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ABSTRACT. Let F' be a totally real number field and o the ring of inte-
gers of F'. We study theta functions which are Hilbert modular forms of
half-integral weight for the Hilbert modular group SL2(0). We obtain an
equivalent condition that there exists a multiplier system of half-integral
weight for SL2(0). We determine the condition of F' that there exists a
theta function which is a Hilbert modular form of half-integral weight
for SLa(0). The theta function is defined by a sum on a fractional ideal
of F.

Keywords. Theta functions; Hilbert modular forms of half-integral
weight; Multiplier systems; Weil representation; Genuine characters;
Metaplectic groups.

1. INTRODUCTION

Put e(z) = €2™ for z € C. It is known that the modular forms of SLy(Z)
of weight 1/2 and 3/2 are the Dedekind eta function 7(z) and its cubic power
n3(2) up to constant, respectively. Here, 1(z) is given by

n(z) = e(z/24) [[ (1 —e(m2)) (2 €b),
m2>1
where § is the upper half plane. It is known that
1 1
n(z) = 5 mZ;ZXlg(m)e(sz/M), n(z) = B mzezm)@(m)e(mzz/S)

(see [18, Corollary 1.3 and Corollary 1.4]). Here, x12 and x4 are the primitive
Dirichlet character mod 12 and mod 4, respectively. Note that n(z) and 73(2)
are theta functions defined by a sum on Z.

The function 7(z) has the transformation formula with respect to modular

transformations (see [1, 27, 28, 34]). Let <—> be the Jacobi symbol. We
define () and () by

6 = (5): @) —rea(y). wa={ oist

for ¢ € Z\{0} and d € 2Z + 1 such that (¢,d) = 1. We understand

(- (5).

(see [17, Chapter 4 §1]).
For z € b, we choose argz such that —m <argz < m. For g € SLy(R) and
z € b, put

Vid ifc=0,d>0

(1) J(g,2) = { —Vd ifc=0,d<0 g:<$ Z)
(cz+d)'/? ifc#0,
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Then we have

az+b

(2) n(v(2)) = vp(MNJ (v, 2)n(z),  ~(2) = ord )

for all v = (Z Z) € SLy(Z), where the multiplier system v, (7y) is given by

<<Ci)*6<(a+d)c—bc21i02—l)—30) . odd

(3) vy(v) =

(c> e<(a+d)c—bd(02—1)+3d—3—30d> . oven
- N CAY .
d/ « 24

It is natural to ask the following problem. When does a Hilbert modular
theta series of weight 1/2 with respect to SLa(o) exist? Here, o is the
ring of integers of a totally real number field F. In 1983, Feng [6] studied
this problem. She gave a sufficient condition for the existence of a Hilbert
modular theta series of weight 1/2 with respect to SLa(0) and constructed
certain Hilbert modular theta series. These series are defined by a sum on
0.

Let K be a real quadratic field and dg the discriminant of K. Gundlach
[10, p.30], [11, Remark 4.1.] showed that if dg = 1 mod 8, then there exist
multiplier systems of weight 1/2 for a Hilbert modular group belonging to
a certain theta series. Naganuma [25] obtained a Hilbert modular form of
level 1 for a real quadratic case with dxg = 1 mod 8 and class number one,
using modular imbeddings, from the theta constant with the characteristic
(1/2,1/2,1/2, 1/2) of degree 2.

In this paper, we solve the problem above completely. We consider theta
functions defined by a sum on a fractional ideal of F'. Let v be a place of F'
and F, the completion of I’ at v. When v is a finite place, we write v < co.
When v is an infinite place, we have F;, ~ R and write v | co. Let A be the
adele ring of F.

Let n=[F : Q] and ¢, : F — F, be the embedding for any v. The entry-
wise embeddings of SLy(F') into SLo(F},) are also denoted by ¢,,. The meta-

plectic group of SLa(F},) is denoted by SLa(F%), which is a nontrivial double
covering group of SLa(F),). Set-theoretically, it is {[g, 7] | g € SLa(Fy), T €
{£1}}. Its multiplication law is given by [g,7|[h,o] = [gh,Toc(g,h)] for

lg, 7], [h,0] € SLa(F,), where ¢(g,h) is the Kubota 2-cocycle on SLa(F).
Put [g] = [g,1]. Note that in SLo case ¢(-,-) is equal to the cocycle con-
structed by Ranga Rao (see [29]).

Let {co1,---,00,} be the set of infinite places of F. Put ¢; = 1, for
1 < i < n. We embed SLa(F') into SLa(R)™ by r +— (t1(7),- -+ ,tn(r)). We
denote the embedding of SLy(F') into SLa(A) by ¢. Let Ay be the finite
part of A and ¢f : SLo(F') — SLa(Ay) the projection of the finite part. The
embedding of F' into Ay is also denoted by ¢.
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Let SLy(A) be the adelic metaplectic group, which is a double covering of
SLy(A). Let H be the inverse image of a subgroup H of SLy(A) in SLa(A).

o~

It is known that SLy(F') can be canonically embedded into SLa(A). The
embedding 7 is given by g — ([ty(g)]), for each g € SLo(F'). We define the

maps I : SLo(F) = SLa(Af) and oo : SLo(F) = SLa(Fio) by

£7(9) = ([Lo(9)Dv<oo X ((L2Dujoss  Too(9) = ([T2])ucoo X ([ti(9)])vjo0)

where 15 is the identity matrix of size 2. Then we have I(g9) = I(9)iso(g)
for all g € SLa(F").

Let I' € SLa(0) be a congruence subgroup. A map v : I' — C* is said
to be a multiplier system of half-integral weight if v(v) [[;; J(¢:(7), zi) is
an automorphy factor for I x h”, where J is the function in (1). Let Kt be

the closure of ¢7(T") in SLa(A) and KT the inverse image of K in SLa(Af).
Let A : Kp — C* be a genuine character, which is defined in Section 3. Put
va(Y) = A(Zf(7)) for v € I'. Then v} is a multiplier system of half-integral
weight for T.

Now suppose that v : I' — C* is a multiplier system of half-integral
weight. We obtain an equivalent condition that there exists a genuine char-
acter A : K — C* such that vy = v. Put Ky =1] SLa(0,), which o, is
the ring of integers of F,.

<00

Proposition 3. Let v be a multiplier system of half-integral weight for
SLa(0). Then there exists a genuine character A : Ky — C* such that
vy =V.

Corollary 2. There exists a multiplier system v of half-integral weight for
SLo(0) if and only if 2 splits completely in F/Q. There exists a genuine

character of SLs(0,) for all v < oo, provided that this condition holds.

Now suppose that 2 splits completely in F/Q. Let ¢ : A/F — C* be
an additive character such that its v-component ¥, (z) equals e(z) for all
v | 0o. Put ¢g(z) = ¢(Bx) and g, (x) = ¥ (Bz) for f € F*. The Schwartz
space of F), is denoted by S(F,). Let Wepg,v be the Weil representation of the

metaplectic group SLa(F,) on S(F,) corresponding to vg,.
In the case v < oo, we shall determine the genuine characters of the

P

metaplectic group SLa(0,). Let A, be a genuine character of SLa(0,). The
space (Wyg,v; S(F,))* is defined by a set of f € S(F,) such that Wysw(9)f =

—_——

Ao(g)~1f for all g € SLa(0,). We determine the space completely.
In the case v | oo, let A\, be a genuine character of the metaplectic

group §(T/(2), where SO(2) is a set of (_ab 2) € SLy(R). The space
(Wys,05 S(R))* is defined by a set of f € S(R) such that wysw(9)f = A(9) f
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for all g € SO(2). We have an irreducible decomposition

- -
Wipgv = Wig 0 D Wy v

+ — . . . .
where Wiy v (resp. wm,v) is an irreducible representation of the set of even

(resp. odd) functions in S(R) (see [21, Lemma 2.4.4]).

If 8 < 0, there exist no lowest weight vectors of w;“ﬂ , OF w;ﬂ oo B >0,
the vector e(it,(B8)z?) (resp. xe(it,(8)z?)) is the lowest weight vector of
wgﬁm (resp. w;ﬁ’v) of weight 1/2 (resp. 3/2) (see [21, Lemma 2.4.4]).
Let Ay 1/2 be a genuine character of lowest weight 1 /2 with respect to
(wqjﬁw, S(R)) and A 3/2 of lowest weight 3/2 with respect to (wiﬁvv, S(R)).

The set of totally positive elements of F' is denoted by F*. Assume that
f € F} in order that there exists a lowest weight vector of (w;}rﬁjv, S(R)) or
(w;lw, S(R)) for all v < co. We fix wy,, ,, and A, for any v. Here, we assume
that A\, = Ay 172 OF Ay = Ao 3/2 for all v [ co. Put K = K x [, SO(2).
Let A : K — C* be a genuine character such that its v-component is A, .
Let S(A) be the Schwartz space of A. The space (wy,, S(A))* is defined by
a set of ¢ =[], #» € S(A) such that ¢, € (wwjv,S(Fv))/\“ for all v. We

determine when there exists a nonzero ¢ € (wy,, S (A)A.

We define the theta function ©4 by

O4(9) =D wy,(9)6(8)

el

v]oo

P

for QZ) € S(A) and g e SL2(A)’ where Wipg (g)¢(§) = Hv Wipgz,v (gv)d)v (‘5) The
product is essentially a finite product. If ¢ € (wy,, S (A))A for A such that
the lowest weight of (wy,, S(A)) is w € {1/2,3/2}", then it is known that
Oy is a Hilbert modular form of weight w.

For 1 <i < n, put Aso; = Aoow;, Where w; = 1/2 or 3/2. Put Soe = {00; |
w; = 3/2} and So = {v < o0 | F, = Q2}. Let p, be the maximal ideal of o,
and g, the order of 0,/p,. Put T5 = {v < 00 | ¢, = 3}. We denote the order
of a set S by |S|. Let G be the set of triplets (3, S53,a) of 5 € F, a subset
S3 C T3 and a fractional ideal a of F' satisfying the conditions

|Sa| + |S3| + |Sec| € 2Z

and
<85)a H pU = a27
vESs
where 0 is the different of F'/Q. We define an equivalence relation ~ on G
by

(B, 83,0) ~ (B, 84, 0) <= S3 = S4, ' =26, o =~a for some 7 € F*.

We determine when there exists a nonzero ©4. Recall that if ¢, is odd,

P

the double covering SLa(F,) — SLa(F3,) splits on SLa(0,). We denote the
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image of g € SLa(0,) under the splitting by [g, s(¢)]. Thus if ¢, is odd, there
exists a genuine character ¢, : SLa(0,) — C* satisfying €,([g, s(g)]) = 1 for
all g € SLa(Fy).

Theorem 1. Suppose that 2 splits completely in F/Q. Let g € F, Ss,

A: K — C* and wy,...,w, € {1/2,3/2} be as above. Then there exists
¢ =T, b € (wwﬁ,S(A))’\ such that ©4 # 0 if and only if there exists a
fractional ideal a of F' such that (3, S3,a) € G.

Put

H=¢ I 951> eve2z

veTs veTs

Let CIT be the narrow ideal class group of F. Put CI™ = {¢? | ¢ € CIt}.
We denote the image of the group H (resp. b € CIT) in CI*/CI™? by H
(resp. [b]).
Theorem 2. Suppose that 2 splits completely in F//Q. Let wy,...,w, €
{1/2,3/2} be as above.

(1) Suppose that |Sa| +[S| is even. Then there exists (3, S3,a) € G if

and only if 0] € H.
(2) Suppose that |S2| + |Soo| is 0odd. Then there exists (8, S3,a) € G if

and only if T3 # () and [0p,,] € H. Here, vy is any fixed element of
T5.

Now suppose that there exists (3, S3,a) € G. Replacing 3 with 572 and
a with vya in (22), respectively, we may assume ord,a = 0 for v € Sy U Ss.
For v € S U S3, define f, : 0, = C by

1 ifxel+2p,
folx) =< -1 ifxe—1+2p,

0 otherwise.

We set

f= 11 x JI cha",

vESLUS3 v<00,v¢S2US3

where a, = a0,. Put ¢ = fx[[/_; foc, Where fooi(2) = 2=/ 2e(i1;(8)x?)
for x € R and w; € {1/2,3/2}. By Theorem 1, there exists ©4 # 0 of weight
w = (wy, - ,Wp).

Theorem 3. Let ¢ and ©4 be as above. We define a theta function 6, :
h™ — C by

n

0s(x) = 3 Js©) TI (] elziea(B2).

(ea—l 00; €S0 =1
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for z = (21,--+ ,2n) € h. Then 64 is a nonzero Hilbert modular form of
weight w for SLy(0) with respect to a multiplier system. Every theta function
of weight w for SLa(0) with a multiplier system can be obtained in this way.

In particular, when F = Q, we obtain 7(z) and 73(z) as 04(z) up to
constant.

This paper is organized as follows. In section 2, we introduce Hilbert
modular forms with a multiplier system and automorphic forms on the adelic
metaplectic group. We describe also the modular imbedding (see [13]) and
the result of Feng (see [6]). In Section 3, we determine the number of the

—_~—

genuine characters of the metaplectic group SLo(0), where o is the ring of
integers of a finite extension F' of Q,. Moreover, we determine the dimension

—_—

of a space (wy,, S(F ))* for a genuine character A of SLa(0) and the Weil

P

representation wy,, of SLo(F) on S(F). In Section 4, we study the multiplier
systems of half-integral weight of a congruence subgroup of SLs(0), where o is
the ring of integers of a totally real number field F'. In Section 5, we define

theta functions ©, of SLp(A) and prove our main theorems. Moreover,
we obtain theta functions 64(z) of h"™ and determine the number of the
equivalence classes of the set G. In Section 6, we give some examples in the
case ' = Q or F'is a real quadratic field.

Acknowledgment. The author thanks his supervisor Tamotsu Ikeda for
suggesting the problem and for his helpful advice, and thanks Masao Oi and
Shuji Horinaga for their sincere and useful comments.

2. THE HILBERT MODULAR FORMS WITH A MULTIPLIER SYSTEM

2.1. Beginning of the study of Hilbert modular forms. Hilbert mod-
ular forms, which are also called Hilbert-Blumenthal modular forms, are an
extension of modular forms to the several valuables case. We introduce the
beginning of the study of Hilbert modular forms, referring to Mayer [23].
Hilbert wrote a manuscript from 1893-94 on the action of the modular group
of a totally real field K of degree n over Q on the product of n upper half
planes. Based on this, Blumenthal gave a detailed account of the function
theory involved but his construction of a fundamental domain had a flaw.
He obtained a fundamental domain with only one cusp as in the one valuable
case (see [2] and [3]). Maass corrected this and showed that the number of
cusps equals the class number of K (see [22] or [9]).

Blumenthal’s work consists of the following three parts. First he investi-
gates the fundamental domain of GLg(0)\h™ for totally real number fields
K of degree n with ring o of integers, where h := {z € C | Im(z) > 0} is
the upper half plane. Therefore he proves the discontinuous operation of
the group GL2(0) on h™ and investigates the fixed points of the elements of
GL2(0) on h™ and on its boundary. Then Blumenthal constructs a funda-
mental domain but it is based on a flaw; the existence of exactly one cusp

for GLa(0)\b™.
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The second part of Blumenthal’s work deals with Poincaré series. He
shows their convergence and the existence of n+ 1 algebraically independent
Poincaré series. He uses the result of the first part, but the proof can easily
be amended by treatment of all the finitely many cusps instead of the single
cusp co. Equivalently he shows the existence of n independent modular
functions which are quotients of the n + 1 algebraically independent Hilbert
modular forms.

The third part proves the theorems of Weierstrass (see [3]), that

I) all rational functions of the fundamental domain can be algebraically
expressed by n independent functions,
IT) they can be rational expressed by n + 1 appropriate functions.

This result is independent of the mistake at the beginning.

2.2. Hilbert modular forms with multiplier systems. We define Hilbert
modular forms with multiplier systems. The contents of this subsection are
mainly taken from the book of Freitag [7] and Mayer [23]. To begin with,
given a subgroup I' of SLy(R)"™, we define its operation on h™ and its cusps
and the notion of automorphic forms with respect to I'.

Let b denote the upper half plane {z € C | Im(z) > 0} and h" the
product of n upper half planes. Given a subgroup I' of SLy(R)", we define
its operation on h™ by

SLy(R)" x b = b (M, 7) = Mr = (Wﬁbl M)

c1m +dp ’ , CnTn +dp

where

M:(Ml,---,Mn)withMj:<aj bj), T=(11, ,Tn).
¢ dj

This can be continuously extended to an operation on (h UR U {oco})".

From now on let I' be a discrete subgroup of SLa(R)™. We define 7+ X\ and
er+Afor A= (A1,---, \p),e= (€1, ,6,) ER"and 7 = (11, ,7) € H”
by

THA=(M+ A, T+ M), T+ A= (am+ A, enTn+ )

using the entrywise sum and the entrywise product. We define the group tr
of translations by

{A € R"| there exists M € I" such that M7 =71+ X for all 7 € h"}

and the group Ar of multipliers by the set of ¢ € R’} such that there exist
M €T and X\ € R" satisfying

M7t =er+ X forall 7 €h”

where R"} is the set of € € R™ with each of its entries positive. If ¢ is
isomorphic to Z, and € = (€1, -- ,€,) is a multiplier, then Ar is a discrete
subgroup of R’ and we have N(e) == [[i_; ¢; =1 (see [7, Remark 1.2.3]).
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We say that I has cusp infinity if ¢r is isomorphic to Z™ and if Ar is
isomorphic to Z"~!. In this case we will write I" has cusp co. We say that
I" has cusp & for some k € (RU {oo})™ if there exists an M € SLa(R) with

Mk = (00, -+ ,00)

such that MTM~! has cusp infinity. Note that for every x € (R U {oo})™,
there exists an M € SLy(R)" with Mk = (o0, - -, 00) and that the definition
of cusp « is independent of the choice of M.

We define (h™)* := h™ U (the cusps of T"). Until the end of the subsection,
suppose that

e the quotient space (h™)*/T" is compact,
e cach of the projections p; : I' = SLa(R); (My,--- ,My) — M; is
injective.
Since (h™)*/T" is compact, there are only finitely many cusps. Let o be the
ring of integers of a totally real field K. Then the Hilbert modular group
SLa(0) satisfies the suppositions above, and hence we will restrict I" to it
later.
Given a € R™ and x € R", we define the trace by

S(ax) = a1z1 + -+ + apey.

A discrete subgroup T of R™ is said to be a lattice if there exists a basis
ai,- - ,an of R® such that T'= Zaj + - - - + Za,. This holds if and only if T
is isomorphic to Z". For a lattice T C R™, we define the dual lattice T# by

T# ={a € R" | S(az) € Z for all z € T}.

Lemma I.4.1 [7]. Let V C RZ; be an open and connected set. Define the
tube domain D = {7 € h” | Im(7) € V'} corresponding to V. Let f : D — C
be a holomorphic function on D satisfying for some lattice T C R"

f(r+a)=f(7)
for all @ € T and all 7 € h™. Then f has an unique Fourier expansion
— Z GQGQWiS(QT)
geET#

and the series converges absolutely and uniformly on compact subsets of D.

Given ¢ = (c1,-++ ,¢n),d = (d1,- -+ ,dp) € R", r = (ry, -+ ,ry,) € Q" and
7 € b, we define the rth power of the norm of ¢7 + d by

N(er +d)" HC]T]—f—d

where the r;th power is defined using the main branch of the logarithm
C* - R+ i(—m,n].
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Given a holomorphic map f : h — C, r € C", a matrix M = <CCL Z) el
and a map p: ' — C*, we define f|'M : h” — C by
7= (M) N (et +d) " f(Mr).

We will write |5, for |}, where 1 is the constant map I' — {1}. Note that
N(er+d)™ = 1/(N(er +d)") holds for every r € C" independent of the
chosen branch of the complex logarithm.

Definition 1. If f : h” — C is a function satisfying the requirements in the
lemma above and I' has cusp infinity, then f is called regular at cusp oo if

ag#0=>9; >0 forall<j<n.
We say that f vanishes at cusp oo if
ag#0=>g9; >0 forall<j<n.

Let x be a cusp of I'and N € SLa(R)" be a matrix with N1k = (00, - - - , 00).
If there exists 7 € Q™ and a map p : I' = C* such that f satisfies

fIEM = f  forall M €T,

then we say that f is regular at cusp s (resp. vanishes at cusp k) if f|,N
has cusp oo with respect to the group N™!T'NV and is regular at oo (resp.
vanishes at 00).

Definition 2. Let I' be a discrete subgroup of SLa(R)” and p : I' — C*
be a map of finite order, which means the set {;* | k € N} is finite. An
automorphic form of weight r = (r1,--- ,7r,) € Q" with respect to I" with
multiplier system p is a holomorphic function f : h”* — C with the properties
(a) fIfM = f forall M €T,
(b) f is regular at the cusps.

If f vanishes at all cusps, we call f a cusp form. If f is an automorphic
form of weight r with multiplier system p, we will sometimes write f|M for
flr M.

Freitag defined Hilbert modular forms as automorphic forms with respect
to groups commensurable to the Hilbert modular group SLa(0) C SLa(K),
where two groups G, G’ are said to be commensurable if G NG’ has finite
index in each of the two groups(see [7]). The definition of an automorphic
form is based on the one in [7], but includes multiplier systems. Freitag
mentions the problem of formulating a general theory of multiplier systems.
This was done by Gundlach [12] in the case of subgroups of SLa(0) of finite
index.

Freitag showed the following facts in the case of the trivial multiplier
system. However, since any multiplier system is of finite order, these facts
also hold in our case (see [23]).

Proposition 1.4.7 [7]. Each automorphic form f of weight 0 = (0,--- ,0)
is constant.
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Remark 1.4.8 [7]. If f is an automorphic form, but not a cusp form, of
weight 7 = (r1,--+ ,7y), then we have ry = --- = r,,.

Corollary of Proposition 1.4.9 [7]. In the case n > 2, the regularity
condition (b) in the definition of an automorphic form can be omitted.

Let K be a totally real number field of degree n := [K : Q] = dimg(K).
Then there are exactly n different embeddings of K into R. We denote them
by K - R; a— a¥ (1 <j<n)and a = a®) holds for all a € K. We
denote the ring of integers of K by o, which is the set

{z € K| F(z) = 0 for some monic polynomial F' € Z[X]}.
We define the operation of SLa(K) on h” by

a b\ _ a7y 4+ pM) a™7, + b
¢ d)T T\ cOn+d0 i, £ am |

It is the same as that on h” of the image of SLo(K') with respect to the map
SLo(K) — SLa(R)™;

a b . . ‘ ald)  pl)
(4) M:<C d)»—>(M(),--'7M( ), M(])=<c(j> 4o ) -

We regard SLa(K) as a subgroup of SLy(R)™ through (4). An element A
of K is called totally positive if A9 > 0 holds for all 1 < j < n. We denote
the set of all totally positive elements of K by K.

For A € K, we define the norm and the trace by

N =T]A9, sy => A0
j=1 j=1

For ¢,d € K and 7 € h”, we define the trace by S(cr) = 77, cWr; and
the norm by

(5) N(er +d) = [[ (975 + d).
j=1
Moreover, for r = (r1,--- ,m,) € Q", put

N(cr+d)" = H(c(j)rj +dWyrs
j=1

where 27 = €"/™" % is defined using the main branch In:C* — R + i(—i, |
of the complex logarithm. Note that for r = (k,--- k) € Q", we have
N(cr +d)" = N(cr + d)*.

For 7€ h” and A € K, put 74+ X == (1 + XD . 7, + XW) € p” and

A= (A7 Ay e gt if de K.
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Definition 3. Let p : SLa(0) — C be a map of finite order. A Hilbert
modular form for K of weight r = (r1,--- ,r,) € Q" with multiplier system
w1 is a holomorphic function f : h” — C with the properties

(a) fl*M = f for all M € SLs(0),
(b) f is regular at the cusps of SLa(o0).

If f vanishes at all cusps, we call f a cusp form. If f has homogeneous
weight r = (k,--- , k) € Q", we will also say that f has weight k£ € Q.

For a subgroup I' C SLy(0) of finite index, we define a Hilbert modular
form for K with respect to I' as in the SLa(0) case.

Since (h™)*/SLa(0) is compact (see [7, Theorem 1.3.6]), every Hilbert mod-
ular form is an automorphic form. If K # Q, then condition (b) can be
omitted (see [7, Corollary of Proposition 1.4.9]).

Definition 4. Let I' be a subgroup of SLy(0) of finite index. A map
' — C* is called a multiplier system if it is of finite order and there is
k € Q such that for all 7 € h™ and all M), M(y) € T,

u(M)N (et + d)* = p(M))N(c(yMay + dy) " w(Mz) )N (o) + d2))",

where

a b . a b
=g ) =1 ().

If f is a nonzero Hilbert modular form of weight £ € Q with multiplier
system pu, then p is a multiplier system in this definition. Gundlach showed

that the restriction on the order of a multiplier system can be omitted (see
[12]).
Lemma 1.2.11 [23]. If 4 : ' — C* is a multiplier system of integral

weight k, then p is an abelian character. In other words, we have (M N) =
w(M)u(N) for all M, N €T.

Proof. One calculates N(cT+d) = N(c(yM )T +d(1))N(c2)T+d(2)), where
M1y, M(3) € ' is as in Definition 4. This proves the assertion. ([

Suppose that n > 1. Put I' = SLy(0) until the end of this subsection.
We introduce an important example of Hilbert modular forms with trivial
multiplier system. We denote the group of the elements of I' fixing co =
(ic0,- -+ ,i00) by I'ng. Given k € N, we define a function EIf : h* — C called
Fisenstein series of weight 2k with respect to the cusp oo by

Eff(r)= > N(r+d ™= > 1M <M:<$ Z))

MeT o\ MeT oo \I'

Proposition 1.5.8 [7]. The Eisenstein series Egg converges absolutely for
k > 1 and has the value 1 at the cusp co. It vanishes in all the other cusps.
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Proposition 1.5.10 [7]. For every Hilbert modular form f of even weight
2k > 2 with trivial multiplier system, there exists an unique element E in
the space spanned by all Fisenstein series of weight 2k, such that f — E is
a cusp form.

2.3. Modular imbeddings. Siegel modular forms can be restricted to
Hilbert modular forms by the modular imbedding of Hammond [13]. He
gave a necessary and sufficient condition that there exist modular imbed-
dings for a given totally real number field. Moreover, he determined the
number of equivalence classes of modular imbeddings. The contents of this
subsection are mainly taken from Hammond [7] and Mayer [23].

We denote the Siegel half space by H,,, which is the set

{Z € M, (C) : symmetric | Im(Z) : positive definite}.
The symplectic group Sp,(R) is defined by

Spn(R) = {M € Mop(R) | "MIM =1 = (_én &)}’

where 1,, is the n x n identity matrix and ‘M is the transpose of M. Note
that we have Sp; = SLo.
The group Sp,(R) operates on H,, in the following way. If 7 € H,, and
a b

if M = (c d> € Spn(R) for a,b,c,d € M, (R), then the image M -7 of T

under M is given by M -7 = (a1 + b)(cr +d) L.

A subgroup Sp,(Z) C Spn(R) is called the Siegel modular group of degree
n. A holomorphic function f in H,, is a Siegel modular form of weight w if
it satisfies

f(M - 1) =det(cr + d)” f(7)
for every M € Spy(Z) and every T € b,. If g = 1, we also require that f(iy)
approaches a finite limit as y > 0 approaches infinity.

Let o be the ring of integers of a totally real number field K of degree
n. A subgroup Spi(0) C Spi(K) is called the Hilbert modular group of K.
Note that Sp;(K) is regarded as a subgroup of Sp;(R)" by the embedding
(4). A holomorphic function f in h™ is a Hilbert modular form of weight w
for K if it satisfies

fp-7)=N(1+6)"f(7)
for every p € Spi(0) and every T € h™, where (’y (5) is the bottom row of
wand N(-) is as in (5).

For z = (21, ,2n) € C™, let z* be a diagonal matrix diag(z1,--- , z,).
For m = (mq,--- ,my) € Sp1(R)™ with m; = <ZZ Zl>, put
(] i

. fa b
w = (5 1) € Shu®)

where a = (a1, -+ ,a,) € R™ and similarly for b, ¢ and d.
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Let ¢g : B — H" be the holomorphic imbedding defined by 7+ 7* and
Dy : Sp1(R)" — Spp(R) the monomorphism defined by m +— m*. Then we
have ¢o(m - 7) = @o(m) - do(7).

A modular imbedding of K is a pair (¢, ®) consisting of a holomorphic
injection ¢ : h” — H™ and a monomorphism ® : Sp;(R)” — Sp,(R) such
that

(1) There exists N € Sp,(R) such that ¢(7) = N - ¢o(7) for all 7 € h”
and ®(m) = N®o(m)N~! for all m € Spi(R)",

(2) ©(Spi(0)) C Spn(Z),

(3) if f is a Siegel modular form of weight w, then the composition fo ¢
is a Hilbert modular form of weight w for K.

Proposition 2.2 [13]. The restriction (3) of the definition above can be
replaced by

(3’) the matrix N = <Z b> from (1) holds ¢ = 0,,.

d

Let (¢1,®1) and (¢2, P2) be modular imbeddings. They are called equiv-
alent if there exists M € Sp,(Z) such that ¢ = M¢; and that &y =
M®M~'. Every modular imbedding is equivalent to a modular imbedding
(¢1,®1) in which ¢ is homogeneous linear. Here, ¢; is homogeneous linear
if there is N = (8 2) for a,d € M,(R) such that ¢; = N¢g. Then a'a
and d'd = (a'a)™! are positive definite symmetric integer matrices with
determinant 1.

Let (¢1,®1) be as above. Put ¢(z) = az*a™! for z € C"and u = a'a.
Then we have ‘4)(2) = u=9(2)u for all z € C™ and 1) is a normal repre-
sentation of K in the sense that elements of o are represented by integer
matrices.

Proposition 2.6 [13]. There is one-to-one correspondence between homo-
geneous linear modular imbeddings (¢, ®) for K and pairs (¢, u) consisting
of a non-degenerate normal representation 1 of K by rational matrices of
degree n and an symmetric positive definite matrix v € M, (Z) with deter-
minant 1 such that “)(p) = u~4(p)u for all p € K.

We note that (11, u1) and (2, uz) correspond to equivalent homogeneous
linear modular imbeddings if and only if there is an unimodular matrix
v € M,(Z) such that 1o = vipyv~! and that us = vuitv.

Theorem 2.8 (Igusa) [13]. A totally real number field K admits modular
imbeddings if and only if the narrow ideal class of the different is a square
in the narrow ideal class group of K.

Let A be a fractional ideal of K. We note that if A? is narrowly equivalent
to a given ideal B, then the same thing is true for any ideal in the usual
ideal class of A. Let 7(K) denote the number of usual ideal classes whose
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squares are narrowly equivalent to the narrow ideal class of o/, where o’ is
the complementary ideal to o.

Theorem 2.9 (Igusa) [13]. The number of equivalence classes of modular
imbeddings for a totally real number field K is the product 7 (K) with the
index of the subgroup of square of units in the group of totally positive units.

For a moment, we consider the real quadratic case. Let K be the real
quadratic field of discriminant D. A homogeneous linear modular imbedding
(¢, @) for K is said to be orthogonal if ¢(1) = 1,. In the quadratic case,
every modular imbedding for K is equivalent to an orthogonal modular
imbedding (see [13, Theorem 3.3]).

Theorem 3.4 [13]. The orthogonal modular imbeddings for K correspond
in an one-to-one manner to ordered pairs (u,v) € Z? such that D = u? + v?
and that v is even.

Theorem 3.6 [13]. Let ¢ be the number of primes which devide D. Modular
imbeddings exist for K if and only if D is divisible by no prime of the form
4m+3. In this case the number of equivalence classes of modular imbeddings
for K is 2~1.

Miiller [24] gives an explicit formulation of the modular imbedding for
real quadratic fields. Let K = Q(v/D) where D = u? 4+ v2, u,v € Z and v
even and w = (u + v/D)/2. Then a modular imbedding is given by the pair
(1, U) defined by

ZGE 5((2??) SS(((Q;:);) (@ 0) -G8 V)

where @ is a conjugate of a and S(a) = al; +aly for a € 0 and ¢ € h2.
Given m/ = (m}, m}) and m” = (m/,mf) in {0, 1}% with m\m/ +mim} €
27, write m = (my, mg) and define a function 6, by

O (1) = Z exp <m; (t(g + ?Z/)T(g + ”;l) + tgm” + tm/m”/2>) ,

geZ?

where g is the transpose of g and 7 € H?. Additionally we put ©,, = ,,01).
In case K = Q(v/17), Hermann [14] constructed a Hilbert modular form
of half integral weight from theta products:

Theorem 3 [14]. In case K = Q(v/17), there exists a Hilbert modular
form we denote by 7, of weight 3/2 with multiplier system g7 such that
p17(J) = —i, pa7(T) = i and p7(Ty) = €™/ (see [14] for the definition of
J, T, Ty):
n2 = ©110000011O0000 + ©11009001090001 + O1001O0110O0000
—010010010090010 + ©1000©0100O0011 — ©100090110O0001 -
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2.4. The order of multiplier systems. In 1985, Gundlach studied mul-
tiplier systems for Hilbert and Siegel modular groups in [11]. We introduce
the Hilbert modular case.

Let K be a totally real number field of degree n and o the ring of integers
of K. For v € K, we denote by (v) the ideal generated by v. We write
h = by for the upper half plane and h_; the lower half plane in C. Put

10
E=10 1
I'=ITg = SLQ(O) C SLQ(K).

There exist n different bijections of K onto the conjugates K1), ... K@)
C R. We assign to each K9 a complex variable 7(9), the jth conjugate
of 7. The canonical isomorphisms of K (1) onto K (r0)) with 7 — 7()

for 5 = 1,--- ,n map a rational function R(7) € K(7) onto its conjugates
RU(70)). For R(r) € K(7), trace and norm are defined by

€ Ms(K). The Hilbert modular group for K is the group

TrR(r) =) j=1"RU(rY),  N(R(r)) = f[ RO (7)),
j=1

For L <(; Z) € SLa(K), we assign a transformation

T L(1) = (at + b)(cr +d) " = (LD (7)), ... L) (7)),

where LU) (1)) = (aW70) 4 p0)) (@) 70) 4 d00))=1 for all j. A subgroup
A C SLy(K) is commensurable with T if ' N A has finite index in I' and
in A. Put e = (e1,--- ,e,) for e; € {£1}. By the transformation above, a
commensurable subgroup A with I' acts on a product he = be, X --- X b,
of half planes be;.
We consider only the h. = h™ case. An automorphic factor (AF) of A on
h™ is a mapping J : A x h — C such that
(1) for fixed L € A, J(L,7) is holomorphic without zeros on ™.
(2) J(ILM, 1) = J(L,M(7))J(M,T) for L, M € A, 7 € h".
(3) J(=L,7)=J(L,7) for L, —L € A, 7 € h™.
Moreover, an AF is called a classical automorphic factor (CAF) if

J(L,7) =v(L)N(ct +d)" for L = <Z Z) €A, TeEB,

with r € C, the weight of J, and v(L) € C depending on the choice of the
branch of log(cU)7U) + dW)) on h. In this case, v is called the associated
multiplier system.

A suitable choice of the branch of the logarithm above on b is

log(az + ) = log |az + 8| +iargs(az + 3) for a,f € R,az+ B #0
with
—rm <arg;(az+p) <7m forze€hb.



16 HIROSHI NOGUCHI

Forre C,7€h™and L = (CCL Z) € SLy(K), put

pr(L,7) = N(em +d)" = exp(r - Trlog(er +d)).
For Ly, Ly € SLa(K), put

L, L (Lo,
(1, 1) = el Le (L),
MT(L1L27T)
This depends on Lq, Lo, r,e, but not on 7. It is known that if » € Z,
O}gr)(Ll,Lg) =1.
A multiplier system (MS) of weight r for A on h" is defined as a map
v: A — C* such that

(4) v(L1Lg) = o (L1, La)v(L1)v(Ly)  for Ly, L € A,
(5) v(—F) =exp(—mirn) if —E € A.
Then
J(L,7) =v(L)N(ct +d)" for Le A,7€h”
is a CAF of weight r for A on h™ if and only if v : A — C* is a MS of weight

r for A on h™.
Suppose that K is of degree n > 1 until the end of this subsection.

Theorem 3.1 [11]. For a subgroup A of SLo(K), commensurable with
Hilbert modular group I' = SLa(0), acting on h”, there exists a (minimal)
number g(A,e) € N with the following property.

o If J is a CAF of weight r for A on h™ then
reQ, g\ erek

e If Ay is a subgroup of finite index in A and Jy a CAF of weight rg
for Ap on h™ then g(A,e)[A : Ag]ro € Z.

Theorem 3.2 [11]. Under the conditions of Theorem 3.1, the MS v, associ-
ated with a CAF of A, satisfies |v(L)| =1 for all L € A with roots of unity
as values.

In particular, Gundlach studied the weight of a MS for I' = SLs(o0).

Theorem 3.3 [11]. Let v be a MS of weight r for the Hilbert modular group
I on h™.
e If 2 | n, then 2rn € Z.
e If 2 { n, then the denominator of nr has only prime factors g with
(g—1) | (n—1). For such a prime ¢, l(q) € Z is defined by n — 1 =
(¢ — 1)¢"Dm, with ¢ { m,. We have

2nr H ¢+ ez,
g:prime,(¢—1)|(n—1)

The theorem above can be improved in the quadratic case.
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Theorem 4.1 [11]. Let v be a MS of weight r for the Hilbert modular group
I' of a real quadratic field K on h2. For special values of the discriminant
di of K, we have

(a) If dx = 0,5 mod 8, then r € Z.
(b) If dxg = 4 mod 8, then 2r € Z.

In the real quadratic case, we give the Hilbert modular forms of half-
integral weight with dxg = 1 mod 8 later.

2.5. Metaplectic groups. Let F' be a totally imaginary number field over
Q containing the nth roots of unity for a fixed n > 2. Let p a place of F’ and
F, the completion of F' at p. Kubota [20] constructed metaplectic groups of
GLa(Fp) and GL2(A) explicitly using Kubota 2-cocycle, where A is the ring
of adele of F. Note that if n = 2, Weil [35] discovered such groups for the
first time.

We suppose that n = 2. Kubota mainly considered GLy case for a totally
imaginary number field, but we consider SLy case for a totally real number
field. This difference makes only a little change for infinite places.

Let F' be a totally real number field, p a place of F' and F}, the completion
of F' at p. The following theorem assures the existence of a covering over
the local group G, = GLa(F}).

Theorem 1 [20]. Put G, = GLy(F}). For 0 = <Z Z) € SLa(Fy), define
(o) by
2(0) = c c¢#0
d c¢=0
and put

6) a(o,7) = (2(0),x(7))(—z(0) tz(r),z(07))  for o,7 € SLa(F),
where (-, -) is the quadratic Hilbert symbol of F},. Furthermore, for o € Gy,
define p(o) € SLa(Fy) by 0 = <1 det a) p(o) and o¥ by the matrix

1 N
f € F,, 0.
( y> J( y> oy et y?

Put
a b )1 c#0
(o D) {20
Then
(7) a(o, 7)== a(p(a)detT,p(T))v(det 7,p(0)), o,7€Gy

is a factor set which determines a topological covering group ép of G} such
that G|, is central as a group extension.
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It is clear that a(o,7) in (7) is equal to one in (6) for o,7 € SLa(F}).

—_—~—

It was proved in [19] that (6) determines a topological covering SLo(F}) of
SLo(F,) which is central as a group extension. For the proof in GLy case,
see [20].

Let N be a positive integer divisible by 4, o, the ring of integer of F}, for
finite p and A the ring of adele of F'. For finite p, let GL2(0,)n be the group
of all 0 € Gy with 0 = 13 (mod N), where 15 is the identity matrix. It
is a congruence subgroup of GLa(0p). Put K, = GLa(0p)n for finite p and
K, = SO(2) for infinite p. The adele group of Gp = GLa(F) with usual
topology will be denoted by Gj.

The next theorem [20] explains the behavior of the factor set a(o, 7) on the
compact subgroup K, of G}. Moreover, the theorem is useful in constructing
a global covering of the adele group Gj.

Theorem 2 [20]. Let p be a finite prime of F, and let N be a natural
number divisible by 4. Then the factor set a(o, 7) in (7) splits on the compact
subgroup K, of G},. More precisely, we have
a(o,7) = s(a)s(r)s(or)™t  for o,7 € K,
with
5(0) = (c,ddet o 1)~1 if cd # 0 and if ord ¢ is odd,
)1 otherwise,

a b
for o = <c d) € K.

Since 0,7 € K, the above definition of s(o) is equivalent to

5(o) (c,ddeto™1)~1 if ¢ # 0 and if ¢ is not a unit,
g) =
1 otherwise.

Since we suppose that n = 2, we have s(c) = s(o) ™! for all o € Kj,.

Note that this was proved under the assumption that o,7 € GL2(0,) and
that p does not divide N. However, the number s(¢) in the theorem is well-
defined even if o is an arbitrary element of Gy, or if p | N. So, we define a
new factor set b(o, 7) of Gy by

b(o,7) = a(o,7)s(0) ts(t) " ts(or)  for 0,7 € Gy,

for an arbitrary finite p. The assertion of Theorem 2 [20] is nothing but
b(o,7) =1 for all 0,7 € K, when p does not divide N.

Let now g, g’ be two adeles in G; then b(gy, gy), a(gp, g,) and s(gp) are
all well-defined. These will be denoted by by(g,9'), ap(g,4¢’) and sy(g), re-
spectively. Since by(g,¢") =1 for almost all p, we can define a factor set by
of Gy by

balg.g) = [] b(9.9), (9.9 €Gn),
p:finite



ON MULTIPLIER SYSTEMS AND THETA FUNCTIONS 19

the product being extended over all places of F'. The factor set by determines
a central group extension G of Ga. Namely, G is realized as the set of all
pairs (g,¢), (g € Gy, ¢*> = 1), with the group operation defined by

(9,0)(g",¢") = (99, balg,9")¢C)

between two such pairs. We denote the element (1 () € Ga by €. The group
Z of all C is contained in the center of G, and C — ( gives an isomorphism
between Z and {1} C F.

Let N be a natural number divisible by 4, and let K be a compact sub-

group of G5 defined by
K =] %,
p

For any a € Gy, its p-component a, = prya belongs to K, for almost all p.

Then it follows from Theorem 2 [20] that K 3 k + (k,1) € Gy is a group-
theoretical isomorphism. Whenever no confusion is possible, we identify the
image of the above mapping with K, and denote (k, 1) simply by k.

Through this identification K C Gy is given a structure of a compact
topological group, and the topology coincides on K C ép with the previous
covering topology of ép because s(0) in Theorem 2 [20] vanishes on a suitable
neighborhood in Gy of 1.

For a € Gy, the product of all prya for finite p will be denoted by proa
and called the finite component of a. The infinite component proca of a is
the product of all prpa for infinite p. We put Go = proGa, Goo = proGa,
and more generally we write Xg = proX and Xo = pr,,X for any subset X
of G A-

Kubota constructed a global covering group Ga of Gy which coincides
locally with the covering stated in Theorem 1 [20] (see [20] for more detail).
Note that the subsets of the group K will also be identified with corre-
sponding subsets of Ga. Then Gy — Gy = Gy /Z is an 2-fold covering map
because of K N Z = 1. Since Z can be regarded as a subgroup of ép for
every p, Gy is a semi-direct product of ép. The covering Ga — Gy is not
trivial, because it is not locally trivial at finite places (see [19]).

The group of principal adeles in G will be identified with G and it is a
discrete subgroup of G. Let a € G be a principal adele. Then sp(a) =1
for almost all p. Therefore

@) = H sp(a)
p

is well-defined. Moreover, ay(c,3) = 1 (o, 8 € GF) for almost all p and
from the product formula of the norm residue symbol follows

Hap(a,ﬁ) =1.
p
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This implies by (o, ) = sa(a) " tsa(B8) " tsa(afB). So, if we put & = (a, sp ()
for o € G, then

af = (aB,ba(a, B)sa(a)sa(B)) = (aB, sa(ap)) = af
for a, 8 € Gp. Thus, a — & gives an isomorphism of Gg onto the group
Gr C Gy of all &; Gp is a discrete subgroup of G.
In the rest of this subsection, we always assume N > 0 is divisible by
4. Let o be the ring of integers of F' and GLga(0o)x be the group of all
o € GLo(F) with 0 = 13 (mod N), where 15 is the identity matrix.

Proposition 1 [20]. For an element o = (CCL Z) of I' = GLa(o)y =

Gr N KyGs, put
c) )
- if ¢ # 0,
x(0) = <d ,
1 if c=0,
where (§) is the quadratic residue symbol in F'. Then we have sy (o) = x(o).

Proposition 2 [20]. Let x be as above. Then we have x(o7) = x(0)x(7)
for all 0,7 € I". In other words, x is a character of I'.

2.6. Automorphic forms on the adelic metaplectic group. In this
subsection, we recall the theory of Hilbert modular forms of half-integral
weight and the theory of automorphic forms on the metaplectic groups.
The contents of this subsection are mainly taken from Hiraga and Ikeda
[15]. For more detail, for example, see [33].

Let F' be a totally real number field and v; be the nontrivial additive
character of A/F such that the infinity component of v is given by z —
e(x) = €™ for every real place. Let S be a set of bad places of F, which
contains all places above 2 and co. We also assume that S contains all
non-Archimedean places v such that cy, = 0. Set

SLa(A)s = [ ] SLa(Fy) [ SLa(00).
vgS veS
The double covering of SLy(A)g defined by the 2-cocycle [],cg ¢v(91,0; 92,0)

is denoted by SLa(A)g, where ¢, is the Kubota 2-cocycle for SLy(F). For
S C Sy, we can define an embedding

12® : SLa(A) g — SLa(A)g,

by
(6.6 (@) T sula)]

vESH\S

P

Here, s, : SLa(0,) — SLa(0y) : g = [gv, Sv(gy)] is the unique splitting of the

P P

covering SLa(0,) — SLa(0,) for v ¢ S. The adelic metaplectic group SLa(A)
is the direct limit projlim SLa(A)g. Then SLa(A) is a double covering of
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e~

SL2(A) and there exists a canonical embedding SLa(F,) — SLa(A) for each
place v of F'. It is well known that SLo(F') can be canonically embedded into

P

SLa(A). In fact, for each v € SLa(F), the embedding is given by v +— [y, 1]
for sufficiently large S.

Let ], SLa(F,) be the restricted direct product with respect to s, (SLa(0y)).
Then there is a canonical surjection []) SL2(F,) — SLa(A). The image of

(9v)v € [1, SL2(F,) is also denoted by (g,),. Note that this expression is
not unique for an element of SLa(A). If © = (), € A is an adele, we define
u# () and u®(z) by u# () = (u¥#(zy)), and u®(z) = (u¥(2,)),, respectively.
Here, if we write [y] for [y, 1] € SLa(Fy),

o= 1) cw=|(Y)] wer

Similarly, if @ = (ay), € A is an idele, then we put m(a) = (m(ay)),, where

m = (8 5)] wern.

P

Recall that a function f on SLy(A) is a genuine function if f(g[l2,(]) =

Cf(g) for all g € SLa(A) and ¢ € {£1}. Suppose that a family of genuine
functions f, is given for each place v of F'. We assume that there exists a set
of bad primes Sy such that f,(g,) = 1 for g, € s,(SLa(0,)), v ¢ Sp. Then
one can define a genuine function [[, f, by

<1:[fu>((gv)v) = E[fv(gv).

Let SLa(A ) be the finite part of SLa(A) and I"f a compact open subgroup of
SLa(Af). The inverse image of I'; in SLa(A) is denoted by X #- A character

€ : Ty — C* is called a genuine character if €'([12, —1]) = —1.

Let {c01,- -+, 005} be the set of infinite places of F. The embedding F' —
R corresponding to oo; is denoted by ¢;. Put I' = SLo(F) N (I} x SLa(R)").
As usual, we embed SLo(F') into SLa(R)™ by v +— (¢1(7),- -+ ,tn(7y)). Sup-
pose that k = (K1, -+, kp) € Z" with k1, -+ ,kn > 0. We define a factor of
automorphy J¢#+(1/2)(~, 2) for y € I and z = (21, -+ , 2z,) € h” by

T2 (o 2y = TT bl 1) T3, 1), 20024,
=1

<00

Let M, (1/2)(I",€') (respectively S, (1/2)(I",€')) be the space of Hilbert
modular forms (respectively Hilbert cusp forms) on h™ with respect to the
automorphy factor J€»#+(1/2) (v, 2).

Thus each element h(z) € My (1/2)(I", €) satisfies

h(1(z) = T D (9, 2)h(z)
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for all v € IV and z € h™.
The element h(z) € M, (1/9)(I",€') can be considered as an automorphic
form on SLy(F')\SL2(A) as follows. For each g € SLa(A), there exist v €
—_—~~— N

SL2(F'), Joo € SLa(R) and gf € f’f such that g = 7gscgy by the strong
approximation theorem for SLy(A). Then we set

én(9) = 1(Goo ()€ (G7) " TG (Go0r, D>+ !
=1

Here, i = (v/—1,--- ,v/—1) € h™. Then ¢} can be considered as a genuine
automorphic form on SLa(F')\SL2(A). We set

Ay 1/2) (SL2(F)\SLa(A); Ty, €') = {¢n | h(2) € My 1) (I, €)1,
A0 ) (SL2(F)N\SLa(A); Ty, €') = {¢n | h(2) € Spy(aya) (T, €)}-

For each ¢, € AH+(1/2)(SL2(F)\SL2(A); f/f, 6/), h € MK+(1/2) (F) is recov-
ered as follows. For z = (z1,--- , 2z,) € h", there exists goo = (goo; ** * s Joon,) €

SLa(R)™ such that z = goo(i). Then we have

h(z) = ¢n(goo H] Goo,)> 1) 25T

We set

Ay (1/2)(SLa(F)\SLa(A)) = U oy A 1/2) (ST (F J\SLa(A); T, ),
Azlfaﬂ)(SLg(F)\SLg(A)) = U, ,)AzlfFl/2)(SLQ(F)\SLQ(A); f"f, ),
where (I #,€) extends over all pairs compact open subgroups I ¢ C SLa(Ay)

and genuine characters € : Iy — C*.

—_—~— —_—~—

Then by right translation p SLa(Af) acts on AK+(1/2)(SL2( )\SL2(A))

and ACTF1/2)(SL2( )\SLQ( )). The action of SLQ(A]") on U oy M1 /2) (T, €')

is also denoted by p. Note that the right translation p mduces the left action
of the Hecke algebra HSLQ(Af) on A, (1/2)(SLa(F )\SLQ( )) by

P

p(d)e(g) = d(g1)¢(gg1)dgr (¢ € H(SLa(Ayp))).

/SL/JKJ»)/{il}

Assume that

h(z) = Zc(f)e(fz) S Mn+(l/2)(F/76/)'
(eF
Then one can easily show that

p( Z¢1 v 533 fz) (33 S Fv)

el
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if v is a non-Archimedean place of F. Similarly, suppose that a € F'* is a
totally positive element. Denote by a; the finite part of the principal idele
a € F*. Then we have

p(m(as))h(z) = a2 h(a"2z),

where = #~(1/2) = H?:l Li(g,)*'ﬂ*(lﬂ)_

For irreducible cuspidal automorphic representation p of SLa(A), we de-
note by p[x + (1/2)] the space of vectors of p which has weight ; + (1/2) at
the real place co;. Then we have

—_~—

AT, 1y (SLa(F)\SLa(B)) = @, ol +(1/2))

Here, p extends over all irreducible cuspidal representations such that its oo;-
component is a lowest weight representation with lowest weight x; + (1/2).

For each pair of fractional ideals a and b such that ab C op, we define a
congruence subgroup I'[a, b] C SLa(F') by

T[a, b] = {(ﬁ Z) € SLo(F)

Similarly, if v is a non-Archimedean place, we define a compact open sub-
group Fv[am bv] C SLQ(FU) by

Ty[a, by) = {(Z Z) € SLy(F,)

Put ' =o', 405] and T, = [',[0, 1, 40,], where 0 is the different of F/Q.

Suppose that k = (k1, -+ ,kn) € Z", K1, ,kn > 0. Let n € 0 be a
unit such that Np/g(n) = [[;;(=1)". We fix such a unit 7 once and for
all. Put ¥(x) = ¥1(nz). In this setting, we have ¢y, = 0, = 00, for every
non-Archimedean place v. There exists a genuine character ¢, : I, — C*
such that wy, (gv)Pos = €s(gy ')go,s for each non-Archimedean place v by
the following lemma [15].

a,d € op, b € a, ceb}.

a,d € 0y, b€ ay, cebv}.

Lemma 1.1 [15]. Suppose that F' is non-Archimedean. Let o be the ring of
integers of F', ¢ a nontrivial additive character of I’ and ¢, the order of 1.
Put ¢ = ¢y = p and I' = I'[c!,4c]. Let ¢9 € S(F) be the characteristic
function of 0. There exists a genuine character ¢ : I' — C* such that

wy(g)do = ¢ H(g)po forallg el
Proof. One shall show that

ay (1)
ay(a)

o (a€o”, bec ),

wy (u (b)m(a))go =

wy(u¥(e))go = ¢o  (c € 4e).
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Here, ay(-) is the Weil constant. The first equation is easy. The second
equation follows from the fact that

s ([ 3)]) vt = st e

is invariant under {u®(c) | ¢ € 4c}. Note that ¢o(2t) is the characteristic
function of 27 1o. Since I is generated by these elements (modulo the center),
the lemma follows. g

Here, ¢, € S(F)) is the characteristic function of 0,. We define a factor
of automorphy j*+(/27(~, 2) for y € T and z = (21, , z,) € h* by

5+ W25,z = T eollr 1) [L st 1,2,
1=1

v<o0

We simply write j57(1/2)(~, 2) for j5t(1/27(~, 2) when there is no fear of
confusion.

Let I', k and 7 be as above. We denote by M, (1/9)(I") the space of Hilbert
modular forms for I with respect to the factor of automorphy j#+(1/2) (v, 2).
We also denote by S, (1/2)(I') the subspace of M, (/9)(I") which consists
of all cusp forms.

Note that when k1 = --- = Kk, = 0 and n = 1, the automorphy factor
§1/2(~, z) satisfies the formula
(8) 00(7(2)) = 5"%(7, 2)00(2),

where 6y(z) is the basic theta function given by

Oo(z) = ) e(€%z).

E€op

When F = Q, the definition of j5T(1/2) (v, 2) agrees with classical definition.
For a proof of the formula (8), one can consult Shimura [32], although the
normalization of theta function in [15] is different from that given in [32].
In particular, 6y(z) is 6(22,0,lp) in Shimura’s notation.

2.7. An analog of the Dedekind eta function in Hilbert modular
case. In 1983, Feng constructed an analog of the Dedekind eta function
n(z) in the Hilbert modular case. She constructed Hilbert modular forms
of weight 1/2 with respect to the full Hilbert modular group SLs(0), where
0 is the ring of integers of a totally real number field. The contents of this
subsection are mainly taken from Feng [6] and Shimura [31].

Put e(z) = €2™* for z € C. Let b be the complex upper half plane. The
Dedekind eta function 7(z) defined by

o0

n(z) = e(1/24) [[(1 —e(nz)) (z€b)

n=1
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is a modular form of weight 1/2. This is a theta function;
(o9}
n(x) = 3 x(m)e(m?z/24),
m=1
where x(m) = (2) is the Dirichlet character modulo 12.

Let F' be a totally real number field of degree n and o the ring of integers
of F. Assume that n > 1. There is an embedding a — (a(V),---  a(™) from
F into R™, where a — a®) € R for k = 1,2,--- ,n are all the isomorphisms
of F into R. Tt induces the embedding o +— (M, --- (™) from SLy(o)
into SLy(R)", where o +— a¥) for 1 < k < n are the entrywise embeddings
from SLa(0) into SL2(R). An element a of F' is said to be totally positive if
a®) > 0 for all k. In this case, we write a > 0.

The group SLa(0) acts on h™ by the rule

06(21, e 7Zn) = (a(l)(’zl)7 Tt 7a(n)(zn))7
where

(k) (k)
a(k)(zk):a 2 +b for o — <a b

c®) 2 + k) d> € SLa(0), (z1,---,2n) €H™.

By the embedding above, we may consider every a € F as an element
of R™. For z = (21, ,2,) € C", set ep(az) = e(aWz + -+ aMz,). If
z € h™, put

0(z) = er(u’z/2)
and ’

(cz+d)'"? =[] (c®z +d")2  for (Z Z) € SLy(o).
k=1

From the result of Shimura [31], we know that

0(72) = j(7,2)0(2)  for every 7 = (ﬁ Z) Ty, ze,

where
Ty = {(Z Z) €SLy(0) |be20,cc 20}

and j(v,z) = e(7)(cz + d)'/? with a root of unity e().
Let 12 be the identity matrix of SLa(0). For an integral ideal a of F', put

I'y = {y € SLa(0) | v = 12 mod a}.

Let ¢ be an integral ideal of F', d the different of F//Q and w a primitive
ideal character of F' with conductor ¢P, where P is the product of some
archimedean primes of F'. Suppose that for b € o,

w(bo) = sgn(b)" = H sgn(b"N™F  if b=1 mod ¢,
k=1
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where r = (r1,---,r,) € {0,1}". For b € F*, set

w(bo)sgn(b)” if (b,c) =1
0

b) =
wo(b) otherwise.

This is a primitive character of o/c. Put |r| =r; + -+ 7.

We give a precise definition of a Hilbert modular form. Let I' be a con-
gruence subgroup of I'y. A holomorphic function g on h” is said to be a
Hilbert modular form of weight 1/2 with respect to I' if we have

9(v,2) = j(v,2)9(z) for every y €T

We prepare the following lemmas to introduce Theorem 1 [6] and its proof.

Lemma 4 [6]. Let p be an element of F* such that pcd + ¢ = 0. The Gauss
sum of w is defined by

T(w) = Y sen(pa) w(pacd)er(pa)

aco/c

= sgn(p)w(ped) Y wola)er(po).

aco/c
Here, for u € o, put ep(u) = exp(2miTr(u)).
If w? = 1, we have 7(w) = il" N (c)!/2.
Lemma 5 [6]. For u € F and an ideal a of 0, we have

Zep[(a+u)2,z/2]: p(a) LN (—iz) 1/226 —b?/(22))er(bu),

aca bea

where z € b, N(—iz) = [[}_;(—izk), a = 0 'a~! and p(a) is the volume
Vol(R"™/a) of R"/a.
Theorem 1 [6]. Let w,wp, and ¢ be the same as above. Suppose that

(1) w?=1;

(2) ¢0 is a principal ideal generated by a totally positive number &;
(3) ¢ is divisible by every prime factor of 2;

(4) we have u? = 1 mod 2¢ for every u prime to c.

Then
o) = S entwer (52)

ueo

is a Hilbert modular form of weight 1/2 with respect to a congruence sub-
group I'y C I'g for some a. Moreover, for every v = (CCZ Z) € SLy(0) we

have

f((2),w) =" (7,2) f(2,w),
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where j*(7, z) = €*(7)(cz+d)/? with a root of unity €*(v). In fact, we have

0 1
“ATIN (=2 ify =
(N ity = (©
() = .
T2 = w51 /2) ity =, ;’) (b€ o)
J(v: %) if v € T,
where N(—iz) = [[p_;(—izg) for z = (21, ,2,) € h™.
Proof. Put

Zwo u)ep(u?z/2).
uco

By Lemma 5 [6], we have

h(z,w) = Z wo(u) Z ep(z?2/2)

uco/c p—uec

= u(Q)IN(=iz) T2 Y en(—0?/(22)) D wolu)er (ub)

bee u€o/c

= u(0) "N (=iz) Pr(w) D sen(b) w(bdo)er(—b*/(22)).

Set bd = v with ¢ of assumption (2); then

> sgn(b) w(bdo)er(—b7/(22)) = Y sgn(v)w(vo)ep(—v?/(226%))

be(6-1) vEo

From Lemma 4 [6], we get
h(z,w) = i"IN () V2N (—iz)"V2h(=1/(0%2),w).
Since f(z,w) = h(z/d,w), we have
F(=1/2,w) = (=) "IN (=i2) 2 f (2, w),

By assumption (3), we have

2 _
Tr<u 1>EO mod Z

26
and hence f(z+0b,w) = ep(b/(20))f(z,w). Note that ep(b/(29)) is a root of
unity.
Now we write
flz,w) = Z wo (ug) Z er(u®z/(26)).
up€o/c u—ug€c
We observe that

9) Y er(u?z/(26))

u—ug€Ec
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is a special case of function of [31, Proposition 7.1] with S =P =1, y =1,
L=c g=uyh=0a=0"'and a> 0. So from [31, Proposition 7.1],
we know that (9) is a Hilbert modular form of weight 1/2 with respect to a
congruence subgroup I'y of I'g for some a C 20 and

Y er(W(2)/(20)) = j(1,2) Y er(u’z/(26))

for every v € I'y. Hence

f(y(2),w) = (v, 2)f(2,0)  for every y € I'y.

From assumption (4) of the theorem, it is easy to see the only odd divisor
of N(c) is 3. O

Feng applied this to the real quadratic field F. If a € F', denote by a the
conjugate of a and put N(a) = aa.
Lemma 6 [6]. Let u be an algebraic integer of Q(v/d) with a square-free
positive integer d.
(1) If d = 1 mod 8 and (u,2) = 1, then u? = 1 mod 8.
(2) If d = 1 mod 24 and (u,6) = 1, then u?> =1 mod 24.

Theorem 2 [6]. Put F' = Q(v/d) with a squarefree integer d > 1. Suppose
that F' has a unit A > 0 such that N(\) = —1. For k = 1,2, set

fe(z) = wio(w)er(u’z/(2c,AV4d)),
ueo
where ¢y = 4,co = 12, and

() (—1)IN@=1/2" for (u,2) =1
wio(u) =
10 0 otherwise,

o) f 6) =1
wao(u) = (N(“)> or .)
0 otherwise.

If d =1 mod 8, f1 is a Hilbert modular form of the type described in
Theorem 1 [6]. If further d = 1 mod 24, the same is true for fs.

Proof. The different of Q(v/d)/Q is (v/d). Then the theorem follows from
Lemma 6 [6] and Theorem 1 [6]. O

—_—

3. LOCAL THEORY, GENUINE CHARACTERS OF SL2(0)

Let F' be a finite extension of @, until the end of this section. Let o be
the ring of integers of F' and p the maximal ideal of 0. Let ¢ be the order of
the residue field o/p and 0 the different of F'/Q,.
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Z) € SLy(F), put 2(g) = cif ¢ # 0 and z(g) = d if ¢ = 0.

The Kubota 2-cocycle on SLa(F') is defined by

c(g,h) = (x(g9)z(gh), z(h)z(gh))r
for g,h € SLa(F), where (-,-)r is the quadratic Hilbert symbol for F. Let
SLa(F') be the metaplectic group of SLo(F). Set-theoretically, it is

{[977—] | g E SLZ(F)vT € {il}}

Its multiplication law is given by |[g,7][h, o] = [gh,Toc(g,h)]. This is a
nontrivial double covering group of SLy(F'). Put [g] = [g, 1]. For a subgroup

—_—~—

H of SLy(F), the inverse image of H in SLy(F) is denoted by H. A function

P

For g = (Z

ep : SLa(0) — C is genuine if ep([l2, —1]y) = —ep(y) for all v € SLy(0). We

—_~—

determine the number of genuine characters of SLy(0).
Fora € F*,7 =41 and b,c € F, put

wa=[(5 £)]. o[ 3]
o () A )

For k € Z such that k > 0, we define the subgroups U+ (p¥), U~ (p¥) and

—_~—

A of SLy(0) by Ut (p¥) = {ut(b) | b € p*}, U~ (0%) = {u™(¢) | ¢ € p}

—_—~—

and A = {m(a,7) | a € 0%}, respectively. Note that SLa(0) is generated by
Ut (o), N and m(1,—1).

Lemma 1. Put M = min{ord(a® — 1) | a € 0*}. Then we have
0 (¢=4)
1 =
M= (¢=3)
2 (¢=2F#Q)
3 (F=Q).

Proof. Let m be a prime element of F. If ¢ > 4, then there exists a € 0*
such that > — 1 € 0*. Thus we have M = 0. If ¢ = 3, then a®> — 1 € p for
all a € 0*. Since (1 +1)?2 — 1 = 7(7 +2) ¢ p?, we have M = 1.

In the case ¢ =2, a®> — 1= (a—1)(a+ 1) € p? for all @ € 0*. If F # Q,
then we have 2 € p2. Since (7 +1)2 — 1 = 7(7 +2) ¢ p3, we have M = 2.
It is well-known that M = 3 if F' = Q». O

The derived group of a group G is denoted by D(G). Since [m(a,7),u™ ()]
=uT((a® — 1)b) and [m(a,7),u"(c)] = v~ ((a=2 — 1)c) hold, we have

(10) U*(p™), U™ (p") € D(SLa(0))
by Lemma 1.
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Lemma 2. Suppose that ¢ is even. Then there exists » € 1 + 40 such that
(r,x)p = (—1)"% for 2 € F*.

Proof. Put r = 1 4 4c for ¢ € 0. We show that there exists ¢ such that
F(y/r)/F is an unramified quadratic extension. We denote the residue field
of alocal field L by k(L) and the image of an element u of the ring of integers
of F(y/r)in k(F(y/r)) by a.

We define a map p : k(F) — k(F) by p(t) = t? —t for t € k(F). We have
p(t) =p(1—t) # p(s) forall s € k(F)\{t,1—t}. Since [k(F) : p(k(F))] = 2,
there exists ¢ such that ¢ ¢ p(k(F')). Then it is known that a polynomial
X? — X — ¢is irreducible over k(F). Put y = (1 —/7)/2 and f(X) = X% —
X —c e o[X]. Since f(y) = 0 and f'(y) = 25— 1 = —/r 0, k(F)(7)/k(F)
is a quadratic extension and k(F'(y/7)) = k(F(y)) equals k(F)(y). Therefore
F(y/r)/F is an unramified quadratic extension (see [26, §32:6]). O

Lemma 3. Suppose that ¢ is even and F' # Q,. Then there exist no genuine
characters of SLa(0).

Proof. Let b,c € o such that r =1 — be € 0* and put ¢ = (r,b)p. We have
(11)

- + r b - ) +(.—172
0@ 1= (e g )] = o MO Out )

When F/Q is a ramified extension, we choose b,¢ € 20 such that r

P

satisfies the condition in Lemma 2. We have U™ (p?), U~ (p?) € D(SLa(0)) by

(10). Then we have m(r,() € D(SLa(0)) by (11). Let 7 be a prime element
of F. Set b’ = br and ¢ = en~!, which lie in p. We have (1 — b/, b/)p =

(r,bm)p = —(. Thus we have m(1,—1) € D(SL2(0)) and there exist no

genuine characters of SLa(0).
Next assume that F'/Qo is an unramified extension and that F' # Qy. We

have U™ (o), U™ (0) C D(SLa(0)) by (10). Substituting 1 for ¢ in (11), we

—_—~—

have m(1 — b,() € D(SLa(0)), whenever 1 —b € 0*. Since ( = (1 — b,b)p

—_—

equals 1, we have m(1 —b,1) € D(SL2(0)). Similarly, substituting —1 for ¢
and replacing b with —b in Equation (11), we have m(1 —b,(1 —b,—1)p) €

D(SLz(0)). Thus it suffices to show that there exists b such that (1—-b,—1)p
equals —1.

Since F/Qq is unramified, F'(v/—1)/F is a ramified extension. Thus there
exists u € 0™ such that (u,—1)p = —1. Since [0 : 1 +p] = ¢ — 1 is odd,
we may assume that u € 1 + p. Then there exists b € p such that u=1-1
satisfies (u, —1)p = —1. O

An additive character e, of Q, is defined by e,(z) = e(—z) for all
x € Z[1/p]. We define a nontrivial additive character 3 of F' by x
ep(Trp/g,(Bz)) for B € F*. The order of ¢ is denoted by ordyy € Z,
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which is defined by ¥g(p~°¥s) = 1 and ¢s(p~°"¥s~1) £ 1. We have
ordyg = ordd + ord}.

Let S(F) be the Schwartz space of F. The Fourier transformation ¢ of
¢ € S(F) is defined by gZ) = [z o(y)s(xy)dy. Here, dy is self-dual on the
Fourier transformation. In other Words dy is the Haar measure such that
the Plancherel’s formula [ |¢(y)[*dy = fF |6(y)|2dy holds, where | - | is the
absolute value on C.

We denote the characteristic function of a subset A of a set X by ch A. In
the case F' = Q,, we have the volume vol(p™Z,) of p"Z, equals pm—(ordB/2)
and CWP = vol( mZ,) ch p~(mterdf)z, - for m e Z

Put Ay, = [ #(z)Ys(az®)dz and By = fF Yg(—a?/4a)dx for a €
F* and ¢ € S(F). Now let |- | be the absolute value on F. There
exists a constant ay,(a) € C called the Weil constant such that A, =
Qg (a)|2a|~'/2 B, holds. Tt is known that s (ab?) = ay,(a) for a,b € F~
and that ay,(a) = ay(aB), where ¢ = 1;. Moreover, we have ay,(—a) =
(@) and ay, (a)® =1 (see [29, 35]).

The Weil representation wy, is a representation of SLa(F') on S(F). For
¢ € S(F), we have

wyy (m(a, 7))p(x) = Tons, (1o, (~a)lal'/*¢(ax)
(12) wyy (uT (b)) d(x) = 1 (ba?) ¢ ()
Wy (N)d(x) = |2/ ey, (—1)$(—2x).
Since Si_g\(E) is generated by the above elements, wy,, is determined by these

formulas. In particular, we have wy, ([g, T])¢ = Twy, ([9])¢-
We define a map s : SLa(0) — {£1} by

1 c € o ;
(13) s(g) =4 (¢, d)p cep\{0} forg= <Z d> € SLy(o).
<—1,d>F c=0

If ¢ is odd, we have

(g) = 1 cd=0
= (c,d)%xde cd # 0.

Recall that the double covering Sf;(]?) — SLy(F) splits on SLa(o0) if and
only if ¢ is odd. The splitting is given by g — [g,s(g)]. Thus if ¢ is odd, a
map er : SLa(0) — C* defined by €r([g, 7]) = 7 s(g) is a genuine character.
Lemma 4. Suppose that ¢ is odd. Let ep : S/L_Q\(;) — C* be the genuine
character defined above. It satisfies wy,([g,7])ch o = ep([g,7])"'ch o if

P

ordiyg = 0. If ¢ > 5, then it is the unique genuine character of SLa(0).
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Proof. The first part of this lemma follows from straightforward computa-
tion. If ¢ > 5, then by (10) we have U™ (o), U (0) C D(SLz(0)). Since
N = u(=1)u"(1)ut(=1), SLy(0)? is trivial. Thus there exists a unique
genuine character ex of SLa(0). O

For a € Z, we define a subset S(p®) of S(F) by S(p*) = {f € S(F) |

f
Supp f C p°}. For a < b€ Z, put S(p?/p°) = {f € S(p*) | f(x +1) = f(z)
for all t € p®}. For f € S(F)\{0}, there exists a pair (a,b) such that

feSp/p).
Lemma 5. Suppose that ¢ = 3 (resp. F' = Q). If ordypg = —1 (resp. —3),
then the group SE;(/O) preserves S(o/2p) with respect to wy,. We define
f e 5(o/2p) by

1 ifzel+2p
(14) fle)=¢-1 ifze—-1+2p

0 otherwise.
Then the subspace of odd functions in S(0/2p) is Cf and there exists a
genuine character g of SE;(;) such that wy, (g, 7]) f = ,ug([g, )~Lf.

In the case ¢ = 3, there exist three genuine characters of SLQ( ), € and
pg, where pg extends over all elements 3 such that ordyg = —1. More-
over, the value pg(u™ (1)) = 1p(—1) is a primitive 3rd root of unity, which
determines fig.

Proof. Suppose that F' = Q2 and that ordyg = ord = —3. It is clear that

SLa(0) preserves S(o/2p) with respect to wy,. If ¢ € S(o/2p) is an odd
function, then ¢ satisfies ¢(x) = ¢(—z) = —¢(x) for all x € p. Thus we
have ¢(p) = 0. Since F' = Q2, we have 0™ = (14 2p) U (—1 + 2p) and then
¢(z) = ¢(1)f € Cf.

—_——

Thus there exists a genuine character p5 of SLa(0) such that wy, ([g,7]) f =
ps(lg, 7)) f. Since u™(—1) = NuT(1)N~! and N = v (=1)u~(1)ut(-1),
the value pg(u™ (1)) determines yug.

Suppose that ¢ = 3 and that ordiyg = —1. Then we prove the first part
of the lemma similar to the case above. By [16, §2.10], SLa(0)® has order

3. Thus there exist three genuine characters of SLa(0). We have f(z) # 0
if and only if 2 € 0*. By (12), we have wy, (u" (b)) f(z) = Y (ba?) f(z) for
b €o. If f(z) # 0, since we have 22 — 1 € p by Lemma 1, pg(u(b))~! =
Y(bz?) = a(b). In particular, ug(u™ (1)) = 1(—1) is a primitive 3rd root
of unity.

For v € F such that ordy, = —1, if g = 1, then we have ¢g(1) = 1,(1)
and then /v € 1+p. Since we have [0™ : (14+p)] = 2, the genuine characters

of SLa(0) are ep and ug, where pg extends over all elements [ such that
Ordl/)lg =—1. O
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Lemma 6. In Lemma 5, suppose that F' = Qg and that ordyg = —3. Then
the value pg(u™ (1)) = e(B) is a primitive 8th root of unity, which determines

P

p3. Moreover, there exist four genuine characters pg of SLa(Z2), where pg
extends over all elements § such that ords = —3.

Proof. If F' = 2, we have ordyg = ord3. By Lemma 5, there exists a
genuine character of SLa(Zs). Since SLa(Z2)? has order 4 by [16, §2.10],

P

the number of genuine characters of SLa(Zs) is 4. We have wy,, (u™ (b)) f(z) =
e(—Bbz?)f(t) for f in (14) and b € Zy by (12). If f(z) # 0, then we have
22 — 1 € 873 and e(—Bbx?) = e(—Fb). In particular, ug(u (1)) = e(B) is a
primitive 8th root of unity.

For v € Q3 such that ordy = —3, if ug = 1, then we have e(f) = e(y)
and then 3/y € 1+ 8Zy. Since we have [Z) : (1 + 8Z3)] = 4, there exist
four genuine characters pg of SLa(Zs), where pug extends over all elements
(B such that ords = —3. O

Given 3, let ug be the nontrivial genuine character given in Lemma 5 or
Lemma 6. Then we have

uslla) =s(s(50) 9= (1 ) €5Lao)

where k(f3,g) is a continuous function for g. In the case FF = Qy and
ord f = —3, we have

Ya(—(a +d)c+ 3c) ceZs

(15) (B, 9) = {wb’((c —b)d—3(d—1)) c€ 2Zs.

In the case ¢ = 3 and ordyg = —1, we have

(16) K(B,9) = vs(~(a+ d)c+bd(c* - 1)).

Remark. Suppose that K’ is a compact open subgroup of SLy(0). Let
N : K’ — C* be a genuine character. Then one can show that there exists
a continuous function £’ on K’ such that N ([g]) = s(g)x'(g) for all g € K.
As we do not need this result for the rest of this paper, we omit its proof.

Put K = SLy(0) and G =SLo(F). It is known that K (resp. K) is a

compact open subgroup of G (resp. é) Let (m, V') be an irreducible smooth
representation of G. For a character A of K, we define a set (7, V)* by

(m, V)V ={f eV |n(g)f =Mg) f forall g € K}.

In particular, we consider (wy,,S(F ))* for a genuine character \ : K —
C* such that A(u™(1)) # 1. Since A(ut(1)) # 1, A is one of the characters
fp in Lemma 5 or Lemma 6. In particular, we have ¢ = 3 or ' = Q2. When
q =3 (resp. F' = Q3), we have that ordyg = —1 (resp. —3).
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Proposition 1. The representation c—Ind[G:()\ is irreducible supercuspidal.
We have )

1 m= c—Ind?()\

0 otherwise.

dime (7, V)* = {

Proof. Put M (z) = M(gzg™') for g € G. We shall prove that
(17) Hom iz z(A,A) =0 for g ¢ K.

Put m(a) =diag(a,a™1) for a € F*. Since it is known that
SLo(F) = | J Km(z")K,
n=0

we have only to consider the case ¢ = m(x") for n > 0. Since u™ (1) €
g 'KgN K, we have A(u™ (1)) # M\ (u" (1)), which proves (17).

It is known that (17) implies the first assertion (see [4, §11.4]). Although
[4] treated the GLj case, the proof is also valid in our case. By [4, §2.5], we

have Homé(c—lndg)\, 7) ~ Hom (A, ), which completes the proof. O

It is known that
Wy = w:;ﬁ @ w;ﬁ,
where w;rﬁ (resp. w;ﬁ) is the restriction of wy, to the even (resp. odd)
functions. Note that these restrictions are irreducible but not isomorphic,

because w:;ﬁ is not supercuspidal. We have w v = c—Ind?{uB by Proposition

1. Since A(u™(1)) # 1, we have dim(w;rﬁ,S(F)J“)’\ = 0 by Proposition 1,
where S(F)7 is the subspace of the even functions in S(F).
If g = 3 and ordyg = —1 or if F' = Q2 and ord3 = —3, then we have

L A=pg

18 di S(F)* =
(18) 1m<C(w1/J6’ (7)) {O otherwise.

Now we assume that ¢ is odd. By Lemma 4, there exists a genuine

—_—

character ep : SLy(0) — C* and we have wy, ([g,7]) ch 0 = er([g,7])'ch o,
where ordyg = 0.

Lemma 7. Put T = (wy,, S(F))". Then we have

T — C ch p~o4%s/2  if ord g =0 mod 2
#7 o otherwise.

Proof. Put D = ordy. Suppose that D = 0. Then we have ex(UT(0)) =

1 and it is clear that SLa(o) preserves S(o/0) = C ch o with respect to
wys- Then we have Ty = C ch o = C ch p~P/2. Since we have Wi (9) =

~——

wy, (m(t, 1)gm(t,1)7") for t € F* and g € SLy(0), the same is true for T
for all t € F*. Thus we have covered the case where ordig is even.
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Next assume ordyg is odd. By the same argument as in the previous
paragraph, it is enough to consider the case D = 1. Then we have wy, (h)p =
er(h)1¢. By (12), we have ¢5(br?) = 1 for all b € o when ¢(z) # 0. In
particular, since ordbz? > ordz? > —1, we have ¢ € S(o).

We assume ¢ € S(p?/p®) such that @ > 0 is maximal and b is minimal. A
calculation of the Fourier transformation shows that ¢ € S(p~'~?/p~1-9).
Since a¢5(—1)q3(—2m) = ¢(z) by (12), we have ¢ € S(p*/p’). Then a =
—1 — b is less than 0, which contradicts a > 0. O

Set F*? = {22 | ¥ € F*}. Assume that ¢ = 3 or F' = Q2. By Lemma 5

and Lemma 6, there exist genuine characters pg of SLa (o).

Lemma 8. When ¢ = 3 (resp. F' = Q2), we put T = (wy,, S(F))"7, where
v € F* such that ordy, = —1 (resp. —3). Then we have

1 if B/y € F*2

19 dim T =
(19) s {0 otherwise.

In particular, when §/y € 1 +p (resp. 1+ 8Z3), we have Tg = Cf, where f
is the function in (14).

Proof. We prove the lemma in the case ¢ = 3. The proof for FF = Qs is
similar. Put D = ordyg. Then we may assume that D € {0,—1} in the
same way as the proof of Lemma 7. By Proposition 1 and (18), we have
dim T3 = 0 when D = 0. Suppose that D = —1 and that ¢ € T} is nonzero.
Then by Lemma 5, we have ¢ € Cf. Lemma 5 shows that f lies in T} if and
only if 3/y € 1 +p. We have 1 +p C F*2, which completes the proof. [

4. MULTIPLIER SYSTEMS FOR SLo(0)

From now on, let F' be a totally real number field such that [F' : Q] = n.
Let v be a place of F' and A the adele ring of F'. We denote the completion
of F at v by F,. If v is an infinite place, we write v | co. Otherwise, we
write v < oo. For v < oo, let 04, p, and 0, be the ring of integers of F, the
maximal ideal of 0, and the different of F,/Q,, respectively.

For any v, let ¢, : I — F, be the embedding. The entrywise embeddings
of SLo(F') into SLg(F,) are also denoted by ¢,. Let {001, ,00,} be the
set of infinite places of F. Put ¢; = too, for 1 < i < n. We embed SLy(F)
into SLa(R)™ by 7 — (¢1(r), -+, tn(r)).

We define the metaplectic group SLa(R) of SLa(R) similar to the case
F,/Q,. Let & be a finite set of places of F', which contains all places above
2 and oo. Set

SLa(A)s = [ SLa(F) x [ SLa(0.).
veES vgS
The double covering of SLa(A)g defined by the 2-cocycle [],cq cv(91,0, 92,0)

is denoted by SLa(A)g, where ¢, is the Kubota 2-cocycle for SLy(F).
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Let s, : SLa(0,) — {£1} is the map s in (13) for v < co. For a finite
set &’ of places of F such that & C &', we can define an embedding Lg :

—_~

()1 (90, ¢ TT sulon)]-

vEG\&

For v < 0o, a map s, : SLa(0,) — SLa(0,) is given by s,(v) = [7, s0(7)]
for v € SLa(0,). The adelic metaplectic group SLg(A) is the direct limit
lim STy (A)g. It is a double covering of SLy(A) and there exists a canonical

P —_~—

embedding SLa(F,) — SL2(A) for each v. Let []| SLa(F,) be the restricted
direct product with respect to s,(SL2(0,)). Then there is a canonical sur-

P e —_—

jection H; SLo(F,) — SLa(A). The image of (gy), € H; SLo(Fy,) is also

P

denoted by (gy)». Note that for a given g € SLa(A), the expression g = (gy)s
is not unique.

We denote the embedding of SLa(F') into SLa(A) by ¢. The finite part of
SL2(A) is denoted by SLa(A¢). Let ¢f : SLo(F) — SLa(Af) be the projection
of the finite part and to : SLa(F') = SLa(Fx) = SL2(R)™ that of the infinite
part. Then we have ¢(g9) = t£(9)to(g) for all g € SLa(F). The embedding
of I into Ay is also denoted by ¢.

—_—~—

It is known that SLy(F') can be canonically embedded into SLa(A). The
embedding 7 is given by g — ([ty(9)])v for each g € SLa(F'). We define the

maps i : SLo(F) = SLa(Af) and I : SLo(F) = SLa(Fio) by

27(9) = ([o(9)v<oo X ([L2D)ujoc,  Foo(9) = ([T2])vcoo X ([1i(9)])v}oo-

Then we have i(g) = i£(9)io(g) for all g € SLo(F).
For z € b, we choose argz such that —7 <argz < w. For v = [g,7] €

Sf;(I/R), g= <CCL Z) andz€bh,j: Sf;(i) x h — C is an automorphy factor
given by

™d if c=0,d >0,
(20) iy, 2) = —mV/d if c=0,d <0,
T(cz +d)1/? if ¢ #0.

Note that j([g, 7], z) is the unique automorphy factor such that j([g, 7], 2)? =
(g, 2), where j(g, z) is the usual automorphy factor on SLz(R) x b (see [15,
§7]). Note that j([g],z) = J(g, 2), where J(g, 2) is defined in (1).

Definition 1. Let I' C SLa(0) be a congruence subgroup. the map v =
v(y) : I' = C* is said to be a multiplier system of half-integral weight if
v(V) TT, 7([ti(7)], ) is an automorphy factor for T' x h™, where j is the
automorphy factor in (20).



ON MULTIPLIER SYSTEMS AND THETA FUNCTIONS 37

We have j(v1,72(2))j(72,2) = j(1172, 2) for 71,72 € SLa(R). Replacing
i with [g;] for i = 1,2, we have

(21) 3([91], 92(2))3([g2], 2) = cr(g1,92)5 ([9192); ),
where cg(-,-) is the Kubota 2-cocycle at infinite places.

Lemma 9. A function v : I' — C* is a multiplier system of half-integral
weight if and only if we have

v(n)v(re) = c(1,72)v(n2) 2 €T,
where oo (71,72) = [ 11 er(2i(m1), ti(72)).
Proof. We have ¢;(71)ti(7v2) = ti(y172) for all i. Thus (21) and Definition 1
prove the lemma. O
Let Kt C SLa(Ayf) be the closure of ¢¢(I') in SLa(Af). Then Kr is a

compact open subgroup and we have L;l(KF) =T. Let Kr be the inverse

image of Kr in SLa(Ay).

Lemma 10. Let \ : KT — C* be a genuine character. Put v(y) = A(if(7))
for v € I'. Then v}, is a multiplier system of half-integral weight for I'.

Proof. For ~1,v9 € T, we have I(71)i(y2) = Z(7172). The left-hand side

equals 7¢(71)loo(71)Tf(712)l00(72)-  Since ino(9) = ([ti(g)])i=1,...,n for g €
SLy(F) and 7so(y1) commutes with 7¢(vy2), we have

Lr(v1)Tr(v2) = p(r172)[12, coo (715 72)]-

Since A is genuine, Lemma 9 proves the lemma. O

For v < 0o, the map s, is the splitting on K;(4),, where

Ki(4)y,={y= <CCL Z) € SLa(0y) | ¢ =0,d =1 mod 4}.

—_——

K1(4),, we may define a splitting s : Kp — SLa(A)

s(7) = (Sv(tw(7)))v<oo X ([12])v|oo-
The map s is a homomorphism. Then we have Ky = s(Kt) - {[12, £1]}.

—_——

Note that s(Kt) C SL2(Ay) is a compact open subgroup.

For any congruence subgroup I', a map vg : I' = C* is defined by vo(v) =
[lo<oo Su(tu(7)), which is not always a multiplier system of half-integral
weight for T.

Corollary 1. If I' ¢ I';/(4) = {<Z Z) € SLy(0) | c=0,d =1 mod 4},
then vq is a multiplier system of half-integral weight for I'.
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Proof. Since I' C I'1(4), we have Kt C K1(4)f. We define a genuine char-
acter A : Kp — C* by

A(s(k)[1e,7]) =7, ke Kp,7e {£1}.
Put va(y) = A(p(y)) for v € T Since s(y) = ([to(7), 50(t0(7))])v<oo, We

have
va(y) = Als(1)[2, vo(y)]) = vo(7).
Therefore Lemma 10 proves the corollary. U

Now suppose that I' C SLa(0) is a congruence subgroup and that v : I' —
C* is a multiplier system of half-integral weight.

Lemma 11. There exists a genuine character A : K — C* such that
v) = v if and only if there exists a congruence subgroup I C I'NI';(4) such
that v(y) = vo(y) for all v € T".

Proof. Suppose that there exists a genuine character A : Kt — C* such that

—_—

vy = v. Since Ker X and s(I'{(4)) are open in SLy(Ay), the intersection is
also open. We denote its image in SLa(Af) by K’. Then we have K/ =
s(K') x {[12,£1]}. Put IV = L]Tl(K’). Then we have v(y) = va(7y) = vo(7)
for all v € T".

Conversely, suppose that there exists a congruence subgroup I'' C I' N
I'1(4) such that v(y) = vo(y) for all v € I". Then the closure Kt of ¢¢(I")
in SLa(Ay) is a compact open subgroup. Since ¢f(I') is dense and Ky is
open in K, we have K = 1y(I') - Kpv. For k € K, there exist v € T,
k' € Kt and 7 € {£1} such that k = f(y)s(k’)[12, 7].

We assume that k also equals I(70)s(kg)[12, 0] for 40 € T, k{ € K and
70 € {£1}. Put w = 7, 'y. Then we have w € I and

p(v) = 5 (0)ip(W)[12, oo (0, )], Zp(w) = s(ep(w))[12, vo(w)].
Then we have k = T7(y)s(k')[12, 7] = T(70)s(tf(w)k)[12, Tvo(w)Coo (Y0, w)].
Thus we have kf, = tf(w)k’ and 70 = TVo(w)cso (70, w). Since v = vy in
I and v(y) = v(70)v(w)ceo (70, w) by Lemma 9, we have v(vg)m9 = v(y)T.
Then the function \(k) = v(v)7 is well-defined.

Since A(k[l2,0]) = v(y)To = oA(k) for o € {£1}, A is genuine. It suffices
to show that A(kiks) = A(ky)A(k2) for all ki, ky € Kp. There exist v; € T,
k} € Kt and 7; € {£1} such that k; = if(v;)s(k})[12, 7] for i = 1,2. Then
we have A(k1)A(k2) = v(y1)v(y2)T1i72. Replacing Kpv with its sufficiently
small subgroup, we may assume that s(Kpv) is a normal subgroup of Kr.
Then we have

Pp(v2) " 's(K))ip(72) = s(ep(h2) " kier(12)) € s(K).
Since

Ir(71)ir(v2) = ip(m2)[12, coo (71, 72)],
Ak1k2) equals v(7172)coo(1,72)T1T2. By Lemma 9, we have \(kiko) =
A(k1)A(k2), which proves the lemma. O
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Proposition 2. If F' # Q, then any multiplier system v of half-integral
weight of any congruence subgroup I' C SLy(0) is obtained from a genuine
character of K.

Proof. By Lemma 11, it suffices to show that there exists a congruence
subgroup I € T'NT;(4) such that v(y) = vo(y) for all v € T”. We assume
that a congruence subgroup I' satisfies I' C I'1(4) by replacing I" with I' N
I'1(4). Let D(G) be the derived subgroup of a group G. Since vo(7)/v(7)
is a character of I', we have vo(y)/v(y) = 1 for all v € D(I'). By the
congruence subgroup property, D(I') contains a congruence subgroup I
(see [30, Corollary 3 of Theorem 2] or [16, §3]). Thus we have v(v) = vo(y)
for all v € I, which proves this proposition. O

By Lemma 11 and Proposition 2, the multiplier system of half-integral
weight of a congruence subgroup I" associated with an automorphy factor in
the sense of Shimura [33] is obtained from a genuine character of K.

Lemma 12. If F' = Q, then we have

vo(g) = Cl) a ( >€SL2)

(2)* c . even,

0 *
Proof. In the case (¢,d) = (+1,0), we have <c> =vo(g) = 1. In the case

(¢,d) = (0,1) (resp. (0,—1)), we have <2) = vo(g) = 1(resp. —1). If

c¢# 0 and d € 2Z + 1 satisfy (¢,d) =1, we ha\te

6= () ©).rea(i). wa={t oisb

Suppose that c¢d # 0. Put v = ¢-27°7%¢, Then we have (u, d) = (c,d) = 1.
Put to(z,y) = (—1)@D@-D/4 for z y € 2Z + 1. If a prime p satisfies p | c,

we have .
d ©rdre
G e
(e.dyy = NP

- 2 ordac
t()(u d)<’d|) p=2.

d\* d ordpc
If ¢ is odd, then we have <> =11 <> =vo(g). If ¢ is even, then
c

d
we have (&,) () = t(c,d)to(u,d) (see [17, p.51]). Thus we have

Jul

GL:““@<@>mwQZ> Wﬁ(@OMWQZ>:W@)
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Put
Kf = H SLQ(UU)-

<00

Then Ky is a compact open group of SLa(Ay). The inverse image of Ky in
SLa(Ay) is denoted by K. We have SLa(0) = SLa(F) N K - SLa(Fx).

Proposition 3. Let v be a multiplier system of half-integral weight for
SLa(0). Then there exists a genuine character A : Ky — C* such that
V) =V.

Proof. If F' # Q, the assertion is proved by Proposition 2. If F' = Q, let v,
be the multiplier system of 7(z) in (3). Put

r(12):{<i Z) €SLy(Z) |a=d=1,b=c=0mod 12}.

By Lemma 12, we have v,(y) = vo(7) for v € I'(12). Since v, (y)/v(y) =1
for all v € D(SLa(Z)), we have v(v) = vo(y) for all v € D(SLo(Z)) NT'(12),
which is a congruence subgroup. By Lemma 11, there exists a genuine
character \ : f(f — C* such that vy = v. Ul

Corollary 2. There exists a multiplier system v of half-integral weight for
SLa(o0) if and only if 2 splits completely in F/Q. There exists a genuine
character of SLa(o0,) for all v < oo, provided that this condition holds.

Proposition 4. Suppose that 2 splits completely in F/Q. Let vy be a
multiplier system of half-integral weight of SLa(0), where A = [] Ay 18

<0

a genuine character of K;. Put Sp = {v < 0o | F = Q2} and T3 = {v <

oo | ¢, = 3}. If g, is odd, let €, be the genuine character of SLy(0,) from
Lemma 4. We set S5 = {v € T3 | A, # €,}. Let (3, be a element of F* such
that A\, = ug, for v € So U S3. Then we have

nm=vl) I wlhum) o= (2 ) st

vES2US3

Here, if v € Sy,

—(a+d)c+ 3c ceLy
Kv(ﬁvag) = wﬁv( ( ) ) 2
Vg, ((c—b)d—=3(d—1)) ce2Zs
and if v € S3,
ko(Bo, 9) = Vg, (—(a + d)c + bd(c* — 1))
for g = <CCL Z) € SLa(0,). Note that ry(By, Ly(7)) is a continuous function

on 7.
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Proof. We have vx(7) = MA@ (7)) = [[ycoo Ao([to(7)]). If v ¢ S2 U S5, then
we have €,([g]) = sy(g) for all g € SLa(0,). If v € Sy (resp. S3), we have

s, ([9]) = su(9)ku(Bv,g) by (15) (resp. (16)) for all g € SLo(oy). This
proves the proposition. [l

5. THE CONDITION OF THE EXISTENCE OF A THETA FUNCTION

Suppose that 2 splits completely in F//Q. By Lemma 3, there exists a

genuine character A, : SLa(0,) — C* for all v < co. If v < o0, put K, =
SLa(0,). If v | 0o, put K, = SO(2). Then K, is a maximal compact sub-
group of SLa(F,) for all v. Let 3 be an element of F* and g the character
of A/F as in Section 1. For any v, we denote the Weil representation of

SLa(Fy) by wyp -
Let {co1, -+, 00} be the set of v | co and S(R) the Schwartz space of R.
We have an irreducible decomposition

wlﬁﬂﬂ) = ®ww5 v

where w;[ﬁ , (resp. Wy, ,) is the irreducible representation of SLy(R) on the
set of even (resp. odd) functions in S(R) (see [21, Lemma 2.4.4]).

The group SLg(R) has a maximal compact subgroup SO(2), which is
the inverse image of SO(2) in ng\(i) It is known that if A, : S/é\/(Q) —
C* is a genuine character, dim@(w%’v,S(R))’\” is at most 1. Let A 1/2
be a genuine character of lowest weight 1/2 with respect to (wJB?v,S (R))
and A 3/ of lowest weight 3/2 with respect to (wiﬂ’v,S(R)). For 8 > 0,
(wh  S(R)) 172 = Ce(it,(B)x?) and ( S(R))*3/2 = C ze(iv,(8)z?)

wﬁﬂ}’ ﬁ v
are spaces of lowest weight vectors. If § < 0, there exist no lowest weight

vectors with respect to (w;rﬁyv, S(R)) or (wzz&v, S(R)).

Note that A,(sy(SLa(0y))) = 1 for all but finitely many places v < oo.
Then a genuine character A; : K; — C* is given by A;(g) = [Lcoo Ao(90)
for g = (gu)y € K. Put w = (wi, -+ ,wy,) € {1/2,3/2}". We define an
automorphy factor j*/ (v, z) for v € SLa(0) and z = (z1,--- , 2z,) € h™ by

)
M 2) = T Ae(@D TTEM)], 207,

V<00 =1
where j is given by (20).

In particular, we have j* % (—1z,2) = [, - Ao([—12]) x (—y/—1)2 2%,
If it does not equal 1, the space of Hilbert modular forms of weight w for
SLa(o) is {0}.

Put K = Ky x[],)o SO(2). There exists a genuine character A : K — CX*
such that its v-component equals A, where Aso, is Asg1/2 O Ao 3/2 for

1 <i < n. Then we have an automorphy factor j*/%(vy, z) corresponding
to A such that Ao, = Aoo,w; -
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Let M, (SLa(0),Af) be the space of Hilbert modular forms on h™ with
respect to 5N (v, 2). A holomorphic function h(z) of h” belongs to the
space M,,(SLa(0), Ay) if and only if

h(y(2)) = jM" (v, 2)h(2),

where v(z) = (t1(7)(21),- -+, tn(7)(2n)) for v € SLa(0) and z € h™. (When
F = Q, the usual cusp condition is also required.)

For each g € SLa(A), there exist v € SLa(F), goo € SL2(R)™ and g5 € Kf
such that g = 7909 by the strong approximation theorem for SLa(A). Put

i — (\/jL . 7\/_71) € bh™. For h € Mw(SLQ(U),)\f)7 put

on(9) = h(goo(D)Af(gr) ngool, —1) 72w,

Then ¢y, is an automorphic form on SLy(F )\SEQ\(K)
Let A, (SLQ( J)\SL2(A), Af) be the space of automorphic forms ¢ on
SLa(F )\SLQ( ) satisfying the following conditions (1), (2), and (3).

(1) ¢(gkoo) = (9) [Ty J (kso,is V=1) 72 for all g € SLa(A) and koo =

(koo1s---rkoon) € SO( ).
(2) ¢ is a lowest weight vector with respect to the right translation of

SLy(R)™. -
(3) w(gk) = As(k)"'p(g) for all g € SLa(A) and k € K.

Then & : h — @p gives rise to an isomorphism

My (SLa(0), Af) <% Au(SLa(F)\SLa(A), Af).

For ¢ € Aw(SLQ(F)\Sm)7 Af), put h = @7 1(¢). Then we have

n

1(2) = @(go0) [ [ 7(900i: V=1, goo € SLa(R)", goo(i) = 2.

i=1

Now suppose that v < co. Let 9 be the different of F'//Q and ¢, the order
of the residue field o0,/p,. When ¢, is odd, let €, be the genuine character
er from Lemma 4. Put So = {v | F, = Q2}, T3 = {v < 00 | ¢y = 3} and
Sz ={v €15 | \y # €, }. Since 2 splits completely in F//Q, we have |Sa| = n.
If Ay = €, by Lemma 7, (wy, 4, S(F,))* is not 0 if and only if we have

ord,g, = 0 mod 2.
Otherwise, by Lemma 8, (wy; v, S(F,))* is not 0 only if we have

ordytg, = 1 mod 2.
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Then, if (wy, 0, S(F,))* # 0 for all v < oo, there exists a fractional ideal
a such that

(22) (86)0 I po = a2

vESs

Replacing 8 with 3v% and a with vya in (22) for v € FX, we may assume
ordya = 0 for v € Sy U S3. Then we have ord,¢g, = —1 (resp. —3) for
v € S3 (resp. S2).

Conversely, suppose that there exists a fractional ideal a satisfying (22)
for a subset S3 C T3. For v < oo, put

N € if ordy?g, =0 mod 2
Y pg if ordypg, =1 mod 2,

where pg is a genuine character in Lemma 5 or Lemma 6. By Lemma 7 and
Lemma 8, we have (wy,, ., S(F,))* # 0 for all v < co.

Let A : K — C* be a genuine character such that its v-component equals
Ay for v < oo, and Aso; = Aocw,;, depending on w; € {1/2,3/2}. Put
Soo = {00; | w; = 3/2}. For v | 0o, recall that if ¢,(8) > 0 (resp. ¢,(5) < 0),
((,u:/jﬁ’v,LS'(]R)))‘OOJ/2 = Ce(ity(B)z?) (resp. {0}) and (w;&y,S(R)))‘m,S/? =
C we(it, (B)x?) (resp. {0}) are spaces of lowest weight vectors.

Then from now on, suppose that 8 € F°, which is the set of totally pos-
itive elements of F. Let S(A) be the Schwartz space of A and (wy,, S(A))*
the set of functions ¢ = [[, ¢y € S(A) such that ¢, € (wyy, v, S(F,))* for
all v. For ¢ € S(A), we define the theta function ©4 by

P

(23) O5(9) = Y _wys (9)6(6) 9= (g0) € SLa(A),
£eF
where wy,, (9)#(§) = [, Wys,0(90)Pu(tu(§)) is essentially a finite product.

We have O4(gk) = A(k)"'@4(g) for all g € SLy(A) and k € Ky. If ¢ €
(Wygs S(A))?, then O, is a Hilbert modular form of weight w = (wy, -+, wy,).
It is known that

Wy = @wwﬁ»s’ Wipg,S = <® wd)g,v) ® <® wiﬁ»“) ’
s

veS vgS

where S ranges over all finite subsets of places of F' (see [8, §3.4]). We

define a map © from wy, to the space of automorphic forms on SLa(A) by
O(0)(g9) = O4(g). Then it is known that

(24) Im(0) ~ P wy,.s,

|S|:even

(see [8, Proposition 3.1]).
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Fix a choice of Sy, or equivalently the values wy,--- ,w, € {1/2,3/2}.
Let G be the set of triplets (8,S3,a) of 8 € F, a subset S5 C T3 and a
fractional ideal a of F satisfying (22) and the condition (A),

(A) S| + |S3] 4 |Sso| € 2.
We define an equivalence relation ~ on G by
(B, S3,a) ~ (8,55, d) < S3 =55, ' =+°B, a =~a for some v € F*.

Theorem 1. Suppose that 2 splits completely in F/Q. Let 8 € F, X :
K — C* and wy,...,w, € {1/2,3/2} be as above. Let S3 be determined by
A as above. Then there exists ¢ = [[, ¢y € (wyy, S(A))* such that ©4 # 0
if and only if there exists a fractional ideal a of F' such that (8, S3,a) € G.

—_—

Proof. Let A\, : SLa(0,) — C* be the v-component of A for any v <
oo. We already proved that there exists [ _. ¢» # 0 such that ¢, €
(B (F,))* for all v < oo if and only if there exists a fractional ideal
a of F satisfying (22). Suppose that these equivalent conditions hold.
Since we have (w$57v,S(R))Amv1/2 = Ce(it,(B)x?) and (w;ﬁvv,S(R))Awﬁm =
Cze(ity(B)2?) for all v | oo, there exists anonzero ¢ = [, ¢y € (wy, S(A))*.
It is clear that if there exists a nonzero ¢ = [[, ¢ € (wyy, SAN, Tycoo b0 #
0 satisfies ¢y € (wWypy,0, S(F,))M for all v < oo.

Suppose there exists a nonzero ¢ = [[, ¢, € (wwﬁ,S(A)))‘. Note that
|S2| + |S3] + |Seo| is the number of v such that ¢, is an odd function. Then
|S| in (24) is |So| + [S3] 4 | S| By (24), it is clear that ©4 # 0 if and only
if the condition (A) holds. O

Let H be a group of fractional ideals that consists of all elements of the

form
H per, Ze” € 27.

veT3

Let CI" be the narrow ideal class group of F. Put CI™2 = {¢? | ¢ € CI*}.
We denote the image of the group H (resp. b € CIT) in CIT/CI™ by H
(resp. [b]).
Theorem 2. Suppose that 2 splits completely in F/Q. Let wi,...,w, €
{1/2,3/2} be as above.

(1) Suppose that |Sa| +[S| is even. Then there exists (3, S3,a) € G if

and only if 0] € H.
(2) Suppose that |S2| + |Soo| is 0odd. Then there exists (8, S3,a) € G if

and only if T3 # () and [0p,,] € H. Here, vy is any fixed element of
T5.

Proof. We prove the theorem in case (1). The proof for case (2) is similar.
If o] € H, we have (83)0 ][] ,cp, Py" = a’? such that Y e, is even for
a fractional ideal o’ and § € F. Put S3 = {v € T3 | e, : odd}. Since
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|S2| + |S3] + |Swo| is even, we have (3,53, a) € G, where
a= H p,e/2d.
U€T3\53

Conversely, if there exists (3, 53,a) € G, it satisfies (22) and |S3| is even.
Then we have [0] = [[,cg,[Pu] € H. O

Let w; be 1/2 or 3/2 for 1 <+ < n. Suppose that there exists (3, S3,a) €
G. Replacing (8, S3,a) with an equivalent element of G, we may assume
ord,a =0 for v € Sy U S3. Let f, be the function f in (14) and put

f= 11 fx I cha",
vESUS3 v<00,0¢S2US3
where a, = a0,. Put ¢ = f X[} fooi, Where foo i(x) = 2~/ e(ir;(8)x?)
for z € R. By Theorem 1, there exists ©4 # 0 of weight w = (w1, ,wy).

Put z = (21, -+ ,2n),i = (V—=1,--- ,v/—1) € h. We define x;,y; € R
by z; = x; + vV—1y; for 1 < i < n. Then we have z = go(i), where

2 /2y
Joo = (goou T 7gOOn) € SLZ(R)TL» Joo; = 10 7’_1/2Z . Since )\v([12]) =1

for v < oo, we have

Op(90c) = Y fr(©)) [T wusioo: ([950.]) i (4i(E))-
i=1

éca—l
Theorem 3. Let ¢ and ©4 be as above. We define a theta function 0, :
h" — C by

n

bs(x) = S Fr©) TT w(® ] elzata(B2)).

gea—1 00€So i=1

Then 64 is a nonzero Hilbert modular form of weight w for SLy(0) with
respect to a multiplier system.

Every theta function of weight w for SLo(0) with a multiplier system may
be obtained in this way.

Proof. Since

Wy ooi ([9o0,i]) Fooi (11(6)) = 421 (€) =W De(z04(BE2),

we have 04(2) = O4(g900) X [ [~ yi_wi/g. Then 6, is nonzero. Note that

j([gOOiL \% _1)2% = yz’_wi/2'

Since ¢ € (wy,, S(A))*, we have ©4 € A, (SLa(F)\SLa(A), A). Then we
have 0, = ®71(0,) € M,(SLa(0), Af). The multiplier system of 6, is v
given by

s =vo(n) [[ #u(8.7) v €SLalo),

vES2US3



46 HIROSHI NOGUCHI

where k, for v € S5 U S3 is the function in Proposition 4.

By Proposition 3, if € is a theta function of weight w for SLs(0) with a
multiplier system v, we have a genuine character Ay of K ssuchthat v=wv,_.
Let A = Ay x [[i"; Aoo,w; be a genuine character of K. Then there exists
nonzero ¢ € (wy,, S (A))* such that 6 = 6, up to constant, which completes
the proof. O

Proposition 5. Let Cl be the usual ideal class group of F. Let Sq: Cl —
CI" be the homomorphism given by [a] +— [a?] for a fractional ideal a of F.
The number of equivalence classes of G is equal to

(BB ) 1Sa7 (R [T woll,

S3CTs vES3
(A)

where S3 ranges over all subsets of T3 satisfying (A). Here, £ is the group
of totally positive units of F' and E? is the subgroup of squares of units of
F.

Proof. We follow the argument of Hammond [13] Theorem 2.9. For given
S3 satisfying (A), the number of ideal classes [a] such that a? is narrowly
equivalent to 0 [],cg, Pu is equal to |[Sqg~ ([0 [],eg, po])|- Then for a given
fractional ideal a such that a? is narrowly equivalent to aHveSS Py, the
number of equivalence classes of triplets of the form (/3,S3,a) such that
B € F satisfying (22) is equal to [ET : E?]. O

6. THE CASE F'=Q OR F' IS A REAL QUADRATIC FIELD

Suppose that F' = Q. If S,o = 0, the equivalence class of G is

{(1/24,{3},2)}.

The theta function obtained by {(1/24,{3},Z)} equals 2n(z). Then its mul-
tiplier system equals v, in (3). If S = {oo}, then the equivalence class
of G is {(1/8,0,Z)}. The theta function obtained by {(1/8,0,Z)} equals
2n3(z). Then its multiplier system equals the cubic power of v,,.

Now suppose that F' = Q(v/D), where D > 1 is a square-free integer.
When there exists (3,53, a) € G, one of the followings holds.

(C1) (88)0 =a? and S5 = 0.

(C2) (883)op = a? such that Np/g(p) = 3 and S3 = {p}.

(C3) (88)opp = a? such that Nrg(p) = Npjg(p) = 3 and S3 = {p,p}.
If |Soo| is even, (C1) or (C3) holds. If |S| is odd, (C2) holds.

Also suppose that D = 1 mod 8. Then 2 splits in F/Q and we have
2 = (VD).
Lemma 13. Let N be a positive square-free integer. Put L = Q(v/—1)
(resp. L = Q(v/=3)). Then the following statements are equivalent.

(a) N is a norm of an element of L*.
(b) N is a norm of an integer of L.
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(¢) No prime factor of N are inert in L/Q.
(d) There exist integers v and v such that N = u? + v? (resp. N =
3u? +v?).

Proof. The statements (b), (c) and (d) are equivalent by [5, §68 and §70].
If L = Q(v/—1), although [5, §68] treated the case N is odd but the proof
is valid in general case. If L = Q(v/=3), [5, §70] treated the case N is odd
and not divisible by 3, but the proof is valid in general case. If (b) holds,
then clearly (a) holds.

It suffices to show that if (a) holds, then (c) holds. Suppose that ay € L*
satisfies N = Ny g(an). If a prime p is inert in L/Q, it is a prime element
of L and we have Ny, q(p) = p?. Then if p | N, we have p | ay and p? | N,
which contradicts that IV is square-free. O

We consider an analogy of the following: if K is a real quadratic field,
then a necessary and sufficient condition that the narrow ideal class of the
different of K/Q be a square is that the discriminant D of K be the sum of
two integer squares (see [13] Proposition 3.1).

Lemma 14. A necessary and sufficient condition that the narrow ideal class
of 0p is a square for a prime ideal p which has norm 3 is that D is of the
form 3u® + v? for some u,v € N.

Proof. Suppose that the narrow ideal class of 0p is a square with Np/q(p) =
3. Then there exists o € F* and a fractional ideal a of F' such that (o)op =
a®. Taking the norm of both sides, we have 3Np/g(0)D = A?, where A

is the norm of a. Put 0 = s+ tv/D for s,t € Q such that s > 0. Since
3(s> —t2D)D = A?, we have

2 2
D= (") +3(3) -
s 3s
Put L = Q(v/—3). Then we have D € Npo(L*). Lemma 13 implies that
D = 3u? + v? for some u,v € N.

We assume that there exists u,v € N such that D = 3u® + v?. Since
D =1 mod 8, we have v/ = u/2 € Z. Put p = (v+ v/D)/2. Then we have
Npjglp) = (v2 — D)/4 = —3u. Let q = qg be a prime ideal which divides
p, where @ is a rational prime which is divisible by q. Since p/Q ¢ o, we
have Np/g(q) = Q and ordgp =ordg3u’®. Therefore if Q # 3, ordgp is even.

Since Ng/q(p) = —3u/?, there exists a prime ideal q3 of F which divides
both 3 and p. Since 3 splits or ramifies in F//Q, ordg,p is odd. Put

(25) a— H glordar)/2 qgordqspﬂ)/?'
af3

Then we have (v Dp)qs = da®. Since VDp € FJ, we have dq3 = (da)? in
C1t. (|
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Proposition 6. Suppose that F' = Q(\/ﬁ), where D > 1 is a square-free
integer such that D =1 mod 8.

(1) There exist § € F and a fractional ideal a satisfying (C1) if and
only if p =1 mod 4 for all primes p | D.

(2) There exist § € F} and a fractional ideal a satisfying (C2) if and
only if p =0 or 1 mod 3 for all primes p | D.

(3) There exists 8 € F* and a fractional ideal a satisfying (C3) if and
only if D =1 mod 24 and p = 1 mod 4 for all primes p | D.

Proof. For a prime ideal p such that Ng/q(p) = 3, the equation (83)0p = a?
implies that the narrow ideal class of 0p is a square. Note that a positive
integer x is of the form 3u? + v? for some u,v € N if and only if all primes
p which divides x satisfies p = 0 or 1 mod 3. Then Lemma 14 proves the
second assertion.

The equation (83)0 = a? implies that the narrow ideal class of ? is a
square. Note that a positive integer z is of the form u? + v? for some
u,v € N if and only if all primes p which divides z satisfies p = 1 mod 4.
Then [13] Proposition 3.1 proves the first assertion.

There exist two distinct prime ideal p and p such that such that Ngq(p) =
Npg(p) = 3 if and only if 3 splits in F'/Q. This condition holds if and only
if D =1 mod 24. In the case D = 1 mod 24, we have pp = (3). Then the
equation (83)0pp = a? implies that the narrow ideal class of ? is a square.
Thus, similarly to the first assertion, [13] Proposition 3.1 proves the third
assertion. ]

Example 1. Put D = 73. Then CI7 is trivial and the fundamental unit
€ = 1068 4+ 125v/D of F has norm —1. By Proposition 6, there exist 3 € FY
and a fractional ideal a satisfying every condition of (C1), (C2) or (C3). We
write € for the conjugate of £ € F.

Set B = 1/(8¢V/D). We have (88)0 = (¢7!) = o, where o is the ring of
integers of F. Suppose that Soo = 0 and that 1 = id. Then (8,0,0) € G
satisfies (C1) and we have

05(2) =D Fl15(€))e(BE 21)e(BE222).
éeo

where

Fep@) = fo(w(§) foréea

VE Sy
with Sy = {v2, T2 | pu, = (2,(1 — VD) /2),p5, = (2,(1 4+ +vD)/2)}. Assume
that 1y, = id and t5,(£) = £. Then, for £ € 0, we have
1 ifé€2Z+2VDZ+1
Fr(€)) = for ()5 (§) = { —1 if € € 2Z+2VDZ+ VD

0 otherwise.
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Computing the norm of { shows that 6, corresponds to the function f; in
Theorem 2 [6].
Example 2. Put D = 793 = 13 -61. Then CIT has order 8 and the
fundamental unit 4393 + 156v/D of F has norm 1. By Proposition 6, there
exist § € F} and a fractional ideal a satisfying every condition of (C1), (C2)
or (C3). We write £ for the conjugate of ¢ € F. Put T3 = {v < 00 | ¢, = 3}.
(a) Let g7 be a prime ideal (7,3 + v/D), which divides (7) and qo a
prime ideal (2, (1 — v/D)/2), which divides (2). Put p = (3 ++VD)/2, f =
p/(8V/D) € F* and a = q2q7. Then we have (86)d = (p) = a. Suppose
that Soo = () and that (; = id. Then (3,0, a) € G satisfies (C1). Since

Sy = {’Uz,’f)g | Py = 42, Pz, = (2)/q2 = (27 (1 + \/B)/Q)}a
we have

= ) f(ep(©))e(BE2)e(BE ),
feal
where f(Lf(§)> = fuo (tvy(§)) fo (13 (f)_) _
Assume that ¢, = id and v5,(§) = £, and we have f(t¢(§)) = fu, (&) fo, ().
Since D = 793 = 25 mod 128, we assume VD = —5 mod 647, in Q9. For
¢cal =1471(14,(3 — vD)/2), we have

1 if¢€2AZ+2VDZ+A+ VD
flep(€) =< -1 if€ €2AZ+2VDZ+ D

0 otherwise,

where A = (1 — 5v/D)/7.
(b) Now put p = 3(3 ++vD)/2, B = p/(8YD) and a = 3qaqr. Let
be the prime ideals which divides (3).
— 42

a“. Suppose that S, = {001,002}

3 = (3,1-VD) and g3 = (3,1+ /D)
Since q3q5 = (3), we have (86)dq3q}
and that ¢; = id. Put
S3 {0372}3 | p’U3 - q37p’l}3 — CI3}
Then (8, S3,a) € G satisfies (C3) and we have
= ) F(ep(€)E8e(BE 21 )e(BE222),
£€a—t

where

H f’u(év(f)) for £ € a L.

vES2US3

Assume that ¢, = id for v € {ve,v3} and that 1,(£) = £ for v € {2, v3},
and we have

f(Lf(f)) = fvz(g)fm(g)fw (g)fﬁs(g)
For ¢ € a™t =4271(14, (3—+/D)/2), we have f(;(€)) € {£1}if € € ZXNZ}
and f(17(€)) = 0 if not. Since D = 793 = 1 mod 9, we assume /D = 1
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mod 9Z3. Then we have

1 if¢ €6AZ+6VDZ+{VD,1}
f(p(€) =14 =1 if € € 6AZ+6VDZ + {2A +VD,3A + vVD}

0 otherwise,

where A = (1 — 5v/D)/7.

(c) Now put p = (5++/D)/2. Put g5 = (2)/q92 = (2, (1 + V/D)/2). Since
Npjg(p) = =203, we have (p) = q5q3. Put 8 = p/(8VD) € F} and
a = q5q3. Suppose that So, = {001} and that 1 = id. Put

S3 = {vz [ pos = a3} C Ts.
Then (3, S3,a) € G satisfies (C2):

(Sﬁ)bqg = Cl2
and we have o
05(2) = D f(e5(€))Ee(BE721)e(BE22),
feal

where

Fer@)= J[ folw(©) foréea

vESIUS3
Assume that ¢, = id for v € {v2,v3} and that ¢,(¢) = ¢ for v € {2} and
we have

f(Lf(O) = fvz(g)f@(g)fva* (5)
Then, for £ € a=! = 24724, (5 — v/D)/2), we have

1 ifee2(1 —vD)Z+6VDZ+ {1,-VD}
flp€) =4 -1 if¢e21—vD)Z+6VDZ+ {—1,VD}

0 otherwise.
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