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Abstract. Let F be a totally real number field and o the ring of inte-
gers of F . We study theta functions which are Hilbert modular forms of
half-integral weight for the Hilbert modular group SL2(o). We obtain an
equivalent condition that there exists a multiplier system of half-integral
weight for SL2(o). We determine the condition of F that there exists a
theta function which is a Hilbert modular form of half-integral weight
for SL2(o). The theta function is defined by a sum on a fractional ideal
of F .
Keywords. Theta functions; Hilbert modular forms of half-integral
weight; Multiplier systems; Weil representation; Genuine characters;
Metaplectic groups.

1. Introduction

Put e(z) = e2πiz for z ∈ C. It is known that the modular forms of SL2(Z)
of weight 1/2 and 3/2 are the Dedekind eta function η(z) and its cubic power
η3(z) up to constant, respectively. Here, η(z) is given by

η(z) = e(z/24)
∏
m≥1

(1− e(mz)) (z ∈ h),

where h is the upper half plane. It is known that

η(z) =
1

2

∑
m∈Z

χ12(m)e(m2z/24), η3(z) =
1

2

∑
m∈Z

mχ4(m)e(m2z/8)

(see [18, Corollary 1.3 and Corollary 1.4]). Here, χ12 and χ4 are the primitive
Dirichlet character mod 12 and mod 4, respectively. Note that η(z) and η3(z)
are theta functions defined by a sum on Z.

The function η(z) has the transformation formula with respect to modular

transformations (see [1, 27, 28, 34]). Let
( ·
·

)
be the Jacobi symbol. We

define
( ·
·

)∗
and

( ·
·

)
∗
by

( c
d

)∗
=

(
c

|d|

)
,

( c
d

)
∗
= t(c, d)

( c
d

)∗
, t(c, d) =

{
−1 c, d < 0

1 otherwise,

for c ∈ Z\{0} and d ∈ 2Z+ 1 such that (c, d) = 1. We understand(
0

±1

)∗
=

(
0

1

)
∗
= 1,

(
0

−1

)
∗
= −1

(see [17, Chapter 4 §1]).
For z ∈ h, we choose argz such that −π <argz ≤ π. For g ∈ SL2(R) and

z ∈ h, put

(1) J(g, z) =


√
d if c = 0, d > 0

−
√
d if c = 0, d < 0

(cz + d)1/2 if c ̸= 0,

g =

(
a b
c d

)
.
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Then we have

(2) η(γ(z)) = vη(γ)J(γ, z)η(z), γ(z) =
az + b

cz + d
∈ h

for all γ =

(
a b
c d

)
∈ SL2(Z), where the multiplier system vη(γ) is given by

(3) vη(γ) =


(
d

c

)∗
e

(
(a+ d)c− bd(c2 − 1)− 3c

24

)
c : odd

( c
d

)
∗
e

(
(a+ d)c− bd(c2 − 1) + 3d− 3− 3cd

24

)
c : even.

It is natural to ask the following problem. When does a Hilbert modular
theta series of weight 1/2 with respect to SL2(o) exist? Here, o is the
ring of integers of a totally real number field F . In 1983, Feng [6] studied
this problem. She gave a sufficient condition for the existence of a Hilbert
modular theta series of weight 1/2 with respect to SL2(o) and constructed
certain Hilbert modular theta series. These series are defined by a sum on
o.

Let K be a real quadratic field and dK the discriminant of K. Gundlach
[10, p.30], [11, Remark 4.1.] showed that if dK ≡ 1 mod 8, then there exist
multiplier systems of weight 1/2 for a Hilbert modular group belonging to
a certain theta series. Naganuma [25] obtained a Hilbert modular form of
level 1 for a real quadratic case with dK ≡ 1 mod 8 and class number one,
using modular imbeddings, from the theta constant with the characteristic
(1/2, 1/2, 1/2, 1/2) of degree 2.

In this paper, we solve the problem above completely. We consider theta
functions defined by a sum on a fractional ideal of F . Let v be a place of F
and Fv the completion of F at v. When v is a finite place, we write v <∞.
When v is an infinite place, we have Fv ≃ R and write v | ∞. Let A be the
adele ring of F .

Let n = [F : Q] and ιv : F → Fv be the embedding for any v. The entry-
wise embeddings of SL2(F ) into SL2(Fv) are also denoted by ιv. The meta-

plectic group of SL2(Fv) is denoted by ˜SL2(Fv), which is a nontrivial double
covering group of SL2(Fv). Set-theoretically, it is {[g, τ ] | g ∈ SL2(Fv), τ ∈
{±1}}. Its multiplication law is given by [g, τ ][h, σ] = [gh, τσc(g, h)] for

[g, τ ], [h, σ] ∈ ˜SL2(Fv), where c(g, h) is the Kubota 2-cocycle on SL2(Fv).
Put [g] = [g, 1]. Note that in SL2 case c(·, ·) is equal to the cocycle con-
structed by Ranga Rao (see [29]).

Let {∞1, · · · ,∞n} be the set of infinite places of F . Put ιi = ι∞i for
1 ≤ i ≤ n. We embed SL2(F ) into SL2(R)n by r 7→ (ι1(r), · · · , ιn(r)). We
denote the embedding of SL2(F ) into SL2(A) by ι. Let Af be the finite
part of A and ιf : SL2(F ) → SL2(Af ) the projection of the finite part. The
embedding of F into Af is also denoted by ιf .



ON MULTIPLIER SYSTEMS AND THETA FUNCTIONS 3

Let S̃L2(A) be the adelic metaplectic group, which is a double covering of

SL2(A). Let H̃ be the inverse image of a subgroup H of SL2(A) in S̃L2(A).
It is known that SL2(F ) can be canonically embedded into S̃L2(A). The
embedding ι̃ is given by g 7→ ([ιv(g)])v for each g ∈ SL2(F ). We define the

maps ι̃f : SL2(F ) → ˜SL2(Af ) and ι̃∞ : SL2(F ) → ˜SL2(F∞) by

ι̃f (g) = ([ιv(g)])v<∞ × ([12])v|∞, ι̃∞(g) = ([12])v<∞ × ([ιi(g)])v|∞,

where 12 is the identity matrix of size 2. Then we have ι̃(g) = ι̃f (g)ι̃∞(g)
for all g ∈ SL2(F ).

Let Γ ⊂ SL2(o) be a congruence subgroup. A map v : Γ → C× is said
to be a multiplier system of half-integral weight if v(γ)

∏n
i=1 J(ιi(γ), zi) is

an automorphy factor for Γ× hn, where J is the function in (1). Let KΓ be

the closure of ιf (Γ) in SL2(Af ) and K̃Γ the inverse image of KΓ in ˜SL2(Af ).
Let λ : K̃Γ → C× be a genuine character, which is defined in Section 3. Put
vλ(γ) = λ(ι̃f (γ)) for γ ∈ Γ. Then vλ is a multiplier system of half-integral
weight for Γ.

Now suppose that v : Γ → C× is a multiplier system of half-integral
weight. We obtain an equivalent condition that there exists a genuine char-
acter λ : K̃Γ → C× such that vλ = v. Put Kf =

∏
v<∞ SL2(ov), which ov is

the ring of integers of Fv.

Proposition 3. Let v be a multiplier system of half-integral weight for
SL2(o). Then there exists a genuine character λ : K̃f → C× such that
vλ = v.

Corollary 2. There exists a multiplier system v of half-integral weight for
SL2(o) if and only if 2 splits completely in F/Q. There exists a genuine

character of ˜SL2(ov) for all v <∞, provided that this condition holds.

Now suppose that 2 splits completely in F/Q. Let ψ : A/F → C× be
an additive character such that its v-component ψv(x) equals e(x) for all
v | ∞. Put ψβ(x) = ψ(βx) and ψβ,v(x) = ψv(βx) for β ∈ F×. The Schwartz
space of Fv is denoted by S(Fv). Let ωψβ ,v be the Weil representation of the

metaplectic group ˜SL2(Fv) on S(Fv) corresponding to ψβ,v.
In the case v < ∞, we shall determine the genuine characters of the

metaplectic group ˜SL2(ov). Let λv be a genuine character of ˜SL2(ov). The
space (ωψβ ,v, S(Fv))

λv is defined by a set of f ∈ S(Fv) such that ωψβ ,v(g)f =

λv(g)
−1f for all g ∈ ˜SL2(ov). We determine the space completely.

In the case v | ∞, let λv be a genuine character of the metaplectic

group S̃O(2), where SO(2) is a set of

(
a b
−b a

)
∈ SL2(R). The space

(ωψβ ,v, S(R))λv is defined by a set of f ∈ S(R) such that ωψβ ,v(g)f = λv(g)f
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for all g ∈ S̃O(2). We have an irreducible decomposition

ωψβ ,v = ω+
ψβ ,v

⊕ ω−
ψβ ,v

,

where ω+
ψβ ,v

(resp. ω−
ψβ ,v

) is an irreducible representation of the set of even

(resp. odd) functions in S(R) (see [21, Lemma 2.4.4]).
If β < 0, there exist no lowest weight vectors of ω+

ψβ ,v
or ω−

ψβ ,v
. If β > 0,

the vector e(iιv(β)x
2) (resp. xe(iιv(β)x

2)) is the lowest weight vector of
ω+
ψβ ,v

(resp. ω−
ψβ ,v

) of weight 1/2 (resp. 3/2) (see [21, Lemma 2.4.4]).

Let λ∞,1/2 be a genuine character of lowest weight 1/2 with respect to

(ω+
ψβ ,v

, S(R)) and λ∞,3/2 of lowest weight 3/2 with respect to (ω−
ψβ ,v

, S(R)).
The set of totally positive elements of F is denoted by F×

+ . Assume that

β ∈ F×
+ in order that there exists a lowest weight vector of (ω+

ψβ ,v
, S(R)) or

(ω−
ψβ ,v

, S(R)) for all v <∞. We fix ωψβ ,v and λv for any v. Here, we assume

that λv = λ∞,1/2 or λv = λ∞,3/2 for all v | ∞. Put K = Kf ×
∏
v|∞ SO(2).

Let λ : K̃ → C× be a genuine character such that its v-component is λv.
Let S(A) be the Schwartz space of A. The space (ωψβ , S(A))λ is defined by

a set of ϕ =
∏
v ϕv ∈ S(A) such that ϕv ∈ (ωψβ ,v, S(Fv))

λv for all v. We

determine when there exists a nonzero ϕ ∈ (ωψβ , S(A))λ.
We define the theta function Θϕ by

Θϕ(g) =
∑
ξ∈F

ωψβ (g)ϕ(ξ)

for ϕ ∈ S(A) and g ∈ S̃L2(A), where ωψβ (g)ϕ(ξ) =
∏
v ωψβ ,v(gv)ϕv(ξ). The

product is essentially a finite product. If ϕ ∈ (ωψβ , S(A))λ for λ such that

the lowest weight of (ωψβ , S(A))λ is w ∈ {1/2, 3/2}n, then it is known that
Θϕ is a Hilbert modular form of weight w.

For 1 ≤ i ≤ n, put λ∞i = λ∞,wi , where wi = 1/2 or 3/2. Put S∞ = {∞i |
wi = 3/2} and S2 = {v <∞ | Fv = Q2}. Let pv be the maximal ideal of ov
and qv the order of ov/pv. Put T3 = {v <∞ | qv = 3}. We denote the order
of a set S by |S|. Let G be the set of triplets (β, S3, a) of β ∈ F×

+ , a subset
S3 ⊂ T3 and a fractional ideal a of F satisfying the conditions

|S2|+ |S3|+ |S∞| ∈ 2Z
and

(8β)d
∏
v∈S3

pv = a2,

where d is the different of F/Q. We define an equivalence relation ∼ on G
by

(β, S3, a) ∼ (β′, S′
3, a

′) ⇐⇒ S3 = S′
3, β

′ = γ2β, a′ = γa for some γ ∈ F×.

We determine when there exists a nonzero Θϕ. Recall that if qv is odd,

the double covering ˜SL2(Fv) → SL2(Fv) splits on SL2(ov). We denote the
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image of g ∈ SL2(ov) under the splitting by [g, s(g)]. Thus if qv is odd, there

exists a genuine character ϵv : ˜SL2(ov) → C× satisfying ϵv([g, s(g)]) = 1 for
all g ∈ SL2(Fv).

Theorem 1. Suppose that 2 splits completely in F/Q. Let β ∈ F×
+ , S3,

λ : K̃ → C× and w1, . . . , wn ∈ {1/2, 3/2} be as above. Then there exists
ϕ =

∏
v ϕv ∈ (ωψβ , S(A))λ such that Θϕ ̸= 0 if and only if there exists a

fractional ideal a of F such that (β, S3, a) ∈ G.

Put

H =

 ∏
v∈T3

pevv |
∑
v∈T3

ev ∈ 2Z

 .

Let Cl+ be the narrow ideal class group of F . Put Cl+2 = {c2 | c ∈ Cl+}.
We denote the image of the group H (resp. b ∈ Cl+) in Cl+/Cl+2 by H̄
(resp. [b]).

Theorem 2. Suppose that 2 splits completely in F/Q. Let w1, . . . , wn ∈
{1/2, 3/2} be as above.

(1) Suppose that |S2|+ |S∞| is even. Then there exists (β, S3, a) ∈ G if
and only if [d] ∈ H̄.

(2) Suppose that |S2|+ |S∞| is odd. Then there exists (β, S3, a) ∈ G if
and only if T3 ̸= ∅ and [dpv0 ] ∈ H̄. Here, v0 is any fixed element of
T3.

Now suppose that there exists (β, S3, a) ∈ G. Replacing β with βγ2 and
a with γa in (22), respectively, we may assume ordva = 0 for v ∈ S2 ∪ S3.
For v ∈ S2 ∪ S3, define fv : ov → C by

fv(x) =


1 if x ∈ 1 + 2pv

−1 if x ∈ −1 + 2pv

0 otherwise.

We set

f =
∏

v∈S2∪S3

fv ×
∏

v<∞,v /∈S2∪S3

cha−1
v ,

where av = aov. Put ϕ = f×
∏n
i=1 f∞,i, where f∞,i(x) = xwi−(1/2)e(iιi(β)x

2)
for x ∈ R and wi ∈ {1/2, 3/2}. By Theorem 1, there exists Θϕ ̸= 0 of weight
w = (w1, · · · , wn).
Theorem 3. Let ϕ and Θϕ be as above. We define a theta function θϕ :
hn → C by

θϕ(z) =
∑
ξ∈a−1

f(ιf (ξ))
∏

∞i∈S∞

ιi(ξ)

n∏
i=1

e(ziιi(βξ
2)).
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for z = (z1, · · · , zn) ∈ h. Then θϕ is a nonzero Hilbert modular form of
weight w for SL2(o) with respect to a multiplier system. Every theta function
of weight w for SL2(o) with a multiplier system can be obtained in this way.

In particular, when F = Q, we obtain η(z) and η3(z) as θϕ(z) up to
constant.

This paper is organized as follows. In section 2, we introduce Hilbert
modular forms with a multiplier system and automorphic forms on the adelic
metaplectic group. We describe also the modular imbedding (see [13]) and
the result of Feng (see [6]). In Section 3, we determine the number of the

genuine characters of the metaplectic group S̃L2(o), where o is the ring of
integers of a finite extension F of Qp. Moreover, we determine the dimension

of a space (ωψβ , S(F ))
λ for a genuine character λ of S̃L2(o) and the Weil

representation ωψβ of S̃L2(F ) on S(F ). In Section 4, we study the multiplier
systems of half-integral weight of a congruence subgroup of SL2(o), where o is
the ring of integers of a totally real number field F . In Section 5, we define

theta functions Θϕ of S̃L2(A) and prove our main theorems. Moreover,
we obtain theta functions θϕ(z) of hn and determine the number of the
equivalence classes of the set G. In Section 6, we give some examples in the
case F = Q or F is a real quadratic field.

Acknowledgment. The author thanks his supervisor Tamotsu Ikeda for
suggesting the problem and for his helpful advice, and thanks Masao Oi and
Shuji Horinaga for their sincere and useful comments.

2. The Hilbert modular forms with a multiplier system

2.1. Beginning of the study of Hilbert modular forms. Hilbert mod-
ular forms, which are also called Hilbert-Blumenthal modular forms, are an
extension of modular forms to the several valuables case. We introduce the
beginning of the study of Hilbert modular forms, referring to Mayer [23].
Hilbert wrote a manuscript from 1893-94 on the action of the modular group
of a totally real field K of degree n over Q on the product of n upper half
planes. Based on this, Blumenthal gave a detailed account of the function
theory involved but his construction of a fundamental domain had a flaw.
He obtained a fundamental domain with only one cusp as in the one valuable
case (see [2] and [3]). Maass corrected this and showed that the number of
cusps equals the class number of K (see [22] or [9]).

Blumenthal’s work consists of the following three parts. First he investi-
gates the fundamental domain of GL2(o)\hn for totally real number fields
K of degree n with ring o of integers, where h := {z ∈ C | Im(z) > 0} is
the upper half plane. Therefore he proves the discontinuous operation of
the group GL2(o) on hn and investigates the fixed points of the elements of
GL2(o) on hn and on its boundary. Then Blumenthal constructs a funda-
mental domain but it is based on a flaw; the existence of exactly one cusp
for GL2(o)\hn.
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The second part of Blumenthal’s work deals with Poincaré series. He
shows their convergence and the existence of n+1 algebraically independent
Poincaré series. He uses the result of the first part, but the proof can easily
be amended by treatment of all the finitely many cusps instead of the single
cusp ∞. Equivalently he shows the existence of n independent modular
functions which are quotients of the n+1 algebraically independent Hilbert
modular forms.

The third part proves the theorems of Weierstrass (see [3]), that

I) all rational functions of the fundamental domain can be algebraically
expressed by n independent functions,

II) they can be rational expressed by n+ 1 appropriate functions.

This result is independent of the mistake at the beginning.

2.2. Hilbert modular forms with multiplier systems. We define Hilbert
modular forms with multiplier systems. The contents of this subsection are
mainly taken from the book of Freitag [7] and Mayer [23]. To begin with,
given a subgroup Γ of SL2(R)n, we define its operation on hn and its cusps
and the notion of automorphic forms with respect to Γ.

Let h denote the upper half plane {z ∈ C | Im(z) > 0} and hn the
product of n upper half planes. Given a subgroup Γ of SL2(R)n, we define
its operation on hn by

SL2(R)n × hn → hn; (M, τ) 7→Mτ :=

(
a1τ1 + b1
c1τ1 + d1

, · · · , anτn + bn
cnτn + dn

)
,

where

M = (M1, · · · ,Mn) with Mj =

(
aj bj
cj dj

)
, τ = (τ1, · · · , τn).

This can be continuously extended to an operation on (h ∪ R ∪ {∞})n.
From now on let Γ be a discrete subgroup of SL2(R)n. We define τ+λ and

ϵτ + λ for λ = (λ1, · · · , λn), ϵ = (ϵ1, · · · , ϵn) ∈ Rn and τ = (τ1, · · · , τn) ∈ hn

by

τ + λ = (τ1 + λ1, · · · , τn + λn), ϵτ + λ = (ϵ1τ1 + λ1, · · · , ϵnτn + λn)

using the entrywise sum and the entrywise product. We define the group tΓ
of translations by

{λ ∈ Rn | there exists M ∈ Γ such that Mτ = τ + λ for all τ ∈ hn}

and the group ΛΓ of multipliers by the set of ϵ ∈ Rn+ such that there exist
M ∈ Γ and λ ∈ Rn satisfying

Mτ = ϵτ + λ for all τ ∈ hn,

where Rn+ is the set of ϵ ∈ Rn with each of its entries positive. If tΓ is
isomorphic to Zn and ϵ = (ϵ1, · · · , ϵn) is a multiplier, then ΛΓ is a discrete
subgroup of Rn+ and we have N(ϵ) :=

∏n
j=1 ϵj = 1 (see [7, Remark I.2.3]).
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We say that Γ has cusp infinity if tΓ is isomorphic to Zn and if ΛΓ is
isomorphic to Zn−1. In this case we will write Γ has cusp ∞. We say that
Γ has cusp κ for some κ ∈ (R ∪ {∞})n if there exists an M ∈ SL2(R) with

Mκ = (∞, · · · ,∞)

such that MΓM−1 has cusp infinity. Note that for every κ ∈ (R ∪ {∞})n,
there exists anM ∈ SL2(R)n withMκ = (∞, · · · ,∞) and that the definition
of cusp κ is independent of the choice of M .

We define (hn)∗ := hn ∪ (the cusps of Γ). Until the end of the subsection,
suppose that

• the quotient space (hn)∗/Γ is compact,
• each of the projections pj : Γ → SL2(R); (M1, · · · ,Mn) 7→ Mj is
injective.

Since (hn)∗/Γ is compact, there are only finitely many cusps. Let o be the
ring of integers of a totally real field K. Then the Hilbert modular group
SL2(o) satisfies the suppositions above, and hence we will restrict Γ to it
later.

Given a ∈ Rn and x ∈ Rn, we define the trace by

S(ax) = a1x1 + · · ·+ anxn.

A discrete subgroup T of Rn is said to be a lattice if there exists a basis
a1, · · · , an of Rn such that T = Za1 + · · ·+Zan. This holds if and only if T
is isomorphic to Zn. For a lattice T ⊂ Rn, we define the dual lattice T# by

T# = {a ∈ Rn | S(ax) ∈ Z for all x ∈ T}.

Lemma I.4.1 [7]. Let V ⊂ Rn>0 be an open and connected set. Define the
tube domain D := {τ ∈ hn | Im(τ) ∈ V } corresponding to V. Let f : D → C
be a holomorphic function on D satisfying for some lattice T ⊂ Rn

f(τ + a) = f(τ)

for all a ∈ T and all τ ∈ hn. Then f has an unique Fourier expansion

f(τ) =
∑
g∈T#

age
2πiS(gτ)

and the series converges absolutely and uniformly on compact subsets of D.

Given c = (c1, · · · , cn), d = (d1, · · · , dn) ∈ Rn, r = (r1, · · · , rn) ∈ Qn and
τ ∈ hn, we define the rth power of the norm of cτ + d by

N(cτ + d)r :=
n∏
j=1

(cjτj + dj)
rj

where the rjth power is defined using the main branch of the logarithm
C× → R+ i(−π, π].
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Given a holomorphic map f : hn → C, r ∈ Cn, a matrixM =

(
a b
c d

)
∈ Γ

and a map µ : Γ → C×, we define f |µrM : hn → C by

τ 7→ µ(M)−1N(cτ + d)−rf(Mr).

We will write |k for |1k, where 1 is the constant map Γ → {1}. Note that
N(cτ + d)−r = 1/(N(cτ + d)r) holds for every r ∈ Cn independent of the
chosen branch of the complex logarithm.

Definition 1. If f : hn → C is a function satisfying the requirements in the
lemma above and Γ has cusp infinity, then f is called regular at cusp ∞ if

ag ̸= 0 ⇒ gj ≥ 0 for all 1 ≤ j ≤ n.

We say that f vanishes at cusp ∞ if

ag ̸= 0 ⇒ gj > 0 for all 1 ≤ j ≤ n.

Let κ be a cusp of Γ andN ∈ SL2(R)n be a matrix withN−1κ = (∞, · · · ,∞).
If there exists r ∈ Qn and a map µ : Γ → C× such that f satisfies

f |µrM = f for all M ∈ Γ,

then we say that f is regular at cusp κ (resp. vanishes at cusp κ) if f |rN
has cusp ∞ with respect to the group N−1ΓN and is regular at ∞ (resp.
vanishes at ∞).

Definition 2. Let Γ be a discrete subgroup of SL2(R)n and µ : Γ → C×

be a map of finite order, which means the set {µk | k ∈ N} is finite. An
automorphic form of weight r = (r1, · · · , rn) ∈ Qn with respect to Γ with
multiplier system µ is a holomorphic function f : hn → C with the properties

(a) f |µrM = f for all M ∈ Γ,
(b) f is regular at the cusps.

If f vanishes at all cusps, we call f a cusp form. If f is an automorphic
form of weight r with multiplier system µ, we will sometimes write f |M for
f |µrM .

Freitag defined Hilbert modular forms as automorphic forms with respect
to groups commensurable to the Hilbert modular group SL2(o) ⊂ SL2(K),
where two groups G,G′ are said to be commensurable if G ∩ G′ has finite
index in each of the two groups(see [7]). The definition of an automorphic
form is based on the one in [7], but includes multiplier systems. Freitag
mentions the problem of formulating a general theory of multiplier systems.
This was done by Gundlach [12] in the case of subgroups of SL2(o) of finite
index.

Freitag showed the following facts in the case of the trivial multiplier
system. However, since any multiplier system is of finite order, these facts
also hold in our case (see [23]).

Proposition I.4.7 [7]. Each automorphic form f of weight 0 = (0, · · · , 0)
is constant.
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Remark I.4.8 [7]. If f is an automorphic form, but not a cusp form, of
weight r = (r1, · · · , rn), then we have r1 = · · · = rn.

Corollary of Proposition I.4.9 [7]. In the case n ≥ 2, the regularity
condition (b) in the definition of an automorphic form can be omitted.

Let K be a totally real number field of degree n := [K : Q] = dimQ(K).
Then there are exactly n different embeddings of K into R. We denote them
by K → R; a 7→ a(j) (1 ≤ j ≤ n) and a = a(1) holds for all a ∈ K. We
denote the ring of integers of K by o, which is the set

{x ∈ K | F (x) = 0 for some monic polynomial F ∈ Z[X]}.

We define the operation of SL2(K) on hn by(
a b
c d

)
τ =

(
a(1)τ1 + b(1)

c(1)τ1 + d(1)
, · · · , a

(n)τn + b(n)

c(n)τn + d(n)

)
.

It is the same as that on hn of the image of SL2(K) with respect to the map
SL2(K) → SL2(R)n;

(4) M =

(
a b
c d

)
7→ (M (1), · · · ,M (n)), M (j) =

(
a(j) b(j)

c(j) d(j)

)
.

We regard SL2(K) as a subgroup of SL2(R)n through (4). An element λ

of K is called totally positive if λ(j) > 0 holds for all 1 ≤ j ≤ n. We denote
the set of all totally positive elements of K by K×

+ .
For λ ∈ K, we define the norm and the trace by

N(λ) =

n∏
j=1

λ(j), S(λ) =

n∑
j=1

λ(j).

For c, d ∈ K and τ ∈ hn, we define the trace by S(cτ) =
∑n

j=1 c
(j)τj and

the norm by

(5) N(cτ + d) =
n∏
j=1

(c(j)τj + d(j)).

Moreover, for r = (r1, · · · , rn) ∈ Qn, put

N(cτ + d)r :=

n∏
j=1

(c(j)τj + d(j))rj ,

where zrj := erjIn z is defined using the main branch In:C× → R + i(−i, i]
of the complex logarithm. Note that for r = (k, · · · , k) ∈ Qn, we have
N(cτ + d)r = N(cτ + d)k.

For τ ∈ hn and λ ∈ K, put τ + λ := (τ1 + λ(1), · · · , τn + λ(n)) ∈ hn and

λτ := (λ(1)τ1, · · · , λ(n)τn) ∈ hn if λ ∈ K×
+ .
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Definition 3. Let µ : SL2(o) → C be a map of finite order. A Hilbert
modular form for K of weight r = (r1, · · · , rn) ∈ Qn with multiplier system
µ is a holomorphic function f : hn → C with the properties

(a) f |µrM = f for all M ∈ SL2(o),
(b) f is regular at the cusps of SL2(o).

If f vanishes at all cusps, we call f a cusp form. If f has homogeneous
weight r = (k, · · · , k) ∈ Qn, we will also say that f has weight k ∈ Q.

For a subgroup Γ ⊂ SL2(o) of finite index, we define a Hilbert modular
form for K with respect to Γ as in the SL2(o) case.

Since (hn)∗/SL2(o) is compact (see [7, Theorem I.3.6]), every Hilbert mod-
ular form is an automorphic form. If K ̸= Q, then condition (b) can be
omitted (see [7, Corollary of Proposition I.4.9]).

Definition 4. Let Γ be a subgroup of SL2(o) of finite index. A map
µ : Γ → C× is called a multiplier system if it is of finite order and there is
k ∈ Q such that for all τ ∈ hn and all M(1),M(2) ∈ Γ,

µ(M)N(cτ + d)k = µ(M(1))N(c(1)M(2)τ + d(1))
kµ(M(2))N(c(2)τ + d(2))

k,

where

M(j) =

(
a(j) b(j)
c(j) d(j)

)
(j = 1, 2), M :=M(1)M(2) =

(
a b
c d

)
.

If f is a nonzero Hilbert modular form of weight k ∈ Q with multiplier
system µ, then µ is a multiplier system in this definition. Gundlach showed
that the restriction on the order of a multiplier system can be omitted (see
[12]).

Lemma 1.2.11 [23]. If µ : Γ → C× is a multiplier system of integral
weight k, then µ is an abelian character. In other words, we have µ(MN) =
µ(M)µ(N) for all M,N ∈ Γ.

Proof. One calculates N(cτ+d) = N(c(1)M(2)τ+d(1))N(c(2)τ+d(2)), where
M(1),M(2) ∈ Γ is as in Definition 4. This proves the assertion. □

Suppose that n > 1. Put Γ = SL2(o) until the end of this subsection.
We introduce an important example of Hilbert modular forms with trivial
multiplier system. We denote the group of the elements of Γ fixing ∞ =
(i∞, · · · , i∞) by Γ∞. Given k ∈ N, we define a function EH2k : h

n → C called
Eisenstein series of weight 2k with respect to the cusp ∞ by

EH2k(τ) :=
∑

M∈Γ∞\Γ

N(cτ + d)−2k =
∑

M∈Γ∞\Γ

1|2kM
(
M =

(
a b
c d

))
.

Proposition I.5.8 [7]. The Eisenstein series EH2k converges absolutely for
k ≥ 1 and has the value 1 at the cusp ∞. It vanishes in all the other cusps.
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Proposition I.5.10 [7]. For every Hilbert modular form f of even weight
2k ≥ 2 with trivial multiplier system, there exists an unique element E in
the space spanned by all Eisenstein series of weight 2k, such that f − E is
a cusp form.

2.3. Modular imbeddings. Siegel modular forms can be restricted to
Hilbert modular forms by the modular imbedding of Hammond [13]. He
gave a necessary and sufficient condition that there exist modular imbed-
dings for a given totally real number field. Moreover, he determined the
number of equivalence classes of modular imbeddings. The contents of this
subsection are mainly taken from Hammond [7] and Mayer [23].

We denote the Siegel half space by Hn, which is the set

{Z ∈Mn(C) : symmetric | Im(Z) : positive definite}.
The symplectic group Spn(R) is defined by

Spn(R) =
{
M ∈M2n(R) | tMIM = I :=

(
−1n 0
0 1n

)}
,

where 1n is the n× n identity matrix and tM is the transpose of M . Note
that we have Sp1 = SL2.

The group Spn(R) operates on Hn in the following way. If τ ∈ Hn and

if M =

(
a b
c d

)
∈ Spn(R) for a, b, c, d ∈ Mn(R), then the image M · τ of τ

under M is given by M · τ = (aτ + b)(cτ + d)−1.
A subgroup Spn(Z) ⊂ Spn(R) is called the Siegel modular group of degree

n. A holomorphic function f in Hn is a Siegel modular form of weight w if
it satisfies

f(M · τ) = det(cτ + d)wf(τ)

for every M ∈ Spg(Z) and every τ ∈ hg. If g = 1, we also require that f(iy)
approaches a finite limit as y > 0 approaches infinity.

Let o be the ring of integers of a totally real number field K of degree
n. A subgroup Sp1(o) ⊂ Sp1(K) is called the Hilbert modular group of K.
Note that Sp1(K) is regarded as a subgroup of Sp1(R)n by the embedding
(4). A holomorphic function f in hn is a Hilbert modular form of weight w
for K if it satisfies

f(µ · τ) = N(γτ + δ)wf(τ)

for every µ ∈ Sp1(o) and every τ ∈ hn, where
(
γ δ

)
is the bottom row of

µ and N(·) is as in (5).
For z = (z1, · · · , zn) ∈ Cn, let z∗ be a diagonal matrix diag(z1, · · · , zn).

For m = (m1, · · · ,mn) ∈ Sp1(R)n with mi =

(
ai bi
ci di

)
, put

m∗ =

(
a∗ b∗

c∗ d∗

)
∈ Spn(R),

where a = (a1, · · · , an) ∈ Rn and similarly for b, c and d.
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Let ϕ0 : hn → Hn be the holomorphic imbedding defined by τ 7→ τ∗ and
Φ0 : Sp1(R)n → Spn(R) the monomorphism defined by m 7→ m∗. Then we
have ϕ0(m · τ) = Φ0(m) · ϕ0(τ).

A modular imbedding of K is a pair (ϕ,Φ) consisting of a holomorphic
injection ϕ : hn → Hn and a monomorphism Φ : Sp1(R)n → Spn(R) such
that

(1) There exists N ∈ Spn(R) such that ϕ(τ) = N · ϕ0(τ) for all τ ∈ hn

and Φ(m) = NΦ0(m)N−1 for all m ∈ Sp1(R)n,
(2) Φ(Sp1(o)) ⊂ Spn(Z),
(3) if f is a Siegel modular form of weight w, then the composition f ◦ϕ

is a Hilbert modular form of weight w for K.

Proposition 2.2 [13]. The restriction (3) of the definition above can be
replaced by

(3’) the matrix N =

(
a b
c d

)
from (1) holds c = 0n.

Let (ϕ1,Φ1) and (ϕ2,Φ2) be modular imbeddings. They are called equiv-
alent if there exists M ∈ Spn(Z) such that ϕ2 = Mϕ1 and that Φ2 =
MΦ1M

−1. Every modular imbedding is equivalent to a modular imbedding
(ϕ1,Φ1) in which ϕ1 is homogeneous linear. Here, ϕ1 is homogeneous linear

if there is N =

(
a 0
0 d

)
for a, d ∈ Mn(R) such that ϕ1 = Nϕ0. Then a ta

and d td = (a ta)−1 are positive definite symmetric integer matrices with
determinant 1.

Let (ϕ1,Φ1) be as above. Put ψ(z) = az∗a−1 for z ∈ Cnand u = a ta.
Then we have tψ(z) = u−1ψ(z)u for all z ∈ Cn and ψ is a normal repre-
sentation of K in the sense that elements of o are represented by integer
matrices.

Proposition 2.6 [13]. There is one-to-one correspondence between homo-
geneous linear modular imbeddings (ϕ,Φ) for K and pairs (ψ, u) consisting
of a non-degenerate normal representation ψ of K by rational matrices of
degree n and an symmetric positive definite matrix u ∈ Mn(Z) with deter-
minant 1 such that tψ(ρ) = u−1ψ(ρ)u for all ρ ∈ K.

We note that (ψ1, u1) and (ψ2, u2) correspond to equivalent homogeneous
linear modular imbeddings if and only if there is an unimodular matrix
v ∈Mn(Z) such that ψ2 = vψ1v

−1 and that u2 = vu1
tv.

Theorem 2.8 (Igusa) [13]. A totally real number field K admits modular
imbeddings if and only if the narrow ideal class of the different is a square
in the narrow ideal class group of K.

Let A be a fractional ideal of K. We note that if A2 is narrowly equivalent
to a given ideal B, then the same thing is true for any ideal in the usual
ideal class of A. Let π(K) denote the number of usual ideal classes whose
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squares are narrowly equivalent to the narrow ideal class of o′, where o′ is
the complementary ideal to o.

Theorem 2.9 (Igusa) [13]. The number of equivalence classes of modular
imbeddings for a totally real number field K is the product π(K) with the
index of the subgroup of square of units in the group of totally positive units.

For a moment, we consider the real quadratic case. Let K be the real
quadratic field of discriminantD. A homogeneous linear modular imbedding
(ϕ,Φ) for K is said to be orthogonal if ϕ(1) = 1n. In the quadratic case,
every modular imbedding for K is equivalent to an orthogonal modular
imbedding (see [13, Theorem 3.3]).

Theorem 3.4 [13]. The orthogonal modular imbeddings for K correspond
in an one-to-one manner to ordered pairs (u, v) ∈ Z2 such that D = u2 + v2

and that v is even.

Theorem 3.6 [13]. Let t be the number of primes which devide D. Modular
imbeddings exist for K if and only if D is divisible by no prime of the form
4m+3. In this case the number of equivalence classes of modular imbeddings
for K is 2t−1.

Müller [24] gives an explicit formulation of the modular imbedding for

real quadratic fields. Let K = Q(
√
D) where D = u2 + v2, u, v ∈ Z and v

even and ω = (u+
√
D)/2. Then a modular imbedding is given by the pair

(ψ,Ψ) defined by

ψ(ζ) =

 S( ω√
D
ζ) S( v

2
√
D
ζ)

S( v
2
√
D
ζ) S(

(
ω√
D

)
ζ)

 , Ψ

((
a b
c d

))
=

(
ψ(a) ψ(b)
ψ(c) ψ(d)

)
,

where α is a conjugate of α and S(αζ) = αζ1 + αζ2 for α ∈ o and ζ ∈ h2.
Givenm′ = (m′

1,m
′
2) and m

′′ = (m′′
1,m

′′
2) in {0, 1}2 with m′

1m
′′
1+m

′
2m

′′
2 ∈

2Z, write m = (m1,m2) and define a function θm by

θm(τ) =
∑
g∈Z2

exp

(
πi

(
t(g +

m′

2
)τ(g +

m′

2
) + tgm′′ + tm′m′′/2

))
,

where tg is the transpose of g and τ ∈ H2. Additionally we put Θm = θm◦ψ.
In case K = Q(

√
17), Hermann [14] constructed a Hilbert modular form

of half integral weight from theta products:

Theorem 3 [14]. In case K = Q(
√
17), there exists a Hilbert modular

form we denote by η2 of weight 3/2 with multiplier system µ17 such that

µ17(J) = −i, µ17(T ) = i and µ17(Tw) = e5πi/4 (see [14] for the definition of
J , T , Tw):

η2 := Θ1100Θ0011Θ0000 +Θ1100Θ0010Θ0001 +Θ1001Θ0110Θ0000

−Θ1001Θ0100Θ0010 +Θ1000Θ0100Θ0011 −Θ1000Θ0110Θ0001.
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2.4. The order of multiplier systems. In 1985, Gundlach studied mul-
tiplier systems for Hilbert and Siegel modular groups in [11]. We introduce
the Hilbert modular case.

Let K be a totally real number field of degree n and o the ring of integers
of K. For v ∈ K, we denote by (v) the ideal generated by v. We write
h = h1 for the upper half plane and h−1 the lower half plane in C. Put

E =

(
1 0
0 1

)
∈ M2(K). The Hilbert modular group for K is the group

Γ = ΓK := SL2(o) ⊂ SL2(K).

There exist n different bijections of K onto the conjugates K(1), · · · ,K(n)

⊂ R. We assign to each K(j) a complex variable τ (j), the jth conjugate
of τ . The canonical isomorphisms of K(τ) onto K(j)(τ (j)) with τ 7→ τ (j)

for j = 1, · · · , n map a rational function R(τ) ∈ K(τ) onto its conjugates

R(j)(τ (j)). For R(τ) ∈ K(τ), trace and norm are defined by

TrR(τ) =
∑

j = 1nR(j)(τ (j)), N(R(τ)) =

n∏
j=1

R(j)(τ (j)).

For L

(
a b
c d

)
∈ SL2(K), we assign a transformation

τ 7→ L(τ) = (aτ + b)(cτ + d)−1 = (L(1)(τ (1)), · · · , L(n)(τ (n))),

where L(j)(τ (j)) = (a(j)τ (j) + b(j))(c(j)τ (j) + d(j))−1 for all j. A subgroup
Λ ⊂ SL2(K) is commensurable with Γ if Γ ∩ Λ has finite index in Γ and
in Λ. Put e = (e1, · · · , en) for ej ∈ {±1}. By the transformation above, a
commensurable subgroup Λ with Γ acts on a product he = he1 × · · · × hen
of half planes hej .

We consider only the he = hn case. An automorphic factor (AF) of λ on
hn is a mapping J : λ× hn → C such that

(1) for fixed L ∈ Λ, J(L, τ) is holomorphic without zeros on hn.
(2) J(LM, τ) = J(L,M(τ))J(M, τ) for L,M ∈ Λ, τ ∈ hn.
(3) J(−L, τ) = J(L, τ) for L,−L ∈ Λ, τ ∈ hn.

Moreover, an AF is called a classical automorphic factor (CAF) if

J(L, τ) = v(L)N(cτ + d)r for L =

(
a b
c d

)
∈ Λ, τ ∈ hn,

with r ∈ C, the weight of J , and v(L) ∈ C depending on the choice of the

branch of log(c(j)τ (j) + d(j)) on h. In this case, v is called the associated
multiplier system.

A suitable choice of the branch of the logarithm above on h is

log(αz + β) = log |αz + β|+ i argf (αz + β) for α, β ∈ R, αz + β ̸= 0

with

−π < arg1(αz + β) ≤ π for z ∈ h.
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For r ∈ C, τ ∈ hn and L =

(
a b
c d

)
∈ SL2(K), put

µr(L, τ) = N(cτ + d)r = exp(r · Tr log(cτ + d)).

For L1, L2 ∈ SL2(K), put

σ(r)e (L1, L2) =
µr(L1, L2(τ))µr(L2, τ)

µr(L1L2, τ)
.

This depends on L1, L2, r, e, but not on τ . It is known that if r ∈ Z,
σ
(r)
e (L1, L2) = 1.
A multiplier system (MS) of weight r for Λ on hn is defined as a map

v : Λ → C× such that

(4) v(L1L2) = σ
(r)
e (L1, L2)v(L1)v(L2) for L1, L2 ∈ Λ,

(5) v(−E) = exp(−πirn) if −E ∈ Λ.

Then

J(L, τ) = v(L)N(cτ + d)r for L ∈ Λ, τ ∈ hn

is a CAF of weight r for Λ on hn if and only if v : Λ → C× is a MS of weight
r for Λ on hn.

Suppose that K is of degree n > 1 until the end of this subsection.

Theorem 3.1 [11]. For a subgroup Λ of SL2(K), commensurable with
Hilbert modular group Γ = SL2(o), acting on hn, there exists a (minimal)
number g(Λ, e) ∈ N with the following property.

• If J is a CAF of weight r for Λ on hn then

r ∈ Q, g(Λ, e)r ∈ Z

• If Λ0 is a subgroup of finite index in Λ and J0 a CAF of weight r0
for Λ0 on hn then g(Λ, e)[Λ : Λ0]r0 ∈ Z.

Theorem 3.2 [11]. Under the conditions of Theorem 3.1, the MS v, associ-
ated with a CAF of Λ, satisfies |v(L)| = 1 for all L ∈ Λ with roots of unity
as values.

In particular, Gundlach studied the weight of a MS for Γ = SL2(o).

Theorem 3.3 [11]. Let v be a MS of weight r for the Hilbert modular group
Γ on hn.

• If 2 | n, then 2rn ∈ Z.
• If 2 ∤ n, then the denominator of nr has only prime factors q with
(q − 1) | (n− 1). For such a prime q, l(q) ∈ Z is defined by n− 1 =

(q − 1)ql(q)mq with q ∤ mq. We have

2nr
∏

q:prime,(q−1)|(n−1)

ql(q)+1 ∈ Z.

The theorem above can be improved in the quadratic case.



ON MULTIPLIER SYSTEMS AND THETA FUNCTIONS 17

Theorem 4.1 [11]. Let v be a MS of weight r for the Hilbert modular group
Γ of a real quadratic field K on h2. For special values of the discriminant
dK of K, we have

(a) If dK ≡ 0, 5 mod 8, then r ∈ Z.
(b) If dK ≡ 4 mod 8, then 2r ∈ Z.
In the real quadratic case, we give the Hilbert modular forms of half-

integral weight with dK ≡ 1 mod 8 later.

2.5. Metaplectic groups. Let F be a totally imaginary number field over
Q containing the nth roots of unity for a fixed n ≥ 2. Let p a place of F and
Fp the completion of F at p. Kubota [20] constructed metaplectic groups of
GL2(Fp) and GL2(A) explicitly using Kubota 2-cocycle, where A is the ring
of adele of F . Note that if n = 2, Weil [35] discovered such groups for the
first time.

We suppose that n = 2. Kubota mainly considered GL2 case for a totally
imaginary number field, but we consider SL2 case for a totally real number
field. This difference makes only a little change for infinite places.

Let F be a totally real number field, p a place of F and Fp the completion
of F at p. The following theorem assures the existence of a covering over
the local group Gp = GL2(Fp).

Theorem 1 [20]. Put Gp = GL2(Fp). For σ =

(
a b
c d

)
∈ SL2(Fp), define

x(σ) by

x(σ) =

{
c c ̸= 0

d c = 0

and put

(6) a(σ, τ) = (x(σ), x(τ))(−x(σ)−1x(τ), x(στ)) for σ, τ ∈ SL2(Fp),

where (·, ·) is the quadratic Hilbert symbol of Fp. Furthermore, for σ ∈ Gp,

define p(σ) ∈ SL2(Fp) by σ =

(
1

detσ

)
p(σ) and σy by the matrix

(
1

y

)−1

σ

(
1

y

)
for y ∈ Fp, y ̸= 0.

Put

v

(
y,

(
a b
c d

))
=

{
1 c ̸= 0

(y, d) c = 0.

Then

(7) a(σ, τ) := a(p(σ)det τ , p(τ))v(det τ, p(σ)), σ, τ ∈ Gp

is a factor set which determines a topological covering group G̃p of Gp such

that G̃p is central as a group extension.
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It is clear that a(σ, τ) in (7) is equal to one in (6) for σ, τ ∈ SL2(Fp).

It was proved in [19] that (6) determines a topological covering ˜SL2(Fp) of
SL2(Fp) which is central as a group extension. For the proof in GL2 case,
see [20].

Let N be a positive integer divisible by 4, op the ring of integer of Fp for
finite p and A the ring of adele of F . For finite p, let GL2(op)N be the group
of all σ ∈ Gp with σ ≡ 12 (mod N), where 12 is the identity matrix. It
is a congruence subgroup of GL2(op). Put Kp = GL2(op)N for finite p and
Kp = SO(2) for infinite p. The adele group of GF = GL2(F ) with usual
topology will be denoted by GA.

The next theorem [20] explains the behavior of the factor set a(σ, τ) on the
compact subgroupKp of Gp. Moreover, the theorem is useful in constructing
a global covering of the adele group GA.

Theorem 2 [20]. Let p be a finite prime of F , and let N be a natural
number divisible by 4. Then the factor set a(σ, τ) in (7) splits on the compact
subgroup Kp of Gp. More precisely, we have

a(σ, τ) = s(σ)s(τ)s(στ)−1 for σ, τ ∈ Kp,

with

s(σ) =

{
(c, d detσ−1)−1 if cd ̸= 0 and if ord c is odd,

1 otherwise,

for σ =

(
a b
c d

)
∈ Kp.

Since σ, τ ∈ Kp, the above definition of s(σ) is equivalent to

s(σ) =

{
(c, d detσ−1)−1 if c ̸= 0 and if c is not a unit,

1 otherwise.

Since we suppose that n = 2, we have s(σ) = s(σ)−1 for all σ ∈ Kp.
Note that this was proved under the assumption that σ, τ ∈ GL2(op) and

that p does not divide N . However, the number s(σ) in the theorem is well-
defined even if σ is an arbitrary element of Gp, or if p | N . So, we define a
new factor set b(σ, τ) of Gp by

b(σ, τ) := a(σ, τ)s(σ)−1s(τ)−1s(στ) for σ, τ ∈ Gp,

for an arbitrary finite p. The assertion of Theorem 2 [20] is nothing but
b(σ, τ) = 1 for all σ, τ ∈ Kp, when p does not divide N .

Let now g, g′ be two adeles in GA; then b(gp, g
′
p), a(gp, g

′
p) and s(gp) are

all well-defined. These will be denoted by bp(g, g
′), ap(g, g

′) and sp(g), re-
spectively. Since bp(g, g

′) = 1 for almost all p, we can define a factor set bA
of GA by

bA(g, g
′) =

∏
p:finite

bp(g, g
′), (g, g′ ∈ GA),
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the product being extended over all places of F . The factor set bA determines
a central group extension G̃A of GA. Namely, G̃A is realized as the set of all
pairs (g, ζ), (g ∈ GA, ζ

2 = 1), with the group operation defined by

(g, ζ)(g′, ζ ′) = (gg′, bA(g, g
′)ζζ ′)

between two such pairs. We denote the element (1, ζ) ∈ G̃A by ζ̇. The group

Z of all ζ̇ is contained in the center of G̃A, and ζ̇ 7→ ζ gives an isomorphism
between Z and {±1} ⊂ F .

Let N be a natural number divisible by 4, and let K be a compact sub-
group of GA defined by

K =
∏
p

Kp.

For any a ∈ GA, its p-component ap = prpa belongs to Kp for almost all p.

Then it follows from Theorem 2 [20] that K ∋ k 7→ (k, 1) ∈ G̃A is a group-
theoretical isomorphism. Whenever no confusion is possible, we identify the
image of the above mapping with K, and denote (k, 1) simply by k.

Through this identification K ⊂ G̃A is given a structure of a compact
topological group, and the topology coincides on K ⊂ G̃p with the previous

covering topology of G̃p because s(σ) in Theorem 2 [20] vanishes on a suitable
neighborhood in Gp of 1.

For a ∈ GA, the product of all prpa for finite p will be denoted by pr0a
and called the finite component of a. The infinite component pr∞a of a is
the product of all prpa for infinite p. We put G0 = pr0GA, G∞ = pr∞GA,
and more generally we write X0 = pr0X and X∞ = pr∞X for any subset X
of GA.

Kubota constructed a global covering group G̃A of GA which coincides
locally with the covering stated in Theorem 1 [20] (see [20] for more detail).
Note that the subsets of the group K will also be identified with corre-
sponding subsets of G̃A. Then G̃A → GA = G̃A/Z is an 2-fold covering map

because of K ∩ Z = 1. Since Z can be regarded as a subgroup of G̃p for

every p, G̃A is a semi-direct product of G̃p. The covering G̃A → GA is not
trivial, because it is not locally trivial at finite places (see [19]).

The group of principal adeles in GA will be identified with GF and it is a
discrete subgroup of GA. Let a ∈ GF be a principal adele. Then sp(α) = 1
for almost all p. Therefore

sA(α) =
∏
p

sp(α)

is well-defined. Moreover, ap(α, β) = 1 (α, β ∈ GF ) for almost all p and
from the product formula of the norm residue symbol follows∏

p

ap(α, β) = 1.
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This implies bA(α, β) = sA(α)
−1sA(β)

−1sA(αβ). So, if we put α̂ = (α, sA(α))
for α ∈ GF , then

α̂β̂ = (αβ, bA(α, β)sA(α)sA(β)) = (αβ, sA(αβ)) = α̂β

for α, β ∈ GF . Thus, α 7→ α̂ gives an isomorphism of GF onto the group
ĜF ⊂ G̃A of all α̂; ĜF is a discrete subgroup of G̃A.

In the rest of this subsection, we always assume N > 0 is divisible by
4. Let o be the ring of integers of F and GL2(o)N be the group of all
σ ∈ GL2(F ) with σ ≡ 12 (mod N), where 12 is the identity matrix.

Proposition 1 [20]. For an element σ =

(
a b
c d

)
of Γ = GL2(o)N =

GF ∩K0G∞, put

χ(σ) =

{( c
d

)
if c ̸= 0,

1 if c = 0,

where ( cd) is the quadratic residue symbol in F . Then we have sA(σ) = χ(σ).

Proposition 2 [20]. Let χ be as above. Then we have χ(στ) = χ(σ)χ(τ)
for all σ, τ ∈ Γ. In other words, χ is a character of Γ.

2.6. Automorphic forms on the adelic metaplectic group. In this
subsection, we recall the theory of Hilbert modular forms of half-integral
weight and the theory of automorphic forms on the metaplectic groups.
The contents of this subsection are mainly taken from Hiraga and Ikeda
[15]. For more detail, for example, see [33].

Let F be a totally real number field and ψ1 be the nontrivial additive
character of A/F such that the infinity component of ψ1 is given by x 7→
e(x) = e2πix for every real place. Let S be a set of bad places of F , which
contains all places above 2 and ∞. We also assume that S contains all
non-Archimedean places v such that cψv = 0. Set

SL2(A)S =
∏
v/∈S

SL2(Fv)
∏
v∈S

SL2(ov).

The double covering of SL2(A)S defined by the 2-cocycle
∏
v∈S cv(g1,v; g2,v)

is denoted by S̃L2(A)S , where cv is the Kubota 2-cocycle for SL2(Fv). For
S ⊂ S0, we can define an embedding

ιS0
S : S̃L2(A)S → S̃L2(A)S0

by

[(gv), ζ] →
[
(gv),

∏
v∈S0\S

sv(gv)

]
.

Here, sv : SL2(ov) → ˜SL2(ov) : gv 7→ [gv, sv(gv)] is the unique splitting of the

covering ˜SL2(ov) → SL2(ov) for v /∈ S. The adelic metaplectic group S̃L2(A)
is the direct limit proj lim S̃L2(A)S . Then S̃L2(A) is a double covering of
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SL2(A) and there exists a canonical embedding ˜SL2(Fv) → S̃L2(A) for each
place v of F . It is well known that SL2(F ) can be canonically embedded into

S̃L2(A). In fact, for each γ ∈ SL2(F ), the embedding is given by γ 7→ [γ, 1]
for sufficiently large S.

Let
∏′
v

˜SL2(Fv) be the restricted direct product with respect to sv(SL2(ov)).

Then there is a canonical surjection
∏′
v

˜SL2(Fv) → S̃L2(A). The image of

(gv)v ∈
∏′
v

˜SL2(Fv) is also denoted by (gv)v. Note that this expression is

not unique for an element of S̃L2(A). If x = (xv)v ∈ A is an adele, we define

u#(x) and u$(x) by u#(x) = (u#(xv))v and u
$(x) = (u$(xv))v, respectively.

Here, if we write [γ] for [γ, 1] ∈ ˜SL2(Fv),

u#(y) =

[(
1 y
0 1

)]
, u$(y) =

[(
1 0
y 1

)]
(y ∈ Fv).

Similarly, if a = (av)v ∈ A× is an idele, then we put m(a) = (m(av))v, where

m(y) =

[(
y 0
0 y−1

)]
(y ∈ F×

v ).

Recall that a function f on S̃L2(A) is a genuine function if f(g[12, ζ]) =

ζf(g) for all g ∈ S̃L2(A) and ζ ∈ {±1}. Suppose that a family of genuine
functions fv is given for each place v of F . We assume that there exists a set
of bad primes S0 such that fv(gv) = 1 for gv ∈ sv(SL2(ov)), v /∈ S0. Then
one can define a genuine function

∏
v fv by(∏

v

fv

)
((gv)v) =

∏
v

fv(gv).

Let SL2(Af ) be the finite part of SL2(A) and Γ′
f a compact open subgroup of

SL2(Af ). The inverse image of Γ′
f in S̃L2(A) is denoted by Γ̃′

f . A character

ϵ′ : Γ̃′
f → C× is called a genuine character if ϵ′([12,−1]) = −1.

Let {∞1, · · · ,∞n} be the set of infinite places of F . The embedding F →
R corresponding to ∞i is denoted by ιi. Put Γ

′ = SL2(F )∩ (Γ′
f ×SL2(R)n).

As usual, we embed SL2(F ) into SL2(R)n by γ 7→ (ι1(γ), · · · , ιn(γ)). Sup-
pose that κ = (κ1, · · · , κn) ∈ Zn with κ1, · · · , κn ≥ 0. We define a factor of

automorphy J ϵ
′,κ+(1/2)(γ, z) for γ ∈ Γ′ and z = (z1, · · · , zn) ∈ hn by

J ϵ
′,κ+(1/2)(γ, z) =

∏
v<∞

ϵ′v([γ, 1])

n∏
i=1

j̃([ιi(γ), 1], zi)
2κi+1.

Let Mκ+(1/2)(Γ
′, ϵ′) (respectively Sκ+(1/2)(Γ

′, ϵ′)) be the space of Hilbert
modular forms (respectively Hilbert cusp forms) on hn with respect to the

automorphy factor J ϵ
′,κ+(1/2)(γ, z).

Thus each element h(z) ∈Mκ+(1/2)(Γ
′, ϵ′) satisfies

h(γ(z)) = J ϵ
′,κ+(1/2)(γ, z)h(z)
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for all γ ∈ Γ′ and z ∈ hn.
The element h(z) ∈Mκ+(1/2)(Γ

′, ϵ′) can be considered as an automorphic

form on SL2(F )\S̃L2(A) as follows. For each g ∈ S̃L2(A), there exist γ ∈
SL2(F ), g̃∞ ∈ S̃L2(R)

n
and g̃f ∈ Γ̃′

f such that g = γg̃∞g̃f by the strong
approximation theorem for SL2(A). Then we set

ϕh(g) = h(g̃∞(i)ϵ′(g̃f )
−1

n∏
i=1

(j̃(g̃∞i , i)
2κi+1)−1.

Here, i = (
√
−1, · · · ,

√
−1) ∈ hn. Then ϕh can be considered as a genuine

automorphic form on SL2(F )\S̃L2(A). We set

Aκ+(1/2)(SL2(F )\S̃L2(A); Γ̃′
f , ϵ

′) = {ϕh | h(z) ∈Mκ+(1/2)(Γ
′, ϵ′)},

Acusp
κ+(1/2)(SL2(F )\S̃L2(A); Γ̃′

f , ϵ
′) = {ϕh | h(z) ∈ Sκ+(1/2)(Γ

′, ϵ′)}.

For each ϕh ∈ Aκ+(1/2)(SL2(F )\S̃L2(A); Γ̃′
f , ϵ

′), h ∈Mκ+(1/2)(Γ) is recov-
ered as follows. For z = (z1, · · · , zn) ∈ hn, there exists g∞ = (g∞1 · · · , g∞n) ∈
˜SL2(R)n such that z = g∞(i). Then we have

h(z) = ϕh(g∞)

n∏
ı=1

j̃(g∞i), i)
2κ+1.

We set

Aκ+(1/2)(SL2(F )\S̃L2(A)) = ∪(Γ̃′
f ,ϵ′)

Aκ+(1/2)(SL2(F )\S̃L2(A); Γ̃′
f , ϵ

′),

Acusp
κ+(1/2)(SL2(F )\S̃L2(A)) = ∪(Γ̃′

f ,ϵ′)
Acusp
κ+(1/2)(SL2(F )\S̃L2(A); Γ̃′

f , ϵ
′),

where (Γ̃′
f , ϵ

′) extends over all pairs compact open subgroups Γ̃′
f ⊂ SL2(Af )

and genuine characters ϵ′ : Γ̃′
f → C×.

Then by right translation ρ ˜SL2(Af ) acts on Aκ+(1/2)(SL2(F )\S̃L2(A))
andAcusp

κ+(1/2)(SL2(F )\S̃L2(A)). The action of ˜SL2(Af ) on ∪(Γ′,ϵ′)Mκ+(1/2)(Γ
′, ϵ′)

is also denoted by ρ. Note that the right translation ρ induces the left action

of the Hecke algebra H̃ ˜SL2(Af ) on Aκ+(1/2)(SL2(F )\S̃L2(A)) by

ρ(ϕ̃)φ(g) =

∫
˜SL2(Af )/{±1}

ϕ̃(g1)φ(gg1)dg1 (ϕ̃ ∈ H̃( ˜SL2(Af ))).

Assume that

h(z) =
∑
ξ∈F

c(ξ)e(ξz) ∈Mκ+(1/2)(Γ
′, ϵ′).

Then one can easily show that

ρ(u#(x))h(z) =
∑
ξ∈F

ψ1,v(ξx)c(ξ)e(ξz) (x ∈ Fv)
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if v is a non-Archimedean place of F . Similarly, suppose that a ∈ F× is a
totally positive element. Denote by af the finite part of the principal idele
a ∈ F×. Then we have

ρ(m(af ))h(z) = a−κ−(1/2)h(a−2z),

where a−κ−(1/2) =
∏n
i=1 ιi(a)

−κi−(1/2).

For irreducible cuspidal automorphic representation ρ of S̃L2(A), we de-
note by ρ[κ+(1/2)] the space of vectors of ρ which has weight κi+(1/2) at
the real place ∞i. Then we have

Acusp
κ+(1/2)(SL2(F )\S̃L2(A)) = ⊕ρ ρ[κ+ (1/2)].

Here, ρ extends over all irreducible cuspidal representations such that its∞i-
component is a lowest weight representation with lowest weight κi + (1/2).

For each pair of fractional ideals a and b such that ab ⊂ oF , we define a
congruence subgroup Γ[a, b] ⊂ SL2(F ) by

Γ[a, b] =

{(
a b
c d

)
∈ SL2(F )

∣∣∣∣ a, d ∈ oF , b ∈ a, c ∈ b

}
.

Similarly, if v is a non-Archimedean place, we define a compact open sub-
group Γv[av, bv] ⊂ SL2(Fv) by

Γv[av, bv] =

{(
a b
c d

)
∈ SL2(Fv)

∣∣∣∣ a, d ∈ ov, b ∈ av, c ∈ bv

}
.

Put Γ = Γ[d−1
F , 4dF ] and Γv = Γv[d

−1
v , 4dv], where dF is the different of F/Q.

Suppose that κ = (κ1, · · · , κn) ∈ Zn, κ1, · · · , κn ≥ 0. Let η ∈ o× be a
unit such that NF/Q(η) =

∏n
i=1(−1)κi . We fix such a unit η once and for

all. Put ψ(x) = ψ1(ηx). In this setting, we have cψv = dv = dov for every
non-Archimedean place v. There exists a genuine character ϵv : Γv → C×

such that ωψv(gv)ϕ0,v = ϵv(g
−1
v )ϕ0,v for each non-Archimedean place v by

the following lemma [15].

Lemma 1.1 [15]. Suppose that F is non-Archimedean. Let o be the ring of
integers of F , ψ a nontrivial additive character of F and cψ the order of ψ.
Put c = cψ = pcψ and Γ = Γ[c−1, 4c]. Let ϕ0 ∈ S(F ) be the characteristic

function of o. There exists a genuine character ϵ : Γ̃ → C× such that

ωψ(g)ϕ0 = ϵ−1(g)ϕ0 for all g ∈ Γ̃.

Proof. One shall show that

ωψ(u
#(b)m(a))ϕ0 =

αψ(1)

αψ(a)
ϕ0 (a ∈ o×, b ∈ c−1),

ωψ(u
$(c))ϕ0 = ϕ0 (c ∈ 4c).
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Here, αψ(·) is the Weil constant. The first equation is easy. The second
equation follows from the fact that

ωψ

([(
0 −1
1 0

)])
ϕ0(t) = αψ(1)|2|1/2ϕ0(2t)

is invariant under {u$(c) | c ∈ 4c}. Note that ϕ0(2t) is the characteristic

function of 2−1o. Since Γ̃ is generated by these elements (modulo the center),
the lemma follows. □

Here, ϕ0,v ∈ S(Fv) is the characteristic function of ov. We define a factor

of automorphy jκ+(1/2),η(γ, z) for γ ∈ Γ and z = (z1, · · · , zn) ∈ hn by

jκ+(1/2),η(γ, z) =
∏
v<∞

ϵv([γ, 1])

n∏
i=1

j̃([ιi(γ), 1], zi)
2κi+1.

We simply write jκ+(1/2)(γ, z) for jκ+(1/2),η(γ, z) when there is no fear of
confusion.

Let Γ, κ and η be as above. We denote byMκ+(1/2)(Γ) the space of Hilbert

modular forms for Γ with respect to the factor of automorphy jκ+(1/2)(γ, z).
We also denote by Sκ+(1/2)(Γ) the subspace of Mκ+(1/2)(Γ) which consists
of all cusp forms.

Note that when κ1 = · · · = κn = 0 and η = 1, the automorphy factor
j1/2(γ, z) satisfies the formula

(8) θ0(γ(z)) = j1/2(γ, z)θ0(z),

where θ0(z) is the basic theta function given by

θ0(z) =
∑
ξ∈oF

e(ξ2z).

When F = Q, the definition of jκ+(1/2)(γ, z) agrees with classical definition.
For a proof of the formula (8), one can consult Shimura [32], although the
normalization of theta function in [15] is different from that given in [32].
In particular, θ0(z) is θ(2z, 0, l0) in Shimura’s notation.

2.7. An analog of the Dedekind eta function in Hilbert modular
case. In 1983, Feng constructed an analog of the Dedekind eta function
η(z) in the Hilbert modular case. She constructed Hilbert modular forms
of weight 1/2 with respect to the full Hilbert modular group SL2(o), where
o is the ring of integers of a totally real number field. The contents of this
subsection are mainly taken from Feng [6] and Shimura [31].

Put e(z) = e2πiz for z ∈ C. Let h be the complex upper half plane. The
Dedekind eta function η(z) defined by

η(z) = e(1/24)

∞∏
n=1

(1− e(nz)) (z ∈ h)
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is a modular form of weight 1/2. This is a theta function;

η(z) =

∞∑
m=1

χ(m)e(m2z/24),

where χ(m) =
(
3
m

)
is the Dirichlet character modulo 12.

Let F be a totally real number field of degree n and o the ring of integers
of F . Assume that n > 1. There is an embedding a 7→ (a(1), · · · , a(n)) from
F into Rn, where a 7→ a(k) ∈ R for k = 1, 2, · · · , n are all the isomorphisms
of F into R. It induces the embedding α 7→ (α(1), · · · , α(n)) from SL2(o)

into SL2(R)n, where α 7→ α(k) for 1 ≤ k ≤ n are the entrywise embeddings
from SL2(o) into SL2(R). An element a of F is said to be totally positive if

a(k) > 0 for all k. In this case, we write a≫ 0.
The group SL2(o) acts on hn by the rule

α(z1, · · · , zn) = (α(1)(z1), · · · , α(n)(zn)),

where

α(k)(zk) =
a(k)zk + b(k)

c(k)zk + d(k)
for α =

(
a b
c d

)
∈ SL2(o), (z1, · · · , zn) ∈ hn.

By the embedding above, we may consider every a ∈ F as an element
of Rn. For z = (z1, · · · , zn) ∈ Cn, set eF (az) = e(a(1)z1 + · · · + a(n)zn). If
z ∈ hn, put

θ(z) =
∑
u∈o

eF (u
2z/2)

and

(cz+ d)1/2 =

n∏
k=1

(c(k)zk + d(k))1/2 for

(
a b
c d

)
∈ SL2(o).

From the result of Shimura [31], we know that

θ(γz) = j(γ, z)θ(z) for every γ =

(
a b
c d

)
∈ Γ0, z ∈ hn,

where

Γ0 =

{(
a b
c d

)
∈ SL2(o) | b ∈ 2d−1, c ∈ 2d

}
and j(γ, z) = ϵ(γ)(cz+ d)1/2 with a root of unity ϵ(γ).

Let 12 be the identity matrix of SL2(o). For an integral ideal a of F , put

Γa = {γ ∈ SL2(o) | γ ≡ 12 mod a} .
Let c be an integral ideal of F , d the different of F/Q and ω a primitive
ideal character of F with conductor cP , where P is the product of some
archimedean primes of F . Suppose that for b ∈ o,

ω(bo) = sgn(b)r :=
n∏
k=1

sgn(b(k))rk if b ≡ 1 mod c,
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where r = (r1, · · · , rn) ∈ {0, 1}n. For b ∈ F×, set

ω0(b) =

{
ω(bo)sgn(b)r if (b, c) = 1

0 otherwise.

This is a primitive character of o/c. Put |r| = r1 + · · ·+ rn.
We give a precise definition of a Hilbert modular form. Let Γ be a con-

gruence subgroup of Γ0. A holomorphic function g on hn is said to be a
Hilbert modular form of weight 1/2 with respect to Γ if we have

g(γ, z) = j(γ, z)g(z) for every γ ∈ Γ.

We prepare the following lemmas to introduce Theorem 1 [6] and its proof.

Lemma 4 [6]. Let ρ be an element of F× such that ρcd+ c = o. The Gauss
sum of ω is defined by

τ(ω) =
∑
a∈o/c

sgn(ρa)rω(ρacd)eF (ρa)

= sgn(ρ)rω(ρcd)
∑
a∈o/c

ω0(a)eF (ρa).

Here, for u ∈ o, put eF (u) = exp(2πiTr(u)).

If ω2 = 1, we have τ(ω) = i|r|N(c)1/2.

Lemma 5 [6]. For u ∈ F and an ideal a of o, we have∑
a∈a

eF [(a+ u)2z/2] = µ(a)−1N(−iz)−1/2
∑
b∈ã

eF (−b2/(2z))eF (bu),

where z ∈ hn, N(−iz) =
∏n
k=1(−izk), ã = d−1a−1 and µ(a) is the volume

Vol(Rn/a) of Rn/a.
Theorem 1 [6]. Let ω, ω0, and c be the same as above. Suppose that

(1) ω2 = 1;
(2) cd is a principal ideal generated by a totally positive number δ;
(3) c is divisible by every prime factor of 2;
(4) we have u2 ≡ 1 mod 2c for every u prime to c.

Then

f(z, ω) =
∑
u∈o

ω0(u)eF

(
u2z

2δ

)
is a Hilbert modular form of weight 1/2 with respect to a congruence sub-

group Γa ⊂ Γ0 for some a. Moreover, for every γ =

(
a b
c d

)
∈ SL2(o) we

have

f(γ(z), ω) = j∗(γ, z)f(z, ω),
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where j∗(γ, z) = ϵ∗(γ)(cz+d)1/2 with a root of unity ϵ∗(γ). In fact, we have

j∗(γ, z) =


(−i)|r|N(−iz)1/2 if γ =

(
0 1

−1 0

)

eF (bδ
−1/2) if γ =

(
1 b

0 1

)
(b ∈ o)

j(γ, z) if γ ∈ Γa,

where N(−iz) =
∏n
k=1(−izk) for z = (z1, · · · , zn) ∈ hn.

Proof. Put

h(z, ω) =
∑
u∈o

ω0(u)eF (u
2z/2).

By Lemma 5 [6], we have

h(z, ω) =
∑
u∈o/c

ω0(u)
∑
x−u∈c

eF (x
2z/2)

= µ(c)−1N(−iz)−1/2
∑
b∈c̄

eF (−b2/(2z))
∑
u∈o/c

ω0(u)eF (ub)

= µ(c)−1N(−iz)−1/2τ(ω)
∑

b∈(δ−1)

sgn(b)rω(bδo)eF (−b2/(2z)).

Set bδ = v with δ of assumption (2); then∑
b∈(δ−1)

sgn(b)rω(bδo)eF (−b2/(2z)) =
∑
v∈o

sgn(v)rω(vo)eF (−v2/(2zδ2))

= h(−1/(δ2z), ω).

From Lemma 4 [6], we get

h(z, ω) = i|r|N(δ)−1/2N(−iz)−1/2h(−1/(δ2z), ω).

Since f(z, ω) = h(z/δ, ω), we have

f(−1/z, ω) = (−i)|r|N(−iz)1/2f(z, ω).
By assumption (3), we have

Tr

(
u2 − 1

2δ

)
≡ 0 mod Z

and hence f(z+ b, ω) = eF (b/(2δ))f(z, ω). Note that eF (b/(2δ)) is a root of
unity.

Now we write

f(z, ω) =
∑
u0∈o/c

ω0(u0)
∑

u−u0∈c
eF (u

2z/(2δ)).

We observe that

(9)
∑

u−u0∈c
eF (u

2z/(2δ))
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is a special case of function of [31, Proposition 7.1] with S = P = 1, χ = 1,
L = c, g = u0, h = 0, a = δ−1 and a ≫ 0. So from [31, Proposition 7.1],
we know that (9) is a Hilbert modular form of weight 1/2 with respect to a
congruence subgroup Γa of Γ0 for some a ⊂ 2d and∑

u−u0∈c
eF (u

2γ(z)/(2δ)) = j(γ, z)
∑

u−u0∈c
eF (u

2z/(2δ))

for every γ ∈ Γa. Hence

f(γ(z), ω) = j(γ, z)f(z, ω) for every γ ∈ Γa.

From assumption (4) of the theorem, it is easy to see the only odd divisor
of N(c) is 3. □

Feng applied this to the real quadratic field F . If a ∈ F , denote by ā the
conjugate of a and put N(a) = aā.

Lemma 6 [6]. Let u be an algebraic integer of Q(
√
d) with a square-free

positive integer d.

(1) If d ≡ 1 mod 8 and (u, 2) = 1, then u2 ≡ 1 mod 8.
(2) If d ≡ 1 mod 24 and (u, 6) = 1, then u2 ≡ 1 mod 24.

Theorem 2 [6]. Put F = Q(
√
d) with a squarefree integer d > 1. Suppose

that F has a unit λ > 0 such that N(λ) = −1. For k = 1, 2, set

fk(z) =
∑
u∈o

ωk0(u)eF (u
2z/(2ckλ

√
d)),

where c1 = 4, c2 = 12, and

ω10(u) =

{
(−1)[N(u)−1]/2 for (u, 2) = 1

0 otherwise,

ω20(u) =

{(
3

N(u)

)
for (u, 6) = 1

0 otherwise.

If d ≡ 1 mod 8, f1 is a Hilbert modular form of the type described in
Theorem 1 [6]. If further d ≡ 1 mod 24, the same is true for f2.

Proof. The different of Q(
√
d)/Q is (

√
d). Then the theorem follows from

Lemma 6 [6] and Theorem 1 [6]. □

3. Local theory, genuine characters of S̃L2(o)

Let F be a finite extension of Qp until the end of this section. Let o be
the ring of integers of F and p the maximal ideal of o. Let q be the order of
the residue field o/p and d the different of F/Qp.
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For g =

(
a b
c d

)
∈ SL2(F ), put x(g) = c if c ̸= 0 and x(g) = d if c = 0.

The Kubota 2-cocycle on SL2(F ) is defined by

c(g, h) = ⟨x(g)x(gh), x(h)x(gh)⟩F
for g, h ∈ SL2(F ), where ⟨·, ·⟩F is the quadratic Hilbert symbol for F . Let

S̃L2(F ) be the metaplectic group of SL2(F ). Set-theoretically, it is

{[g, τ ] | g ∈ SL2(F ), τ ∈ {±1}}.

Its multiplication law is given by [g, τ ][h, σ] = [gh, τσc(g, h)]. This is a
nontrivial double covering group of SL2(F ). Put [g] = [g, 1]. For a subgroup

H of SL2(F ), the inverse image of H in S̃L2(F ) is denoted by H̃. A function

ϵF : S̃L2(o) → C is genuine if ϵF ([12,−1]γ) = −ϵF (γ) for all γ ∈ S̃L2(o). We

determine the number of genuine characters of S̃L2(o).
For a ∈ F×, τ = ±1 and b, c ∈ F , put

m(a, τ) =

[(
a 0
0 a−1

)
, τ

]
, u+(b) =

[(
1 b
0 1

)]
,

u−(c) =

[(
1 0
c 1

)]
, N =

[(
0 −1
1 0

)]
.

For k ∈ Z such that k ≥ 0, we define the subgroups U+(pk), U−(pk) and

Ã of S̃L2(o) by U+(pk) = {u+(b) | b ∈ pk}, U−(pk) = {u−(c) | c ∈ pk}
and Ã = {m(a, τ) | a ∈ o×}, respectively. Note that S̃L2(o) is generated by
U+(o), N and m(1,−1).

Lemma 1. Put M = min{ord(a2 − 1) | a ∈ o×}. Then we have

M =


0 (q ≥ 4)

1 (q = 3)

2 (q = 2, F ̸= Q2)

3 (F = Q2).

Proof. Let π be a prime element of F . If q ≥ 4, then there exists a ∈ o×

such that a2 − 1 ∈ o×. Thus we have M = 0. If q = 3, then a2 − 1 ∈ p for
all a ∈ o×. Since (π + 1)2 − 1 = π(π + 2) /∈ p2, we have M = 1.

In the case q = 2, a2 − 1 = (a− 1)(a+ 1) ∈ p2 for all a ∈ o×. If F ̸= Q2,
then we have 2 ∈ p2. Since (π + 1)2 − 1 = π(π + 2) /∈ p3, we have M = 2.
It is well-known that M = 3 if F = Q2. □

The derived group of a group G is denoted byD(G). Since [m(a, τ), u+(b)]
= u+((a2 − 1)b) and [m(a, τ), u−(c)] = u−((a−2 − 1)c) hold, we have

(10) U+(pM ), U−(pM ) ⊂ D(S̃L2(o))

by Lemma 1.
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Lemma 2. Suppose that q is even. Then there exists r ∈ 1 + 4o such that
⟨r, x⟩F = (−1)ordx for x ∈ F×.

Proof. Put r = 1 + 4c for c ∈ o. We show that there exists c such that
F (

√
r)/F is an unramified quadratic extension. We denote the residue field

of a local field L by k(L) and the image of an element u of the ring of integers
of F (

√
r) in k(F (

√
r)) by ū.

We define a map p : k(F ) → k(F ) by p(t) = t2 − t for t ∈ k(F ). We have
p(t) = p(1−t) ̸= p(s) for all s ∈ k(F )\{t, 1−t}. Since [k(F ) : p(k(F ))] = 2,
there exists c such that c̄ /∈ p(k(F )). Then it is known that a polynomial
X2 −X − c̄ is irreducible over k(F ). Put y = (1−

√
r)/2 and f(X) = X2 −

X − c ∈ o[X]. Since f(y) = 0 and f ′(y) = 2y− 1 = −
√
r ̸= 0, k(F )(ȳ)/k(F )

is a quadratic extension and k(F (
√
r)) = k(F (y)) equals k(F )(ȳ). Therefore

F (
√
r)/F is an unramified quadratic extension (see [26, §32:6]). □

Lemma 3. Suppose that q is even and F ̸= Q2. Then there exist no genuine

characters of S̃L2(o).

Proof. Let b, c ∈ o such that r = 1− bc ∈ o× and put ζ = ⟨r, b⟩F . We have
(11)

[u−(c), u+(b)] =

[(
r b2c

−bc2 1 + bc+ b2c2

)]
= u−(−r−1bc2)m(r, ζ)u+(r−1b2c).

When F/Q2 is a ramified extension, we choose b, c ∈ 2o such that r

satisfies the condition in Lemma 2. We have U+(p2), U−(p2) ⊂ D(S̃L2(o)) by

(10). Then we have m(r, ζ) ∈ D(S̃L2(o)) by (11). Let π be a prime element
of F . Set b′ = bπ and c′ = cπ−1, which lie in p. We have ⟨1 − b′c′, b′⟩F =

⟨r, bπ⟩F = −ζ. Thus we have m(1,−1) ∈ D(S̃L2(o)) and there exist no

genuine characters of S̃L2(o).
Next assume that F/Q2 is an unramified extension and that F ̸= Q2. We

have U+(o), U−(o) ⊂ D(S̃L2(o)) by (10). Substituting 1 for c in (11), we

have m(1 − b, ζ) ∈ D(S̃L2(o)), whenever 1 − b ∈ o×. Since ζ = ⟨1 − b, b⟩F
equals 1, we have m(1− b, 1) ∈ D(S̃L2(o)). Similarly, substituting −1 for c
and replacing b with −b in Equation (11), we have m(1− b, ⟨1− b,−1⟩F ) ∈
D(S̃L2(o)). Thus it suffices to show that there exists b such that ⟨1−b,−1⟩F
equals −1.

Since F/Q2 is unramified, F (
√
−1)/F is a ramified extension. Thus there

exists u ∈ o× such that ⟨u,−1⟩F = −1. Since [o× : 1 + p] = q − 1 is odd,
we may assume that u ∈ 1 + p. Then there exists b ∈ p such that u = 1− b
satisfies ⟨u,−1⟩F = −1. □

An additive character ep of Qp is defined by ep(x) = e(−x) for all
x ∈ Z[1/p]. We define a nontrivial additive character ψβ of F by x 7→
ep(TrF/Qp(βx)) for β ∈ F×. The order of ψβ is denoted by ordψβ ∈ Z,
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which is defined by ψβ(p
−ordψβ ) = 1 and ψβ(p

−ordψβ−1) ̸= 1. We have
ordψβ = ordd+ ordβ.

Let S(F ) be the Schwartz space of F . The Fourier transformation ϕ̂ of

ϕ ∈ S(F ) is defined by ϕ̂(x) =
∫
F ϕ(y)ψβ(xy)dy. Here, dy is self-dual on the

Fourier transformation. In other words, dy is the Haar measure such that
the Plancherel’s formula

∫
F |ϕ(y)|2dy =

∫
F |ϕ̂(y)|2dy holds, where | · | is the

absolute value on C.
We denote the characteristic function of a subset A of a set X by ch A. In

the case F = Qp, we have the volume vol(pmZp) of pmZp equals p−m−(ordβ/2)

and ̂ch pmZp = vol(pmZp) ch p−(m+ordβ)Zp for m ∈ Z.
Put Aϕ =

∫
F ϕ(x)ψβ(ax

2)dx and Bϕ =
∫
F ϕ̂(x)ψβ(−x

2/4a)dx for a ∈
F× and ϕ ∈ S(F ). Now let | · | be the absolute value on F . There
exists a constant αψβ (a) ∈ C called the Weil constant such that Aϕ =

αψβ (a)|2a|−1/2Bϕ holds. It is known that αψβ (ab
2) = αψβ (a) for a, b ∈ F×

and that αψβ (a) = αψ(aβ), where ψ = ψ1. Moreover, we have αψβ (−a) =
αψβ (a) and αψβ (a)

8 = 1 (see [29, 35]).

The Weil representation ωψβ is a representation of S̃L2(F ) on S(F ). For
ϕ ∈ S(F ), we have

(12)


ωψβ (m(a, τ))ϕ(x) = ταψβ (1)αψβ (−a)|a|1/2ϕ(ax)
ωψβ (u

+(b))ϕ(x) = ψβ(bx
2)ϕ(x)

ωψβ (N)ϕ(x) = |2|1/2αψβ (−1)ϕ̂(−2x).

Since S̃L2(F ) is generated by the above elements, ωψβ is determined by these
formulas. In particular, we have ωψβ ([g, τ ])ϕ = τωψβ ([g])ϕ.

We define a map s : SL2(o) → {±1} by

(13) s(g) =


1 c ∈ o×

⟨c, d⟩F c ∈ p\{0}
⟨−1, d⟩F c = 0

for g =

(
a b
c d

)
∈ SL2(o).

If q is odd, we have

s(g) =

{
1 cd = 0

⟨c, d⟩ord cF cd ̸= 0.

Recall that the double covering S̃L2(F ) → SL2(F ) splits on SL2(o) if and
only if q is odd. The splitting is given by g 7→ [g, s(g)]. Thus if q is odd, a

map ϵF : S̃L2(o) → C× defined by ϵF ([g, τ ]) = τ s(g) is a genuine character.

Lemma 4. Suppose that q is odd. Let ϵF : S̃L2(o) → C× be the genuine
character defined above. It satisfies ωψβ ([g, τ ])ch o = ϵF ([g, τ ])

−1ch o if

ordψβ = 0. If q ≥ 5, then it is the unique genuine character of S̃L2(o).
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Proof. The first part of this lemma follows from straightforward computa-

tion. If q ≥ 5, then by (10) we have U+(o), U−(o) ⊂ D(S̃L2(o)). Since
N = u+(−1)u−(1)u+(−1), SL2(o)

ab is trivial. Thus there exists a unique

genuine character ϵF of S̃L2(o). □
For a ∈ Z, we define a subset S(pa) of S(F ) by S(pa) = {f ∈ S(F ) |

Supp f ⊂ pa}. For a ≤ b ∈ Z, put S(pa/pb) = {f ∈ S(pa) | f(x+ t) = f(x)
for all t ∈ pb}. For f ∈ S(F )\{0}, there exists a pair (a, b) such that
f ∈ S(pa/pb).

Lemma 5. Suppose that q = 3 (resp. F = Q2). If ordψβ = −1 (resp. −3),

then the group S̃L2(o) preserves S(o/2p) with respect to ωψβ . We define
f ∈ S(o/2p) by

(14) f(x) =


1 if x ∈ 1 + 2p

−1 if x ∈ −1 + 2p

0 otherwise.

Then the subspace of odd functions in S(o/2p) is Cf and there exists a

genuine character µβ of S̃L2(o) such that ωψβ ([g, τ ])f = µβ([g, τ ])
−1f .

In the case q = 3, there exist three genuine characters of S̃L2(o), ϵF and
µβ, where µβ extends over all elements β such that ordψβ = −1. More-
over, the value µβ(u

+(1)) = ψβ(−1) is a primitive 3rd root of unity, which
determines µβ.

Proof. Suppose that F = Q2 and that ordψβ = ordβ = −3. It is clear that

S̃L2(o) preserves S(o/2p) with respect to ωψβ . If ϕ ∈ S(o/2p) is an odd
function, then ϕ satisfies ϕ(x) = ϕ(−x) = −ϕ(x) for all x ∈ p. Thus we
have ϕ(p) = 0. Since F = Q2, we have o× = (1 + 2p) ∪ (−1 + 2p) and then
ϕ(x) = ϕ(1)f ∈ Cf .

Thus there exists a genuine character µβ of S̃L2(o) such that ωψβ ([g, τ ])f =

µβ([g, τ ])
−1f . Since u−(−1) = Nu+(1)N−1 and N = u+(−1)u−(1)u+(−1),

the value µβ(u
+(1)) determines µβ.

Suppose that q = 3 and that ordψβ = −1. Then we prove the first part

of the lemma similar to the case above. By [16, §2.10], SL2(o)
ab has order

3. Thus there exist three genuine characters of S̃L2(o). We have f(x) ̸= 0
if and only if x ∈ o×. By (12), we have ωψβ (u

+(b))f(x) = ψβ(bx
2)f(x) for

b ∈ o. If f(x) ̸= 0, since we have x2 − 1 ∈ p by Lemma 1, µβ(u
+(b))−1 =

ψβ(bx
2) = ψβ(b). In particular, µβ(u

+(1)) = ψβ(−1) is a primitive 3rd root
of unity.

For γ ∈ F such that ordψγ = −1, if µβ = µγ , then we have ψβ(1) = ψγ(1)
and then β/γ ∈ 1+p. Since we have [o× : (1+p)] = 2, the genuine characters

of S̃L2(o) are ϵF and µβ, where µβ extends over all elements β such that
ordψβ = −1. □
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Lemma 6. In Lemma 5, suppose that F = Q2 and that ordψβ = −3. Then
the value µβ(u

+(1)) = e(β) is a primitive 8th root of unity, which determines

µβ. Moreover, there exist four genuine characters µβ of ˜SL2(Z2), where µβ
extends over all elements β such that ordβ = −3.

Proof. If F = Q2, we have ordψβ = ordβ. By Lemma 5, there exists a

genuine character of ˜SL2(Z2). Since SL2(Z2)
ab has order 4 by [16, §2.10],

the number of genuine characters of ˜SL2(Z2) is 4. We have ωψβ (u
+(b))f(x) =

e(−βbx2)f(t) for f in (14) and b ∈ Z2 by (12). If f(x) ̸= 0, then we have
x2 − 1 ∈ 8Z2 and e(−βbx2) = e(−βb). In particular, µβ(u

+(1)) = e(β) is a
primitive 8th root of unity.

For γ ∈ Q2 such that ordγ = −3, if µβ = µγ , then we have e(β) = e(γ)

and then β/γ ∈ 1 + 8Z2. Since we have [Z×
2 : (1 + 8Z2)] = 4, there exist

four genuine characters µβ of ˜SL2(Z2), where µβ extends over all elements
β such that ordβ = −3. □

Given β, let µβ be the nontrivial genuine character given in Lemma 5 or
Lemma 6. Then we have

µβ([g]) = s(g)κ(β, g) g =

(
a b
c d

)
∈ SL2(o),

where κ(β, g) is a continuous function for g. In the case F = Q2 and
ord β = −3, we have

(15) κ(β, g) =

{
ψβ(−(a+ d)c+ 3c) c ∈ Z×

2

ψβ((c− b)d− 3(d− 1)) c ∈ 2Z2.

In the case q = 3 and ordψβ = −1, we have

(16) κ(β, g) = ψβ(−(a+ d)c+ bd(c2 − 1)).

Remark. Suppose that K ′ is a compact open subgroup of SL2(o). Let

λ′ : K̃ ′ → C× be a genuine character. Then one can show that there exists
a continuous function κ′ on K ′ such that λ′([g]) = s(g)κ′(g) for all g ∈ K ′.
As we do not need this result for the rest of this paper, we omit its proof.

Put K = SL2(o) and G =SL2(F ). It is known that K (resp. K̃) is a

compact open subgroup of G (resp. G̃). Let (π, V ) be an irreducible smooth

representation of G̃. For a character λ of K̃, we define a set (π, V )λ by

(π, V )λ = {f ∈ V | π(g)f = λ(g)−1f for all g ∈ K̃}.

In particular, we consider (ωψβ , S(F ))
λ for a genuine character λ : K̃ →

C× such that λ(u+(1)) ̸= 1. Since λ(u+(1)) ̸= 1, λ is one of the characters
µβ in Lemma 5 or Lemma 6. In particular, we have q = 3 or F = Q2. When
q = 3 (resp. F = Q2), we have that ordψβ = −1 (resp. −3).



34 HIROSHI NOGUCHI

Proposition 1. The representation c-IndG̃
K̃
λ is irreducible supercuspidal.

We have

dimC(π, V )λ =

{
1 π = c -IndG̃

K̃
λ

0 otherwise.

Proof. Put λg(x) = λ(gxg−1) for g ∈ G̃. We shall prove that

(17) Homg−1K̃g∩K̃(λg, λ) = 0 for g /∈ K̃.

Put m(a) =diag(a, a−1) for a ∈ F×. Since it is known that

SL2(F ) =

∞∪
n=0

Km(πn)K,

we have only to consider the case g = m(πn) for n > 0. Since u+(1) ∈
g−1Kg ∩K, we have λ(u+(1)) ̸= λg(u+(1)), which proves (17).

It is known that (17) implies the first assertion (see [4, §11.4]). Although
[4] treated the GL2 case, the proof is also valid in our case. By [4, §2.5], we
have HomG̃(c-Ind

G̃
K̃
λ, π) ≃ HomK̃(λ, π), which completes the proof. □

It is known that
ωψβ = ω+

ψβ
⊕ ω−

ψβ
,

where ω+
ψβ

(resp. ω−
ψβ

) is the restriction of ωψβ to the even (resp. odd)

functions. Note that these restrictions are irreducible but not isomorphic,

because ω+
ψβ

is not supercuspidal. We have ω−
ψβ

≃ c-IndG̃
K̃
µβ by Proposition

1. Since λ(u+(1)) ̸= 1, we have dim(ω+
ψβ
, S(F )+)λ = 0 by Proposition 1,

where S(F )+ is the subspace of the even functions in S(F ).
If q = 3 and ordψβ = −1 or if F = Q2 and ordβ = −3, then we have

(18) dimC(ωψβ , S(F ))
λ =

{
1 λ = µβ

0 otherwise.

Now we assume that q is odd. By Lemma 4, there exists a genuine

character ϵF : S̃L2(o) → C× and we have ωψβ ([g, τ ]) ch o = ϵF ([g, τ ])
−1ch o,

where ordψβ = 0.

Lemma 7. Put Tβ = (ωψβ , S(F ))
ϵF . Then we have

Tβ =

{
C ch p−ordψβ/2 if ord ψβ ≡ 0 mod 2

0 otherwise.

Proof. Put D = ordψβ. Suppose that D = 0. Then we have ϵF (U
+(o)) =

1 and it is clear that S̃L2(o) preserves S(o/o) = C ch o with respect to

ωψβ . Then we have Tβ = C ch o = C ch p−D/2. Since we have ωψβt2 (g) =

ωψβ (m(t, 1)gm(t, 1)−1) for t ∈ F× and g ∈ S̃L2(o), the same is true for Tβt2

for all t ∈ F×. Thus we have covered the case where ordψβ is even.
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Next assume ordψβ is odd. By the same argument as in the previous
paragraph, it is enough to consider the caseD = 1. Then we have ωψβ (h)ϕ =

ϵF (h)
−1ϕ. By (12), we have ψβ(bx

2) = 1 for all b ∈ o when ϕ(x) ̸= 0. In
particular, since ordbx2 ≥ ordx2 ≥ −1, we have ϕ ∈ S(o).

We assume ϕ ∈ S(pa/pb) such that a ≥ 0 is maximal and b is minimal. A

calculation of the Fourier transformation shows that ϕ̂ ∈ S(p−1−b/p−1−a).

Since αψβ (−1)ϕ̂(−2x) = ϕ(x) by (12), we have ϕ̂ ∈ S(pa/pb). Then a =
−1− b is less than 0, which contradicts a ≥ 0. □

Set F×2 = {x2 | x ∈ F×}. Assume that q = 3 or F = Q2. By Lemma 5

and Lemma 6, there exist genuine characters µβ of S̃L2(o).

Lemma 8. When q = 3 (resp. F = Q2), we put Tβ = (ωψβ , S(F ))
µγ , where

γ ∈ F× such that ordψγ = −1 (resp. −3). Then we have

(19) dim Tβ =

{
1 if β/γ ∈ F×2

0 otherwise.

In particular, when β/γ ∈ 1 + p (resp. 1 + 8Z2), we have Tβ = Cf , where f
is the function in (14).

Proof. We prove the lemma in the case q = 3. The proof for F = Q2 is
similar. Put D = ordψβ. Then we may assume that D ∈ {0,−1} in the
same way as the proof of Lemma 7. By Proposition 1 and (18), we have
dim Tβ = 0 when D = 0. Suppose that D = −1 and that ϕ ∈ Tβ is nonzero.
Then by Lemma 5, we have ϕ ∈ Cf . Lemma 5 shows that f lies in Tβ if and
only if β/γ ∈ 1 + p. We have 1 + p ⊂ F×2, which completes the proof. □

4. Multiplier systems for SL2(o)

From now on, let F be a totally real number field such that [F : Q] = n.
Let v be a place of F and A the adele ring of F . We denote the completion
of F at v by Fv. If v is an infinite place, we write v | ∞. Otherwise, we
write v <∞. For v <∞, let ov, pv and dv be the ring of integers of Fv, the
maximal ideal of ov and the different of Fv/Qp, respectively.

For any v, let ιv : F → Fv be the embedding. The entrywise embeddings
of SL2(F ) into SL2(Fv) are also denoted by ιv. Let {∞1, · · · ,∞n} be the
set of infinite places of F . Put ιi = ι∞i for 1 ≤ i ≤ n. We embed SL2(F )
into SL2(R)n by r 7→ (ι1(r), · · · , ιn(r)).

We define the metaplectic group S̃L2(R) of SL2(R) similar to the case
Fv/Qp. Let S be a finite set of places of F , which contains all places above
2 and ∞. Set

SL2(A)S =
∏
v∈S

SL2(Fv)×
∏
v/∈S

SL2(ov).

The double covering of SL2(A)S defined by the 2-cocycle
∏
v∈S cv(g1,v, g2,v)

is denoted by S̃L2(A)S, where cv is the Kubota 2-cocycle for SL2(Fv).
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Let sv : SL2(ov) → {±1} is the map s in (13) for v < ∞. For a finite

set S′ of places of F such that S ⊂ S′, we can define an embedding ιS
′

S :

S̃L2(A)S → S̃L2(A)S′ by

[(gv), ζ] 7→
[
(gv), ζ

∏
v∈S′\S

sv(gv)
]
.

For v < ∞, a map sv : SL2(ov) → ˜SL2(ov) is given by sv(γ) = [γ, sv(γ)]

for γ ∈ SL2(ov). The adelic metaplectic group S̃L2(A) is the direct limit

lim−→ S̃L2(A)S. It is a double covering of SL2(A) and there exists a canonical

embedding ˜SL2(Fv) → S̃L2(A) for each v. Let
∏′
v

˜SL2(Fv) be the restricted
direct product with respect to sv(SL2(ov)). Then there is a canonical sur-

jection
∏′
v

˜SL2(Fv) → S̃L2(A). The image of (gv)v ∈
∏′
v

˜SL2(Fv) is also

denoted by (gv)v. Note that for a given g ∈ S̃L2(A), the expression g = (gv)v
is not unique.

We denote the embedding of SL2(F ) into SL2(A) by ι. The finite part of
SL2(A) is denoted by SL2(Af ). Let ιf : SL2(F ) → SL2(Af ) be the projection
of the finite part and ι∞ : SL2(F ) → SL2(F∞) = SL2(R)n that of the infinite
part. Then we have ι(g) = ιf (g)ι∞(g) for all g ∈ SL2(F ). The embedding
of F into Af is also denoted by ιf .

It is known that SL2(F ) can be canonically embedded into S̃L2(A). The
embedding ι̃ is given by g 7→ ([ιv(g)])v for each g ∈ SL2(F ). We define the

maps ι̃f : SL2(F ) → ˜SL2(Af ) and ι̃∞ : SL2(F ) → ˜SL2(F∞) by

ι̃f (g) = ([ιv(g)])v<∞ × ([12])v|∞, ι̃∞(g) = ([12])v<∞ × ([ιi(g)])v|∞.

Then we have ι̃(g) = ι̃f (g)ι̃∞(g) for all g ∈ SL2(F ).
For z ∈ h, we choose argz such that −π <argz ≤ π. For γ = [g, τ ] ∈

S̃L2(R), g =

(
a b
c d

)
and z ∈ h, j̃ : S̃L2(R)×h → C is an automorphy factor

given by

(20) j̃(γ, z) =


τ
√
d if c = 0, d > 0,

−τ
√
d if c = 0, d < 0,

τ(cz + d)1/2 if c ̸= 0.

Note that j̃([g, τ ], z) is the unique automorphy factor such that j̃([g, τ ], z)2 =
j(g, z), where j(g, z) is the usual automorphy factor on SL2(R)× h (see [15,
§7]). Note that j̃([g], z) = J(g, z), where J(g, z) is defined in (1).

Definition 1. Let Γ ⊂ SL2(o) be a congruence subgroup. the map v =
v(γ) : Γ → C× is said to be a multiplier system of half-integral weight if
v(γ)

∏n
i=1 j̃([ιi(γ)], zi) is an automorphy factor for Γ × hn, where j̃ is the

automorphy factor in (20).
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We have j̃(γ1, γ2(z))j̃(γ2, z) = j̃(γ1γ2, z) for γ1, γ2 ∈ S̃L2(R). Replacing
γi with [gi] for i = 1, 2, we have

(21) j̃([g1], g2(z))j̃([g2], z) = cR(g1, g2)j̃([g1g2], z),

where cR(·, ·) is the Kubota 2-cocycle at infinite places.

Lemma 9. A function v : Γ → C× is a multiplier system of half-integral
weight if and only if we have

v(γ1)v(γ2) = c∞(γ1, γ2)v(γ1γ2) γ1, γ2 ∈ Γ,

where c∞(γ1, γ2) =
∏n
i=1 cR(ιi(γ1), ιi(γ2)).

Proof. We have ιi(γ1)ιi(γ2) = ιi(γ1γ2) for all i. Thus (21) and Definition 1
prove the lemma. □

Let KΓ ⊂ SL2(Af ) be the closure of ιf (Γ) in SL2(Af ). Then KΓ is a

compact open subgroup and we have ι−1
f (KΓ) = Γ. Let K̃Γ be the inverse

image of KΓ in ˜SL2(Af ).

Lemma 10. Let λ : K̃Γ → C× be a genuine character. Put vλ(γ) = λ(ι̃f (γ))
for γ ∈ Γ. Then vλ is a multiplier system of half-integral weight for Γ.

Proof. For γ1, γ2 ∈ Γ, we have ι̃(γ1)ι̃(γ2) = ι̃(γ1γ2). The left-hand side
equals ι̃f (γ1)ι̃∞(γ1)ι̃f (γ2)ι̃∞(γ2). Since ι̃∞(g) = ([ιi(g)])i=1,··· ,n for g ∈
SL2(F ) and ι̃∞(γ1) commutes with ι̃f (γ2), we have

ι̃f (γ1)ι̃f (γ2) = ι̃f (γ1γ2)[12, c∞(γ1, γ2)].

Since λ is genuine, Lemma 9 proves the lemma. □

For v <∞, the map sv is the splitting on K1(4)v, where

K1(4)v = {γ =

(
a b
c d

)
∈ SL2(ov) | c ≡ 0, d ≡ 1 mod 4}.

If KΓ ⊂ K1(4)f =
∏
v<∞K1(4)v, we may define a splitting s : KΓ → S̃L2(A)

by

s(γ) = (sv(ιv(γ)))v<∞ × ([12])v|∞.

The map s is a homomorphism. Then we have K̃Γ = s(KΓ) · {[12,±1]}.
Note that s(KΓ) ⊂ ˜SL2(Af ) is a compact open subgroup.

For any congruence subgroup Γ, a map v0 : Γ → C× is defined by v0(γ) =∏
v<∞ sv(ιv(γ)), which is not always a multiplier system of half-integral

weight for Γ.

Corollary 1. If Γ ⊂ Γ1(4) =

{(
a b
c d

)
∈ SL2(o) | c ≡ 0, d ≡ 1 mod 4

}
,

then v0 is a multiplier system of half-integral weight for Γ.
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Proof. Since Γ ⊂ Γ1(4), we have KΓ ⊂ K1(4)f . We define a genuine char-

acter λ : K̃Γ → C× by

λ(s(k)[12, τ ]) = τ, k ∈ KΓ, τ ∈ {±1}.
Put vλ(γ) = λ(ι̃f (γ)) for γ ∈ Γ. Since s(γ) = ([ιv(γ), sv(ιv(γ))])v<∞, we
have

vλ(γ) = λ(s(γ)[12,v0(γ)]) = v0(γ).

Therefore Lemma 10 proves the corollary. □
Now suppose that Γ ⊂ SL2(o) is a congruence subgroup and that v : Γ →

C× is a multiplier system of half-integral weight.

Lemma 11. There exists a genuine character λ : K̃Γ → C× such that
vλ = v if and only if there exists a congruence subgroup Γ′ ⊂ Γ∩Γ1(4) such
that v(γ) = v0(γ) for all γ ∈ Γ′.

Proof. Suppose that there exists a genuine character λ : K̃Γ → C× such that

vλ = v. Since Ker λ and s(Γ1(4)) are open in ˜SL2(Af ), the intersection is

also open. We denote its image in SL2(Af ) by K ′. Then we have K̃ ′ =

s(K ′)× {[12,±1]}. Put Γ′ = ι−1
f (K ′). Then we have v(γ) = vλ(γ) = v0(γ)

for all γ ∈ Γ′.
Conversely, suppose that there exists a congruence subgroup Γ′ ⊂ Γ ∩

Γ1(4) such that v(γ) = v0(γ) for all γ ∈ Γ′. Then the closure KΓ′ of ιf (Γ
′)

in SL2(Af ) is a compact open subgroup. Since ιf (Γ) is dense and KΓ′ is

open in KΓ, we have KΓ = ιf (Γ) · KΓ′ . For k ∈ K̃Γ, there exist γ ∈ Γ,
k′ ∈ KΓ′ and τ ∈ {±1} such that k = ι̃f (γ)s(k

′)[12, τ ].
We assume that k also equals ι̃f (γ0)s(k

′
0)[12, τ0] for γ0 ∈ Γ, k′0 ∈ KΓ′ and

τ0 ∈ {±1}. Put ω = γ−1
0 γ. Then we have ω ∈ Γ′ and

ι̃f (γ) = ι̃f (γ0)ι̃f (ω)[12, c∞(γ0, ω)], ι̃f (ω) = s(ιf (ω))[12,v0(ω)].

Then we have k = ι̃f (γ)s(k
′)[12, τ ] = ι̃f (γ0)s(ιf (ω)k

′)[12, τv0(ω)c∞(γ0, ω)].
Thus we have k′0 = ιf (ω)k

′ and τ0 = τv0(ω)c∞(γ0, ω). Since v = v0 in
Γ′ and v(γ) = v(γ0)v(ω)c∞(γ0, ω) by Lemma 9, we have v(γ0)τ0 = v(γ)τ .
Then the function λ(k) = v(γ)τ is well-defined.

Since λ(k[12, σ]) = v(γ)τσ = σλ(k) for σ ∈ {±1}, λ is genuine. It suffices

to show that λ(k1k2) = λ(k1)λ(k2) for all k1, k2 ∈ K̃Γ. There exist γi ∈ Γ,
k′i ∈ KΓ′ and τi ∈ {±1} such that ki = ι̃f (γi)s(k

′
i)[12, τi] for i = 1, 2. Then

we have λ(k1)λ(k2) = v(γ1)v(γ2)τ1τ2. Replacing KΓ′ with its sufficiently

small subgroup, we may assume that s(KΓ′) is a normal subgroup of K̃Γ.
Then we have

ι̃f (γ2)
−1s(k′1)ι̃f (γ2) = s(ιf (γ2)

−1k′1ιf (γ2)) ∈ s(KΓ′).

Since
ι̃f (γ1)ι̃f (γ2) = ι̃f (γ1γ2)[12, c∞(γ1, γ2)],

λ(k1k2) equals v(γ1γ2)c∞(γ1, γ2)τ1τ2. By Lemma 9, we have λ(k1k2) =
λ(k1)λ(k2), which proves the lemma. □
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Proposition 2. If F ̸= Q, then any multiplier system v of half-integral
weight of any congruence subgroup Γ ⊂ SL2(o) is obtained from a genuine

character of K̃Γ.

Proof. By Lemma 11, it suffices to show that there exists a congruence
subgroup Γ′ ⊂ Γ ∩ Γ1(4) such that v(γ) = v0(γ) for all γ ∈ Γ′. We assume
that a congruence subgroup Γ satisfies Γ ⊂ Γ1(4) by replacing Γ with Γ ∩
Γ1(4). Let D(G) be the derived subgroup of a group G. Since v0(γ)/v(γ)
is a character of Γ, we have v0(γ)/v(γ) = 1 for all γ ∈ D(Γ). By the
congruence subgroup property, D(Γ) contains a congruence subgroup Γ′

(see [30, Corollary 3 of Theorem 2] or [16, §3]). Thus we have v(γ) = v0(γ)
for all γ ∈ Γ′, which proves this proposition. □

By Lemma 11 and Proposition 2, the multiplier system of half-integral
weight of a congruence subgroup Γ associated with an automorphy factor in
the sense of Shimura [33] is obtained from a genuine character of K̃Γ.

Lemma 12. If F = Q, then we have

v0(g) =


(
d

c

)∗
c : odd( c

d

)
∗

c : even,

g =

(
a b
c d

)
∈ SL2(Z).

Proof. In the case (c, d) = (±1, 0), we have

(
0

c

)∗
= v0(g) = 1. In the case

(c, d) = (0, 1) (resp. (0,−1)), we have

(
0

d

)
∗
= v0(g) = 1(resp. −1). If

c ̸= 0 and d ∈ 2Z+ 1 satisfy (c, d) = 1, we have( c
d

)∗
=

(
c

|d|

)
,

( c
d

)
∗
= t(c, d)

(
c

|d|

)
, t(c, d) =

{
−1 c, d < 0

1 otherwise.

Suppose that cd ̸= 0. Put u = c·2−ord2c. Then we have (u, d) = (c, d) = 1.

Put t0(x, y) = (−1)(x−1)(y−1)/4 for x, y ∈ 2Z+ 1. If a prime p satisfies p | c,
we have

⟨c, d⟩p =


(
d

p

)ordpc

p ≥ 3

t0(u, d)

(
2

|d|

)ord2c

p = 2.

If c is odd, then we have

(
d

c

)∗
=
∏
p|c

(
d

p

)ordpc

= v0(g). If c is even, then

we have

(
u

|d|

)(
d

|u|

)
= t(c, d)t0(u, d) (see [17, p.51]). Thus we have

( c
d

)
∗
= t(c, d)

(
2

|d|

)ord2c( u

|d|

)
= t0(u, d)

(
2

|d|

)ord2c( d

|u|

)
= v0(g).
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□

Put

Kf =
∏
v<∞

SL2(ov).

Then Kf is a compact open group of SL2(Af ). The inverse image of Kf in

˜SL2(Af ) is denoted by K̃f . We have SL2(o) = SL2(F ) ∩Kf · SL2(F∞).

Proposition 3. Let v be a multiplier system of half-integral weight for
SL2(o). Then there exists a genuine character λ : K̃f → C× such that
vλ = v.

Proof. If F ̸= Q, the assertion is proved by Proposition 2. If F = Q, let vη
be the multiplier system of η(z) in (3). Put

Γ(12) =

{(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1, b ≡ c ≡ 0 mod 12

}
.

By Lemma 12, we have vη(γ) = v0(γ) for γ ∈ Γ(12). Since vη(γ)/v(γ) = 1
for all γ ∈ D(SL2(Z)), we have v(γ) = v0(γ) for all γ ∈ D(SL2(Z))∩ Γ(12),
which is a congruence subgroup. By Lemma 11, there exists a genuine
character λ : K̃f → C× such that vλ = v. □

Corollary 2. There exists a multiplier system v of half-integral weight for
SL2(o) if and only if 2 splits completely in F/Q. There exists a genuine

character of ˜SL2(ov) for all v <∞, provided that this condition holds.

Proposition 4. Suppose that 2 splits completely in F/Q. Let vλ be a
multiplier system of half-integral weight of SL2(o), where λ =

∏
v<∞ λv is

a genuine character of K̃f . Put S2 = {v < ∞ | F = Q2} and T3 = {v <
∞ | qv = 3}. If qv is odd, let ϵv be the genuine character of ˜SL2(ov) from
Lemma 4. We set S3 = {v ∈ T3 | λv ̸= ϵv}. Let βv be a element of F× such
that λv = µβv for v ∈ S2 ∪ S3. Then we have

vλ(γ) = v0(γ)
∏

v∈S2∪S3

κv(βv, ιv(γ)) γ =

(
a b
c d

)
∈ SL2(o).

Here, if v ∈ S2,

κv(βv, g) =

{
ψβv(−(a+ d)c+ 3c) c ∈ Z×

2

ψβv((c− b)d− 3(d− 1)) c ∈ 2Z2

and if v ∈ S3,

κv(βv, g) = ψβv(−(a+ d)c+ bd(c2 − 1))

for g =

(
a b
c d

)
∈ SL2(ov). Note that κv(βv, ιv(γ)) is a continuous function

on γ.
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Proof. We have vλ(γ) = λ(ι̃f (γ)) =
∏
v<∞ λv([ιv(γ)]). If v /∈ S2 ∪ S3, then

we have ϵv([g]) = sv(g) for all g ∈ SL2(ov). If v ∈ S2 (resp. S3), we have
µβv([g]) = sv(g)κv(βv, g) by (15) (resp. (16)) for all g ∈ SL2(ov). This
proves the proposition. □

5. The condition of the existence of a theta function

Suppose that 2 splits completely in F/Q. By Lemma 3, there exists a

genuine character λv : ˜SL2(ov) → C× for all v < ∞. If v < ∞, put Kv =
SL2(ov). If v | ∞, put Kv = SO(2). Then Kv is a maximal compact sub-
group of SL2(Fv) for all v. Let β be an element of F× and ψβ the character
of A/F as in Section 1. For any v, we denote the Weil representation of
˜SL2(Fv) by ωψβ ,v.
Let {∞1, · · · ,∞n} be the set of v | ∞ and S(R) the Schwartz space of R.

We have an irreducible decomposition

ωψβ ,v = ω+
ψβ ,v

⊕ ω−
ψβ ,v

,

where ω+
ψβ ,v

(resp. ω−
ψβ ,v

) is the irreducible representation of S̃L2(R) on the

set of even (resp. odd) functions in S(R) (see [21, Lemma 2.4.4]).

The group S̃L2(R) has a maximal compact subgroup S̃O(2), which is

the inverse image of SO(2) in S̃L2(R). It is known that if λv : S̃O(2) →
C× is a genuine character, dimC(ωψβ ,v, S(R))λv is at most 1. Let λ∞,1/2

be a genuine character of lowest weight 1/2 with respect to (ω+
ψβ ,v

, S(R))
and λ∞,3/2 of lowest weight 3/2 with respect to (ω−

ψβ ,v
, S(R)). For β > 0,

(ω+
ψβ ,v

, S(R))λ∞,1/2 = C e(iιv(β)x2) and (ω−
ψβ ,v

, S(R))λ∞,3/2 = Cxe(iιv(β)x2)
are spaces of lowest weight vectors. If β < 0, there exist no lowest weight
vectors with respect to (ω+

ψβ ,v
, S(R)) or (ω−

ψβ ,v
, S(R)).

Note that λv(sv(SL2(ov))) = 1 for all but finitely many places v < ∞.

Then a genuine character λf : K̃f → C× is given by λf (g) =
∏
v<∞ λv(gv)

for g = (gv)v ∈ K̃f . Put w = (w1, · · · , wn) ∈ {1/2, 3/2}n. We define an

automorphy factor jλf ,w(γ, z) for γ ∈ SL2(o) and z = (z1, · · · , zn) ∈ hn by

jλf ,w(γ, z) =
∏
v<∞

λv([ιv(γ)])
n∏
i=1

j̃([ιi(γ)], zi)
2wi ,

where j̃ is given by (20).

In particular, we have jλf ,w(−12, z) =
∏
v<∞ λv([−12]) × (−

√
−1)

∑
2wi .

If it does not equal 1, the space of Hilbert modular forms of weight w for
SL2(o) is {0}.

Put K = Kf×
∏
v|∞ SO(2). There exists a genuine character λ : K̃ → C×

such that its v-component equals λv, where λ∞i is λ∞,1/2 or λ∞,3/2 for

1 ≤ i ≤ n. Then we have an automorphy factor jλf ,w(γ, z) corresponding
to λ such that λ∞i = λ∞,wi .
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Let Mw(SL2(o), λf ) be the space of Hilbert modular forms on hn with

respect to jλf ,w(γ, z). A holomorphic function h(z) of hn belongs to the
space Mw(SL2(o), λf ) if and only if

h(γ(z)) = jλf ,w(γ, z)h(z),

where γ(z) = (ι1(γ)(z1), · · · , ιn(γ)(zn)) for γ ∈ SL2(o) and z ∈ hn. (When
F = Q, the usual cusp condition is also required.)

For each g ∈ S̃L2(A), there exist γ ∈ SL2(F ), g∞ ∈ ˜SL2(R)n and gf ∈ K̃f

such that g = γg∞gf by the strong approximation theorem for SL2(A). Put
i = (

√
−1, · · · ,

√
−1) ∈ hn. For h ∈Mw(SL2(o), λf ), put

φh(g) = h(g∞(i))λf (gf )
−1

n∏
i=1

j̃(g∞i ,
√
−1)−2wi .

Then φh is an automorphic form on SL2(F )\S̃L2(A).
Let Aw(SL2(F )\S̃L2(A), λf ) be the space of automorphic forms φ on

SL2(F )\S̃L2(A) satisfying the following conditions (1), (2), and (3).

(1) φ(gk∞) = φ(g)
∏n
i=1 j̃(k∞,i,

√
−1)−2wi for all g ∈ S̃L2(A) and k∞ =

(k∞,1, . . . , k∞,n) ∈ S̃O(2)n.
(2) φ is a lowest weight vector with respect to the right translation of

˜SL2(R)n.
(3) φ(gk) = λf (k)

−1φ(g) for all g ∈ S̃L2(A) and k ∈ K̃f .

Then Φ : h 7→ φh gives rise to an isomorphism

Mw(SL2(o), λf ) −→∼ Aw(SL2(F )\S̃L2(A), λf ).

For φ ∈ Aw(SL2(F )\S̃L2(A), λf ), put h = Φ−1(φ). Then we have

h(z) = φ(g∞)

n∏
i=1

j̃(g∞i ,
√
−1)2wi , g∞ ∈ ˜SL2(R)n, g∞(i) = z.

Now suppose that v <∞. Let d be the different of F/Q and qv the order
of the residue field ov/pv. When qv is odd, let ϵv be the genuine character
ϵF from Lemma 4. Put S2 = {v | Fv = Q2}, T3 = {v < ∞ | qv = 3} and
S3 = {v ∈ T3 | λv ̸= ϵv}. Since 2 splits completely in F/Q, we have |S2| = n.
If λv = ϵv, by Lemma 7, (ωψβ ,v, S(Fv))

λv is not 0 if and only if we have

ordvψβ,v ≡ 0 mod 2.

Otherwise, by Lemma 8, (ωψβ ,v, S(Fv))
λv is not 0 only if we have

ordvψβ,v ≡ 1 mod 2.
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Then, if (ωψβ ,v, S(Fv))
λv ̸= 0 for all v <∞, there exists a fractional ideal

a such that

(22) (8β)d
∏
v∈S3

pv = a2.

Replacing β with βγ2 and a with γa in (22) for γ ∈ F×, we may assume
ordva = 0 for v ∈ S2 ∪ S3. Then we have ordvψβ,v = −1 (resp. −3) for
v ∈ S3 (resp. S2).

Conversely, suppose that there exists a fractional ideal a satisfying (22)
for a subset S3 ⊂ T3. For v <∞, put

λv =

{
ϵv if ordvψβ,v ≡ 0 mod 2

µβ if ordvψβ,v ≡ 1 mod 2,

where µβ is a genuine character in Lemma 5 or Lemma 6. By Lemma 7 and

Lemma 8, we have (ωψβ ,v, S(Fv))
λv ̸= 0 for all v <∞.

Let λ : K̃ → C× be a genuine character such that its v-component equals
λv for v < ∞, and λ∞i = λ∞,wi , depending on wi ∈ {1/2, 3/2}. Put
S∞ = {∞i | wi = 3/2}. For v | ∞, recall that if ιv(β) > 0 (resp. ιv(β) < 0),

(ω+
ψβ ,v

, S(R))λ∞,1/2 = C e(iιv(β)x2) (resp. {0}) and (ω−
ψβ ,v

, S(R))λ∞,3/2 =

Cxe(iιv(β)x2) (resp. {0}) are spaces of lowest weight vectors.
Then from now on, suppose that β ∈ F×

+ , which is the set of totally pos-

itive elements of F . Let S(A) be the Schwartz space of A and (ωψβ , S(A))λ

the set of functions ϕ =
∏
v ϕv ∈ S(A) such that ϕv ∈ (ωψβ ,v, S(Fv))

λv for
all v. For ϕ ∈ S(A), we define the theta function Θϕ by

(23) Θϕ(g) =
∑
ξ∈F

ωψβ (g)ϕ(ξ) g = (gv) ∈ S̃L2(A),

where ωψβ (g)ϕ(ξ) =
∏
v ωψβ ,v(gv)ϕv(ιv(ξ)) is essentially a finite product.

We have Θϕ(gk) = λ(k)−1Θϕ(g) for all g ∈ S̃L2(A) and k ∈ K̃f . If ϕ ∈
(ωψβ , S(A))λ, then Θϕ is a Hilbert modular form of weight w = (w1, · · · , wn).

It is known that

ωψβ =
⊕
S

ωψβ ,S , ωψβ ,S =

(⊗
v∈S

ω−
ψβ ,v

)
⊗

(⊗
v/∈S

ω+
ψβ ,v

)
,

where S ranges over all finite subsets of places of F (see [8, §3.4]). We

define a map Θ from ωψβ to the space of automorphic forms on S̃L2(A) by
Θ(ϕ)(g) = Θϕ(g). Then it is known that

(24) Im(Θ) ≃
⊕

|S|:even

ωψβ ,S ,

(see [8, Proposition 3.1]).
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Fix a choice of S∞, or equivalently the values w1, · · · , wn ∈ {1/2, 3/2}.
Let G be the set of triplets (β, S3, a) of β ∈ F×

+ , a subset S3 ⊂ T3 and a
fractional ideal a of F satisfying (22) and the condition (A),

(A) |S2|+ |S3|+ |S∞| ∈ 2Z.

We define an equivalence relation ∼ on G by

(β, S3, a) ∼ (β′, S′
3, a

′) ⇐⇒ S3 = S′
3, β

′ = γ2β, a′ = γa for some γ ∈ F×.

Theorem 1. Suppose that 2 splits completely in F/Q. Let β ∈ F×
+ , λ :

K̃ → C× and w1, . . . , wn ∈ {1/2, 3/2} be as above. Let S3 be determined by
λ as above. Then there exists ϕ =

∏
v ϕv ∈ (ωψβ , S(A))λ such that Θϕ ̸= 0

if and only if there exists a fractional ideal a of F such that (β, S3, a) ∈ G.

Proof. Let λv : ˜SL2(ov) → C× be the v-component of λ for any v <
∞. We already proved that there exists

∏
v<∞ ϕv ̸= 0 such that ϕv ∈

(ωψβ ,v, S(Fv))
λv for all v < ∞ if and only if there exists a fractional ideal

a of F satisfying (22). Suppose that these equivalent conditions hold.

Since we have (ω+
ψβ ,v

, S(R))λ∞,1/2 = C e(iιv(β)x2) and (ω−
ψβ ,v

, S(R))λ∞,3/2 =

Cxe(iιv(β)x2) for all v | ∞, there exists a nonzero ϕ =
∏
v ϕv ∈ (ωψβ , S(A))λ.

It is clear that if there exists a nonzero ϕ =
∏
v ϕv ∈ (ωψβ , S(A))λ,

∏
v<∞ ϕv ̸=

0 satisfies ϕv ∈ (ωψβ ,v, S(Fv))
λv for all v <∞.

Suppose there exists a nonzero ϕ =
∏
v ϕv ∈ (ωψβ , S(A))λ. Note that

|S2|+ |S3|+ |S∞| is the number of v such that ϕv is an odd function. Then
|S| in (24) is |S2|+ |S3|+ |S∞|. By (24), it is clear that Θϕ ̸= 0 if and only
if the condition (A) holds. □

Let H be a group of fractional ideals that consists of all elements of the
form ∏

v∈T3

pevv ,
∑
v

ev ∈ 2Z.

Let Cl+ be the narrow ideal class group of F . Put Cl+2 = {c2 | c ∈ Cl+}.
We denote the image of the group H (resp. b ∈ Cl+) in Cl+/Cl+2 by H̄
(resp. [b]).

Theorem 2. Suppose that 2 splits completely in F/Q. Let w1, . . . , wn ∈
{1/2, 3/2} be as above.

(1) Suppose that |S2|+ |S∞| is even. Then there exists (β, S3, a) ∈ G if
and only if [d] ∈ H̄.

(2) Suppose that |S2|+ |S∞| is odd. Then there exists (β, S3, a) ∈ G if
and only if T3 ̸= ∅ and [dpv0 ] ∈ H̄. Here, v0 is any fixed element of
T3.

Proof. We prove the theorem in case (1). The proof for case (2) is similar.
If [d] ∈ H̄, we have (8β)d

∏
v∈T3 pevv = a′2 such that

∑
v ev is even for

a fractional ideal a′ and β ∈ F×
+ . Put S3 = {v ∈ T3 | ev : odd}. Since
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|S2|+ |S3|+ |S∞| is even, we have (β, S3, a) ∈ G, where

a =
∏

v∈T3\S3

p−ev/2v a′.

Conversely, if there exists (β, S3, a) ∈ G, it satisfies (22) and |S3| is even.
Then we have [d] =

∏
v∈S3

[pv] ∈ H̄. □
Let wi be 1/2 or 3/2 for 1 ≤ i ≤ n. Suppose that there exists (β, S3, a) ∈

G. Replacing (β, S3, a) with an equivalent element of G, we may assume
ordva = 0 for v ∈ S2 ∪ S3. Let fv be the function f in (14) and put

f =
∏

v∈S2∪S3

fv ×
∏

v<∞,v /∈S2∪S3

cha−1
v ,

where av = aov. Put ϕ = f×
∏n
i=1 f∞,i, where f∞,i(x) = xwi−(1/2)e(iιi(β)x

2)
for x ∈ R. By Theorem 1, there exists Θϕ ̸= 0 of weight w = (w1, · · · , wn).

Put z = (z1, · · · , zn), i = (
√
−1, · · · ,

√
−1) ∈ hn. We define xi, yi ∈ R

by zi = xi +
√
−1yi for 1 ≤ i ≤ n. Then we have z = g∞(i), where

g∞ = (g∞1 , · · · , g∞n) ∈ SL2(R)n, g∞i =

(
y
1/2
i y

1/2
i xi

0 y
−1/2
i

)
. Since λv([12]) = 1

for v <∞, we have

Θϕ(g∞) =
∑
ξ∈a−1

f(ιf (ξ))
n∏
i=1

ωψβ ,∞i
([g∞i ])f∞,i(ιi(ξ)).

Theorem 3. Let ϕ and Θϕ be as above. We define a theta function θϕ :
hn → C by

θϕ(z) =
∑
ξ∈a−1

f(ιf (ξ))
∏

∞i∈S∞

ιi(ξ)
n∏
i=1

e(ziιi(βξ
2)).

Then θϕ is a nonzero Hilbert modular form of weight w for SL2(o) with
respect to a multiplier system.

Every theta function of weight w for SL2(o) with a multiplier system may
be obtained in this way.

Proof. Since

ωψβ ,∞i
([g∞,i])f∞,i(ιi(ξ)) = y

wi/2
i ιi(ξ)

wi−(1/2)e(ziιi(βξ
2)),

we have θϕ(z) = Θϕ(g∞)×
∏n
i=1 y

−wi/2
i . Then θϕ is nonzero. Note that

j̃([g∞i ],
√
−1)2wi = y

−wi/2
i .

Since ϕ ∈ (ωψβ , S(A))λ, we have Θϕ ∈ Aw(SL2(F )\S̃L2(A), λf ). Then we

have θϕ = Φ−1(Θϕ) ∈ Mw(SL2(o), λf ). The multiplier system of θϕ is vλ
given by

vλ(γ) = v0(γ)
∏

v∈S2∪S3

κv(β, γ) γ ∈ SL2(o),
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where κv for v ∈ S2 ∪ S3 is the function in Proposition 4.
By Proposition 3, if θ is a theta function of weight w for SL2(o) with a

multiplier system v, we have a genuine character λf of K̃f such that v = vλf .

Let λ = λf ×
∏n
i=1 λ∞,wi be a genuine character of K̃. Then there exists

nonzero ϕ ∈ (ωψβ , S(A))λ such that θ = θϕ up to constant, which completes
the proof. □
Proposition 5. Let Cl be the usual ideal class group of F . Let Sq : Cl →
Cl+ be the homomorphism given by [a] 7→ [a2] for a fractional ideal a of F .
The number of equivalence classes of G is equal to

[E+ : E2]
∑
S3⊂T3

(A)

|Sq−1([d
∏
v∈S3

pv])|,

where S3 ranges over all subsets of T3 satisfying (A). Here, E+ is the group
of totally positive units of F and E2 is the subgroup of squares of units of
F .

Proof. We follow the argument of Hammond [13] Theorem 2.9. For given
S3 satisfying (A), the number of ideal classes [a] such that a2 is narrowly
equivalent to d

∏
v∈S3

pv is equal to |Sq−1([d
∏
v∈S3

pv])|. Then for a given

fractional ideal a such that a2 is narrowly equivalent to d
∏
v∈S3

pv, the
number of equivalence classes of triplets of the form (β, S3, a) such that
β ∈ F×

+ satisfying (22) is equal to [E+ : E2]. □

6. The case F = Q or F is a real quadratic field

Suppose that F = Q. If S∞ = ∅, the equivalence class of G is

{(1/24, {3},Z)}.
The theta function obtained by {(1/24, {3},Z)} equals 2η(z). Then its mul-
tiplier system equals vη in (3). If S∞ = {∞}, then the equivalence class
of G is {(1/8, ∅,Z)}. The theta function obtained by {(1/8, ∅,Z)} equals
2η3(z). Then its multiplier system equals the cubic power of vη.

Now suppose that F = Q(
√
D), where D > 1 is a square-free integer.

When there exists (β, S3, a) ∈ G, one of the followings holds.

(C1) (8β)d = a2 and S3 = ∅.
(C2) (8β)dp = a2 such that NF/Q(p) = 3 and S3 = {p}.
(C3) (8β)dpp̄ = a2 such that NF/Q(p) = NF/Q(p̄) = 3 and S3 = {p, p̄}.

If |S∞| is even, (C1) or (C3) holds. If |S∞| is odd, (C2) holds.
Also suppose that D ≡ 1 mod 8. Then 2 splits in F/Q and we have

d = (
√
D).

Lemma 13. Let N be a positive square-free integer. Put L = Q(
√
−1)

(resp. L = Q(
√
−3)). Then the following statements are equivalent.

(a) N is a norm of an element of L×.
(b) N is a norm of an integer of L.
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(c) No prime factor of N are inert in L/Q.
(d) There exist integers u and v such that N = u2 + v2 (resp. N =

3u2 + v2).

Proof. The statements (b), (c) and (d) are equivalent by [5, §68 and §70].
If L = Q(

√
−1), although [5, §68] treated the case N is odd but the proof

is valid in general case. If L = Q(
√
−3), [5, §70] treated the case N is odd

and not divisible by 3, but the proof is valid in general case. If (b) holds,
then clearly (a) holds.

It suffices to show that if (a) holds, then (c) holds. Suppose that αN ∈ L×

satisfies N = NL/Q(αN ). If a prime p is inert in L/Q, it is a prime element

of L and we have NL/Q(p) = p2. Then if p | N , we have p | αN and p2 | N ,
which contradicts that N is square-free. □

We consider an analogy of the following: if K is a real quadratic field,
then a necessary and sufficient condition that the narrow ideal class of the
different of K/Q be a square is that the discriminant D of K be the sum of
two integer squares (see [13] Proposition 3.1).

Lemma 14. A necessary and sufficient condition that the narrow ideal class
of dp is a square for a prime ideal p which has norm 3 is that D is of the
form 3u2 + v2 for some u, v ∈ N.

Proof. Suppose that the narrow ideal class of dp is a square with NF/Q(p) =

3. Then there exists σ ∈ F×
+ and a fractional ideal a of F such that (σ)dp =

a2. Taking the norm of both sides, we have 3NF/Q(σ)D = A2, where A

is the norm of a. Put σ = s + t
√
D for s, t ∈ Q such that s > 0. Since

3(s2 − t2D)D = A2, we have

D =

(
tD

s

)2

+ 3

(
A

3s

)2

.

Put L = Q(
√
−3). Then we have D ∈ NL/Q(L

×). Lemma 13 implies that

D = 3u2 + v2 for some u, v ∈ N.
We assume that there exists u, v ∈ N such that D = 3u2 + v2. Since

D ≡ 1 mod 8, we have u′ = u/2 ∈ Z. Put ρ = (v +
√
D)/2. Then we have

NF/Q(ρ) = (v2 −D)/4 = −3u′2. Let q = qQ be a prime ideal which divides
ρ, where Q is a rational prime which is divisible by q. Since ρ/Q /∈ o, we
have NF/Q(q) = Q and ordqρ =ordQ3u

′2. Therefore if Q ̸= 3, ordqρ is even.

Since NF/Q(ρ) = −3u′2, there exists a prime ideal q3 of F which divides
both 3 and ρ. Since 3 splits or ramifies in F/Q, ordq3ρ is odd. Put

(25) a =
∏
q∤3

q(ordqρ)/2 × q
(ordq3ρ+1)/2
3 .

Then we have (
√
Dρ)q3 = da2. Since

√
Dρ ∈ F×

+ , we have dq3 = (da)2 in

Cl+. □
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Proposition 6. Suppose that F = Q(
√
D), where D > 1 is a square-free

integer such that D ≡ 1 mod 8.

(1) There exist β ∈ F×
+ and a fractional ideal a satisfying (C1) if and

only if p ≡ 1 mod 4 for all primes p | D.
(2) There exist β ∈ F×

+ and a fractional ideal a satisfying (C2) if and
only if p ≡ 0 or 1 mod 3 for all primes p | D.

(3) There exists β ∈ F×
+ and a fractional ideal a satisfying (C3) if and

only if D ≡ 1 mod 24 and p ≡ 1 mod 4 for all primes p | D.

Proof. For a prime ideal p such that NF/Q(p) = 3, the equation (8β)dp = a2

implies that the narrow ideal class of dp is a square. Note that a positive
integer x is of the form 3u2 + v2 for some u, v ∈ N if and only if all primes
p which divides x satisfies p ≡ 0 or 1 mod 3. Then Lemma 14 proves the
second assertion.

The equation (8β)d = a2 implies that the narrow ideal class of d is a
square. Note that a positive integer x is of the form u2 + v2 for some
u, v ∈ N if and only if all primes p which divides x satisfies p ≡ 1 mod 4.
Then [13] Proposition 3.1 proves the first assertion.

There exist two distinct prime ideal p and p̄ such that such thatNF/Q(p) =
NF/Q(p̄) = 3 if and only if 3 splits in F/Q. This condition holds if and only
if D ≡ 1 mod 24. In the case D ≡ 1 mod 24, we have pp̄ = (3). Then the
equation (8β)dpp̄ = a2 implies that the narrow ideal class of d is a square.
Thus, similarly to the first assertion, [13] Proposition 3.1 proves the third
assertion. □

Example 1. Put D = 73. Then Cl+ is trivial and the fundamental unit
ϵ = 1068+125

√
D of F has norm −1. By Proposition 6, there exist β ∈ F×

+

and a fractional ideal a satisfying every condition of (C1), (C2) or (C3). We
write ξ̄ for the conjugate of ξ ∈ F .

Set β = 1/(8ϵ
√
D). We have (8β)d = (ϵ−1) = o, where o is the ring of

integers of F . Suppose that S∞ = ∅ and that ι1 = id. Then (β, ∅, o) ∈ G
satisfies (C1) and we have

θϕ(z) =
∑
ξ∈o

f(ιf (ξ))e(βξ
2z1)e(βξ2z2),

where

f(ιf (ξ)) =
∏
v∈S2

fv(ιv(ξ)) for ξ ∈ o

with S2 = {v2, v̄2 | pv2 = (2, (1 −
√
D)/2), pv̄2 = (2, (1 +

√
D)/2)}. Assume

that ιv2 = id and ιv̄2(ξ) = ξ̄. Then, for ξ ∈ o, we have

f(ιf (ξ)) = fv2(ξ)fv̄2(ξ̄) =


1 if ξ ∈ 2Z+ 2

√
DZ+ 1

−1 if ξ ∈ 2Z+ 2
√
DZ+

√
D

0 otherwise.
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Computing the norm of ξ shows that θϕ corresponds to the function f1 in
Theorem 2 [6].
Example 2. Put D = 793 = 13 · 61. Then Cl+ has order 8 and the
fundamental unit 4393 + 156

√
D of F has norm 1. By Proposition 6, there

exist β ∈ F×
+ and a fractional ideal a satisfying every condition of (C1), (C2)

or (C3). We write ξ̄ for the conjugate of ξ ∈ F . Put T3 = {v <∞ | qv = 3}.
(a) Let q7 be a prime ideal (7, 3 +

√
D), which divides (7) and q2 a

prime ideal (2, (1 −
√
D)/2), which divides (2). Put ρ = (3 +

√
D)/2, β =

ρ/(8
√
D) ∈ F× and a = q2q7. Then we have (8β)d = (ρ) = a2. Suppose

that S∞ = ∅ and that ι1 = id. Then (β, ∅, a) ∈ G satisfies (C1). Since

S2 = {v2, v̄2 | pv2 = q2, pv̄2 = (2)/q2 = (2, (1 +
√
D)/2)},

we have

θϕ(z) =
∑
ξ∈a−1

f(ιf (ξ))e(βξ
2z1)e(βξ2z2),

where f(ιf (ξ)) = fv2(ιv2(ξ))fv̄2(ιv̄2(ξ)).
Assume that ιv2 = id and ιv̄2(ξ) = ξ̄, and we have f(ιf (ξ)) = fv2(ξ)fv̄2(ξ̄).

Since D = 793 ≡ 25 mod 128, we assume
√
D ≡ −5 mod 64Z2 in Q2. For

ξ ∈ a−1 = 14−1(14, (3−
√
D)/2), we have

f(ιf (ξ)) =


1 if ξ ∈ 2∆Z+ 2

√
DZ+∆+

√
D

−1 if ξ ∈ 2∆Z+ 2
√
DZ+

√
D

0 otherwise,

where ∆ = (1− 5
√
D)/7.

(b) Now put ρ = 3(3 +
√
D)/2, β = ρ/(8

√
D) and a = 3q2q7. Let

q3 = (3, 1−
√
D) and q′3 = (3, 1+

√
D) be the prime ideals which divides (3).

Since q3q
′
3 = (3), we have (8β)dq3q

′
3 = a2. Suppose that S∞ = {∞1,∞2}

and that ι1 = id. Put

S3 = T3 = {v3, v̄3 | pv3 = q3, pv̄3 = q′3}.

Then (β, S3, a) ∈ G satisfies (C3) and we have

θϕ(z) =
∑
ξ∈a−1

f(ιf (ξ))ξξ̄e(βξ
2z1)e(βξ2z2),

where

f(ιf (ξ)) =
∏

v∈S2∪S3

fv(ιv(ξ)) for ξ ∈ a−1.

Assume that ιv = id for v ∈ {v2, v3} and that ιv(ξ) = ξ̄ for v ∈ {v̄2, v̄3},
and we have

f(ιf (ξ)) = fv2(ξ)fv̄2(ξ̄)fv3(ξ)fv̄3(ξ̄).

For ξ ∈ a−1 = 42−1(14, (3−
√
D)/2), we have f(ιf (ξ)) ∈ {±1} if ξ ∈ Z×

2 ∩Z×
3

and f(ιf (ξ)) = 0 if not. Since D = 793 ≡ 1 mod 9, we assume
√
D ≡ 1
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mod 9Z3. Then we have

f(ιf (ξ)) =


1 if ξ ∈ 6∆Z+ 6

√
DZ± {

√
D, 1}

−1 if ξ ∈ 6∆Z+ 6
√
DZ± {2∆ +

√
D, 3∆ +

√
D}

0 otherwise,

where ∆ = (1− 5
√
D)/7.

(c) Now put ρ = (5 +
√
D)/2. Put q′2 = (2)/q2 = (2, (1 +

√
D)/2). Since

NF/Q(ρ) = −26 · 3, we have (ρ) = q′62 q3. Put β = ρ/(8
√
D) ∈ F×

+ and

a = q′32 q3. Suppose that S∞ = {∞1} and that ι1 = id. Put

S3 = {v3 | pv3 = q3} ⊂ T3.

Then (β, S3, a) ∈ G satisfies (C2):

(8β)dq3 = a2

and we have
θϕ(z) =

∑
ξ∈a−1

f(ιf (ξ))ξe(βξ
2z1)e(βξ2z2),

where
f(ιf (ξ)) =

∏
v∈S2∪S3

fv(ιv(ξ)) for ξ ∈ a−1.

Assume that ιv = id for v ∈ {v2, v3} and that ιv(ξ) = ξ̄ for v ∈ {v̄2} and
we have

f(ιf (ξ)) = fv2(ξ)fv̄2(ξ̄)fv3(ξ).

Then, for ξ ∈ a−1 = 24−1(24, (5−
√
D)/2), we have

f(ιf (ξ)) =


1 if ξ ∈ 2(1−

√
D)Z+ 6

√
DZ+ {1,−

√
D}

−1 if ξ ∈ 2(1−
√
D)Z+ 6

√
DZ+ {−1,

√
D}

0 otherwise.
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