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Abstract

We consider a Demazure slice of type AS), that is an associated graded piece
of an infinite-dimensional version of a Demazure module. We show that a
global Weyl module of a hyperspecial current algebra of type Ag) is filtered
by Demazure slices. We calculate extensions between a Demazure slice and
a usual Demazure module and prove that a graded character of a Demazure
slice is equal to a suitably specialized nonsymmetric Macdonald-Koornwinder
polynomial divided by its square norm. In the last section, we prove that
a global Weyl module of the special current algebra of type Ag) is a free

module over the polynomial ring arising as the endomorphism ring of itself.
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Chapter 1

Introduction

In this chapter, we review the previous works related to orthogonal poly-
nomials and representations of Lie algebras as a motivation and explain main
results and the organization of the thesis. Throughout this thesis, the base

field is the field of complex numbers C.

1.1 Motivations

1.1.1 Finite simple Lie algebras and orthogonal poly-

nomials

For a natural number n € N, we denote the Lie algebra of (n + 1) X
(n 4+ 1) complex matrices with trace 0 by sl,,; i.e. simple Lie algebra of
type A,. Let Po’s[n .1+ be the set of dominant integral weights of sl, ;. It is
known that simple finite dimensional modules L(\) of sl,,; are in one-to-
one correspondence with \ € 1035[” 4+ Let Ij be the set of diagonal matrices

in sl,; and ]55 be the set of integral weights of sl,,;. Then the module

[n+1



L(A) has a decomposition

L= @ L,

N€P51n+1

L(N), = {ve L) | v = p(h)v for h € b}

Using this decomposition, the character ch L(A) of L(\) is defined by

chL(\) = Z et dime L(\), € C[Pa,,,].

FLEPsIn+1

Here, e is the clement of C[P,, ., corresponding to p € Py -

Let &,, be the n-th symmetric group. Let w; (i = 1,...,n) be the fun-

damental weight of sl,, ;. The group &,, acts on ]—g’srn "

by o(w;) = ws(; for
o € &,,. Schur polynomials s, () are the family of symmetric polynomials in
C[Py,.,]5"

orthogonality relations:

indexed by A € é[n 1+~ Schur polynomials satisfy the following

[n+l]

1 ifA=p

0 if X\ # p.

o

Here (—, —) is the inner product on C[PF,

5[n+1

<S>\’ 8M> =

]S called the Hall inner prod-
uct. It is known that the character of a simple module is equal to a Schur
polynomial:

ch L(\) = sy(z) YA€ Py, 4

Let g be a finite-dimensional simple Lie algebra. For g-modules M and N,
let Extg, (M, N) be the extensiton between them in the category O ([Hum)]).

For finite-dimensional g-modules M and N, the Euler-Poincaré pairing

(M, N)py = Y _(—1)" dime Extfy (M, N)

=0



depends only on ch M and ch N. Hence this induces a pairing on C[ﬁ],
where P is the integral weight lattice of g. Moreover, this pairing coincides
with the Hall inner product ([Mac95]). The equality ch L(\) = s)(x) can be

interpreted in terms of the following equalities of extenstions:
dime Ext,(L(N), L(11)) = 8005 1,

where 9, is Kronecker’s delta.

This connection between representation theory of sl,,.; and Schur poly-
nomials enables us to interpret combinatorial properties such as Littlewood-
Richardson coefficients of product expansions and its positivity from the view

point of representation theory.

1.1.2 Demazure modules and nonsymmetric Macdon-

ald polynomials

The connection between representation theory and orthogonal polynomi-
als is generalized to affine Kac-Moody algebras and Macdonald polynomials.
Let g be the affine Kac-Moody Lie algebra of type X, For a dominant
integral weight A, we denote the highest weight simple module of g with
its highest weight A by L(A). For an element w of Weyl group W of g,
the thin Demazure module D, and the thick Demazure module D¥? are

representations of the lower Borel subalgebra b_ of g defined by
Dyp = U(6_) (L(A)_ypr)" € L(A)Y, DY  =U(b_)L(A)ya C L(A),

where L(A)Y is the restricted dual of L(A) and L(A),, is the weight space
with its weight wA.

Let h be the Cartan subalgera of g. We denote the simple imaginary root
of g by ¢ and the integral weight lattice of simple Lie algebra of type X,, by

5



P. When a h-module M has a weight decomposition

M = @ M)\+n5, M/\+n§ = {’U e M | hm = ()\ + né)(h)m, h € I]}
MndePeLs
such that every weight space M) ,s is finite-dimensional, its graded character

gch M is the formal sum

gch M = Z e)‘q_” dime My yns-
AnéePoLs
The graded characters of D, and D" are well-defined.

Let F be the field of rational functions in ¢*! and ¢*2. The nonsym-
metric Macdonald polynomials {E\(x,q,t)},.p are the family of elements
in F[P] orthogonal with respect to the Macdonald-Cherednik pairing (—, —)
([Che, Mac, Sahi00]). In [Ion], it is proved that the specialization of Mac-
donald polynomials FE\(x,q,t)|—o coincide with the graded characters of
level one thin Demazure modules of type X,Ef) for X = A, D, E. The spe-
cialization of Macdonald polynomials F)(x,q,t)|;= at ¢ = oo are dual
to {Ex(2,q,1)|i=0} \ep With respect to the specialized Macdonald-Cherednik
pairing (—, —)|i=o at t = 0. In [CK], Cherednik-Kato proved that the graded
characters of the level one Demazure slices D* which are quotient b_-modules
of thick Demazure modules are equal to E\(z, q,t)|i=c divided by their norm
with respect to (—, =)= for type X" with X = A, D, E except for AS).
They identify the Macodonald-Cherednik pairing with the Euler-Poincaré

pairing in some category of b_-modules.



1.1.3 Weyl modules for current algebras and symmet-

ric Macdonald polynomials

The local Weyl modules and the global Weyl modules for g are introduced
in [CP] to study finite-dimensional representations of g. These modules are
defined in terms of generator and relations and characterized by a certain
universal property.

In this thesis, we refer to a maximal parabolic subalgebra of g corre-
sponding to the affine node of the affine Dynkin diagram of g as the current
algebra €g and let €g' = [€g,&g]. The Lie algebra €g’ is referred to as
current algebra in the literature. In the literature, two types of the current
algebra are considered. They are called hyperspecial current algebra and
special current algebra. The analogue of local Weyl modules W (\);,. and
the global Weyl modules W () for current algebras are defined in the similar
way as the Weyl modules for g ([CFK, CIK, CL]). Let X = A/D,E. In
this case, local Weyl modules W (\),,. are isomorphic to Demazure modules
([CIK, FK, FL]). Therefore, the graded characters of local Weyl modules are
specialized symmetric Macdonald polynomials.

Another important result on Weyl modules are freeness of W (\) over their
endomorphism rings Endgy (W ()) which is isomorphic to a polynomial ring
A,. This result is proved for all hyperspecial current algebras [CIK, CL, FL,
Na| and allows us to obtain the graded character formula for W (\)

1.1.4 Demazure slices and Rogers-Ramanujan type iden-
tities
The relation between characters of L(A) and Rogers-Ramanujan type

identity also motivates the study of Demazure slices. The Rogers-Ramanujan



identities are the following identities between infinite sums and infinite prod-

ucts:
2

q" B 1
g Ug—mma—em

n>0 n>0

n%+n

q B 1
Z(1—61)--~(1—q") B H(l—q5”+2)(1—q5"+3)'

n>0 n>0
Rogers-Ramanujan identities can be obtained from characters of highest
weight integrable simple modules L(A) of affine Kac-Moody Lie algebras
of type Agl) [LW78, LW82, LW84, LW85]. It is interesting to obtain Rogers-
Ramanujan type identities from affine Kac-Moody Lie algebras other than
type Agl).

Recently, Charednik and Feigin [ChFe] showed that the expansions of the
products of the characters of level one integrable modules for affine Kac-
Moody algebras in terms Macdonald polynomials specialized at t = oo give
infinite sums with non-negative coefficients similar to the sum side of Rogers-
Ramanujan identities. Charednik and Kato [CK] showed that this can be
intepreted in terms of filtrations on integrable modules by Demazure slices

except for type Ag) .

1.2 Main Results

This thesis consists of the study of Demazure slices of type Ag) and the
Weyl module of the special current algebras of type Ag). Let g be an affine
Kac-Moody Lie algebra of type Ag) and g be a simple Lie algebra of type
C) contained in g. Let h be a Cartan subalgebra of g. Let P be the integral
weight lattice of g and I—g’+ be the set of dominant integral weights of g. For
each A\ € ]—9’+, we have a €g-module W ()), that is called a global Weyl module.



Level one Demazure slices and thin Demazure modules are parametrized by
A€ P asDand D,, respectively. Let Ag be the unique level one dominant
integral weight of g up to Zé and let 0 be the simple imaginary root of g. Let
W be the Weyl group of g. Let b_ be a lower-triangular Borel subalgebra of

g.
Theorem A (=Theorem 5.2.3). For each A\ € Py, the global Weyl module

W(A) @c Ca, has a filtration by Demazure slices as b_-module and each D"
(€ W) appears ezactly once.

Let B be a full subcategory of the category of U (b_)-modules and (—, — ) gy
be the Euler-Poincaré-pairing associated to Exteg (see Section 1 for their pre-

cise definitions).

Theorem B (=Thorem 5.3.4). For each \, p € 15, m € %Z and k € Z, we

have
dime EXt%(DA ®c Cristkngs DZ) = 5n,05m,05k,05>\,u n € Lo,
where V. means the restricted dual.

For each \ € P, let E\(z1,..,71,q) and Ej\(xl, .., Z1,q) be nonsymmetric
Macdonald-Koornwinder polynomials specialized at ¢ = 0, oo respectively.
Let (—, —) be the Weyl group invariant inner product on the dual of a Cartan
subalgebra h* normalized so that the square length of the shortest roots of g
with respect to (—,—) is 1. Let gch M be a graded character of M (see §4.1

for the definition). As a corollary of Theorem B, we have

Theorem C (=Corollary 5.3.6). For each \ € P, we have

M _ _ _ _
gchDY = ¢ 2 Ei(atll,...,xl Ly 1)/(E,\,EI\>Ext.



For an affine Lie algebra of type Ag), two kind of current algebras are
studied in the literature. They contain simple Lie algebras of type C; and
By, respectively. The former is called a hyperspecial current algebra. A
dimension formula of a local Weyl module of a hyperspecial current algebra
and freeness of a global Weyl module over its endomorphism ring are proved
in [CIK]. The latter is called a special current algebra and a dimension
formula of a local Weyl module of a special current algebra is proved in [FK]
and [FM]. Let ¢g' be a special current algebra of g. Then €g' contains a
simple Lie algebra gt of type B;. Let W(A\) be a global Weyl module of €g.
Let g’ = [CgT, QQT]. In the last section, we prove the following theorem,
which is proved for hyperspecial current algebras in ([CIK, CL, FL, Na]) .

Theorem D (=Theorem 6.5.14+Theorem 6.5.2). Let A be a dominant integral
weight of g'. The endomorphism ring Endcgw(W()\)T) is a polynomial ring
and W () is free over Endcgw(W()\)T).

The organization of the thesis is as follows: In chapter two, we prepare
basic notation and definitions. Chapter three is on the representation theory
of b_. We define the category B of b_-modules and Demazure modules in
chapter three. Chapter four is on the representation theory of €g. We define
local and global Weyl module for €g and compute extensions between them
in B in chapter four. In Chapter five, we prove the relation between a global
Weyl module and a Demazure slice (Theorem A) and calculate the extensions
between a Demazure slice and a thin Demazure module (Theorem B). As a
corollary, we prove a character formula of a Demazure slice (Theorem C).
In chapter six, we study a global Weyl module of a special current algebra
of type Ag). We prove the endomorphism ring of a global Weyl module is
isomorphic to a polynomial ring and a global Weyl module is free over its

endomorphism ring (Theorem D).

10
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Chapter 2
Preliminaries

This chapter is a review of the basic materials on affine Kac-Moody al-
gebras of type Ag) and Macdonald-Koorinwinder polynomials. We refer to
[Sahi00], [Kac, Chapter 6] and [CI] for general terminologies throughout this
chapter. Mainly we refer to [Kac| for §2.2 and §2.4 and refer to [CI] for the
§2.3.

2.1 Notations

We denote the field of complex numbers by C, the ring of integers by 7Z,
the set of nonnegative integers by Zx, the field of rational numbers by Q,
and the set of natural numbers by N. We work over the field of complex
numbers. In particular, a vector space is a C-vector space. For each x € Q,
we set |z] := max{z € Z| x > z}. We set 2(") := 2" /r! for an element z of a

C algebra. We denote Kronecker’s delta by d; ;.

12



2.2 Affine Kac-Moody algebra of type Ag?

Let g be an affine Kac-Moody algebra of type Ag) with the scaling element
d and let h be its Cartan subalgebra. We denote the set of roots of g with
respect to h by A and fix a set of simple roots {«, a1, ..., oy }, where ay is the
shortest simple root of g. Let A, and A_ be the set of positive and negative
roots, respectively. We set the simple imaginary root as 6 := 2ag + a1 +
-+ 4 qay, the set of imaginary roots as A;,, := ZJ, and the set of real roots
Ay = A\A;n. Weset Q := @2:0 Zav;, Q = @2:1 Zav;, and CDQT = @2;(1) Zay;.
We set Qy = @'_, Zsoo, Q= D._, Z>oa;, and Q= DL Zsoai. Let
A= Aﬂ@. The set A is a root system of type C;. We denote the set of short
roots of A by AS and the set of long roots of A by A, Using the standard

basis €1, ..., €; of R!, we have:
A={x(e;te)), £2¢| 4,5 =1,...,1}\{0}

Ay ={x(eite) 4,5 =1,..,0\{0}, Ay={x24,j=1,..0}\{0}

We have

Are = (As -+ Zé) U (Al + QZ(S) U %(Al + (QZ —+ 1)(5)

and

@ =3 +e1, ap=—€1+¢&, 0, o1 = —g1 +E&, o= —2¢.

We set Ali = AL N Al, Asi = AL N AS and Ai = AL N A. For each
a € A, let & € b be the corresponding coroot of g. Let 6 be the highest
root of A. Let d € b be the scaling element that satisfies oy (d) = d;9. We
denote a central element of g by K = &g + 2a; + - - - + 2. For each a € A,

we denote the root space corresponding to a by g,. For each a € A,., the

13



root space g, is one dimensional and we denote a fixed nonzero vector in g,
by e,. A Borel subalgebra by and a maximal nilpotent subalgebra ny of g

are

b+:h@n+v ng = @gou bo=bhodn_, and n_ = @gow

aEA L aEA_

For each i € {0,1,...,1}, we define A; € h* by

We set

0 )
P:ZAo@@ZAl@Z§7 and P+ ::ZZOAO@'“@ZZOAZ@Z§'

We set @; := A; — 2\ (i € {1,...,1}),
f):Zwl@---@Zwl, and ﬁ_i_:ZZ()wl@"'@Zzowl.

We set

o o 1 0 o 1 o
Q:=Q+ §ZA1, and Q' := Q4 + §ZzoAz+-

2.3 Hyperspecial current algebra of Aé?)

We set
l
b= @Cai, g:= @ga &b, and b, = @ Ja-
i=1 acA acAy
Then g is a finite dimensional simple Lie algebra of type C}, the Lie subalgebra
6 is a Cartan subalgebra of g, the Lie subalgebra [OJ+ is a Borel subalgebra

of g, and A is the set of Toots of g with respect to h. The lattice P is the

integral weight lattice of g, and ﬁ+ is the set of dominant integral weight of

14



g. A hyperspecial current algebra €g is a maximal parabolic subalgebra of g

that contains g. Le.

Cg:=g+b_.

We set &g’ := [&g, Cq].

Remark 2.3.1. Usually €g' is called current algebra in the literature. We
have €g = €g' ® Cd ® CK.

We define a subalgebra €g,,, of €g by

Q:gzm = @ Inés,

ne—N

and define a subalgebra €n, of €g by

Q:Ihr = @ ga-

a€(Asy —Z>00)U(A14 —2Z500)N 3 (A4 —(2Z30+1)9)
2.4 Weyl group

Let s, € Aut(h*) be the simple reflection corresponding to a € A,.. We
have

Sa(A) = A= (A, &), for A € h*.

We set W as the subgroup of Aut(h*) generated by s, (a € A,.), and W as
the subgroup generated by s, (a € A) For each i = 0, ..., 1, let s; := s,,

it

Then W is generated by s; (i = 0, ...,1), and Wis generated by s; (i = 1,...,1).

Definition 2.4.1 (Reduced expression). Each w € W can be written as a
product w = $;,8i, -+ S, (i; € {0,...,1}). If n is minimal number among

such expressions, then s; S, ---S;, 15 called a reduced expression of w and n

n

is called the length of w (written as l(w)).

15



Let (—|—) be a W-invariant bilinear form on bh* normalized so that

(aplag) = 1. For each p € P, we define t, € Aut(h*) by

1
tu(A) = A+ (N K)p — (M) + §(M|M)<)\, K))o.
We have t, € W and
W =W xP. (2.4.1)

For each \ € ﬁ, we denote the unique element of WAN +P, by A, respec-
tively. We set p := %Za65+ . For each w € W and A € 103, we define
wo X :=w(A+ p) —p. For each A € P, we set W := {w € W| wA = A}.
We denote the set of minimal length coset representatives of W\W by W°.

Definition 2.4.2 (Left weak Bruhat order). Let w € W and i =0,..,1. We
write s;w > w if [(s;w) > [(w) holds. Left weak Bruhat order is the partial

order on W generated by >.

Definition 2.4.3 (Macdonald order). We write = X if and only if one of
the following two conditions holds:
(1) p=A€Q if peW
(2) Ay —ps € Q’+ of pt #F Ag
For w € W and p € P, let w(p)) € P be the restriction of w(u + Ag)

to f) For each A\ € }9), let 7y € W be a minimal length element such that
7((0) = \. For each p € P, we denote the convex hull of Wy by C(p).

Lemma 2.4.4 ([Mac] Proposition 2.6.2). If u € P, then C(u) N (n+ Q') C
Nuer wis — 0L

Proof. The set w(p, — Q’Jr) is the intersection of 4 + Q' with the convex
hull of w(uy — Q’Jr) The set Wy is contained in Nweri W+ — Q’Jr) Hence

we have C(u) N (1 + Q') € Ny Wty — Q1) O

16



Lemma 2.4.5.
(1) If w > v € W, then v((0)) = w(0));,

(2) Let b, ¢ € P satisfy b = s;(c)) for somei=0,...,l. Then
c=b &= m =357 > T,

Proof. First, we prove (1). It is enough to prove the assertion for w = s;v.
Since w > v, we have (vAg, ;) > 0. This implies vAg — wAy € Q. Hence
we have v((0)) = w((0)) if ¢ # 0. If i = 0, then we have w((0)) — v((0)) =
(Ao, g)0/2. We set N = (vAg, dg). We have (w((0)),0) = (N +1)/2. Hence
se(w((0))) = w((0)) — X6 and v((0)) = NLHSQ<’LU((O))) + 77w (0)). Therefore,
v((0) € C(w((0)) N (w(0) + Q). By Lemma 2.4.4, w(0)4 — v((0)+ € Q.
Hence v((0)) >= w((0)).

Next, we prove (2). We already proved (<). So we prove (=). By Definition
2.4.2, we have either s;m. > 7. or s;m. < m.. From ¢ > b and (1), we have
sime > m. and m, > s;m,. We have (s;m.)((0)) = b thanks to b = s;((c).
We show that m, = s;m.. If m, # s;m., then we have [(s;m.) > I(m,) by
the minimality of I(m,). Since l(m) = l(s;m) + 1, (sim.) = U(m.) + 1 and
l(sime) > U(my,), we get [(m.) > [(s;m). This contradicts the minimality of

l(m.). Hence the assertion follows. O

2.5 Macdonald-Koornwinder polynomials

In this section, we recall materials presented in [Sahi00, §3] and [Ion], and
we specialize parameters t, ty, ug, t;, u; in [Sahi00] as to = t; = ug = t and

w; =1 ([Ion]).

17



2.5.1 Nonsymmetric case

Let IF be the field of rational functions in ¢! and ¢*2. Let IF[P] be a group
ring of P over F and X* be an element of F[P] corresponding to A € P. We
identify F[z7, ..., 2] with F[P] by 2; = X for each i € {1,...,1}. We define

Aw) = Alw)s A ) [JQ - ") € Flat!, ']

neN
by using
Az)y = H ()00 (=2i)oo (42 1)oc (23 )oo (237 )oo
+ = e
i=1,..,l (t24) o0 (—1i) o0 (421221 ) o 1<i<j<l (tziz;) oo (trix; oo

where (u) = ][] (1 —q"u). We define

TLEZZO

o(x) = | H (; —t)(z: +¢) H (I'ZZE] _ t)(%xj_ )

x2—1

and C(z) := A(z)p(x). We have

A@)ilco= J] @el-2)el@ 2 [ (@it))lwia; oo

i=1,..,1 1<i<j<l

and

Under the identification 7; = X% and ¢ = €°, we have

A(x)]i=0 = H (1 —X*)dmee and o(z)|—g = H 1 —lX""

a€A and a(d)<0 aEA_,_

Hence we have

Cli=o = H (1 — X)dim e,

aEA_

18



Definition 2.5.1. We define an inner product on Flx1, ..., z7°"] by

(f+ @) nonsym = the constant term of fg*C in xy,...,x; € T,

such that ¢* = ¢, a* = a; !

' ;

where % 1s the involution on F[mlﬂ, vy X and

tr=t1

Definition 2.5.2. The set of nonsymmetric Macdonald-Koornwinder poly-
nomials { Ex(x,q,1)} \cp s a collection of elements in F[P] indexed by P with

the following properties:

(1) <E>\7 EM>;10nsym = O Zf)‘ 7& s

2 EA:X)‘—F c XM,
i

=
As in [Ion, §3.2], we set
.11 T *
By = lim By, Ef := lim EJ.

Definition 2.5.3. We define an inner product on C((q%))[xlﬂ, i by
<f7 g>nonsym := the constant term Offg*(c ‘t:[)) mn X1, .., Ty c C[[qi%]]’

where f, g € C((q2))[z7, b

2.5.2 Symmetric case

The Weyl group W acts linearly on IF[P] by w(e) = @ for each w € W
and \ € P.

Definition 2.5.4. We define an inner product on Flx1, ..., z7°"] by

(f,9)m = the constant term of fgA(x) inxy,...,2; € F.

sym

19



Definition 2.5.5. The set of symmetric Macdonald-Koornwinder polynomi-

als {Px(x,q,t)}\cp 15 a collection of elements in F[PW indexed by Py with
the following properties:

(1) <P)\7PH>;ym =0 Zf)\ # Ky
(2) P)\ :X/\—F ZCHXM.

f=A
We set
Py = 1% P.
Definition 2.5.6. We define an inner product on C((q%))[xfl, ...,mlﬂ]w by
(f, 9)sym := the constant term of fg(A(x) |i=0) in x1,...,2; € (C[[q:l:%]],

where f, g € C(g2)[at', .., zF'W.

We abbreviate E\(z1, ..., 7, q), E;(ml, oy, q)and Py(xq, ..., 11, q) as EX(X, q),

E/T\(X, q) and P, (X, q), respectively.

Proposition 2.5.7 ([Ion] Theorem 4.2). For each A € P, we have

P(X g =ExX .
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Chapter 3

Representation theory of b_

In this chapter, we collect materials on representations of b_ such as
categories of b_-modules, Demazure modules and their graded characters.
Basic references in this chapter are [CK, FKM, Ion, Kac|]. We continue to

work in the setting of the previous chapter.

3.1 Categories of representations of b_
For each b_-module M and A € P, we set
M, :={m € M| hm = A(h)m for h € b}

and
wt M :={\e€ P| M, #{0}}.

For v € M), we set wt(v) = .

Definition 3.1.1. The category B is the full subcategory of the category of
U(b_)-modules such that a b_-module M is an object of B if and only if M
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has a weight decomposition
M = M,

such that My has at most countable dimension for all A € P.

Definition 3.1.2. The category B’ is the full subcategory of B such that
M € B is an object of B’ if and only if the following are satisfied:

(1) The module M is a b_-module such that the set of weights wt M is
contained in | (i — Q) for some {py, ..., ux} C P;

(2) Every weight space M)y is finite dimensional.

Let Bq be the full subcategory of B’ consisting of finite-dimensional b_-

modules.

Definition 3.1.3. For each M € B, we define a graded character of M by

the following formal sum
gch M = Z ¢" X dime Hom; ey (Crmpms, M),
A—moePBLLS
where Cy_,,s 18 a 1-dimensional f) @ Cd-module with its weight A — mJ.

For each A € P, let C), be the 1-dimensional h-module with its weight A,
and C, be the 1-dimensional simple module of b_ with its h-weight A. For
each A € P, we set P(A) := U(b_) U(E(%) Cy and N(A) == 3 cp\ay P(A),
Then N(A) is a b_-submodule of P(A) and Cy = P(A)/N(A).

Proposition 3.1.4. For each A € P, the b_-module P(A) =U(b_) ® C/
U(b)
s a projective cover of Cp in B.

Proof. For each M € B, we have Homg (P(A), M) = Homy(Cy, M). Hence,
P(A) is a projective cover of Cy in B. O
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Proposition 3.1.5 ([FKM] Lemma 5.2). The category B has enough pro-

jectives. [

Definition 3.1.6. Let M be a b_-module with H-weight decomposition M =
@D M,. Then MY := @ M* is a b_-module with a b_-action defined by

pneh* Heh*

Xf(w):=—f(Xv)for X €b_, fe M’ andv € M.

Definition 3.1.7. For each M € B’ and N € By, we define the Fuler-

Poincaré pairing (M, N)gy as a formal sum by

(M, N)g = Y (=1)Pq"dimc Extl(M ¢ Cps, NV).

pEZZO,mE%Z
Proposition 3.1.8. For each M € B’ and N € B, the following hold:
(1) The pairing (M, N)gy is an element of C((¢*/?));

(2) This pairing depends only on the graded characters of M and N.

Proof. First, we prove (1). Let S be the set of highest weight vectors of
M. Since wt M is bounded from above, we have a surjection ¢° : P :=
B, cs P(wt(v)) = M, where wt(v) is the b-weight of v. If v € S such that
(wt(v) + Q:\{0}) N wt M = (), then the vector v is not an element of
Ker ¢°. Hence the set wt Ker ¢ is a proper subset of wt P°. For Ker ¢,
we define ¢! : P! — Ker ¢ in the same way. Repeating this procedure, we
get a projective resolution --- — P! — P° — M — 0 such that wt P**!
is a proper subset of wt P* for all k € Z,. The complex P* ®¢ C,,s is a
projective resolution of M ®¢ C,,s. For each m € %Z, we have wt (Pk Rc
Cps)Nwt N = () for all £ > 0 since N and every weight space of M are finite-
dimensional. This implies Extay (M ®¢ C,,5, N¥) = {0} for all k> 0. Hence
Zkez+(—1)kqmdim@ Exth (M ®¢ Cys, NV) is well-defined. Since b_-action
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on P does not increase d-eigenvalues, and the set of weights of an object of
B’ is bounded from above, the intersection of the set of d-eigenvalues of NV
and P° ®¢ C,,s is empty for all m < 0. This implies the assertion.

Next, we prove (2). Let N’ be an object of B, such that gch N = gch N'.
The sets of composition factors of N and N’ are the same. We denote
the set of composition factors by S. For each exact sequence 0 — L; —
Ly — L3 — 0, we have (M, Lo)gxy = (M, L1)gxt + (M, L3)gxt- This implies
(M, N)pxe = D¢, es(M,Ca)pxt = (M, N')py. Hence the assertion for the
second argument follows. Let K° := @, ¢ N(wt(v)) be a b_-submodule of
PY We set N° := M and N! := ©°(K?). We define a b_-submodule N? of
N'in the same way for N'! instead of M. Repeating this, we get a sequence
of b_-submodules M = N° 5 N'* D N? O ... . Since every weight space of
M is finite-dimensional, for each u € P, we have N = {0} for s > 0 by
construction. We can take a composition series M = M° > .- D M* D
Ms*tt 5 ... of M as a refinement of the above sequence of b_-modules.
Since N is finite-dimensional, for s > 0, we have wt(v) — wt(u) ¢ Q4 for
each v € M? and u € N. By taking a projective resolution of M* as in the
proof of (1), we have Exth(M*® ®¢c C,,5, N¥) = {0} for s > 0. Using this
composition series, we can prove the assertion for the first argument in the

same way. O

Thanks to Proposition 3.1.8, we get a bilinear map

Cqg"*)P) x C(a"*)P) 2 (f,9) = (f, 9)ea € C(¢*)[F],
that we also denote by (—, —)gx

Proposition 3.1.9. For each M € B’ and N € By, we have (gch M, gch N)g,, =
<gCh M7 gCh N>nonsym .
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Proof. {gchCptacp and {gch P(A)}aep are C((¢*/2)-basis of C(¢"/2)[P].
Therefore, it suffices to check the assertion for M = Cy and N = P(A). By
the PBW theorem, we have gch P(A) = X*/T] o (1 — X®)dimc oo Hence
we have gch P(A) = (X*/C)|=o. Hence we get

<gCh P(A)7 gCh CA>Ext =1= <gChP<A)7 gCh CA)nonsym-

The assertion follows. O]

3.2 Demazure modules

3.2.1 Highest weight simple modules of g

Definition 3.2.1. Let A € P and let Cy be the corresponding 1-dimensional
module of by. The Verma module M(A) of highest weight A is a g-module
defined by

M(A) =U(g) ® Cy.
U(b+)

The Verma module M (A) has a unique simple quotient (see [Kac| Propo-
sition 9.2). We denote it by L(A).

Theorem 3.2.2 (see [Kac| Proposition 3.7, Lemma 10.1 and §9.2). For each
A € P, the following hold:

(1) L(A) is an integrable g-module if and only if A € P, ;
(2) For each A € Py and w € W, we have dim¢ L(A)ypn = 1;

(3) L(A) has a h-weight decomposition

L(A) = PLA),

nePrP

and L(A),, is finite-dimensional for all pn € P. O

We remark that gch L(A) is well-defined thanks to Theorem 3.2.2 (3).
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3.2.2 Realization of L(A)

Definition 3.2.3 (Heisenberg algebra). For each | € N, let S; be a unital
C-algebra generated by x;,, (i =1,...,1, 0 #n € Z) and K which satisfy the
following conditions:
(1) [@in, Tjm] = N0; j0n —m K ;
(2) [K, S]] =0.

We set R = Clyi, | @ € {1,...,1}, n € N]. We define a representation
p: S, — Endc (R) by

0 .
P(Tin) = Yin, D(Tin) = . p(K) =idg (n>0).
Let gim = @D gns. The algebra S; is a Z-graded algebra by setting
neZ\{0}

degz;,, = n and deg K = 0, and U(g;n ¢ CK) is a Z-graded algebra by
the Z-grading induced from the adjoint action of the scaling element d. For

g of type Ag), we have dim¢ g,5 = [ for n € Z, and we have the following.

Proposition 3.2.4 (see [Kac] Proposition 8.4). The algebras U(gim & CK)

and S; are isomorphic as Z-graded algebras. [

By Proposition 3.2.4, we identify S; with U(g;, @& CK). Since b and
U(gim ® CK) are mutually commutative, the following C-algebra homomor-

phism py : U(gim @ h ® CK) — Ende (R) (A € P) is well-defined
pals, = p and py(h) = M(h)idg for h € b.
We denote this U(gi, ® f] @ CK)-module by R.

Theorem 3.2.5 ([LNX] Theorem 6.4). We put p :== [[px : U(Gim & ho

AeP
CK) — Endc (€ R»). Then p extends to an algebra homomorphism U(g) —
Aep
Endc (@ R)) and @ Ry is isomorphic to L(Ay) as a g-module. O
AeP AepP
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3.2.3 Thin and thick Demazure modules

Definition 3.2.6. For each w € W and A € P, we define b_-modules
Dy := U(b_)vl, € L(A)Y and D" := U(b_)v,s C L(A),

where vyn € L(A)ywp and vl € (L(A)_wa)* are nonzero vectors. By Theo-
rem 3.2.2 (3), these vectors are unique up to scalars. Hence Dy, and DA

are well-defined. We call Dyp a thin Demazure module and D™ a thick

Demazure module.

Remark 3.2.7. Thin Demazure module is usually referred to as Demazure

module in the literature.

Lemma 3.2.8 ([Kac] Proposition 3.6). For each w € W, A € P, and o €
A, we have
"M ((wA, @) > 0)
Vsawh € 3 ga " Pogn ((wA, &) < 0),
Copa ((wA, &) =0)
where gi' = {X1Xo--- X € U(9) | Xi € ga}- O
Lemma 3.2.9 and Corollary 3.2.12 in the below are proved in [CK] for the

dual of the untwisted affine Lie algebra. The proofs in [CK] are also valid
for type Ag).

Lemma 3.2.9 ([CK]| Corollary 4.2). For each w,v € W and A € Py, we
have the following:

(1) If w < v, then D** C D¥A;

(2) If w and v are minimal representatives of cosets in W/W* and D** C

DYM | then w < v. O
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Lemma 3.2.9 allows us to define as follows:

Definition 3.2.10. For each w € W and A € P, we define a U(b_)-module
DA s

DwA — DwA/ZDUA.
w<v

We call this module Demazure slice.

Proposition 3.2.11 ([Kat] Corollary 2.22). For each A € P, and S C W,
there exists S C W such that

ﬂDw)\ — ZDwA‘

wes wes’

]

Corollary 3.2.12 ([CK] Corollary 4.4). For each w, v € W and A € Py,
we have

(D" N DY) /(D N Y DY) = DA or {0}.

u>w

3.2.4 Level one Demazure modules

In this subsection, we consider level one Demazure modules. The unique

level one dominant integral weight of AS) is Ag. From (2.4.1),

(AN

ﬁa)\l—>)\+Ao+T(56WAO

is a bijection. For each \ € ]5, we set
Dy = D,,, D* := D™ D" :=D™.

Lemma 3.2.13. For each \, pu € ]5, we have D C D* if and only if u = ).
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Proof. 1f D* C D*, then we have 7, < m\ by Lemma 3.2.9. Then, Lemma
2.4.5 (1) implies p > A. Conversely, we assume that p > A. There exists
w € W such that u = A = w((p)). Let w = s;, ---s;, be a reduced expression
of w such that (s, ---s1)(1)) > (54,8, -~ 51)(1)) for all k. If n = 1, then
Lemma 2.4.5 (2) implies 7, < 7). Hence, we have D* C D*. If n > 1, then

we have D* C D)) C ... C D* inductively. ]
Theorem 3.2.14 ([lon] Theorem 1). For each A € P, we have

geh Dy = Q%E,\(X_l, g ')
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Chapter 4

Representation theory of g

In this chapter, we collect materials on representations of €g such as Weyl
modules and categories of representations. Then we calculate extensions
between global and local Weyl modules in the category 8. We continue to

work in the setting of the previous chapters.

4.1 Categories of representations of Cg

Definition 4.1.1. The category €g-modyy is the full subcategory of the cat-
egory of €g-modules such that M s an object of €g-mody, if and only if M
15 a €g-module which has a weight decomposition
M = EPM,
AeP

such that every weight space has at most countable dimension.

Definition 4.1.2. The €g-mod,y is the full subcategory of the category €g-
mody such that an object M of €g-modyy s an object of €g-modyy; if and

only if every d-eigenspaces are finite-dimensional.

30



Definition 4.1.3. For each )\ € PZ, W e P and n, 2m € 7, we set

PA+nAg+md)ine :=U(Cg) ®@ V(A+nAy+mod)
U(g+h)

and

P(/,L + nA() —+ m5)wt = U(Q:g) U%) (C,LL+nA0+m57

where V(A + nlg +md) is the highest weight simple module of g+ b with its
highest weight A + nlAg +md and C,1nrg4ms @S the 1-dimensional module of
b with its weight u + nAg + mJd.

Let 7 : €g — g be a homomorphism of Lie algebras defined by

mls = idg, 7(Cgyo) = {0},

where €g_, = {X € &g | [d, X] # 0}. We can prove the following proposi-

tion in the same way as Proposition 3.1.4, and we omit its proof.

Proposition 4.1.4. For each i1 € P and n, 2m € 7Z, the €g-module P(u +

nlAo + md)w is a projective module. O

Proposition 4.1.5 ([CI] Proposition 2.3). Let A € P, and n, 2m € Z.
(1) 7V (A 4+ nAo + md) is a simple object in €g-modiy.
(2) P(A 4+ nAg + md)ing is a projective cover of its unique simple quotient

V(A + nhy + md) in €g-mod;y. O

Proposition 4.1.6. The categories €g-mody,; and €g-mod;, have enough

projectives.

Proof. We can prove that €g-mod, has enough projectives in the same way
as Proposition 3.1.5. Let M be an object of €g-mod;,;. Since M is an in-
tegrable g-module, for each g-highest weight vector v € M with its weight
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A, we have a morphism of €g-module P(A)in; — M. Collecting them for all
g-highest weight vector, we obtain a surjection from a projective module to

M. ]

Definition 4.1.7. For each M, N € €g-mod;,; such that N is finite-dimensional,

we define the Euler-Poincaré-pairing (M, N)i,. as a formal sum by

(M,N)ip = > (=1)’q"dime Ext} (M ®&¢ Cpns, NV).

Cg—modint
pEZzo ,me %Z

We can prove the following proposition in the same way as Proposition

3.1.8, and we omit its proof.

Proposition 4.1.8. For each M, N € €g-mod;y such that N 1is finite-
dimensional, the following hold:
(1) The pairing (M, N)i.: is an element of C((¢*/?));

(2) This pairing depends only on the graded characters of M and N. [

4.2 Weyl modules

Definition 4.2.1 ([CIK] §3.3). For each A € Py, the global Weyl module
is a cyclic €g-module W () generated by a vector vy that satisfies following
relations:

(1) hvy = A(h)vy for each h € b;

(2) ey =0 for each a € A ;

(07

(3) (’:114_2))\ = 0.

Definition 4.2.2 ([CIK] §3.5 and §7.2). For each A € P, the local Weyl mod-
ule is a cyclic €g-module W ()i, generated by a vector vy satisfies relations

(1), (2), (3) of Definition 4.2.1 and
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(4) Xvy, =0 for X € €g,,,,.

Theorem 4.2.3 ([CIK] Theorem 2). Let A € 103+. Then Dy ®c Coanys/a—n, 18
isomorphic to W(X)jee as €g-module, where Ciynys/2-a, 5 the 1-dimensional
module with its h-weight (A|X)d/2 — Ao. O
Corollary 4.2.4. For each )\ € }E)Jr, we have
Ob) 5 -1 -1
gCh W<>\)loc:q 2 P)\(X » q )
Proof. By Theorem 4.2.3, we have
gch W (). = gch D,.

By Proposition 2.5.7 and Theorem 3.2.14, the assertion follows. O]

Theorem 4.2.5 ([CI] Theorem 2.5 (3), Theorem 4.7 and [Kle] Theorem
7.21). For each X\, n € If’+ and m € %Z, we have

diIII(C EXtTég—modint (W()\) ®(C (Cm(;, W(/L);/OC) = 5m,050,n6>\7#‘

]

Corollary 4.2.6. For each \, i € Py, we have (gch W(X), gch W (1) 10 )it =
Oy

Proof. The assertion follows from Definition 4.1.7 and Theorem 4.2.5. O]

4.2.1 Extensions between Weyl modules in ‘B

In this subsection, we prove the following corollary of Theorem 4.2.5.
Theorem 4.2.7. For each X\, i € 15+, m € %Z and n € Z>q, we have
dim(c EXt%(W()\) ®C (Cmg, W(,u)v ) = (5m70(507n(5,\,u.

loc

33



Definition 4.2.8 ([Gro| §2.1). Let €, © be abelian categories. A contravari-
ant o-functor from € to ® consists of the following data:

(a) A collection T = {T"}iez,, of contravariant additive functors from € to
D;
(b) For each exact sequence 0 — M" — M — M' — 0, a collection of

morphisms {6 : T"(M") — T"(M') }nez., with the following conditions:

(1) For each exact sequence 0 — M" — M — M’ — 0, there is a long exact

sequence

0 — T°(M') — T°(M) — T°(M") %
S TYMY) e o TN )
o T (M) = TM) = T M) S

(2) For each morphism of short exact sequence

0 > M" > M > M’ 0
0 > N > N > N/ > 0

we have the following commutative diagram

Tnfl(N//) gt Tn(N/)

Tnil(M”) gt Tn(M/)
Definition 4.2.9 ([Gro] §2.1). For each contravariant d-functors T = {T"}icz.,
and S = {S'}icz.,, a morphism of o-functor from T = {T"}iez,, to S =
{S"}iezo, is a collection of natural transformations F = {F" : T" — S"}icz.,

with the following condition:
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(x) For each exact sequence 0 — M" — M — M’ — 0, the following diagram
18 commutative
Tt (M) 2 7o)
F"*l(M”)l F”(M/)l
sr=1 (M) L s ()
Definition 4.2.10 ([Gro| §2.2). A contravariant d-functor T = {T"}iez_,is
called a universal 6-functor if for each d-functor S = {Si}iezzo and for each

natural transformation F° : T° — SO, there exists a unique morphism of

d-functor {F* : T" = S"}iez,.

Definition 4.2.11 ([Gro| §2.2). An additive functor F : € — ® is called
coeffaceable if for each object M of €, there is a epimorphism P — M such
that F(P) = 0.

Theorem 4.2.12 ([Gro] Proposition 2.2.1). For each €, © be abelian cate-
gories and let T = {Ti}ieZZO be a contravariant &-functor from € to ®. If T*

15 coeffaceable for v > 0, then T is universal. 0

Lemma 4.2.13 (Shapiro’s lemma). For each M € 9B, N € €g-mod, and

n € Zxg, we have

Exty (M, N) = Extg

Cg-modwt

(U(&y) U%)M,N).

Proof. Let P* — M — 0 be a projective resolution of M in B. Since U(&g)

is free over U(b_), the complex U(€g) ® P* is a projective resolution
U(b-)

of U(Cg) ® M in €g-modys. The assertion follows from the Frobenius
Ub-)
reciprocity. O

Lemma 4.2.14. We have the following:
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(1) For each M, N € €g-mod,,, we have
Extgg_modwt(M, NY) = Ext’ég_modint(M, NY) ke Z>o;
(2) For each N € €g-mody, we have

Ext'ég_modwt(U(Qig) Eza )(CO, NY) = Ext'ég_modwt (Co, NY) k € Zp.
U((b_

Proof. First, we prove the first assertion. The sets of functors

{EXtIgg-modwt (_7 Nv)}k€zzo7 {EXt]ég—modim (_7 NV)}kezzo

are contravariant J-functors from €g-mod;y,; to the category of vector spaces.
From Theorem 4.2.12, {Ext’ég_modim(—,NV)}%ZZO is a universal J-functor.
We prove {Ex‘c"ég_modwt (=, NY)}rezs, is also a universal J-functor. From The-
orem 4.2.12, it is sufficient to show Extleg_modwt(P()\—i-nAo—i—mé)int, NY) = {0}
for A € ]5+, n, 2m € Z and [ > 0. From the BGG-resolution, we have an

exact sequence

- @ M (wor+nAg+md) — @ M (wol+nAg+md) — - - -

weW l(w)=n+1 weW l(w)=n

- @ M (wor+nAg+md) — M(Anho+md) — V(A+nAg+md) — 0,
weW l(w)=1

where

M(u):=U@g+bh) ® C,
U(b4+b)

Since U(C€g) is free over U(g+h), by tensoring U(€g), we obtain a projective
resolution P* — P(A + nAg + md)ims — 0 of P(A 4+ nAg + md)iy in €g-

mody such that PP = @ U(€g) ® M (woA+nAy+md). For each
weW l(w)=n Ula+h)
I(w) > 0, since U(€g) ® M(wol+nhy+md) does not have a g-integrable
U(g+b)
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quotient, we have Homeg mod,, (U(€g) & M(woA+nAo+md), NV) = {0}.
U(g+h)

This implies Extég_modwt(P(/\ + nhg + md)in, NV) = {0} for I > 0. Hence
{Ext’ég_modwt(—, NY)}rezs, is a universal -functor by Theorem 4.2.12. Since

Extd (—, NV) = Extd

V .
Cg-modu Cgmodyy, (—5 V), the assertion follows.

Next, we prove the second assertion. Two sets of functors
{ExtEgmoa,.. (U (Co) o2 Co, (=) ) rezoor  {EXtEqmod,, (Cos (—)*) ez
are contravariant d-functors from €g-mod;,; to the category of vector spaces.
Since Cy is an object of €g-mod;,, we can prove that the latter is a univer-
sal d-functor by the same argument as in the proof of (1). We show that
Ext! (U(€g) @ Co, P(A+ nho+ mod)y,) = {0} for each I > 0. For
U(b-)

Cg-modwt
each w € W, by the PBW theorem and the Frobenius reciprocity, we have

Homeo(U(€g) ©  Co, (U(Cg) Suggen) M(we A+ nlo +md))”)

= Homgg(U(Cg) ®U(@+h) M(U] o+ nA() + m5), (U(Cg) ® Co)v)

U(b-)
= Hom5++h (Cwo)\+nAo+m67 (U(Q:g) U% ) CO)\/)

= Homg (Cuortnrgtms, (U(by +b) U@(%) Co)")

= H0m5++h(U(E+ +b) U%) Co, C_wor—nag—ms)

- HOIl'lh ((Co, (C—wo)\—nAo—m5)-

If I(w) > 0, then Homy (Cuorsnag+ms, (U(b, +b) %) Co)¥) = {0}. Using

the projective resolution of P(\ + nAg + md)iy considered in the proof of

(1), this implies Extleg_modwt(U((’Ig) ®@ Co, P(A + nAg +md)y,) = {0} for
Ub)

cach [ > 0. Hence Extg, 4., (U(Cg) EX) | Co, (—)Y) = {0} is a universal
Ub-
(CQ,NV), the

o-functor. Since Extgg_modwt(U (Cg) Uég) | Co, NV) = E:><t(¢]g_modwt
b

assertion follows. O
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Lemma 4.2.15. For each M, N € B such that MY, NV € B, we have
EXt%(M’ Nv) = EXt%<CU’ Mv Xc Nv) for n € Zzo.

Proof. We show that {Extg(Co, (—)" ®c NVY)}nez, is a universal d-functor.
For each injective object I € 9B, the object I®c NV is an injective object in B.
Hence we have Exth (Co, PY ®c NV) = {0} for each projective object P € B
and k € N. From Theorem 4.2.12, this implies {Extg(Co, (=) @c NY) }nezs,
is a universal §-functor. For each R € B, we have Homg (R, N¥) = Homg(Cy, R ®¢

NY). Since {Exty(—, NV)}nez., is a universal d-functor, this implies

{EXt%(_a NV)}nGZZo = {EXt%((COv (_)\/ ®c Nv)}nEZZo'
Hence the assertion follows. O

Remark 4.2.16. The conclusion of Lemma 4.2.15 remains valid if we replace

Exty with Extey noq,, by the same argument.

Theorem 4.2.17. For M, N € €g-mod,y; such that MY, NV € €g-mod;y,
we have

Exty (M, NY) = Extg

€g-moding

(M, NY).
Proof. We have

Exty (M, NV) = Exty(Co, MY @c N¥) from Lemma 4.2.15
= Extgy moa,, (U(€8) ® Co, MY ®c NY) from Lemma 4.2.13
Ub_)

= Extgy moa, (Co, MY @c NV)  from Lemma 4.2.14 (2)

= Extgy moa,,, (Co, MY @¢ NY)  from Lemma 4.2.14 (1)
= Extgy moa,,, (M, NV) from Remark 4.2.16.
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Proof of Theorem 4.2.7. 1If we set M = W(A) ®c C,s and N = W (). in
Theorem 4.2.17, then we obtain Theorem 4.2.7. O

Corollary 4.2.18. For each f, g € C(¢*/*)[P]V, we have
(f, 9t = ([, 9)Ext-
Proof. From Theorem 4.2.17, we have
(geh W(A), gch W (1)ioc)ine = (gch W(A), gch W (1)10c ) ixt

for each A, u € P, Since {gch WM }ep, and {gch W(A)ioc}ycp, are C((g"/?)-

basis of C((¢'/2))[P]", we obtain the assertion. O
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Chapter 5
Extensions between D* and Dy

In this chapter, we calculate the extensions between Demazure slices and
thin Demazure modules. As a consequence, we obtain the orthogonality
relations of their characters and the character formula of Demazure slices.

We continue to work in the previous chapters.

5.1 Demazure-Joseph functor

For each ¢ = 0,...,1, let sl(2,7) be a Lie subalgebra of g isomorphic to
sly corresponding to «; and p; := b_ + s((2,7). For each i = 0,...,1 and a
b_-module M with semisimple h-action, the b_-module D;(M) is the unique

maximal sl(2,7)-integrable quotient of U(p;) ® M. Then D; defines a
U(b_)
functor called Demazure-Joseph functor ([Jos]).

Theorem 5.1.1 ([Jos|). For each i =0,...,l and a h-semisimple b_-module

M, the following hold:

(1) The functors {D;}i—o...1 satisfy braid relations of W ;

-----

(2) There is a natural transformation Id — D;;
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(3) If M s an sl(2,1i)-integrable p;-module, then D;(M) = M ;
(4) If N is an sl(2,1)-integrable p;-module, then D;(M @ N) = D;(M)® N;
(5) The functor D; is right exact. O
For a reduced expression w = s;,8;, - - - 5;,, € W, we define
Dy:=Di 0D, 0---0D,..
This is well-defined by Theorem 5.1.1 (1).

Theorem 5.1.2. For each A € P,, w e W and i € {0, ...,1}, we have

Dyy  (w > s;w)
Di(DwA) =

Dgwn (0 < s;w).
Proof. By Lemma 3.2.8 and the PBW theorem, Demazure module D, has
an integrable sly;-action if w > s;w. Hence Theorem 5.1.1 (3) implies
Di(Dyp) = Dyp if w > s;w. If w < s;w, then Dyg,yp is a p;-module with
an integrable s((2,7) action by Lemma 3.2.8 and the PBW theorem, and we
have an inclusion D,z — Ds,n. Hence we have a morphism of p;-module
U(pi) ® Dynr — Ds,pa. This morphism is surjective since Dy, 5 is generated
by a V[é((i]{(;r with its weight wA as p;-module. Therefore we obtain a surjection
Di(Dya) — Ds,wa by taking a maximal sl(2, ¢)-integrable quotient. By [Kas,
Proposition 3.3.4], we have gch D;(Dy,a) = gch Ds,,a. Hence the above

surjection is an isomorphism. O
We set DZ# :=VoD;oV.

Proposition 5.1.3 ([FKM] Proposition 5.7). For each i = 0,1,....,1, n €
Lo, M € B’ N € By, we have

Extpy (Dy(M), N) = Extiy (M, D¥ (N)).
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5.2 Realization of global Weyl modules
For each \ € Fo’+, we define

Gr'D:=D* > D"

A, WA

From the PBW theorem and Lemma 3.2.8, the modules D* and Y.  D#
A=, ug WA
are stable under the action of €g. Hence Gr* D admits a €g-module structure.

Proposition 5.2.1. Let A € fo’+. Then Gr*D has a filtration of b_ -submodules
{0})=FRyCcFR CF,C---CFy_,CFy=Gr'D

such that

Proof. Let >’ be a total order on W such that if w > v then w >’ v. For

each w > m,, define

Fy:=(Y_ D"+ > D"/ > D~

v>'w Ao, g WA Ao, g WA

This is a b_-submodule of Gr*D and
F,CF, if w>w.
By Corollary 3.2.12, {F,, }wew gives the assertion. ]

Lemma 5.2.2. We have the following equality of graded characters.

geh L(Ag) = Y g 2gch (N).

)\Gﬁ+
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Proof. Let X\ € ﬁ+ and k € Z>o. By Theorem 4.2.3,
EXt’ég—modim (L(A())’ (C—(M)\)é/? ®c W()‘>l00)v) - EXt]ég—modim (L(A0)7 D;\/)
Applying Theorem 5.1.2 and Proposition 5.1.3 repeatedly, we have
EXt]ég-modint (L<A0)7 DX) = EXt]ég-modint (L(A0)7 D(\)/) k€ ZZ()?

where Dy is isomorphic to the trivial €g-module C,, with its weight A,. By

[HK, Theorem 3.6], We have a projective resolution of a €g-module
<o Pt = PY 5 Cy, — 0,

where P" = @,,cipo, j(u)=n (W 0 0+ Ag)ine. Since dime Homey(P", Cy,) =

d0.n, We obtain
dimeExteg mod,,, (L(80), (Coapszz @c W(Nioe) ) = doi k € Zzo.
Therefore, we have

<gCh L(A0)7 gCh ((C—(/\|>\)5/2 2 W()\>loc)>int = 1.

By Corollary 4.2.4, the set of graded characters {gch W(A)ioctyep, is an
orthogonal C((¢"/2))-basis of C((¢/2)[P]. Hence Corollary 4.2.6 implies the

assertion. ]

If a b_-module M admits a finite sequence of b_-submodules such that
every successive quotient is isomorphic to some D* (u € P), then we say
M is filtered by Demazure slices. Let f, g € C((¢"/2))[P]. Here we make a

convention that f > ¢g means all the coefficients of f — g belong to Zxy.

Theorem 5.2.3. For each A € P, the global Weyl module W (\) @¢ Cy, is
isomorphic to Gr*D as €g-module. In particular, W (\) ®c Cy, is filtered by
Demazure slices and each D" (u € W)\) appears exactly once as a successive

quotient.
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Proof. First, we show that there exists a surjection W(\) ®¢ Cy, — Gr*D.
Let vy € Gr*D be the nonzero cyclic vector with its weight \ + Ay — (/\;—’\)(5.
We check v, satisfies Definition 4.2.1 (1), (2), (3). The condition (1) is trivial
from the definition of vy. Since L(Ag) is an integrable g-module, the vector
vy is an extremal weight vector. This implies the condition (2). We check
the condition (3) in the sequel. Since (A, &) > 0 and v, is an extremal weight
vector, we have e,y = 0 for & € A,. For each p € P, we set lw) :==1¢€ R,.
For each f = a4+ nd € A with n € —Z>(¢/2 and « € A, U %AH, we have
V= eqins|\) € U(Cg,,,)|\ + ) by Theorem 3.2.5. Since U(g)v is finite-
dimensional, the g-module U(g)v has a highest weight vector whose weight
is v. Then, v € U(Cg,,,,)U(n_)|v) C D”. Hence v — X € Q’Jr Since A and v
is dominant, we have A > v. Therefore D” is 0 in Gr*D as |v) € D¥. This
implies v = 0 and we have the desired surjection. In particular, we have an
inequality

g™ 2gch W(X) > gch Gr*D.

On the other hand, we have,

gch L(Ag) = Z gch Gr*D

AP,

and
gch L(Ag) = Z gAY 2gch W ()
)\EP+

by Lemma 5.2.2. Thus the above inequality is actually an equality and the

assertion follows. O
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5.3 Calculation of Exty(D* ®c Crssing Do)

5.3.1 Demazure-Joseph functor and Demazure slices

Theorem 5.3.1. For each w € W and i € {0, ...,l}, we have the following:

D% g f s;w < w
D;(D¥) =
D*  if s;w > w.
Proof. The proof is the same as proof of Theorem 5.1.2 using the analog of

[Kas, Proposition 3.3.4] for thick Demazure modules (cf. [Kas, §4]). O

For each ¢ € P, let W(c) be the image of D¢ in Gr D, where ¢, is a
unique dominant integrable weight in We. From Theorem 5.2.3, the global
Weyl module is isomorphic to the image of D as €g’-module. Hence this
notation is consistent with the previous notation and we use the same nota-

tion.

Proposition 5.3.2 ([CK] Proposition 4.13). For eachc € P andi € {1,...,1},

we have
W(s;c) (sic*=c)

W(e) (schec)

Proof. We set M. := > D® We have a short exact sequence

c_>a

Di(W(e)) =

0—M.— D°+M,— W(c)—0.

The module M, is invariant under D; by Theorem 5.3.1. Hence we obtain

the following exact sequence

L~'D;(W(c)) = M, — D + M, — D;(W(c)) — 0,
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where

sic  (sic = c)

¢ (sicto)
and LL*D; is the left derived functor of D;. By Theorem 5.1.1 (2), we have

the following commutative diagram
M. —— D¢+ M.
M, — D + M,

Since L(Ay) is completely reducible as a sl(2,7)-module and D+ M, is a b_-
submodule of L(Ag), the above morphism D¢ + M, — D¢ + M, is injective
by [Jos, Lemma 2.8 (1)]. Hence M., — D® + M., is injective. Therefore we
obtain Dy(W(c)) = (D¢ + M,)/M. from the above exact sequence. O

Proposition 5.3.3 ([CK] Corollary 4.15). Let i € {0,1,...,1} and c € P. If

s;c > ¢, then we have an exract sequence
0 — D¢ — D;(D°) —» D% — 0
and D;(D%°) = {0}.

Proof. We set S :={w € Wl|w £ n., s;w £ m.} and M := Y D”. Then we
wesS
have D°N M = > D". Hence we have an exact sequence
Te<<Ww

0—-M—=>D°+M —D°—0.

As s5;(S) C S, we have D;(M) = M. By the same argument as in the proof
of Proposition 5.3.2, applying D;, we obtain

0 — M — D%+ M — D;(D°) — 0.
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In particular, we have
D= (D°4+ M)/M and D;(D°) = (D*°“+ M)/M.
Hence we have
0— D°— Dy(D) — (D*“+ M)/(D°+ M) — 0,
where (D%¢ + M)/(D¢+ M) = D*%¢/(D%°n (D + M)) is isomorphic to

D®i¢ since D% N (D + M) = D®. Hence the first assertion follows.

W>S;Te

Applying D; to the last exact sequence, from right exactness of D;, we have

an exact sequence
D;(D°) — D?(D) — D;(D*€) — 0.

From Theorem 5.1.1 (3), the above homomorphism D;(D¢) — D2(D¢) is an

isomorphism. This implies the second assertion. O

5.3.2 Calculation of Extjy(D* @¢c Cysira,, DX)
The following theorem is an AS) version of [CK, Theorem 4.18].
Theorem 5.3.4. For each X\, i1 € 1-9’, m € %Z and k € 7, we have
dime Extiy (D ®c Crustrng, D)) = 0n00m,o0kc00au 1 € Zso.

Proof. By comparing the level, the extension vanishes if k& # 0. We prove
the assertion by induction on g with respect to »=. By Theorem 5.1.1 (3),
we have D, (Dy) = D, for all w € W. If \ is not anti-dominant, then there
exists i € {1, ...,1} such that s;A > A. Hence

Extiy(D* @c¢ Chsikng, Dy) = Extiy(D @c Crsyray, DF (DY)
= Extiy(Di(D* @c Crsirag), D)
= {0}.
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Here we used Proposition 5.1.3 in the second equality and Proposition 5.3.3 in
the third equality. If X is anti-dominant, then we have D,,, (D) = W ()} ) ®¢
Cp, for the longest element wy of W by Proposition 5.3.2. Hence we have
Extiy (D @c Crssirng, DY) = Extayy (W (ML) @c Crusirag, W(0)),.) by Theorem

loc

4.2.3. From Theorem 4.2.7, the assertion follows in this case.
Let s;u = p. We set D := D) ®¢ Cys4x4, for A € P. By Proposition 5.3.3,
we have the following exact sequence
0 — Exty(D), ,, D)) — Exty(D;(D}), D)) — Extg (D), D)) —
-+ = BExty (D), D) — Exty(Di(DY), D)) — Extg(Dy, DY) —- -

From Theorem 5.1.2 and Proposition 5.1.3, we have

Exty (Di(Dy ®c Crugirno), D)) =2 Extiy(Dy ®c Crgrra, D) (D))

= EXt%(D)\ Qc Cm5+kA07 D;/“u,)

Therefore, the assertion follows from the induction hypothesis and the long

exact sequence.

[
Corollary 5.3.5. For each A\, p € ﬁ, we have
PRGOS -1 -1
<gCh D yq 2 EM(X » q >>Ext = 5/\,;1,-
Proof. By Theorem 5.3.4, we have
(gch D*, gch D, ) ext = Oz p-
Using Theorem 3.2.14, we obtain the assertion. O

Corollary 5.3.6. For each )\ € 15, we have
A O ot 1 1y ot
gchD* =g 2 ES(X ™, ¢ ) /(Ex, E))pxt-
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Proof. Since {EI(X',q7")/(E\, E,T\>Ext}uez5 is a C((q"/2)-basis of C((¢"/2))[P],
we have

gch D = >~ a, E{(X ™, q71)/(Ex, B

ueP
for some a,, € C((¢*/?)). Since (—, —)nonsym = {—» —)mxt, and {Ex(X, ¢, ) }rep
are orthogonal with respect to (—, —)/,,,s,m €ach other, we have

<EA(X_17 q—1)7 EL(X_lv q_1)>Ext/<E’)\7 E;>Ext - 6)\#‘

Hence we have (gch D*, gch D)z = a, by Theorem 3.2.14. Therefore the

assertion follows from Corollary 5.3.5. O]
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Chapter 6

Weyl modules for special

(2)

current algebra of A,

In this chapter, we study the global Weyl modules of special current
algebra of Ag). We prove that the endomorphism rings of the global Weyl
modules are isomorphic to the polynomial ring and the global Weyl modules
are free over their endomorphism rings. We continue to work in the setting
of the previous chapters.

6.1 Special current algebra of AS)
In this section, we refer for general terminologies to [FK, Chapter 2], [FM,
§2.2] and [Car, Appendix]. We set
-1
ht .= @Cai, AT:= AnQ" and g := (@ga) @ bt
i=0 aEAT
Then g' is a finite-dimensional simple Lie algebra of type B;. The subalgebra
BT is a Cartan subalgebra of g, and Al is the set of roots of g" with respect
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to GT. Using the standard basis v, ..., ; of R!, we have :
AN ={x(;£v), 215 |1 <i#j<I}.
and the set of positive and negative roots are
Al ={vi+v, v|1<i<j<l}, Al =—Al

We denote the set of short roots of g' by AL and the set of long roots of g
by AZT We have
Al = {4v; |i=1,...1}

and

Al ={+itv)|1<i#j<I}

We set AT, = Al N Al and AlTi = Al n AZT Let {al,...,al} be a set of
simple roots of gf. We have ol = —v; + Vg1 if @ # [ and oz; = —u;. In the

notation of §1.2, we have af = a;_;. We set Qi =, lZZOaZ. We have

. Tbmer TR e EEE ot NWn=1,..,

A, = (A +726) U 2Al + (2Z + 1)6).

The special current algebra €g' is the maximal parabolic subalgebra of g

that contains gf. We have €g" = gf + b_. We set
Cgl, == Cg,,, €= (€l Cg]]

and

ani = @ Ja

a€(Al ~Z508)U(2AT, —(2Z50+1)8)

Let Pt be the integral weight lattice of g and Pl be the set of dominant
integral weights of §f. Let @] (i = 1,...,1) be the fundamental weights of §i.
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We identify P and Zw]{ @ P ZWL &) Zw;r by wz =AN_;— A fori#l
and wlT = Ao — A;/2. We put

ﬁj{_ = Zzoler D Zzow; b---D ZEOWZT‘

Let W be the subgroup of W generated by {5a}acat-

6.2 Realization of ¢g'

We refer to [CIK, §4.6] in this section. Let X;; be a (20 + 1) x (2] + 1)
matrix unit whose ij-entry is one. We set H; = X;; — X;11,11 (1 =1,...,21).
The Lie algebra sy is spaned by X;; (i # j) and H; (i = 1,...,2l). The

assignment

Xiiv1r — Xogpr1—i2i42—ir Xit1i — Xoro—io1+1—i

extends on sly,; as a Lie algebra automorphism. We write this automor-
phism by 0. Let L(slyy1) = sly1®cC[t*!] be the loop algebra corresponding
to sly 41 and extend o on L(sly 1) by o(X®f(t)) = o(X)®f(—t). We denote
the fixed point of ¢ in sly; ®c C[t] by (sly1 ®c Clt])7.

Proposition 6.2.1 (see [Kac] Theorem 8.3). The Lie algebra (sly1®cClt])”

is isomorphic to €g'’.

6.3 Weyl modules for ¢g'

Definition 6.3.1. For each \ € PL the global Weyl module is a cyclic €g' -
module W (\)T generated by vy, that satisfies the following relations:

(1) hvy = A(h)vy for each h € b;
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(2) ey =0 for each a € AL,
(3) €nlvy = 0.

Definition 6.3.2. For each \ € ﬁ, the local Weyl module is a cyclic €g' -
module VV()\)ZTOc generated by vy satisfies relations (1), (2), (3) of Definition

6.5.1 and
(4) Xvy =0 for each X € Cg! .

Theorem 6.3.3 ([FK] Corollary 6.0.1 and [FM] Corollary 2.19). For each
A€ PL we have

(1) If \ =S myw! + (2k — )], then
-1

, (20 1\ 20+ 1\
dime W) = (H( ; ) ) ( l ) 2l
i=1

(2) If A = Zi;i myw! + 2mlwlT, then

l m;
2+ 1\™
dime WA, =[] ( - ) .

6.4 The algebra A,

Let X € Pjr We set
Ann(vy) := {X e U(€g! )| Xvyx =0} and A, :=U(Cg! )/Ann(vy),
where v, is the cyclic vector of VV()\)IOc in Definition 6.3.1.

Proposition 6.4.1 ([CIK] §7.2). For each A € P!, the algebra A acts on
WA by

X.Yvy:=YXvy for X € AyandY € U(g").
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6.4.1 (Generators of A,

Fori=1,....,0 — 1, we set
hio == Hy + Hoypp1—5, hiy = H; — Hoppq—4,

Tio = Xi,i+1 + X2l+1—i,2l+2—i; Ti1 = Xi,i+1 - X2l+1—i,2l+2—i7
Yio = Xz'-‘,—l,i + X21+2—i,2l+1—z‘7 Yil = Xi+1,i - X2l+2—i,2l+1—i

and

hio = 2(H; + Hyy1), g = H — Hyy,
Tio = \/§(Xl,l+1 + Xl+1,l+2)7 Zy1 = —\/i(Xl,lH - Xl+1,l+2)7
Y0 = V2(Xii1g + Xivoan1)s yin = —V2(Xii1g — Xivars1).

The Lie algebra generated by {x;o, vio, hio}iz=1

.....

simple Lie algebra of type By, and {h;}i=1,..

([Car, Theorem 9.19]). We set 21 := $[yi0, Y1,1). As in [CFS, §3.3], we define
pir € U(Cgl,) (i =1,..landr € Zso) by

i ! 2k+e
Zrco( BRME)

T‘GZzo k=1 =0
for i # [ and
r — huo/2067 L i @
Z Pirz = exp (— Z TZ + Z ﬁz .
TGZE() k=1 k=1

Proposition 6.4.2. The algebra U((’:g;rm) 15 isomorphic to the polynomial
ring Clpirli =1,...,1, r € Z>o).

Proof. We have C[p;,|i = 1,....1, 7 € Z=o] C U(€g! ). The set of generators
of U(Cg! )is {hi. @t 2| n e {1,.,1}, k € Nand e € {0,1}}. It suffices
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to see that h, . ® t72%° € Clp;.|i = 1,...,1, r € Zso] for each i € {1,..,1},
k€ Nand e € {0,1}. We have h;; ®t~! = p; 1 up to a constant multiple. By
definition, p;or_c + (hi. @ t72k%€) /(2k — €) is an element of Q[h; s|s < 2k — €]
if i # 1, and prog—c — (—1)7 (R /2'7° @ t727F9) /(2k — ) is an element of
Q[his|s < 2k — €. The assertion follows by induction on 2k — e. O

Lemma 6.4.3 ([CFS] Lemma 3.2, Lemma 3.3 (iii) (b) and [CP] Lemma
1.3 (ii)). Let V be a €g'-module and v € V be a nonzero vector such that
¢n,v = 0. We have the following:

(1) Fori # 1, we have (z;; @t~ (y;0) v = (=1)"p; v for r € N;

(2) We have (210) %) (2, @t~ )Mo = (=1)"p,v for r € N.

Proposition 6.4.4. Let \ € Pi, i€ {l,...,1 =1} and vy be cyclic vector of
W (AT with its weight \. We have p; vy = 0 for r > (), d;f), and py,vy =0

.
for r > L%J

Proof. Definition 6.3.1 (3) implies the set of hi-weights of W (A)' is the subset
of A—Q' . From Definition 6.3.1 (2) and Lemma 6.4.3 (1), we get p; ,vx = 0 for
r > (\,&). By Definition 6.3.1 (2), W(A) is an g'-integrable module. Since
the set of ET—Weights of W(A)T is contained in \ — Qi, this implies A\ — kaj
for k> (\, &) is not a weight of a vector of W (\)t. Since (21 ®t) is a root

of
vector corresponding to 2alT — J, we obtain p;,v\ = 0 for r > L%J [

We set

Al

AL =Clpi 1 <r<\a)fori#l 1<r< L< | for i =1].

Corollary 6.4.5. For each \ € Pi, there exists a C-algebra surjection A\ —
A,.
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Proof. By Proposition 6.4.4, we have p; ., p;x € Ann(vy) for each r > (A, o)
o

(¢ # 1) and each k > L%J Hence we have a surjection Ay, — A, by

Proposition 6.4.2. O

We set PI':= {\ € P! | (\,al) € 2Z-,}.

Theorem 6.4.6 ([CIK] §5.6 and Theorem 1). For each A € Pl/ and nonzero
element f € A, there exists a quotient of W(A)' such that f acts non-
tirivially on the image of the cyclic vector vy of W(A)1. In particular A, =
Al O

Lemma 6.4.7 ([CIK] Lemma 5.4). For each 1 < s < k, let Vi be represen-
tations of €g' and let v, be vectors of V, such that anlvs = 0. We have

Pir(V1 @ @ug) = E Piji01 ® -+ @ Di j, U
r=j14+jr, §i>0

foralll <i <l andr € Zs>. O

6.4.2 Dimension inequalities

For each maximal ideal I of A, we define
WD = (A/T) @ WA\
A

Let U(Cg;,,)+ be the augmentation ideal of U(€g,,,) and I, be a maximal
ideal of A defined by (U(€g,,,)+ + Ann(v,))/Ann(vy).
Proposition 6.4.8. For each \ € Pl, we have W(A)| = W(\ Ty).

Proof. The assertion follows from Definition 6.3.2 (4). O

Proposition 6.4.9 ([CIK] Proposition 6.4 and 6.5). Let A € Pl and let T be

a mazximal ideal of A.
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(1) If u e Pjr satisfies A — p € ﬁl’, then we have

-1 (A—u)(a]) (A—u)(a] /2)
20+ 1 : 20+ 1 l
dime W(A, DT > dime W (u)] (H( N ) > ( N ) :

, 1 {
=1

(2) We have
dime W)} > dime W(A, T

]

Corollary 6.4.10 ([CIK] Theorem 10 when \ € Pl’) For each \ € Pjr and
each mazimal ideal I of Ay, the dimension dime W (X, I)T does not depend
on I and is given by Theorem 6.3.3.

Proof. Tt A = S\~ myw! + 2myw], then we have
l m;
20+ 1\
dime W), > dime WO, D! > ] ( N )
1
=1

by Proposition 6.4.9. From Theorem 6.3.3 (2), this inequality is actually
equality. If A = Zi;i myw, + (2k — 1)), then we have

-1 m; k—1
24+ 1\™\ (2 +1
dime WA, > dime W(AT)T > dime W ()], (H ( ZJ.F ) ) ( . )

, 7 )
=1

by Proposition 6.4.9. From Theorem 6.3.3 (1), this inequality is actually

equality. Hence the assertion follows. O

6.5 Freeness of W()\)! over A)

In this section, we prove the following theorem

Theorem 6.5.1. For each \ € PL the global Weyl module W (\)T is free
over A,. O

o7



To prove this theorem, we need the following preparatory result:
Theorem 6.5.2. For each \ € PL the algebra A is isomorphic to A',. [

Theorem 6.5.2 and Corollary 6.4.10 imply Theorem 6.5.1 by [Sus, Qui.
We prove Theorem 6.5.1 after proving Theorem 6.5.2.

Proof of Theorem 6.5.2. We show that the surjection A\ — A, is the iso-
morphism. We have dim¢ A’ ol = = 1. Since dim¢ A = > 1. Hence A/ = A

is the isomorphism. If A € Pl’, then the assertion is Theorem 6.4.6. We prove
the assertion for A\ = S\ myw! + (2m + 1)w]. Let f € A} be a nonzero
element. It is suffice to show that there exists a quotient of W(A)! such
that f acts nontrivially on the image of the cyclic vector vy of W(A)T. Let
o= X\— wlT. We have A\ = A’. By checking the defining relations, we have

a homomorphism of €g'-module
W) = W(w]) @c W(p)'

which maps v, to Ut ® v,. By Theorem 6.4.6, we have a quotient module
V of W(p)" such that f acts nontrivially on the image of v, € W(u)'. We

have a homomorphism

Wt — W(wl) ®RcV — W(wl) ®c V.

loc

Let v € V and woi € W(w))}  be the image of v, in V and the image

loc

of U in W(w})}oc, respectively. By Lemma 6.4.7, we have pw(’wwlf Q) =

w_t+ ®@p;r(v) for each i € {1,...,1} and r € Z>¢. Therefore, f acts nontrivially
l

® V. Hence fvy # 0. Hence

the assertion follows. O

on the highest weight vector w_: ® v of W ()]
!

loc

Proof of Theorem 6.5.1. We set N := dim W ()]
ideal of A,. By Nakayama’s lemma [Mat, Lemma 1.M], there exists f ¢ m

loe- Let m be a maximal
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such that (W(X)"); is generated by N elements as (A,);-module, where
(W(A)T); and (A,); are the localization of W () and A by f, respectively.
Since (A.,)s is Noetherian, we have an exact sequence (A,)F" 4 (ANFY LN
(W(M)T); — 0. For any maximal ideal n such that f ¢ n, the induced mor-
phism ¢ : (AN)FY/n(ANFY = (W(A))s/n(W (M) is an isomorphism by
Corollary 6.4.10. This implies the matrix coefficients of ¢ are contained in
the Jacobson radical of (A ). Since (A, )y is an integral domain and finitely
generated over C, we deduce ¢ = 0. It follows that (W ()))T) is flat over A
by [Jot]. Since A, is a polynomial ring, (W ()))T) is a projective A -module.
From [Qui, Sus|, a finitely generated projective module over a polynomial

ring is free. Hence the assertion follows. O]
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