D = a1 D1 + - - - + a,D,, for some a; € K and D, € EE(X) fori=1,...,n.
Then we set

hﬁ = a1h51 + -+ anhﬁn.

By Proposition 3.2.3, it is well-defined.
For Chapter 5, we need several propositions:

Proposition 3.2.5. Let D be an adelic Cartier divisor on X. Let s € H°(X, D)\ {0}. Then

there is a real number C' such that h(P) > C for all P € X(K) \ Supp(D + (s)).
Proof. See [8, Proposition 6.2.6] for its proof. O

Corollary 3.2.6. Let D be an adelic Cartier divisor on X whose underlying Cartier divisor

D is ample. Then there exists a constant C' such that h(P) > C for all P € X (K).

Proof. For any positive integer n > 0, we have h,; = nhp. Hence by replacing D by nD,
we can assume that the linear system |D| is base point free. Let {si,...,s,} be a basis of
H°(X,D). For each i = 1,...,m, let C; be a real number in Proposition 3.2.5 for s;. For

any P € X(K), we have P ¢ Supp(s;) for some i and h(P) > C;. Hence the constant C' is
given by C' = min{C4,...,C,,} for example. [

Corollary 3.2.7. Let D and E be adelic Cartier divisors on X such that D is ample and
hy > 1. Then there is a constant C > 0 such that

VP e X(K), hyz(P) < Chy(P).

Proof. Since D is ample, for sufficiently large n > 0, the Cartier divisor nD — E is ample.
By Corollary 3.2.6, there is a Green function family g of nD — E such that hgp_gg) > 0.

For any P € X(K), we have

hig(P) = h,5(P) = h(np—p,g)(P) + O(1)
< nhy(P) + O(1).

Hence for sufficiently large C' > 0, we get the conclusion. O]

Proposition 3.2.8. Let D be an adelic Cartier divisor on X such that D is ample. We
assume that S has the Northcott property. Then for all positive real numbers 6 and C, the
set

{P € X(R)| hp(P) < C.[K(P) : K] < 6}

18 finite.

Proof. See [8, Proposition 6.2.3] for its proof. ]
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3.3 Canonical compactification of adelic Cartier divi-
SOr'S

In this subsection, we assume that either the o-algebra A is discrete or there is a countable
subfield Ky of K which is dense in K, for all w € €.

Let m: X — X be a surjective morphism. We assume that there is a Cartier divisor on X,
a positive integer d > 1 and s € K(X)* such that 7*D = dD+(s). By [8, Proposition 2.5.11],
there exists a Green function g, of D, such that 7*g = dg —log |s|,, for all w € 2. Moreover,
the Green family g = {g, }weq of D is measurable and dominated by [8, Proposition 6.2.19].

Definition 3.3.1. We say that an adelic Cartier divisor D = (D, g) is the canonical com-

—

pactification of D with respect to 7 if it satisfies 7*(D) = dD + (s).

Remark 3.3.2. By considering the construction carefully, the notion of canonical compact-
ification can be extended to an adelic R-Cartier divisor and a positive real number d > 1.

As an example of canonical compactifications, we consider Néron-Tate theory, that is,
the case of abelian varieties. Let A be an abelian variety over Spec K. For an integer n, we
denote by [n] the multiplication morphism by n. Let a be a positive integer such that a > 1
and a is not divisible by the characteristic of K. We remark that [a] : A — A is surjective.
Let D be a symmetric divisor on A (which means that [—1]*D ~ D). Since [a]*D ~ a?D,
there is s € K(A)* such that [a]*D = a*D + (s). Hence there exists a Green function family
g of D such that D = (D, g) is the canonical compactification of D with respect to [a]. We
set hp = hz. It is the Néron-Tate height on the setting over an adelic curve and it has the
following property:

Proposition 3.3.3. (1) For any integer n, we have

VP € A(K), hp([n]P)=n’hp(P).

(2) For any P,Q € A(K), we have
ho(P + Q) + hp(P — Q) = 2hp(P) + 2hp(Q).

The height hp : A(K) — R is a quadratic form. The associated pairing {(-,-)p

A(K) x A(K) — R is defined by
ho(P + Q) = hp(P) = hp(Q)

VP,Q € A(F)a <Pa Q>D = 9 ’

and it is bilinear and (P, P)p, = hp(P).

Proof. We can prove the assertions in a similar way as in [14, Theorem B.5.1]. O
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Corollary 3.3.4. Let X be a smooth projective variety over Spec K. Let D and E be adelic
Cartier divisors on X such that D is ample, hy > 1 and E is numerically equivalent to 0.
Then there is a constant C' > 0 such that

VP e X(K), hg(P) < C\/lp(P).

Proof. By [25, Theorem 4], nE is algebraically equivalent to 0 for some positive integer n.
Then we can prove the assertion in a similar way as in [14, Theorem B.5.9]. O

Remark 3.3.5. In Corollary 3.3.4, we can drop the assumption of smoothness of X (for
details, see [26, Appendix B]).






Chapter 4

Arakelov geometry over a trivially
valued field

In this section, we study some topics in Arakelov geometry over a trivially valued field.
Here, we introduce the arithmetic volume function and the bigness of adelic R-Cartier divi-
sors, and study their properties. Throughout this section, let K be a trivially valued field
and X be a normal projective variety over Spec K.

4.1 Adelic R-Cartier divisors

Let K= Q,R or Z. Let D be a K-Cartier divisor on X. In the trivially valued field case, a
Green function family of D consists of only one function, so we call it Green function simply.
Let Pic(X) be Div(X) modulo linearly equivalence and it is called the arithmetic Picard
group. An adelic K-Cartier divisor (D, g) is effective if D is effective and g is a non-negative.
We denote it by (D, g) > 0.

Proposition 4.1.1 (c.f. [6, Proposition 2.6]). Let (D, g) be an effective adelic R-Cartier
divisor on X. Then the function e™9 extends to a non-negative continuous function on X",

Proof. Let U be a non-empty Zariski open subset of X and f be a local equation of D on
U. Since g + log|f| extends a continuous function on U, e™9 = |f|-e~(9F1elfl extends
a non-negative continuous function on U**. We remark that |f| is a continuous function
on U?" because D is effective. By gluing continuous functions, e™9 extends a non-negative
continuous function on X*". O

By Proposition 4.1.1, we often consider a Green function of an effective R-Cartier divisor
as a map X* — RU {+o0o}.
Let D = (D, g) be an adelic R-Cartier divisor on X. Then the set of “global sections”
H°(D) is given by
HY(D) = {f € K(X)*| D +(f) = 0} U{0}.

35
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Let s be a non-zero element of H°(D). By Proposition 4.1.1, the function |s|e™9 = e~9+lglsl
extends to a non-negative function on X*". We denote this function by |s|, : X** — R..
Then we define

[sllg := sup |s|y(z).
xeXan
Note that ||s||, exists since X*" is compact. The map ||-||, : H*(D) — R, gives an ultra-
metric norm on H°(D) over K and it coincides with the supremum norm induced by the
continuous metric on Ox (D) corresponding to g. Moreover, by definition, it is easy to see
that @~ ,(H°(nD), |||lng) is a normed graded ring over K.
Let us recall the notations in Section 1.3: for a normed vector space (V, ||-||),
F V) ={veV]|v|<e} forteR,
Amax (V5 [|]]) = sup{t € R| F(V, |I-]]) # {0}},
Amin(V, [|-]}) = sup{t € R| F(V,[l-]]) = V}.
We set
)\max(Da g) =
)\min(Da 9) =

Amax(H (D), [Ilg),
Amin(H (D), [[l).
and )

ASY (D, g) := limsup —Apax(nD, ng).

max
n——+oo
Since @~ (H(nD), ||-|lng) is a normed graded ring, the sequence {A\yax(nD,ng)}, is super-
additive, that is,

Amax((Mm +n)D, (m +n)g) > Amax(MmD, mg) + Anax(nD,ng) for Ym,n € Z,.

Hence by Fekete’s lemma, we have

1 1
A2 (D, g) = lim —Apax(nD,ng) = sup —Apax(nD, ng).

max ntoo M, w1 T
Later, we will show that A (D, g) < 4oo0.

Definition 4.1.2. Let (D, g) be an adelic R-Cartier divisor. We say that a non-zero global
section s € HY(D) \ {0} is a small section if ||s|, < 1 or equivalently s € FO(H(D), |-||,)-

Moreover, if ||s|| < 1, it is called a strictly small section.
Proposition 4.1.3. Let D = (D, g) be an adelic R-Cartier divisor on X. Then we have

FOHD), I1y) = {s € K(x)*
Proof. Let s € H°(D) \ {0}. By definition,

Isll, <1< e9tloglsl < 1 on xo»
< g —logl|s| >0 on X",

—

D+ (s) zo}u{O}.

as required. 0

Small sections play a similar role as global sections in algebraic geometry. Therefore we
are interested in the asymptotic behavior of FO(H(D),||-|lny) as n — +o0.
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4.2 Associated R-Weil divisors

In this section, we use the notations in Sectionl.4.

Definition 4.2.1. Let (D, g) be an adelic R-Cartier divisor on X. For any » € X1,

o € _

Clearly 1,(g) > 0 if and only if ¢ > 0 on (p*,2*"). Moreover p,(g) = —oo if and only if
g(n™) < 0, which implies that if y1,(g) = —oo for some x € X1 then p,(g) = —oo for every
reXW,

The above invariant p,(g) has following properties:

Proposition 4.2.2 (c.f. [6, Proposition 5.7]). Let (D, g) be an adelic R-Cartier divisor on
X. For all but finitely many x € XU, we have p,(g) < 0.

Proof. Let U be a non-empty Zariski open subset of X such that g is a continuous function
on U2, Then g is continuous on [, 2®"] for all x € U N XM, Since [n*", 2*"] is compact,
gy zan) is bounded above. Hence we have y,(g) < 0 for for all z € U N X", which implies
the assertion because X (V) \ U is a finite set. [

Proposition 4.2.3 (c.f. [6, Lemma 5.8]). Let (D, g) be an adelic R-Cartier divisor on X
and x € XV,

(1) For any s € K(X)g, we have
1(g — log |s|) = p.(g) + ord.(s).

(2) We have p,(g) < ord,(D).
Proof. (1) It follows from the definition of X3 that
—log|s|(§) = t(§)ord.(s), &< (™, z™)

for all s € K(X)g. Hence we obtain that

tolg—log|s) = int  I&) = loslslE)

= 11,(g) + ord,(s).
et 1) pa(g) + ord.(s)

(2) Let f € K(X)g be a local equation of D around x. Then g + log|f| extends to
a continuous function on [*,x*']. Since (g + log|f|)|pen 2] is bounded above, we have
tz(g + log|f]) < 0. Hence by (1), we get 1,(g) < ord, (D). O

an
Y

Now we introduce an important divisor.
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Definition 4.2.4. Let (D, g) be an adelic R-Cartier divisor on X. We say that (D, g) is
p-finite if p1.(g) = 0 for all but finitely many x € X®™, which is equivalent to j,(g) > 0
for all but finitely many x € X by Proposition 4.2.2. If (D, g) is u-finite, it follows from
definition that p,(g) € R for all z € X, Hence we can define an R-Weil divisor on X as

follows:
Dyugy ==Y talg)[x].

zeX @)
It is called an R-Weil divisor associated with (D, g). Note that D,,,) may not be an R-Cartier

divisor.

For example, if (D, g) has a Dirichlet property (which means that (D, g) is R-linearly
equivalent to an effective adelic R-Cartier divisor), then (D, g) is p-finite.
By Proposition 4.2.3, we have D, < D and

(D +(8)) u(g-tog|sl) = Prto) + (5)- (4.2.1)

Proposition 4.2.5. Let (D, g) be a p-finite adelic R-Cartier divisor on X. Then (D, g) is
effective if and only if D, is effective.

Proof. We first assume that (D, g) is effective. Then g is non-negative on X" so p,(g) > 0
for any € XM, which implies D,y is effective.

Conversely we suppose that D, is effective. Then g is non-negative on X3, but X3 is
dense in X*" by Lemma 1.4.2, so it follows that ¢ is non-negative on the whole X*". Moreover
by Proposition 4.2.3, we have

ord, (D) > ji,(g) > 0

for any z € X, which completes the proof. O
By the above proposition and the equation (4.2.1), we have the following corollary:

Corollary 4.2.6. H(D,,)) = FO(H(D), |-|l,) = {s € H(D)|||s||, < 1}.

4.3 Canonical Green functions

For any R-Cartier divisor D, we can naturally give a Green function of D as follows: For
any © € X* let f € K(X)g be a local equation of D around red(z) € X. Then we define

gp(z) == —log|fl..

This definition is independent of the choice of a local equation. In fact, let f' € K(X)g be
another local equation. Then there is an element a € (Ox reda(z))g such that f' = af. Since
lal, = 1 by (1.4.1), we have —log|f'|. = —log|f].-

Proposition 4.3.1. The function g%, is a Green function of D.
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Proof. 1t is enough to show that for any non-empty Zariski open subset U of X and local
equation f of D on U, g%, + log|f| extends to a continuous function on U*". Let x € U*". If
red(z) € U, then g% (x) = —log|f|.. Hence we have g% (x) + log|f|. = 0. Next, we assume
that red(z) ¢ U. Let U’ be a non-empty Zariski open neighborhood of red(z) and f’ be a
local equation of D on U’. Then we have ¢%,(z) = —log|f’|. We remark that j(x) € U’,
hence UNU’ # (). There is a non-zero regular function u € (Ox (U NU’))x such that f/ = uf
on U NU’'. Therefore we obtain that ¢9,(z) + log|f|, = —log |u|,, which is continuous on
U N U™ Finally, let y € U N U™ such that red(y) € U. Since u € (Ox redy))p, We have
|ul, =1 by (1.4.1). Hence ¢%,(y) + log|f|, = —log |u|, = 0, which completes the proof. [

Remark 4.3.2. Proposition 4.3.1 also prove the existence of Green functions of Cartier
divisors in the case of a trivially valued field.

Definition 4.3.3. The function gf, is called the canonical Green function of D.
Proposition 4.3.4. (1) For any s € K(X)g, g(, = —log|s|.
(2) For any D,D" € Div(X)g and a,a’ € R, g5p ,p = agp + a'ghy.

Proof. (1) Since (s) is globally defined by s, it follows from the definition of the canonical
Green function.
(2) Let z € X* and f, f’ be local equations of D, D" around red(z) respectively. Then

faf? is a local equation of aD + /D’ around red(z). Hence we have

aprarp(¥) = —log|f*f* |, = —alog|f], — a'log | '] = agp(z) + a'gp (x).
O

Using the canonical Green function, we can define the following injective homomorphism:
¢ : Div(X) = Div(X), D (D,d5).

By Proposition 4.3.4, it induces an injective homomorphism ¢ : Pic(X) — 151\C<X) such that
the following diagram is commutative:

Div(X) —2— Div(X)

| !

Pic(X) —— Pic(X).

4.4 Height functions

Here we see the height function on X?" associated with an adelic R-Cartier divisor, which
is introduced by Chen and Moriwaki [6].
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Definition 4.4.1. Let (D, g) be an adelic R-Cartier divisor on X. We set Wby =9~ 9p;
which is called a hight function on X associated with (D, g).

Proposition 4.4.2 (c.f. [6, Proposition 4.3)). Let D and D' be adelic R-Cartier divisors on
X.

(1) For any s € K(X)g, ??n) =0 on X

/ an P an /7,an an
(2) For any a,a’ € R, h*5, o = ahp +ad'hiy on X0
Proof. Tt immediately follows from Proposition 4.3.4. O

By using the map o : X — X?®" in Section 1.4, we can consider X is a subset of X?".
Hence we can compare this height function 2% and hz in Section 3.2.

Proposition 4.4.3. Let D be an adelic Cartier divisor on X .
hs = h%F oo.

Proof. By definition, it is sufficient to show that g%, (z) = 0 for all z € X. Let € X and
f € K(X)i be alocal equation of D around red(o(x)). Then we have

9p(x) = —log | f|s()-
Since red(o(x)) = @ and |-|,(,) is trivial, we get the conclusion. O

For any adelic R-Cartier divisor (D,g) on X, h?B 9 is a continuous function on X?".
Hence we have the following homomorphism:

Y : Div(X) — CO(X™), (D, g) — b,

where C°(X®") is the set of all continuous functions on X**. This homomorphism is surjective.

In fact, let p : CO(X™) — BR/(X) be a homomorphism such that u + (0,u). Then we have
Yop(u) = u for allu € C°(X*). By Proposition 4.4.2, it induces a surjective homomorphism

e ﬁl\c(X ) — C°(X™) such that the following diagram is commutative:

—

Div(X) —2 CO(Xx)

e

Theorem 4.4.4. The following sequence is exact:

Pic(X)

0 —— Pic(X) —2— Pic(X) —2s CO(X™) —— 0.

In particular, P/)I\C<X) ~ Pic(X) @ CO(X™).



4.5. SCALING ACTION FOR GREEN FUNCTIONS 41

Proof. Since 1) o ¢ = 0 by definition, we have ¢y o 3 = 0. Let (D,g) € ER/(X) such that
(D, g) = 0. Then there are H € Div(X) and s € K(X) such that (D,g) = (H,g%) +
(s,—log|s|). By Proposition 4.3.4, we get g = g%, —log |s| = g%, which implies that (D, g) =
¢(D). Hence we obtain that Im ¢ = Ker ).

Finally, we denote by p the composition of p : CO(X*) — [/)R/(X ) and the natural
homomorphism ]SRI(X ) — 151\C(X ). Then it follows from ¢ o p = id that this exact sequence
is splitting. O

For X = Spec K, the Berkovich space X*" associated with X is a single point. Hence we
have C°(X®") = R, which implies that

ﬁl\c(X) ~ R.

This result corresponds to the fact that the Picard group of P! is isomorphic to Z and the
arithmetic Picard group of SpecZ is isomorphic to R.

4.5 Scaling action for Green functions

We saw that the multiplicative group Ry acts X?" (see Section 1.4). Here we see that
it also acts the set of Green functions of D. Let (D, g) be an adelic R-Cartier divisor on X.
For r € R.(, we define

o) = rg(a'/").

Note that z/" = (1/r)*z = (p, |-]¥'") for z = (p, |-|s) € X*. The function r*¢ is also a Green
function of D. In fact, let U be a non-empty Zariski open subset of X and f be a local
equation of D on U. Then we have

r*g(x) +log|fl. = rg(z"") +rlog ||/ = r(g(z'") + log| flur)
on U?", which is continuous. This action is also called the sacling action.

Proposition 4.5.1. Let D be an R-Cartier divisor on X, and g and g’ be Green functions
of D.

(1) The scaling action is linear, that is, for r € Ry,
(2) The scaling action preserves the canonical Green function g5, .

Proof. (1) It is clear by definition.
(2) Let z € X* and f be a local equation of D around red(x). Then ¢$,(z) = —log|f|..
Hence we have

r*gp (@) = —rlog|flu, = —rlog|f[;/" = —log|fl. = gh(x)

for any r € R.. O]
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4.6 Big adelic R-Cartier divisors

4.6.1 Definition

We introduce the counterparts of h°(D) and vol(-) in Arakelov geometry, which is given
by Chen and Moriwaki [6]. We set

deg. (D, g) := / dimg FH(HO(D), |1-],) dt
0

and

—~ _deg,(nD,ng)
(D =] = o S A
vol(D, g) S e 1)

where d = dim X.
Definition 4.6.1. An adelic R-Cartier divisor (D, g) is said to be big if ;o\l(D, g) > 0.

Proposition 4.6.2. Let (D, g) be an adelic R-Cartier divisor on X. If (D, g) is big, then
(D, g) is p-finite, D,y is big and N, (D, g) > 0. In particular, D is big.

max

Proof. 1f (D, g) is big, (D, g) is Q-linearly equivalent to an effective adelic R-Cartier divisor,
which implies that (D, g) is p-finite. By definition, for any integer n > 0, we have

geTng(nD, ng) < dimy F°(H"(nD), ||| ng ) max{ A2 (nD,ng),0}.

max

Therefore we obtain that

vol(D g) < (d+ 1)vol(D,,g))max{\sY (D, g),0},

max

by Corollary 5.3.5. Since @(D,g) > 0, it follows that vol(D,g)) > 0 and A3 (D, g) > 0. O

max

4.6.2 Existence of limit of the arithmetic volume

Firstly, we define
Vmax(D, g) :=sup{t € R| (D, g —t) is p-finite}.
Lemma 4.6.3. Let (D, g) be an adelic R-Cartier divisor on X. We have

(D, 9) < Viax(D, g) < g(n™).

asy

Proof. Clearly we can assume A% (D, g) € R. For a sufficiently large integer n > 0, there is
a non-zero element s € H%(nD) \ {0} such that ||s||,, < e~ m=x("P:n9) wwhich is equivalent to
15|l ng—Amax(nD.ng) < 1. Therefore (D, g — Amax(nD,ng)/n) is effective, which implies

1
—)\max(nD, ng) < Vrnax(D7 g)
n
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Taking a supremum, we get A2 (D, g) < vpax(D, g).

max

Next we show vipax(D, g) < g(n*"). For any € > 0, g(¢) — (g(n*™) + €) is negative around

¢ = n™. So we have (g — (g(n™) + ¢)) = —oco for any x € XU, which implies that
(D,g — (g(n™) + €)) is not p-finite and vp.(D,g) < g(n*™) + €. Since € is arbitrary, we
conclude that vy (D, g) < g(n*). O

Remark 4.6.4. The above inequality is sometimes strict. For example, let X = P =
ProjK[1y,Ti], z = T1/Ty, D = {Tp = 0} and 2o = (0 : 1). Let g3 = 2logmax{2,|z|} —
log max{1, |z|}. Then g,(§) = 2log?2 for £ € [p*", z*"] for x # x, and

()= {2loe2-¢ (0= € <log2),
. € (log2 <€),

on [, z2]. Hence we have
O T 7& Lo )
pa(gr — 1) = ( )
log2 —t (r=u2),

for ¢ <2log2 and 1, (g1 —t) = —oo for ¢t > 2log 2 and all closed point x of X. Therefore we
obtain that A\2% (D, g) = log 2 and vn.x(D, g) = 2log 2.

Next, we srz?cx
_ =€ (=g,
"e= {—1 (1<),

for £ € [p*,2*] and all closed point = of X, which is a continuous function on X**. We
define a Green function g, of D as logmax{1, |z|} + h. Then we have

) — 0 (2 # 2x),
11z(g2 — t) {1 (= o),
fort < —1,
) —1-1 (2 # 2x),
pa(ga —t) {—t (& = o),

for —1 <t <0 and p,(go —t) = —oco for ¢t > 0 and all closed point x of X. Hence we obtain
that vmax(D, g2) = —1 and g(n*) = 0.

For any integer n > 0, let

_ dimg Fr(H(nD), ||lng)
- nd/d! ’

PéD’g) (t):

where d = dim X. If there is no confusion, we write it simply P, (t). By definition, if (D, g)
is p-finite,

_ dimy FO(HO@D), [-flng) _ dimgx HO(nD,y))

Fa(0) nd/d! nd/d! ’
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so we have

lim P,(0) = vol(D,y)). (4.6.1)

n—-+o0o

Lemma 4.6.5. Let (D, g) be an adelic R-Cartier divisor on X. For any € € R, we have
PP () = PP (¢ 4 ¢).
Proof. For any s € H°(nD), it follows that
Illngg—e) < €7 & [Islng < e+,
Hence we get
dimg F"(H°(nD), ||-ln(g—0) = dimg F* ) (HO (D), ||-|lng).
which implies that P97 () = P"9(t + ). O

In particular,
PP () = PLP70(0),

n

and hence by the equation (4.6.1), we obtain that

nl—l>I—§I—100 Pn(t) = VOl(Du(g_t)) (462)
for any t < vpax(D, g).
If we define
O VOI(‘DM(g*t)) (t < )\i?gx(Dv g))v
Fiog () = { 0 (t > X3 (D, 9)),

then we have the following theorem by the equation (4.6.2):

Theorem 4.6.6. Let (D, g) be an adelic R-Cartier divisor on X. The sequence {P,(t) }n>1
converges pointwise to Fip g (t) on R\ {A%Y (D, g)}.

max

The sequence { P, (t)},>1 is uniformly bounded on (0, A\2% (D, g)). In fact, P,(t) is mono-

) max

tonically decreasing function with respect to ¢t and P,(0) is bounded with respect to n. Hence
we get the main theorem in this section by using bounded convergence theorem:

Theorem 4.6.7. Let (D, g) be an adelic R-Cartier divisor on X. We have

- . a(%+<7”LD, ng)
vollD.g) = N a1

Anax(D,g)
—(d+1) / Fip.g)(t) dt.
0
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Proof. By definition,
- Amax(nD,ng)
deg, (nD,ng) = / dimg Ft(HO(nD), I|-lng) dt.
0

Substituting ¢ for nt, we have

o %)\max(nD,ng)
&, (D, ng) = [ dimge F(HO (D), [lng) ot
0

Therefore we get
deg+ (nDa ng)
ndtl/(d +1)!

We remark that A\pax(nD,ng)/n < X2 (D, g) and P,(t) = 0 if t > A\ax(nD,ng)/n. Hence

max

by using bounded convergence theorem, we get the conclusion. O]

Amax(D,g)
= (d+ 1)/ P,(t) dt.
0

Corollary 4.6.8. The arithmetic volume \70\1() is (d 4+ 1)-homogeneous. Namely, for any
adelic R-Cartier divisor (D, g) and a € R+, we have

vol(aD, ag) = a®*'vol(D, g).

Proof. We have A\ (aD, ag) = aX3¥ (D, g) and F(p g (at) = a*F(p 4 (t) because the alge-

max max

braic volume is d-homogeneous. Therefore by Theorem 4.6.7, we have
- Ainax(aD,ag)
vol(aD, ag) = (d + 1)/ Flap,ag)(t) dt
0

Anix(D,g)
— a(d =+ 1)/ adF(D,g)(t) dt
0

= ad+1\781(D, g).

Finally, we prove a simple criterion of the bigness of an adelic R-Cartier divisor.

Theorem 4.6.9 (c.f. [3, Lemma 1.6] and [6, Proposition 4.10]). Let (D, g) be an adelic R-
Cartier divisor on X. We assume that D is big. Then the following conditions are equivalent:

(1) (D,g) is big.
(2) 2 (D, g) > 0.

max

(3) ForNn>> 0, there is a strictly small section of H°(nD).
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Proof. (1) = (2) It follows from Proposition 4.6.2.
(2) = (1) It is sufficient to show that D, is big. In fact, if D, is big, D4y is also
big for t < X2 (D, g) because A2 (D, g —t) = \»Y (D, g) —t for t € R. Then we have

\70\1(D,g) = (d+ 1)/ vol(Dy(g-1)) dt >0
0

by Theorem 4.6.7. Now we prove that D, is big. Since D is big, there is an ample divisor
A such that mD — A is effective for some m € Z-y. Let s € H(mD — A)\ {0} be a non-zero
section such that the map H°(kA) — H°(kmD) is given by multiplication by s®* for all
k > 0. We denote the image of the map H°(kA) — H°(kmD) by V}, and V, = K. Since the
graded ring @, Vi is finitely generated, there is a € R such that ||v]|gm, < e”*™ for all
v € Vi and a sufficiently large k£ > 0. Let € be a real number such that 0 < e < \2% (D, g).
Then we can find p € Z~o such that there is a non-zero element s, € H°(pD) \ {0} with
|Vpllpg < €77 and p > —am/e because € < A\nax(pD, pg)/p for a sufficiently large p > 0. The
image W), of the composition of the map H°(kA) — H°(kmD) — H°(k(m+p)D) is given by
multiplication by (ss,)®* for all k > 0. Hence for any w € Wy, we can write w = v ® (s,)%"
with v € V,, and we have

||w||k(m+p)g < ||v||kmg'||3p||];g < e hmeThe = e~ Hlamtpe) < L,

which implies that W), € H°(k(m + p)D,,)) for a sufficiently large k& > 0. Therefore we
obtain that vol((m + p)D,,4)) > vol(A) > 0, which is required.
(2) = (3) Since A2 (D, g) > 0, we have Ay (nD,ng) > 0 for a sufficiently large n > 0.

max

Hence there is a non-zero section s € H°(nD) \ {0} such that ||s|,, < e Amax(nDing) < 1,
(3) = (2) Let s be a strictly small section of H°(nD). Then we have Ay (nD,ng) >
—log ||s||ng > 0. Therefore we obtain that A%Y (D, g) > Apax(nD, ng)/n > 0. O

max

4.6.3 Continuity of F(p , (1)

Firstly, we will prove a very useful lemma:

Lemma 4.6.10. Let C' be a convex cone and let f: C'— R be a concave function. Namely,
for any v,v" € C and a,a’ > 0,
Flav+av) > af(v) + ' F&).

If g(t) := v+tv" is a map from some open interval (a,b) C R to C for fized elements v, v € C,
then f o g is a concave function on (a,b). In particular, f o g is continuous on (a,b).

Proof. For any t,t' € (a,b) and 0 < € < 1, we have
foglet+ (1 —e)t)= fv+ (et + (1 —e)t'))
= fle(v +t') + (1 =€) (v + ')
>ef(v+t)+(1—e)f(v+t')
=efoyg(t)+(1—e€)fog(t),

as required. Il
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For an adelic R-Cartier divisor (D, g), it follows immediately from the above lemma that
pie(g — t) is a continuous concave function on (—oo, \*¥, (D, g)) for every z € X, Hence
we get the following proposition:

Proposition 4.6.11. Let (D,g) be an adelic R-Cartier divisor on X. For any t,t' <
ABY (D, g) and 0 < e < 1, we have

D yg—(et+(1-er)) = €Dpgg—ty + (1 =€) Dygvr).-

Theorem 4.6.12. Let (D, g) be an adelic R-Cartier divisor on X and d = dim X. Then
Fpg)(t) is a d-concave function on (—oo, XY (D, q)), that is, Fp4(t)"/? is concave on

? max

(=00, A2Y (D, g)). In particular, Fip g (t) is continuous on R\ {\2 (D, g)}.

max max

Proof. By definition,
Fip,g)(t) = vol(Dy(g—))

for t < A (D, g). Since the algebraic volume is d-concave on a big cone, for any ¢, <

A2y (D, g) and 0 < e <1, we have
VOU(Dy(g—(et+(1-0))
vol(€Dyg—s) + (1 — €)Dyyg_in)d  (by Proposition 4.6.11)
1 1
€ vol(Dg—p)) @ + (1 — €)vol(Dyg—r)) 4
1
Flog) (1)1 + (1= ) Fipg)(£)7,

as desired. O

Fipg(et+ (1 —e)t')

v

Vv

Remark 4.6.13. In general, we cannot extend F(p 4 to a continuous function on whole R.
For example, let X = Pk = ProjK [Ty, T1|, 2 = Ty /Ty, D = {Ty; = 0} and zo, = (0 : 1). Let
g = logmax{1, |z|}. Then we have

0 (z+# 2x),
i —1) =
pa(g — 1) {1 (= 1)
for t < A2 (D, g) = 0. Hence we obtain that

ool ={y 40

4.6.4 Continuity of the arithmetic volume

First of all, we will prove the continuity of A2¥ (D, g) for an adelic R-Cartier divisor
(D, g).

Lemma 4.6.14. Let (D, g),(D’,¢') be adelic R-Cartier divisors on X. We have

M (D4 D' g+4") > XY (D, g) + Ay (D', g').

max max max
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Proof. For any integers n,n’ > 0, there are non-zero elements s € H°(nD) \ {0} and s €
HY(n'D’") \ {0} such that

5y < €7=028) and ]y < o020,
Since 52" ® 5" € H(nn/(D + D')) \ {0}, we have

155 © 5 gy < (Isllag)” (I lavg )" < " Ames(Pns)—mhmasta’ D)

which implies

1
_)\max<nn,(D + Dl)? nn/<g + g/)) 2

nn'

1
)\max(nDa ng) + _,)\max(n/Dla n/g/)'
n

S|

Since A2 (D, g) > Amax(nD,ng)/n, we get

max

AP+ D' g+4) = ,

1
/\max (TLD, ng) + _)\max (TL/D/, n/g/)'
n

S|

Taking a supremum with respect to n and n’, we complete the proof. O]

Proposition 4.6.15. Let D = (D,g),ﬁl = (D', ¢") be adelic R-Cartier divisors on X. We
assume D 1is big. Then A(t) := A2 (5+t5,) 18 a real-valued function on some open interval

max

(a,b) C R containing 0, and concave on (a,b). In particular \(t) is continuous on (a,b).

Proof. Since D is big, D + tD' is big for [t| < 1, which implies that A(¢) is definable on a
sufficiently small open neighborhood of 0. Moreover, using Lemma 4.6.14, we can prove the
concavity of A(t) by Lemma 4.6.10. O

Next, we prove the continuity of the arithmetic volume ;0\1() Let (D, g), (D', ¢') be adelic
R-Cartier divisors on X and we assume D is big. We set

(De,9¢) == (D, g) +e(D', ¢'),

and

0 (t > X2 (D, ge))-

max

Filt) = { Vol(De)ug—s) (£ < Ne(Der90)),

We remark that this function is well-defined if |¢| < 1 by Proposition 4.6.15.

Proposition 4.6.16. The function F.(t) converges pointwise to Fp g (t) on R\{A3Y (D, g)}

max

as |e| = 0. More precisely, for anyt € R\ {2 (D, g)}, Fc(t) is continuous with respect to

max

e on a sufficiently small open neighborhood of € = 0.

Proof. We first assume t > A»Y (D, g). By Proposition 4.6.15, there is 6 > 0 such that

max

XY (De, ge) < tif e < 0. Then F.(t) = F(pg)(t) = 0, which is required.

max



4.6. BIG ADELIC R-CARTIER DIVISORS 49

Next we assume ¢ < \2% (D, g). Similarly, there is 6 > 0 such that A\2Y (D, g.) > t if

max max

le| < 6. Then F.(t) is d-concave with respect to € on (—9,d), where d = dim X. In fact, by
Lemma 4.6.10, for any €,¢’ € (—4,9) and 0 < { < 1, we have

(D<6+(1—<)6’)u(9<e+(1—oe'—t) 2 ((De)ugge—t) + (1 = O)(De)u(g.—1)-

Therefore F(t) is d-concave with respect to € on (=0, §) because F.(t) = vol((De),(g.—+)) and

the algebraic volume is d-concave. In particular, F.(t) is continuous with respect to € on
(—0,0). O

Since F,(t) is monotonically decreasing with respect to ¢ and F,(0) is bounded, F.(t) is
uniformly bounded with respect to €, and

vol(D, g.) = (d + 1)/ F.(t) dt
0
by Theorem 4.6.7, we get the continuity of the arithmetic volume by bounded convergence
theorem:

Theorem 4.6.17. Let D = (D,g),D = (D',¢') be adelic R-Cartier divisors on X. We
assume D is big. Then vol(D + ¢D') converges to vol(D) as |¢| — 0.

4.6.5 Log concavity of the arithmetic volume
Firstly, we will prove some inequalities:

Lemma 4.6.18. Let a,b,p and € be real numbers such that a,b >0, p >0 and 0 < € < 1.
Then we have the following inequality:

(ea? + (1 — e)bp)% > ah'™ > min{a, b}.

Proof. 1If ab = 0, the assertion is clear, so we assume that a,b > 0. Moreover, the inequality
a‘b'=¢ > min{a, b} is also clear. Now, we will show the first inequality. Since log z is concave
on (0,400), we have

log(ex + (1 —€)y) > elogz + (1 —€)logy

for any x,y > 0. Substituting x for a? and y for 0%,

log(ea? + (1 — €)b?) > eloga? + (1 — €) log b’ <= log(ea” + (1 — e)bp)% > log ab'
= (ea” + (1 — )bP)r > ab'™,
as required. Il

Lemma 4.6.19. Let C be a convex cone. Let f : C — (0,400) be a non-negative d-
homogeneous function for some d > 0, that is,

flav) = a’f(v)

for any a >0 and v € C'. Then the following conditions are equivalent:
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(1) f is d-concave, that is,
flev+ (1 — )i > ef(v)i + (1 — o) (o)
for every v,v' € C and 0 < e < 1.
(2) flev+ (1 =€) > min{f(v), f(v')} for every v,v' € C and 0 < € < 1.

Proof. Firstly, we assume (1) and we can assume min{ f(v), f(v')} = f(v). Then we have
> ef(v)i +(1—e)f(W)e > flv).

Raising both sides to d-th power, we have

Flev+ (1= ') > f(v) = min{f(v), f(v')}.

Next we suppose (2). If we set

=

flev+ (1 —€)))

w = f(v *év w' = f(v *51/ €= f(v)é
fleyHo, 0 = F)TH, €= o B
we have
/I 1 /
ew+ (1 —ew = (v)5+f(v/)5<v+v)7

f
min{f(w), f(uw')} = 1.

By the inequality (2) for w,w’ and €, we have

=

(f(v)d + f)D) U (0 +0') > 1= fo+0) > (fo)T + f(o')a)
e=flo+v) > f)i+ f)a,

=

which implies the inequality (1) because f is d-homogeneous. O

Moreover, we will use the following inequality so called “Prékopa-Leindler inequality” (for
details, see [12]).

Theorem 4.6.20 (Prékopa-Leindler inequality). Let 0 < e < 1 and f,g,h : R* — [0, +00)
be measurable functions. We assume

hex + (1 —€)y) > f(z)gly)

for any x,y € R™. Then we have ||h||y > ||f|[5||g]|;™¢, that is,

o (o) (Los)”

where v 1s the Lebesgue measure on R™.
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Now, we start to prove the log concavity of \7(;1()

Theorem 4.6.21. The arithmetic volume \751() is (d + 1)-concave for d = dim X. More
precisely, for any big adelic R-Cartier divisors (D, g), (D', g"), we have

1

Vol(D + D', g + ¢) 71 > vol(D, g) @1 +vol(D', ¢') 7.
Proof. For 0 < e < 1, we set
(Dﬁagé) = E(Dag) + (1 - 6)(Dlagl)7

and

d+ 1)vol(D,,4— 0<t< A (D,g)),
Op. (1) ::{ (() + Dvol(Dyyg-1) (0 < (D, 9))

(otherwise).
Then, we have

vol(D, g) = [|©p,g 1, vol(D',g") = |O(wr,g)ll1, vol(De, ge) = ||O(p. 4|11 (4.6.3)
by Theorem 4.6.7. We claim that
O (€x + (1 = €)y) > Op.g)(2) O(prgn(y)' ¢ for any z,y € R. (4.6.4)

In fact, if # < 0,2 (D, g) < x,y < 0 or A& (D', ¢') <y, we obtain that O g (z) = 0 or

? max max

O, (y) = 0, so the inequality (4.6.4) is clear in this case. And if 0 < o < A2 (D, g) and
0 <y <A (D' ¢, it follows that

1z(ge = (ex + (L= €)y)) = ep=(g — ) + (1 = €)u=(g" — y)
for any z € XM which implies that

(D) (g —(eat(1-ey) = €Dpgg-a) + (1 =€) Dy

Since the algebraic volume is d-concave, we obtain

=
-

VOI((De)(ge~(ea+(1-up) * = € ol(Dyg—a))* + (1 = €)vol(Dj,(yr ).

By Lemma 4.6.18, we get

VOl((De) u(ge—(eo+(1-e) = VOUDyu(g—a)) VoL D)) ",
which is equivalent to the inequality (4.6.4). Therefore by Prékopa-Leindler inequality,
we have [|Op glli > [[Omollil|©m¢li™¢ By Lemma 4.6.18 again, it follows that
H@(De,ge) 1 Z min{||@(D,g)H1, ||@(D',QI)H1}7 Wthh iS the inequality

\70\1(D6, ge) > min{;(;l(D, 9), @(D', J)}
)

by (4.6.3). Since the arithmetic volume is (d + 1)-homogeneous by Corollary 4.6.8, we obtain
that

1

vol(De, g )T 2 € vol(D, )7 + (1 = eJvol(D', o)1,
by Lemma 4.6.19, which completes the proof. Il
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4.7 Ample adelic Cartier divisors

4.7.1 Plurisubharmonic Green functions

Let (D, g) be an adelic Cartier divisor on X. Let {g,}nez., be a sequence of Green
functions of D. We say that {g, nez., converges to g uniformly on X*" if the sequence

Hg - ganup ‘= sup |g(x> - gn(l‘)|

converges to 0.

Definition 4.7.1. Let (D, g) be an adelic Cartier divisor on X. We assume that D is
semiample. We say that g is plurisubharmonic if there is a sequence {e,},ez., of positive
integers and a sequence {V,}nez., of a finite-dimensional ultrametrically normed vector
space over a tirivially valued field K such that there is a surjective morphism f,, : V,, @ Ox —

Ox(e,D) and the sequence
1
{—log |1|‘5“°t}
6 n
n n€Z>0

converges to g uniformly on X", where 1 is a rational section of Ox (D).

Several properties can be observed for plurisubharmonic Green functions. But we only
recall them without proofs (for details, see [7] and [8]).

Proposition 4.7.2. Let (D, g) and (D', g’) be adelic Cartier divisors on X. We assume that
D and D' are semiample.

(1) If g and ¢' are plurisubharmonic, then g+ ¢’ is also plurisubharmonic.

(2) Let {gn}tnez-, be a sequence of plurisubharmonic Green functions of D. If {gn}tnez
converges to g uniformly on X, then g is also plurisubharmonic.

(8) The following conditions are equivalent:

(a) g is plurisubharmonic.
(b) ng is plurisubharmonic for all n € Z.

(c) ng is plurisubharmonic for some n € Zy.
Proof. See [6, Proposition 2.11] for their proofs. ]

We assume that Ox (D) is generated by global sections. Then there is a surjective mor-
phism f : H*(X,nD) ® Ox — Ox(nD) for all n € Z~,. Hence we have a quotient Green
function g,, of nD induced by (H°(X,nD),|-|l.y) and f.

Proposition 4.7.3 (c.f. [8, Proposition 2.2.22]).

(1) ng > g, on X,
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(2) 9m+4n Z 9m + gn ON X
(3) IFllng = lI-llg. on H*(X,nD).
Proof. See [7, Lemma 3.5] for their proofs. O

Finally we see that the canonical Green function of a semiample Cartier divisor is plurisub-
harmonic. Let (D, g) be an adelic Cartier divisor on X and we assume that D is semiample.

Proposition 4.7.4. If g is plurisubharmonic, then r*g is also plurisubharmonic for all r €
R<g.

Proof. Since g is plurisubharmonic, ¢ is the uniform limit of Green functions induced by
ultrametrically normed vector spaces (V, |||ln). Then r*¢ is the uniform limit of Green
functions induced by (V,,, ||-||7), so it is plurisubharmonic by definition. O

Proposition 4.7.5. The sequence {r*g}.er., converges to g3, uniformly on X** as r — 0.

Proof. We set u = g — g5, which is a continuous function on X?". Since r*g = r*(¢%, + u) =
9% + r*u by Proposition 4.5.1, we have

179 = gpllsup = [l tllsup = 7|2[|sup,
which completes the proof. O]
Proposition 4.7.6. The canonical Green function g5, is plurisubharmonic.

Proof. By replacing g by g,/n for some n € Z.q if necessary, we can assume that ¢ is
plurisubharmonic. By Proposition 4.7.4 and 4.7.5, g}, is the uniform limit of the sequence
{(1/n)*g}nez., of plurisubharmonic Green functions. Hence g¢¢, is plurisubharmonic by
Proposition 4.7.2. O

4.7.2 Ample adelic Cartier divisors

In this section, we assume that K is perfect.

Definition 4.7.7. We say that an adelic Cartier divisor (D, g) is vertically ample if D is
ample and ¢ is plurisubharmonic. Moreover, if Apin(nD,ng) > 0 for any sufficiently large
integer n > 0, (D, g) is said to be ample.

Remark 4.7.8. This definition is equivalent to the one in [8]. More precisely, we have
“Nakai-Moishezon’s criterion” for ample adelic Cartier divisors as follows: An adelic Cartier
divisor (D, g) on X is ample if and only if for any closed subvariety Y of X, the restriction
(Dly, glyan) of (D, g) on'Y is big, and ¢ is plurisubharmonic.

For the criterion of ampleness, we introduce the following invariant:
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Definition 4.7.9. Let (D, g) be an adelic R-Cartier divisor on X. We define
Vinin(D, g) := sup{t € R| Dyg—¢) = D}.

Proposition 4.7.10. Let (D, g) be an adelic Cartier divisor on X. We assume D is ample.
Then the following conditions are equivalent:

(1) For¥n >0, Aun(nD,ng) > 0.
(2) For¥n >0, Apin(nD,ng) > 0.
(8) Vmin(D,g) > 0.
Proof. (1) = (3) Since D is ample, there is ng € Z~( such that Ay, (noD,neg) > 0 and
Sym"(H"(X,nogD)) — H°(X,nneD)

is surjective for all n € Z~. Let € be a real number such that 0 < nge < Apin(noD, nog) and
g = g — €. Then we have Apin(noD,nog’) = Amin(noD, nog) — noe > 0. Let s1,..., 5, be a

basis of H°(X,noD) and we set C' = max{||s1|lnpg’s - - - » |Smllnog’} < 1. Since H°(X, nnoD) is
generated by {s{*,..., 8" }o 4. ta,=n, We have
Amin(nnoD, nngg’) > —nlog C (4.7.1)

for all n € Z+,.

Claim 1. There is a real number A € R such that Apin(nD,ng’) > A — (n/ng)log C for all
n e ZZO'

Proof. Since R = @~ , H°(X,nD) is a finitely generated graded S = @, , H*(X, nnoD)-
module, there is a generator my,...,m; of R over S. Let d; be the degree of m;. By the
equation (4.7.1), for each n € Z~,, we have a basis 1, ..., Z,;, of H'(X,nngD) such that
|Znjllnngg < C™ for j = 1,...,i,. Then H°(X,nD) is generated by elements of the form
x; jmy with ing + dp, = n. We set

.....

Then we have

3 1m0 g < |23 linog 1]y < C*llmillayg
= C(n—dk)/nonkHdw, < BC™™

for x; jmy € H*(X,nD). Since H°(X,nD) is generated by such an element, we obtain that
Amin(nD,ng’) > —log B — n/nglog C. O
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Since log C' < 0, there is N € Z~q such that A\yin(nD,n(g —€)) > 0 for all n > N, which
implies that
HY(X,nD) = F(H(X,0D), | luy-0) = HO(X,nDyy-0)

for n > N. Hence we have vol(D) = vol(Dyy—¢)). Since D > D,,—¢ and K is perfect, we
have D = D, 4—¢ by [11]. Therefore, we obtain that vy, (D, g) > € > 0.

(3) = (2) Let € be a real number such that 0 < € < vyin(D, g). Since D = D,(4—¢), we have
5]ln(g—e) < 1 for all s € H(X,nD) and n € Z-, which is equivalent to ||s||,, < e ™ < 1.
Thus (2 ) follows.

(2) = (1) It is clear. O

Corollary 4.7.11. Let (D, g) be an adelic Cartier divisor on X. We assume that D is ample
and g is plurisubharmonic. Then (D, g) is ample if and only if vmin(D, g) > 0.

Finally, we see the ampleness of (D, g) in terms of the height function defined by (D, g).

Proposition 4.7.12. Let (D, g) be an adelic R-Cartier divisor on X. Then we have

Proof. Firstly, we show that
ez (g5) = ord, (D) (4.7.2)

for all z € XM, Let f be a local equation of D around red(z). Then we have

Sloglfle Lo ordu(HE)
3

«(9p) =
’LL ( D) ge(nanﬂjan) t<§> ge(na1)7xan) ( )

= ord, (D).

Let a be a real number. For z € X we obtain that

. 9(§) — gp(§) —a+gp(§)
pelg—a) = .., 1
han (5) —a
_ . (D.g)
B 56(771311;&“) t(€)

+ ord, (D) = pe(h{p 4 — a) + ord,(D)

by the equation (4.7.2). Hence it follows that
Dyyig—a) = Ou(h?g,g)—a) +D.

Since 0 p(hzs —a) < 0, and 0, (hzs, —a) = 0 if and only if h?ﬂg) —a > 0 on X*, we have

min,c yan h(D,g)( ) = Vmin(D, g) O

By the above proposition, we have the following corollary:

Corollary 4.7.13 (Theorem B). Let (D, g) be an adelic R-Cartier divisor on X. Then
ha}}g >0 on X* if (D, g) is ample. In particular, a vertically ample adelic Cartier divisor
(D, g) on X is ample if and only if han )y >0 on DG



56 CHAPTER 4. ARAKELOV GEOMETRY OVER A TRIVIALLY VALUED FIELD

4.7.3 Plurisubharmonic approximation

In algebraic geometry, as a theorem related to the ampleness and bigness, there is the
Fujita’s approximation theorem. It states that the volume of a big divisor D can be ap-
proximated by the one of a ample divisor A such that D — A is effective. We expect that
a similar theorem holds for a trivial valued case. We only have a partial answer, that is,
the volume of an adelic Cartier divisor D = (D, g) can be approximated by replacing g by
a plurisubharmonic Green function ¢’ of D such that g > ¢’. We believe that it might be
useful for complete proof of Fujita’s approximation theorem.

Theorem 4.7.14. Let (D, g) be an adelic Cartier divisor. We assume that Ox (D) is gener-
ated by global sections. For each n > 1, let g, be the quotient Green function of nD induced
by (H°(X,nD),||-|lng)- Then we have the followings:

(1) hm A=Y (D, gn/n) = A2 (D, g).

(2) lim vol(D, g,/n) = vol(D, g).
n—-+o0o

(3) If D is ample and v (D, g) > 0, we have Vin(D, gn/n) > 0 for Vn > 0.

Proof. (1) By Proposition 4.7.3 (1), we have A>¥ (D, g,/n) < XY (D, g). By the definition

max max

of A% (D, g), for any € > 0, there is a positive integer N > 0 such that A\2¥ (D, g) — e <

Amax(nD,ng)/n for any integer n > N. Since Apax(nD, ¢n) = Amax(nD,ng) by Proposition
4.7.3 (3), we have

)\?IT;X(D;Q) — € S )\max(nDagn)/n S A?Ii};x(D’gn/n)? fOI' Vn Z N7
which completes the proof.

(2) If (D, g) is not blg, then we have vol(D gn/n) = vol(D g) = 0 for every positive
integer n > 0 because vol(D gn/n) < vol(D g) by Proposition 4.7.3 (1). So we assume
(D, g) is big. By Theorem 4.6.7, we obtain that

)\?xfgx(Dvg)

vol(D, g) = (d + 1) / vol(Dyy(g—s) dt.
0

In addition, the Green function of n.D induced by the surjective morphism H°(nD)® Ox —
Ox(nD) and ng —t for all t € R is g, —t. Hence, once we show that vol(D,g, /n)) converges
to vol(D,g)) as n — 0o, we get the required result.

Firstly, we can assume that (D, g;) is big by replacing D by mD for a sufficiently large
m >0 by (1). For any z € X1 we have ptp(gnim) > fte(gn) + fte(gm) for any n,m > 0 by
Proposition 4.7.3 (2). Hence {1,(gn) }n>1 is superadditive, which implies that there exists

Haloo) = 0 p1i(gn/n) = SUp f12(gn /7). (4.7.3)
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Since 11:(g1) < pz(gn/n) < p.(g) for all n > 0 by Proposition 4.7.3, we have p,(g,/n) = 0
for all but finitely many 2 € X, Therefore the R-Weil divisor

Dogi= Y pa(9o0)[{}]

zex @)

is well-defined by (4.7.3). Moreover, it satisfies that D, /n) < Do < Dy for all n > 0
by (4.7.3) and Proposition 4.7.3 (1), and vol(D,,/m)) — vol(Ds) as n — 400 because
of the continuity of the algebraic volume. On the other hand, for each n > 0 we have
H°(D,.) € H°(nDs) C H°(nD,y)). By Proposition 4.7.3 (3), we have H°(D,,.)) =
H(nD, ) for all n > 0, which implies @,,5, H*(nDs) = D, H(nD, ). Hence we
obtain that vol(Du,) = vol(Dyg)). So we get vol(D,g, /n)) — VOl(D,(g)) as n — +o00.

(3) Since Apin(nD,ng) = Anin(nD, g,,) for all n € Z~o by Proposition 4.7.3 (3), it follows
from Proposition 4.7.10. O]

Immediately we have the following corollary:

Corollary 4.7.15 (Plurisubharmonic approximation). Let (D, g) be a big adelic Cartier
divisor with an ample divisor D. For any € > 0, there is a plurisubharmonic Green function
g of D such that ¢ < g and L .

vol(D, g") > vol(D, g) — e.

Moreover, if vmin(D,g) > 0, we can choose ¢' such that (D, g') is ample.

Proof. The first assertion easily follows from Theorem 4.7.14 (2). The last one is given by
Corollary 4.7.11 and Theorem 4.7.14 (3). O






Chapter 5

Kawaguchi-Silverman’s conjecture
over adelic curves

Throughout this chapter, we fix a proper adelic curve S = (K, (£, A, v), ¢). For simplicity,
we assume that Qp = 0.

5.1 Conjecture

Let X be a smooth projective variety over an algebraic closure K of K and f: X --+ X
be a dominant rational map. We denote by I the indeterminacy locus of f and set

X (K) = {P e X(K)| f*(P) ¢ I for all n > 0}.

We take a height function hyx associated with some adelic Cartier divisor D on X whose
underlying Cartier divisor D is ample. Let h} := max{hy, 1}. First, we recall the arithmetic
degree.

Definition 5.1.1. For P € Xf(f), we define the upper and lower arithmetic degrees of P
with respect to f as

3=

& (P) = limsup b (f"(P))F,

n—o0

a;(P) = liminf b (f"(P)).

n—oo

Note that the above definitions are independent of the choice of D. In fact, let D’ be another
adelic Cartier divisor on X whose underlying divisor D’ be ample. We denote the height
function associated with D' by Ry, we set h'§ = max{h’,1}. By Corollary 3.2.7, there are
positive constants ¢; and ¢y such that

Clhl)—}_ S h} S Cgh/)—é_.

29
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Hence by taking a limit, we obtain that

3=

ay(P) = limsup by (f"(P))",

n—oo

a;(P) = liminf A5 (f7(P)).

n—oo

By definition, we have
1 <ay(P) <ag(P).

If a;(P) = a;(P), the arithmetic degree ay(P) of P with respect to f is defined as a;(P).
Here, we restate the conjecture over adelic curves:

Conjecture 5.1.2 (Conjecture C). Let S = (K, (Q, A, v), ) be a proper adelic curve. Let

X be a smooth projective variety over an algebraic closure K of K and f : X --> X be a

dominant rational map. For any P € X¢(K),
(1) The arithmetic degree as(P) = lim,, oo b (f"(P))Y™ exists.

(2) We assume that S has the Northcott property. If the orbit Of(P) = {f*(P)|n =
0,1,...} of P is Zariski dense, then we have oy(P) = 0.

In Conjecture 5.1.2 (2), we cannot drop the assumption that S has the Northcott property
even if f is a morphism. Here is an easy example:

Example 5.1.3. Let S be an adelic curve in Example 2.1.4. We assume that C' = P!, that
is, K = k(t). Then S does not have the Northcott property. In fact, hg(1 : a) = 0 for all
a€k.

Let f : P* — P! be the morphism defined by = + 2% for x € P!. Then we have
§; = 2. On the other hand, let n € P'(k) C P!(K) be an integer which is not divisible
by the characteristic of k. Then O;(P) = {n*"|m = 1,2,...} is Zariski dense in P* and
ap(n) =1<2=d;.

For another examples, see [28, Example 3.7].

5.2 Fundamental inequality

Firstly, we prove the fundamental inequality about the arithmetic degree and the dynam-
ical degree.

Theorem 5.2.1 (Theorem D). Let X be a smooth projective variety over an algebraic closure
K of K and f : X ---» X be a dominant rational map over K. For any ¢ > 0, there is a
constant C' > 0 such that

V> 0,VP € X;(K), hi(f'(P) < C(5; + )"hy(P).

In particular, we have
as(P) < éy.
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Proof. Let (D1,9p,),---,(Dy,gp,) be adelic Cartier divisors on X whose underlying divisors
are very ample and make a basis of N'(X)g where r = dim N'(X)g. Let H be an ample

divisor on X such that H + D; are ample for i = 1,...,r. We choose non-negative numbers
c1,...,c. which satisfy
T
H= Z Cka.
k=1

Let p : Y — X be a resolution of f with a projective variety Y such that f' = fopis a

morphism:
Y
N
X f

————— » X

We denote the exceptional locus of p by Exc(p). By the negativity lemma (for example, see
[21, Lemma 3.35]),

Zi = p*p*fl*Dl — f/*Dz
is effective and Supp(Z;) C Exc(p) fori=1,...,r. Weset F; := f"D; fori=1,...,r. Then

we can write

fori=1,...,r.

As Fi, ..., F, are linearly independent over R, we can choose Cartier divisors Fj 1, ..., Fj
on Y such that Fy,..., F, form a basis of N*(Y)g where s = dim N (Y )g.

We can take an ample Q-divisor H' on Y such that p*H — H' is effective and its support
is contained in Exc(p). In fact, let G be an effective p-exceptional divisor such that —G is
p-ample. Then, H' = —G/n + p*H is required one for sufficiently large n. We set

peFy = biyDi
k=1

for j=1,...,s. Let A and B be s x r matrix and r X s matrix respectively such that
z—j\ﬁ
1 3\
_ 1
A= 0 s
0 0
Vs
D1 1 C1 Z1
and B = (b;;). We set D = ( : ),F: ( : ),c: () and Z = ( : ) Then we have
Dr Fs Cr Zr

f*"D='AF, p,F='BD, f"H=(AcF),
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where (-, -) is the usual inner product. Let

E:=f"H - (Ac, F), (5.2.2)
Ej:=p.F;j — Y bg;Dy, (5.2.3)
k=1
for j =1,...,s. Note that they are numerically equivalent to zero.
By Corollary 3.2.6, we can find a Green function gy of H such that
h > 1,
(H.g51) 2 (5.2.4)
h(Hng) > |h(Di=9Di) )

fori=1,...,7. We define a Green function family g% of F; by g, = gp, o f' fori=1,...,r,
and take a Green function family gjmj of F; arbitrary for j = +1,...,s. Moreover, we can
fix a Green function family g,, r, of p.F}; for j =1,..., s such that

hz

!
i:9p« F;OP— 9,

)ZOOHY\Zz

fori =1,...,7 by Proposition 3.2.5. Let g, and gg; be Green function families of ' and E
which are defined by equations (5.2.2) and (5.2.3) for j = 1,..., s, respectively, that is,

Jo=guof = .
k=1
9E; = Gp.F; — Z bkj9p,,-
k=1

Let g}y be a Green function of H' such that kg ) > 1 and g,y be a Green function
of p*H — H' such that hg«g_ g ) = 0onY \ Exc(p). Since

Ty
M Hgmop) = N H-H' g, gy + Bar g ) + O(1),
there is a constant v > 0 such that
Mo guop) 2 g i g1y )+ Bb703,) = 7 (5.2.5)

By Corollary 3.3.4, there exists a constant C' > 0 such that

e < Cyfhi g, (526)
|h(Ej7gEj)’ < C\/ h(Hng%

forj=1,...,s.
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Let P be an element of X;(K). We remark that p~!(f!(P)) is well-defined and it is not
contained in Exc(p) for i > 0. For a positive integer n,

hrg)(f"(P)) = hpremgoy (07 (f" ) (P))
= higrmgory (0 (f*)(P)) — (Ac, by m) (p~ (S H(P)))
+ (Ac, hy, 7)) (f"H(P))
= (Ac,hp — hyp ) (0 (f"H(P))) + B gy (0 (f*1(P)))
+ (BAc, hp)(f"H(P)) + (Ac, hg) (f*H(P)) (by (5.2.2),(5.2.3))
= (¢, —hz)(p~ ' (/" 1 (P))) + hgg (0 ' (f"1(P)))
+ (BAc, hp)(f" 1 (P)) + {c,"Ahg)(f"'(P)), (by (5.2.1)) (5.2.7)

where hp = (hgy) for D' = p*p, F,p.F,F,D,E" and Z. Since hz, > 0 on Y \ Exc(p) for
t=1,...,r, we have

Pt (f(P))
< Wy (07 (77 (P)) + (BAe.hp) (77 (P)) + (e, Ahg) (f(P))
< O\ gy (07 (P4 (P)) + 12 el | BANA (g5 (F(P)

T r||cc||W(H,QH)(fn—l(P)), (by (5.2.4), (5.2.6))

where [|-|| means vector norm or matrix norm on real vector spaces. Moreover, since by g— g pry >

0 on Y \ Exc(p) and (5.2.5), it follows that

hitrg) (f"(P)) < vl BAl|hrg (f"~(P)) + TIICIIC\/MH,gH)(f”‘l(P))

+ O g (P21 (P)) + 7. (5.2.8)

For a linear map F : N'(X)g — N'(X)g, we denote by M (F) the representation matrix
of I with respect to D;’s. Then we have BA = M (f*). Let R(f) := max{1,r*|le|[|M(f*)|}.
By dividing the inequality (5.2.8) by R(f)™, we obtain that

hipgm (["(P)) _ r2lle]l| BA]
R(f)m = R()"

(7)) + g (P P)

( FyeV ran (f (P)

oS (P) )
S Ry e ”C\/ R

ht g (S (P))
+ C\/ R( + 7.

7
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By [26, Appendix Lemma A.1], there is a constant C; which is independent of n and P such

that . b
) < Cunhg ().
that is,
htr gy (f"(P)) < Cin® R(f)"P(1,g5) (P).- (5.2.9)

Let € > 0 be an arbitrary positive number. Since limy_,o, [|[M((f*)*)||*/* = 6;, there is a
positive integer £ > 0 such that

l%g{gﬂﬁwn<L (5.2.10)

By the inequality (5.2.9) for f*, we have

(;:(ng)k> (07 + )" hrr g (P).

Since R(f*) = max{1,7?||c||||M((f*)*)||} and by the inequality (5.2.10), it follows that

R(f*)
CET

h(H,gH)(fkn(P)) < Oyn? (

Hence there is a constant Cy > 0 such that

for all n. Then we obtain that
h(vaH)(fkm<P)) < Co(05 + E)knh(vaH)(P)-
By Corollary 3.2.7, there is a constant C'3 > 0 such that
hy < Cshimgnys  hiagy) < Cshk.
Hence we have
W (£ (P)) < s (F(P)) < CoCal67 + " ) (P) < CoC3(67 + )"y (P).
By the same argument as the proof after [26, Lemma 3.3], we get the conclusion. O

Remark 5.2.2. If f is a morphism, we have a little stronger inequality and we can drop the
assumption of smoothness of X (for details, see [26]).
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5.3 Morphism case
We prove (1) in Conjecture 5.1.2 when f is a morphism by using methods in [19].

Theorem 5.3.1 (Theorem E). Let S = (K, (2, A,v),¢) be a proper adelic curve. Let X be
a normal projective variety over an algebraic closure K of K and f : X — X be a morphism.

For P € X(K), we have
(1) @y (P) = a(P). In particular, the limit op(P) = limy, oo h% (f"(P))/™ ewists.
(2) The arithmetic degree ap(P) is an algebraic integer.
(3) The set {as(Q)|Q € X(E)} is finite.

Before starting proof, we recall the canonical height theory associated with Jordan blocks
in Pic(X)c introduced by [19].

Proposition 5.3.2 (c.f. [19, Theorem 13]). Let X be a complex number. Let Dy, Dy, ..., D; €
Div(X)c¢ be adelic divisors which satisfy the Jordan block condition in Pic(X)c:

[*Dy ~ ADy, f*Dy ~ XDy + Dy, ..., "Dy~ AD;+ D4,
where the symbol “~” means C-linearly equivalence.
(1) There exists a constant C > 0 such that
¥n > 0,YP € X(K), [hp(f"(P))| < Cn'max{|A[,1}"(|kp(P)| +1),
where hp(Q) = (hp,(Q), - .-, hp,(Q)) for Q € X(K).
(2) Suppose that |\| > 1. Then there exists a function hp : X(K) — CH' such that
hpo f=Ahp

and

hp =hp +0(1),

where

— >
> O
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Proof. (1) We set
EQ = f*bo - )\Eo,
Ei:= f*D; = (AD; + D; 1),

for 1 <i<land hg := (hg,,...,hg). Note that Ey, ..., Ej are linearly equivalent to zero.
By definition, the function hg satisfies that

Thus for n > 1, we can see

hp(f"(P)) = Ahp(f*"(P)) + he(f"'(P))
= Nhp(f"7*(P)) + Ahg(f"7*(P)) + he(f"~'(P))

= A"hp(P) + i A" R (f(P)).
k=0

By [19, Lemma 12(a)], we have
Yk >0, [A*]] <K' max{|)|,1}F. (5.3.1)

Since Fy, ..., I are linearly equivalent to zero, the height functions hg,, ..., hg, are bounded.
Hence there exists a constant C' > 0 such that

vQ € X(K), |he(Q) <C. (5.3.2)
Thus we obtain that
[hp(f"(P))ll
n—1
< [A"hp(P)[|+ D IA™* he(f5(P))|

k=0

< (L4 DIA[[[ho(P)] + i(l + DA [ lhe (S (P (by (5.3.1))

n—1

< (+ D' max{AL, 1Y [hp(P)| + (1 + 1) Y Cln — k — 1) max{|A, 13" *1 (by (5.3.2))
< (1 + Dnf max{|A|, 13" hp(P)]| + (I + 1)Cn max{|A[, 1}",

which completes the proof.
(2) We set

i’LD = hD —+ ZAinilhE 9] fn

n=0
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We claim that hp is absolutely convergent. We write A = Al + N, where [ is the identity
matrix. Note that N'*! = 0. Then we have

AT = [[(AL+ N)™|
l

TN\ —n—k pTK
Z(k>)\ N

o gs|(7)

< AT+ 1) max

< (14 DA

Hence we obtain that

oI Rp(fP) < CH DY AT Re((P))]

n=0

<(+1)2C) alAn

n=0

Since [A] > 1, 32°°  n!|A| 7! is convergent, which implies that hp is absolutely convergent
and hp — hp is a bounded function. Finally, we have

hpof=hpof+Y A" 'hgo [

n=0
=hpof+) A'hgof

n=1
:h,DOf—h,E—l-ZA_nhEOfn

n=0

=Ahp+AY A" hgo f" = Ahp.

n=0

This calculation works well because the series defining hp is absolutely convergent. O]

Proof of Theorem 5.5.1. Let H be an ample adelic Cartier divisor such that hz > 1. By [19,
Lemma 19], there is a monic polynomial Ps(t) € Z[t] such that

VD € Pic(X), Py(f*)(D) ~ 0.

Let d = deg P;(t) and V be a subspace of Pic(X)q spanned by H, f*H,...,(f*)*'H. Since
Pe(f*)(H) ~ 0,V is an f*-invariant and finite-dimensional subspace of Pic(X)q.
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Let Dig, D11, ..., Dipay, Dao - - -, Dipiey € Div(X)c such that the classes of these divisors
give a basis of V' and the associated matrix f*|y is the following Jordan normal form:

Ay
As
Ay

where A; is a Jordan block of size p(i)+ 1 such that (A; — A ,)4+1)?P+! = 0 for the eigenvalue
Ai € C, the identity matrix I,;41 and 1 <4 < k. Then the above divisors satisfy that

f*DiO ~ )\zDzO

and
[ Dij ~ \iDij + D; jq

forall 1 <i<rkand1l<j<p(i). We fix Green function families of these divisors.
By relabeling these divisors, we can assume that

Al 2 o 2 2 A6 > 12 Agia| 2o 2 [A].
By Proposition 5.3.2(2), there are canonical height functions BD”. for 1 <1 < o such that
hp,, = hp,, +O(1)
and

I, (f"(P)) = (Z) A hi,, (P). (5.3.3)

k=0
On the other hand, for o < ¢ < k, there exists a constant C' > 0 such that
|hp,, (F*(P))] < Cn!
by Proposition 5.3.2(1) and |);| < 1. Hence we have

limsup |hp,, (f"(P))]

n—oo

3=

<1 (5.3.4)

Firstly, we assume that there are non-negative integers 1 < ¢ < o and 0 < 5’ < p(i) such
that R R
hp, (P) = hp, (P) =0 (5.3.5)
for 1 <i<i—1,0<j<p@)and 0 <k < 7, and iLDi,j,(P) # 0. Then by the equation
(5.3.3), we have

-/

J
by (PP = 3 ()N (P) = Al (P

k=0
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By a similar proof of [19, Lemma 18|, we obtain that

1

ap(P) > hmmf |h* (P ))|% > lim inf VA}Di,J_,(f”(P)) —O()|»
= liminf [N}/, ,(P) — O(1)]n = |Ag].

Here we use the assumption that [Ay| > 1 and iLDi,j,(P) # 0.
We write the ample divisor H defining V' as

HN E CijDij
,J

where ¢;; € C. Since |Ay;/| > 0, there exists a positive number € > 0 such that € < [A\y;|. By
Proposition 5.3.2, we have

|, (f"(P)] < 0”@ \[™) (5.3.6)
for 1 < i <. Moreover, it follows from the inequality (5.3.4) that
|hp, (f"(P))] = O((1 +€)") (5.3.7)
for 0 < ¢ < k. Then we obtain that
= Z%‘hﬁij(f"(P))
o p(d) & p(9)
= cihp, (1P + DY cihp, (f1(P))
i=1 5=0 i=o+1 j=0
o pi)
=Y ) cihp, (f(P)+O(1) + O((1+€)") (by (5.3.7))
i=1 7=0
-y Z%hDU )+ 0((1+6)") (5.338)
=1 7=0
o p(d)
=Y cihp, (f(P) +O((1+6)")  (by (5.3.5))
i=i’ 7=0
o pi)
— ZZthDu )+ O((1+¢€)")
i=i’ =0

< i OmPINM +0((1+€e)™) (by (5.3.6)).

i=1'

Since |Ay| > -+ > |\s| and € < |\y| — 1, we have

h(f"(P)) < O(n”X3)
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for some positive integer p > 0, which implies that
ar(P) < [Av]
because [Ay| > 1. Hence in the case of }ALDZ_/J_,(P) # 0 for some 7', j', it follows that

ap(P) = lim hy(f*(P))" = [As].

n—oo

Finally, we assume that

Vi,j, hp,,(P)=0,
which implies that R

by the equation (5.3.3). Then by the inequality (5.3.8), we have

hg(f"(P)) = O((1 + €)").

Hence we obtain that
a(P) = limsup hyg (f*(P))» < 1+e.
n—oo
Since € is an arbitrary small positive number, we get @;(P) < 1.

The above discussion says that the arithmetic degree oy exists and is equal to 1 or the
absolute value of some eigenvalue of f*[,. Since Py(f*) annihilates Pic(X)g, the minimal
polynomial of f*|y divides Pf(t) € Z[t]. Hence the arithmetic degree is equal to 1 or the
absolute value of some root of P;(t), which is an algebraic integer. ]

5.4 Simple case

In this section, we prove Conjecture 5.1.2 for the simplest case: f is a surjective morphism
and the Picard number of X is equal to one.

Theorem 5.4.1 (Theorem F). Let S = (K, (2, A,v),$) be a proper adelic curve. Let X be
a normal projective variety over an algebraic closure K of K such that dim N'(X)g = 1 and
f: X — X be a morphism. Then for any P € X(K), the arithmetic degree o ;(P) exists and
is equal to 1 or §¢. Moreover, if S has the Northcott property and the orbit Of(P) is infinite,

we have oy (P) = dy.

Proof. 1f O¢(P) is finite or §; = 1, then it follows from the definition and Theorem 5.2.1 that
a;(P) = 1. Hence we assume that O;(P) is infinite and §; > 1. Let H be an adelic Cartier
divisor such that H is ample and hgz > 1. By Theorem 5.2.1 again, we have ay(P) < dy.
Thus it is sufficient to prove the opposite inequality « f(P) > §;. Since dim N*(X)g = 1 and
f is a morphism, we obtain that

(f"YH=(f)"H = o H



5.4. SIMPLE CASE

71

for all n > 0. We set E := f*H — 6;H, which is numerically equivalent to zero. We define
a Green function family gg of E by the definition of E. By Corollary 3.3.4, there exists a

constant C > 0 such that

VQ € X<F)’ ‘hF(Q)l <C \% hﬁ<Q>v

where E = (E, gg). Since d; > 1, we can fix € > 0 such that

\/6f+€<5f.

By Theorem 5.2.1, there exists a constant C’ > 0 such that

vk >0, hg(ff(P) < C'(0; + ) hg(P).

Firstly, we prove the following claim:

Claim 2. For any Q € X(K), the limit

; _ o (@)
hx(Q) = lim BT

exists. Moreover, hy satisfies that

VQ € X(K), hx(f(Q)) =drhx(Q)

and there exists a constant C"” > 0 such that

VQ € X(K), |hx(Q) — hgz(Q)] < C"/hz(Q).

Proof. Let m,n be non-negative integers such that m > n. Then we have

ha(F(Q) hH(f”(Q))' _| s matQ) hH<fk—1<@>>'
5? 5? k=n+1 5’; 5];71

m

k=n+1
m

= > 5 (@)
!

k=n+1

gzéwww>

k=n+1

< Xm: C(S_\/@ <\/5f—i—e)k_

k
k=n+1 f

<3 % I (FHQ) — (7))

(by (5.4.1))

" by (5.4.2)).

(5.4.1)

(5.4.2)
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Hence we obtain that

ha(FQ)  ha(f Q)| ove & (VErEe\
57 - 7 ‘g 5, n§1< 5 ) . (5.4.3)

Because of the choice of €, the right side of the inequality (?.4.3) converges to zero as m,n —
oo, which shows that hx(Q) exists. The second equation hx(f(Q)) = drhx(Q) immediately
follows from the definition. By taking m — oo and n = 0 in (5.4.3), we complete the
proof. O]

By Claim 2, we have

hi (" (P)) = hx (f*(P)) = C"/her(f*(P))

0¢hx(P) = C"\/hy(f"(P)).

It follows from the inequality (5.4.2) that

hi(f*(P)) > 67hx (P) — C'\/C"(8; + €)hyg(P). (5.4.4)
By definition, we obtain that iy (P) > 0. If hx(P) = 0, by the inequality (5.4.4), we have

0= hx(f"(P)) = hg(f"(P)) = C"\/h (f*(P))-

Hence we get hz(f"(P)) < C”? for all n, which implies that a;(P) = 1. We assume that

hx(P) > 0. Since \/0r 4+ € < &g, by taking n-th roots of the inequality (5.4.4) and letting
n — oo, we have )
a(P) = liminf hg(f"(P))» > d;.

n—o0

Finally, if S has the Northcott property, the condition that Of(P) is infinite implies that
the height hz(f™(P)) is not bounded above by [8, Proposition 6.2.3]. O

5.5 Regular affine automorphism case

Let us recall the definition of a regular affine automorphism, due to Sibony (for details,
see [35]).

Definition 5.5.1. Let f : A® — A" be an automorphism. By abuse of notation, we also
denote by f and f~! rational maps P"--+P" which is the extensions of f and f~!, respectively.

(1) The degree of f is the maximal degree of defining polynomials of f.

2) Let Iy and I;-1 be the indeterminacy loci in P" of f and f~!. We say that f is a reqular
f f
affine automorphism if Iy N 1p—1 = .
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Theorem 5.5.2 (Theorem G). Let S = (K, (Q,A,v),¢) be a proper adelic curve with the
Northcott property. Let f : A" — A" be a regular affine automorphism of degree d > 2 defined
over an algebraic closure K of K. We denote by f' the restriction of f onto P™\ A™. Then

for P € P"(K)y, we have

1 (Of(P) is finite),
ap(P) =< 38; (O4(P) is infinite and P € A"(K)), B
dp (Of(P) is infinite and P € (P™\ A)"(K)y).

Before proving Theorem 5.5.2, we extend the canonical height theory of regular affine
automorphisms in [17].

Proposition 5.5.3 (c.f. [17, Theorem 6.3]). Let S = (K, (2, A,v),¢) be a proper adelic
curve with the Northcott property. Let f : A" — A" be a regular affine automorphism of
degree d > 2 defined over K. Then for any P € A™(K), the limit

i ooy i tEU(P)
P = T

exists. Moreover, we have

~

h(P) =0 <= O¢(P) is finite.

Proof. We set A" = Spec K[T1,...,T,] and P* = Proj K[Ty,T},...,T,]. Let H = {T = 0}
be an ample divisor on P and g = {gy }yeq, be a Green function family of H defined by

gx(T) = log maX{’Tl)’xv |T1’x’ cee ’Tn’x}

for x € Q. It follows from the definition that

b FH(P)) = [ ogmax{1 (Pl [fua(P} (@)

for P € A"(K), where f* = (fi,..., fax) for k> 1. Hence we have
h

__( £k
PplfP) /QK%logmax{L FrPl o s (P} v,

For each x € (5, the limit
o1
Gy (P) = lim —logmax{L, | fix(P1)lx: o [fur(P)lx}

exists by [17] if y is non-Archimedean and [35] if x is Archimedean. To complete the proof,
we need to estimate G, more precisely. We write f = (fi1,..., fo1) : A" = A" as

fi,l = Z CLi’aTa (Z: 1,...,n),

a€l|al<d
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where I = Z%,, and for a = (au,...,an), o] = a1 + -+ a, and T = T --- T, Note
that we have

CA(P) = I g, (7*(P))

and

ha(P) = [ o(P) weldv).
O
Now we start to estimate G,,.
Firstly, we assume that x is non-Archimedean. By the stronger triangle inequality, we
obtain that
(Pl < mac{losl| P} < masx{ [P} mase{asal )

- la|<d
for each 4, where |P|, = [Py[$* - - - [P,|3". Hence it follows that
9x(f(P)) < logmax{l, [P} + logmax{l, [a;al}
< log miax{l, \R]i} + log 11;13}({1, @iy }
= dg,(P) + log Hz'lgx{l’ |@ialy}s

which implies that

1
GX(P) < gx(P) + 1 logn}%éx{l, |ai,a|x}-

d —
Next, we suppose that x is Archimedean. This case is slightly complicated. By the triangle
inequality, we have

fia(P) < D laialy Py < maX{IPO“I } D laialy

la|<d la|<d
1
< maX{l |P\ }- Z <‘7 - >max{1, |@ialx}-

Hence it follows that

0 f(P) < dgy(P) +logmax(1, aialy} + logz (),

which implies that

1
Gy (P) < gy(P) + ; logmax{l | aly }—|—

d—

J+n—1
1 :
w3 ()
By the above discussions, we conclude that

GX(P) < gx(P) +

1
T logng’%éx{l, @il + Clo
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where C' = - log ijo (" 71). Since v(Qs0) < 00, the right side functions are v-integrable

n—1
on 2. Hence we obtain that
- h(fNP) 1
Jim PTG = i [ lommas(L (P s P vl

1
= [ Jim o max{Lfia(P)l .. s P ()
Q? — 00

= | Gy(P) vg(dx)

Qx

by the Lebesgue’s dominated convergence theorem.
The last assertion is given by a similar proof of [15, Theorem 4.2]. O

Proof of Theorem 5.5.2. 1f O;(P) is finite, it follows from the definition that a;(P) = 1.
Hence we assume that Of(P) is infinite. Firstly, let P be a K-rational point of A". By
Proposition 5.5.3, we have

k—o00 dk > 0.
Hence there exists an integer /N such that
hi(f5(P)) _ hy(P)
k>N >
Vkz N, dk - 2

Then we get

==

k—o0 k—o0

a;(P) = liminf hﬁ(fk(P))% > lim inf (@dlﬁ =d,

which implies that a,;(P) > d;. Note that d = d;. By Theorem 5.2.1, we obtain that
Oéf(P) = (Sf. o

Next we assume that P € (P \ A")(K). We write X = I;-1. By abuse of notation, we
also denote by f’ the restriction of f onto X, which is a morphism since ;N X = (). By [18,
Proposition 9], f is surjective and f(P) € X (K). Let p : X — X be the normalization of X
and f: X — X be the induced morphism by f’. Let D be an adelic Cartier divisor on X
whose underlying Cartier divisor is ample. Since p is a finite morphism, p*D is also ample.
Let Q € p~*(f(P)) € X(K). Then we have

hy (@) = b o FH(Q)) = hp(f*(f(P))),

which implies that a7 (Q) exists if and only if oy (f(P)) exists, and that a7 (Q) = ap(f(P))
if they exist. Moreover, since the dynamical degree is a birational invariant, we have 6y = 9 -
By the above discussion, we can assume that X is normal. By [18, Proposition 9] again, we
have a surjective morphism P! — X where [ = dim X. Hence we obtain that dim N'(X) =
dim N'(PY)g = 1. So it follows from Theorem 5.4.1 that a(f(P)) = d;. By choosing a very
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ample divisor H on P" which is also very ample on X for computing the arithmetic degree,
we have

ay(f(P)) = ap(f(P)) = dp.
Finally, we obtain that

ar(f(P)) = lim h(f*1(P))*

k—o0
= tim (g (PP e)
= lim A (f*(P))* = ay(P),

which completes the proof. O]

5.6 Surface automorphism case
In this section, we consider the case of surfaces.

Definition 5.6.1. Let X be a smooth projective surface over a field and f: X — X be an
automorphism. Let C' be an irreducible curve in X. We say that C'is f-periodic if f*(C) = C
for some n > 0. We denote the union of all f-periodic curves in X by Fy.

Theorem 5.6.2 (Theorem H). Let S = (K, (Q,A,v), ) be a proper adelic curve with the
Northcott property. Let X be a smooth projective surface over an algebraic closure K of K

and f: X — X be an automorphism. Then for P € X(K)¢, we have

ar(P) = 1 (O4(P) is finite or P € E4(K)),
d 5¢ (O4(P) is infinite and P ¢ E;(K)).

To prove this theorem, we construct the canonical height function on X in several steps.
These proofs are the extension of ones in [16].

Proposition 5.6.3. Let X be a smooth projective surface over a field and f : X — X be an
automorphism with 6y > 1.

(1) There are non-zero nef classes vy, v_ € N (X)r such that
[ (vy) =6pv4,  fr(vo)= 5;1y_.

(2) We have (vy)? = (v_)*> = 0.

(8) Let v:=v, +v_. Then we have v is nef and big. Moreover,

F@)+ () w) = (6 + 05 v
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Proof. (1) Firstly, we consider the eigenvalues of f*. By the Hodge index theorem, the
signature of N*(X)g is (1,p — 1). Hence by [29, Lemma 3.1], f* has at most one eigenvalue
A such that |A| > 1. Since d is the maximum of absolute values of eigenvalues of f*, we have
A = d;. By the same way for (f~1)*, the set of eigenvalues of f* is

{(Sf,é;l,Oél, e ,C(l},

where |a;| =1 for all 4.

Let B € N*(X)r be an ample class. Let 1/, be an eigenvector of f* with eigenvalue ;.
Since dy is the only one eigenvalue of f* whose absolute value is greater than 1, the sequence
{(f*)"(B)/0%} converges to cv/, for some ¢ # 0 as n — oo. We set vy = ¢/, which is
nef because (f*)"(8)/d% is ample for all n. By similar way, we can take nef class v_ as the

eigenvector of f* with eigenvalue (5]71.
(2) We have

0Hs)? = (F (1)) = (v2)?,

which implies that (v, )% = 0. Similarly, we have (v_)? = 0.
(3) Let o, 91, ..., Yn be the basis of N'(X)g such that

(z,2) =1, (yi,us) =—1, (x,9;) =0 (foralli), (y;,y;) =0 (fori# j).
We set

vy =ax + by + - + b,
vo=dzx+by+ -+ b, Ym.

and
y=biyi+ - +bpYm, Y =byi+- -+, Yn.

Since v4 and v_ are nef, we have a > 0 and a’ > 0. By (2), we obtain that
(1) = (az +y)*) = @® + (y*) = 0,
which implies that (y?) = —a?. Similarly, (y"?) = —a. Again by (2), we get
(V%) = (V3) + 2(v, v) + (2) = 2(vy,v-) = ad' — g - 7,
where g = (by,...,bn), ' = (V),...,0,) and g - g’ = byb] + - -+ + by, which is the usual

inner product of a real vector space. If g -9y’ < 0, there is nothing to prove. We assume that
y -y > 0. By the Cauthy-Schwartz inequality, we have

99 <V@ 9@ 7)=V(-w))(-u?) = Va2a? = ad.

Hence it follows that

(V) =ad —g- -9 >ad —ad =0.
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Since v, and v_ are linearly independent, this inequality is strict. Thus v is big. Finally, we
have

@)+ () ) = o)+ o)+ () () + () ()
=0y + 5;1V_ + 5;114 + s
= (05 + 07 ) (v +vo) = (65 + 07,

as required. O

Proposition 5.6.4. Let X be a smooth projective surface over a field and f : X — X be an
automorphism with 6y > 1.

(1) Let v € NY(X)r be a nef and big class in Proposition 5.6.5. Let C be an irreducible
curve on X. Then C is f-periodic if and only if ([C],v) = 0.

(2) There are only finitely many f-periodic curves on X.
Proof. See [16, Proposition 3.1] for their proofs. O]

Proposition 5.6.5. Let X be a smooth projective surface over a field and f : X — X be an
automorphism with 6y > 1.

(1) There are R-Cartier divisors Dy and D_ on X such that
[Di] =ve, f*(Ds)~g 05D
(2) We set D =D, + D_. Then we have
(D] =v, f(D)+(f ) (D) ~r (0 +0;)D.

Proof. See [16, Lemma 3.8] for their proofs. O

Proposition 5.6.6 (c.f. [16, Theorem 5.2]). Let S = (K, (2, A,v),¢) be a proper adelic
curve with the Northcott property, X be a smooth projective surface over an algebraic closure
K of K and f : X — X be an automorphism with 0 > 1. Let D be a nef and big R-Cartier
divisor in Proposition 5.6.5 and E; be the union of all f-periodic curves on X. Then there
1s a Green function family g of D which satisfies the following properties:

(1) VP € X(K), hwpg(f(P))+hwg(f~ (P) = (6f + 57 Yhp.g(P).

(2) VP € By(E), g (P)=0.

(3) ¥P € X(R), hepy(P) > 0.
(4) For all positive real numbers 6 and C, the set
{P e (X\E)E) | hpy(P) < C.[K(P): K] < 6}

18 finite.
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(5) Let P € (X \ Ef)(K). Then hp.g(P) =0 if and only if O;(P) is finite.
Proof. (1) Let Dy and D_ be nef R-Cartier divisors in Proposition 5.6.5. Then we have
f(Dy) ~r 0;Dyy (f7H)"(D-) ~r 65D (5.6.1)

Let Dy = (D4, g.) and D_ = (D_,g_) be the canonical compactifications of D, and D_
with respect to f and f~!, respectively (see Section 3.3 for notations). By the equations
(5.6.1), we have

hg, (f(P) = 6thp (P), g (f(P)) =d;'hp, (P).
We set D := D, + D_. Then the height function h3 clearly satisfies (1).

(2) Let P be a K-rational point of E;. Let C' be an irreducible component of E such
that P € C(K). Since C is f-periodic, we have f"(C') = C for some n. Let D’ be an
R-Cartier d1v1sor on X which is R-linearly equivalent to D and Supp(C) ¢ Supp(D’). We
set L:=D |c. Let ¢ : C' — C be the normalization and L := ©*(L). Then a morphism f"
induces an automorphism f" : C — C. Tt follows from the equations (5.6.1) that

FUL) + f(L) ~r (07 + 677 L,

which implies that L~ 0 by [16, Lemma 5.3]. Hence the height function hy on Cis a
bounded function. Moreover, this height function also satisfies the equation in (1), we have

hp(P) = hg(P) = 0.
(3) By (2), it is sufficient to show that
VP € (X \ Ef)(K), hp(P)>0.

By [16, Proposition 1.3 (2)], there is an effective divisor Z and sufficiently small ¢ > 0 such
that Supp(Z) C Supp(Ey) and D — eZ is ample. Let gz be a Green function family of Z.
By Proposition 3.2.5, there is a constant ¢; such that

VP e (X\E}K), hzg, > ci. (5.6.2)
Moreover by Corollary 3.2.6, there exists a constant c, such that

VP e X(K), hp—ehizg, > co
Then by (1), we have

1 n —n
hp(P) = e (bl (P)) + b (P)
1 " " .
= 5 5o (D)) = ez (7 (PD) + el (1 (P)

+ (hp(f 7 (P) = hz,g) ([ (P))) + €hzg,) (f"(P))}
2(ec1 + )
0 407"
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By letting n — oo, we get the conclusion.

(4) Let P € (X \ Ef)(K) such that hi; < C and [K(P) : K] < 6. Then by the inequality
(5.6.2), we have
hﬁ(P) — Eh(Z,gZ) S C - €Cy.

Hence we obtain that
{P e (X\Ef)(K)|hpg(P) < C[K(P): K] <4}
C{P € X(B) | hp(P) ~ ez, < C — eer, [K(P) : K] < 6},
Since D — €7 is ample, the latter set is finite by Proposition 3.2.8.

(5) Let P € (X \ Ef)(K). Firstly we assume that h5(P) = 0. Then by (1) and (3), we
have h(f™(P)) = 0 for all n € Z, which implies that
Of(P) C {P € (X \ Ef)(K) | hipg)(P) < 0,[K(P) : K] <6}

for some §. Hence by (4), the set Of(P) is finite. Conversely, we suppose that O(P) is
finite. Then we can find some integer n such that f"(P) = P. By (1), we conclude that
h5(P) = 0. O

Proposition 5.6.7 (c.f. [16, Proposition 5.3]). We use the notation in Proposition 5.6.6.
(1) VP e X(K), hp, (P)>0 and hy (P) > 0.
(2) For P € (X \ E;)(K), we have

Proof. (1) By Proposition 5.6.6 (3), we have

hp, (P)=6;"hp, (f"(P))
=6, "(hp(f"(P)) — hp_(f"(P)))
> —0;"hp_(f"(P)) = —5 *"hp (P).
By letting n — oo, we obtain that h5+(P) > 0. Similarly, we get hy (P) > 0.
(2) Firstly we assume that hp (P) = 0. Then we obtain that
ha(f*(P)) = hp_(f*(P)) = 0;"hp_(P).
Hence it follows that
Os(P) c{Q € (X \ Ef)(K) | hp(Q) < hp_(P),[K(Q) : K] < [K(P) : KI}.

By Proposition 5.6.6(4), the set O(P) is finite, which implies that h1(P) = 0 by Proposition
5.6.6 (5). Moreover we have hy (P) = 0. Similarly, hy (P) = 0 implies that h5(P) =
hp, (P) = 0. Finally, we assume that hy(P) = 0. Since h(P) = hp, (P) + hp (P), we
clearly get hp, (P) = hp_(P) =0 by (1). O
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Now, we start to prove Theorem 5.6.2.

Proof of Theorem 5.6.2. 1f 6y = 1 or Of(P) is finite, we clearly get af(P) = 1. Hence we
assume that dy > 1 and Of(P) is infinite.

We suppose that Ey is nonempty. Let fp : Ef — E; be the restriction of f on Ej.
We write Ey = |JC; where C; is an f-periodic curve. By Proposition 5.6.4 (2), this union
is finite. Hence we can find some integer m such that f € Aut(C;) for all i. Since any
automorphism of a curve has dynamical degree 1, we have aym(P) = asm(P) = 1 for all

P e E¢(K).

We assume that P ¢ E;(K). Let D, D, and D_ be adelic R-Cartier divisors in Proposi-
tion 5.6.6, and H be an adelic Cartier divisor on X whose underlying Cartier divisor is ample
and hz > 1. By Corollary 3.2.7, we have

o (P) = minf g (£(P))/"
> liminf hy;(f"(P))""
= liminf (i (/"(P)) + iy (7" (P))"”
= lim inf(3}his, (P) + 87 "h_(P))""

=5y

Hence we obtain that ay(P) = d;. Note that hp, (P) > 0 by Proposition 5.6.7. O
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