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Abstract

Level set numerical approach to anisotropic mean
curvature flow on obstacle

Siddharth Gavhale

The objective of this work is to deepen the understanding of the anisotropic multiphase
mean curvature flow problem in the setting allowing for topological changes where math-
ematical analysis is still developing. The motivation also comes from applications such
as the manufacturing of nanopatterned substrates, where the precise control of the size
and location of forming nanoparticles is essential to boost the functionality of the prod-
uct. Here particles with anisotropic surface energy evolve on a substrate towards a shape
with minimum surface energy experiencing topological changes.

We deal with the particular case of obstalce problem, which leads to a degenerate, non-
linear partial differential equation. This thesis is divided into three main parts: literature
review (Chapters 1, 2), methodology (Chapter 3) and new findings (Chapters 4, 5).

The first part investigates the anisotropic mean curvature flow via a two-phase problem.
Further, we discuss implicit and explicit approaches to solve the governing differential
equations. We discuss the existence of solutions singularities and summarise known
results and properties of the flow. The second part introduces a level set-based numerical
method, namely, the thresholding method, to solve governing PDEs of the flow, which
can be realized by a suitable convolution kernel. Originally this method was developed
for isotropic two-phase problems, which leads to convolution with Gaussian kernel. The
extension to the anisotropic case was theoretically addressed by introducing anisotropic
kernels by several researchers.

The third part starts with the first contribution of the thesis, which is based on numerical
findings:
˛ We perform a systematical investigation of the numerical properties of the anisotropic

kernels in terms of error behaviour, convergence order, CPU time, etc., through a series

of numerical comparison tests using different types of anisotropies. Our findings assess

the numerical behaviour of kernels in view of multiphase or obstacle problems.



Employing the knowledge obtained through the numerical tests, in the final part, we
proceed to the analysis of the core problem, i.e., obstacle problem. As a starting point,
numerical approximation of the problem is addressed. For the obstacle problem, the
explicit approach was implemented by Wang et al. They use surface diffusion as the
evolution law and implement a finite element scheme to investigate the resulting shapes
of anisotropic particles. However, the explicit approach inherently cannot cope with
possible topological changes unless their appearance and nature are apriori known.
To resolve the question of topological changes, Xu et al. in developed a numerical scheme
based on the implicit approach. Namely, they solved the obstacle problem using level set
approach, but their scheme pertains only to the isotropic energy case. The motivation of
this work comes from the absence of methods for obstacle problems that could handle
both anisotropic energies and topological changes.

˛ We construct a new thresholding algorithm for the realization of mean curvature flow

on obstacles in the anisotropic setting where interfacial energy depends on the orienta-

tion of the interface. The thresholding method is based on a linearization of the original

problem leading to an anisotropic diffusion problem, which can be solved by convolution

of the characteristic function of a phase with a suitable convolution kernel. The convolu-

tion kernels were developed in previous studies. This type of scheme treats the interface

implicitly, supporting the natural implementation of topology changes, such as merging

and splitting. Further, we modify the algorithm to improve its performance at contact

points by implementing a time-scaling.

As an important property, we rigorously prove the stability of the algorithm. Moreover,

we provide a detailed report on the numerical properties of the proposed algorithm. In

this way, the present work closes the gap between works of Wang et al. and Xu et al. and

allows for simulations of obstacle problems involving topology changes, as demanded in

applications.

Codes: All the codes generated during this research are available here and at the link

https://github.com/siddharthgavhale/ThesisCodes

Keywords: interface evolution, anisotropic energy, mean curvature flow, obstacle prob-
lem, thresholding method, convolution kernels, topology change, numerical analysis.
Mathematics Subject Classification 2020: 53E10, 65K10, 74P20
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Introduction

Motivation

In coating techniques such as thermal spraying, it is important to predict the dynamics
of spreading of impinging particles [7]. Likewise, in the manufacturing of nanopatterned
substrates, the precise control of the size and location of forming nanoparticles is essential
to boost the functionality of the product [44]. These phenomena have the following fea-
tures in common: Particles with anisotropic surface energy evolve on a substrate towards
a shape with minimum surface energy. During the motion, particles may experience topo-
logical changes such as merging of two or more particles or splitting into several smaller
parts. Understanding the interaction of a family of particles with anisotropic energies
undergoing topological changes is essential to control the phenomena mentioned above.
Similar problems appear in a number of other fields of applied science and engineering,
such as cell biology or material science [69, 2, 71].

Formulation of the mathematical problem

To address the above phenomenon in mathematical terms, we consider a particle as a
closed set P on a completely rigid substrate S surrounded by a vapour region V , see
Figure i. Denoting ΓSP ,ΓSV and Γ the interface between substrate–particle, substrate–
vapor and particle–vapor regions, respectively, the total interfacial energy of this system
is given by

EpΓq “

ż

Γ

γPV ds`

ż

ΓSP

γSP ds`

ż

ΓSV

γSV ds, (1)

where γSP , γSV and γPV signify the interface energies of the corresponding interfaces.
There are several possible ways to model the evolution of such a particle towards a lo-
cal minimum of the energy E. Here we adopt the most straightforward evolution law,
namely the L2-gradient flow. Since this flow does not preserve the enclosed volume, a
constraint has to be imposed on the admissible function space. The resulting motion is
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then called the volume constrained anisotropic mean curvature flow (AMCF). In general,
it involves multiple phases, but in our model, the problem is simplified since one phase
(the substrate) is fixed throughout the evolution. Still, it is necessary to handle the non-
smoothness in the shape of the particle at the triple point where the three different phases
meet.

Figure i: Setup of the mathematical model of a particle evolving on a flat, rigid substrate.

Summary of mathematical methods and known results

The research on the simpler version of the problem, i.e., without obstacle and with con-
stant interfacial energy γPV , has a long history. The total energy is then obtained by
simply excluding the second and third terms in (1):

EpΓq “ γPV

ż

Γ

1 dl, (2)

and the corresponding L2-gradient flow becomes the mean curvature flow.
In order to solve the flow equation, the interface Γ has to be represented in terms of a
function. In the initial phases of analysis, explicit approaches were used, which included
the graphical and parametric representation of the interface. Then the mean curvature
flow leads to a system of nonlinear parabolic PDEs. In two dimensions, Gage et al. [37],
and Grayson [42] proved the existence of a solution and its asymptotic convergence to
a point, provided that the initial curve is smooth. In higher dimensions, the existence of
solution was given by Huisken [45] with additional requirements on the initial surface,
i.e., compactness and uniform convexity. The explicit approach is straightforward but
cannot handle singularities in the evolution. For example, if the surface undergoes a
topological change and splits into two disjoint parts, one function is no longer sufficient
to describe them.

This led to considering the implicit method of interface representation. An important
implicit method is the level set approach, which represents the interface as a level set of
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suitable function u. This approach leads to highly nonlinear, degenerate parabolic equa-
tions but allows for singularities; for example, pinch-off can be expressed by a smooth
evolution of the level set function. To define the solution beyond singularities, several
notions of weak solution were developed, one of the major examples being the theory
of viscosity solutions. The existence and uniqueness of weak solution for level set based
PDE is proved independently by Evans and Spruck [31] and Chen, Giga and Goto [17].
The above results were extended to volume constrained problems [68, 53] and to prob-
lems with orientation-dependent surface energy. From a mathematical perspective, there
are two types of such anisotropies: smooth ones and crystalline, where equilibrium shape
is a polytope. While the problem with smooth anisotropies tends to be a rather straight-
forward generalization of the isotropic problem [1], the lack of differentiability in the
crystalline setting poses new challenges making it an active research area [50].

All of the above results describe the interface as a boundary of a single evolving set.
Thus they cannot be used to address the multiphase problem where junctions, i.e., sets
of points where three or more interfaces intersect, appear. The investigation of evolving
triple junction started in Bronsard and Reitich [10] using theory of parabolic PDEs and
was extended in several works [57, 52], but these results use the parametric approach
and thus cannot handle topological changes. The first general result on the existence of
MCF for networks was given by Kim and Tonegawa [49] in the framework of varifolds
of geometric measure theory, resolving the question of possible triviality of the original
Brakke’s proof. Another important result from the viewpoint of this thesis is the con-
vergence of a diffused approximation to this type of isotropic multiphase MCF given by
Laux and Otto [55]. First results on the anisotropic multiphase problem appeared this
year in [54], analyzing a tripod with smooth anisotropies and without singularities in the
flow. The difficulty in dealing with the anisotropic case is the lack of uniform estimates
and other basic tools, such as monotonicity formulas.

Obstacle problem: our contribution

The aim of this thesis is to deepen the understanding of the anisotropic multiphase prob-
lem in the setting allowing for topological changes, where rigorous mathematical anal-
ysis is still developing. As a starting point, numerical approximation of the problem is
addressed. For the obstacle problem, the explicit approach was implemented by Wang et
al. [70]. They use surface diffusion as the evolution law and implement a finite element
scheme to investigate the resulting shapes of anisotropic particles. However, the explicit
approach inherently cannot cope with possible topological changes unless their appear-

3



ance and nature are apriori known.
To resolve the question of topological changes, Xu et al. in [73] developed a numerical
scheme based on the implicit approach. Namely, they solved the obstacle problem using
level set approach, but their scheme pertains only to the isotropic energy case. The moti-
vation of this work comes from the absence of methods for obstacle problems that could
handle both anisotropic energies and topological changes.

To solve the obstacle problem with automatic handling of topological changes, we use the
level set approach, which leads to a degenerate, non-linear PDE. We develop a threshold-
ing method to solve this PDE in the case of obstacle problem. The thresholding method is
based on a linearization of the original problem leading to an anisotropic diffusion prob-
lem, which can be solved by convolution of the characteristic function of a phase with a
suitable convolution kernel. The original paper [59] introduces this method for isotropic
two-phase problems where convolution is taken with the Gaussian kernel. The exten-
sion to the anisotropic case was theoretically addressed in [9, 25, 29], but systematical
investigation of the numerical properties of the resulting kernels is still lacking.

We conclude the introduction by giving an outline of the thesis. Chapters 1 and 2 are ded-
icated to introduction to the problem and literature review. Chapter 1 presents isotropic
two-phase problem, and Chapter 2 extend it to anisotropic energy—both chapters intro-
duce the necessary background for the obstacle problem. Chapter 3 introduces the level
set-based thresholding method to numerically solve governing PDEs of the flow. Chap-
ter 4 survey the known convolution kernels and investigates their numerical properties.
Finally, Chapter 5 constructs a new algorithm to solve the obstacle problem and analyzes
its properties theoretically and numerically.

The first contribution of this work is a thorough investigation of convolution kernels
through numerical comparison tests using different types of anisotropies, including crys-
talline ones. The objective is to assess the numerical behaviour of kernels in view of their
application to multiphase or obstacle problems.

The second major contribution is the construction of a new thresholding algorithm for the
numerical realization of multiphase anisotropic mean curvature flows. In particular, we
rigorously prove the stability of the algorithm and study its numerical properties. This
closes the gap between the works [70] and [73] and allows for simulations of obstacle
problems involving topology changes, as demanded in applications. The results presented
in chapters 4 and 5 of this thesis are based on the paper by S. Gavhale and K. Švadlenka
[36].
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Codes: All the codes generated during this research are available here and at the link
https://github.com/siddharthgavhale/ThesisCodes
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Chapter 1

Isotropic two-phase problem

We divide this chapter into two parts. The first part introduces the problem for isotropic
energy without area constraint. We derive a mean curvature flow model for this specific
energy and summarize known results on existence and properties of solutions. This leads
to the topic of singularities. We present some examples and numerical results. In the
second part, we add area constraint and follow the same content as in the first part.

Figure 1.1: Single particle P with boundary Γ and outer normal n

1.1 Isotropic energy without area constraint

1.1.1 Two-phase problem

Consider a free particle as a closed set P Ă R2 without substrate in a vapor, see Figure
1.1. The particle–vapor interface Γ “ BP has constant surface energy density γ ą 0 and
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thus its surface energy can be written as

EpΓq “

ż

Γ

γ dl. (1.1)

We wish to investigate equilibrium shapes and L2-gradient flow of the energy (1.1), also
known as mean curvature flow (MCF). Without loss of generality we may set γ “ 1. This
choice of γ reduces the total energy (1.1) to

EpΓq “

ż

Γ

1 dl. (1.2)

1.1.2 Mean curvature flow

We derive the evolution law for the L2 gradient flow of the energy (1.2) starting from a
smooth and closed curve

Γp0q “ Γ0. (1.3)

The flow is described by a one parameter family Γptq of curves, where t represents
time.

To derive the L2 gradient flow of (1.2), we need the first varation of (1.2). To this end,
consider arbitrary smooth function φ : R2 ÝÑ R2 and a perturbed curve Γε “ tpx, yq `

εφpx, yq | px, yq P Γu. A calculation (see appendix A.3 for details) gives:

d

dε
EpΓεq

ˇ

ˇ

ˇ

ε“0
“

ż

Γ

κ pn ¨ φq dl, (1.4)

where n is the outer unit normal to interface Γ and κ is curvature. In two dimensions,
curvature at x P Γ can be given as the inverse of the radius of the osculating circle at x.
Next, consider the set of all possible normal velocities of Γ, i.e., KΓ “ tV : Γ Ñ R |V P
L2pΓqu and a vector field φ : R2 ÝÑ R2 such that V “ φ ¨ n on Γ and take a perturbed
curve as Γε as above. Define L2-inner product on KΓ as,

xk1, k2yL2 “

ż

Γ

k1k2 dl for k1, k2 P KΓ.

The definition of the L2-gradient ∇E of E and (1.4) give,

x∇E, V yL2 “
d

dε
EpΓεq

ˇ

ˇ

ε“0
“

ż

Γ

κ pn ¨ φq dl “

ż

Γ

κV dl for all V P KΓ.
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This leads to∇E “ κ and hence the L2- gradient flow of the energy E is

V “ ´κ. (1.5)

This equation represents mean curvature flow for isotropic surface energy, i.e., normal ve-
locity is given by curvature. (1.5) is extended to higher dimension by replacing curvature
by mean curvature. Here mean curvature is defined as the sum of principal curvatures.
Detailed derivation of (1.5) in higher dimension is given in [22, 40].

1.1.3 Methods of representation of surfaces

In order to analyse mean curvature flow, there are several ways to represent an inter-
face. Here, we focus on three approaches, namely, graphical, parametric, and level set
approach.

Graphical representation

In the graphical approach, we assume that Γptq can be written as a graph of suitable
function:

Γptq “ tpx, upx, tqq | x P Ψu,

where the function u : Ψˆr0, T q Ñ R has to be found. Here Ψ Ă Rd´1 is the projection
onto a hyperplane of a domain Ω containing the curve. The unit normal is n “ p∇u,´1q?

1`|∇u|2
,

thus curvature and velocity in normal direction are given as follows

κpx, upx, tqq “ ∇ ¨

˜

∇upx, tq
a

1` |∇upx, tq|2

¸

, px, upx, tqq P Γptq, (1.6)

V px, upx, tqq “ ´
utpx, tq

a

1` |∇upx, tq|2
. (1.7)

Mean curvature flow (1.5) then reads

utpx, tq “
a

1` |∇upx, tq|2 ∇ ¨

˜

∇upx, tq
a

1` |∇upx, tq|2

¸

, in Ψˆ p0, T q (1.8)

with suitable boundary condition and initial condition,

up¨, 0q “ u0 in Ψ. (1.9)
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Intuitively, graphical approach is the most straightforward one. It leads to a scalar non-
linear parabolic equation and directly computes the surface. However, this approach
is largely restrictive since circumstances where the surface is not a graph appear often.
Moreover, even if initial condition is a graph, it is possible that during evolution, it will
not be a graph anymore. Further, if a curve is split into two or more parts, then graphical
approach fails to handle such situations (so-called topological changes).

Parametric representation

In two dimensional parametric approach, an evolving interface Γptq can be described by
a smooth time-dependent vector function as follows:

Γptq “ tF pu, tq | F : S ˆ r0, T q Ñ R2
u

where S “ r0, 1s is a fixed interval for the curve parameter. The unit tangential vector
t is defined as t “ BuF

|BuF |
, thus the unit normal vector n can be obtained by rotating the

tangential vector by 90 degrees. Then the curvature κ is expressed as

κ “ n
BuuF

|BuF |2
, (1.10)

further, the normal velocity V is normal component of the time derivative of F

V “ ´n BtF. (1.11)

With these normal velocity and curvature, the mean curvature flow (1.5) then reads

BtF pu, tq “
BuuF pu, tq

|BuF px, tq|2
, pu, tq P Γptq “ F pu, tq, (1.12)

with periodic boundary condition and initial condition,

F p¨, 0q “ F0. (1.13)

The parametric approach can be extended to higher dimensions and requires solving d`1

parabolic equation in d space dimensions. Although it is more general than the graphical
approach, being a direct approach, it still fails to handle topology changes.
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Level set representation

The level set method was devised by S. Osher and J. A. Sethian in [62]. Later, several
researchers worked on its mathematical analysis [31, 32, 33, 34, 37, 22]. We introduce
level set method in general domain as follows:

Consider a domain Ω Ă Rd, which contains the initial surface. In the level set approach,
Γptq is represented as the 0-level set of a function u P C2,1pΩˆ r0, T qq, i.e.,

Γptq “
 

x P Rd
| upx, tq “ 0

(

, (1.14)

such that the gradient does not equal to zero on Γptq, i.e., ∇upx, tq ‰ 0, where x P Γptq.
This representation of Γptq leads to unit normal n “ ˘ ∇u

|∇u| . The sign depends on the
choice of level set function, see Figure 1.2. All four plots represent a level set function
of unit circle (in red colour), and show that outer normal is ∇u

|∇u| when level set function
is chosen negative in the region enclosed by the curve. We use this setting in the sequel,
thus curvature and velocity in normal direction are given as follows:

κpx, tq “ ∇ ¨
ˆ

∇upx, tq
|∇upx, tq|

˙

, px, tq P Γ, (1.15)

V px, tq “ ´
utpx, tq

|∇upx, tq|
. (1.16)

Mean curvature flow (1.5), along with (1.15) and (1.16) leads to the nonlinear parabolic
partial differential equation

utpx, tq “ |∇upx, tq| ∇ ¨
ˆ

∇upx, tq
|∇upx, tq|

˙

, in Ωˆ p0, T q (1.17)

with suitable boundary condition and initial condition

up¨, 0q “ u0 in Ω. (1.18)

Solution of (1.17) and (1.18) gives evolution of level sets of u by mean curvature flow.

Unlike the other approaches, level set method can handle topological changes automati-
cally; since singularities in the evolution of a curve such as pinch off or merging can be
described by a smooth evolution of corresponding level set function.

Level set approach increase the problem dimension by one, which is a drawback of this
approach from the computational viewpoint. Note that the governing PDE is highly
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Figure 1.2: Level set function of unit circle: (top) normal with positive sign, (bottom)
normal with negative sign.

nonlinear, degenerate, and singularities may occur during evolution. To obtain a solution
beyond singularities, viscosity solution framework was developed by several researchers.
The theory of viscosity solution is introduced by Crandall, Ishii and Lions in [20].

1.1.4 Existence of solution and properties

Gage et al [37] and Grayson [42] proved the existence of solution of the mean curvature
flow, i.e., (1.5) for smooth initial condition (1.3) in the parametric setting. The following
theorem states the existence of a solution and convergence of the curve to a point.
Theorem 1.1.1. [22] If Γ0 Ă R2 is a smooth embedded closed curve then smooth em-

bedded solution of (1.3) and (1.5) exists on finite time interval r0, T eq. Further, it shrinks

to a point as time converges to T e.

Proof of this theorem is divided into two papers. Firstly, for a given convex Γ0, Gage
and Hamilton proved this outcome in [37]. After that, Grayson [42] proved that a smooth
embedded closed curve remains smooth and embedded; moreover, it becomes convex in
finite time.
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The value T e represents the extinction time of initial curve, i.e., the time when curve
disappears. For higher dimension, existence of solution of MCF is given by Huisken [45]
with additional requirement on initial surface as mentioned in following theorem,
Theorem 1.1.2. [45] Let d ě 3 and assume that Γ0 Ă R3 is a smooth, compact and

uniformly convex hypersurface. Then (1.3) and (1.5) have a smooth solution on a finite

time interval r0, T eq and Γptq converge to a point as time converges to T e.

The above theorem guarantees the solution of (1.3) and (1.5) provided that, the initial
surface is convex, smooth and compact. For non-convex initial surfaces, the statement is
not valid. For example, consider a dumbell shape in three dimensions as shown in Figure
1.3. Evolution of this surface by MCF develops a pinch-off singularity before it shrinks
to two points [43], see right side of figure Figure 1.3.

Figure 1.3: Evolution of dumbbell shape by mean curvature flow and singularity occur-
rence . This picture is taken from [22].

The above results hold only until singularities occur. Therefore, one need to consider the
formulation of MCF in the form of (1.17). Note that (1.17) is a degenerate, nonlinear
parabolic and not defined where the gradient of u vanishes; leading to failure of standard
methods. Therefore, [17] and [31] independently develop existence and uniqueness the-
ory for (1.17) and (1.18) within the framework of viscosity solutions. Deckelnick et al.
[22] summarize the result of [17] and [31] in the following theorem:
Theorem 1.1.3. [22] Assume u0 : Rd`1 Ñ R, which satisfy

u0pxq “ 1, for |x| ě S,

for some S ą 0. Then there exists a unique viscosity solution of (1.17) and (1.18), such

that

upx, tq “ 1, for |x| ` t ą R,
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for some R ą 0 depending only on S.

We summarize basic properties of mean curvature flow. In two dimensions, any closed
curve evolving under mean curvature flow becomes smooth and convex in finite time;
further convex curve converges to a point in finite time. During the evolution by MCF,
curve acquires a circular shape along with reducing the total area enclosed by the curve
[37, 42]. MCF leads to parabolic partial differential equations for the function describing
the shape of curve, i.e., normal velocity leads to time derivative and mean curvature leads
to two spatial derivatives. Since second-order parabolic partial differential equations
fulfil maximum and comparison principles, one can show that if one surface is contained
in an other surface and both surfaces start evolving under mean curvature flow, then this
situation remains the same throughout all time [27].

Figure 1.4: Evolution of closed curve by mean curvature flow. Results are obtained by
thresholding method.

1.1.5 Examples

To demonstrate motion by mean curvature, we consider γ “ 1 along with two different
initial closed curves, i.e., circle as an example of convex curve and smooth S shape as
example of a non-convex one, see Figure. 1.4. Both these curves converge to a point. In
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the case of a circle, this flow is self-similar, i.e., the curve is a circle at every time, only
its radius decreases. S shape evolution is an example demonstrating the result, mentioned
in theorem 1.1.1, i.e., smooth embedded closed curve becomes convex in finite time, and
then it converges to a point.

1.1.6 Numerical methods

In this section, we outline basic numerical methods to solve the governing PDEs of evo-
lution problem derived by parametric and level set approach in Section 1.1.3. We use a
specific example of a shrinking circle for simple explanation. For a given circle Γ0 with
radius r0, we are interested in finding a family of circular closed curves,

Γptq “ tprptq cos θ, rptq sin θq | θ P r0, 2πqu,

which is evolved by (1.5). Here rptq is the radius of the circle at time t, and rp0q “
r0.

Analytical solution

In this subsection, we derive analytical solution for the shrinking circle problem. Note
that the normal velocity is given as V “ r

1

ptq at every point and the curvature is inverse
of the radius of osculating circle; therefore, in this case κ “ 1

rptq
. (1.5) then leads to the

simple ODE r
1

ptq “ ´ 1
rptq

. Solution of this ODE is rptq “
a

r2
0 ´ 2t, where t P r0, r

2
0

2
q.

Note that the extinction time T e “ r2
0

2
and Γptq shrinks to a point as t converges to

T e.

Front tracking method

In front tracking approach, we discretize initial surface into finite set of discrete points,
calculate a discrete approximation of mean curvature at each point, and then move each
point of the discretized surface by (1.5), until we reach singularity. During evolution, one
can notice saturation of discretized points in regions of high curvature, so to avoid error
accumulation, redistribution of points becomes essential. In Appendix A.6 we summarize
one such known redistribution method for two-dimensional curves.

In shrinking circle problem, initial circle shrinks without changing shape; therefore, we
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do not need to worry about redistribution of points. For demonstration purpose, we start
with a circle of radius two and γ “ 1. The outcome of front tracking method is shown in
Figure 1.5. The left plot shows the evolution of the circle at equal time intervals. We use
32 points to describe initial circle, and all those points are visible in the plot. The right
side plot shows the analytical and numerical decrease in radius. According to analytical
solution (black line), the circle should vanish at time t “ 2, but front tracking solution
moves slightly slower. One can reduce the error by using more points to discretize the
initial condition.

Figure 1.5: Mean curvature flow starting from circle. Results are obtained by front track-
ing approach. Left: Evolution of circle at equal time intervals. Right: Radius (red)
and curvature (blue) at each time obtain by front tracking approach. Analytical radius is
shown in black colour.

Numerical methods to solve level set based PDEs

There are several numerical methods available to solve the governing equation obtained
by level set approach. One can think about direct methods, e.g., finite difference or
finite element method. F. Catte, et al. in [13] and A. Oberman in [61] proposed finite
difference schemes for the isotropic mean curvature motion PDE obtained by level set
approach. Their scheme is monotone and convergent, but it is still hard to solve because
it requires solving a system of non-linear equations.

Therefore, we use a more simple and easy to implement numerical method, namely, the
thresholding method, that was first introduced in [59]. Details of the thresholding method
are given in Chapter 3, together with several numerical tests. For demonstration purpose,
we show two results obtained by thresholding method in Figure 1.4.
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1.2 Isotropic energy with area constraint

Mean curvature flow does not preserve area A enclosed by the initial curve. Indeed, the
derivative of area with respect to time is negative, i.e., dA

dt
ď 0 [37, 42]. Therefore, as a

natural extension of the problem defined in Section 1.1, we consider a two-phase isotropic
problem with area constraint. The setup for this problem is the same as in Section 1.1,
except that we consider gradient flow in the set of curves with a given enclosed area.
Note that the area enclosed by the closed curve Γ is given by

A “
1

2

ż

Γ

px, yq ¨ n dl. (1.19)

Suppose A0 is the area of initial closed curve Γ0. Since we are interested in minimum
energy under area constraint, we use Lagrange multiplier method. Then the extended
energy of this system is

EλpΓq “

ż

Γ

1 dl ` λ
1

2

ż

Γ

px, yq ¨ n dl

“

ż

Γ

1 dl ` λ
1

2

ż a

b

pg1g
1
2 ´ g

1
1g2q ds, (1.20)

where Γ “ tgpsq “ pg1psq, g2psqq | s P ra, bqu and g : ra, bs Ñ R2 is differentiable and
gpaq “ gpbq.

1.2.1 Area preserving mean curvature flow

To derive the governing equation of area preserving mean curvature flow, we need the
first variation of (1.20). Split Eλ into two part as follows,

E1pΓq “

ż

Γ

1 dl and E2pΓq “ λ
1

2

ż a

b

pg1g
1
2 ´ g

1
1g2q ds.

First variation of E1pΓq has been derived already in Section 1.1. Thus we are left with
variation of E2pΓq, for which we use the same test unction φ as in the problem without
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area constraint. Then we have

d

dε
E2pΓεq

ˇ

ˇ

ˇ

ε“0
“ lim

εÑ0

λ

2ε

ż a

b

”

pg1 ` εφ1qpg2 ` εφ2q
1
´ pg1 ` εφ1q

1
pg2 ` εφ2q

´pg1g
1
2 ´ g

1
1g2q

ı

ds

“ lim
εÑ0

λ

2ε

ż a

b

“

εpg1φ
1
2 ` g

1
2φ1 ´ g

1
1φ2 ´ g2φ

1
1q ` ε

2
pφ1φ

1
2 ´ φ

1
1φ2q

‰

ds

“
λ

2

ż a

b

rg1φ
1
2 ` g

1
2φ1 ´ g

1
1φ2 ´ g2φ

1
1s ds

“
λ

2

ż a

b

r´g11φ2 ` g
1
2φ1 ´ g

1
1φ2 ` g

1
2φ1s ds integration by parts

“ λ

ż a

b

pg12,´g
1
1q ¨ pφ1, φ2q ds

“ λ

ż a

b

pg12,´g
1
1q

|g1|
¨ pφ1, φ2q |g

1
| ds

“ λ

ż

Γ

´n ¨ φ dl. (1.21)

The above result along with (1.4) allows us to write

d

dε
EλpΓεq

ˇ

ˇ

ˇ

ε“0
“

d

dε
E1pΓεq

ˇ

ˇ

ˇ

ε“0
`

d

dε
E2pΓεq

ˇ

ˇ

ˇ

ε“0

“

ż

Γ

κ pn ¨ φq dl ´

ż

Γ

λpn ¨ φq dl

“

ż

Γ

pκ´ λqpn ¨ φq dl. (1.22)

To obtain equation of area preserving mean curvature flow we repeat the procedure lead-
ing to (1.5), and obtain the following form of area-preserving mean curvature flow,

V “ ´κ` λ. (1.23)

To find the exact value of Langrage multiplier λ, we utilise area preservation condition,
i.e.,

dAptq

dt
“ 0, where Aptq “

1

2

ż

Γptq

px, yq ¨ n dl.
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2
dA

dt
“

d

dt

ż

Γptq

px, yq ¨ n dl

“ ´
d

dt

ż b

a

pg1ps, tq, g2ps, tqq ¨

ˆ

Bg2ps, tq

Bs
,
´Bg1ps, tq

Bs

˙

ds

“ ´

ż b

a

„

pg1, g2q ¨

ˆ

B2g2

BtBs
,
´B2g1

BtBs

˙

`

ˆ

Bg1

Bt
,
Bg2

Bt

˙

¨

ˆ

Bg2

Bs
,
´Bg1

Bs

˙

ds

“ ´

ż b

a

g1
B2g2

BtBs
´ g2

B2g1

BtBs
ds`

ż

Γ

gt ¨ n dl

“ ´ g1
Bg2

Bt

ˇ

ˇ

ˇ

ˇ

b

a

`

ż b

a

Bg1

Bs

Bg2

Bt
ds` g2

Bg1

Bt

ˇ

ˇ

ˇ

ˇ

b

a

´

ż b

a

Bg2

Bs

Bg1

Bt
ds`

ż

Γ

gt ¨ n dl

“ ´

ż b

a

ˆ

Bg2

Bs

Bg1

Bt
´
Bg1

Bs

Bg2

Bt

˙

ds`

ż

Γ

gt ¨ n dl

“ ´

ż b

a

ˆ

Bg1

Bt
,
Bg2

Bt

˙

¨

ˆ

Bg2

Bs
,
´Bg1

Bs

˙

ds`

ż

Γ

gt ¨ n dl

“ 2

ż

Γ

gt ¨ n dl

“ 2

ż

Γ

V dl by (1.23) (1.24)

“ 2

ż

Γ

pκ´ λq dl

“ 2

ż

Γ

κ dl ´ 2λ

ż

g

1 dl (1.25)

dAptq
dt

“ 0 then yields λ “
ş

Γ κ dl
ş

Γ 1 dl
. Note that λ is the avarage mean curvature along the

curve, we denote it by κavg. This concludes the form of area preserving mean curvature
flow as,

V “ ´κ` κavg. (1.26)

This equation represents are-preserving mean curvature flow for isotropic surface energy,
i.e., normal velocity is given by the difference of curvature and average curvature. (1.26)
can be extended to higher dimensions by changing curvature to mean curvature; there, it
is known as volume-preserving MCF. Detailed derivation of (1.26) in higher dimension
is given in [38].
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1.2.2 Existence of solution and properties

Gage [38] provided solution for (1.26) in two-dimensional case. Existence of solution
for area preserving mean curvature flow, i.e., (1.26) along with initial condition (1.3), for
general dimension, is given in [46]:
Theorem 1.2.1. [46] If the initial hypersurface Γ0 Ă Rd is uniformly convex then the

evolution equation (1.26) has a smooth solution Γptq for all times 0 ď t ă 8 and Γptq’s

converge to a round sphere enclosing the same volume as Γ0 in the C8-topology as

tÑ 8.

The above theorem yields existence of global solution to area-preserving mean curvature
flow. Further, the author of [46] showed that solution converges exponentially fast to a
sphere provided the initial surface is uniformly convex and smooth.

For non-convex initial shapes, Theorem 1.2.1 does not tell anything. Escher and Simonett
fill this gap in [26]. Authors of [26] proved the existence of a local solution to area-
preserving mean curvature flow (in their paper, they called it averaged mean curvature
flow) starting from non-convex initial hypersurfaces. Note that authors assume initial
surface Γ0 to be a compact, closed, connected, embedded hypersurface in Rd of class
C1`β . Further, they proved following corollary:
Corollary 1.2.2. [26] Convexity is not necessary for global existence of the averaged

mean curvature flow. More precisely, there are non-convex hypersurfaces Γ0 such that

the solution of averaged mean curvature flow with initial condition Γ0 exists globally and

converges exponentially fast to a sphere.

During the evolution, singularities in the form of self-intersection of surface may occur;
this fact precludes the existence of a global solution for all non-convex bodies. Elliott and
Garcke provide an example in [24]. The existence of a global distributional solution is
given by Mugnai et al. [53], authors adopt a variational approach to accomplish the task.
Later, Takasao [68] proved the existence of a weak solution for volume-preserving mean
curvature flow using the phase-field approach. His result ensures the solution beyond the
singularities.

1.2.3 Examples

For demonstration, consider γ “ 1 and two different initial curves, i.e., rectangle and an
irregular shape, as shown in Figure 1.6. Black lines represent initial shape; on the other
hand, red represent final shape in both plots. Blue lines are intermediate curves during
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evolution. For rectangular intial shape, blue lines are shown at equal time intervals. In
both cases, the enclosed area is preserved, and initial curves converge to a circle, as stated
in Theorem 1.2.1.

Figure 1.6: Evolution of closed curve by area preserving mean curvature flow. Results
are obtained by thresholding method.

1.2.4 Numerical methods

Front tracking

Parametric approach can be solved numerically by front tracking method introduced in
Section 1.1.6. The only difference is in the average curvature term, i.e., κavg. Note that
discrete average curvature is nothing but a weighted sum of discrete curvatures at all
discrete points.

Level set approach

Similarly to the problem without area-preservation, we can use direct methods to solve
governing PDE. These approaches are difficult, as explained in Section 1.1.6. Therefore,
to solve the governing PDEs numerically, we use the thresholding method mentioned in
Section 1.1.6, with a modification to preserve the enclosed area. Details of thresholding
method for area-preserving problem are given in Chapter 3. Here we only present an
example of numerical simulation, see Figure 1.6.
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Chapter 2

Anisotropic two-phase problem

In this chapter, we introduce the notion of anisotropy. We derive a mathematical model
of anisotropic mean curvature flow in both the area-constrained and unconstrainted set-
tings. Further, we summarize results regarding existence of solution and present several
exmples.

2.1 Definition and classification of anisotropies

To describe surfaces with direction-dependent surface energy, we introduce the anisotropy
function γ : Sd´1 Ñ R. It is essentially defined for unit vectors, but for upcoming analy-
sis, it is convenient to have it defined on the whole Rd.

Therefore, throughout this work, we assume γ is 1-homogeneously extended to γ :

Rd ÝÑ r0,8q through

γpxq “ |x|γ

ˆ

x

|x|

˙

, x ‰ 0.

To ensure well-posedness of the two-phase energy, we assume γ is a convex function on
Rd. We now give definitions of some essential terminologies, i.e., unit ball, Wulff shape
and Wulff envelope.
Definition 2.1.1. For a given anisotropy γ, Frank diagram Fγ is defined as follows:

Fγ “ tp P Rd
| γppq ď 1u. (2.1)

Frank diagram is also known as γ-unit ball and denoted by Bγ . Note that it is a closed
set. We denote its boundary by BBγ . Several examples of Frank diagram are shown in
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Figure 2.1

Figure 2.1: Examples of Frank diagram

Figure 2.2: Examples of Wulff shape

For the next definition, we define the dual γo of γ as follows,

γopξoq “ sup
ξPBγ

xξo, ξy,

where x¨ , ¨y denotes the inner product in Rd.
Definition 2.1.2. For a given anisotropy γ, if γo is the dual of γ, then the Wulff shapeWγ

is defined as follows:

Wγ “ tξ
o
P Rd

| γopξoq ď 1u.

It is hard to imagine the structure of Wulff shape from the above definition even for
simple anisotropies. Therefore, we describe another method to construct Wulff shape in
Appendix A.1. In Figure 2.2, we show several examples of Wulff shapes corresponding
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to anisotropies from Figure 2.1.
For next definition consider the unit outer normal npxq at a point x P Γ. Since the normal
n is uniquely identified as pcos θ, sin θq, where θ P r´π, πq is the angle between n and
the positive direction of y-axis measured clockwise from the y-axis, the function γ can be
considered as a function of one variable θ, namely, γpnpxqq “ γpcos θpxq, sin θpxqq “:

rγpθpxqq. In the subsequent text we will omit the tilde for simplicity.
Definition 2.1.3. In two dimensions, Wulff envelope We

γ corresponding to anisotropy γ

is the parametrized curve [12]:

xpθq “ ´γpθq sin θ ´ γ1pθq cos θ, ypθq “ γpθq cos θ ´ γ1pθq sin θ. (2.2)

Denoting the boundary of Wulff shape by BWγ , we have BWγ Ă We
γ . In Figure 2.3,

blue colour shows Wulff shape and red curve represents Wulff envelope (2.2) for various
anisotropies. Note that boundary of Wulff shape and Wulff envelope are identical for
left and middle anisotropy in Figure 2.3, whereas, third anisotropy’s Wulff boundary and
Wulff envelope are not the same.

Figure 2.3: Difference between Wulff shape (blue) and Wulff envelope (red)

2.1.1 Classification of anisotropies

Smooth anisotropies γ P C2 are conventionally classified on the basis of the sign of
surface stiffness, i.e., the quantity γpθq ` γ2pθq, as follows:

(A) isotropic : γ “ positive constant,

(B) weakly anisotropic: γpθq ` γ2pθq ą 0 for all θ,

(C) strongly anisotropic: there is θ such that γpθq ` γ2pθq ď 0,
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In isotropic case, as shown in Figure 2.3 [a], Wulff envelope is a circle whose radius is
dependent on the magnitude of anisotropy γ. Notice that the isotropic case is a partic-
ular case of weak anisotropy. Wulff envelopes of weak anisotropies are identical to the
boundary of Wulff shape [12], see Figure 2.3 [a,b]. On the other hand, strong anisotropies
form ears by the Wulff envelope’s self-intersection, see Figure 2.3 [c]. The outer part of
these ears possesses negative surface stiffness, see Figure 2.4 , which shows the Wulff
envelope for the anisotropy γ “ 1`0.2 cos 5θ. Here red parts have negative surface stiff-
ness. Numerous examples of anisotropies from literature [22, 9, 25, 30, 64] are gathered
in Appendix A.4.

Figure 2.4: Wulff envelope of the strong anisotropy γ “ 1`0.2 cos 5θ. Red colour shows
regions with negative surface stiffness.

2.2 Anisotropic mean curvature flow

To introduce anisotropic mean curvature flow, we consider a simple two-phase evolution
problem described below.

2.2.1 Two-phase problem

Consider a free particle as a closed set P Ă R2 without substrate in a vapor, see Figure
1.1. The particle–vapor interface Γ “ BP has general orientation-dependent energy
(anisotropy) γ : R2 ÝÑ r0,8q, i.e., γ “ γpnpxqq, where npxq is the unit outer normal
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to P at a point x P Γ. Hence the total interfacial energy of the particle reads

EpΓq “

ż

Γ

γpnq dl. (2.3)

We wish to investigate equilibrium shapes and L2-gradient flow of the energy (2.3), also
known as weighted mean curvature flow (MCF).

One observes that (2.3) is a generalization of the isotropic energy, which is discussed
in the previous chapter. 1-homogeneity and convexity of γ yields closed, convex and
centrally symmetricBγ . The strong convexity ofBγ is equivalent to the condition γ2pθq`
γpθq ą 0 for all θ, the proof of this statement is given in the following subsection.

Strong convexity of unit ball implies positive surface stiffness

Any ξ P R2 can be written as ξ “ pr cos θ, r sin θq, where r ą 0, θ P r0, 2πq. Note that
Bγ is a level set of γ, moreover γ is one homogeneous. Using this property, we prove the
following lemma.
Lemma 2.2.1. ξ P BBγ if and only if r “ 1

γpcos θ,sin θq
“ 1

γpθq
.

Proof. The statement readily follows using the 1- homogeneity property of γ.

Lemma 2.2.2. Bγ is strictly convex if and only if γ
2

pθq ` γpθq ą 0, @θ P r0, 2πq.

Proof. pñq Let Bγ be a strictly convex set. Hence, the curvature of BBγ is positive at all
ξ P Bγ . Consider polar form of ξ “ pξ1, ξ2q “ pr cos θ, r sin θq. The curvature κ is given

by κ “ pξ
1

1ξ
2

2´ξ
2

1 ξ
1

2q

3
?
pξ
1

1q
2`pξ

1

2q
2
. Since curvature is positive, we deduce ξ11ξ

2

2 ´ ξ
2

1ξ
1

2 ą 0, which leads
to

r2
´ rr2 ` 2r12 ą 0 (2.4)

We know from Lemma 2.2.1 that r “ 1{γpθq; therefore, r1 “ ´γ
1

γ2 and r2 “ 2pγ
1
q2

γ3 ´
γ
2

γ2 .
Plugging these values into (2.4) leads to the desired inequality, i.e., γ2pθq ` γpθq ą 0.

(ð) We prove this part by contradiction. Assume that the Bγ is not a convex set, then
there exist at least one ξ̃ P BBγ , which possesses negative curvature. Consider polar form
of ξ̃ “ pξ̃1, ξ̃2q “ pr cos θ̃, r sin θ̃q, where θ̃ possesses at least one value in r0, 2πq. . The
curvature κ is negative, we deduce ξ̃11ξ̃

2

2 ´ ξ̃
2

1 ξ̃
1

2 ă 0, which leads to

r2
´ rr2 ` 2r12 ă 0. (2.5)
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Here, the setting is same as first part of this proof; therefore, we can use values of r and
its derivatives to get final form of (2.5), i.e., γ2pθ̃q ` γpθ̃q ă 0.

2.2.2 Anisotropic mean curvature flow

We define anisotropic mean curvature by κγ by

κγpxq “ ∇Γ ¨ nγpxq, x P Γ, (2.6)

where nγ denotes the Cahn-Hoffman vector on Γ, i.e.,

nγpxq “ ∇γpnpxqq, x P Γ, (2.7)

and the tangential gradient∇Γη of a function η , which is differentiable in an open neigh-
bourhood of Γ, is defined by

∇Γη “ ∇η ´ p∇η ¨ nqn. (2.8)

To derive the L2 gradient flow of (2.3), i.e., anisotropic mean curvature flow, we need first
varation of (2.3), which is derived in [22] using suitable perturbation function φ. Lemma
8.2 in [22] gives the following first variation:

d

dε
EpΓεq

ˇ

ˇ

ˇ

ε“0
“

ż

Γ

κγpn ¨ φq dl. (2.9)

Definition of L2 inner product and (2.9) lead to the following form of anisotropic mean
curvature flow,

V “ ´κγ. (2.10)

(2.10) is extended to higher dimensions by replacing anisotropic curvature with anisotropic
mean curvature. Detailed derivation for higher dimension is presented in [22].

In the upcoming chapters, we focus on the general form of (2.10). It is known as weighted
anisotropic mean curvature flow, and it is given by,

V “ ´µκγ, (2.11)

where µ : R2 Ñ R` is called mobility. One can obtain (2.11) as the gradient flow
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corresponding to the inner product

xk1, k2yµ “

ż

Γ

µpnqk1k2 dl for k1, k2 P KΓ. (2.12)

If mobility is equal to anisotropy pµ “ γq then this special choice of mobility is known
as natural mobility. If the initial condition of the evolution (2.11) is Wulff shape of
anisotropy γ and µ is natural mobility, then the flow is self-similar, i.e., the Wulff shape
shrinks to a point while preserving its shape [74], see for example, Figure 2.5 (left
top).

2.2.3 Methods of representation of surfaces

Both the parametric and level set approaches are extended to anisotropic case [22]. It is
evident that parametric approach does not handle topological changes in anisotropic mean
curvature flow either, so that one can get the solution by using a parametric approach until
singularities occur.

Level set approach

As described earlier, in the level set method Γptq is expressed as a 0-level set of a smooth
function u which is defined in a neighbourhood of Γptq with non-zero gradient, i.e.,
Γptq “ tx P Rd | upx, tq “ 0u and∇upy, tq ‰ 0 where y P Γptq, hence outer unit normal
for u that is negative inside the curve is given by npx, tq “ ∇upx,tq

|∇upx,tq| . Then equation (2.10)
in terms of u becomes a degenerate, nonlinear PDE.

Since we are looking for a solution beyond singularities, we need to consider viscosity

solution framework. Thus existence of a solution in the next section is focused on solution
of level set approach.

2.2.4 Existence of solution

The work on existence of solution of anisotropic mean curvature flow is an ongoing topic,
especially for the crystalline problem. Within the framework of viscosity solution, the
first global-in-time existence and uniqueness result for governing PDEs obtained by the
level set approach is given by A. Chambolle, M.Morini and M.Ponsiglione in [15]. Their
result is valid for arbitrary initial sets and for general (including crystalline) anisotropies,
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but it is restricted to natural mobility only, i.e., µ “ γ. Authors use standard parabolic
comparison principle approach to prove uniqueness of solution.

Chambolle-Morini-Novaga-Ponsiglione generalized result of [15] in [16], by considering
general mobilities. Authors adopt an approximation approach and proved the existence
and uniqueness of weak solutions to anisotropic mean curvature flow, obtained as a limit
of the viscosity solutions. Authors show that if γn Ñ γ, with γn smooth, and if µn Ñ µ,
where µn is γn- regular uniformly with respect to n, then the corresponding viscosity
level set solutions un converge locally uniformly to the unique distributional level set
flow with anisotropy γ and (γ-regular) mobility µ.

Figure 2.5: Evolution of closed curve by anisotropic mean curvature flow. Results are
obtained by thresholding method.
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2.2.5 Examples

To demonstrate evolution by AMCF, we select several anisotropies and initial shapes, see
Figure 2.5. In each plot, numbers in the box indicate time.

• Top-left : anisotropy is γpx, yq “
a

x2 ` 2y2 and initial condition is the corre-
sponding Wulff shape, i.e., ellipse.

• Top-right : initial curve is a circle and it is evolved by regularised l1 anisotropy i.e.,
γpx, yq “

a

ε2px2 ` y2q ` x2 `
a

ε2px2 ` y2q ` y2.

• Bottom-left: anisotropy γpθq “ 1` 0.05 cos 4θ and smooth S-shape as initial con-
dition

• Bottom-right : anisotropy γpθq “ 1 ` 0.05 cos 4θ and irregular shape as initial
condition.

All the above curves converges to a point while asymptotically approaching to the Wulff
shape of the corresponding anisotropy.

2.2.6 Numerical methods

Front tracking

Similar to the isotropic energy case, we can solve anisotropic mean curvature flow prob-
lem by using front tracking approach. The idea of front tracking approach is the same as
mentioned in Section 1.1.6, except for a different formula of anisotropic curvature to be
discretized. Again, we need to perform point redistribution during the evolution. Outline
of the method presented in [66] is given in Appendix A.6.

Results obtained by implementing front tracking method from [66] are presented in Fig-
ure 2.6. In the left plot, we use anisotropy γ “ 1 ` 0.1 cos 3θ and circle as initial
condition. Evolution is shown at equal time intervals of size 0.5. We plot the corre-
sponding Wulff shape (dotted black line); to show that the curve converges to a point
while asymptotically approaching Wulff shape. A similar test is carried out using dif-
ferent anisotropy and different initial condition; see the right side plot. Namely, we use
anisotropy γ “ 1 ` 0.05 cos 5θ, also known as 5-fold anisotropy, along with elliptical
initial shape.

Since it is possible to obtain arbitrarily accurate approximations by increasing number
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Figure 2.6: Results obtained by anisotropic front tracking approach. Left: Evolution of
circular shape with anisotropy γ “ 1`0.1 cos 3θ. Right: Evolution of elliptic shape with
anisotropy γ “ 1` 0.05 cos 5θ.

of discrete points, the front tracking method is used to evaluate other numerical methods
when analytical solution is not available. We do so in Section 4.2.

Numerical solution of level set equation

The finite element method is one of the direct methods to solve level set PDE. For ex-
ample, a weak formulation of a (regularized) level set equation for anisotropic mean
curvature motion was considered by Clarenz et al. in [19], where it is solved using a
finite element scheme. Authors of [11] generalized the technique introduced in [19] to
higher-order flows. These direct methods are hard to solve as already mentioned in Sec-
tion 1.1.6.

To solve the governing PDEs obtained by level set approach numerically, we use thresh-
olding method; details of which are given in Chapter 3. For demonstration, we show
some results in Figure 2.5, which are obtained by implementing a thresholding scheme
for anisotropic energy.

2.3 Anisotropic mean curvature flow with area constraint

Anisotropic mean curvature flow is congruous with mean curvature flow in the sense of
area preservation, i.e., dA

dt
ď 0. Therefore, as a natural extension of the problem defined
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in Section 2.2.1, we consider a two-phase problem with area constraint. The setup for
this problem is the same as in Section 2.2. Suppose A0 is the area enclosed by initial
curve Γ0. Similar to isotropic case, we use Lagrange multiplier method to find minimum
energy under area constraint of the extended energy

EλpΓq “

ż

Γ

γpnq dl ` λ
1

2

ż

Γ

px, yq ¨ n dl. (2.13)

2.3.1 Anisotropic mean curvature flow with area constraint

To find minimum energy with area constraint, one needs first variation of (2.13). Calcu-
lations are almost identical to (1.21) and (2.9) leads to

d

dε
EλpΓεq

ˇ

ˇ

ˇ

ε“0
“

ż

Γ

pκγ ´ λqpn ¨ φq dl (2.14)

To obtain equation of area preserving anisotropic mean curvature flow, we repeat the pro-
cedure, leading to (2.10) and obtain the following form of area-preserving mean curvature
flow,

V “ ´κγ ` λ. (2.15)

To find the specific value of Lagrangian multiplier λ, we avail of area preservation con-
dition, i.e., dA

dt
“ 0. With the help of calculation presented in Section 1.2.1, we get

λ “

ş

Γ
κγ dl

ş

Γ
1 dl

.

Note that λ is average anisotropic mean curvature along the curve, we denote it by κavg.
This concludes the form of area preserving anisotropic mean curvature flow as,

V “ ´κγ ` κavg. (2.16)

Smilarly to Section 2.2.2, (2.16) is extended to higher dimensions by changing anisotropic
curvature to anisotropic mean curvature; there, it is known as volume-preserving anisotropic
MCF. Detailed derivation of (2.16) in higher dimensions is given in [1].

Similar to (2.11), we can change inner product definition to add mobility µ term; then,
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we can introduce area-preserving weighted mean curvature flow as follows:

V “ ´µκγ ` κavg. (2.17)

Here, value of avarage curvature is different than area-preserving anisotropic MCF and
that is equal to κavg “

ş

Γ µκγ dl
ş

Γ 1 dl
. If we choose natural mobility in (2.17), and Wulff shape

as initial condition, then there is no evolution. This fact is helpful to check the accuracy
of numerical methods to solve (2.17).

2.3.2 Existence of solution and properties

The stationary solution of (2.17) is known from [72, 12] to be the Wulff shape of given
anisotropy. In other words, Wulff shape is the shape that possesses minimum energy
(2.13). Here, we are interested in both the evolution and stationary solution; therefore,
knowing final solution is not sufficient.

For area-preserving weighted mean curvature flow, i.e., (2.17), [1] proved the existence
of solution along with some properties for convex initial condition. The author extends
the results of [46] from isotropic to anisotropic case. A key property is the preservation
of convexity of initial convex shape as stated in the following proposition.
Proposition 2.3.1. [1] If Γ0 is smooth and strictly convex, then the solution of equation

(2.17) with initial condition Γ0 exists and is smooth and strictly convex for all positive

times.

Author also showed that convex solutions of (2.17) converge smoothly and exponentially
fast to Wulff shape as tÑ 8.

The above result holds until singularity occurs. The existence of solution beyond singu-
larities is given by Bellettini et al. [6], provided that the initial condition is compact and
convex. Their result holds not only for smooth anisotropies but also for crystalline ones.
The result of [6] extended to the non-convex setting by Kim et al. [50], where authors
proved the global existence of volume-preserving mean curvature flow, particularly for
the crystalline case.

2.3.3 Examples

For demonstration purpose, we use same anisotropies and initial shapes as mentioned in
Figure 2.5. For details see Figure 2.7, where each initial shape is evolving and converging
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to respective Wulff shape. Table at bottom-right shows the time. In top-left plot, neg-
ligible evolution is observed because initial condition is Wulff shape and the difference
between red and black lines is the error caused by numerical method.

2.3.4 Numerical methods

Similarly to previous cases, direct methods can give the desired solution, but one faces
difficulties as mentioned in Section 1.1.6. We solve governing equations using threshold-
ing method. Details of thresholding method for this flow is given in Chapter 3. In Figure
2.7, we demonstrate results obtained by implementing the thresholding method.

Figure 2.7: Evolution of closed curve by anisotropic mean curvature flow with area con-
straint. Results are obtained by thresholding method.
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Chapter 3

Thresholding method

This chapter presents a numerical method for computing weighted mean curvature flow,
that is based on the level set approach. We focus on the level set representation since
our goal is to deal with topology changes. We discuss convergence of the algorithm and
properties of convolution kernels, which are used to realize the anisotropic problem. For
area-preserving mean curvature flow, we introduce two methods to preserve the enclosed
area numerically.

3.1 Isotropic energy without area constraint

In this section, we introduce a numerical method to solve the evolution problem presented
in Section 1.1. As we know from Section 1.1.3, there are different ways to represent
interface and each choice of representation leads to different PDEs. Since our focus is on
automatic handling of topological changes, we use the level set approach.

When we use level set representation, mean curvature flow (1.5) transform into a nonlin-
ear, degenarated PDEs, i.e., (1.17). We rewrite (1.17) as follows:

ut “ |∇u| ∇ ¨
ˆ

∇u
|∇u|

˙

“

d
ÿ

i,j“1

ˆ

δij ´
uxiuxj
|∇u|2

˙

uxixj . (3.1)

In two dimensions, (3.1) takes the following form

ut ´ puxx ` uyyq `
1

|∇u|2
`

uxxu
2
x ` uyyu

2
y ` 2uxyuxuy

˘

“ 0. (3.2)

35



It is possible to solve (3.1) using direct methods, e.g. finite difference method, finite
element method etc., but as already disicuss in Section 1.1.6, those approaches entail
several complications.

As an alternative way to solve nonlinear PDEs, linearization is a common numerical ap-
proach. Linearization of PDE (3.1) leads to a heat type equation. This heat type equation
can be solved with the help of convolution. One efficient numerical method to solve
level set based mean curvature flow equation is introduced in [59]. It is called Bence-
Merriman-Osher, or shortly BMO, algorithm. BMO algorithm is a diffusion generated
motion scheme, where heat equation is solved with characteristic function of of the re-
gion enclosed by a closed curve as initial condition, and then updated curve is obtained
by selecting a specific level set of the diffused function.

This scheme is efficient and straightforward because it repeats only two simple steps:
convolution and thresholding, to get desired solution. In the convolution step, heat equa-
tion is solved by convolving a characteristic function and a convolution kernel G, which
is positive, with unit mass, and radially symmetric. Diffusion-generated refers to the fact
that convolution with the Gaussian kernel is equivalent to solving the diffusion equation
[64]. Any kernel with the above-mentioned properties will work for the BMO scheme.
In the original paper, authors used the Gaussian kernel, i.e.,

Gpxq “
1

p4πqd{2
exp

ˆ

|x|2

4

˙

.

In thresholding step, we take a half-level set as updated position. Then go back to convo-
lution step again and use updated position as initial condition. This scheme is summarised
below:

Algorithm 1 BMO algorithm
Given a time step δt and a region P k Ă Rd at time tk, to get new region P k`1 at next
time step tk`1 “ tk ` δt, perform the following two steps:

Convolution: Uk
“ Gδt ˚ 11Pk (3.3)

Thresholding: P k`1
“

"

x | Uk
pxq ď

1

2

*

(3.4)

Here 11Pk is the characteristic function of the set P k and Gδtpxq “
1

pδtqd{2
G
´

x?
δt

¯

.
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3.1.1 Convergence of the algorithm

Convergence of algorithm to (1.5) was empirical by numerical experiments presented in
[59] and [63]. Barles and Georgelini [4] has given the convergence proof of algorithm
with the help of using the comparison principle, which is endowed by the positivity of
Gaussian. The variational formulation for Algorithm 1 was given in Esedoglu and Otto
[28]. In particular, they showed the following functional

EδtpΓq “
1

δt

ż

Γ

Gδt ˚ 11P dx (3.5)

is a non-local approximation to lentgh energy, and is dissipated by the Algorithm 1 at ev-
ery stepsize, regardless of time step. Thus (3.5) is is a Lyapunov functional for Algorithm
1, establishing its unconditional gradient stability [25].

Idea behind Algorithm 1

We explain the intuitive idea why algorithm 1 works to approximate mean curvature
flow. To solve (3.1), consider the following function, called, sign distance function
(SDF)

upxq “

$

’

’

’

&

’

’

’

%

distpx,Γq, x P RdzpΩY Γq

0 x P Γ

´distpx,Γq x P Ω

(3.6)

Here, Ω Ă Rd is an open bounded set such that Γ “ BΩ. One example of SDF is given in
Figure 1.2 (plots on the top). Note that 0-level set of SDF is the curve Γ, and |∇u| “ 1

hold almost everywhere. If we plug in this value in (3.1) then we end up with the heat
equation which can be solved through convolution with Gaussian kernel. However, since
the solution deviates from the SDF, we need to restrict the time to a short interval, get a
new SDF, and repeat this procedure. It turns out that a characteristic function can be used
instead of SDF.

3.1.2 Numerical example

To illustrate the example of thresholding scheme, we perform a simple numerical test.
Consider the shrinking circle problem from the Section 1.1.6.

To implement Algorithm 1, first, we fix rectangular domain r´5, 5s ˆ r´5, 5s . Note that
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the domain size is taken sufficiently large, so that the boundary will not influence the
motion of the curve. Spatial variables are discretized on a rectangular grid with grid cells
of size dxˆdy. We use square lattice with dx “ dy. This setting of computational domain
is the same for all numerical tests presented throughout this thesis. We solve convolution
(3.3) using Fast Fourier Transform (FFT). First, we convert kernel and characteristic
function into Fourier form and then take inverse Fourier transform of their product. After
convolution step we check at each grid point if value of diffused function Uk is greater
than 1

2
. If it is so, we change value to 1, otherwise to 0, obtaining P k`1.

We start with initial radius r0 “ 2 and evolve circle by implementing Algorithm 1. Here
we are looking for isotropic energy and circle is Wulff shape of given energy; therefore,
circle preserves its shape during evolution, as demonstrated in left plot of Figure 3.1. We
compare thresholding results with analytical result, derived in Section 1.1.6. Right side
plot shows radius of circle at each time for thresholding (red) and analytical (black) solu-
tions. Both results are very close throughout time, except near the extinction time.

Figure 3.1: The initial radius is r0 “ 2, grid size dx “ 0.0048 and timestep δt “ 0.01.
(Left) Evolution of circle by mean curvature flow at equal interval. (Right) Comparison
between numerical and analytical radius of circle during evolution.

3.2 Isotropic energy with area constraint

In this section, we present a thresholding method to solve governing PDE of the level set
approach to area-preserving MCF (1.26) introduced in Section 1.2. The additional area
term demands a modification in thresholding step of Algorithm 1, namely, to preserve the
area, we change the thresholding height from half-level set to appropriate thresholding
height (say δ). Note that the appropriate thresholding height is not fixed during evolution,
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and we need to find it at each time step. We summarise the resulting scheme in general
dimension as follows:

Algorithm 2 BMO algorithm with volume constraint
Given a time step δt and a region P k Ă Rd at time tk, to get new region P k`1 at next
time step tk`1 “ tk ` δt, perform the following two steps:

Convolution: Uk
“ Gδt ˚ 11Pk (3.7)

Thresholding: P k`1
“
 

x | Uk
pxq ď δk

(

(3.8)

Here δk is chosen so that the volume of phase P k`1 is equal to the volume of phase P 0.

All level sets of a solution to level set PDE move by mean curvature flow, so it should be
reasonable to take a thresholding height different than 1

2
. History of finding thresholding

height start with, Mascarenhas [58], who consider κavg as a constant (say a) in motion
(1.26) and showed that V “ κ`amotion can be obtained by using following threhsolding
height:

1

2
´
a

2

c

δt

π
. (3.9)

Later, Ruuth and Wetton [65] replace a by κavg and showed that flow (1.26) is possible
by following thresholding height

1

2
´
κavgptq

2

c

δt

π
. (3.10)

Algorithm 2 was intropduced in [65].

3.2.1 Convergence

Volume preserving mean curvature flow does not allow for a comparison principle. There-
fore conditional convergence of a scheme introduced by Ruuth and Wetton [65], i.e., Al-
gorithm 2 is proved by Laux and Swartz [56]. To prove the convergence, the authors set
the following environment:

Denote the characteristic function of P k at k-th time step by X k, and interpolate these
functions piecewise constantly in time, i. e.,

X δt
ptq “ X k, for t P rkδt, pk ` 1qδtq.
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Based on the result of [28], they defined the following approximation of energies

EδtpX q “
1
?
δt

ż

p1´ X qGδt ˚ X dx (3.11)

for X : Rd Ñ t0, 1u. As δtÑ 0, (3.11) converge to the perimeter functional

EpX q “ 1
?
π

ż

|∇X |

with respect to L1-topology. Esedoglu and Otto [28] proved the Γ convergence and its
consequence of pointwise convergence of the functionals,

EδtpX q Ñ EpX q for any X P t0, 1u. (3.12)

At last, authors assume the following convergence of the energies, which is not guaran-
teed by the a priori estimates

ż T

0

EδtpX δt
q dtÑ

ż T

0

EpX q dt (3.13)

Based on above estimates, authors of [56] gave following convergence theorem:
Theorem 3.2.1. Let T ă 8 and X 0 P t0, 1u with EpX 0q ă 8 and tX 0 “ 1u Ă Rd.

After passage to a subsequence, the functions X δt obtained by Algorithm 2 converge to a

function X in L1pp0, T qˆRdq. Under the convergence assumption (3.13), X s a solution

of the volume-preserving mean-curvature flow equation.

3.2.2 Methods to find thresholding height δ

To find thresholding height, i.e., δ, we have proposed two methods, namely, bisection and
sorting.

Bisection approach

To find thresholding height δk of the diffused function Uk at k-th iteration, consider an
interval rδkl , δ

k
r s, where δkl “ minxPΩ U

kpxq and δkr “ maxxPΩ U
kpxq. Compute the area

Vl of the δkl -level set of Uk. Do the same for δkr to obtain Vr. Now set the mid-point
δkb “

δkl `δ
k
r

2
and calculate the area Vb of the corresponding level set. There are two cases,

(case I) if Vb is less than area of P 0, then assign δkl “ δkb and repeat the above process.
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(case II) if Vb is greater than area of P 0, then assign δkr “ δkb and repeat the above
process. If both these cases fail, it means we have reached the desired δ. This approach
is summarised as follows:

Algorithm 3 Bisection approach to find thresholding height
Given an initial volume V0 of phase P 0 and diffused function Uk at k-th iteration by
(3.7), assign δkl “ minxPΩ U

kpxq and δkr “ maxxPΩ U
kpxq. Set Vl “

 

x | Ukpxq ď δkl
(

and Vr “
 

x | Ukpxq ď δkr
(

. To get volume preserving thresholding height δk repeat the
following steps:

p1qMean and volume: δkb “
δkl ` δ

k
r

2
; Vb “

 

x | Uk
pxq ď δkb

(

(3.14)

p2qBisection: ¨ If Vb ă V0, set δkl “ δkb and go to step p1q.
¨ If Vb ą V0, set δkr “ δkb and go to step p1q.
¨ If Vb “ V0, set δk “ δkb and terminate.

Figure 3.2: Sorting approach to find thresholding height

Sorting approach

Unlike bisection, sorting approach is a non-iterative way to find thresholding height.We
explain the sorting approach using a specific example.

Suppose area enclosed by initial curve isA. First we discretize the computational domain
using square grid, as explained in Section 3.1.2. Convert A into grid-area Ag, i.e., if dx
is the side length of the grid then Ag “ A{dx2. Suppose diffused Uk is given by (3.7) at
k-th iteration, as shown in left side plot of Figure 3.2. The algorithm to find δk takes the
following steps:
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• Sort the values of Uk at all grid-points in ascending order, and call this list sortlist.
It is plotted using black line in right side plot of Figure 3.2.

• X-axis in this plot represents grid points number. Draw a line X “ Ag ( blue line
in the Figure) and find its intersection with sortlist.

• Y - coordinate of the intersection is the desired thresholding height δk.

We remark that the sorting approach cannot handle multiphase problems, i.e., three or
more phases evolution problems. If the area of any two phases is different in a multi-
phase problem, then those phases need different thresholding heights to preserve their
respective area. But in sorting approach, we take ascending order (sortlist) of the whole
domain; thus, it becomes difficult to recognise which point belongs to which phase in the
sortlist.

3.2.3 Numerical test

To scrutinize numerical performance of the scheme and juxtapose bisection and sorting
approach, we consider a simple problem introduced in [67]. Take two circles with radii
r1 “

?
3 and r2 “ 1.4 as shown in top-left plot of Figure 3.3 (in red colour). We treat

them as a single-phase and evolve by area-preserving mean curvature flow, which results
in growth of the large circle. On the other hand, the smaller circle will shrink. For
comparison between solution obtained by thresholding scheme and analytical solution,
we implement Algorithm 2 until the radius of smaller circle reaches the ”final time” 0.75.
Note that the evolution of radii follows the equations

r11 “
´1

r1

`
2

r1 ` r2

, r12 “
´1

r2

`
2

r1 ` r2

.

We use Matlab’s ode113 function to solve the above system, which gives a precise ap-
proximation of analytical solution.

Evolution of the circles is depicted in left plot of Figure 3.3, where black lines show
intermediate shapes and blue circles indicate final shape. The right plot shows agree-
ment between the radius of both circles with their analytical values. Results obtained
by thresholding method is almost identical to the analytical solution. We use bisection
approach for this test. After that, we check thresholding height, i.e., δ at each time step
using both sorting and bisection approach for the same test. Both these approaches give
almost identical values, see left plot in Figure 3.4.
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Figure 3.3: Evolution of two circles by MCF with initial radii r1 “
?

3 and r2 “ 1.4
obtain by thresholding method with dx “ 0.0195 and δt “ 0.04. Left: numerical result,
red: initial circle, blue: final shape at t “ 0.75, black: intermediate evolution at equal
time intervals. Right: comparison between the analytical and numerical radii of both
circles.

Figure 3.4: Left: value of thresholding height δ at each time step obtained by bisection
(blue) and sorting approach (magenta). Right: CPU time to calculate thresholding height
δ for bisection and sorting approach.

Since both approaches give the same δ, thus identical error; it is of interest to know which
approach requires less computational time. The right plot in Figure 3.4 shows CPU time
required for each time step in both approaches. The dotted lines show mean time of each
approach. Here mean time means the sum of time required to find thresholding height at
each iteration divided by the total number of iterations.

It is clear from the plot that sorting approach requires less time in this test. This outcome
was expected since bisection method involves several iterations. Note that the difference
of mean time between both approaches drastically increases for smaller values of dx.
Therefore, we use sorting method for all upcoming area-preserving simulations.
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3.3 Anisotropic case

We present thresholding method to solve evolution problem (2.11) introduced in Section
2.2.2. Recall that the original BMO uses the Gaussian convolution kernel to deal with
the isotropic problem. Thresholding method can be extended to anisotropic energies by
replacing Gaussian with a suitable kernel K [47]. This leads to the following algorithm:

Algorithm 4 Anisotropic two-phase BMO algorithm
Given a time step δt and a region P k Ă Rd at time tk, to get new region P k`1 at next
time step tk`1 “ tk ` δt, perform the following two steps:

Convolution: Uk
“ Kδt ˚ 11Pk (3.15)

Thresholding: P k`1
“

"

x | Uk
pxq ď

1

2

ż

Rd
Kpyq dy

*

(3.16)

Here 11Pk is the characteristic function of the set P k and Kδtpxq “
1

pδtqd{2
K

´

x?
δt

¯

.

To present existing results regarding the above algorithm, we need to assume the follow-
ing regularity, decay and continuity properties conditions on kernel K [47]:

Kpxq “ Kp´xq, Kpxq ą 0, (3.17)
ż

Rd
Kpxq dx “ 1,

ż

Rd
|x|2Kpxq dx ă 8, (3.18)

there exist C ą 0 and p ą d` 1 such that |Kpxq| ď
C

1` |x|p
, (3.19)

Kpxq P L1
pRd
q, xKpxq P L1

pRd
q. (3.20)

Further,

lim
εÑ0

sup
OPO

ż

Rd´1

|K ˝Opx1, εgpx1qq ´K ˝Opx1, 0q| p1` |x1|2q dx1 “ 0, (3.21)

for every map g : Rd´1 Ñ Rd´1 of the form

gpx1q “ xMx1, x1y ` a,

where M is a pd ´ 1q ˆ pd ´ 1q symmetric matrix and a P R, and O is the set of
pd´ 1q ˆ pd´ 1q orthogonal matrices.
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For every pd´ 1q ˆ pd´ 1q orthogonal matrix O
ż

Rd´1

K ˝Opx1, 0q dx1 ą 0 (3.22)

3.3.1 Convergence and stability of Algorithm 4

Convergence

The convergence of Algorithm 4 to the solution of governing PDE of anisotropic mean
curvature flow proved in [47]. We give a shortened form of their convergence theorem as
follows:
Theorem 3.3.1. If kernel K satisfies (3.17), (3.18), (3.19), and smoothness condition,

i.e.,

p ÞÑ

ż

pK
Kpxq dHd´1

pxq, and p ÞÑ
ż

pK
xixjKpxq dHd´1

pxq are continous on Sd´1,

then Algorithm 4 converges as δtÑ 0 to the viscosity solution of the equation

ut “ F pD2u,Duq,

where,

F pM, pq “

ˆ
ż

pK
Kpxq dHd´1

pxq

˙´1 ˆ
1

2

ż

pK
xMx, xyKpxq dHd´1

pxq

˙

,

for p P Rd and M is a dˆ d symmetric matrix.

To prove the above theorem, authors of [47] used the comparison principle via positiv-
ity of kernel. Thus positivity of the kernel in physical domain becomes essential for
convergence.

Anisotropy corresponding to kernel K

[25] showed the corresponding anisotropy and mobility represent by the given kernel in
the form of proposition:
Proposition 3.3.2. [25] Let K satisfy (3.17) and (3.19). Assume that pKpnξq, as a func-
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tion of ξ, is a Schwartz class for every n P Sd´1 then

γKpnq “ ´
1

4π2

ż

R

pKpnξq ´ pKp0q

ξ2
dξ (3.23)

2µKpnq “

ˆ
ż

R

pKpnξq dξ

˙´1

(3.24)

Since we use different definition of the Fourier transform, (3.23) and (3.24) formally
differ from the original paper. For the proof of mobility (3.24) authors used the following
definition of the mobility,

2µKpnq “

ˆ
ż

nK
Kpxq dHd´1

˙´1

. (3.25)

Stability and motion by Algorithm 4

To prove unconditional gradient stability of Algorithm 4 Elsey-Esedoglu [25] use ap-
proximation of actual energy, i.e.,

EδtpP,Kq “
1
?
δt

ż

RdzP
Kδt ˚ 11P dx. (3.26)

Similar to the isotropic version, (3.26) is a Lyapunov function for Algorithm 4. Uncondi-
tional gradient stability of Algorithm 4 is proved by [25] and restated in [30] in the form
of the following proposition:
Proposition 3.3.3. Let K satisy Kpxq “ Kp´xq,

ş

Rd Kpxq ą 0 and (3.19). If pK ě 0,

where pK is the Fourier transform of K, then for any time step size δt ą 0, Algorithm 4

decreases the energy (3.26) at every time step.

This proposition convey the importance of the positive Fourier transform pK. The connec-
tion between approximate energy and anisotropy corresponding to the kernel is presented
in [25] as following proposition:
Proposition 3.3.4. [25] Let P is a compact subset of Rd with smooth boundary, kernel

K satisfy (3.17) and (3.19) then

lim
δtÑ0

EδtpP,Kq “

ż

BP

γKpnpxqq dHd´1
pxq, where γKpnq “

1

2

ż

Rd
|n ¨ y|Kpyq dy.

(3.27)
Here, npxq denotes the unit normal at a point x P BP .

Note that γK in the above proposition is equivalent to (3.23). After convergence and

46



stability of algorithm, the natural question arises, does Algorithm 4 move interface with
correct motion law. The answer of this question is given in Elsey and Esedoglu [25]; we
summarise their result in two dimensions as follow:
Proposition 3.3.5. One step of Algorithm 4 moves a smooth interface with the normal

speed:

V pxq “ µKpnpxqq pγ
2
Kpnpxqq ` γKpnpxqqqκ, (3.28)

to leading order in δt.

To summarise, the positive Fourier transform of the kernel K guarantees the stability of
the algorithm. On the other hand, a positive kernel in the physical domain proves the
convergence of the algorithm under additional regularity assumptions. But [25] showed
that achieving these two conditions together is impossible for the anisotropies with non-

zonoid Wulff shape. The fact presented in the following theorem.
Theorem 3.3.6 ([25]). Threshold dynamics algorithm (3.15) and (3.16) with a positive

kernel can approximate a given weighted mean curvature flow if and only if the Wulff

shape corresponding to the anisotropy is a zonoid. Moreover, if the Wulff shape is not a

zonoid then a positive convolution kernel cannot be found for any other anisotropy the

Wulff shape of which is close enough in the Hausdorff metric.

The above theorem is known as a barrier theorem, c.f. [25]. Since all the centrally
symmetric shapes are a zonoid in two dimensions, the barrier theorem does not imply a
strong restrictions on the class of anisotropies. On the other hand, in three dimensions
barrier theorem becomes more restrictive. See Figure 3.5 for examples of non-zonoidal
shapes in three dimensions. Crystalline anisotropy with regular octahedron is not zonoid,
thus one can not find the kernel which is positive in the physical domain.

Figure 3.5: Examples of non-zonoidal shapes in three dimensions. This picture is taken
from [25].
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Chapter 4

Convolution kernels and their
comparison

In this chapter, we address the question of how to construct kernels yielding the desired
evolution. We review several kernels proposed in the literature and look into their prop-
erties, especially from the numerical point of view.

4.1 Convolution kernels

For a given kernel, the properties of the thresholding scheme transpire as presented in the
previous chapter. Here we consider the inverse problem, i.e., finding a suitable kernel for
a given anisotropy and mobility. Over the last two decades, various attempts have been
made to solve this problem. The following subsections review the well known major
kernels.

4.1.1 Bonnetier–Bretin–Chambolle kernel (BBC)

For a given anisotropy γ, the first notable, successful attempt to find a corresponding
kernel was made in [9]. Authors construct the kernel so that the positivity of the kernel
in the Fourier domain is always guaranteed.

The core idea behind their construction is as follow: consider a bounded closed set P Ă
Rd. Denote the Fourier transform of a function u by Fu, and u is a solution which solves
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following parabolic equation:

Bu

Bt
px, tq “ ∆̃upx, tq, t ą 0 x P Rd, (4.1)

upx, 0q “ 11P pxq. (4.2)

Where, operator ∆̃ is defined by

∆̃puq “ F´1 expp´Fpuqp2πγpξqq2q,

and can be seen as a linearization of anisotropic Laplacian, i.e., p∇ ¨ pnγp∇uqγp∇uqqq in
the Fourier space. At the end, they expressed solution u of (4.1) and (4.2) as a convolution
product of 11P and the desired anisotropic kernel

pKpξq “ e´4π2γ2pξq. (4.3)

With the help of (3.23), it can be confirmed that the BBC kernel yields the correct
anisotropy; indeed, denoting by γK the anisotropy corresponding to kernelK, we have

γKpnq “ ´
1

4π2

ż

R

pKpnξq ´ pKp0q

ξ2
dξ

“ ´
1

4π2

ż

R

e´4π2ξ2γ2pnq ´ 1

ξ2
dξ

“
1

4π2

ż

R

1´ e´x
2

x2

4π2γ2pnq

dx

2πγpnq
, where x “ 2πξγpnq

“
γpnq

2π

ż

R

1´ e´x
2

x2
dx

“
γpnq
?
π
. (4.4)

Mobility µK associated to the BBC kernel can be derived using (3.24) as follows:

2µKpnq “
1

ş

R
pKpnξq dξ

“
1

ş

R e
´4π2ξ2γ2pnq dξ

“
2πγpnq

ş

R e
´x2 dx

, where x “ 2πξγpnq

µKpnq “
?
πγpnq. (4.5)
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Inspecting (4.5), one can notice that the mobility associated to the BBC kernel is fixed to
the natural mobility and cannot be prescribed freely.

Since the kernel is always positive in the Fourier domain, Proposition 3.3.3 guarantees
the stability of the thresholding scheme. On the other hand, the kernel may not satisfy
(3.17) and (3.19) for some anisotropies, i.e., be negative in the physical domain, which
prevents authors from giving rigorous proof of convergence.

For a given anisotropy γ, if Bγ is not ellipsoid, then the BBC kernel shows a slow decay
rate. The slow decay rate arises for certain anisotropies because of singularity, which may
appear at the origin of BBC kernel. The slow decay rate is a drawback of the BBC kernel,
along with a lack of non-positiveness in the physical domain for some anisotropies, e.g.,
regularized crystalline anisotropy γpx, yq “ |x| ` |y|.

We conclude BBC kernel by summarizing results. If anisotropy is strictly convex, then,
using (4.3), it is possible to construct a kernel, which is positive in Fourier domain. The
inverse Fourier transform of this kernel, i.e., physical form of the kernel, is nothing but
a generalization of the Gaussian, which satisfies all the conditions mentioned in Proposi-
tion 3.3.3. Thus, the corresponding Algorithm 4 is stable. We summarise in the following
theorem:
Theorem 4.1.1. Let anisotropy γ be strictly convex. Then

(i) there is a kernel K that is positive in Fourier domain. i.e., pK ą 0,

(ii) the corresponding thresholding algorithm decreases the approximated interfacial en-

ergy at every time step.

4.1.2 Elsey–Esedoglu kernels (EE)

In [25], authors construct a kernel, which is positive in both the physical as well as in
the Fourier domain. The idea is to write the d-dimensional kernel as a weighted sum of
smoothed one-dimensional Gaussians defined in a direction ν P Sd´1 as

gν,εpxq “
1

p4πq
d
2

exp

ˆ

´
px ¨ νq2

4

˙

1

εd´1
exp

ˆ

px ¨ νq2 ´ |x|2

4ε2

˙

, (4.6)

and solve (3.23) as well as (3.24) to obtain the correct weight function ωpνq : Sd´1 Ñ R,
also called generating function. In the original paper, the mobility term contains an error;
therefore, detailed derivation is demonstrated here. Fourier transform of (4.6) is given as
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follows:

pgν,εpξq “ exp
`

´4π2
pξ ¨ νq2

˘

exp
`

ε24π2
“

pξ ¨ νq2 ´ |ξ|2
‰˘

. (4.7)

The detailed derivation of (4.7) is given in Appendix A.7. Anisotropy corresponding
to gν,ε can be derived with the help of (4.7) and (3.23). In particular, for n P Sd´1 we
have

γν,εpnq “
1

´4π2

ż

R

pgν,εpnξq ´ pgν,εp0q

ξ2
dξ

“
1

´4π2

ż

R

expp´4π2pν ¨ nξq2q exp p4π2ε2 rpν ¨ nξq2 ´ |nξ|2sq ´ 1

ξ2
dξ

“
1

´4π2

ż

R

expp´ξ24π2 rpν ¨ nq2p1´ ε2q ` ε2sq ´ 1

ξ2
dξ,

“

?
4π2

a

pν ¨ nq2p1´ ε2q ` ε2

´4π2

ż

R

expp´h2q ´ 1

h2
dh

“

a

pν ¨ nq2p1´ ε2q ` ε2

´2π

`

´2
?
π
˘

“
1
?
π

a

pν ¨ nq2p1´ ε2q ` ε2. (4.8)

Similarly, the mobility is computed from (3.24) as follows:

1

2µν,εpnq
“

ż

R
pgν,εpnξq dξ

“

ż

R
expp´4π2

pν ¨ nξq2q exp
`

4π2ε2
“

pν ¨ nξq2 ´ |nξ|2
‰˘

dξ

“

ż

R
expp´ξ24π2

“

pν ¨ nq2p1´ ε2q ` ε2|n|2
‰

dξ

“

ż

R

expp´h2q dh
a

4π2pν ¨ nq2p1´ ε2q ` aε2
, h “ ξ

a

4π2pν ¨ nq2p1´ ε2q ` aε2

“

?
π

2π
a

pν ¨ nq2p1´ ε2q ` ε2

µν,εpnq “
?
π
a

pν ¨ nq2p1´ ε2q ` ε2. (4.9)

As εÑ 0, (4.8) and (4.9) converge to

γν,εpnq Ñ
1
?
π
|ν ¨ n| and µν,εpnq Ñ

?
π|ν ¨ n|, uniformly on Sd´1. (4.10)

Denoting the cosine transform as T and taking sum over all directions ν P Sd´1, we can
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write the desired surface tension as

γpnq “
1
?
π

ż

Sd´1

ωpνq |ν ¨ n| dHd´1
pνq “

1
?
π
T ωpνq. (4.11)

The generating function ω can be obtain by solving (4.11):

ω “
?
πpT ´1γq. (4.12)

Note that T ´1 is the inverse cosine transform and ω obtained by (4.12) will be positive
as long as Wulff shape of the anisotropy γ is a zonoid [25, 8]. The corresponding kernel
can then be written as

Kεpxq “

ż

Sd´1

ωpνq gν,εpxq dHd´1
pνq

“

ż

Sd´1

?
πpT ´1γqpνq gν,εpxq dHd´1

pνq. (4.13)

(4.13) represents the general form of the kernel, which is positive in both the physical
and Fourier domain. Corresponding mobility of (4.13) can be derived with the help of
(3.24) as follows:

rµεpnqs
´1

“ 2

ż

R

xKεpnξq dξ

“ 2

ż

R

ż

Sd´1

?
πpT ´1γqpνq pgν,εpξq dHd´1

pνq dξ

“ 2
?
π

ż

Sd´1

pT ´1γqpνq

„
ż

R
pgν,εpξq dξ



dHd´1
pνq

“ 2
?
π

ż

Sd´1

pT ´1γqpνq

«

1

2
?
π
a

pν ¨ nq2p1´ ε2q ` ε2

ff

dHd´1
pνq see (4.9)

“
1
?
π

ż

Sd´1

pT ´1γqpνq

?
π

a

pν ¨ nq2p1´ ε2q ` ε2
dHd´1

pνq

“
1
?
π

ż

Sd´1

pT ´1γqpνq
1

γν,ε
dHd´1

pνq, using (4.8) (4.14)

As pointed out earlier, the original paper contains an error, and the above is the corrected
formula.

The specific form of the two-dimensional kernel will be required for the upcoming anal-
ysis. To get the expression of the kernel in two dimensions, we simplify the generating

52



function as follows,

ωpνq “
?
πpT ´1γq “

?
π

4

”

γ
2

pθ ´
π

2
q ` γpθ ´

π

2
q

ı

“

?
π

4
stiff pθq, (4.15)

where ν “ pcos θ, sin θq and we use ’stiff’ as an abbreviation of the stiffness term, i.e.,
stiffpθq “ γ

2

pθ ´ π
2
q ` γpθ ´ π

2
q. (4.13) and (4.15) allow us to write two-dimensional

form of the kernel as below,

Kεpxq “

ż

S1

ωpνq gν,εpxq dν,

“
?
π

ż 2π

0

stiffpθq
4

gν,εpxq dθ

“
?
π

ż 2π

0

stiffpθq
4

1

4πε
exp

ˆ

´px ¨ νq2

4

˙

exp

ˆ

px ¨ νq2 ´ |x|2

4ε2

˙

dθ

“
1

16ε
?
π

ż 2π

0

stiffpθq exp

ˆ

´ppx, yq ¨ pcos θ, sin θqq2

4

˙

exp

ˆ

ppx, yq ¨ pcos θ, sin θqq2 ´ x2 ´ y2

4ε2

˙

dθ,

“
1

16ε
?
π

ż 2π

0

”

γ
2

pθ ´
π

2
q ` γpθ ´

π

2
q

ı

exp

ˆ

´px cos θ ` y sin θq2

4

˙

exp

ˆ

´px sin θ ´ y sin θq2

4ε2

˙

dθ. (4.16)

Similarly, the Fourier transform is

pKεpξq “

ż

S1

ωpνq pgν,εpξq dν

“
?
π

ż 2π

0

stiffpθq
4

pgν,εpξq dθ

“

?
π

4

ż 2π

0

stiffpθq expp´4π2
pν ¨ ξq2q exp

`

4π2ε2
“

pν ¨ ξq2 ´ |ξ|2
‰˘

dθ

“

?
π

4

ż 2π

0

stiffpθq exp
`

´4π2
“

pν ¨ ξq2qp1´ ε2q ` ε2|ξ|2
‰˘

dθ

“

?
π

4

ż 2π

0

”

γ
2
´

θ ´
π

2

¯

` γ
´

θ ´
π

2

¯ı

exp
`

´4π2
“

pξ1 cos θ ` ξ2 sin θq2p1´ ε2q ` ε2|ξ|2
‰˘

dθ. (4.17)

Thus, (4.16) and (4.17) give the desired form of the kernel in the respective domain.
Corresponding mobility of the EE kernel is given by (4.14), and for the two-dimensional
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case one can simplify the mobility expression as follows,

rµεpnqs
´1

“ 2

ż

R

xKεpnξq dξ

“ 2

ż

R

?
π

ż 2π

0

stiffpθq
4

pgν,εpnξq dθ dξ

“ 2
?
π

ż 2π

0

stiffpθq
4

„
ż

R
pgν,εpnξq dξ



dθ

“ 2
?
π

ż 2π

0

stiffpθq
4

1

2
?
π
a

pν ¨ nq2p1´ ε2q ` ε2
dθ derivation of (4.9)

µεpnq “

˜

1

4

ż 2π

0

γ
2

pθ ´ π
2
q ` γpθ ´ π

2
q

a

pn1 cos θ ` n2 sin θq2p1´ ε2q ` ε2
dθ

¸´1

(4.18)

Formula (4.18) indicates that the mobility depends on the regularising parameter ε.

In the thresholding algorithm, for the thresholding step, i.e., (3.16), area below the graph
of the kernel is needed. To obtain area below the graph of the kernel, the Fourier form of
the kernel, i.e., (4.17) can be taken into consideration. Indeed, it is obtained directly by
putting ξ “ 0 in (4.17), i.e.,

pKp0q “ pKεp0q “

?
π

4

ż 2π

0

”

γ
2
´

θ ´
π

2

¯

` γ
´

θ ´
π

2

¯ı

dθ. (4.19)

(4.19) guarantees that the area of the kernel does not change with the choice of ε.

EE kernel is positive in both physical domain and Fourier domain, hence proof of con-
vergence and stability is achievable for fixed ε. On the other hand, from the practical
viewpoint, the computational time required to construct the kernel is excessive because
it demands integration at each grid point. Moreover, unchangeable mobility is another
drawback of the EE kernel.

We conclude EE kernel section by summarizing the compatibility of a kernel with stabil-
ity and convergence in the following theorem:
Theorem 4.1.2. If γ is non-negative, even, strictly convex anisotropy and γpxq ą 0 for

all x P Rd,

(i) then the above construction gives a kernel, which is positive in Fourier domain; fur-

ther, these kernels satisfy all the conditions required for stability of Algorithm 4, i.e.,

Proposition 3.3.3.

(ii) Further, if corresponding Wulff shapeWγ is a zonoid, then the construction of kernel,

which is positive in physical domain, is possible. These kernels satisfy all the conditions
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given in convergence theorem 3.3.1.

4.1.3 Esedoglu–Jacobs–Zhang kernel, positive in physical domain
(EJZ)

Esedoglu, Jacobs and Zhang developed a most general form of kernels in [30]. The au-
thors construct a positive kernel in the real domain for two and three dimensions. How-
ever, since in this work we focus on the two-dimensional problem, only details of the
two-dimensional kernel are given below.

To begin with, let us introduce a few assumptions and terminologies. Spherical Radon
transform Js of an even function f is defined as

Jsfpnq “
ż

Sd´1XnK
fpxq dHd´1

pxq.

Further, we define a compactly supported, smooth positive bump function η : R Ñ R
by

ηpxq “

$

&

%

e
´1

x2px´2q2 if x P p0, 2q

0 otherwise,
(4.20)

and its moments are denoted as

mj “

ż 2

0

xjηpxq dx, j P N`.

The authors proved the existence of a kernel as presented in the following proposition.
Note that their kernel formula contains an error; therefore, we give a detailed proof.
Proposition 4.1.3. [30] Let γ and µ satisfy

‚ Bγ is strongly convex and BBγ is smooth, (4.21)

‚ µ : S1
Ñ R`zt0u, (4.22)

then, there exist a positive, smooth, compactly supported convolution kernel K : R2 Ñ

R` such that γK “ γ and µK “ µ.

Proof. For a given kernel K, corresponding anisotropy γK and mobility µK can be given
as (3.27) and (3.25). As done in [25], for d “ 2, we considered a polar form of (3.25) and
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(3.27), then use (4.12) to get the generating function and mobility in the following form,

ωpnq “
1

2

ż 8

0

Kprnq rd dr,

1

2µpnq
“ Js

ż 8

0

Kprnq dr.

(4.23)

Let the kernel K have a polar form

Kpr, θq “ αpθq ¨ ηprβpθqq, (4.24)

where α, β : R Ñ R` are π- periodic, smooth functions. Substitute (4.24) into (4.23) to
get

2ωpθq “

ż 8

0

αpθq ¨ ηprβpθqq rd dr

stiffpθq
2

“ αpθq

ż 8

0

ηpxq

„

x

βpθq

d
dx

βpθq
, x “ rβpθq

“
αpθq

βpθq3

ż 8

0

ηpxq x2 dx “
αpθq

βpθq3

ż 2

0

ηpxq x2 dx, d “ 2

“
αpθq

βpθq3
m2. (4.25)

Similarly, for the second expression in (4.23),

J ´1
s

ˆ

1

2µpθq

˙

“

ż 8

0

αpθq ¨ ηprβpθqq dr

1

2
J ´1
s

ˆ

1

µpθq

˙

“ αpθq

ż 8

0

ηpxq
dx

βpθq

1

2
¨

1

2µpθ ´ π{2q
“

αpθq

βpθq
m0. (4.26)

Both (4.25) and (4.26) lead to the following solution,

βpθq2 “
αpθq

βpθq

2m2

stiffpθq

“
1

4m0µpθ ´ π{2q
¨

2m2

stiffpθq
,

“

«

m2

2m0

¨
1

µpθ ´ π{2q
“

γ2pθ ´ π
2
q ` γpθ ´ π

2
q
‰

ff
1
2

.βpθq (4.27)
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αpθq “
βpθq

4m0µpθ ´ π{2q

“

«

m2

32m3
0

¨
1

µ3pθ ´ π{2q
“

γ2pθ ´ π
2
q ` γpθ ´ π

2
q
‰

ff
1
2

. (4.28)

(4.24), (4.27) and (4.28) give the desired output.

Since the EJZ kernel is positive in the physical domain, the convergence of the algorithm
is guaranteed. On the other hand, the kernel may be negative in the Fourier domain;
thus, stability is uncertain. However, one can freely choose mobility during the kernel
construction, which makes EJZ kernel the most general among all other kernels.

We conclude EJZ kernel section by summarizing the convergence result as follows:
Theorem 4.1.4. If γ is non-negative, even, strictly convex anisotropy and γpxq ą 0 for

x ‰ 0, then the above construction gives a kernel in two dimensions, which is positive in

the physical domain. Further, it satisfies all the conditions given in convergence theorem

3.3.1.

4.1.4 Esedoglu–Jacobs–Zhang kernel, positive in Fourier domain
(EJZ-F)

Authors of [30] developed another kernel in the same paper. To construct the kernel, they
assume exponential form of the kernel and solve (3.23) and (3.24). The authors proved
the existence of the kernel in the following proposition. Here too, we found an error;
therefore, detailed derivation is presented.
Proposition 4.1.5. [30] Let γ and µ satisfy (4.21) and (4.22) then, there exist a convolu-

tion kernel K : Rd Ñ R in Schwartz class with pK ě 0 and a constant c ą 0 such that

γK “ γ and µK “ cµ.

Proof. The ansatz is,

pKpξq “
1

2
expp´ζpαpξqqq `

1

2
expp´ζpβpξqqq, (4.29)

where ζ : R Ñ R is a positive, smooth and even function satisfying ζpxq “ 0 if |x| ď 1

and ζpxq “ x2 if |x| ě 2 and α, β : Rd Ñ r0,8q are one homogeneous functions.
Desired kernel is derived by solving (3.23) and (3.24); therefore we substitute (4.29) in
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those equalities, which leads to the following;

´4π2γpnq “

ż

R

pKpnξq ´ pKp0q

ξ2
dξ

“

ż

R

1
2

exp´ζpαpnξqq`1
2

exp´ζpβpnξqq´1

ξ2
dξ

“
1

2

ż

R

exp´ζpαpnξqq´1

ξ2
dξ `

1

2

ż

R

exp´ζpβpnξqq´1

ξ2
dξ

“
α ` β

2

ż

R

exp´ζpyq´1

y2
dy

8π2γpnq “ 4πpα ` βqS2, where S2 “
1

4π

ż

R

1´ exp´ζpyq

y2
dy

b “ α ` β, where b “ 2πγpnq{S2. (4.30)

Similarly, substitution of (4.29) in (3.24) results in

c

2µpnq
“

ż

R

pKpnξq dξ

“

ż

R

1

2
exp´ζpαpnξqq`

1

2
exp´ζpβpnξqq dξ

“

ˆ

1

2α
`

1

2β

˙
ż

R
exp´ζpyq dy

“ 4π

ˆ

1

2α
`

1

2β

˙

S0, where S0 “
1

4π

ż

R
exp´ζpyq dy

a “

ˆ

1

α
`

1

β

˙

, where a “
c

S04πµpnq
(4.31)

(4.30) and (4.31) lead to a simple quadratic equation for α and β. Constant c ą 0 has
been introduced to ensure that the quadratic equation possesses real roots. Two solutions
of the quadratic equation are

αpnq “
π

S2

?
c

´?
cγ `

a

cγ2 ´ 8S0S2µγ
¯

, (4.32)

βpnq “
π

S2

?
c

´?
cγ ´

a

cγ2 ´ 8S0S2µγ
¯

. (4.33)

We see that we need to take c ě 8S0S2µpnq{γpnq for all n, so that α, β are real.
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This kernel is positive in the Fourier domain hence guarantees the stability of the corre-
sponding algorithm.
Theorem 4.1.6. If γ is strictly convex anisotropy then above construction gives a kernel

in Schwartz class, which is positive in Fourier domain; further, these kernels satisfy all

the conditions required for stability of Algorithm 4, see Proposition 3.3.3.

EJZ-F kernel may change the sign in physical domain, and thus authors could not give
the proof of convergence.

This kernel is a modification of BBC kernel [9] with the purpose of eliminating the singu-
larity of the Fourier transform of BBC kernel which may appear at the origin for certain
anisotropies, and thus improving decay properties of the kernel that are important for
numerical efficiency. Moreover, the EJZ-F kernel allows for a free choice of mobility
µ, unlike the BBC kernel. The corresponding mobility of the EJZ-F kernel differs by a
factor c, i.e., we can obtain only a multiple of the desired mobility, but this has no impact
on the solution as it only scales time.

4.2 Comparison of kernels

This section aims to investigate the properties of the kernels introduced above from the
numerical point of view. The motivation comes from the fact that although the gen-
eral theory of convergence and stability is presented in Chapter 3, there is no systematic
comparison of the numerical performance of convolution kernels in the literature. This
kind of analysis is important to decide which kernel is suitable for a particular prob-
lem/anisotropy; in particular, it will direct our choice of the kernel for the obstacle prob-
lem in the following chapter. Therefore we do a comparison analysis with the following
criteria in mind:

• Behaviour of error and convergence order.

• Time required for computation.

• Ability to handle sharp corners.

• Evolution of non-convex shapes.

Regarding convergence order, its theoretical predicted value is one as shown in Propo-
sition 3.3.5, and we confirm in our numerical tests that it is indeed so also practically.
We choose a well behaved elliptic anisotropy to investigate the error, convergence order,
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and computational time. We use natural mobility, so that the solution is self-similar and
analytical solution is available.

Further, to check the ability of the kernels to handle corners, we choose the crystalline
anisotropy, where Wulff shape has sharp corners. To investigate the behaviour of the
kernel with a non-convex shape, we start the evolution with an S-shaped initial condition
and test the numerically obtained evolution against an accurate front tracking solution.
The findings on properties of all kernels are summarized in tabular form.

We use Algorithm 4 (see Section 3.3) and its modified version for area-preserving flows
to perform the above mentioned numerical tests. These algorithms consist of two essen-
tial steps, namely convolution and thresholding. In the numerical tests, the convolution
Kδt ˚ 11P is calculated with the help of Fast Fourier Transform (FFT), yielding

pUk
“ pKδt

p11Pk , (4.34)

and then taking the inverse transform to get Uk. Spatial variables are discretized on a
rectangular grid with grid cells of size dxˆdy. In the thresholding step, the value at each
grid point of the diffused function Uk is replaced with 0 or 1 to obtain numerical solution
Uk`1 at next time step.

If the value of Uk at a grid point is greater than half of the area under the kernel, then
the value 1 is assigned, otherwise 0. This procedure of rearranging the values leads
to a characteristic function, which becomes the input for the next time step. However,
this simple thresholding approach leads to non-smooth behaviour of errors. To avoid
this unwanted behaviour, the idea of sub-grid spatial accuracy is implemented in the
numerical code; see Appendix A.5 for details.

4.2.1 Anisotropy with smooth Wulff shape

Here we perform the first comparison test to investigate the error, convergence order and
computational time. All tests are carried out in two dimensions. To make this test fair,
all the parameters, i.e., anisotropy, mobility, initial condition and final time, are taken
identical for each kernel.

In order to satisfy the assumptions needed for convergence and/or stability of the thresh-
olding scheme, we choose an elliptic anisotropy, i.e., γpx, yq “

a

paxq2 ` pbyq2 with
a “ 2, b “ 1. Wulff shape corresponding to this anisotropy is given by x2 `

`

y
2

˘2
“ 1.
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One can easily observe that the selected anisotropy is one-homogeneous, and the corre-
sponding Wulff shape is centrally symmetric, thus a zonoid.

We have the liberty to choose any mobility, except for BBC and EE kernels. BBC kernel
has fixed natural mobility, i.e., µ “ γ, and therefore, we select natural mobility for all the
kernels during the numerical tests. However, EE kernel’s mobility is fixed to a different
value and thus we need to treat this case separately.

We assigned the Wulff shape of the chosen anisotropy as initial condition. This particular
choice of mobility and initial condition leads to the analytical solution, known as self-

similar solution [74]. The setup of the test is summarized as follows:

anisotropy: γpx, yq “
a

p2xq2 ` y2, mobility: µ “ γ, (4.35)

Wulff shapeWγ : x2
`

´y

2

¯2

“ 1, initial condition : Γ0 “Wγ.

Analytical solution

Analytical solution of this problem is known as self-similar solution, i.e., initial Wulff
shape shrinks in size without changing its shape [74, 66]. Since the shape is preserved,
the only task is to find the speed of the shrinking Wulff shape. Below, we derive the
analytical solution.

Consider a Wulff envelope as Wγpθ, tq “ ηptqWγpθ, 0q and notice that by construction
we have Wγpθ, tq ¨ npθq “ ´γpθq, where n is the unit normal. Moreover, the anisotropic
curvature pγ`γ2qκ is equal to 1 for the Wulff envelope Wγpθ, 0q and scales as 1{ηptq for
Wγpθ, tq. Hence, normal velocity formula gives the following expression:

V “ BtWγ ¨ n “ Btηp´γq “ γpγ ` γ
2

qκ “ γ{η,

which leads to a simple ODE Btη “ ´1{η. Solving the ODE for ηptqwith initial condition
ηp0q “ 1, yields,

Wγpθ, tq “
?

1´ 2t Wγpθ, 0q, t P p´8, 1
2
s. (4.36)

The solution vanishes at time t “ 1
2
; which is also known as extinction time. For the

analysis, we evolve the initial Wulff shape until half time to extinction, i.e., t “ 1
4

and
call this time ”final time”.
We present self similar solution based on (4.36) in Figure 4.1. Numbers in the inset
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indicate time. As announced earlier, ellipse is decreasing in size while preserving its
shape.

Figure 4.1: Self similar solution of the problem (4.35) given in Section 4.2.1

Front tracking solution

We have derived an analytical solution for the problem with natural mobility. However,
EE kernel possesses a different mobility, i.e., (4.14) and, therefore, the above derived
analytical solution does not apply to the EE kernel. Since the analytical solution for
the mobility (4.14) is not available, we use an accurate numerical approximation of the
analytical solution, known as front tracking solution, from [66], see Appendix A.6.

Error

For the convergence analysis, we chose the L8t pL
1
xq-norm to measure error. To under-

stand the meaning of this error, we look at the error in two steps. In the first step, compute
the spatial error by L1-norm, i.e., the difference of the subgrid-accurate characteristic
function of numerical solution and the subgrid-accurate characteristic function of the an-
alytical solution at each time step, until the overall time reaches the final time, i.e., 0.25.
In the second step, choose the maximum among those. The explicit definition of the error
is given as,

L8t pL
1
xq norm “ L8t

ˆ
ż

ˇ

ˇ

ˇ
11UkA ´ 11Uk

ˇ

ˇ

ˇ
dx

˙

“ max
tkPr0,0.25s

ˆ
ż

ˇ

ˇ

ˇ
11UkA ´ 11Uk

ˇ

ˇ

ˇ
dx

˙

, (4.37)
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where 11UkA is subgrid-accurate characteristic function of the analytical solution at time
tk, and similarly 11Uk is subgrid-accurate characteristic function of the numerical solution
at timestep k. In the numerical tests, we noticed that the L1-norm of the spatial errors
increased with the time; therefore, the maximum over time was attained at the final time.
Due to this fact, one can save the computation time by calculating errors near the final
time only.

In the case of EE kernel, extinction time is different from 0.25 because of different mo-
bility. Moreover, extinction time varies with the value of regularizing parameter, i.e., ε.
We choose three different values of εpnamely, 0.01, 0.05 and 0.1q to study the numerical
behavior and determine the final time as an approximate half time to extinction.

Numerical results

Figure 4.2: Figure on bottom right depicts the comparison with front-tracking solution at
half-time to extinction
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Figure 4.3: Log-log plots of the dependence of numerical error on time step δt for various
mesh refinements dx and for each kernel. Black points indicate the optimal dx-δt pair
for each value of dx.

For the numerical analysis, we evolve the Wulff shape of an elliptic anisotropy using
Algorithm 4 until final time, i.e., half time to extinction. These computations were done
using Matlab software on four cores of 3.7GHz Intel Xeon E5 processors of a Mac Pro
workstation. The resulting errors, convergence rates and CPU times are presented in
Table 4.1, Figures 4.2 and 4.3.

For all the kernels, first immediate observation is that the thresholding scheme possesses
the expected (theoretical) first-order convergence order in time. This observation is made
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Table 4.1: Results of numerical tests for selected mesh sizes dx and corresponding
number of grid points N . Highlighted columns show results for the common value of
δt “ 0.0039.

based on the fact that for fixed mesh size dx, and corresponding optimal diffusion time
δt (black circles in Figure 4.3), the line (see black line in Figure 4.3) joining these points
points has slope close to one. Here, optimal diffusion time means the value δt, which
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gives the least error among all available δt. BBC and EJZ-F kernels are positive in the
Fourier domain, and their convergence rate is slightly greater than one.

Further, the error shows a typical V-shape phenomenon, i.e., error decreases with de-
creasing time-step until it attains minimum, and then it increases for further smaller δt.
The V-shape phenomenon occurs because, for sufficiently small δt, the thresholding al-
gorithm cannot move the interface by more than a single grid cell. Thus, the interface
gets stuck and does not properly evolve with time, yielding larger errors. Details about
the V-shape phenomenon are explained in [60]. Overall performance of BBC and EJZ
kernels are better than the EE and EJZ-F kernels. The highlighted grey columns in Table
4.1, represent results for fixed time step δt “ 0.0039. BBC kernel gives the least error
among all kernels. For the EE kernel, as explained in [25], numerical solution gets closer
to analytical solution as regularizing parameter εÑ 0.

To investigate the required computational time, we calculate the CPU time for each kernel
as shown in Table 4.1. BBC kernel is dominating the CPU time criteria by showing the
least numbers among all kernels. Note that the CPU time presented in the table does not
include time required for kernel construction. This is important for EE kernel, whose
construction demands integration at each grid point, hence leading to significantly larger
CPU times. If one considers the kernel construction time too, the CPU time comparison
would be biased. Moreover, it is computationally more efficient to have an explicit form
of Fourier transform of the kernel since it saves one FFT calculation in (4.34).

On the other hand, although the EJZ kernel is given in the physical domain, it is still
effective in terms of CPU time. The convergence order of EE kernel strongly depends on
the regularization parameter ε. We observed that for each choice of ε, there is a value in
time step δt below which the convergence order starts deteriorating (see EE kernel with
different values of ε in Table 4.1). Further, EE kernels are time-consuming in terms of
construction because they demand a convolution at each grid point.

Upon investigating CPU time, errors, the time required to construct the kernel, and be-
haviour of convergence order, we conclude that the BBC kernel outperforms the other
kernels.

4.2.2 Non-convex initial condition

In the previous test, we used a convex initial condition. It is of interest to investigate the
behaviour of the thresholding method and kernels when nonconvex initial condition is
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Figure 4.4: Results of applying the thresholding method to S-shaped nonconvex initial
condition. Here dx “ 0.0012 and δt “ 0.000488. A: BBC kernel, E: EJZ kernel (pos-
itive in Fourier domain), F: EJZ kernel (positive in physical domain), G: Front tracking
solution, I: Initial shape.

prescribed. We carried out a test with an S-shaped initial condition, see ’I’ in Figure 4.4
(left).

The setup for this test is the same as previous test except for anisotropy and initial con-
dition. We choose four-fold weakly anisotropy γpθq “ 1 ` 0.05 cos 4θ with natural
mobility, i.e., µ “ γ and initial condition is S-shaped. Mobility of EE kernel is fixed and
not equal to natural mobility; therefore, EE kernel is excluded from this test. Numerical
solutions obtained for each kernel were compared against an accurate approximation of
the analytical solution obtained by the anisotropic front-tracking method with automatic
point redistribution [66]. The front tracking method is the same as the one used in the
previous section. In the front tracking, we used 102 points to discretize the curve.

Scrutinizing numerical solutions with front tracking solutions at different times (see Fig-
ure 4.4) leads to the conclusion that all three kernels, i.e., BBC, EJZ and EJZ-F show an
excellent agreement with the front tracking solution.

4.2.3 Crystalline anisotropy

So far, we have investigated the numerical behaviour of kernels for smooth anisotropies.
However, one type of anisotropy is critically important from the application perspec-
tive, namely, the crystalline anisotropy. Recall that anisotropy is called crystalline if the
corresponding Wulff shape is a polytope. We perform a comparison test on crystalline
anisotropy. The prime objective of this test is to see the effect of each kernel at the corners
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of the polytope. In order to avoid shrinking of the solution and thus be able to observe
the evolution at corners, we changed the original thresholding algorithm so that the new
algorithm preserves the area of initial condition. Details of the changes are explained in
the following subsection.

Area constraint algorithm

To prevent shrinking in the algorithm, one can follow section 3.2, which deals with the
volume-preserving isotropic case. The volume constraint demands change in the thresh-
olding step in the original algorithm, i.e., Algorithm 4, which is then updated as follows:

Algorithm 5 Anisotropic BMO algorithm with volume constraint
Given a time step δt and a particle region P k Ă Rd at time tk, to get new region P k`1 at
next time step tk`1 “ tk ` δt, perform the following two steps:

Convolution: Uk
“ Kδt ˚ 11Pk (4.38)

Thresholding: P k`1
“
 

x | Uk
pxq ď δk

(

(4.39)

Here δk is chosen so that the area of phase P k`1 is equal to the area of phase P 0.

Numerical test

To scrutinize the behaviour at the corners, consider a crystalline anisotropy γpx, yq “
|x| ` |y|, which gives the square as Wulff shape. Set circle as an initial condition and
evolve it by area-preserving anisotropic mean curvature flow according to Algorithm 5
until no change is observed between subsequent time steps. We are interested to see the
effect at the corners of the numerical equilibrium shape; therefore, any value of mobility
is okay for the task. BBC kernel has natural mobility, and we fixed the natural mobility
for EJZ kernel and EJZ-F kernel too. As already mentioned, EE kernels have their own
fixed mobility, i.e., (4.14).

For EE kernel, we considered three different regularizing parameters ε, as in Section
4.2.1. On the other hand, EJZ kernel requires smooth anisotropy. Therefore, we regular-
ize the original anisotropy as follows,

γpx, yq « γδpx, yq “
?
δ2 ` x2 `

a

δ2 ` y2 where, δ “ 0.01.
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Figure 4.5: Capability of thresholding kernels to approximate crystalline Wulff shapes.
A: BBC kernel, B: EE kernel (ε “ 0.01), C: EE kernel (ε “ 0.05), D: EE kernel (ε “ 0.1),
E: EJZ kernel (positive in Fourier domain), F: EJZ kernel (positive in physical domain),
G: Exact solution.

After implementing Algorithm 5, we obtain numerical results, depicted in Figure 4.5.
The whole solution is shown in the top-right corner, and a zoom-in in the centre to clearly
see one of the corners. Since Wulff shape is symmetric, it is enough to look at one corner
only. All the figures have the same space grid size dx. The left and middle plots show the
result for fixed dx–δt pair. The right-side figure shows the result for the optimal value
of δt chosen for each kernel; therefore, δt has a different value for each kernel. Here,
optimality means that δt gives the least error for the given dx.

One can immediately observe that all the kernels smooth out the corners, but BBC ker-
nel’s smoothening is excessive. We tried different anisotropy with octagon as a Wulff
shape to confirm the excessive smoothening behaviour of BBC kernel. We also noticed
the same problem in that example; hence, it becomes clear that the BBC kernel is not an
ideal choice for crystalline anisotropies. On the other hand, EE kernel shows the oppo-
site behaviour to BBC kernel. EE kernel gives better and better results as regularising
parameter ε converges to zero; a fact already mentioned in [25].

Surprisingly, both EJZ and EJZ-F kernel gave almost identical results, and their perfor-
mance lies in between EE and BBC kernel. Moreover, EE kernel with a comparatively
large regularizing parameter ε “ 0.1 gives the same result as EJZ and advantage of EJZ-F
kernel is that it does not have a singularity at the origin like the BBC kernel for the cho-
sen anisotropy, thus EJZ-F is expected to yield better results than BBC kernel. Both EJZ
and EJZ-F kernels give the same result, while the time to construct the EJZ-F kernels is
slightly greater than its counterpart. On the other hand, the Fourier form of EJZ-F kernel
saves one step in the convolution, as mentioned earlier, leading to a supremacy of the
EJZ-F kernel. One can also notice that refinement of time step δt does not necessarily
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lead to a better result since the interface may ”get stuck” for small δt. It can be observed
by checking the left and middle figure for the EE kernel with ε “ 0.01.

4.2.4 Summary of kernel comparison

Kernel BBC EE EJZ EJZ-F

positive in physical domain?
may not yes yes may not

positive in Fourier domain?
yes yes may not yes

Mobility
Natural
mobility
(µ “ γ)

Fixed
mobility

see (4.14)

Can be
chosen
freely

Can be
chosen
freely

Limitations

BBC

‚ Excessive smoothening leads to mishandling of crystalline anisotropies.
‚ Slow decay rate for anisotropies not having ellipsoid as Wulff shape.

‚ Kernel may change sign in the physical domain.
‚Mobility is fixed to natural mobility.

EE
‚ Regularizing parameter ε has significant influence on the outcome.

‚ Kernel construction (computationally) very expensive.
‚Mobility is fixed to an unnatural form.

EJZ-F ‚ Kernel may change sign in the physical domain.
EJZ ‚ Kernel may change sign in the Fourier domain.

Table 4.2: Summary of properties of four types of kernels.
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Chapter 5

Obstacle problem

This chapter introduces the obstacle problem as a natural extension of the two-phase case
to a three-phase case, where one phase, i.e., the substrate, is fixed. The additional phase
gives rise to triple junction points, i.e., points where three interfaces meet. Since these
points change position during the evolution and also the boundary condition is time-
dependent, finding a solution to the three-phase problem becomes a non-trivial prob-
lem.

One fixed phase with two deformable phases is one of physical interpretations to consid-
ering (solid) particle in vapour on a fixed substrate. Thus, obstacle problems have many
real-life applications; for example, in coating techniques such as thermal spraying, it is
important to predict the dynamics of spreading of impinging particles [7]. Likewise, in
the manufacturing of nanopatterned substrates, the precise control of the size and location
of forming nanoparticles is essential to boost the functionality of the product [44].

In this chapter, first, we present details of problem setup. Then a thresholding scheme
is developed to solve the evolution problem, and numerical properties of each kernel
(presented in the previous chapter) are checked via various numerical tests. Finally, a
modified scheme is proposed to improve the accuracy at contact points.

5.1 Formulation of the problem

Consider a particle P on a rigid substrate S surrounded by a vapour region V , where
P, S, V are taken as closed sets (see Figure 5.1). The objective is to study the evolution of
the particle and its equilibrium shape. Therefore we choose a bounded domain Ω Ă Rd

71



that is large enough so that there is no contact between particle and boundary of the
domain, and thus no influence on the evolution of the particle.

We introduce some more notation. Denote the upper part of the domain as Ωup :“ P Y

V “ ΩzS. Three interfaces are present in the system, i.e., ΓSP “ SXP,ΓSV “ SXV and
Γ “ ΓPV “ P X V , which represent the interface between substrate–particle, substrate–
vapor and particle–vapor, respectively. Surface energies of each interface are denoted by
γSP , γSV and γPV , respectively.

Throughout the evolution, γSP and γSV are assumed to be constant along ΓSP and ΓSV ,
respectively. On the other hand, the particle–vapor interface has orientation-dependent
energy, i.e., γPV pxq “ γpnpxqq, where n is the outer normal to P at a point x P ΓPV .
We consider also a polar form of γPV to simplify the derivations by identifying n as
pcos θ, sin θq, where θ P r´π, πq is the angle between n and the y-axis. Identifying n

as unique function of θ allows to consider γ as a function of one variable θ, namely,
γpnpxqq “ γpcos θpxq, sin θpxqq “: rγpθpxqq. For the sake of simplicity, tilde will be
dropped in the ensuing text. We assume that throughout the evolution, the substrate

Figure 5.1: Setup and notation: a particle on a flat, rigid substrate.

ΓS “ ΓSP Y ΓSV is fixed. The contact points, also known as free boundary points, i.e.,
xlc and xrc may move due to the deformation of Γ. The only constraint is the area A of
particle region P , i.e., during the evolution, A is preserved. Hence the problem setup
leads to the total interfacial energy,

EpΓq “

ż

Γ

γPV ds`

ż

ΓSP

γSP ds`

ż

ΓSV

γSV ds, (5.1)

and area constraint |P | “ A. Local minima of this energy yield equilibrium shapes of
particle P .
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5.1.1 Equilibrium shape

The authors in [3] define equilibrium shapes for two-dimensions as those curves Γ at
which the first variation with respect to area-preserving normal perturbations and ar-
bitrary tangential perturbations of Γ vanishes, and show that this is equivalent to the
following two conditions:

κpxq pγ2pθpxqq ` γpθpxqqq “ C a.e. x, (5.2)

γpθq cos θ ´ γ1pθq sin θ ` γSP ´ γSV “ 0 θ “ θlc, θ
r
c . (5.3)

Here κpxq is the curvature of Γ at a given point x, C is a constant determined from the
area of particle, and θlc, θ

r
c are the angles at the left and right contact points, respectively.

For isotropic surface energy (γ “ constant), (5.3) reduces to the well-known Young’s
equation, and thus we call (5.3) the anisotropic Young’s equation, cf. [70].

Authors of [3] define stable equilibrium as those curve Γ satisfies the relation: for all
ρ ą 0, there exists ε0 ą 0, such that when |ε| ă ε0, the following relation always
holds:

EpΓq ď EpΓεq ď EpΓq ` ρ. (5.4)

Where Γε denotes Γ with normal perturbations of size ε and arbitrary tangential pertur-
bations. A necessary condition for stability is

γ2pθpxqq ` γpθpxqq ě 0 a.e. x. (5.5)

When γ satisfies this condition for all θ, equilibrium shapes can be obtained using the
Winterbottom construction [71], which essentially truncates the Wulff shape correspond-
ing to the anisotropy γ at a suitable height determined by the participating surface ener-
gies γSP and γSV , see Appendix A.2 for the details of Winterbottom construction.

5.1.2 Evolution problem

The aim is to numerically analyze evolution of particles towards equilibrium in two di-
mensions. In order to do that, we select one of the simplest evolution laws, namely the
L2-gradient flow of the energy (5.1), which is usually called the weighted mean curvature

flow. In the simple case of one particle undergoing no topology change, there are only
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two contact points, and a standard derivation analogous to (5.2)–(5.3) (see Section 2.2
for details) yields the following evolution problem:

VKpxq “ ´µpθpxqqκpxq pγ
2
pθpxqq ` γpθpxqqq ` C, (5.6)

γpθq cos θ ´ γ1pθq sin θ ` γSP ´ γSV “ 0 θ “ θlc, θ
r
c , (5.7)

where VK is the outward normal velocity of the interface, the positive function µ is the
mobility of this interface and C is a constant. Notice that the sign of γ2 ` γ is again
important here, since when γ2pθq`γpθq is negative for some angles θ, equation (5.6) be-
comes backwards parabolic and thus ill-posed. Therefore, we consider weak anisotropies
only.

The problem (5.6)-(5.7) is a special case of the multiphase anisotropic mean curvature
flow, where (5.7) corresponds to the condition that has to hold of triple junctions. The
investigation of evolving triple junction started in Bronsard and Reitich [10] using theory
of parabolic PDEs and was extended in several works [57, 52], but these results use
the parametric approach and thus cannot handle topological changes. The first general
result on the existence of MCF for networks was given by Kim and Tonegawa [49] in the
framework of varifolds of geometric measure theory, resolving the question of possible
triviality of the original Brakke’s proof. Another important result from the viewpoint
of this thesis is the convergence of a diffused approximation to this type of isotropic
multiphase MCF given by Laux and Otto [55]. First results on the anisotropic multiphase
problem appeared this year in [54], analyzing a tripod with smooth anisotropies and
without singularities in the flow.

5.2 Derivation and stability of numerical scheme

Here we develop and analyze a thresholding algorithm for the motion of anisotropic inter-
faces on obstacle. The proposed scheme can handle topological changes automatically.
When topology changes occur, such as merging and splitting of particles, equation (5.6)
still holds for smooth parts of Γ away from singularities but it is not anymore possible to
describe the evolution fully using simple formulas such as (5.6)–(5.7). Here we develop
a numerical scheme that automatically deals with topology changes.

We are interested in the evolution of particle by L2 gradient flow of (5.1), while preserv-
ing area. To do so, first we derive the thresholding algorithm and prove its stability. We
closely follow the ideas in [28] and [73] for the isotropic case. According to (3.27), the
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total energy (5.1) can be approximated by

EδtpP q “
1
?
δt

ż

Ω

p11PKδt ˚ 11V ` γSP11PGδt ˚ 11S ` γSV 11SGδt ˚ 11V q dx, (5.8)

whereK is a suitable kernel representing the anisotropy γPV . The functionK is assumed
to be symmetric, sufficiently smooth and (integrally) positive definite on Ω, i.e.,

ż

Ω

Kpx, yqupxqupyq dx dy ě 0 for any u P L1
pΩq.

Recall that all kernels introduced in Section 4.1 satisfy these conditions if the Wulff shape
corresponding to the anisotropy γ “ γPV is centrally symmetric, convex and smooth.
Since the surface tensions γSP and γSV are constant, Gaussian kernel Gδt is used for the
approximation of the corresponding surface energies [59]. Note that since the substrate
does not deform, the evolution of the vapor region V is fully determined by that of the
particle region P , which is why the approximate energy is written only as a function of
P . In the sequel, this dependence will be equivalently expressed by the corresponding
characteristic functions: u “ 11P , 11V “ 11Ωup ´ u, i.e., we will write Epuq to mean EpP q,
where u “ 11P . Recall that Ωup “ ΩzS is the part of the domain Ω occupied by particle
and vapor. Thus, we can rewrite (5.8) as follows

Eδtpuq “
1
?
δt

ż

Ω

puKδt ˚ p11Ωup ´ uq ` γSPuGδt ˚ 11S ` γSV 11SGδt ˚ p11Ωup ´ uqq dx,

We wish to minimize above expression among characteristic functions u “ 11P with a
given integral

ş

Ω
11P dx “ A, which form a non-convex set. In the following lemma, this

is relaxed to a mathematically more amenable convex constraint, by allowing u to take
any value between 0 and 1.
Lemma 5.2.1. If the kernel K is smooth and positive definite, Lpuq is a linear functional

and α, β are non-negative real numbers, then to minimize αEδtpuq ` βLpuq over the

non-convex set

B “ tu P BV pΩup
q| upxq P t0, 1u a.e. x P Ωup,

ż

Ωup
u dx “ Au

is equivalent to the minimization of the same functional over the convex set

K “ tu P BV pΩup
q| upxq P r0, 1s a.e. x P Ωup,

ż

Ωup
u dx “ Au.

Here BV denotes the space of functions with bounded variation.
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Proof. The existence of minimizers in both B and K can be proved by the direct method
when the kernel K is smooth. Since B Ă K, it is enough to prove that if ru P K is a
minimizer of αEδtpuq ` βLpuq in K then ru P B. This is clear when α “ 0 since the
minimizer of a linear functional over a convex set must belong to the boundary of the set.

For α ą 0, we use contradiction. Assuming ru R B, we deduce the existence of a measur-
able set Z Ă Ωup with positive measure and of a constant c P p0, 1

2
q such that

0 ă c ă rupxq, 11Ωuppxq ´ rupxq ă 1´ c ă 1 @x P Z.

We partition the set Z into two disjoint subsets Z1 and Z2 of equal measure |Z|{2, and
define ut “ ru` t11Z1´ t11Z2 . Note that

ş

Ω
ut dx “

ş

Ω
ru dx “ A, and that 0 ď ut ď 1 holds

for t P p0, cq, so ut P K for such t. Hence, direct computation yields

d2

dt2
`

αEδtpu
t
q ` βLputq

˘

“ α
d2

dt2
Eδtpu

t
q ` β

d2

dt2
Lputq

“ α
d2

dt2
Eδtpu

t
q

“
α
?
δt

d2

dt2

ż

Ω

putKδt ˚
`

11Ωup ´ ut
˘

` γSPu
tGδt ˚ 11S

`γSV 11SGδt ˚
`

11Ωup ´ ut
˘

dx,

“
α
?
δt

ż

Ωup

d

dt
utKδt ˚

d

dt
p´utq dx

“
´α
?
δt

ż

Ωup
p11Z1 ´ 11Z2qKδt ˚ p11Z1 ´ 11Z2q dx.

Due to positive definiteness of the kernel K, this value is negative, which implies that
ru “ ut|t“0 cannot be a minimizer.

The above lemma implies that, the minimization of (5.8) can be done over the relaxed
set K without changing the result. We solve this minimization problem by iterations.
Assume we have an approximation uk P B, where k is step number during iteration.
Energy functional Eδtpuq linearized at the point uk reads

Eδtpuq “ Eδtpu
k
q ` Lpu´ uk, ukq ` higher order terms

where
Lpv, ukq “ 1

?
δt

ż

Ωup
v
`

Kδt ˚ p11Ωup ´ ukq ` γSPGδt ˚ 11S
˘

dx

´
1
?
δt

ż

Ωup
v
`

Kδt ˚ u
k
` γSVGδt ˚ 11S

˘

dx.
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The idea then is to minimize the linearized functional:

min
uPK
Lpu, ukq, (5.9)

and take the minimizer as an improved approximation uk`1 to the minimizer of Eδt.
Lemma 5.2.1 guarantees that the solution of (5.9) belongs to B. The following lemma
shows that (5.9) can be solved by a simple thresholding.
Lemma 5.2.2. Write Lpv, ukq as

ş

Ωup vφ
k dx, where

φkpxq “
1
?
δt

`

Kδt ˚ p11Ωup ´ 2ukq ` pγSP ´ γSV qGδt ˚ 11S
˘

,

and let
P k`1

“ tx P Ωup
| φkpxq ă δku and V k`1

“ Ωup
zP k`1,

where δk is chosen in such a way that the area of the particle is preserved, i.e., so that
ş

Ωup 11Pk`1 dx “ A. Then uk`1 “ 11Pk`1 is a solution to (5.9).

Proof. We wish to prove Lpuk`1, ukq “ minuPK Lpu, ukq, which is, by Lemma 5.2.1,
equivalent to

Lpuk`1, ukq ď Lpu, ukq @u P B.

Every element of B looks like u “ 11R a. e. for some open set R Ă Ω such that |R| “ A.
Denote D1 “ RzP k`1 and D2 “ P k`1zR. Due to the area constraint, D1 and D2 satisfy
|D1| “ |D2|. Note that

φkpxq ě δk @x P D1 Ă Ωup
zP k`1 and

φkpxq ă δk @x P D2 Ă P k`1.

Using these inequalities we calculate

Lpuk`1, ukq ´ Lpu, ukq “
ż

Ωup
puk`1

´ uqφk dx “

ż

D1

p´φkq dx`

ż

D2

φk dx

ď

ż

D1

p´δkq dx`

ż

D2

δk dx “ δkp´|D1| ` |D2|q “ 0,

reaching the desired conclusion.
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We arrive at the thresholding Algorithm 6.

Algorithm 6 Evolution of anisotropic particle on substrate
Given phases P k, V k Ă Ωup at time tk “ k ¨ δt, to get new phases P k`1 and V k`1 at next
time step tk`1 “ pk ` 1qδt, perform the following two steps:

Convolution : φkpxq “ 1?
δt

`

Kδt ˚ p11Ωup ´ 2ukq ` pγSP ´ γSV qGδt ˚ 11S
˘

,

Thresholding: P k`1
“

!

x P Ωup
| φkpxq ă δk

)

, V k`1
“ Ωup

zP k`1.

Here δk is chosen so that the area of phase P k`1 is equal to the area A of phase P k.

Next we show that this algorithm is stable, that is, the total energy EδtpP kq is a non-
increasing function of k.
Theorem 5.2.3. Set uk “ 11Pk for k “ 0, 1, 2, ..., where P k is obtained in Algorithm 6.
Then

Eδtpu
k`1
q ď Eδtpu

k
q for all k “ 0, 1, 2, . . . and all δt ą 0. (5.10)

Proof. Definitions of Eδt and L and Lemma 5.2.2 yield

Eδtpu
k
q´

1
?
δt

ż

Ωup

`

ukKδt ˚ u
k
` γSVGδt ˚ 11S

˘

dx “ Lpuk, ukq ě Lpuk`1, ukq. (5.11)

Furthermore,

Lpuk`1, ukq “ Eδtpu
k`1
q ´

1
?
δt

ż

Ωup

ˆ

uk`1Kδt ˚ u
k
` ukKδt ˚ u

k`1

´ uk`1Kδt ˚ u
k`1

` γSVGδt ˚ 11S

˙

dx (5.12)

Gathering (5.11) and (5.12) leads to

Eδtpu
k`1
q ď Eδtpu

k
q ` Y , (5.13)

where

Y “
1
?
δt

ż

Ωup

`

uk`1Kδt ˚ u
k
` ukKδt ˚ u

k`1
´ uk`1Kδt ˚ u

k`1
´ ukKδt ˚ u

k
˘

dx

“ ´
1
?
δt

ż

Ωup
puk`1

´ ukqKδt ˚ pu
k`1

´ ukq dx

ď 0. (5.14)
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(5.13) and (5.14) finish the proof of the theorem.

The convergence of Algorithm 6 to the L2-gradient flow of the energy E as δt Ñ 0`

was proved in [55] in the isotropic setting without obstacle but remains open for the
anisotropic case and for the problem with obstacle.

5.3 Numerical results

In this section, we carry out numerical tests using smooth four-fold anisotropy by im-
plementing the new thresholding scheme. We check the agreement between analytical
and numerical results of each kernel by investigating their respective errors and contact
angles. In short, we try to justify our numerical scheme by showing consistent results
with the analytical solution. As an output, we also determine which kernel is suitable for
the numerical realization of the obstacle problem.

Evolving particle on substrate is a three-phase problem and thus a new issue that was not
present in the two-phase setting of Section 3.3 is the realization of correct contact angles
at the triple point where the three phases meet. Therefore, in numerical tests, besides
the error measuring the discrepancy in the shape of the interface, we focus on the quality
with which thresholding Algorithm 6 approximates the exact contact angles. Moreover,
we investigate all kernels which are introduced in Section 4.1, to find a suitable kernel
for obstacle problems. The evaluation is carried out based on the stationary solution of
the area-preserving anisotropic mean curvature flow on obstacle.We obtain the analytical
solution by Winterbottom construction (see Appendix A.2) and exact contact angles by
solving anisotropic Young equation (5.3).

5.3.1 Error analysis

We use the same setup for error and triple point analysis. We fix the computation domain
as Ω “ r´5, 5s ˆ r´5, 5s. The size of the domain is sufficiently large; so that, it will
not influence the evolution of the particle. The region below y “ 0 represents the flat
substrate. The square r´1.25, 1.25s ˆ r0, 2.5s is initial shape of the particle. We select
four-fold anisotropy γpθq “ 1 ` 0.05 cos 4θ; moreover particle-substrate and substrate-
vapour anisotropies are set to γSP “ 1.5 and γSV “ 1, respectively. The corresponding
equilibrium solution is obtained using Winterbottom construction. Winterbottom solu-
tion is depicted in solid black line in Figure 5.2. We will calculate the error after particle
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Figure 5.2: Evolving particle on substrate with anisotropies γ “ 1 ` 0.05 cos 4θ,
γSP “ 1.5 and γSV “ 1. Evolution of particle by BBC kernel at times
0, 10δt, 25δt, 50δt, 192δt and 672δt, for dx “ 0.0024 and δt “ 0.0078; solid line rep-
resents analytical solution.

reaches numerically stable solution, i.e., when no change occurs between two subsequent
time steps. We chose natural mobility, except EE kernel, to keep the obstacle problem
consistent with the kernel comparison tests of Section 4.2. We evolve the initial square
particle by implementing Algorithm 6 while preserving area of the particle. To pre-
serve the area, we use the sorting approach, see Section 3.2.2. Implementation of sorting
approach is possible because the substrate is fixed; thus, technically obstacle problem
becomes a two-phase area-preserving problem in the sense of area preservation. To pre-
serve the area, we sort the values of φk (see convolution step in Algorithm 6) at each
grid point. Then we find the correct thresholding height δk by selecting first A grid grid
points from the accending sorted list, where A grid is area of initial particle in terms of
grid points. We implemented Algorithm 6 for each kernel using several combinations of
spatial mesh size dx and time step δt and measured the error. For the obstacle problem,
the definition of error is slightly different from the previous chapter. Here error is the
set difference of the analytical and numerical solution, divided by the area of particle.
Hence, the error can be written as follows:

error “
|11PA ´ 11P |

A
, (5.15)

where 11PA is characteristic function of analytical solution obtain by Winterbottom con-

struction, 11P is a characteristic function of numerical solution, and A is the area of the
initial shape.

We report the obtained results in Figure 5.3. After inspecting results for all four kernels,
we observe EJZ kernel shows the least compatibility with the stationary solution, giving
the weakest convergence order. Moreover, during simulation, we observe oscillating
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behaviour near the numerical stationary solution. We remark that the non-monotone
jumpy behaviour of the error may also be caused by the absence of subgrid accuracy
improvement in these simulations. However, the irregular behaviour of the EJZ error
seems to be inherent to the kernel itself, as already hinted at in [30].

On the other hand, EJZ-F kernel shows jumpy behaviour in error. The exact reason
for this irregular behaviour of EJZ-F kernel is not known. In the original paper [30],
authors already pointed out the incompatibility of EJZ-F kernels to deal with multiphase
problems.

Figure 5.3: Evolving particle on substrate with anisotropies γ “ 1 ` 0.05 cos 4θ, γSP “
1.5 and γSV “ 1. All four figures show log-log plots of the dependence of relative error
in shape on time step δt for various spatial mesh resolutions dx.

EE kernel shows a reasonable convergence rate compared to the other kernels, but error
size is quite significant. This could be due to oscillatory behaviour observed for most of
dx–δt combinations in the numerical solution obtained by EE kernels near the stationary
state. Similar to a two-phase case, we also notice the effect of the regularizing parameter
ε in the obstacle problem. Each choice of the ε gives a certain limit of a diffusion time δt,
beyond which, a distorted solution is observed. This fact can be observed by inspecting
dx “ 0.0048 and dx “ 0.00244 in top-right plot in Figure 5.3. We chose ε “ 0.01,
since this choice of ε gives better results, as we noticed in the numerical tests in Section
4.2.

Surprisingly, BBC kernel shows the best performance among all kernels, despite the fact
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that it was invented first, while other kernels are devised as its improvement. BBC kernel
shows a consistent convergence rate, and the size of the error is least compared to other
kernels. After inspecting error, convergence rate, and time to construct the kernel, we
conclude that BBC kernel is the desired kernel for the obstacle problem.

5.3.2 Contact point analysis

In this section, we analyze the numerical contact points, which are obtained after imple-
menting thresholding scheme. Numerical contact angles are obtained by fitting a linear
function to several points representing numerical interface near the substrate, excluding
points in the immediate vicinity of the substrate. The dependence of resulting values of
contact angles on the range of points selected for fitting is negligible, as long as the fit-
ting points do not extend too far from the substrate. Since symmetry is preserved by the
scheme, we present contact angle at the left triple point only.

We investigate the consistency of numerical contact angle with analytical solution, i.e.,
solution of the anisotropic Young equation (5.3). We solve (5.3) by using Matlab’s in-
built function fzeros, which uses bisection and interpolation methods to obtain roots of
nonlinear functions, see left plot in Figure 5.4. The analytical value of a contact angle is
2.223 radian, which is 127.36 degree.

Calculation of numerical contact angle

To obtain numerical contact angle, we use the linear regression method via Matlab’s
polyfit function. We derive contact angle in three steps as follows:

First, we need a set of points (say, tPiu) which represent the particle near triple point.
Here, tPiu means the places where the interface of particle intersect with grid lines (hor-
izontal, vertical or both). In our problem, we chose points up to a distance of 0.2 from
the substrate. Note that we exclude few points adjacent to triple point because the thresh-
olding scheme does not precisely approximate motion near triple point. This is due to
the fact that dynamics near triple points occur on the different scale of diffusion time
compared to the rest of the interface [28]. We use the interpolation method to capture
points Pi on the interface, see right plot in Figure 5.4.

In the second step, we adopt linear regression. The line Y “ mX ` c is fitted through
tPiu. To do so we use the inbuilt function of Matlab software, namely, polyfit. The polyfit

solve V p “ y system for polynomial p, where V is Vandermonde matrix whose elements
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Figure 5.4: Anisotropy: γ “ 1 ` 0.05 cos 4θ, γSP “ 1.5 and γSV “ 1. Left: fpθq “
γpθq cos θ ´ γ1pθq sin θ ` γSP ´ γSV versus θ. Right: calculation of numerical contact
angle; blue: numerical stable solution, red: selected points on the interface to evaluate
contact angle.

come from tPiu. At last, we obtain the contact angle by simply taking arctan of the
slope m. Note that the domain of the tan inverse is r´π{2, π{2s; therefore, the angle has
to be changed by ˘π according to necessity.

Numerical analysis of contact angle

In this subsection, we investigate the behaviour of triple points. We obtain the contact
angles for each kernel. The results are presented in the Figure 5.5. As mentioned earlier,
we present results for one triple point only because of symmetry.

After inspection, we notice that EJZ kernel shows a feeble response to actual triple point
value. A possible reason for such contact angle is the oscillatory behaviour near the
stationary solution. On the other hand, EJZ-F kernel shows jumpy behaviour in contact
angle, which may be caused by the absence of subgrid accuracy improvement. However,
the irregular behaviour of the EJZ-F kernel seems to be inherent to the kernel itself, as
already hinted in [30].

EE kernel shows consistent performance like convergence analysis tests in Section 5.3.1
and Section 4.2.1. We set regularizng parameter to ε “ 0.01. However, the difference
between analytical and numerical contact angles is quite significant. This could be due to
oscillatory behaviour observed for most of dx´δt combinations in the numerical solution
obtained by EE kernels near the stationary state.

BBC kernel shows the best and consistent performance among all these kernels, and we
can confirm this fact by inspecting the left-top plot in Figure 5.5. For each choice of dx,
we can find δt such that the contact angle is close to analytical value. In order to compare
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Figure 5.5: Evolving particle on substrate with anisotropies γ “ 1 ` 0.05 cos 4θ, γSP “
1.5 and γSV “ 1. All four figures show the contact angle value at the stable numerical
solution on time step δt for various spatial mesh resolutions dx for all four kernels.

all kernels, we plot contact angles obtained by each kernel for fixed dx “ 0.0098, see
Figure 5.6. This plot clearly shows the dominance of BBC kernel.

Figure 5.6: Evolving particle on substrate with anisotropies γ “ 1 ` 0.05 cos 4θ, γSP “
1.5 and γSV “ 1. Numerical contact angle versus time step δt for dx “ 0.0098.

If we consider error, convergence order, contact angle, time to construct the kernel and
computation time, then BBC kernel outperforms all other kernels. In the next section, we
upgrade our numerical scheme for better accuracy of contact angles. Since BBC showed
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better results than other kernels, we use BBC kernel for the upcoming section.

5.4 Modified algorithm to improve contact angle

In this section, we modify Algorithm 6 to get more accurate contact angle. According to
Theorem 5.2.3, the thresholding algorithm decreases total energy over a time, irrespec-
tive of a choice of δt. However, when space is discretized, smaller δt does not necessarily
entail improved quality of the approximation. For a given space discretization, threshold-
ing scheme approximates the evolution of particle provided that the diffusion timestep is
sufficiently large.

As discovered in Section 4.2.1 the optimal δt for a given dx is of the order dx. On
the other hand, the dynamics near triple points is known to occur on the scale of

?
δt

[28]. Consequently, to get an accuracy of order δt including triple points, one would
need to take a spatial mesh of size δt2, so that stagnation of interfaces is avoided. This
problem was addressed in [73] by introducing time step scaling. The authors start with
a relatively large time step δt (2dx, to be exact) and compute the evolution until the
interface does not evolve anymore. Then the time step is decreased, e.g., by halving,
and the evolution, especially around triple points, is refined. Since the interfaces away
from junctions are already in their right position when the time step halving starts, the
stagnation phenomenon has smaller impact on the outcome.

The paper [73] introduced time step halving for obstacle problems with the isotropic en-
ergy. We extend their method to obstacle problems with anisotropic energy. Further,
unlike original paper, we started with various time steps and studied the output’s be-
haviour. Extension of this idea leads to Algorithm 7, where new parameter τ ą 0 is
introduced to evaluate the difference between two solutions at consecutive time steps. If
the set difference of two consecutive solutions is greater than τ , then algorithm behaves
like Algorithm 6; but when it is less than τ , we halve the timestep and go back to the
convolution step. The new parameter τ has a direct impact on numerical stable shape. In
Algorithm 7, if we choose τ “ 0 then modified algorithm is identical to Algorithm 6, and
it does not improve the accuracy of contact angles.

For numerical analysis, the whole setup and parameters are the same as Section 5.3.1,
including the definition of the error, the method to find error, the method to calculate
contact angle, etc. We only change surface energies as follows: γpθq “ 1`0.05 cosp4θ`

8q, γSP “ 1 and γSV “ 1.1. We chose these anisotropies because the corresponding
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stable shape is tilted, thus leading to different contact angles on both ends. We obtain
stable solution using Winterbottom construction, see Figure 5.7. Note that stable shape
has one corner close to substrate. As pointed out in the previous section, BBC kernel
tends to smooth out the corners. Therefore, we can expect large error in left contact
angle.

Algorithm 7 Evolution of anisotropic particle on substrate (modified algorithm)
Given initial phases P 0, V 0 Ă Ωup , time step δt0 and a threshold τ , to generate phases
P k`1 and V k`1 at time steps tk`1 “ tk ` δtk, k “ 0, 1, 2, . . . , set P ˚ “ P 0 and repeat
the following steps:

Convolution : φkpxq “ 1?
δtk

`

Kδtk ˚ p11Ωup ´ 2ukq ` pγSP ´ γSV qGδtk ˚ 11S
˘

,

Thresholding: P k`1
“

!

x P Ωup
| φkpxq ă δk

)

, V k`1
“ Ωup

zP k`1.

Time scaling: ¨ If |P k
´ P k`1

| ą τ, set δtk`1
“ δtk and go to next convolution step.

¨ If |P k
´ P k`1

| ď τ and |P ˚ ´ P k`1
| ě τ, set δtk`1

“ δtk{2,

P ˚ “ P k`1, and go to next convolution step.
¨ If |P k

´ P k`1
| ď τ and |P ˚ ´ P k`1

| ă τ, terminate.

Here δk is chosen so that the area of phase P k`1 is equal to the area A of phase P 0.

During simulation, we found that values of τ close to 0 help to get better contact angles.
At the same time, too small a value of τ deteriorates the overall results. On the other hand,
large value of τ leads to a wrong contact angle; hence, we need a moderately small value
for the τ . Our analysis found that τ “ 0.0001A is good choice for error and contact angle
improvement, where A represents particle’s area. Any choice of τ less than 0.0001A is
either damaging overall error or contact angle, depending on the pair of dx´ δt.

We expect to get better results from the modified algorithm; therefore, it is necessary
to compare results obtained by Algorithm 7 and Algorithm 6. We perform a series of
numerical tests with the help of setup mentioned above and BBC kernel. Results obtained
by both algorithms are presented in Figure 5.7 and Table 5.1.

After inspecting the numerical results, we notice the superiority of modified algorithm
over regular algorithm. As expected, both error and contact angles improved in the mod-
ified version. In fact each choice of δt shows better agreement with the analytical so-
lutions in the modified version. Note that initial δt should be sufficiently large to avoid
stagnation effect.

Surprisingly, computational time required for the modified algorithm is less than the
original algorithm, even though modified algorithm gives better results. We see this time

86



Figure 5.7: Analysis of Algorithm 7 modified for contact angle improvement (dot-
ted lines) in comparison to the original Algorithm 6 (solid lines). A tilted four-fold
anisotropy γpθq “ 1`0.05 cosp4θ`8q, and γSP “ 1, γSV “ 1.1 are adopted. Figures on
top show the obtained contact angles, where the black lines signify the analytical contact
angles 94.58˝ (left), ´77.67˝ (right). Figures in the second row show log-log plots of
error in shape for several values of dx, and the computed evolution of particle at times
0, 10δt, 50δt, 100δt, 150δt and 616δt, with dx “ 0.0024 and δt “ 0.0078 (here solid line
represents analytical stationary solution).

Time step δt Error in area C.A. (left) C.A. (right) CPU time
0.2500 0.0163 [0.0670] 81.15 [51.87] -79.03 [-60.34] 54 [18] min
0.1250 0.0161 [0.0404] 81.15 [60.30] -79.40 [-68.23] 50 [51] min
0.0625 0.0158 [0.0297] 81.23 [66.64] -79.06 [-73.45] 58 [69] min

0.03125 0.0157 [0.0234] 80.85 [71.54] -79.49 [-77.08] 79 [102] min
0.01562 0.0161 [0.0192] 80.87 [75.40] -79.54 [-79.40] 119 [190]min

Table 5.1: Contrast between modified Algorithm 7 and original Algorithm 6 [shown
in brackets]. Here dx “ 0.00122, and the correct contact angles are 94.58˝ (left) and
´77.67˝ (right).

difference because of the termination criteria in respective algorithms. In the modified
algorithm, repetitive time halving decreases time step δt to such value, where interface
does not move at all; this results in the termination of the code. On the other hand,
original algorithm performs convolution-thresholding steps until interface does not move
by at least one grid point. In other words, the original algorithm moves interface slowly
but steadily over a more extended period.
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Modified algorithm does not give a smaller error than error given by optimal δt in original
algorithm. This may be because of the stagnation of interface away from contact points.
In conclusion, if we consider error, contact angles and computational time, then modified
algorithm outperforms original algorithm.

5.5 Topological changes

The ability of handling topological changes automatically is a major advantage of level
set methods. Most of previous work on obstacle problem uses explicit representation
of the interface, i.e., front-tracking or finite elements, which requires an extra ad-hoc
numerical surgery when particles merge or split.

Here we present two examples of simulations involving topology change of particles
moving on substrate, namely splitting and merging. In order to devise an experiment that
leads to splitting, we consider a patterned substrate, where the effective surface tension
γsplit
S :“ γSP ´ γSV depends on the position on the substrate. For simplicity, we use an

analogous pattern γmerge
S for the merging simulation. Specifically, we set

γsplit
S pxq “

#

γS2 “ 2 for x P p´0.5, 0.5q

γS1 “ 0 otherwise
,

γmerge
S pxq “

#

γS2 “ ´0.1 for x P p´0.5, 0.5q

γS1 “ 0 otherwise.

In the thresholding algorithm, when computing the convolution Gδt ˚ 11S , these values
are extended to the substrate region as constants in the normal direction, as shown in
Figure 5.8, that is, we replace pγSP ´ γSV qGδt ˚ 11S by γS1Gδt ˚ 11S1 ` γS2Gδt ˚ 11S2 . We
consider two-fold anisotropy γpθq “ 1` 0.3 cosp2θ ` πq and set up the initial condition
as a rectangle for the splitting experiment and as two right-angled triangles at distance
0.4 apart for the merging experiment (see solid lines in Figure 5.8). We used time step
δt “ 0.0039 and spatial grid size dx “ 0.0024.

As shown in Figure 5.8, in the splitting simulation particle split into two parts at 26th
time step, and after that these parts were treated as two different particles with their own
preserved areas. In the merging simulation, two particles attached at 50th time step and
from 51st time step on the algorithm treated them as a single particle with area equal
to the sum of areas of initial particles. Note that detecting the connectivity of particles
cannot be avoided if one wants to preserve the area of each particle separately. Thanks to
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Figure 5.8: Evolutions undergoing topological change for γ “ 1 ` 0.3 cosp2θ ` πq and
dx “ 0.0024, δt “ 0.0039. The initial and final shape are shown in black solid line.
(Left) Splitting with γS1 “ 0, γS2 “ 2, intermediate lines showing evolution at times
25δt, 28δt, 70δt. (Right) Merging with γS1 “ 0, γS2 “ ´0.1, intermediate lines showing
evolution at times 49δt, 55δt, 75δt.

the symmetry of the initial configuration in our simulations, it was algorithmically easy
to detect the time when topology change occurred. However, to detect topology changes
happening in the evolution of a general initial configuration of particles, one needs to
include a connectivity check at every time step of the algorithm. A disadvantage of the
algorithm is that due to the diffusion step, two particles sense each other even before they
actually attach. This may be physically correct but the mesh size (and consequently also
the time step) have to be chosen small enough to resolve or satisfactorily approximate the
physically correct ”sensing distance”.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, we developed a stable thresholding scheme for obstacle problems, which
can handle topological changes and approximate anisotropic mean curvature flow, and
proved its stability unconditional. Before dealing with the obstacle problem, we sur-
veyed known convolution kernels used in thresholding scheme since there is no sys-
tematic comparison of the numerical performance available in literature. For the basic
two-phase problem, we perform comparison tests with the following criteria in mind: ‚
Behaviour of error and convergence order. ‚ Time required for computation. ‚ Ability to
handle sharp corners. ‚ Evolution of non-convex shapes.

Theoretically, first-order convergence in time is predicted, and our numerical analysis
confirmed this fact. Differences were observed regarding the numerical performance of
kernels. Elsey-Esedoglu kernel shows good agreement with the analytical result but its
mobility is fixed, and its construction demands substantial computational time. Esedoglu-
Jacobs-Zhang kernels lead to moderate error and demand decent time for construction.
Bonnetier-Bretin-Chambolle kernel gives expected convergence order and has least er-
ror among all kernels, at least for the tested anisotropy. On the other hand, this kernel
smoothes out corners, hence is not recommended for crystalline anisotropies.

On the other hand, for the three-phase obstacle problem, although all kernels are able to
approximate the correct solution to some extent, it was found that each of the kernels has
certain drawbacks: Esedoglu-Jacobs-Zhang kernels lead to large errors, Elsey-Esedoglu
kernels show spurious oscillations, while Bonnetier-Bretin-Chambolle kernel excessively
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smooths out sharp corners.

6.2 Future work

(I) We are going to address the issues mentioned in the previous section. First, we will
study the motion of triple junction and then numerically realize its anisotropic motion
by establishing a robust scheme. To the end, we will consider three curves with one end
attached to domain boundary, and another end is a junction. This setting will help us to
understand the motion of triple junction.

(II) Based on the results of (I), we will further extend the scheme to the multiphase case,
where two or more particles are attached and have anisotropic interfacial energy. We are
expecting to develop a scheme for the volume-preserving case, too.

(III) We are planning to construct the algorithm in three dimensions, which can handle
evolution of any number of particles with automatic handling of topological changes
and preserving volume. Currently, we are working on the same problem but in two
dimensions.

(IV) Since all the existing kernels have some drawbacks, we will work on constructing
a new convolution kernel. We are expecting that the new kernel will not have the issues,
which are present in current kernels.
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Appendix A

Appendix

A.1 Construction of Wulff shape

To contrive simpler form of a Wulff shape, we assume that the anisotropy γ is positively
one homogeneous i.e., γpαxq “ |α|γpxq where α P Rzt0u and x P Rd.

Wγ “ tξo P Rd
| γopξoq ď 1u

“ tξo | sup
ξPBγ

xξo, ξy ď 1u

“ tξo | xξo, ξy ď 1, @ξ P BBγu

“ tξo | xξo,
ξ

γpξq
y ď 1, @ξ P Rd

u, γis 1-homogenous

“ tξo | xξo, ξy ď γpξq , @ξ P Rd
u

“ tξo | xξo,ny ď γpnq, @n unitu n “
ξ

|ξ|

“
č

n : }n}“1

tξo | xξo,ny ď γpnu

“
č

n : }n}“1

tξo | |ξo| cosφ ď γpnu.
(A.1)

Where φ is angle between n P Sd´1 and ξo. Probably, the easiest way to foresee (A.1)
is the following; for fix n find the set Hpnq “ tξo | xξo,ny ď γpnqu. Hpnq is a half
plane whose boundary passes through the point pγpnq ¨nq and perpendicular to n. Each
n yields one Hpnq, and taking the intersection of all such tHpnqui sets, determines the
Wulff shape. See Fig. 2.2 for some examples of Wulff shapes.
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A.2 Winterbottom construction

For free particle, Wulff shape is equilibrium solution and as mentioned earlier, for weak
anisotropy its boundary can be given as:

We
γ “ pxpθq, ypθqq, θ P r´π, πq

where xpθq “ ´γ sin θ ´ γ
1

cos θ, ypθq “ γ cos θ ´ γ
1

sin θ. Equilibrium solution for
obstacle problem is proposed in [71] by Winterbottom. We can obtain equilibrium shape
of particle on flat substrate by using the so-called Winterbottom construction.

Suppose particle possesses anisotropic surface energy γ. To obtain equilibrium shape,
first plot Wulff shape and then cut the Wulff shape parallel to x´axis at y “ γsp ´ γsv.
Denote γsp ´ γsv by σ to simplify upcoming equations. This yields a paramatrization of
boundary of equilibrium shape Es as follows:

Es “ pxwpθq, ywpθqq,

where xwpθq “ ´γ sin θ ´ γ
1

cos θ, ywpθq “ γ cos θ ´ γ
1

sin θ ´ σ and θ P rθl, θrs.
Note that ywpθq is identical to anisotropic Young equation (5.3). Hence it guarantees
that contact angle obtained by Winterbottom construction will be identical to analytical
contact angle.

Normalized equilibrium shape

The area of equilibrium shape obtained by Winterbottom method is different from the
actual area (initial area of particle, i.e., A); therefore, we need a normalized equilibrium
shape.

Denote the area of equilibrium shape obtained by Winterbottom method asAw, then

Aw “
1

2

ż θr

θl

xwy
1

w ´ ywx
1

wdθ ˘ AT “
1

2

ż θr

θl

γpγ ` γ
2

q dθ ˘ AT (A.2)

where, AT “ |xr ´ xl|pσ{2q is area of a triangle whose vertices are contact points and
Wulff point. Wulff point is nothing but the centre of Wulff shape. When Wulff point lies
above the substrate, then AT acquires minus sign in (A.2). On the other hand, if Wulff
point lies below substrate, then sign change to positive. We use area term to normalize
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parametric form of equilibrium shape as follows:

xnwpθq “

c

A

Aw

ˆ

xwpθq

˙

, ynwpθq “

c

A

Aw

ˆ

ywpθq

˙

. (A.3)

In this thesis, we use (A.3) for all numerical tests, whenever necessary.

A.3 First variation: Isotropic two phase problem

Define Γ “ tgpsq “ pg1psq, g2psqq | s P ra, bqu and g : ra, bs Ñ R2 is differentiable and
gpaq “ gpbq. Then first variation of energy is given by

d

dε
EpΓεq

ˇ

ˇ

ε“0
“ lim

εÑ0

1

ε
pEpΓεq ´ EpΓqq

“ lim
εÑ0

ż b

a

1

ε
p|pg ` εφq

1

| ´ |g
1

|q ds

“ lim
εÑ0

ż b

a

1

ε

|pg ` εφq
1

|2 ´ |g
1

|2

|pg ` εφq| ` |g1 |
ds

“ lim
εÑ0

ż b

a

1

ε

|g
1

|2 ` ε2|φ
1

| ` 2εg
1

¨ φ
1

´ |g
1

|2

|pg ` εφq| ` |g1 |
ds

“ lim
εÑ0

ż b

a

ε|φ
1

| ` 2g
1

¨ φ
1

|pg ` εφq| ` |g1 |
ds

“

ż b

a

pg
1

¨ φ
1

q

|g1 |
ds

“

ż b

a

ˆ

g
1

|g1 |

˙

¨ φ
1

ds

“

ˆ

g
1

|g1 |

˙

φ|ba ´

ż b

a

ˆ

g
1

|g1 |

˙

1

¨ φ ds Integration by parts

“ 0´

ż b

a

ˆ

g
1

|g1 |

˙

1

¨ φ ds φpaq “ φpbq

“

ż b

a

´

κn|g
1

|

¯

¨ φ ds Frenet - Serret formula

“

ż b

a

κ pn ¨ φq |g
1

| ds

“

ż

Γ

κ pn ¨ φq dl dl “ |Γ
1

|ds (A.4)
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A.4 A listicle of anisotropies

Here we present several examples of anisotropies from literature [22, 9, 25, 30, 64].

paq γ “

g

f

f

e

3
ÿ

i“1

pλixiq2, λi P R

pbq γ “ |X|lr “

˜

3
ÿ

k“1

|xk|
r

¸1{r

, 1 ď r ď 8

pcq γ “
?
GX ¨X, where G is positive definite matrix.

pdq γ “

d

x2
1

„

11

2
`

9

2
signpx1q



` x2
2

peq γ “ |X|l2

„

1´A

ˆ

1´
|X|4l4

|X|4
l2

˙

,whereA ă 0.25.

pfq γ “

«

|x1|
1001

`

ˇ

ˇ

ˇ

ˇ

x1

2
`

?
3x2

2

ˇ

ˇ

ˇ

ˇ

1001

`

ˇ

ˇ

ˇ

ˇ

x1

2
´

?
3x2

2

ˇ

ˇ

ˇ

ˇ

1001
ff

1
1001

pgq γ “ |x2| `
1
?
2
|x1 ` x2| `

1
?
2
|x1 ´ x2|

phq γ “ |x1| ` |x2| `
1
?
2
|x1 ` x2| `

1
?
2
|x1 ´ x2|

piq γ “

c

x2
1

4
` x2

2 `

c

x2
2

4
` x2

1

pjq γ “
1

4
`

5

4

ˇ

ˇ

ˇ
sin

´

θ `
π

4

¯
ˇ

ˇ

ˇ

pkq γ “
“

pa
a

x2 ` y2qr ` pb
a

x2 ` ε2y2qrpc
a

x2ε2 ` y2qr
‰1{r

, r ě 1, a, b, c ě 0

plq γ “ 1` β cospmpθ ` φqq, with suitable combination of m and β.

All anisotropies mentioned above belong to the weakly anisotropic class, with a specific
choice of their respective parameters. One can obtain strong anisotropies by adjusting pa-
rameters in weak anisotropy. In the above list, paq, pbq, pdq, pfq´ pjq can not be modified
to strong anisotropy.
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A.5 Sub-grid accuracy

Let Uk be a given diffused form of particle. As a first step, we bring the excpected
interface to 0-level set of M as follows:

M “ pUk
´Karea{2q{Karea

If we replace all the negative values in M by 0 and all positive values by 1, we obtain a
characteristic function for the next time step, which is not smooth.

To obtain the smooth version of the characteristic function, we consider a neighbourhood
of each grid point (let’s call central point), which consist of 8 grid points, see the figure
given below. We excluded the boundary points of the domain from these calculations. If
all these 8 neighbouring points have an identical sign, i.e., plus or minus, then the value
of central point is either 0 or 1, depending on the sign.

If these points have different signs, then value of central point belong to p0, 1q. To find
exact value of central point, we need to work further. Consider the interface passing
through grid cells, as shown in the above figure, as a red piecewise linear function. Note
that neighbouring points give four grid cells, highlighted by dark shade in the above
figure. We calculate each grid cell’s area that lies inside the interface, i.e., area of triangle
A1 in the first cell, area of pentagon A2 in the second cell, again area of triangle A3 in
third cell. We calculate the value of the central point by taking the average of all these
areas, i.e., pA1` A2` A3q{p4dx2q, here dx is length of grid cell.
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Derivation to calculate area of grid cell which lie inside the interface is given below.
Let a function upxq in a grid cell dxˆ dx be given by four values at the vertices:

up0, dxq “ u1, updx, dxq “ u2, up0, 0q “ u3, updx, 0q “ u4.

These values can be interpolated by a bilinear function

upx, yq “ ax` by ` cxy ` d, a, b, c, d P R.

Taking into account the values at vertices, we can compute the coefficients a, b, c, d and
get

upx, yq “
u4 ´ u3

dx
x`

u1 ´ u3

dx
y `

´u1 ` u2 ` u3 ´ u4

dx2
xy ` u3.

To find the proportion of area divided by the interface, which is the zero level set of the
function upxq, we describe the interface by the graph of a function of y taken from the
line x “ dx. This means we need to solve upx, yq “ 0 for x, which yields

x “ ´
by ` d

cy ` a
.

u1 b b

b b

b b

b b
x x

y y
u2

u3 u4

u1
u2

u3 u4

dx

dx

dx

dx

y0

x0

x1 x1

• In the situation of the figure on the left (u1 ă 0, u2 ą 0, u3 ă 0, u4 ą 0), the area
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of the red region is

|tu ą 0u| “ dx2
´

ż dx

0

´
by ` d

cy ` a
dy “ dx2

`
b

c

ż dx

0

y ` d
b

y ` a
c

dy

“ dx2
`
b

c

ż dx

0

˜

1`
d
b
´ a

c

y ` a
c

¸

dy

“ dx2
`
b

c
dx`

ˆ

d

c
´
ab

c2

˙

ln
´

y `
a

c

¯ ˇ

ˇ

ˇ

dx

0

“ dx2
`
b

c
dx`

cd´ ab

c2
ln
´

1`
c

a
dx

¯

“

„

u2 ´ u4

´u1 ` u2 ` u3 ´ u4

`
u2u3 ´ u1u4

p´u1 ` u2 ` u3 ´ u4q
2

ln
u2 ´ u1

u4 ´ u3



dx2.

This formula does not work as it is when c1 “ ´u1 ` u2 ` u3 ´ u4 “ 0 There are
several ways to resolve this - computing it as a limit, or approximating the term
ln
`

1` c
a
dx

˘

up to second order by c
a
dx´ 1

2
c2

a2dx
2. Then we get

|tu ą 0u| « dx2
`
b

c
dx`

cd´ ab

c2

ˆ

c

a
dx´

1

2

c2

a2
dx2

˙

“

ˆ

1`
ab´ cd

2a2

˙

dx2
`
d

a
dx

“

ˆ

u4

u4 ´ u3

`
u1u4 ´ u2u3

2pu4 ´ u3q
2

˙

dx2.

Another (probably best) way is to compute the points of intersection x0, x1 of the
interface with grid lines and approximate the interface by a straight line connecting
those two points. In this case,

x0 “ ´
d

a
, x1 “ ´

b ¨ dx` d

c ¨ dx` a
.

Then the area of red region is approximately

|tu ą 0u| “ dx2
´
x0 ` x1

2
dx “

u2pu4 ´ u3q ` u4pu2 ´ u1q

2pu4 ´ u3qpu2 ´ u1q
dx2.

• In the situation of the figure on the right (u1 ă 0, u2 ą 0, u3 ă 0, u4 ă 0), the
intersection of the red line and the vertical line x “ dx has the coordinates

pdx, y0q “

ˆ

dx,´
a ¨ dx` d

c ¨ dx` b

˙

,
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and the area of the red region is

|tu ą 0u| “ dxpdx´ y0q ´

ż dx

y0

´
by ` d

cy ` a
dy “ dxpdx´ y0q `

b

c

ż dx

y0

y ` d
b

y ` a
c

dy

“ dxpdx´ y0q `
b

c

ż dx

y0

˜

1`
d
b
´ a

c

y ` a
c

¸

dy

“ dxpdx´ y0q `
b

c
pdx´ y0q `

ˆ

d

c
´
ab

c2

˙

ln
´

y `
a

c

¯
ˇ

ˇ

ˇ

dx

y0

“

ˆ

dx`
b

c

˙

pdx´ y0q `
cd´ ab

c2
ln

ˆ

1`
cpdx´ y0q

a` cy0

˙

.

Here,

dx´y0 “
u2

u2 ´ u4

dx, cd´ab “
u2u3 ´ u1u4

dx2
,

cpdx´ y0q

a` cy0

“
u2cdx

2

u1u4 ´ u2u3

,

so

|tu ą 0u| “

„

u2

´u1 ` u2 ` u3 ´ u4

`
u2u3 ´ u1u4

p´u1 ` u2 ` u3 ´ u4q
2

ln
pu1 ´ u2qpu4 ´ u2q

u1u4 ´ u2u3



dx2.

Again, this does not work always and may cause problems in the code even when
c is close to zero, so we again consider approximation of the interface by straight
line. Then

|tu ą 0u| «
1

2
pdx´ x1qpdx´ y0q “

1

2

ˆ

dx`
b ¨ dx` d

c ¨ dx` a

˙ˆ

dx`
a ¨ dx` d

c ¨ dx` b

˙

“
u2

2

2pu2 ´ u1qpu2 ´ u4q
.

• All other cases can be reduced to the above two.

A.6 Front tracking solution

We present an overview of the front tracking method developed by D. Sevcovic and S.
Yazaki in [66]. Authors propose a method of tangential redistribution of points using
curvature adjusted control in the tangential motion of evolving interfaces. The tangential
velocity distribution of points representing interface is uniform as well as acquire suitable
concentration and/or dispersion depending on the curvature. Basically, authors solve
nonlinear PDEs arising by a position vector, tangent angle and curvature of a curve. They
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use a semi-implicit numerical discretization scheme based on the flowing finite volume
method. A summary of their method is given below.

Consider a simple, embedded and closed curve Γ parameterized by a smooth function
x : r0, 1s Ă R{ZÑ R2 such that Γ “ txpuq : u P r0, 1su and g “ |Bux| ą 0.

Let x P Γptq be the position vector, and denote the tangential angle by ν and unit tangent
vector by t; further, β “ βpx, ν, κq “ µpγ2pnq ` γpnqq then normal velocity V is the
normal component of the following evolutionary equation for the position vector x:

Btx “ βn` αt. (A.5)

Here, α is the tangential component of the velocity vector. The authors point out that
motion in the tangential direction does not affect evolving shape and shape of closed
curve is obtained by the value of normal velocity. The basic setting, with α “ 0 does not
redistribute the points.

Without loss of generality, rewrite the normal velocity V as follows:

V “ ωpx, ν, κqκ, (A.6)

here, ωpx, ν, κq “ µpγ2pnq ` γpnqq. If B2
s and Bs denotes arc-length derivatives then

Frenet–Serret formula gives B2
sx “ Bst “ κn; further (A.5) allows to write the following

equation for the position vector

Btx “ ωB2
tx` αBsx. (A.7)

The authors explicitly gave a formula for the desired tangential velocity α. We fixed some
parameters in that equation (as suggested by authors) and ended up with the tangential
velocity α satisfying the following equation:

Bsα “ V κ´ V κ` pc1 ` c2V κq

ˆ

Lptq

g
´ 1

˙

, (A.8)

where c1, c2 ě 0 are constants, Lptq is the total length of Γptq and F denotes the average
of function F along the curve Γptq. To obtain the unique solution α, authors consider the
following condition on α:

α “ 0. (A.9)
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Authors solve the flow equation by discretizing (A.7) and the tangential velocity equation
(A.8) with the constraint (A.9), using finite volume method.

A.7 Fourier transform of gν,ε

Here we present a detailed derivation of the Fourier transform of (4.6). To make formulas
shorter, we set ε1 “ ε2 ´ 1, q “ 2π, a1 “ ε1ν

2
1 ` 1, a2 “ ε1ν

2
2 ` 1, H “ 2iε2 and

G “ ε1ν1ν2.

ĝν,εpξq “

ż

R2

gν,εpxq expp´2πix ¨ ξq dx

“
1

4πε

ż

R2

exp

ˆ

´
pε2 ´ 1qpx ¨ νq2 ` |x|2 ` q4iε2x ¨ ξ

4ε2

˙

dx

“
1

4πε

ż

R2

exp

ˆ

´
ε1rx

2ν2
1 ` y

2ν2
2 ` 2xyν1ν2s ` x

2 ` y2 ` 2qHpxξ1 ` yξ2q

4ε2

˙

dx

“
1

4πε

ż

R2

exp

ˆ

´
x2ra1s ` 2xryG` qHξ1s

4ε2

˙

exp

ˆ

´
y2ra2s ` 2qHyξ2

4ε2

˙

dx

“
1

4πε

ż

R2

exp

¨

˝´
x2ra1s ` 2xryG` qHξ1s `

ryG`qHξ1s2

a1

4ε2

˛

‚

exp

¨

˝´
y2ra2s ` 2qHyξ2 ´

ryG`qHξ1s2

a1

4ε2

˛

‚ dx

“
1

4πε

ż

R2

exp

¨

˝´

»

–

x
?
a1 `

ryG`qHξ1s?
a1

2ε

fi

fl

2˛

‚

exp

¨

˝´
y2ra2s ` 2qHyξ2 ´

ry2G2`pqHξ1q2`2GHqyξ1s
a1

4ε2

˛

‚ dx

“
1

4πε

ż

R

ż

R
exp

`

´η2
˘ 2ε
?
a1

dη

exp

¨

˝´

y2ra2 ´
G2

a1
s ` 2yq

”

Hξ2 ´
rGHξ1s
a1

ı

´
pqHξ1q2

a1

4ε2

˛

‚ dy
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“
1

2
?
π
?
a1

ż

R
exp

¨

˝´

y2ra2 ´
G2

a1
s ` 2yq

”

Hξ2 ´
rGHξ1s
a1

ı

´
pqHξ1q2

a1

4ε2

˛

‚ dy

“
1

2
?
πa1

ż

R
exp

¨

˝´
y2ra2 ´

G2

a1
s ` 2yq rHξ2 ´ Js ´

pqHξ1q2

a1

4ε2

˛

‚ dy, where J “
GHξ1

a1
,

“
1

2
?
πa1

exp

˜

pqHξ1q
2

4ε2a1
`
q2 rHξ2 ´ Js

2

4ε2K

¸

ż

R
exp

˜

´
y2K ` 2yq rHξ2 ´ Js `

q2rHξ2´Js
2

K

4ε2

¸

dy, where K “ a2 ´
G2

a1
,

“
1

2
?
πa1

exp

˜

pqHξ1q
2

4ε2a1
`
q2 rHξ2 ´ Js

2

4ε2K

¸

ż

R
exp

¨

˝´

»

–

y
?
K `

qrHξ2´Js?
K

2ε

fi

fl

2˛

‚ dy

“
1

2
?
πa1

exp

˜

pqHξ1q
2

4ε2a1
`
q2 rHξ2 ´ Js

2

4ε2K

¸

ż

R
exp

`

´η2
˘ 2ε
?
K
dη

“
ε

?
K
?
a1

exp

˜

pqHξ1q
2

4ε2a1
`
q2 rHξ2 ´ Js

2

4ε2K

¸

“
ε

A
exp

ˆ

q2

4ε2
rB ` Cs

˙

, where A “
a

Ka1, B “
pHξ1q

2

a1
and C “

rHξ2 ´ Js
2

K
. (A.10)

Let us simplify A,

A2 “ Ka1 “ a1

ˆ

a2 ´
G2

a1

˙

“ a1

ˆ

a2 ´
ε21pν1ν2q

2

a1

˙

“ a1

`

a2a1 ´ pε
2 ´ 1qpν1ν2q

2
˘

, ε1 “ ε2 ´ 1

“ pε2 ´ 1q2ν2
1ν

2
2 ` 1` pε2 ´ 1qpν2

2 ` ν
2
1q ´ pε

2 ´ 1qpν1ν2q
2

“ 1` pε2 ´ 1qp1q, ν P S1

“ ε2. (A.11)

Further we calculate B ` C.

B ` C “
pHξ1q

2

a1
`
rHξ2 ´ Js

2

K
“
pHξ1q

2

a1
`

”

Hξ2 ´
GHξ1
a1

ı2

K

“
pHξ1q

2

a1
`

”

Hξ2 ´
GHξ1
a1

ı2

a2 ´
G2

a1

“
p2iε2ξ1q

2

rε1ν2
1 ` 1s

`

”

2iε2ξ2 ´
r2iε1ε1ν1ν2ε2ξ1s

ε1ν2
1`1

ı2

”

ε1ν2
2 ` 1´

ε21pε1ν1ν2q2

ε1ν2
1`1

ı
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“
p2iε2ξ1q

2

a1
`

”

2iε2ξ2 ´
r2iε1ν1ν2ε2ξ1s

a1

ı2

”

a2 ´
pε1ν1ν2q2

a1

ı

“

p2iε2ξ1q
2
”

a2 ´
pε1ν1ν2q

2

a1

ı

` a1

”

2iε2ξ2 ´
r2iε1ν1ν2ε2ξ1s

a1

ı2

a1

”

a2 ´
pε1ν1ν2q2

a1

ı

“
p2iε2ξ1q

2
”

a1a2´pε1ν1ν2q
2

a1

ı

` 1
a1

“

a12iε
2ξ2 ´ r2iε1ν1ν2ε

2ξ1s
‰2

A2

“
p2iε2ξ1q

2
”

A2

a1

ı

` 1
a1

“

a12iε
2ξ2 ´ r2iε1ν1ν2ε

2ξ1s
‰2

A2

“
piε2ξ1q

2
“

A2
‰

`
“

a1iε
2ξ2 ´ riε1ν1ν2ε

2ξ1s
‰2

a1A2

4

“
pξ1q

2
“

A2
‰

` ra1ξ2 ´ ε1ν1ν2ξ1s
2

´a1A2

4ε4

“
pξ1q

2
“

A2 ` ε21ν1ν2

‰

` ξ2
2a2

1 ´ r2a1ξ2ε1ν1ν2ξ1s

´a1A2

4ε4

“
pξ1q

2 ra1a2s ` ξ2
2a2

1 ´ r2a1ξ2ε1ν1ν2ξ1s

´a1A2

4ε4

“
pξ1q

2 ra2s ` ξ2
2a1 ´ r2ξ2ε1ν1ν2ξ1s

´A2

4ε4

“
´4ε4

A2
¨ pξ1q

2
“

ε2ν2
2 ` ν

2
1

‰

` ξ2
2
“

ε2ν2
1 ` ν

2
2

‰

´
“

2ξ2pε
2 ´ 1qν1ν2ξ1

‰

“
´4ε4

ε2
¨ ε2

“

ξ1
2ν2

2 ` ξ2
2ν2

1 ´ 2ξ2ν1ν2ξ1

‰

`
“

ξ1
2ν2

1 ` ξ2
2ν2

2 ` 2ξ2ν1ν2ξ1

‰

“ p´4ε2q ¨ ε2
“

ξ1
2p1´ ν2

1q ` ξ2
2p1´ ν2

2q ´ 2ξ2ν1ν2ξ1

‰

` pξ ¨ νq2

“ ´4ε2
`

ε2
“

´pξ ¨ νq2 ` |ξ|2
‰

` pξ ¨ νq2
˘

(A.12)

Inserting (A.11) and (A.12) into (A.10)

ε

A
exp

ˆ

q2

4ε2
rB ` Cs

˙

“
ε
?
ε2

exp

ˆ

4π2

4ε2
¨ ´4ε2

`

ε2
“

´pξ ¨ νq2 ` |ξ|2
‰

` pξ ¨ νq2
˘

˙

“ exp
`

´4π2
`

ε2
“

´pξ ¨ νq2 ` |ξ|2
‰

` pξ ¨ νq2
˘˘

“ exp
`

´4π2ε2
“

´pξ ¨ νq2 ` |ξ|2
‰

´ 4π2pξ ¨ νq2
˘

“ exp
`

´4π2pξ ¨ νq2
˘

exp
`

ε24π2
“

pξ ¨ νq2 ´ |ξ|2
‰˘

.
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