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Chapter 1

Introduction

1.1 Background

1.1.1 Bond percolation model

Percolation theory is a branch of probability theory that describes the be-
havior of clusters, which are connected components of randomly obtained
objects. The theory has its origin in applied problems. One of the most
famous mathematical formulations is the modeling of immersion in porous
stone, which is represented by the following model: Let L𝑑 = (Z𝑑 ,E𝑑) be the
𝑑-dimensional cubic lattice, where Z𝑑 is the set of all 𝑑-tuples 𝑥 = (𝑥1, . . . , 𝑥𝑑)
of integers 𝑥𝑖, and the edge set E𝑑 is the set of all unordered pairs {𝑥, 𝑦} of
Z𝑑 with ∥𝑥 − 𝑦∥1 = 1 (Here, ∥ · ∥𝑞 represents the 𝐿𝑞-norm on R𝑑). For a fixed
𝑝 ∈ [0, 1], each edge (bond) in L𝑑 is assumed to be open with probability
𝑝, and closed otherwise, independently of all other edges. Open edges corre-
spond to voids randomly generated in the stone, and the probability 𝑝 means
the proportion of voids in the stone. Let 𝐶 = 𝐶 (0) be the cluster containing
the origin 0 ∈ Z𝑑 in the subgraph consisting of all open edges. The immersion
of water into the center of the stone is expressed as the infiniteness of the
cluster 𝐶 (Figure 1.1). This model is called the bond percolation model.
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Figure 1.1: Sketch of the model of porous stone. The thick lines
indicate open edges.

For each 𝑝 ∈ [0, 1], the percolation probability 𝜃 (𝑝) is defined by

𝜃 (𝑝) = P𝑝 (𝐶 is an infinite cluster),

where P𝑝 expresses the probability measure constructed as the product mea-
sure of those from all bonds. The percolation probability 𝜃 (𝑝) is a non-
decreasing function with respect to 𝑝 and is positive when 𝑝 ∈ [0, 1] is
greater than a certain value 𝑝𝑐 (L𝑑). This value 𝑝𝑐 (L𝑑) is called the critical
probability, which is formally defined by

𝑝𝑐 (L𝑑) := sup{𝑝 ∈ [0, 1] : 𝜃 (𝑝) = 0}.

One of the remarkable properties of this model is the phase transition, which
appears as the difference in the connectivity of two vertices. Here, we denote
by 𝑥 ↔ 𝑦 the event that two points 𝑥, 𝑦 ∈ Z𝑑 are connected by an open path.

Theorem 1.1. If 𝑝 > 𝑝𝑐 (L𝑑), then there exists a constant 𝑐 := 𝑐(𝑝) > 0
such that

P𝑝 (𝑥 ↔ 𝑦) ≥ 𝑐 for any 𝑥, 𝑦 ∈ Z𝑑 . (1.1)

If 𝑝 < 𝑝𝑐 (L𝑑), then there exists 𝜎 := 𝜎(𝑝) > 0 such that

P𝑝 (𝑥 ↔ 𝑦) ≤ exp(−𝜎∥𝑥 − 𝑦∥1) for any 𝑥, 𝑦 ∈ Z𝑑 . (1.2)

The estimate (1.1) follows from the uniqueness of the infinite cluster [1].
The exponential decay (1.2) follows from the paper [25] by Menshikov. By
combining (1.2) with a basic discussion, we can see that the limit

𝜉 (𝑝) := − lim
𝑛→∞

𝑛

log P𝑝 (0↔ 𝑛𝑎1)
(1.3)
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exists for 0 < 𝑝 < 𝑝𝑐 (L𝑑), where 𝑎1 = (1, 0, . . . , 0) ∈ Z𝑑. The limit 𝜉 (𝑝),
which is called the correlation length, represents the “connectability” of
two distant vertices. The correlation length 𝜉 (𝑝) is strictly increasing on
(0, 𝑝𝑐 (L𝑑)) and satisfies

𝜉 (𝑝) −→
{
0 as 𝑝 ↓ 0,
∞ as 𝑝 ↑ 𝑝𝑐 (L𝑑).

A natural alternative model to the bond percolation model is the site perco-
lation model, in which each vertex (site) of L𝑑 is assumed to be open with the
same probability 𝑝 ∈ [0, 1] independently. The critical probability 𝑝site𝑐 (L𝑑)
is defined in the same way as in the bond percolation model.

1.1.2 Critical probability

The bond and site percolation models can be defined on an arbitrary graph
which is connected, infinite, and locally finite (i.e., every vertex has finite
degree). In this thesis, we denote by 𝑝𝑐 (𝑋) (resp. 𝑝site𝑐 (𝑋)) the critical
probability of the bond (resp. site) percolation model on a graph 𝑋. In
general, the comparison 𝑝𝑐 (𝑋) ≤ 𝑝site𝑐 (𝑋) holds for 𝑋 (see, e.g., [15, Section
1.6]). Because of the phase transition represented by Theorem 1.1, there
have been a lot of interest in calculating the critical probability.

In the textbook [19] on percolation theory, Kesten discusses prototypes
of the graphs with which we shall work, and formulates a periodic graph.

Definition 1.2. A connected graph 𝑋 with no loops is called a periodic graph
if the following conditions hold:

(1) 𝑋 is embedded in R𝑑 in such a way that each coordinate vector of R𝑑

is a period for the image;

(2) there exists a constant 𝐾 < ∞ such that the degree of each vertex is at
most 𝐾; and

(3) all edges of 𝑋 have finite length. Every compact set of R𝑑 intersects
only finitely many edges of 𝑋.

The cubic lattice L𝑑, the triangular lattice T and the honeycomb lattice
H are examples of periodic graphs. Except for certain two-dimensional lat-
tices, the exact value of the critical probability has not been obtained. As
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exceptional cases, Kesten [20] showed that

𝑝𝑐 (L2) =
1

2
. (1.4)

The critical probabilities of T and H are obtained by [28] as

• 𝑝𝑐 (T) = 2 sin(𝜋/18) and

• 𝑝𝑐 (H) = 1 − 𝑝𝑐 (T) = 1 − 2 sin(𝜋/18).

For the calculation of these critical probabilities, the concept of “duality”
plays an important role. Here, the dual graph 𝑋dual of a plane graph 𝑋 is the
graph whose vertices are faces of 𝑋. The adjacency relation of two vertices
of 𝑋dual is determined by that of two faces of 𝑋 (Figure 1.2).

Figure 1.2: Honeycomb lattice (black) and its dual graph (red).

Under certain conditions of symmetry on 𝑋, it can be shown that

𝑝𝑐 (𝑋) + 𝑝𝑐 (𝑋dual) = 1. (1.5)

This is actually used to obtain the critical probabilities 𝑝𝑐 (T) and 𝑝𝑐 (H).
Also, by combining (1.5) with the self-duality of L2, we obtain (1.4). By a
similar argument as for obtaining (1.5), the equality

𝑝site𝑐 (T) =
1

2

can also be obtained.
While there are several techniques to calculate the critical probabilities

of two-dimensional graphs, there is a dearth of such techniques for graphs
with three or more dimensions. In fact, the exact value of the critical proba-
bility of such graphs has not been obtained, and only an evaluation has been
given. One simple way of obtaining an estimate is to focus on the inclusion
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relation of graphs. For example, the two-dimensional cubic lattice L2 may
be embedded in L3 in a natural way. With this embedding, if the origin of
L2 belongs to an infinite cluster for a particular value of 𝑝, then it is also an
infinite cluster of L3. Thus we have

𝑝site𝑐 (L3) ≤ 𝑝site𝑐 (L2). (1.6)

As a stronger result than (1.6), Campanino and Russo [6] give the comparison

𝑝site𝑐 (L3) < 𝑝site𝑐 (T) =
1

2
,

by focusing on the “covering” relation of L3 and T. This idea is formulated
in [4] in a more general context as follows: Let 𝐺 ↷ 𝑋 be a free action of a
group 𝐺 on a graph 𝑋. The quotient graph 𝑋1 := 𝑋/𝐺 is defined as the graph
whose vertices are 𝐺-orbits, and an edge {𝐺𝑥, 𝐺𝑦} appears in 𝑋1 if there are
representatives 𝑥0 ∈ 𝐺𝑥, 𝑦0 ∈ 𝐺𝑦 that are neighbors in 𝑋 (Figure 1.3).

Figure 1.3: Example of a quotient graph. The triangular lat-
tice T is the quotient graph by the action Z ↷ L3 generated by
translation by the vector (−1,−1,−1).

In this setting, the comparison

𝑝𝑐 (𝑋) ≤ 𝑝𝑐 (𝑋1) (1.7)

of two critical probabilities holds. This result implies that the percolation
cluster in a graph is in some sense larger than that in its quotient graph. It
is known from [24] that the strictness of (1.7) is established as follows.

Proposition 1.3 ([24, Theorem 0.1]). If 𝑋 and 𝑋1 are quasi-transitive and
𝑝𝑐 (𝑋) < 1, then 𝑝𝑐 (𝑋) < 𝑝𝑐 (𝑋1).

The idea of covering is also applied to the numerical study [30], which
gives the upper bounds for the critical probabilities 𝑝𝑐 (L3) and 𝑝𝑐 (B) as

𝑝𝑐 (L3) ≤ 0.347926 and 𝑝𝑐 (B) ≤ 0.292893,

where B represents the body-centered cubic lattice.
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1.1.3 First passage percolation model and shape theo-
rem

In order to observe the relationship between graphs and percolation clusters
in detail, this thesis applies the idea of covering to the first passage percolation
(FPP) model. The FPP model, which was introduced in 1965 by Hammersley
and Welsh [17], is a time evolution version of the bond percolation model:
each edge 𝑒 ∈ E𝑑 of the 𝑑-dimensional cubic lattice is independently assigned
a random nonnegative time 𝑡𝑒 ≥ 0 according to a fixed distribution 𝜈. The
distribution 𝜈, which is a Borel probability measure on [0,∞), is called the
time distribution. The passage time 𝑇 (𝛾) of a path 𝛾 = (𝑒1, . . . , 𝑒𝑟) is defined
as the sum 𝑇 (𝛾) := ∑𝑟

𝑖=1 𝑡𝑒𝑖 . For two points 𝑥, 𝑦 ∈ R𝑑, we denote by 𝑇 (𝑥, 𝑦)
the first passage time from 𝑥 to 𝑦, that is,

𝑇 (𝑥, 𝑦) := inf{𝑇 (𝛾) : 𝛾 is a path from 𝑥′ to 𝑦′},

where 𝑥′ and 𝑦′ are the closest lattice points of 𝑥 and 𝑦, respectively, with
a deterministic rule to break ties. As a counterpart of the cluster 𝐶 in the
bond percolation model, we consider the percolation region 𝐵(𝑡), which is
defined as

𝐵(𝑡) := {𝑥 ∈ R𝑑 : 𝑇 (0, 𝑥) ≤ 𝑡}
for a time 𝑡 ≥ 0.

Cox and Durrett [8] showed the shape theorem, namely a “law of large
numbers” for the percolation region under the moment condition

Emin{𝑡1, . . . , 𝑡2𝑑}𝑑 < ∞. (1.8)

Here, E denotes the expectation and random variables 𝑡1, . . . , 𝑡2𝑑 ∼ 𝜈 are
independent copies of random times.

Theorem 1.4 ([8]). Suppose that the time distribution 𝜈 satisfies the con-
dition (1.8). Then either of the following holds:

(a) There exists a deterministic, convex, compact set B in R𝑑 such that for
each 𝜖 > 0, it holds almost surely that

(1 − 𝜖)B ⊂ 𝐵(𝑡)
𝑡
⊂ (1 + 𝜖)B for all large 𝑡.

(b) For all 𝑅 > 0, it holds almost surely that

{𝑥 ∈ R𝑑 : ∥𝑥∥1 ≤ 𝑅} ⊂
𝐵(𝑡)
𝑡

for all large 𝑡.
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From the additional discussion shown in the textbook [18], whether the
case (a) or (b) occurs is determined by the probability 𝜈(0) that a random
time is equal to 0: the case (a) occurs when 𝜈(0) < 𝑝𝑐 (L𝑑), while the case
(b) occurs when 𝜈(0) ≥ 𝑝𝑐 (L𝑑).

The set B ⊂ R𝑑 in the case (a) is called the limit shape. Let us observe
the shape of B. In this case, the limit shape B is given by the unit ball with
respect to some norm 𝜇 on R𝑑, which is the reason for the convexity of B.
Let 𝑅 := 𝜇(𝑎1)−1 with 𝑎1 := (1, 0, . . . , 0) ∈ Z𝑑. Combining the convexity with
the symmetric property of B, we obtain the following inclusions (Figure 1.4):

{𝑥 ∈ R𝑑 : ∥𝑥∥1 ≤ 𝑅} ⊂ B, (1.9)

B ⊂ {𝑥 ∈ R𝑑 : ∥𝑥∥∞ ≤ 𝑅}. (1.10)

Figure 1.4: Case 𝑑 = 2. The limit shape B lies between the solidly
drawn diamond and the dashed square.

The equality of (1.9) holds when the time distribution 𝜈 is a Dirac measure
𝛿1 at 1, which means that each random time 𝑡𝑒 has the value 1 almost surely.
Indeed, for each 𝑡 ∈ Z≥0, the percolation region 𝐵(𝑡) consists of the vertices
𝑥 ∈ Z𝑑 with ∥𝑥∥1 ≤ 𝑡. Thus we can observe that the limit shape B is the unit
ball with respect to the norm ∥ · ∥1 (Figure 1.5).
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Figure 1.5: Sketch of 𝐵(2) (left) and the limit shape B (right).

If the time distribution 𝜈 is not a Dirac measure, then the percolation
region 𝐵(𝑡) tends to spread out in the diagonal direction, which is intuitively
inferred from the following observation: Let us focus on two vertices 𝑥, 𝑦 ∈ Z2
with ∥𝑥∥1 = ∥𝑦∥1 such that 𝑥 is on the diagonal and 𝑦 is on the axis. In this
case, the number of shortest paths (in terms of graph distance) from the
origin to 𝑥 is greater than that from the origin to 𝑦. Thus the first passage
time 𝑇 (0, 𝑥) tends to be smaller than 𝑇 (0, 𝑦).

In fact, the simulation study [2] of the FPP model on L2 shows that the
limit shape comes closer to the Euclidean ball for time distributions with
larger variability. However, it is unlikely that the limit shape is really the
Euclidian ball since [9] shows that for any 𝜈 with finite first moment, the
limit shape is not the Euclidean ball for sufficiently large 𝑑.

It is an open question as to which compact convex sets are realizable as
the limit shape, and even the following has not yet been proved:

• there exist no time distributions 𝜈 such that the equality of the inclusion
(1.10) hold.

Except for a few studies on the triangular lattice model (e.g., [10, 29]),
most of the work on the FPP model on periodic graphs has been done as the
cubic lattice model.

1.1.4 Crystal lattices

Several studies have been made on the formulation of periodic graphs in
the context of percolation theory as exemplified by Kesten [19], which we
have reviewed in the previous section. Grimmett [16] gives a formulation
of a “𝑑-dimensional lattice” by group action on a graph and summarizes its
basic properties. Despite such studies, few results have been published on
percolation models formulated on general periodic graphs.
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This thesis uses the formulation of “crystal lattices,” which was intro-
duced by Kotani and Sunada [21]. Though the definition of a crystal lattice
itself is equivalent to those above (see Section 2.1), it has several interesting
properties regarding the study of percolation theory.

A 𝑑-dimensional crystal lattice is a regular covering graph 𝑋 over a finite
graph 𝑋0 whose covering transformation group 𝐿 is a free abelian group
with rank 𝑑. This definition is equivalent to the following: a graph 𝑋 is a
𝑑-dimensional crystal lattice if there exists a free action 𝐿 ↷ 𝑋 of a free
abelian group 𝐿 with rank 𝑑 such that the quotient graph 𝑋0 = 𝑋/𝐿 is finite.
The finite graph 𝑋0 is called a base graph. Figure 1.6 shows examples of
crystal lattices.

Figure 1.6: Cubic lattice (left), triangular lattice (center) and
honeycomb lattice (right). The arrows indicate a basis of the
action on each lattice, and the graphs below are their base graphs.

The “shape” of a 𝑑-dimensional crystal lattice 𝑋 = (𝑉, 𝐸) is defined as
a map from 𝑋 to R𝑑. A map Φ : 𝑋 → R𝑑 is called a periodic realization if
there exists an injective homomorphism 𝜌 : 𝐿 → R𝑑 satisfying the following
conditions:

• the image Γ := 𝜌(𝐿) is a lattice group of R𝑑; and

• Φ(𝜎𝑥) = Φ(𝑥) + 𝜌(𝜎) holds for any 𝑥 ∈ 𝑉 and 𝜎 ∈ 𝐿.

Note that the realized crystal Φ(𝑋) is invariant under translation by any
vector b ∈ Γ = 𝜌(𝐿). The homomorphism 𝜌 : 𝐿 → R𝑑 is called the period
homomorphism of the realization Φ : 𝑋 → R𝑑. Though the period 𝜌 is
determined uniquely from Φ, we often write a periodic realization as the pair
(Φ, 𝜌) in order to emphasize that 𝜌 represents the period of the realization.
Figure 1.7 shows examples of periodic realizations of the honeycomb lattice.
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Here, the arrows show the basis of the lattice group. Note that the left and
center realizations have the same lattice group and thus the same period.

Figure 1.7: Three examples of periodic realizations of the honey-
comb lattice.

Periodic realization of crystal lattices has an interesting property with
respect to covering, which can be stated as follows: Let Φ : 𝑋 → R𝑑 be a
periodic realization of a 𝑑-dimensional crystal lattice 𝑋. By identifying some
suitable 𝑑1-dimensional subspace of R𝑑 with R𝑑1 , we observe that the or-
thogonal projection 𝑃(Φ(𝑋)) onto R𝑑1 coincides with the image of a periodic
realization Φ1 : 𝑋1 → R𝑑1 of a 𝑑1-dimensional crystal lattice 𝑋1. We also see
that 𝑋1 can be expressed by 𝑋/𝐺 for some group action 𝐺 ↷ 𝑋, and that
the following commutative property holds:

𝑋
Φ //

𝜔

��
⟳

R𝑑

𝑃
��

𝑋1 Φ1

// R𝑑1 ,

(1.11)

where 𝜔 : 𝑋 → 𝑋1 is the quotient map and 𝑃 : R𝑑 → R𝑑1 is the orthogonal
projection (Figure 1.8).

Figure 1.8: Example of a projective relation. By the orthogonal
projection 𝑃 : R3 → R2 ≃ {(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 + 𝑥2 + 𝑥3 = 0},
the realization of L3 is projected onto that of T.
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The study of crystal lattices comes from discrete geometric analysis (see,
e.g., [27]) and is rich in considerations of the shape of lattices. A typical
example is the concept of the standard realization [21], which is the periodic
realization with maximal symmetry among all realizations. When consid-
ering percolation models on the triangular or the cubic lattices, it is often
implicitly assumed that these lattices are naturally realized in R𝑑, which is
equivalent to a standard realization. Thus, the formulation of crystal lattices
is suitable for studying the relationship between the shape of the percolation
clusters and the lattices.

1.2 Contributions

This thesis studies the bond percolation and FPP models defined on crystal
lattices. The aim of this thesis is to study the relationship between the shapes
of percolation clusters and crystal lattices. In particular, motivated by the
comparison (1.7), we show the covering monotonicity of percolation clusters.

The main results of this thesis can be divided into the following three
main categories. The precise definitions of some terminologies will be given
in the later chapters.

1.2.1 Generalization of the shape theorem

Fix a periodic realization (Φ, 𝜌) of a 𝑑-dimensional crystal lattice 𝑋 = (𝑉, 𝐸).
Let (𝑡𝑒 : 𝑒 ∈ 𝐸) be a family of i.i.d. random times with a time distribution
𝜈. The percolation region 𝐵(𝑡) is defined in the same way as the cubic lattice
model. We assume the following moment condition:

Emin{𝑡1, . . . , 𝑡𝑙𝑋 }𝑑 < ∞, (1.12)

where 𝑙𝑋 is the edge connectivity of 𝑋 and 𝑡1, . . . , 𝑡𝑙𝑋 ∼ 𝜈 are independent
copies of 𝑡𝑒. This is a generalization of the moment condition (1.8) for the
cubic lattice model. The first main theorem of this thesis is given by the
following, which is a generalization of the shape theorem.

Theorem 1.5. Let (Φ, 𝜌) be a periodic realization of a 𝑑-dimensional crystal
lattice 𝑋. Suppose that the time distribution 𝜈 satisfies (1.12). Then the
following hold:
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(a) If 𝜈(0) < 𝑝𝑐 (𝑋), then there exists a deterministic, convex, compact set
B ⊂ R𝑑 such that for each 𝜖 > 0, it holds almost surely that

(1 − 𝜖)B ⊂ 𝐵(𝑡)
𝑡
⊂ (1 + 𝜖)B for all large 𝑡.

(b) If 𝜈(0) ≥ 𝑝𝑐 (𝑋), then for all 𝑅 > 0, it holds almost surely that

{𝑥 ∈ R𝑑 : ∥𝑥∥1 ≤ 𝑅} ⊂
𝐵(𝑡)
𝑡

for all large 𝑡.

Here, the limit shape B is given by the unit ball with respect to the norm
𝜇 in Proposition 3.3. Throughout this thesis, the limit shape B is assumed
to be the whole space R𝑑 in the case (b).

Some basic properties of the limit shape B are given in Section 3.2.2.
One remarkable property is that the limit shape B depends only on 𝑋, 𝜈
and the period 𝜌. For example, when we consider the FPP models on the
periodic realizations of the honeycomb lattice shown in Figure 1.7, the limit
shapes obtained from the left and center realizations are the same, although
the realizations are different.

1.2.2 Covering monotonicity of the limit shapes

The second result is derived from the comparison (1.7). By using the pro-
jective relation (1.11) of two crystal lattices, this thesis gives the covering
monotonicity of the limit shapes.

Theorem 1.6. Let Φ : 𝑋 → R𝑑 and Φ1 : 𝑋1 → R𝑑1 be periodic realizations
of crystal lattices 𝑋 and 𝑋1 satisfying the projective relation (1.11). Assume
that 𝜈 satisfies the moment condition (1.12) for 𝑋 and 𝑋1. Then the following
holds for the limit shapes B and B1:

B1 ⊂ 𝑃(B).

This result gives insights regarding the limit shape of the cubic FPP
model: To observe the shape of B of the cubic lattice L𝑑, we can consider
the projection 𝑃 : R𝑑 → R𝑑1 in some suitable direction and obtain a periodic
realization of a covered lattice 𝑋1. Then we obtain B1 ⊂ 𝑃(B) for the limit
shape B1 of 𝑋1, implying that the projection of the limit shape B of L𝑑 to
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the space R𝑑1 is bounded below by the limit shape B1 of 𝑋1 (Figure 1.9). An
application of Theorem 1.6 is given in Section 3.3.1.

Figure 1.9: Limit shapes B and B1.

Note that Theorem 1.5 implies that the limit shape B (resp. B1) is
bounded if and only if 𝜈(0) < 𝑝𝑐 (𝑋) (resp. 𝜈(0) < 𝑝𝑐 (𝑋1)). From this, we
can see that for two crystal lattices 𝑋, 𝑋1 in Theorem 1.6, the comparison
(1.7) easily follows from Theorem 1.6.

Corollary 1.7. 𝑝𝑐 (𝑋) ≤ 𝑝𝑐 (𝑋1).

Proof. For each 𝑝 ∈ [0, 1], the time distribution 𝜈 := 𝑝𝛿0 + (1− 𝑝)𝛿1, where
𝛿𝑎 is the Dirac measure at 𝑎 ∈ R, satisfies the condition (1.12) for 𝑋 and 𝑋1.
Thus we have

𝑝 = 𝜈(0) < 𝑝𝑐 (𝑋) ⇐⇒ B is bounded

=⇒ B1 is bounded⇐⇒ 𝑝 < 𝑝𝑐 (𝑋1),

which implies Corollary 1.7. Here, the second implication follows from The-
orem 1.6. □

1.2.3 Covering monotonicity of the inverse correlation
length

An analogy of Theorem 1.6 can be obtained in the subcritical bond percola-
tion model. Consider the bond percolation model on a periodic realization
Φ : 𝑋 → R𝑑 of a crystal lattice 𝑋 with probability 0 < 𝑝 < 𝑝𝑐 (𝑋). The cor-
relation length (1.3) also exists in this model. We can show that the inverse
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correlation length, which is defined as the limit

𝜑𝑋 (𝑥) = − lim
𝑛→∞

1

𝑛
log P𝑝 (0↔ 𝑛𝑥) (𝑥 ∈ R𝑑),

is a norm on R𝑑. We will state in Proposition 4.7 that the norm 𝜑𝑋 (·) depends
only on 𝑋, 𝑝 and the period 𝜌 as well as the limit shape in Theorem 1.5.

As an analogue of the limit shape B in Theorem 1.5, we define C as
the unit ball with respect to the norm 𝜑𝑋 . This ball represents the region
where the cluster 𝐶 = 𝐶 (0) can spread within a certain probability cost
(Remark 4.13). This thesis shows that the analogue of Theorem 1.6 holds
for this unit ball C.

Theorem 1.8. Let Φ : 𝑋 → R𝑑 and Φ1 : 𝑋1 → R𝑑1 be periodic realizations
of crystal lattices 𝑋 and 𝑋1 satisfying the projective relation (1.11). Suppose
0 < 𝑝 < 𝑝𝑐 (𝑋) ≤ 𝑝𝑐 (𝑋1). Then the following holds for the unit balls C, C1
with respect to the norms 𝜑𝑋 , 𝜑𝑋1 , respectively:

C1 ⊂ 𝑃(C).

For the proof of Theorem 1.8, this thesis gives a generalization of the
large deviation result for the cluster in L𝑑 [7, 22] to a crystal lattice model,
which is stated in Theorem 4.11.
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Chapter 2

Preliminaries

2.1 Crystal lattices

A crystal lattice, which is the main object of this thesis, is defined as a
covering graph over a finite graph. In this section, we review the concept
of covering graphs and crystal lattices. We refer to [27] for a more detailed
description.

2.1.1 Graphs

A graph is an ordered pair 𝑋 = (𝑉, 𝐸) of disjoint sets 𝑉 and 𝐸 with two maps
𝑖 : 𝐸 → 𝑉 ×𝑉 and 𝜄 : 𝐸 → 𝐸 satisfying

𝜄2 = 𝐼𝐸 (the identity map of 𝐸) and

𝜄(𝑒) ≠ 𝑒, 𝑖(𝜄(𝑒)) = 𝜏(𝑖(𝑒))
for any 𝑒 ∈ 𝐸 , where 𝜏 : 𝑉 ×𝑉 → 𝑉 ×𝑉 is the map defined by 𝜏(𝑥, 𝑦) = (𝑦, 𝑥).
Elements of 𝑉 are called vertices of 𝑋, and elements of 𝐸 are called edges of 𝑋.
We call 𝑖 and 𝜄 the incident map and the inversion map of 𝑋, respectively. We
put 𝑖(𝑒) = (𝑜(𝑒), 𝑡 (𝑒)) and call 𝑜(𝑒) and 𝑡 (𝑒) the origin and the terminus,
respectively. The edge 𝜄(𝑒) is called the inversion of 𝑒 and is sometimes
written as 𝑒. For 𝑥 ∈ 𝑉 , we write 𝐸𝑥 := {𝑒 ∈ 𝐸 : 𝑜(𝑒) = 𝑥}.

For two graphs 𝑋1 = (𝑉1, 𝐸1) and 𝑋2 = (𝑉2, 𝐸2), a morphism 𝑓 : 𝑋1 → 𝑋2
is a pair 𝑓 = ( 𝑓𝑉 , 𝑓𝐸 ) of two maps 𝑓𝑉 : 𝑉1 → 𝑉2, 𝑓𝐸 : 𝐸1 → 𝐸2 satisfying

𝑖( 𝑓𝐸 (𝑒)) = ( 𝑓𝑉 (𝑜(𝑒)), 𝑓𝑉 (𝑡 (𝑒))),
𝑓𝐸 (𝑒) = 𝑓𝐸 (𝑒).
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When both 𝑓𝑉 and 𝑓𝐸 are bijective, the morphism 𝑓 is called an isomorphism.
We abbreviate 𝑓𝑉 and 𝑓𝐸 as 𝑓 when there is no confusion. For a graph 𝑋,
we denote by Aut(𝑋) the automorphism group of 𝑋.

A graph 𝑋 = (𝑉, 𝐸) is said to be transitive if for any vertices 𝑥, 𝑦 ∈ 𝑉 ,
there exists an automorphism 𝜎 ∈ Aut(𝑋) with 𝜎𝑥 = 𝑦. More generally, 𝑋 is
said to be quasi-transitive if 𝑉 can be divided into a finite number of vertex
sets 𝑉1, . . . , 𝑉𝑚 such that for any 𝑘 ∈ {1, ..., 𝑚} and 𝑥, 𝑦 ∈ 𝑉𝑘 , there exists an
automorphism 𝜎 ∈ Aut(𝑋) with 𝜎𝑥 = 𝑦.

An action 𝐺 ↷ 𝑋 of a group 𝐺 on a graph 𝑋 is a group homomorphism
ℎ : 𝐺 → Aut(𝑋), which naturally gives rise to actions 𝐺 ↷ 𝑉 and 𝐺 ↷ 𝐸
by 𝑔𝑥 := ℎ(𝑔)(𝑥) for 𝑥 ∈ 𝑉 and 𝑔𝑒 := ℎ(𝑔)(𝑒) for 𝑒 ∈ 𝐸 , respectively.

We say that 𝐺 acts on 𝑋 freely when the action 𝐺 ↷ 𝑉 is free and 𝑔𝑒 ≠ 𝑒
for any 𝑔 ∈ 𝐺 and 𝑒 ∈ 𝐸 . For a free action 𝐺 ↷ 𝑋, we define the quotient
graph 𝑋/𝐺 of 𝑋 as the pair 𝑋/𝐺 = (𝑉/𝐺, 𝐸/𝐺) of the orbit spaces 𝑉/𝐺 and
𝐸/𝐺 whose incident and inversion maps are induced from those of 𝑋.

Remark 2.1. This formulation of quotient graphs is more inclusive than that
introduced in Section 1.1.2, in the sense that it allows graphs with parallel
edges and loops.

2.1.2 Covering graphs

Let 𝑋 = (𝑉, 𝐸) and 𝑋0 = (𝑉0, 𝐸0) be connected graphs. A morphism 𝜔 :
𝑋 → 𝑋0 is called a covering map if

• 𝜔𝑉 is surjective; and

• for every 𝑥 ∈ 𝑉 , the restriction 𝜔𝐸↾𝐸𝑥 : 𝐸𝑥 → 𝐸0,𝜔(𝑥) is bijective.

The graph 𝑋 is called a covering graph of 𝑋0. The covering transformation
group 𝐺 (𝜔) of a covering map 𝜔 is the set of automorphisms 𝜎 ∈ Aut(𝑋)
with 𝜔 ◦ 𝜎 = 𝜔. We say that a covering map 𝜔 : 𝑋 → 𝑋0 is regular if for
any 𝑥, 𝑦 ∈ 𝑉 with 𝜔(𝑥) = 𝜔(𝑦), there exists a transformation 𝜎 ∈ 𝐺 (𝜔) such
that 𝜎𝑥 = 𝑦.

A path 𝛾 in a graph 𝑋 is a sequence 𝛾 = (𝑒1, 𝑒2, . . . , 𝑒𝑟) of edges with
𝑜(𝑒𝑖+1) = 𝑡 (𝑒𝑖) for 𝑖 = 1, 2, . . . , 𝑟 − 1. One of the most basic properties of a
covering map 𝜔 : 𝑋 → 𝑋0 is the unique path-lifting property : for any path
𝛾0 = (𝑒0,1, 𝑒0,2, . . . , 𝑒0,𝑟) in 𝑋0 and a vertex 𝑥 ∈ 𝑋 with 𝜔(𝑥) = 𝑜(𝑒0,1), there
exists a unique path 𝛾 = (𝑒1, 𝑒2, . . . , 𝑒𝑟) in 𝑋, called a lifting of 𝛾0, such that
𝑜(𝑒1) = 𝑥 and 𝜔(𝑒𝑖) = 𝑒0,𝑖 for 𝑖 = 1, 2, . . . , 𝑟.
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Taking a quotient can be characterized by a covering map. We can see
that for a regular covering map 𝜔 : 𝑋 → 𝑋0, the action 𝐺 (𝜔) ↷ 𝑋 of the
covering transformation group 𝐺 (𝜔) is free and its quotient graph 𝑋/𝐺 (𝜔)
is isomorphic to 𝑋0. On the other hand, the following theorem holds.

Theorem 2.2 ([27, Theorem 5.2]). Suppose that a group 𝐺 acts freely on a
graph 𝑋. Then the canonical morphism 𝜔 : 𝑋 → 𝑋/𝐺 is a regular covering
map whose covering transformation group is 𝐺.

We give a proposition for the composition of covering maps. Note that,
for two covering maps 𝜔 : 𝑋 → 𝑋1 and 𝜔′ : 𝑋1 → 𝑋0, we can check that
the composition �̃� := 𝜔′ ◦ 𝜔 : 𝑋 → 𝑋0 is also a covering map, and that the
covering transformation group 𝐺 (𝜔) is a subgroup of 𝐺 (�̃�).

Proposition 2.3 ([27, Theorem 5.5]). Let 𝜔 : 𝑋 → 𝑋1, 𝜔
′ : 𝑋1 → 𝑋0 be

covering maps. Suppose that 𝜔 and the composition �̃� = 𝜔′ ◦ 𝜔 are regular
and that 𝐺 (𝜔) is a normal subgroup of 𝐺 (�̃�). Then the covering map 𝜔′

is regular and the covering transformation group 𝐺 (𝜔′) is isomorphic to the
factor group 𝐺 (�̃�)/𝐺 (𝜔).

In the above proposition, the isomorphism 𝐺 (�̃�)/𝐺 (𝜔) ≃ 𝐺 (𝜔′) is ob-
tained from the map 𝜋 : 𝐺 (�̃�) → 𝐺 (𝜔′) defined as

𝜋(𝜎)𝜔(𝑥) = 𝜔(𝜎𝑥) (𝑥 ∈ 𝑉) (2.1)

and
𝜋(𝜎)𝜔(𝑒) = 𝜔(𝜎𝑒) (𝑒 ∈ 𝐸)

for 𝜎 ∈ 𝐺 (�̃�). We refer to the proof of [27, Theorem 5.5] for the well-
definedness of this map.

Tree-lifting property

From the unique path-lifting property, we can consider a lifting of trees as
follows: Let 𝜔 : 𝑋 → 𝑋0 be a regular covering over a finite graph 𝑋0. Let T0
be a spanning tree of 𝑋0. Fix two vertices 𝑥0 ∈ 𝑋0 and 𝑥 ∈ 𝑋 with 𝜔(𝑥) = 𝑥0.
Then there exists a unique subtree T ⊂ 𝑋, which we call a lifting of T0,
satisfying 𝑥 ∈ T and the restriction 𝜔↾T : T → T0 of 𝜔 is an isomorphism.
Indeed, we can construct T as

T :=
⋃
𝑖

𝛾𝑖,
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where each path 𝛾𝑖 is the lifting of the unique path in T0 from 𝑥0 to each
leaf 𝑦𝑖0, a vertex of T0 with degree 1. The uniqueness follows from the unique
path-lifting property. For this tree T and 𝜎 ∈ 𝐺 (𝜔), the translation 𝜎(T ),
denoted by T𝜎, is the unique lifting of T0 containing 𝜎𝑥. The following
proposition states that the vertex set of a covering graph can be represented
as the array of a spanning tree of 𝑋0.

Proposition 2.4. Let 𝜔 : 𝑋 = (𝑉, 𝐸) → 𝑋0 be a regular covering over a
finite graph 𝑋0. For a spanning tree T0 ⊂ 𝑋0 and its lifting T ⊂ 𝑋, the
following holds:

𝑉 =
⊔

𝜎∈𝐺 (𝜔)
T𝜎 .

Proof. Take 𝑦 ∈ 𝑉 arbitrarily. For 𝑦0 := 𝜔(𝑦), we can find 𝑦′ ∈ T with
𝜔(𝑦′) = 𝑦0 since 𝜔↾T is a bijection. From the regularity of 𝜔, there exists
𝜎 ∈ 𝐺 (𝜔) such that 𝑦 = 𝜎(𝑦′), which implies 𝑦 ∈ T𝜎. Thus 𝑉 ⊂ ∪𝜎∈𝐺 (𝜔)T𝜎.
The disjointness of the right hand side follows from the uniqueness of the
lifting tree. □

2.1.3 Crystal lattices

A crystal lattice 𝑋 is a regular covering graph over a finite connected graph
𝑋0 whose transformation group 𝐿 is a free abelian group. The graph 𝑋0 is
called a base graph of 𝑋 and the transformation group 𝐿 is called an abstract
period lattice. The dimension dim 𝑋 of a crystal lattice 𝑋 is defined to be
the rank of 𝐿.

Theorem 2.2 gives an alternative description of a crystal lattice. Namely,
a graph 𝑋 is a crystal lattice if and only if there exists a free action 𝐿 ↷ 𝑋
of a free abelian group 𝐿, and the quotient graph 𝑋0 := 𝑋/𝐿 is finite. The
following are examples of crystal lattices.

Example 2.5. The 𝑑-dimensional cubic lattice L𝑑 = (Z𝑑 ,E𝑑) is a crystal
lattice with dimension 𝑑. Indeed, the free abelian group Z𝑑 acts naturally
on L𝑑 by translation, and the quotient graph is a bouquet (Figure 1.6).

Example 2.6. The honeycomb lattice H and the triangular lattice T are
also crystal lattices with dimension 2. Indeed, we can give the action of Z2

by translation in such a way that the basis of Z2 comprises the translations
shown in Figure 1.6.
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Remark 2.7. Grimmett [16] gives a formulation of a “𝑑-dimensional lattice”
as a locally finite graph 𝑋 such that the vertex set has finitely many orbits
under a free action Z𝑑 ↷ 𝑋. This definition is essentially the same as that
of crystal lattices.

From Proposition 2.4, the vertex set 𝑉 of 𝑋 can be divided into the liftings
of a spanning tree T of the base graph 𝑋0:

𝑉 =
⊔
𝜎∈Z𝑑
T𝜎 . (2.2)

Here, we identify the free abelian group 𝐿 with Z𝑑 by taking some Z-basis of
𝐿. This implies that a 𝑑-dimensional crystal lattice can be considered as a
𝑑-dimensional array of spanning trees of the base graph.

Periodic realization

The “shape” of a crystal lattice is defined as a map to the space R𝑑. Let
𝑋 = (𝑉, 𝐸) be a 𝑑-dimensional crystal lattice over a finite graph 𝑋0 = (𝑉0, 𝐸0),
and let 𝐿 be its abstract period lattice. A realization of 𝑋 into R𝑑 is a map
Φ : 𝑉 → R𝑑, where the edges of 𝑋 are realized as the segments connecting
their endpoints. We often write a realization as Φ : 𝑋 → R𝑑, which is said to
be periodic if there exists an injective homomorphism 𝜌 : 𝐿 → R𝑑 satisfying
the following conditions:

• the image Γ := 𝜌(𝐿) is a lattice group of R𝑑, that is, there exists a basis
(𝑎1, . . . , 𝑎𝑑) of R𝑑 such that

Γ = {𝜆1𝑎1 + · · · + 𝜆𝑑𝑎𝑑 : 𝜆𝑖 ∈ Z}; and

• for any vertex 𝑥 ∈ 𝑉 and 𝜎 ∈ 𝐿,

Φ(𝜎𝑥) = Φ(𝑥) + 𝜌(𝜎). (2.3)

The equation (2.3) implies that the realized crystal Φ(𝑋) is invariant under
translation by any vector b ∈ Γ. From this, the periodic structure of Φ is
considered to be represented by Γ = 𝜌(𝐿). The homomorphism 𝜌 : 𝐿 → R𝑑 is
called the period homomorphism of the realization Φ : 𝑋 → R𝑑. Though the
period 𝜌 is determined uniquely from Φ, we often write a periodic realization
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as the pair (Φ, 𝜌) in order to emphasize that 𝜌 represents the period of the
realization.

Let 𝜔 : 𝑋 → 𝑋0 be the covering map. The building block of Φ is the
𝐸0-indexed family (v0(𝑒0))𝑒0∈𝐸0 of vectors defined by

v0(𝑒0) := Φ(𝑡 (𝑒)) −Φ(𝑜(𝑒)), (2.4)

where 𝑒 ∈ 𝐸 is an edge with 𝜔(𝑒) = 𝑒0. This definition does not depend on
the choice of 𝑒 ∈ 𝐸 . Indeed, for any 𝑓 ∈ 𝐸 with 𝜔( 𝑓 ) = 𝑒0, the regularity of
𝜔 implies the existence of 𝜎 ∈ 𝐿 with 𝜎 𝑓 = 𝑒. We thus have

Φ(𝑡 (𝑒)) −Φ(𝑜(𝑒)) =Φ(𝑡 (𝜎 𝑓 )) −Φ(𝑜(𝜎 𝑓 ))
=[Φ(𝑡 ( 𝑓 )) + 𝜌(𝜎)] − [Φ(𝑜( 𝑓 )) + 𝜌(𝜎)]
=Φ(𝑡 ( 𝑓 )) −Φ(𝑜( 𝑓 )),

where the second equality follows from the definition of graph morphism and
(2.3).

The following theorem states that a crystal lattice 𝑋 can be realized with
an arbitrary period.

Theorem 2.8 ([27, Theorem 7.2]). Let 𝑋 be a 𝑑-dimensional crystal lattice
over 𝑋0 whose abstract period lattice is 𝐿. Then for any injective homomor-
phism 𝜌 : 𝐿 → R𝑑 such that 𝜌(𝐿) is a lattice group of R𝑑, there exists a
periodic realization Φ whose period homomorphism is 𝜌.

Remark 2.9. The definition of periodic graphs by Kesten (Definition 1.2) is
essentially equivalent to that of crystal lattices. Indeed, Theorem 2.8 implies
that any 𝑑-dimensional crystal lattice 𝑋 can be realized in such a way that
the period Γ = 𝜌(𝐿) is equal to Z𝑑, which is nothing but the first item of
Definition 1.2. On the other hand, for any graph 𝑋 satisfying the three
conditions in Definition 1.2, we can consider the free action Z𝑑 ↷ 𝑋 by
translation in the coordinate vectors, and obtain the finite quotient graph.

Projective relation

Let 𝑋 be a 𝑑-dimensional crystal lattice whose base graph is 𝑋0. We con-
sider a periodic realization Φ : 𝑋 → R𝑑 of 𝑋 with the period homomorphism
𝜌 : 𝐿 → R𝑑. An orthogonal projection 𝑃 : R𝑑 → 𝑊 onto some 𝑑1-dimensional
subspace 𝑊 is said to be a rational projection if the image 𝑃(𝜌(𝐿)) is a lat-
tice group of 𝑊 . We identify 𝑊 with R𝑑1 . We put 𝐿1 := 𝐿/Ker(𝑃 ◦ 𝜌),
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which is a free abelian group with rank 𝑑1. We also write the quotient
graph 𝑋/Ker(𝑃 ◦ 𝜌) as 𝑋1 = (𝑉1, 𝐸1). From Theorem 2.2, the quotient map
𝜔 : 𝑋 → 𝑋1 is a regular covering map whose covering transformation group
is Ker(𝑃 ◦ 𝜌). Since Ker(𝑃 ◦ 𝜌) is a normal subgroup of 𝐿, it follows from
Proposition 2.3 that 𝑋1 is a regular covering graph over 𝑋0 whose transfor-
mation group is 𝐿1. In particular, 𝑋1 is a crystal lattice with dimension
𝑑1.

We observe that 𝜔(𝑥) = 𝜔(𝑦) implies 𝑃 ◦ Φ(𝑥) = 𝑃 ◦ Φ(𝑦). Indeed, from
the regularity of 𝜔, we can take 𝜎 ∈ Ker(𝑃 ◦ 𝜌) such that 𝑥 = 𝜎𝑦, and obtain

𝑃(Φ(𝑥)) = 𝑃(Φ(𝜎𝑦)) = 𝑃(Φ(𝑥)) + 𝑃(𝜌(𝜎)) = 𝑃(Φ(𝑥)).

Thus we can find a map Φ1 : 𝑋1 → R𝑑1 such that the commutative diagram
(1.11) holds. We last check that Φ1 is a periodic realization. Let 𝜋 : 𝐿 → 𝐿1
be the canonical homomorphism. The homomorphism 𝑃 ◦ 𝜌 : 𝐿 → R𝑑1

induces the injective homomorphism 𝜌1 : 𝐿1 → R𝑑1 with 𝜌1 ◦ 𝜋 = 𝑃 ◦ 𝜌. For
𝑥1 ∈ 𝑉1 and 𝜎1 ∈ 𝐿1, we can take 𝑥 ∈ 𝑉 and 𝜎 ∈ 𝐿 such that 𝜔(𝑥) = 𝑥1 and
𝜋(𝜎) = 𝜎1. We then have 𝜎1𝑥1 = 𝜔(𝜎𝑥) from (2.1) and

Φ1(𝜎1𝑥1) = Φ1(𝜔(𝜎𝑥)) = 𝑃(Φ(𝜎𝑥)) = 𝑃(Φ(𝑥)) + 𝑃(𝜌(𝜎))
= Φ1(𝑥1) + 𝜌1(𝜎1).

Thus Φ1 is a periodic realization whose period homomorphism is 𝜌1.

Maximal abelian covering graphs

For a finite connected graph 𝑋0 = (𝑉0, 𝐸0), we can define the “maximal”
crystal lattice whose base graph is 𝑋0. Let 𝐶1(𝑋0,Z) be the group of 1-
chains with coefficients in Z, that is,

𝐶1(𝑋0,Z) :=
{
𝛼 =

∑
𝑒∈𝐸0

𝑎𝑒𝑒 : 𝑎𝑒 ∈ Z
}
.

The group of 0-chains is also defined as

𝐶0(𝑋0,Z) :=
{
𝛼 =

∑
𝑥∈𝑉0

𝑎𝑥𝑥 : 𝑎𝑥 ∈ Z
}
.

The boundary operator 𝜕 : 𝐶1(𝑋0,Z) → 𝐶0(𝑋0,Z) is defined by the extension
of

𝜕𝑒 = 𝑡 (𝑒) − 𝑜(𝑒) (𝑒 ∈ 𝐸0).
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The first homology group 𝐻1(𝑋0,Z) of graph 𝑋0 is defined to be the kernel
of 𝜕:

𝐻1(𝑋0,Z) := {𝛼 ∈ 𝐶1(𝑋0,Z) : 𝜕𝛼 = 0}. (2.5)

From the discussion in [27, Section 6.1], there exists a covering graph, de-
noted by 𝑋ab

0 = (𝑉ab
0 , 𝐸ab

0 ), over 𝑋0 whose covering transformation group is

𝐻1(𝑋0,Z). The graph 𝑋ab
0 is called the maximal abelian covering graph over

𝑋0.
Let 𝜔ab : 𝑋ab

0 → 𝑋0 be the covering map. The following theorem states

that 𝜔ab is maximal among all abelian covering maps, i.e., regular covering
maps whose covering transformation group is abelian.

Theorem 2.10 ([27, Theorem 6.1]). Let 𝜔1 : 𝑋1 → 𝑋0 be an abelian covering
graph over 𝑋0. There exists a regular covering map 𝜔 : 𝑋ab

0 → 𝑋1 such that

𝜔ab = 𝜔1 ◦ 𝜔.

Since 𝐻1(𝑋0,Z) is a free abelian group, 𝑋ab
0 is a crystal lattice with dimen-

sion 𝑑 := rank 𝐻1(𝑋0,Z). From (2.2), we identify 𝑋ab
0 as the 𝑑-dimensional

array of a spanning tree T of 𝑋0:

𝑉ab
0 =

⊔
𝜎∈Z𝑑
T𝜎 . (2.6)

Moreover, it follows from the construction of the maximal abelian covering
graph (see [27, Sections 5.5, 6.1]) that we can identify 𝐻1(𝑋0,Z) with Z𝑑 such
that the equivalence

∥𝜎 − 𝜏∥1 = 1⇐⇒ (2.7)

there exists a unique edge 𝑒 with 𝑡 (𝑒) ∈ T𝜎 and 𝑜(𝑒) ∈ T𝜏

holds for any 𝜎, 𝜏 ∈ Z𝑑 (Figure 2.1).

Figure 2.1: Sketch of maximal abelian covering graph with di-
mension 2. The lines indicate the edges that connect adjacent
trees.
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Example 2.11. The cubic lattice L𝑑 and the honeycomb lattice H shown in
Figure 2.2 are maximal abelian covering graphs, with the base graphs also
shown below.

Figure 2.2: Honeycomb lattice (left) and cubic lattice (right).
The red lines and points indicate a spanning tree of each base
graph.

A diamond lattice D can be regarded as a higher-dimensional version of
the honeycomb lattice in the sense that D is the maximal abelian covering
graph over the finite graph consisting of two points and four parallel edges
connecting them.

2.2 FKG inequality and a remark on the crit-

ical probability

The FPP model and the bond percolation model, which we introduced in
Section 1.1, can be formulated on the product space indexed by a countable
set 𝑆. When we consider the FPP model with time distribution 𝜈, we assume
the probability space (Ω, F , P) defined by

Ω := [0,∞)𝑆, P := 𝜈⊗𝑆 (2.8)

and the Borel 𝜎-algebra F . Here 𝜈⊗𝑆 stands for the product measure on Ω.
Each element t = (𝑡𝑠 : 𝑠 ∈ 𝑆) ∈ Ω is called a configuration. A partial order
≤ on the configuration space Ω is defined by

t ≤ t′
def⇐⇒ 𝑡𝑠 ≤ 𝑡′𝑠 for any 𝑠 ∈ 𝑆

for two configurations t = (𝑡𝑠 : 𝑠 ∈ 𝑆), t′ = (𝑡′𝑠 : 𝑠 ∈ 𝑆) ∈ Ω. An event
𝐴 ∈ F is called increasing if t′ ∈ 𝐴 whenever t ∈ 𝐴 and t ≤ t′. For the cubic
lattice L𝑑 = (Z𝑑 ,E𝑑), we can consider the FPP model by setting 𝑆 = E𝑑. The
following are examples of increasing events:
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• {𝑇 (𝛾) > 𝑡} for a path 𝛾 in L𝑑 and 𝑡 > 0.

• {𝑇 (𝑥, 𝑦) > 𝑡} for two points 𝑥, 𝑦 ∈ R𝑑 and 𝑡 > 0.

The probability space of the bond percolation model is formulated by
replacing [0,∞) by {0, 1}. That is, for the probability 𝑝 ∈ [0, 1], we consider
the probability space (Ω, F , P𝑝) defined by

Ω := {0, 1}𝑆, P𝑝 = [(1 − 𝑝)𝛿0 + 𝑝𝛿1]⊗𝑆 (2.9)

and the 𝜎-algebra F generated by finite-dimensional cylinder sets1. Here we
assume that a bond 𝑒 is open (resp. closed) if 𝑡𝑒 = 1 (resp. 𝑡𝑒 = 0). We
consider the bond percolation model on a graph 𝑋 = (𝑉, 𝐸) by setting 𝑆 = 𝐸 .
The following are some examples of increasing events of the bond percolation
model on a graph 𝑋:

• {𝑥 ↔ 𝑦} for two points 𝑥, 𝑦 ∈ 𝑉 .

• {𝑥 ↔∞} for 𝑥 ∈ 𝑉 .

Here, 𝑥 ↔ 𝑦 means that two points 𝑥, 𝑦 are connected by a path of open
edges. We also write 𝑥 ↔∞ when 𝑥 is contained in an infinite cluster.

In this section, we introduce the FKG inequality [14], which is commonly
used in percolation theory. The simplest form of the FKG inequality is the
following.

Theorem 2.12 (FKG inequality). Let 𝐴 and 𝐵 be two increasing events in
the probability space (2.8). Then

P(𝐴 ∩ 𝐵) ≥ P(𝐴)P(𝐵). (2.10)

The same result also holds for the probability space (2.9). From the
FKG inequality, we can check as follows that the critical probability of an
arbitrary connected graph 𝑋 = (𝑉, 𝐸) does not depend on the choice of the
origin 0 ∈ 𝑉 , which is trivial for graphs such as L𝑑, T or H introduced in
Section 1.1.2.

Let 𝑝 > 0. For a vertex 𝑥 ∈ 𝑉 , let 𝜃 (𝑝, 𝑥) be the percolation probability
at 𝑥:

𝜃 (𝑝, 𝑥) := P𝑝 (𝑥 ↔∞).
1A finite-dimensional cylinder set is a set {t ∈ Ω : 𝑡𝑒𝑖 = 𝜖𝑖 for 𝑖 = 1, 2, . . . , 𝑛} for some

𝑛 ∈ Z≥0, 𝑒𝑖 ∈ 𝑆 and 𝜖𝑖 ∈ {0, 1}.
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Let 𝑦 ≠ 𝑥 ∈ 𝑉 be another vertex and suppose 𝜃 (𝑝, 𝑦) > 0. Then we obtain
the inclusion

{𝑥 ↔∞} ⊃ {𝑥 ↔ 𝑦} ∩ {𝑦 ↔∞},
which implies

𝜃 (𝑝, 𝑥) ≥ P𝑝 ({𝑥 ↔ 𝑦} ∩ {𝑦 ↔∞}).
From the FKG inequality, the right hand side is bounded below by

P𝑝 (𝑥 ↔ 𝑦)𝜃 (𝑝, 𝑦) > 0,

which implies 𝜃 (𝑝, 𝑥) > 0. The same argument holds for the opposite direc-
tion and we obtain

𝜃 (𝑝, 𝑥) > 0⇐⇒ 𝜃 (𝑝, 𝑦) > 0. (2.11)

Thus we can define the critical probability 𝑝𝑐 (𝑋) of 𝑋 as

𝑝𝑐 (𝑋) := sup{𝑝 ∈ [0, 1] : 𝜃 (𝑝, 𝑥) = 0},

which does not depend on the choice of 𝑥 ∈ 𝑉 .
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Notation and assumptions

Throughout this thesis, we deal with a crystal lattice 𝑋 as an undirected
graph, whose edge set is given by the orbit space 𝐸/Z2 of the action Z2 :=
Z/2Z ↷ 𝐸 defined by 𝑒 ↦→ 𝑒. Here we simply denote by 𝐸 the orbit space
𝐸/Z2. We write 𝑥 ∈ 𝑋 for a vertex 𝑥 of a graph 𝑋. We also assume that 𝑋
has the “origin”, denoted by 0 ∈ 𝑋.

When we consider the FPP (resp. bond percolation) model on a crystal
lattice 𝑋 = (𝑉, 𝐸), we always assume the probability space defined as (2.8)
(resp. (2.9)) with 𝑆 = 𝐸 . A configuration of Ω is denoted by t = (𝑡𝑒 : 𝑒 ∈
𝐸) ∈ Ω. We denote by E the expectation with respect to this probability
space.

When we consider a periodic realization Φ : 𝑋 → R𝑑, we write by 𝜌 :
𝐿 → R𝑑 its period homomorphism and by Γ := 𝜌(𝐿) the lattice group. A
vertex 𝑥 ∈ 𝑋 is always assumed to be realized by Φ in R𝑑. We abbreviate
Φ(𝑥) ∈ R𝑑 by 𝑥 ∈ R𝑑. We denote by D the “rational points” of Γ, that is,

D = {𝑞1𝑎1 + · · · + 𝑞𝑑𝑎𝑑 : 𝑞𝑖 ∈ Q},

where (𝑎1, . . . , 𝑎𝑑) is a basis of the lattice group Γ. Note that D coincides
with the set of points 𝑥 ∈ R𝑑 such that 𝑛𝑥 ∈ Γ for some 𝑛 ∈ N, and thus D
does not depend on the choice of a basis of Γ.

In several places in this thesis we have to deal with another crystal lattice
𝑋1. Expressions with respect to 𝑋1 are given with subscripts, such as Φ1, Γ1
and D1.

The following are also used throughout this thesis:

• 𝑑𝑋 (𝑥, 𝑦) : the graph distance of two vertices 𝑥, 𝑦 ∈ 𝑋.

• 𝐼𝐴 : the indicator function of the event 𝐴 ∈ F .

• 𝑎𝑛 ≈ 𝑏𝑛 means that lim𝑛→∞
log 𝑎𝑛
log 𝑏𝑛

= 1.

Unless otherwise noted, a periodic realization Φ : 𝑋 → R𝑑 of a crystal
lattice 𝑋 = (𝑉, 𝐸) is assumed to satisfy the following conditions:

• The origin 0 ∈ 𝑋 is assumed to be mapped to 0 ∈ R𝑑.

• A periodic realization Φ is nondegenerate, that is, the map Φ : 𝑉 → R𝑑
is injective. Later we will remark that this assumption is actually not
essential (Remarks 3.12 and 4.9).
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Chapter 3

First passage percolation model
on crystal lattices

This chapter studies the FPP model on crystal lattices. In Section 3.1, we
first give some observations for the asymptotic behavior of the first passage
time. In Section 3.2, we give a proof of the generalized shape theorem (The-
orem 1.5) and some properties of the limit shape. The covering monotonicity
of the limit shapes (Theorem 1.6) is proved in Section 3.3.

3.1 Asymptotic speed of first passage time

Let Φ : 𝑋 → R𝑑 be a periodic realization of a 𝑑-dimensional crystal lattice
𝑋 = (𝑉, 𝐸). Fix a time distribution 𝜈. For a path 𝛾 = (𝑒1, . . . , 𝑒𝑟) in 𝑋, the
passage time 𝑇 (𝛾) is the random variable defined by

𝑇 (𝛾) :=
𝑟∑
𝑖=1

𝑡𝑒𝑖 .

For two points 𝑥, 𝑦 ∈ R𝑑, which may not be realized vertices of 𝑋, we denote
by 𝑇 (𝑥, 𝑦) the first passage time between 𝑥 and 𝑦, that is,

𝑇 (𝑥, 𝑦) := inf{𝑇 (𝛾) : 𝛾 is a path from 𝑥′ to 𝑦′},

where 𝑥′, 𝑦′ ∈ 𝑋 are the closest realized points of 𝑥 and 𝑦, respectively, with
a deterministic rule to break ties. The percolation region 𝐵(𝑡) is defined by

𝐵(𝑡) := {𝑥 ∈ R𝑑 : 𝑇 (0, 𝑥) ≤ 𝑡}
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for a time 𝑡 ≥ 0.

Remark 3.1. We can easily see that 𝑇 (𝑥, 𝑦) and 𝑇 (𝑥 + b, 𝑦 + b) have the
same distribution for any vector b ∈ Γ.

The edge connectivity of 𝑋 is the minimum number 𝑙𝑋 ∈ N such that
there exists a set {𝑒1, . . . , 𝑒𝑙𝑋 } of edges that separates 𝑋. Menger’s theorem
(see, e.g., [11]) gives an alternative description of the edge connectivity as
follows:

𝑙𝑋 = max{𝑙′ ∈ N : for any 𝑥 ≠ 𝑦 ∈ 𝑉, there exist

𝑙′ edge-disjoint paths from 𝑥 to 𝑦}.

From this remark and a basic discussion for the passage time (see, e.g., [3]),
the following lemma holds.

Lemma 3.2. Let 𝑡1, . . . , 𝑡𝑙𝑋 be independent copies of 𝑡𝑒 and let 𝑘 ≥ 1. Then
Emin{𝑡1, . . . , 𝑡𝑙𝑋 }𝑘 < ∞ holds if and only if E𝑇 (0, 𝑥)𝑘 < ∞ holds for all 𝑥 ∈ 𝑋.

Proof. From the definition of the edge connectivity 𝑙𝑋 , there exist 𝑙𝑋 edges
which are incident to the origin 0. Thus, we obtain

𝑇 (0, 𝑥) ≥ min{𝑡1, . . . , 𝑡𝑙𝑋 }

for 𝑥 ≠ 0 ∈ 𝑋. Hence we can see that E𝑇 (0, 𝑥)𝑘 < ∞ implies Emin{𝑡1, . . . , 𝑡𝑙𝑋 }𝑘 <
∞.

Suppose Emin{𝑡1, . . . , 𝑡𝑙𝑋 }𝑘 < ∞ and we take a vertex 𝑥 ≠ 0 ∈ 𝑋 arbitrar-
ily. Then there exist 𝑙𝑋 paths 𝛾1, 𝛾2, . . . , 𝛾𝑙𝑋 which are edge-disjoint and join
0 and 𝑥. For these paths, we have

𝑇 (0, 𝑥) ≤ min{𝑇 (𝛾1), . . . , 𝑇 (𝛾𝑙𝑋 )},

which implies that

P(𝑇 (0, 𝑥)𝑘 > 𝑠) ≤ P(min{𝑇 (𝛾1)𝑘 , . . . , 𝑇 (𝛾𝑙𝑋 )𝑘 } > 𝑠) (3.1)

holds for any 𝑠 ≥ 0. Since 𝑇 (𝛾1), . . . , 𝑇 (𝛾𝑙𝑋 ) are independent, the right hand
side is equal to

P

(
𝑙𝑋⋂
𝑖=1

{𝑇 (𝛾𝑖)𝑘 > 𝑠}
)
=

𝑙𝑋∏
𝑖=1

P(𝑇 (𝛾𝑖)𝑘 > 𝑠). (3.2)
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Without loss of generality, we may assume that 𝛾1 = (𝑒1, 𝑒2, . . . , 𝑒𝑟) is the
longest path. Hölder’s inequality implies

𝑇 (𝛾1) = 𝑡𝑒1 + 𝑡𝑒2 + · · · + 𝑡𝑒𝑟 ≤ 𝑟1/𝑞 (𝑡𝑘𝑒1 + 𝑡
𝑘
𝑒2 + · · · + 𝑡

𝑘
𝑒𝑟 )

1/𝑘 , (3.3)

where 𝑞 is the real number with 1/𝑘 + 1/𝑞 = 1. Let 𝐵 := 𝑟 𝑘/𝑞. Then (3.3)
implies

P(𝑇 (𝛾1)𝑘 > 𝑠) ≤ P(𝑡𝑘𝑒1 + 𝑡
𝑘
𝑒2 + · · · + 𝑡

𝑘
𝑒𝑟 > 𝑠/𝐵) ≤ 𝑟P(𝑡

𝑘
1 > 𝑠/𝑟𝐵), (3.4)

where 𝑡1 is an independent copy of a random time in Lemma 3.2. The same
estimate holds for 𝑇 (𝛾2), . . . , 𝑇 (𝛾𝑙𝑋 ). Combining (3.2) with (3.4), the right
hand side of (3.1) is bounded above by

𝑟 𝑙𝑋
𝑙𝑋∏
𝑖=1

P(𝑡𝑘𝑖 > 𝑠/𝑟𝐵) = 𝑟 𝑙𝑋P(min{𝑡1, . . . , 𝑡𝑙𝑋 }𝑘 > 𝑠/𝑟𝐵),

where the equality follows from the independence of 𝑡𝑖. By integrating with
respect to 𝑠 from 0 to ∞, we obtain

E𝑇 (0, 𝑥)𝑘 ≤ 𝑟 𝑙𝑋+1𝐵Emin{𝑡1, . . . , 𝑡𝑙𝑋 }𝑘 < ∞,

which completes the proof of Lemma 3.2. □

Hereafter, we assume that the time distribution 𝜈 satisfies

Emin{𝑡1, . . . , 𝑡𝑙𝑋 } < ∞. (3.5)

Similarly to the cubic model, we first prove the following proposition.

Proposition 3.3. Suppose that the time distribution satisfies (3.5). Then
for each 𝑥 ∈ D, the limit

𝜇(𝑥) := lim
𝑛→∞

𝑇 (0, 𝑛𝑥)
𝑛

(3.6)

exists almost surely. Moreover, the function 𝜇 : D → R depends only on 𝑋,
𝜈 and the period 𝜌.

The following theorem ([23, Theorem 1.10]) is essential for the proof of
Proposition 3.3.
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Theorem 3.4 (Subadditive ergodic theorem). Suppose that a sequence (𝑋𝑚,𝑛)0≤𝑚<𝑛
of random variables satisfies the following conditions:

• 𝑋0,𝑛 ≤ 𝑋0,𝑚 + 𝑋𝑚,𝑛 for all 0 < 𝑚 < 𝑛;

• the joint distributions of the two sequences

(𝑋𝑚,𝑚+𝑘 )𝑘≥1 and (𝑋𝑚+1,𝑚+𝑘+1)𝑘≥1

are the same for all 𝑚 ≥ 0;

• for each 𝑘 ≥ 1, the sequence (𝑋𝑛𝑘,(𝑛+1)𝑘 )𝑛≥0 is stationary and ergodic;
and

• E𝑋0,1 < ∞ and E𝑋0,𝑛 > −𝑐𝑛 for some finite constant 𝑐 < ∞.

Then

lim
𝑛→∞

𝑋0,𝑛
𝑛

= inf
𝑛

E𝑋0,𝑛
𝑛

= lim
𝑛→∞

E𝑋0,𝑛
𝑛

holds almost surely and in 𝐿1.

We now turn to the proof of Proposition 3.3.

Proof of Proposition 3.3. Take the minimum number 𝑁 ∈ Z>0 with 𝑁𝑥 ∈
Γ. We can easily see that the array (𝑇 (𝑚𝑁𝑥, 𝑛𝑁𝑥))0≤𝑚<𝑛 of random variables
satisfies the conditions of Theorem 3.4. Note that the integrability of 𝑇 (0, 𝑁𝑥)
follows from the assumption (3.5) and Lemma 3.2. Thus we see that the limit

lim
𝑘→∞

𝑇 (0, 𝑘𝑁𝑥)
𝑘

exists almost surely and is constant. We set

𝜇(𝑥) := lim
𝑘→∞

𝑇 (0, 𝑘𝑁𝑥)
𝑘𝑁

.

Since each 𝑘𝑁𝑥 is a vertex on the lattice group Γ = 𝜌(𝐿), the limit 𝜇(𝑥)
depends only on 𝑥, 𝜈, 𝑋 and the period 𝜌. Take 𝑗 = 1, 2, . . . , 𝑁−1 arbitrarily.
From the triangle inequality, we have

|𝑇 (0, (𝑘𝑁 + 𝑗)𝑥) − 𝑇 (0, 𝑘𝑁𝑥) | ≤ 𝑇 ((𝑘𝑁 + 𝑗)𝑥, 𝑘𝑁𝑥)
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and thus, for any 𝜖 > 0,

∞∑
𝑘=1

P( |𝑇 (0, (𝑘𝑁 + 𝑗)𝑥) − 𝑇 (0, 𝑘𝑁𝑥) | > 𝜖𝑘)

≤
∞∑
𝑘=1

P(𝑇 ((𝑘𝑁 + 𝑗)𝑥, 𝑘𝑁𝑥) > 𝜖𝑘)

=
∞∑
𝑘=1

P(𝑇 ( 𝑗𝑥, 0) > 𝜖𝑘) < ∞.

Here, the equality follows from Remark 3.1, and the finiteness is due to the
integrability of 𝑇 ( 𝑗𝑥, 0). Then it follows from the Borel–Cantelli lemma that

P(lim sup
𝑘→∞

{|𝑇 (0, (𝑘𝑁 + 𝑗)𝑥) − 𝑇 (0, 𝑘𝑁𝑥) | > 𝜖𝑘}) = 0.

By taking the complementary event, we have

P

(⋃
𝑛

⋂
𝑘≥𝑛
{|𝑇 (0, (𝑘𝑁 + 𝑗)𝑥) − 𝑇 (0, 𝑘𝑁𝑥) | ≤ 𝜖 𝑘}

)
= 1,

which implies the almost sure convergence

lim
𝑘→∞

1

𝑘𝑁
|𝑇 (0, (𝑘𝑁 + 𝑗)𝑥) − 𝑇 (0, 𝑘𝑁𝑥) | = 0.

Therefore, we obtain that

lim
𝑘→∞

1

𝑘𝑁 + 𝑗 𝑇 (0, (𝑘𝑁 + 𝑗)𝑥) = 𝜇(𝑥)

holds almost surely. Since 𝑗 = 1, 2, . . . , 𝑁 − 1 is taken arbitrarily, the proof
of Proposition 3.3 is completed. □

We summarize the basic properties of 𝜇.

Proposition 3.5. The following hold:

(1) 𝜇(𝑥 + 𝑦) ≤ 𝜇(𝑥) + 𝜇(𝑦) for any 𝑥, 𝑦 ∈ D.

(2) 𝜇(𝑐𝑥) = |𝑐 |𝜇(𝑥) for any 𝑐 ∈ Q and 𝑥 ∈ D.
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Proof. Fix 𝑥, 𝑦 ∈ D. Let 𝑁 be the minimum number with 𝑁𝑥, 𝑁𝑦 ∈ Γ. It
follows from Remark 3.1 and Proposition 3.3 that

𝑇 (𝑘𝑁𝑥, 𝑘𝑁𝑦)
𝑘𝑁

∼ 𝑇 (0, 𝑘𝑁 (𝑦 − 𝑥))
𝑘𝑁

→𝑑 𝜇(𝑦 − 𝑥) (3.7)

as 𝑘 → ∞. Here, ∼ means that the distributions are the same, and →𝑑

represents the convergence in distribution. By the definition of 𝑇 (·, ·), we
have the following triangle inequality

𝑇 (0, 𝑘𝑁 (𝑥 + 𝑦))
𝑘𝑁

− 𝑇 (0, 𝑘𝑁𝑥)
𝑘𝑁

≤ 𝑇 (𝑘𝑁𝑥, 𝑘𝑁 (𝑥 + 𝑦))
𝑘𝑁

.

The left hand side converges in distribution to 𝜇(𝑥 + 𝑦) − 𝜇(𝑥). By replacing
𝑦 ∈ D with 𝑥 + 𝑦 ∈ 𝐷 in (3.7), we can see that the right hand side converges
to 𝜇(𝑦), and obtain the first item.

Let 𝑐 ∈ Q≥0. Then we have

𝜇(𝑐𝑥) = lim
𝑛→∞

𝑇 (0, 𝑛𝑐𝑥)
𝑛

= 𝑐 lim
𝑛→∞

𝑇 (0, 𝑛𝑐𝑥)
𝑛𝑐

= 𝑐𝜇(𝑥).

The symmetry of 𝑇 and (3.7) implies that 𝜇(𝑥) = 𝜇(−𝑥). Thus the second
item also holds for all 𝑐 ∈ Q. □

From Proposition 3.5, we can see that the function 𝜇 : D → R has
continuity, that is, 𝜇(𝑥𝑛) → 0 for any sequence (𝑥𝑛)𝑛=1,2,... in D with 𝑥𝑛 → 0.

Indeed, by setting 𝑥𝑛 =
∑𝑑
𝑖=1 𝑞

(𝑛)
𝑖 𝑎𝑖 for 𝑞

(𝑛)
𝑖 ∈ Q, where (𝑎1, . . . , 𝑎𝑑) is a basis

of the lattice group Γ, we obtain

𝜇(𝑥𝑛) ≤
𝑑∑
𝑖=1

𝜇(𝑞 (𝑛)𝑖 𝑎𝑖) =
𝑑∑
𝑖=1

|𝑞 (𝑛)𝑖 |𝜇(𝑎𝑖) → 0 (3.8)

as 𝑛 → ∞. Here, the inequality and equality follow from (1) and (2) of
Proposition 3.5, respectively. From this continuity, we can define 𝜇(𝑥) for
any 𝑥 ∈ R𝑑 as the limit

𝜇(𝑥) = lim
𝑛→∞

𝜇(𝑥𝑛), (3.9)

where (𝑥𝑛)𝑛=1,2,... is a sequence in D that converges to 𝑥. The existence of
the limit follows from the triangle inequality ((1) of Proposition 3.5)

|𝜇(𝑥𝑛) − 𝜇(𝑥𝑚) | ≤ 𝜇(𝑥𝑛 − 𝑥𝑚).
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From (3.8), the right hand side converges to 0 as 𝑛, 𝑚 → 0, which implies
that (𝜇(𝑥𝑛))𝑛=1,2,... is a Cauchy sequence. In the same way, we can check that
the limit (3.9) does not depend on the choice of a sequence (𝑥𝑛)𝑛=1,2,....

Hereinafter, we think of 𝜇 as a function defined on the space R𝑑 by con-
tinuous expansion. The following proposition states that the positivity of
𝜇(𝑥) depends on the probability 𝜈(0) that the random time is equal to 0.

Proposition 3.6. The following hold:

(a) If 𝜈(0) < 𝑝𝑐 (𝑋), then 𝜇(𝑥) > 0 for all 𝑥 ∈ R𝑑 \ {0}.

(b) If 𝜈(0) ≥ 𝑝𝑐 (𝑋), then 𝜇(𝑥) = 0 for all 𝑥 ∈ R𝑑.

The proof of this proposition is similar to that of [18, Theorem 6.1]1. From
Propositions 3.5 and 3.6, the limit 𝜇 is a norm on R𝑑 whenever 𝜈(0) < 𝑝𝑐 (𝑋).

3.2 Generalization of the shape theorem

In this section, we give a proof of a general version of the shape theorem
(Theorem 1.5) and summarize the basic properties of the limit shape.

3.2.1 Proof

We first note that the assumption (1.12) of Theorem 1.5 is stronger than
(3.5) for the existence of the limit 𝜇. By using Proposition 3.6, we rewrite
Theorem 1.5 with respect to the limit 𝜇 as follows.

Theorem 1.5′. Let (Φ, 𝜌) be a periodic realization of a 𝑑-dimensional crys-
tal lattice 𝑋. Suppose that the time distribution 𝜈 satisfies (1.12). Then the
following hold:

(a) If 𝜇 is a norm on R𝑑, then for each 𝜖 > 0, it holds almost surely that

(1 − 𝜖)B ⊂ 𝐵(𝑡)
𝑡
⊂ (1 + 𝜖)B for all large 𝑡,

1Although [18, Theorem 6.1] is stated by using another critical probability 𝑝𝑇 (𝑋),
the critical point at which the expected value of the cluster size becomes infinite, the
uniqueness 𝑝𝑐 (𝑋) = 𝑝𝑇 (𝑋) can be shown for an arbitrary crystal lattice 𝑋 in the same
way as for L𝑑 (see, e.g., [15]).
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where B ⊂ R𝑑 is the unit ball

B := {𝑥 ∈ R𝑑 : 𝜇(𝑥) ≤ 1}. (3.10)

(b) If 𝜇 ≡ 0, then for all 𝑅 > 0, it holds almost surely that

{𝑥 ∈ R𝑑 : ∥𝑥∥1 ≤ 𝑅} ⊂
𝐵(𝑡)
𝑡

for all large 𝑡.

The proof of Theorem 1.5′ reduces to showing the following convergence,
which states that the convergence 𝑇 (0, 𝑛𝑥)/𝑛 → 𝜇(𝑥) is uniform on the di-
rections.

Proposition 3.7. Suppose that the time distribution satisfies (1.12). Then,
the convergence

lim
𝑥∈D, ∥𝑥∥1→∞

(
𝑇 (0, 𝑥)
∥𝑥∥1

− 𝜇
(
𝑥

∥𝑥∥1

))
= 0

holds almost surely.

Proof of Theorem 1.5′. We first show the case (a). Since 𝜇 is a norm on
R𝑑, there exists a constant 𝐶 > 0 such that

𝐶−1𝜇(𝑥) ≤ ∥𝑥∥1 ≤ 𝐶𝜇(𝑥)

holds for any 𝑥 ∈ R𝑑. Fix 𝜖 > 0 arbitrarily. We take 𝛿 > 0 sufficiently small
that

1

1 − 𝛿𝐶 ≤ 1 + 𝜖 and 1 − 𝜖 ≤ 1

1 + 𝛿𝐶
hold. From Proposition 3.7, we can take a constant 𝐾 such that����𝑇 (0, 𝑥)∥𝑥∥1

− 𝜇
(
𝑥

∥𝑥∥1

)���� < 𝛿 (3.11)

holds for any 𝑥 ∈ D with ∥𝑥∥1 ≥ 𝐾. We set

𝑀 := max

{
𝐶𝐾, sup

∥𝑦∥1≤𝐾
𝑇 (0, 𝑦)

}
< ∞.
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We now check that the following inclusion holds for all 𝑡 > 𝑀:

(1 − 𝜖)𝑡B ⊂ 𝐵(𝑡) ⊂ (1 + 𝜖)𝑡B. (3.12)

For a point 𝑥 ∈ D with ∥𝑥∥1 ≤ 𝐾, we have 𝑇 (0, 𝑥) ≤ 𝑀 ≤ 𝑡 and 𝜇(𝑥) ≤
𝐶∥𝑥∥1 ≤ 𝐶𝐾 ≤ 𝑡. Thus the inclusion (3.12) holds. We check the inclusion
(3.12) for 𝑥 ∈ D with ∥𝑥∥1 ≥ 𝐾.

If 𝑥 ∈ (1 − 𝜖)𝑡B, then by (3.11), we have

𝑇 (0, 𝑥) ≤ 𝜇(𝑥) + 𝛿∥𝑥∥1 ≤ (1 − 𝜖)𝑡 + 𝛿𝐶𝜇(𝑥).

Again by 𝜇(𝑥) ≤ (1 − 𝜖)𝑡, the last expression is bounded above by

(1 − 𝜖)𝑡 × (1 + 𝛿𝐶) ≤ 𝑡.

Thus we obtain 𝑥 ∈ 𝐵(𝑡), which implies the first inclusion of (3.12). Suppose
𝑥 ∈ 𝐵(𝑡), then it follows from (3.11) that

𝜇(𝑥) ≤ 𝑇 (0, 𝑥) + 𝛿∥𝑥∥1 ≤ 𝑡 + 𝛿𝐶𝜇(𝑥),

which implies

𝜇(𝑥) ≤ 𝑡

1 − 𝛿𝐶 ≤ (1 + 𝜖)𝑡.

Thus we obtain the second inclusion of (3.12).
We next show the case (b). Fix 𝑅 > 0 arbitrarily. We take 𝐾 such that

𝑇 (0, 𝑥)
∥𝑥∥1

<
1

𝑅
(3.13)

holds for any 𝑥 ∈ D with ∥𝑥∥1 ≥ 𝐾. It suffices to check that

{𝑥 ∈ R𝑑 : ∥𝑥∥1 ≤ 𝑡𝑅} ⊂ 𝐵(𝑡)

holds for any 𝑡 > sup∥𝑦∥1≤𝐾 𝑇 (0, 𝑦). Suppose ∥𝑥∥1 ≤ 𝑡𝑅. If ∥𝑥∥1 ≤ 𝐾, then
𝑇 (0, 𝑥) < 𝑡 and we have 𝑥 ∈ 𝐵(𝑡). Otherwise, from (3.13), we have

𝑇 (0, 𝑥) < ∥𝑥∥1
𝑅
≤ 𝑡𝑅
𝑅

= 𝑡

and obtain 𝑥 ∈ 𝐵(𝑡). □
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We will now give a proof of Proposition 3.7. If 𝑑 = 1, then Proposition 3.7
is the same as Proposition 3.3. Hereafter we assume 𝑑 ≥ 2. For the proof, we
need to check the following stochastic estimate for the passage time 𝑇 (𝑥, 𝑦).

Lemma 3.8. Let 𝑑 ≥ 2. Suppose that the time distribution 𝜈 satisfies (1.12).
Then there exists a constant 𝜅 < ∞ such that

P

(
sup

𝑥∈𝑋, 𝑥≠0

𝑇 (0, 𝑥)
∥𝑥∥1

≤ 𝜅
)
> 0. (3.14)

The case 𝑋 = L𝑑 of this lemma is given by [3, Lemma 2.20]. For the
generalization to a crystal lattice model, the 𝑑-dimensional structure (2.2) of
𝑋, which we reviewed in Section 2.1.3, plays an important role.

Proof. We first check that Lemma 3.8 follows from the estimate∑
𝑥∈𝑋
P(𝑇 (0, 𝑥) ≥ 𝐶∥𝑥∥1) < ∞ (3.15)

for some constant 𝐶 > 0. Let {𝑥1, 𝑥2, . . .} be an ordering of the vertex set
𝑋 \ {0}. From (3.15), we have

P

(⋃
𝑛≥𝑁
{𝑇 (0, 𝑥𝑛) ≥ 𝐶∥𝑥𝑛∥1}

)
≤

∑
𝑛≥𝑁
P(𝑇 (0, 𝑥𝑛) ≥ 𝐶∥𝑥𝑛∥1) < 1/3

for a large number 𝑁. By taking the complement, we obtain

P

(
sup
𝑛≥𝑁

𝑇 (0, 𝑥𝑛)
∥𝑥𝑛∥1

< 𝐶

)
> 2/3,

and there exists 𝜅′ > 0 such that

P

(
max

𝑛=1,...,𝑁−1

𝑇 (0, 𝑥𝑛)
∥𝑥𝑛∥1

≤ 𝜅′
)
> 2/3.

Letting 𝜅 := max{𝜅′, 𝐶} implies Lemma 3.8.
We now turn to the proof of (3.15). Let us recall the division (2.2) of 𝑋

into trees. We denote by 0Z𝑑 the identity element of Z𝑑 in order to distinguish
it from the origin 0 ∈ 𝑋. We can assume that the origin 0 ∈ 𝑋 is in the tree
T0
Z𝑑
. Denote by |𝜎 | the 𝐿1-norm of 𝜎 ∈ Z𝑑 and let 𝜎 ∼ 𝜏 mean |𝜎 − 𝜏 | = 1.
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Let 𝑙𝑋 be the edge connectivity of 𝑋. For a number 𝑅 ∈ Z>0 and 𝜎 ∈ Z𝑑, we
define the box Λ(𝜎) ⊂ Z𝑑 as

Λ(𝜎) := 2𝑅𝜎 + (−𝑅, 𝑅]𝑑 ∩ Z𝑑 .

We set 𝑅 sufficiently large so that the following condition holds (Figure 3.1):

for any element 𝜎 ∼ 0Z𝑑 , there exist 𝑙𝑋 edge-disjoint paths 𝛾 (𝜎)1 , . . . , 𝛾 (𝜎)𝑙𝑋
satisfying that

• all vertices of the paths are in
⊔
𝑧∈Λ

(
0
Z𝑑

)
∪Λ(𝜎) T𝑧; and

• each path connects 0 ∈ 𝑋 and (2𝑅𝜎)0 ∈ 𝑋.

The existence of this 𝑅 follows from the periodic structure of the graph 𝑋.

Figure 3.1: 𝑙𝑋 paths 𝛾 (𝜎)1 , . . . , 𝛾 (𝜎)𝑙𝑋
from 0 to (2𝑅𝜎)0 (red).

For two elements 𝜎, 𝜏 with 𝜎 ∼ 𝜏, let 𝑇 (𝜎, 𝜏) be the minimum passage

time of the 𝑙𝑋 paths (2𝑅𝜎)𝛾 (𝜏−𝜎)1 , . . . , (2𝑅𝜎)𝛾 (𝜏−𝜎)𝑙𝑋
, which connect (2𝑅𝜎)0

and (2𝑅𝜏)0. For a self-avoiding path 𝜋 = (0Z𝑑 = 𝜎0, 𝜎1, . . . , 𝜎𝑚 = 𝜎) of length
𝑚 in Z𝑑, we have

𝑇 (0, (2𝑅𝜎)0) ≤
𝑚−1∑
𝑖=0

𝑇 (𝜎𝑖, 𝜎𝑖+1). (3.16)

We let 𝑇𝑖 := 𝑇 (𝜎𝑖, 𝜎𝑖+1) and denote by 𝑇 (𝜋) the right hand side of (3.16).
By Lemma 3.2 and the assumption (1.12), each 𝑇𝑖 has a finite 𝑑th moment.
Since we assume 𝑑 ≥ 2, the variance Var(𝑇𝑖) of 𝑇𝑖 is finite. We set

Varmax := max
0
Z𝑑∼𝜏

Var(𝑇 (0Z𝑑 , 𝜏)),
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Emax := max
0
Z𝑑∼𝜏
E𝑇 (0Z𝑑 , 𝜏).

Since 𝑇𝑖 and 𝑇𝑗 are independent whenever |𝑖 − 𝑗 | > 1, the variance Var(𝑇 (𝜋))
of 𝑇 (𝜋) is equal to

Var(𝑇 (𝜋)) =
𝑚−1∑
𝑖=0

E(𝑇𝑖 − E𝑇𝑖)2 + 2
𝑚−2∑
𝑖=0

E(𝑇𝑖 − E𝑇𝑖)(𝑇𝑖+1 − E𝑇𝑖+1).

This variance is bounded above by 3𝑚Varmax. Indeed, it follows from the
Cauchy-Schwartz inequality that

E| (𝑇𝑖 − E𝑇𝑖)(𝑇𝑖+1 − E𝑇𝑖+1) | ≤ Var(𝑇𝑖)1/2Var(𝑇𝑖+1)1/2 ≤ Varmax.

Chebyshev’s inequality implies that

P (𝑇 (𝜋) ≥ 𝑚(Emax + 1)) ≤ P
(
𝑚−1∑
𝑖=0

(𝑇𝑖 − E𝑇𝑖) ≥ 𝑚
)

≤ 1

𝑚2
Var(𝑇 (𝜋))

≤ 3

𝑚
Varmax. (3.17)

To prove (3.15), we need to improve this estimate. For each 𝜎 ∈ Z𝑑 \ {0Z𝑑 },
we can take 2𝑑 paths 𝜋1(𝜎), 𝜋2(𝜎), . . . , 𝜋2𝑑 (𝜎) in Z𝑑 that connect 0Z𝑑 and
𝜎 and satisfy the following conditions:

• they are vertex-disjoint except for 0Z𝑑 and 𝜎; and

• the length of each path is less than |𝜎 | + 𝐾𝑑.

Here, the constant 𝐾𝑑, depending on 𝑑, is the cost of making a detour in order
that these paths do not overlap. We set 𝜎 ∈ Z𝑑 \ {0Z𝑑 } and let 𝜋1, . . . , 𝜋2𝑑
be paths satisfying the above conditions. We consider the separation 𝜋 𝑗 =
𝜋1𝑗 + 𝜋2𝑗 + 𝜋3𝑗 of each path 𝜋 𝑗 , where 𝜋

1
𝑗 (resp. 𝜋

3
𝑗 ) is the first (resp. last) step

of 𝜋 𝑗 . Let

𝑈 := max
𝑗=1,2,...,2𝑑

𝑇 (𝜋1𝑗 ) and 𝑈′ := max
𝑗=1,2,...,2𝑑

𝑇 (𝜋3𝑗 ).
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Then we obtain 𝑇 (0, (2𝑅𝜎)0) ≤ 𝑈 +min 𝑗=1,2,...,2𝑑 𝑇 (𝜋2𝑗 ) +𝑈′, and

P
(
𝑇 (0, (2𝑅𝜎)0) ≥ (Emax + 1)( |𝜎 | + 𝐾𝑑) + 2|𝜎 |

)
≤P(𝑈 ≥ |𝜎 |) + P(𝑈′ ≥ |𝜎 |) + P

(
min

𝑗=1,2,...,2𝑑
𝑇 (𝜋2𝑗 ) ≥ (Emax + 1) ( |𝜎 | + 𝐾𝑑)

)
.

The first and second terms of the right hand side are bounded above by

2𝑑 max
0
Z𝑑∼𝜏
P(𝑇 (0Z𝑑 , 𝜏) ≥ |𝜎 |).

This is summable in 𝜎 ∈ Z𝑑 since 𝑇 (0Z𝑑 , 𝜏) has a finite 𝑑th moment. The
independence of 𝑇 (𝜋21), 𝑇 (𝜋22), . . . , 𝑇 (𝜋22𝑑) implies that the last term is equal
to

2𝑑∏
𝑗=1

P
(
𝑇 (𝜋2𝑗 ) ≥ (Emax + 1)( |𝜎 | + 𝐾𝑑)

)
.

Since the length of each path 𝜋2𝑗 is less than |𝜎 | + 𝐾𝑑, it follows from (3.17)
that this is bounded above by

32𝑑
(
Varmax

|𝜎 | + 𝐾𝑑

)2𝑑
,

which is summable in 𝜎 ∈ Z𝑑. Now we have proved that∑
𝜎∈Z𝑑
P(𝑇 (0, (2𝑅𝜎)0) ≥ 𝐶1 |𝜎 |) < ∞, (3.18)

where 𝐶1 is a constant satisfying 𝐶1 |𝜎 | ≥ (Emax + 1)( |𝜎 | + 𝐾𝑑) + 2|𝜎 | for all
𝜎 ≠ 0Z𝑑 .

Finally, we consider the passage time for all vertices that do not necessar-
ily coincide with (2𝑅𝜎)0. Since the number of vertices in each box

⊔
𝑧∈Λ(𝜎) T𝑧

is finite, it follows from Lemma 3.2 that the random variable

𝑆(𝜎) := max

𝑇 ((2𝑅𝜎)0, 𝑥) : 𝑥 ∈
⊔

𝑧∈Λ(𝜎)
T𝑧


has a finite 𝑑th moment. For any vertex 𝑥 ∈ 𝑋, the first passage time 𝑇 (0, 𝑥)
is bounded above by

𝑇 (0, (2𝑅𝜎)0) + 𝑆(𝜎),
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where 𝜎 = 𝜎𝑥 ∈ Z𝑑 is the unique element satisfying 𝑥 ∈ ⊔
𝑧∈Λ(𝜎) T𝑧. We take a

constant 𝐶2 such that 𝐶2∥𝑥∥1 ≥ |𝜎𝑥 | holds for any 𝑥 ∈ 𝑋 and set 𝐶 := 2𝐶1𝐶2.
Then we obtain∑

𝑥∈𝑋
P(𝑇 (0, 𝑥) ≥ 𝐶∥𝑥∥1)

≤
∑
𝜎∈Z𝑑

∑
𝑥∈⊔𝑧∈Λ(𝜎) T𝑧

[P(𝑇 (0, (2𝑅𝜎)0) ≥ 𝐶1 |𝜎 |) + P (𝑆(𝜎) ≥ 𝐶1 |𝜎 |)]

=

������ ⊔
𝑧∈Λ(𝜎)

T𝑧

������ ∑
𝜎∈Z𝑑
[P(𝑇 (0, (2𝑅𝜎)0) ≥ 𝐶1 |𝜎 |) + P (𝑆(𝜎) ≥ 𝐶1 |𝜎 |)]

=

������ ⊔
𝑧∈Λ(𝜎)

T𝑧

������
[ ∑
𝜎∈Z𝑑
P(𝑇 (0, (2𝑅𝜎)0) ≥ 𝐶1 |𝜎 |) +

∑
𝜎∈Z𝑑
P (𝑆(0Z𝑑 ) ≥ 𝐶1 |𝜎 |)

]
,

where
��⊔

𝑧∈Λ(𝜎) T𝑧
�� denotes the number of vertices in

⊔
𝑧∈Λ(𝜎) T𝑧. In the last

equality, we use the fact that the distribution of 𝑆(𝜎) does not depend on
𝜎 ∈ Z𝑑. In the last expression, it follows from (3.18) that the first sum is
finite. The finiteness of the second sum follows from the fact that 𝑆(0Z𝑑 ) has
a finite 𝑑th moment. This completes the proof of (3.15). □

The remaining discussion for the proof of Proposition 3.7 is similar to
that of [3, Theorem 2.16]. Let 𝜅 < ∞ be a constant satisfying (3.14) in
Lemma 3.8. We say that a vertex 𝑧 ∈ 𝑋 is good if the inequality

𝑇 (𝑧, 𝑥) ≤ 𝜅∥𝑧 − 𝑥∥1

holds for any 𝑥 ∈ 𝑋 with 𝑧 ≠ 𝑥. Lemma 3.8 implies that

P(𝑧 is good) > 0

for any 𝑧 ∈ 𝑋.

Proof of Proposition 3.7. Let 𝑧 ∈ D. We take the minimum number
𝑀 ∈ Z>0 such that 𝑀𝑧 ∈ Γ and consider the sequence (𝑚𝑀𝑧)𝑚=0,1,... in Γ.
The ergodic theorem implies that

lim
𝑛→∞

1

𝑛

𝑛∑
𝑖=0

𝐼{𝑖𝑀𝑧 is good} = P(0 is good) (3.19)
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holds almost surely. Let Ξ1 be the event that (3.19) holds for any 𝑧 ∈ D. We
also define Ξ2 as the event that the convergence (3.6) in Proposition 3.3 holds
for any 𝑥 ∈ D. Since D is a countable set, we can see P(Ξ1) = 1 = P(Ξ2).

Suppose that Proposition 3.7 does not hold. Then, there exists 𝜖 > 0
such that P(𝐷𝜖 ) > 0, where 𝐷𝜖 is the event that there exists and a sequence
(𝑥𝑛)𝑛=1,2,... of D such that ∥𝑥𝑛∥1 →∞ and

|𝑇 (0, 𝑥𝑛) − 𝜇(𝑥𝑛) | ≥ 𝜖 ∥𝑥𝑛∥1 (3.20)

holds for any 𝑛. Since P(Ξ1) = P(Ξ2) = 1, we have P(Ξ1 ∩ Ξ2 ∩ 𝐷𝜖 ) > 0. Fix
a configuration t ∈ Ξ1 ∩ Ξ2 ∩ 𝐷𝜖 . We show that a contradiction occurs for
the configuration t.

By taking a subsequence, we can assume that the normalized sequence
𝑥′𝑛 := 𝑥𝑛/∥𝑥𝑛∥1 converges to some point 𝑦 ∈ R𝑑 with ∥𝑦∥1 = 1. Fix 𝛿 > 0
arbitrarily. Then there exists a number 𝑁 such that

∥𝑥′𝑛 − 𝑦∥1 < 𝛿 (3.21)

holds for any 𝑛 > 𝑁. Since 𝜇 is a norm on R𝑑 (or 𝜇 ≡ 0), there exists some
constant 𝐶 > 0 such that 𝜇(·) ≤ 𝐶∥ · ∥1, which implies

|𝜇(𝑥𝑛) − ∥𝑥𝑛∥1𝜇(𝑦) | ≤ 𝜇(𝑥𝑛 − ∥𝑥𝑛∥1𝑦)
≤ 𝐶∥𝑥𝑛∥1∥𝑥′𝑛 − 𝑦∥1
< 𝐶∥𝑥𝑛∥1𝛿. (3.22)

Combining (3.20) with (3.22), we obtain

|𝑇 (0, 𝑥𝑛) − ∥𝑥𝑛∥1𝜇(𝑦) | > 𝜖 ∥𝑥𝑛∥1/2 (3.23)

for sufficiently small 𝛿 > 0.
We can find some 𝑧 ∈ D such that ∥𝑧 − 𝑦∥1 < 𝛿 and ∥𝑧∥1 = 1. Fix the

minimum number 𝑀 with 𝑀𝑧 ∈ Γ. Since t ∈ Ξ1, the convergence (3.19) holds.
In particular, there exist infinite number of good vertices in (𝑚𝑀𝑧)𝑚=0,1,...
and we can take a subsequence (𝑚𝑘𝑀𝑧)𝑘=0,1,... such that 𝑚𝑘𝑀𝑧 is a good
vertex. For this subsequence, we have

𝑘

𝑚𝑘
=

1

𝑚𝑘

𝑚𝑘∑
𝑖=0

𝐼{𝑖𝑀𝑧 is good} → P(0 is good) > 0
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as 𝑘 →∞, which implies

𝑚𝑘+1
𝑚𝑘

=
𝑚𝑘+1
𝑘 + 1

𝑘

𝑚𝑘

𝑘 + 1
𝑘
→ 1.

For any number 𝑛, let 𝑘 = 𝑘 (𝑛) be the number satisfying

𝑚𝑘𝑀 ≤ ∥𝑥𝑛∥1 < 𝑚𝑘+1𝑀.

Fix 𝐾 > 0 such that
𝑚𝑘+1 < (1 + 𝛿)𝑚𝑘 (3.24)

and ����𝑇 (0, 𝑚𝑘𝑀𝑧)
𝑚𝑘𝑀

− 𝜇(𝑧)
���� < 𝛿 (3.25)

hold for all 𝑘 > 𝐾. We now let 𝑛 be large enough that 𝑘 (𝑛) > 𝐾. Then we
have����𝑇 (0, 𝑥𝑛)∥𝑥𝑛∥1

− 𝜇(𝑦)
���� ≤ ����𝑇 (0, 𝑥𝑛) − 𝑇 (0, 𝑚𝑘𝑀𝑧)

∥𝑥𝑛∥1

���� + 𝑇 (0, 𝑚𝑘𝑀𝑧)
𝑚𝑘𝑀

(
1 − 𝑚𝑘𝑀

∥𝑥𝑛∥1

)
+

����𝑇 (0, 𝑚𝑘𝑀𝑧)
𝑚𝑘𝑀

− 𝜇(𝑧)
���� + |𝜇(𝑧) − 𝜇(𝑦) |. (3.26)

We give an upper bound for each term of the right hand side of (3.26) to
obtain the contradiction with (3.23).
Term 1. The triangle inequality for the first passage time implies

|𝑇 (0, 𝑥𝑛) − 𝑇 (0, 𝑚𝑘𝑀𝑧) | ≤ 𝑇 (𝑥𝑛, 𝑚𝑘𝑀𝑧) ≤ 𝜅∥𝑥𝑛 − 𝑚𝑘𝑀𝑧∥1, (3.27)

where the second inequality follows from the goodness of 𝑚𝑘𝑀𝑧. We also
have

∥𝑥𝑛 − 𝑚𝑘𝑀𝑧∥1
≤∥𝑥𝑛 − ∥𝑥𝑛∥1𝑦∥1 +

∥𝑥𝑛∥1𝑦 − ∥𝑥𝑛∥1𝑧1 + ∥𝑥𝑛∥1𝑧 − 𝑚𝑘𝑀𝑧

1

=∥𝑥𝑛∥1
(
∥𝑥′𝑛 − 𝑦∥1 + ∥𝑦 − 𝑧∥1 +

����1 − 𝑚𝑘𝑀

∥𝑥𝑛∥1

����) .
From (3.24) and the setting of 𝑘 = 𝑘 (𝑛), we have����1 − 𝑚𝑘𝑀

∥𝑥𝑛∥1

���� ≤ 1 − 1

1 + 𝛿 . (3.28)
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By combining it with (3.21) and (3.27), the first term is bounded above by

𝜅

(
2𝛿 + 1 − 1

1 + 𝛿

)
.

Term 2. From (3.25) and (3.28), we have the upper bound

(𝜇(𝑧) + 𝛿)
(
1 − 1

1 + 𝛿

)
.

Term 3. From (3.25), we have the upper bound 𝛿.
Term 4. Since 𝑧 is chosen to satisfy ∥𝑦 − 𝑧∥1 < 𝛿, Term 4 is bounded above
by 𝐶𝛿.

These four estimates imply that the left hand side of (3.26) converges to
0 as 𝛿→ 0, which contradicts (3.23). □

3.2.2 Properties of the limit shape

In this subsection, we summarize basic relations between a periodic realiza-
tion (Φ, 𝜌) and the limit shape, denoted by BΦ.

First, we discuss the case where the time distribution 𝜈 is the Dirac mea-
sure 𝛿1. As we have seen in Section 1.1.3, this case is almost equivalent
to considering the graph distance, and the limit shape is given by [27, Sec-
tion 9.7] as follows: Let 𝐻1(𝑋0,Z) be the homology group of 𝑋0, defined
by (2.5) in Section 2.1.3. Let v̂0 : 𝐻1(𝑋0,Z) → R𝑑 be the homomorphism
defined by

𝛼 =
∑
𝑒∈𝐸0

𝑎𝑒𝑒 ↦−→
∑
𝑒∈𝐸0

𝑎𝑒v0(𝑒),

where v0(𝑒) is the building block defined by (2.4) in Section 2.1.3. We con-
sider the linear extension v̂0R : 𝐻1(𝑋0,R) → R𝑑. Let | · |1 be the norm on
𝐻1(𝑋0,R) defined as

|𝛼 |1 =
∑
𝑒∈𝐸0
|𝑎𝑒 |

for 1-chain 𝛼 =
∑
𝑒∈𝐸0 𝑎𝑒. The limit shape BΦ is obtained as follows.

Proposition 3.9 ([27]). If the time distribution 𝜈 is the Dirac measure 𝛿1,
then

BΦ = v̂0R(𝐷),
where 𝐷 is the unit ball in 𝐻1(𝑋0,R) with respect to the norm | · |1.
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In general, the relations between a periodic realization (Φ, 𝜌) and the
limit shape BΦ are given as follows:

Proposition 3.10. The following hold:

(1) The limit shape B depends only on 𝑋, 𝜈 and the period 𝜌, that is, for
two periodic realizations (Φ, 𝜌), (Φ′, 𝜌′), we have BΦ = BΦ′ whenever
𝜌 = 𝜌′.

(2) BΦ = BΦ+b for any b ∈ R𝑑, where Φ + b is the periodic realization
obtained by the map 𝑥 ↦→ Φ(𝑥) + b.

(3) B𝐴◦Φ = 𝐴BΦ for any 𝐴 ∈ 𝐺𝐿𝑑 (R), where 𝐺𝐿𝑑 (R) is the general linear
group of degree 𝑑 (note that 𝐴 ◦Φ is also a periodic realization, whose
period homomorphism is given by 𝐴 ◦ 𝜌).

Proof. The first item follows from Proposition 3.3 and (3.10).
We show the second item. We fix b ∈ R𝑑 arbitrarily. Let 𝑇 ′(·, ·) and

𝐵′(𝑡) be the first passage time and the percolation region with respect to the
realization Φ + b. We then have

𝑇 ′(0, 𝑥) = 𝑇 (−b, 𝑥 − b) ≤ 𝑇 (0,−b) + 𝑇 (0, 𝑥 − b),

which implies the inclusion

𝐵(𝑡) + b ⊂ 𝐵′(𝑡 + 𝑇 (0,−b)).

By dividing by 𝑡 and letting 𝑡 → ∞, we obtain BΦ ⊂ BΦ+b. By replacing
b with −b, we obtain the opposite inclusion. Thus, the proof of the second
item is completed.

For the third item, we denote by Γ′, 𝑇 ′(·, ·), 𝜇′(·) the characters with re-
spect to 𝐴 ◦Φ. Then we have Γ′ = 𝐴Γ and the relation

𝑇 (0, 𝑥) = 𝑇 ′(0, 𝐴𝑥)

holds for any 𝑥 ∈ Γ. This implies that 𝜇(𝑥) = 𝜇′(𝐴𝑥) holds for any 𝑥 ∈ R𝑑.
From (3.10), the proof is completed. □

Example 3.11. In Figure 1.7, since the realizations shown on the left and
the center have the same period homomorphism 𝜌, the limit shapes obtained
from the FPP model are the same, although the realizations are different.
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Remark 3.12. At the end of Chapter 2, we assumed that the realization Φ
is nondegenerate in order to formulate the FPP model on a crystal lattice.
Proposition 3.10 implies that this assumption is not essential for the limit
shapes. Indeed, for any crystal lattice 𝑋 with a degenerate realization (Φ, 𝜌),
we can obtain a nondegenerate realization (Φ′, 𝜌′) with 𝜌 = 𝜌′ by shifting
the vertices in the same orbit of the action 𝐿 ↷ 𝑋 in the same direction.

Proposition 3.10 gives the symmetric property of the limit shape. Let
Sym(Φ(𝑋)) be the symmetric group of the image Φ(𝑋), that is,

Sym(Φ(𝑋)) = {𝑔 ∈ 𝑀 (𝑑) : 𝑔Φ(𝑋) = Φ(𝑋)},

where 𝑀 (𝑑) is the group of congruent transformations of R𝑑. We write 𝑀 (𝑑)
as the semi-product 𝑀 (𝑑) = R𝑑 ⋊𝑂 (𝑑) of the translation R𝑑 and the rotation
𝑂 (𝑑). Let 𝑝 : Sym(Φ(𝑋)) → 𝑂 (𝑑) be the group homomorphism defined by

(b, 𝐴) ↦→ 𝐴.

Then we obtain the following.

Proposition 3.13. For any 𝐴 ∈ Im(𝑝), 𝐴BΦ = BΦ. In other words, the
limit shape BΦ has the symmetry given by Im(𝑝).

Proof. For any (b, 𝐴) ∈ Sym(Φ(𝑋)), we obtain

𝐴 ◦Φ(𝑋) + b = Φ(𝑋),

which implies

BΦ = B𝐴◦Φ+b = B𝐴◦Φ = 𝐴BΦ.

Here we use the second and third items of Proposition 3.10 for the second
and third equalities, respectively. □

Example 3.14. In Figure 1.7, the honeycomb lattice on the left has rota-
tional symmetry, which implies the same symmetry of the limit shape. Note
that the limit shape obtained from the lattice in the center is the same as
that obtained from the one on the left. Thus, the lattice in the center also
has rotational symmetry.
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3.3 Covering monotonicity of the limit shapes

In this section, we give some examples and an application of Theorem 1.6
and then prove the theorem.

For two crystal lattices 𝑋 = (𝑉, 𝐸) and 𝑋1 = (𝑉1, 𝐸1) in Theorem 1.6, we
consider the probability space (Ω, F , P) defined by (2.8) with 𝑆 = 𝐸 ⊔ 𝐸1.
We assume that the covering map 𝜔 : 𝑋 → 𝑋1 maps the origin 0 ∈ 𝑋 to
the origin of 𝑋1. We write 𝜔(0) by 0 for short. The same notation as in the
previous sections is used concerning the FPP model on 𝑋. For the covered
graph 𝑋1, we use subscripts, such as 𝑇1, 𝐵1(𝑡), 𝜇1 and B1.

3.3.1 Examples and an application

We first remark on the strictness of the inclusion in Theorem 1.6.

Remark 3.15. When the time distribution 𝜈 is the Dirac measure 𝛿1, the
equality

B1 = 𝑃(B)
of Theorem 1.6 holds. Indeed, the limit shape B of 𝑋 is the image v̂0R(𝐷)
as shown in Proposition 3.9. From the projective relation (1.11), we can see
that the building block of Φ1 : 𝑋1 → R𝑑1 is (𝑃 ◦ v0(𝑒0))𝑒0∈𝐸0 . This implies
that the limit shape B1 is given by the image 𝑃 ◦ v0R(𝐷), which is equal to
𝑃(B).

Remark 3.16. Since a crystal lattice is quasi-transitive, it follows from
Proposition 1.3 that the strict inequality

𝑝𝑐 (𝑋) < 𝑝𝑐 (𝑋1)

holds for two lattices 𝑋, 𝑋1 in Theorem 1.6. Therefore, for the time distri-
bution 𝜈 with 𝑝𝑐 (𝑋) < 𝜈(0) < 𝑝𝑐 (𝑋1), we can see that B = R𝑑 and B1 is
compact. In particular, the strict inequality B1 ⊊ 𝑃(B) holds.

The following are examples and an application of Theorem 1.6.

Example 3.17. As shown in Figure 1.8, the cubic lattice L3 is projected by
the orthogonal projection 𝑃 : R3 → R2 ≃ {(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 + 𝑥2 + 𝑥3 = 0}
onto the triangular lattice T. Theorem 1.6 implies that the projection of the
limit shape B of L3 to the plane {(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 + 𝑥2 + 𝑥3 = 0} is
bounded below by the limit shape B1 of T.
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Example 3.18. For the cubic lattice L2, we can consider a “coarse” action
of Z2 as shown in Figure 3.2, and obtain the base graph 𝑋0, which consists
of two points and four parallel edges.

Figure 3.2: An action on L2 (left) and the base graph 𝑋0 (right).

As mentioned in Example 2.11, the maximal abelian covering graph of 𝑋0
is the diamond lattice D. Theorem 2.10 implies that there exists a covering
𝜔 : D→ L2. Moreover, the explicit construction of periodic realizations of D
and L2 satisfying the projective relation (1.11) is given in [27, Section 8.1].
In this setting, Theorem 1.6 gives an upper bound on the limit shape of L2.

Example 3.19. As an application of Theorem 1.6, we present an evaluation
of the norm 𝜇 with respect to the diagonal direction.

Let 𝑋 be the cubic lattice L2. By the orthogonal projection 𝑃 : R2 → 𝑊
onto the subspace 𝑊 := {(𝑥1, 𝑥2) ∈ R2 : 𝑥2 = 𝑥1}, we obtain a periodic
realization of the quotient graph 𝑋1, defined as the one-dimensional line with
parallel edges (Figure 3.3). From the law of large numbers, we can easily see
that

𝜇1((1, 1)) = 2Emin{𝑡1, 𝑡2}
for a suitable time distribution 𝜈. From Theorem 1.6, we can see that

{𝑥 ∈ 𝑊 : 𝜇1(𝑥) ≤ 𝑅} ⊂ 𝑃({𝑦 ∈ R2 : 𝜇(𝑦) ≤ 𝑅})

for any 𝑅 > 0. By setting 𝑅 := 𝜇1((1, 1)), we can see that there exists
𝑦 ∈ 𝑃−1((1, 1)) satisfying

𝜇(𝑦) ≤ 𝜇1((1, 1)). (3.29)

From the symmetric property of L2, the symmetric point 𝑦′ of 𝑦 with respect
to the line 𝑊 also satisfies (3.29). Thus, we obtain

𝜇((1, 1)) = 𝜇((𝑦 + 𝑦′)/2) ≤ 1

2
(𝜇(𝑦) + 𝜇(𝑦′)) ≤ 𝜇1((1, 1)),
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and we have the upper estimate

𝜇((1, 1)) ≤ 2Emin{𝑡1, 𝑡2}.

Figure 3.3: The cubic lattice L2 (black lines) and its quotient
graph 𝑋1 (dots) realized in 𝑊 .

3.3.2 Proof

We prove Theorem 1.6 in this subsection by giving some lemmas. The first
lemma is a generalization of [18, Proposition 1.14], stating that the asymp-
totic speed “from point to line” is equal to that “from point to point.” Here,
for a point 𝑥 ∈ R𝑑 and a closed subset 𝐴 ⊂ R𝑑, we denote by 𝑇 (𝑥, 𝐴) the first
passage time from 𝑥 to 𝐴:

𝑇 (𝑥, 𝐴) = inf
𝑦∈𝐴

𝑇 (𝑥, 𝑦). (3.30)

Lemma 3.20. Suppose that the time distribution 𝜈 satisfies (1.12) for 𝑋
and let 𝐴 be a closed subset of R𝑑. Then there exists a point 𝑥 ∈ 𝐴 such that

𝜇(𝑥) = lim
𝑛→∞

𝑇 (0, 𝑛𝐴)
𝑛

(3.31)

holds almost surely.

Proof. This is clear for the case 0 ∈ 𝐴 or 𝜈(0) ≥ 𝑝𝑐 (𝑋) since we can see that
both sides of (3.31) is equal to 0. Consider the case 0 ∉ 𝐴 and 𝜈(0) < 𝑝𝑐 (𝑋).
Let 𝑟 > 0 satisfy the closed subset 𝑟𝐴 being tangent to the limit shape
B = {𝑥 ∈ R𝑑 : 𝜇(𝑥) ≤ 1}, that is,

• 𝜇(𝑥) ≥ 1 for any 𝑥 ∈ 𝑟𝐴; and

• there exists 𝑦 ∈ 𝑟𝐴 such that 𝜇(𝑦) = 1.

48



Fix a point 𝑦 ∈ 𝑟𝐴 with 𝜇(𝑦) = 1. From the definition of the first passage
time, we can easily see that

lim sup
𝑛→∞

𝑇 (0, 𝑛𝑟 𝐴)
𝑛

≤ 𝜇(𝑦) = 1

holds almost surely. We prove that

1 ≤ lim inf
𝑛→∞

𝑇 (0, 𝑛𝑟 𝐴)
𝑛

(3.32)

holds almost surely. Suppose that (3.32) does not hold almost surely. Then
there exists 𝛿 > 0 with P(Ξ) > 0, where Ξ is the event defined as

Ξ :=

{
lim inf
𝑛→∞

𝑇 (0, 𝑛𝑟 𝐴)
𝑛

≤ 1 − 4𝛿
}
. (3.33)

Consider a configuration in the event Ξ. By (3.33), we can take a subsequence
{𝑛𝑘 }𝑘 such that

𝑇 (0, 𝑛𝑘𝑟𝐴)
𝑛𝑘

≤ 1 − 3𝛿

holds for all large 𝑘. From (3.30), we can take a sequence 𝑦1, 𝑦2, . . . of points
with 𝑦𝑘 ∈ 𝑛𝑘𝑟𝐴 such that

𝑇 (0, 𝑦𝑘 )
𝑛𝑘

≤ 𝑇 (0, 𝑛𝑘𝑟𝐴)
𝑛𝑘

+ 𝛿.

Thus, we have
𝑇 (0, 𝑦𝑘 )
𝑛𝑘

≤ 1 − 2𝛿,

which is equivalent to
𝑦𝑘 ∈ 𝐵(𝑛𝑘 (1 − 2𝛿)).

Take 𝜖 > 0 small enough to satisfy (1+ 𝜖) (1−2𝛿) ≤ 1−𝛿. Then, Theorem 1.5
implies that

𝑦𝑘
𝑛𝑘
∈ (1 − 2𝛿) 𝐵(𝑛𝑘 (1 − 2𝛿))

𝑛𝑘 (1 − 2𝛿)
⊂ (1 − 2𝛿)(1 + 𝜖)B ⊂ (1 − 𝛿)B

holds for all large 𝑘 almost surely. This leads to 𝜇(𝑦𝑘/𝑛𝑘 ) ≤ 1 − 𝛿. Since
𝑦𝑘/𝑛𝑘 ∈ 𝑟 𝐴, this contradicts the assumption that 𝑟𝐴 is tangent to B.
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From the above discussion, we obtain that

𝜇(𝑦) = lim
𝑛→∞

𝑇 (0, 𝑛𝑟 𝐴)
𝑛

= 𝑟 lim
𝑛→∞

𝑇 (0, 𝑛𝐴)
𝑛

holds almost surely. Setting 𝑥 := 𝑦/𝑟 ∈ 𝐴, we have

𝜇(𝑥) = lim
𝑛→∞

𝑇 (0, 𝑛𝐴)
𝑛

,

which completes the proof of Lemma 3.20. □

In the next lemma, we compare two passage times 𝑇1 and 𝑇 . Note that
the following lemma itself does not assume any lattice structures of 𝑋 and
𝑋1.

Lemma 3.21. For any vertex 𝑥1 ∈ 𝑋1 and 𝑡 ≥ 0, the inequality

P(𝑇1(0, 𝑥1) ≥ 𝑡) ≥ P(𝑇 (0, �̃�1) ≥ 𝑡 for any �̃�1 ∈ 𝜔−1(𝑥1)) (3.34)

holds.

Theorem 1.6 follows from Lemmas 3.20 and 3.21.

Proof of Theorem 1.6. Take 𝑥1 ∈ D1 with 𝜇1(𝑥1) ≤ 1 arbitrarily, and fix
𝑁 ∈ Z>0 with 𝑁𝑥1 ∈ Γ1. Note that 𝑘𝑁𝑥1 coincides with a realized vertex for
any 𝑘 = 1, 2, . . ., and it follows from (3.34) that

P(𝑇1(0, 𝑘𝑁𝑥1) ≥ 𝑡) ≥ P(𝑇 (0, 𝑦) ≥ 𝑡 for any 𝑦 ∈ 𝜔−1(𝑘𝑁𝑥1)).

The projective relation (1.11) implies that the right hand side is bounded
below by

P(𝑇 (0, 𝑃−1(𝑘𝑁𝑥1)) ≥ 𝑡)

since any points 𝑦 ∈ 𝜔−1(𝑘𝑁𝑥1) are in the subspace 𝑃−1(𝑘𝑁𝑥1). By integrat-
ing with respect to 𝑡 from 0 to ∞, we obtain

E𝑇1(0, 𝑘𝑁𝑥1) ≥ E𝑇 (0, 𝑃−1(𝑘𝑁𝑥1)). (3.35)

From Lemma 3.20, we can find a point 𝑦 ∈ 𝑃−1(𝑥1) such that

𝜇(𝑦) = lim
𝑘→∞

𝑇 (0, 𝑘𝑁𝑃−1(𝑥1))
𝑘𝑁

. (3.36)
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The sequence
(
𝑇 (0,𝑘𝑁𝑃−1 (𝑥1))

𝑘𝑁

)
𝑘=1,2,...

of random variables is uniformly inte-

grable. Indeed, for some vertex 𝑥 ∈ 𝜔−1(𝑁𝑥1), we have

𝑇 (0, 𝑘𝑁𝑃−1(𝑥1))
𝑘𝑁

≤ 𝑇 (0, 𝑘𝑥)
𝑘𝑁

≤ 1

𝑘𝑁

𝑘−1∑
𝑖=0

𝑇 (𝑖𝑥, (𝑖 + 1)𝑥).

From the assumption (1.12), the 𝑑th moment of the right hand side is
bounded above by some constant, which does not depend on 𝑘. Thus, by
taking the expectation of (3.36), we obtain

𝜇(𝑦) = lim
𝑘→∞

E𝑇 (0, 𝑘𝑁𝑃−1(𝑥1))
𝑘𝑁

. (3.37)

By combining (3.35) with (3.37), we obtain

1 ≥ 𝜇1(𝑥1) = lim
𝑘→∞

E𝑇1(0, 𝑘𝑁𝑥1)
𝑘𝑁

≥ lim
𝑘→∞

E𝑇 (0, 𝑘𝑁𝑃−1(𝑥1))
𝑘𝑁

= 𝜇(𝑦),

which implies 𝑦 ∈ B. Here, the first equality follows from Theorem 3.4.
We now obtain B1 ∩ D1 ⊂ 𝑃(B). Since the projection 𝑃(B) of the limit

shape is closed, the proof of Theorem 1.6 is completed. □

We next prove Lemma 3.21. The key idea of the proof is based on the
FKG inequality (Theorem 2.12), which we reviewed in Section 2.2. We note
that the right hand side of the FKG inequality (2.10) can be regarded as the
probability P(𝐴′∩𝐵′) of the intersection 𝐴′∩𝐵′, where 𝐴′, 𝐵′ are independent
copies of 𝐴, 𝐵. Here, we can roughly expect that the probability P(𝐴 ∩ 𝐵)
decreases as the correlation of 𝐴 and 𝐵 decreases. For two paths 𝛾1, 𝛾2 in 𝑋1
and their liftings �̃�1, �̃�2, the “correlation” of �̃�1, �̃�2 is less than that of 𝛾1, 𝛾2.
Thus, by regarding the event {𝑇1(0, 𝑥1) ≥ 𝑡} as the intersection

⋂
𝛾{𝑇 (𝛾) ≥ 𝑡}

of the events {𝑇 (𝛾) ≥ 𝑡} for all paths from 0 to 𝑥1 and comparing it with⋂
𝛾{𝑇 (�̃�) ≥ 𝑡}, we have obtained a proof of Lemma 3.21.
For a rigorous proof of Lemma 3.21, we require two more lemmas. Let 𝐴

and 𝐵 be two increasing events which depend only on the family (𝑡1, 𝑡2, . . . , 𝑡𝑚)
of i.i.d. random variables with the distribution 𝜈. Let 𝑡𝑎 and 𝑡𝑏 be indepen-
dent copies of 𝑡𝑚. We define 𝐴′ (resp. 𝐵′) as the event obtained from 𝐴 (resp.
𝐵) by replacing 𝑡𝑚 with 𝑡𝑎 (resp. 𝑡𝑏). Then the following holds.

Lemma 3.22.
P(𝐴 ∩ 𝐵) ≥ P(𝐴′ ∩ 𝐵′).
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Proof. Let [𝑚] := {1, 2, . . . , 𝑚}. We denote by P• := 𝜈⊗• the product mea-
sure on [0,∞)•. Since 𝐴 and 𝐵 do not depend on 𝑡𝑎, 𝑡𝑏, we can identify these
events with the Borel subsets of [0,∞) [𝑚] , and we have

P(𝐴 ∩ 𝐵)

=
∫
[0,∞) [𝑚]

𝐼𝐴∩𝐵𝑑P[𝑚]

=
∫
[0,∞) [𝑚−1]

∫
[0,∞) {𝑚}

𝐼𝐴∩𝐵𝑑P{𝑚}𝑑P[𝑚−1]

=
∫
[0,∞) [𝑚−1]

P{𝑚}
(
𝐴(𝑡1,...,𝑡𝑚−1) ∩ 𝐵(𝑡1,...,𝑡𝑚−1)

)
𝑑P[𝑚−1] . (3.38)

Here, we denote by 𝐴(𝑡1,...,𝑡𝑚−1) the set of 𝑡𝑚 ∈ [0,∞){𝑚} with 𝐼𝐴 (𝑡1, . . . , 𝑡𝑚) = 1.
We can easily see that

P{𝑚}
(
𝐴(𝑡1,...,𝑡𝑚−1) ∩ 𝐵(𝑡1,...,𝑡𝑚−1)

)
≥ P{𝑚}

(
𝐴(𝑡1,...,𝑡𝑚−1)

)
P{𝑚}

(
𝐵(𝑡1,...,𝑡𝑚−1)

)
. (3.39)

Indeed, since both 𝐴(𝑡1,...,𝑡𝑚−1) and 𝐵(𝑡1,...,𝑡𝑚−1) are increasing subsets of the
half line [0,∞){𝑚}, one is included in the other. Thus, the left hand side of
(3.39) is equal to one of the two probabilities of the right hand side.

We identify the events 𝐴′, 𝐵′ with the Borel subsets of [0,∞) [𝑚−1]⊔{𝑎,𝑏}.
We define the events 𝐴′(𝑡1,...,𝑡𝑚−1), 𝐵

′
(𝑡1,...,𝑡𝑚−1) on [0,∞){𝑎,𝑏} as the sets of

(𝑡𝑎, 𝑡𝑏) ∈ [0,∞){𝑎,𝑏} with 𝐼𝐴′ (𝑡1, . . . , 𝑡𝑚−1, 𝑡𝑎, 𝑡𝑏) = 1, 𝐼𝐵′ (𝑡1, . . . , 𝑡𝑚−1, 𝑡𝑎, 𝑡𝑏) =
1, respectively. Then the right hand side of (3.39) is equal to

P{𝑎,𝑏}
(
𝐴′(𝑡1,...,𝑡𝑚−1)

)
P{𝑎,𝑏}

(
𝐵′(𝑡1,...,𝑡𝑚−1)

)
= P{𝑎,𝑏}

(
𝐴′(𝑡1,...,𝑡𝑚−1) ∩ 𝐵

′
(𝑡1,...,𝑡𝑚−1)

)
. (3.40)

By combining (3.38) with (3.39) and (3.40), we obtain

P(𝐴 ∩ 𝐵) ≥
∫
[0,∞) [𝑚−1]

P{𝑎,𝑏}
(
𝐴′(𝑡1,...,𝑡𝑚−1) ∩ 𝐵

′
(𝑡1,...,𝑡𝑚−1)

)
𝑑P[𝑚−1]

=
∫
[0,∞) [𝑚−1]

∫
[0,∞) {𝑎,𝑏}

𝐼𝐴′∩𝐵′𝑑P{𝑎,𝑏}𝑑P[𝑚−1]

= P(𝐴′ ∩ 𝐵′),

which completes the proof of Lemma 3.22. □
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Lemma 3.23. Let 𝛾1, . . . 𝛾𝑛 be arbitrary self-avoiding paths in 𝑋1 which
start from the origin 0 and let �̃�1, . . . , �̃�𝑛 in 𝑋 be their liftings. Then the
inequality

P

(
𝑛⋂
𝑖=1

{𝑇1(𝛾𝑖) ≥ 𝑡}
)
≥ P

(
𝑛⋂
𝑖=1

{𝑇 (�̃�𝑖) ≥ 𝑡}
)

(3.41)

holds for any 𝑡 ≥ 0.

Proof. We set 𝛾𝑖 = (𝑒𝑖,1, . . . , 𝑒𝑖,𝑟𝑖 ) and �̃�𝑖 = (�̃�𝑖,1, . . . , �̃�𝑖,𝑟𝑖 ) for 𝑖 = 1, 2, . . . , 𝑛.
Note that �̃�𝑖, 𝑗 ∈ 𝐸 is mapped to 𝑒𝑖, 𝑗 ∈ 𝐸1 by the covering map 𝜔 : 𝑋 → 𝑋1.

Let I := {(𝑖, 𝑗) : 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑟𝑖} be the index set. For
a partition S = {𝑆1, . . . , 𝑆𝑚} of I, we denote by 𝜋S : I → S the canonical
map, which is defined by 𝜋S (𝑖, 𝑗) = 𝑆𝑘 when (𝑖, 𝑗) ∈ 𝑆𝑘 . We define the
probability P(S) ∈ [0, 1] by

P(S) := P

(
𝑛⋂
𝑖=1

{
𝑟𝑖∑
𝑗=1

𝑡𝜋S (𝑖, 𝑗) ≥ 𝑡
})
, (3.42)

where (𝑡𝑆 : 𝑆 ∈ S) is the S-indexed family of i.i.d random variables with the
distribution 𝜈.

We set the partition S (resp. S̃) of I by the equivalence relation

(𝑖, 𝑗) ∼ (𝑖′, 𝑗 ′) def⇐⇒ 𝑒𝑖, 𝑗 = 𝑒𝑖′, 𝑗 ′

(resp. (𝑖, 𝑗) ∼ (𝑖′, 𝑗 ′) def⇐⇒ �̃�𝑖, 𝑗 = �̃�𝑖′, 𝑗 ′).

The inequality (3.41) can be rewritten as

P(S) ≥ P(S̃) . (3.43)

Since �̃�𝑖, 𝑗 = �̃�𝑖′, 𝑗 ′ implies 𝑒𝑖, 𝑗 = 𝑒𝑖′, 𝑗 ′, the partition S̃ is finer than S. We show
that a further division of the partition S decreases the probability (3.42).

Let S′ be a partition obtained from S := {𝑆1, . . . , 𝑆𝑚} by splitting some
element, say 𝑆𝑚 ∈ S, into two nonempty subsets 𝑆𝑎, 𝑆𝑏. For the S-indexed
family (𝑡𝑆 : 𝑆 ∈ S) of i.i.d random variables, we take two independent
copies 𝑡𝑆𝑎 , 𝑡𝑆𝑏 of 𝑡𝑆𝑚 and obtain the S′-indexed family (𝑡𝑆 : 𝑆 ∈ S′). Let
𝑝 : I → {1, 2, . . . , 𝑛} be the projection defined by (𝑖, 𝑗) ↦→ 𝑖. We write the
event in (3.42) as the intersection 𝐴 ∩ 𝐵 of the two events 𝐴, 𝐵, where

𝐴 =
⋂

𝑖∈𝑝(𝑆𝑎)

{
𝑟𝑖∑
𝑗=1

𝑡𝜋S (𝑖, 𝑗) ≥ 𝑡
}

and 𝐵 =
⋂

𝑖∉𝑝(𝑆𝑎)

{
𝑟𝑖∑
𝑗=1

𝑡𝜋S (𝑖, 𝑗) ≥ 𝑡
}
.

53



We also set

𝐴′ =
⋂

𝑖∈𝑝(𝑆𝑎)

{
𝑟𝑖∑
𝑗=1

𝑡𝜋S′ (𝑖, 𝑗) ≥ 𝑡
}

and 𝐵′ =
⋂

𝑖∉𝑝(𝑆𝑎)

{
𝑟𝑖∑
𝑗=1

𝑡𝜋S′ (𝑖, 𝑗) ≥ 𝑡
}
.

Here, we note that the event 𝐴′ does not depend on 𝑡𝑆𝑏 . Indeed, the assump-
tion that each 𝛾𝑖 is self-avoiding implies that the restriction 𝑝↾𝑆𝑘 of the map
𝑝 to some element 𝑆𝑘 ∈ S is injective. Since 𝑆𝑎 and 𝑆𝑏 are disjoint subsets
of the same element 𝑆𝑚 ∈ S, we have 𝑝(𝑆𝑎) ∩ 𝑝(𝑆𝑏) = ∅.

Therefore, the event 𝐴′ (resp. 𝐵′) can also be obtained from 𝐴 (resp. 𝐵)
by replacing 𝑡𝑆𝑚 with 𝑡𝑆𝑎 (resp. 𝑡𝑆𝑏). From Lemma 3.22, we obtain

P(S) ≥ P(S′) .

We can take a finite sequence S = S (0) ,S (1) , . . . ,S (𝐾) = S̃ of partitions of I
such that S (𝑘+1) is obtained from S (𝑘) by splitting an element of S (𝑘) into
two nonempty sets. By replacing S, S′ with S (𝑘), S (𝑘+1) and iterating the
above discussion for 𝑘 = 0, 1, . . . , 𝐾 − 1, we obtain (3.43). This completes the
proof of (3.41). □

We now turn to the proof of Lemma 3.21.

Proof of Lemma 3.21. Let Λ𝑅 be the ball with radius 𝑅:

Λ𝑅 = {𝑦1 ∈ 𝑋1 : 𝑑𝑋1 (0, 𝑦1) ≤ 𝑅}.

Letting 𝑅 be sufficiently large that Λ𝑅 includes 𝑥1, we set the restricted first
passage time as

𝑇𝑅1 (0, 𝑥1) := inf{𝑇1(𝛾) : 𝛾 is a path in Λ𝑅 from 0 to 𝑥1}.

Let {𝛾1, 𝛾2, . . . , 𝛾𝑛} be the finite set of all self-avoiding paths in Λ𝑅 that go
from 0 to 𝑥1. We then have

𝑇𝑅1 (0, 𝑥1) := min
𝑖=1,...,𝑛

𝑇1(𝛾𝑖),

and it follows from (3.41) that

P(𝑇𝑅1 (0, 𝑥1) ≥ 𝑡) = P
(
𝑛⋂
𝑖=1

{𝑇1(𝛾𝑖) ≥ 𝑡}
)
≥ P

(
𝑛⋂
𝑖=1

{𝑇 (�̃�𝑖) ≥ 𝑡}
)
,
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where each �̃�𝑖 is the lifting of 𝛾𝑖 which starts from 0. Since the terminus of
each path �̃�𝑖 is in 𝜔

−1(𝑥1), the last expression is bounded below by

P(𝑇 (0, �̃�1) ≥ 𝑡 for any �̃�1 ∈ 𝜔−1(𝑥1)).

Letting 𝑅 →∞ completes the proof of Lemma 3.21. □
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Chapter 4

Bond percolation on crystal
lattices

This chapter studies the bond percolation model on crystal lattices. First,
in Section 4.1, we summarize some observations obtained from the graph
structure of a crystal lattice. In Section 4.2, we give the inverse correlation
length, which is a norm on R𝑑 induced from the bond percolation model,
and present a large deviation result for the cluster 𝐶 (Theorem 4.11). As an
application of this result, the covering monotonicity of the inverse correlation
length (Theorem 1.8) is proved in Section 4.3.

4.1 Results obtained from the graph struc-

ture of a crystal lattice

4.1.1 Phase transition

In this subsection, we check that the phase transition represented by Theo-
rem 1.1 for the cubic lattice model also holds for a crystal lattice model.

Let 𝑋 = (𝑉, 𝐸) be a crystal lattice. We first note that the exponential
decay (1.2) in Theorem 1.1 also holds for a crystal lattice model. Namely,
for 𝑝 < 𝑝𝑐 (𝑋), there exists a constant 𝜎 := 𝜎(𝑝) > 0 such that

P𝑝 (𝑥 ↔ 𝑦) ≤ exp(−𝜎𝑑𝑋 (𝑥, 𝑦)) (4.1)

holds for any 𝑥, 𝑦 ∈ 𝑋. The proof can be obtained in the same manner as for
[15, Theorem 5.4] by replacing the 𝐿1-norm in [15] with the graph distance.
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For the proof of (1.1) in Theorem 1.1, we need to show the uniqueness of the
infinite cluster : if there exist infinite clusters in 𝑋 with positive probability,
then the number of them is equal to one almost surely.

Let 𝜃 (𝑝, 𝑥) := P𝑝 (𝑥 ↔ ∞) be the percolation probability defined in Sec-
tion 2.2. For the origin 0 ∈ 𝑋, we abbreviate 𝜃 (𝑝, 0) by 𝜃 (𝑝). Note that,
we have already seen in (2.11) that whether 𝜃 (𝑝) is positive or not does not
depend on the choice of the origin.

Proposition 4.1. Let 𝑋 be a 𝑑-dimensional crystal lattice. Then for any
𝑝 ∈ (0, 1) such that 𝜃 (𝑝) > 0, there exists a unique infinite cluster in 𝑋
almost surely.

In the case of 𝑋 = L𝑑, Proposition 4.1 has already been obtained by [1].
In order to generalize it to a crystal lattice model, we use the result of [5].
For a graph 𝑌 = (𝑉𝑌 , 𝐸𝑌 ), the isoperimetric constant 𝜅(𝑌 ) is defined by

𝜅(𝑌 ) = inf
𝑊⊂𝑉𝑌

|𝜕𝑊 |
|𝑊 | ,

where the infimum runs over all finite connected subsets 𝑊 ⊂ 𝑉𝑌 . Here,
the boundary 𝜕𝑊 is defined as the set of all vertices of 𝑊 with at least one
neighbor in 𝑉𝑌 \𝑊 , and | · | denotes the number of vertices. A graph 𝑌 is said
to be amenable if the isoperimetric constant 𝜅(𝑌 ) is equal to 0. The general
result of uniqueness is stated as follows.

Proposition 4.2 ([5]). Assume that 𝑌 is connected, transitive and amenable.
Then for any 𝑝 ∈ (0, 1) such that 𝜃 (𝑝) > 0, there exists a unique infinite
cluster in 𝑌 almost surely.

We note that in Proposition 4.2, the condition that 𝑌 is transitive can
be relaxed to being quasi-transitive. We now turn to the proof of Proposi-
tion 4.1.

Proof of Proposition 4.1. Since a crystal lattice is connected and quasi-
transitive, we only need to check that 𝑋 is amenable. Recall that, from (2.2)
in Section 2.1.3, the vertex set 𝑉 of 𝑋 can be considered as an array of finite
trees:

𝑉 =
⊔
𝜎∈Z𝑑
T𝜎 .
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Moreover, from the periodic structure of 𝑋, we can see that there exists a
constant 𝐾 such that

T𝜎 ∼ T𝜏 =⇒ ∥𝜎 − 𝜏∥1 ≤ 𝐾 (4.2)

holds for any 𝜎, 𝜏 ∈ Z𝑑. Here, T𝜎 ∼ T𝜏 means that there exist vertices 𝑥 ∈ T𝜎
and 𝑦 ∈ T𝜏 such that 𝑥 is adjacent to 𝑦.

For 𝑅 ∈ Z≥0, we define the finite connected subset

𝑊𝑅 :=
⊔
∥𝜎∥1≤𝑅

T𝜎 ⊂ 𝑉.

Then, from (4.2), we can see that the boundary 𝜕𝑊𝑅 consists of vertices of
T𝜎 with ∥𝜎∥1 ≥ 𝑅 − 𝐾 + 1. Thus, we have

|𝜕𝑊𝑅 |
|𝑊𝑅 |

≤ (2𝑅 + 1)
𝑑 − (2(𝑅 − 𝐾) + 1)𝑑
(2𝑅 + 1)𝑑

→ 0

as 𝑅 →∞. This implies that 𝑋 is amenable. □

From these observations, we obtain the following phase transition.

Theorem 4.3. Let 𝑋 be a crystal lattice. If 𝑝 > 𝑝𝑐 (𝑋), then there exists a
constant 𝑐 := 𝑐(𝑝) > 0 such that

P𝑝 (𝑥 ↔ 𝑦) ≥ 𝑐 for any 𝑥, 𝑦 ∈ 𝑋. (4.3)

If 𝑝 < 𝑝𝑐 (𝑋), then there exists 𝜎 := 𝜎(𝑝) > 0 such that

P𝑝 (𝑥 ↔ 𝑦) ≤ exp(−𝜎𝑑𝑋 (𝑥, 𝑦)) for any 𝑥, 𝑦 ∈ 𝑋. (4.4)

Proof. We have already seen the exponential decay (4.4) in (4.1). We now
show (4.3). From Proposition 4.1 we can see that two vertices 𝑥, 𝑦 that
belong to an infinite cluster must be connected almost surely. Therefore, we
have

P𝑝 (𝑥 ↔ 𝑦) ≥ P𝑝 ({𝑥 ↔∞} ∩ {𝑦 ↔∞}).
It follows from the FKG inequality (2.10) that the right hand side is bounded
below by

𝜃 (𝑝, 𝑥)𝜃 (𝑝, 𝑦) > 0,

which does not depend on the distance between 𝑥 and 𝑦. □
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4.1.2 Estimate of the critical probability of the maxi-
mal abelian covering graph

In Section 1.1.2, we have seen the critical probabilities of the cubic lattice
L2 and the honeycomb lattice H. From these values, we can obtain the
comparison

𝑝𝑐 (L2) < 𝑝𝑐 (H). (4.5)

In this subsection, we reconsider this inequality from the viewpoint of max-
imal abelian covering graphs, which we introduced in Section 2.1.3. This
observation provides a direct proof of a generalization of (4.5).

Let 𝑋0 be a finite connected graph and 𝑋ab
0 = (𝑉ab

0 , 𝐸ab
0 ) be the maximal

abelian covering graph over 𝑋0. Recall that, from (2.6) in Section 2.1.3, the
vertex set 𝑉ab

0 of 𝑋ab
0 can be represented by the array

𝑉ab
0 =

⊔
𝜎∈Z𝑑
T𝜎

of a spanning tree T of 𝑋0, with the relation (2.7). We further assume that

there exist two or more vertices in T0 (4.6)

are adjacent to different trees, respectively.

This condition excludes crystal lattices that are essentially the same as the
cubic lattice as shown in Figure 4.1.

Figure 4.1: Maximal abelian covering graph (left) over a finite
graph (right). This graph does not satisfy the condition (4.6).

A generalization of (4.5) is stated as follows.

Proposition 4.4. Let 𝑋ab
0 be the maximal abelian covering over some finite

graph 𝑋0 with dimension 𝑑. If 𝑋ab
0 satisfies the condition (4.6), then

𝑝𝑐 (L𝑑) < 𝑝𝑐 (𝑋ab
0 ).
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Proof. We use the “enhancement” technique (see, e.g., [15, Section 3.3] for
a detailed formulation) to 𝑋ab

0 . Consider the bond percolation model on

𝑋ab
0 with probability 𝑝 ∈ [0, 1]. We add the following enhancement on this

model:

any two vertices in the same tree T𝜎 (4.7)

are assumed to be connected with probability one.

From condition (4.6), this enhancement is “essential” in the sense that it
contributes to the creation of infinite clusters. We write by 𝑝enh𝑐 (𝑋ab

0 ) the
critical probability of 𝑋ab

0 under this enhancement. Then [15, Theorem 3.16]
implies that

𝑝enh𝑐 (𝑋ab
0 ) < 𝑝𝑐 (𝑋ab

0 ). (4.8)

Incidentally, the bond percolation model on 𝑋ab
0 with the enhancement (4.7)

is essentially the same as the normal percolation model on the cubic lattice
L𝑑. Namely, for two vertices 𝜎, 𝜏 ∈ Z𝑑, we have

P𝑝 (T𝜎
enh←→ T𝜏 in 𝑋ab

0 ) = P𝑝 (𝜎 ↔ 𝜏 in L𝑑). (4.9)

Here, T𝜎
enh←→ T𝜏 means that two trees T𝜎 and T𝜏 are connected by a path

of open edges in the setting of this enhancement. In the right hand side of
(4.9), we identify 𝜎, 𝜏 ∈ Z𝑑 with the vertices of L𝑑. From (4.9), we easily
obtain

𝑝enh𝑐 (𝑋ab
0 ) = 𝑝𝑐 (L𝑑). (4.10)

Combining (4.8) with (4.10), the proposition follows. □

Example 4.5. We can apply Proposition 4.4 to the honeycomb lattice, which
is a maximal abelian covering graph, to obtain (4.5). Recall that the diamond
lattice D is also a maximal abelian covering graph with dimension 3. Thus
we obtain the strict inequality

𝑝𝑐 (L3) < 𝑝𝑐 (D)

as a higher-dimensional version of (4.5).

60



4.2 Inverse correlation length and large devi-

ation result for percolation clusters

In this section, we fix a periodic realization Φ : 𝑋 → R𝑑 of a 𝑑-dimensional
crystal lattice 𝑋. We write by 𝐴↔ 𝐵 the connection of two sets 𝐴, 𝐵 ⊂ R𝑑:

𝐴↔ 𝐵
def⇐⇒two vertices 𝑥′, 𝑦′ ∈ 𝑋

are connected by a path of open edges,

where 𝑥′, 𝑦′ ∈ 𝑋 are the nearest vertices of 𝐴, 𝐵, respectively. For brevity,
we write {𝑥} ↔ {𝑦} by 𝑥 ↔ 𝑦 as in the previous section.

Remark 4.6. We can easily see that P𝑝 (𝑥 ↔ 𝑦) = P𝑝 (𝑥 + b ↔ 𝑦 + b) holds
for any vector b ∈ Γ and points 𝑥, 𝑦 ∈ R𝑑.

In this section, we present a large deviation result for the percolation
cluster in a crystal lattice model (Theorem 4.11). In the cubic lattice model,
this result has been obtained by [7, 22]. Since the proof in [7] does not
mention the graph structure of the cubic lattice, it can also be applied to a
crystal lattice model.

To state the large deviation result, we need to check that the inverse
correlation length, which is defined as the limit

𝜑𝑋 (𝑥) = − lim
𝑛→∞

1

𝑛
log P𝑝 (0↔ 𝑛𝑥), (4.11)

exists and is a norm on R𝑑 in the subcritical phase 𝑝 < 𝑝𝑐 (𝑋). We first prove
the existence of the inverse correlation length.

Proposition 4.7. Let 𝑝 > 0. The limit (4.11) exists for any 𝑥 ∈ D. More-
over, 𝜑𝑋 (·) depends only on 𝑋, 𝑝 and the period 𝜌.

For the proof of Proposition 4.7, we use the subadditive limit theorem,
which is simple but useful for percolation theory. We give the statement of
it with a proof.

Proposition 4.8 (Subadditive limit theorem). Let (𝑎𝑛)𝑛=1,2,... be a sequence
of real numbers. Suppose that (𝑎𝑛)𝑛=1,2,... is subadditive, that is, 𝑎𝑛+𝑚 ≤
𝑎𝑛 + 𝑎𝑚 holds for all 𝑛, 𝑚. Then the limit

𝛼 = lim
𝑛→∞

𝑎𝑛
𝑛

exists. Furthermore, the limit 𝛼 satisfies 𝑎𝑛 ≥ 𝛼𝑛 for all 𝑛.
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Proof. Fix 𝑚 ∈ Z>0. For each 𝑛, we write 𝑛 = 𝑘𝑚 + 𝑟 with 0 ≤ 𝑟 < 𝑚. Then
the subadditivity implies 𝑎𝑛 ≤ 𝑘𝑎𝑚 + 𝑎𝑟 and we have

𝑎𝑛
𝑛
≤ 𝑘𝑚

𝑘𝑚 + 𝑟
𝑎𝑚
𝑚
+ 𝑎𝑟
𝑛
.

By taking the limit superior as 𝑛→∞, we obtain

lim sup
𝑛→∞

𝑎𝑛
𝑛
≤ 𝑎𝑚
𝑚
. (4.12)

Taking the limit inferior as 𝑚 → ∞ of (4.12) implies the existence of the
limit 𝛼 = lim𝑛→∞ 𝑎𝑛/𝑛. The condition 𝑎𝑛 ≥ 𝛼𝑛 also follows from (4.12). □

We now turn to the proof of Proposition 4.7.

Proof of Proposition 4.7. Let 𝑁 ∈ Z>0 be the minimum number with
𝑁𝑥 ∈ Γ. We consider the sequence (𝑎𝑘 )𝑘=1,2,... defined by

𝑎𝑘 := − log P𝑝 (0↔ 𝑘𝑁𝑥).

For 𝑘, 𝑙 ∈ Z>0, the event {0 ↔ (𝑘 + 𝑙)𝑁𝑥} includes {0 ↔ 𝑘𝑁𝑥} ∩ {𝑘𝑁𝑥 ↔
(𝑘 + 𝑙)𝑁𝑥} and we have

P𝑝 (0↔ (𝑘 + 𝑙)𝑁𝑥) ≥ P𝑝 ({0↔ 𝑘𝑁𝑥} ∩ {𝑘𝑁𝑥 ↔ (𝑘 + 𝑙)𝑁𝑥})
≥ P𝑝 (0↔ 𝑘𝑁𝑥)P𝑝 (𝑘𝑁𝑥 ↔ (𝑘 + 𝑙)𝑁𝑥)
= P𝑝 (0↔ 𝑘𝑁𝑥)P𝑝 (0↔ 𝑙𝑁𝑥). (4.13)

Here we use the FKG inequality for the second inequality. The equality
follows from Remark 4.6. This implies the subaddtivity 𝑎𝑘+𝑙 ≤ 𝑎𝑘 + 𝑎𝑙 of the
sequence (𝑎𝑘 )𝑘=1,2,.... Proposition 4.8 implies the existence of the limit

lim
𝑘→∞

𝑎𝑘
𝑘

= − lim
𝑘→∞

1

𝑘
log P𝑝 (0↔ 𝑘𝑁𝑥).

We set

𝜑𝑋 (𝑥) = − lim
𝑘→∞

1

𝑘𝑁
log P𝑝 (0↔ 𝑘𝑁𝑥).

Since each 𝑘𝑁𝑥 is a vertex on the lattice group Γ = 𝜌(𝐿), the limit 𝜑𝑋 (𝑥)
depends only on 𝑥, 𝑝, 𝑋 and the period 𝜌. We take 𝑗 = 1, 2, . . . , 𝑁 − 1
arbitrarily. In the same way as for (4.13), we have

P𝑝 (0↔ (𝑘𝑁 + 𝑗)𝑥) ≥ P𝑝 (0↔ 𝑘𝑁𝑥)P𝑝 (0↔ 𝑗𝑥),
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P𝑝 (0↔ 𝑘𝑁𝑥) ≥ P𝑝 (0↔ (𝑘𝑁 + 𝑗)𝑥)P𝑝 (0↔ − 𝑗𝑥).
These inequalities imply

𝑎𝑘
𝑘𝑁
−
− log P𝑝 (0↔ − 𝑗𝑥)

𝑘𝑁
≤
− log P𝑝 (0↔ (𝑘𝑁 + 𝑗)𝑥)

𝑘𝑁

≤ 𝑎𝑘
𝑘𝑁
+
− log P𝑝 (0↔ 𝑗𝑥)

𝑘𝑁
.

By taking 𝑘 →∞, we have

− lim
𝑘→∞

1

𝑘𝑁
log P𝑝 (0↔ (𝑘𝑁 + 𝑗)𝑥) = 𝜑𝑋 (𝑥).

Since 𝑗 is taken arbitrary, the proof of Proposition 4.7 is completed. □

Remark 4.9. As noted at the end of Chapter 2, the realization Φ is assumed
to be nondegenerate. Proposition 4.7 implies that this assumption is not
essential for the inverse correlation length, as well as the case of the FPP
model (Remark 3.12).

We next summarize the basic properties of 𝜑𝑋 (·) in the subcritical phase
𝑝 < 𝑝𝑐 (𝑋).

Proposition 4.10. Let 0 < 𝑝 < 𝑝𝑐 (𝑋). For the inverse correlation length
𝜑𝑋 (·), the following hold:

(1) 𝜑𝑋 (𝑥) > 0 for all 𝑥 ≠ 0 ∈ D.

(2) 𝜑𝑋 (𝑥 + 𝑦) ≤ 𝜑𝑋 (𝑥) + 𝜑𝑋 (𝑦) for all 𝑥, 𝑦 ∈ D.

(3) 𝜑(𝑐𝑥) = |𝑐 |𝜑(𝑥) for all 𝑥 ∈ D and 𝑐 ∈ Q.

Proof. The first item follows from the exponential decay (4.4) in Theo-
rem 4.3. Indeed, since the realization Φ is periodic, we can find a constant
𝛿 > 0 such that

𝑑𝑋 (0, 𝑧) ≥ 𝛿∥𝑧∥1
for all 𝑧 ∈ 𝑋. Thus for any 𝑥 ≠ 0 ∈ D and 𝑁 ∈ Z>0 with 𝑁𝑥 ∈ Γ, we have

P𝑝 (0↔ 𝑘𝑁𝑥) ≤ exp(−𝜎𝑑𝑋 (0, 𝑘𝑁𝑥)) ≤ exp (−𝜎𝛿𝑘𝑁 ∥𝑥∥1) ,

which implies

𝜑𝑋 (𝑥) = − lim
𝑘→∞

log P𝑝 (0↔ 𝑘𝑁𝑥)
𝑘𝑁

≥ 𝜎𝛿∥𝑥∥1 > 0.
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The second item can be proved by using the FKG inequality as follows: Let
𝑁 be the minimum number with 𝑁𝑥, 𝑁𝑦 ∈ Γ. Then we have

P𝑝 (0↔ 𝑘𝑁 (𝑥 + 𝑦)) ≥ P𝑝 ({0↔ 𝑘𝑁𝑥} ∩ {𝑘𝑁𝑥 ↔ 𝑁 (𝑥 + 𝑦)})
≥ P𝑝 (0↔ 𝑘𝑁𝑥)P𝑝 (𝑘𝑁𝑥 ↔ 𝑘𝑁 (𝑥 + 𝑦))
= P𝑝 (0↔ 𝑘𝑁𝑥)P𝑝 (0↔ 𝑘𝑁𝑦).

Here, we use the FKG inequality for the second inequality. The equality
follows from Remark 4.6. By taking the logarithm, multiplying by − 1

𝑘𝑁 and
taking the limit as 𝑘 →∞ of both sides, we obtain the second item.

We next prove the third item. If 𝑐 ≥ 0, we have

𝜑𝑋 (𝑐𝑥) = − lim
𝑛→∞

1

𝑛
log P𝑝 (0↔ 𝑛𝑐𝑥) = −𝑐 lim

𝑛→∞
1

𝑛𝑐
log P𝑝 (0↔ 𝑛𝑐𝑥) = 𝑐𝜑𝑋 (𝑥).

For any 𝑐 ∈ Q with 𝑐 < 0, we can take a number 𝑁 with 𝑁𝑐𝑥 ∈ Γ and obtain

P𝑝 (0↔ 𝑁𝑐𝑥) = P𝑝 (−𝑁𝑐𝑥 ↔ 0) = P𝑝 (0↔ −𝑁𝑐𝑥)

from Remark 4.6. Thus the third item also follows for 𝑐 < 0. □

In a similar way as for the norm 𝜇 in Section 3.1, the inverse correlation
length 𝜑𝑋 (·) can be continuously expanded to the function 𝜑𝑋 : R𝑑 → R.
From Proposition 4.10, the function 𝜑𝑋 (·) is a norm on R𝑑 in the subcritical
phase 0 < 𝑝 < 𝑝𝑐 (𝑋).

At the end of this section, we summarize the notation and state the large
deviation result. Fix 0 < 𝑝 < 𝑝𝑐 (𝑋). The norm 𝜑𝑋 (·) in Proposition 4.7
induces the one-dimensional Hausdorff measure H𝜑𝑋 on R𝑑 as follows: For a
nonempty subset 𝑈 ⊂ R𝑑, we denote by 𝜑𝑋 (𝑈) := sup{𝜑𝑋 (𝑥 − 𝑦) : 𝑥, 𝑦 ∈ 𝑈}
the 𝜑𝑋 -diameter of 𝑈. For 𝛿 > 0, a family (𝑈𝑖)𝑖=1,2,... of subsets 𝑈𝑖 ⊂ R𝑑 is
called a 𝛿-cover of 𝐸 ⊂ R𝑑 if

𝐸 ⊂
∞⋃
𝑖=1

𝑈𝑖 and 𝜑𝑋 (𝑈𝑖) < 𝛿 for 𝑖 = 1, 2, . . . .

We set

H𝜑𝑋 ,𝛿 (𝐸) := inf

{ ∞∑
𝑖=1

𝜑𝑋 (𝑈𝑖) : (𝑈𝑖)𝑖=1,2,... is a 𝛿-cover of 𝐸
}

64



and the one-dimensional Hausdorff measure of 𝐸 is defined by

H𝜑𝑋 (𝐸) := lim
𝛿→0
H𝜑𝑋 ,𝛿 (𝐸).

Let K𝑐 be the set of all compact and connected subsets of R𝑑. The
Hausdorff distance 𝐷𝐻 (𝐾1, 𝐾2) of two elements 𝐾1, 𝐾2 ∈ K𝑐 is defined by

𝐷𝐻 (𝐾1, 𝐾2) := max
{
max
𝑥∈𝐾1

𝑑 (𝑥, 𝐾2),max
𝑦∈𝐾2

𝑑 (𝐾1, 𝑦)
}
,

where 𝑑 (𝑥, 𝐴) := inf{| |𝑥 − 𝑦 | |2 : 𝑦 ∈ 𝐴}. We define the equivalence relation
on K𝑐 by translation: two elements 𝐾1, 𝐾2 ∈ K𝑐 are equivalent if and only if
there is some vector b ∈ R𝑑 such that 𝐾1 = 𝐾2 + b. Let K̄𝑐 be the quotient
with respect to this relation. We write the equivalence class of 𝐾 ∈ K𝑐 as
𝐾 and define its measure H𝜑𝑋 (𝐾) as H𝜑𝑋 (𝐾) for some 𝐾 ∈ 𝐾. The distance
�̄�𝐻 (𝐾1, 𝐾2) of 𝐾1, 𝐾2 ∈ K̄𝑐 is defined by

�̄�𝐻 (𝐾1, 𝐾2) := inf
b1,b2∈R𝑑

𝐷𝐻 (𝐾1 + b1, 𝐾2 + b2).

As we introduced in Section 1.1.1, we denote by 𝐶 = 𝐶 (0) the cluster
(connected component) containing the origin 0 ∈ 𝑋 in the subgraph consist-
ing of all open edges. Recall that, by the periodic realization Φ : 𝑋 → R𝑑,
the edges of 𝑋 are assumed to be realized as the segments connecting their
endpoints. Here, we suppose that the cluster 𝐶 is realized as the connected
union of the segments. If 𝑝 < 𝑝𝑐 (𝑋), we can see that 𝐶 ∈ K𝑐 almost surely.

We consider the equivalence class 𝐶 of the cluster 𝐶 to be the K̄𝑐-valued
random variable. The stochastic shape of the cluster 𝐶 is represented by a
large deviation principle for the shrinking sequence (𝐶/𝑛)𝑛=1,2,... of 𝐶.

Theorem 4.11. Let 0 < 𝑝 < 𝑝𝑐 (𝑋). The sequence (𝐶/𝑛)𝑛=1,2,... satisfies a
large deviation principle with good rate function H𝜑𝑋 : for any Borel subset
Ū of K̄𝑐, the following inequality holds:

− inf{H𝜑𝑋 (𝑈) : 𝑈 ∈ interior(Ū)} ≤ lim inf
𝑛→∞

1

𝑛
log P𝑝 (𝐶/𝑛 ∈ Ū)

≤ lim sup
𝑛→∞

1

𝑛
log P𝑝 (𝐶/𝑛 ∈ Ū)

≤ − inf{H𝜑𝑋 (𝑈) : 𝑈 ∈ closure(Ū)}.

For a proof of Theorem 4.11, we refer to the proof of [7, Theorem 1.1],
which shows the case of 𝑋 = L𝑑.
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4.3 Covering monotonicity of the inverse cor-

relation length

This section is devoted to the proof of Theorem 1.8. For two crystal lattices
𝑋 = (𝑉, 𝐸) and 𝑋1 = (𝑉1, 𝐸1) in Theorem 1.8, we consider the probability
space (Ω, F , P𝑝) defined by (2.9) with 𝑆 = 𝐸 ⊔ 𝐸1. As in Section 3.3, we
assume that the covering map 𝜔 : 𝑋 → 𝑋1 maps the origin 0 ∈ 𝑋 to the
origin of 𝑋1. We write 𝜔(0) by 0 for short.

We prove Theorem 1.8 by giving two lemmas. The first lemma, which is
obtained from Theorem 4.11, is an analogy of Lemma 3.20.

Lemma 4.12. Suppose 0 < 𝑝 < 𝑝𝑐 (𝑋). Let 𝐴 ⊂ R𝑑 be a closed subset of
R𝑑. Then there exists a point 𝑥 ∈ 𝐴 such that

𝜑𝑋 (𝑥) = − lim
𝑛→∞

1

𝑛
log P𝑝 (0↔ 𝑛𝐴)

holds.

Proof. Let 𝑥0 ∈ 𝐴 be the point with 𝜑𝑋 (𝑥0) = min{𝜑𝑋 (𝑥) : 𝑥 ∈ 𝐴}. The
inclusion {0↔ 𝑛𝐴} ⊃ {0↔ 𝑛𝑥0} of events implies

lim inf
𝑛→∞

1

𝑛
log P𝑝 (0↔ 𝑛𝐴) ≥ lim

𝑛→∞
1

𝑛
log P𝑝 (0↔ 𝑛𝑥0) = −𝜑𝑋 (𝑥0).

Thus, the proof of Lemma 4.12 suffices to show the following inequality:

lim sup
𝑛→∞

1

𝑛
log P𝑝 (0↔ 𝑛𝐴) ≤ −𝜑𝑋 (𝑥0). (4.14)

We set the subset Ū ⊂ K̄𝑐 as

Ū := {𝑈 ∈ K̄𝑐 : ∃𝑈 ∈ 𝑈 s.t. 0 ∈ 𝑈 and 𝑈 ∩ 𝐴 ≠ ∅}.

We first check that Ū is closed (and thus is a Borel subset of K̄𝑐). Let
(𝑈𝑘 )𝑘=1,2,... be a sequence in Ū which converges to 𝑈 ∈ K̄𝑐. For each 𝑘, we
can take 𝑈𝑘 ∈ 𝑈𝑘 such that 0 ∈ 𝑈𝑘 and 𝑈𝑘 ∩ 𝐴 ≠ ∅. Since 0 ∈ 𝑈𝑘 and 𝑈𝑘
converges, we can see that all 𝑈𝑘 ’s are in a bounded area of R𝑑. Thus, it
follows from the Blaschke selection theorem (see, e.g., [13, Theorem 3.16])
that we can take a subsequence (𝑈𝑘𝑙 )𝑙=1,2,... that converges to some element
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𝑈′ ∈ K𝑐. Since 𝐴 is closed, we can see that 0 ∈ 𝑈′ and 𝑈′∩ 𝐴 ≠ ∅. Moreover,
we have

�̄�𝐻 (𝑈𝑘𝑙 ,𝑈′) ≤ 𝐷𝐻 (𝑈𝑘𝑙 ,𝑈′) → 0

as 𝑙 → ∞, which implies 𝑈′ is equal to 𝑈. Since 𝑈′ ∈ Ū, we have 𝑈 ∈ Ū.
Thus Ū is closed.

For this Ū, the inclusion {0↔ 𝑛𝐴} ⊂ {𝐶/𝑛 ∈ Ū} holds and we obtain

lim sup
𝑛→∞

1

𝑛
log P𝑝 (0↔ 𝑛𝐴) ≤ lim sup

𝑛→∞

1

𝑛
log P𝑝 (𝐶/𝑛 ∈ Ū). (4.15)

The upper bound of Theorem 4.11 implies

lim sup
𝑛→∞

1

𝑛
log P𝑝 (𝐶/𝑛 ∈ Ū) ≤ − inf{H𝜑𝑋 (𝑈) : 𝑈 ∈ closure(Ū)}

= − inf{H𝜑𝑋 (𝑈) : 𝑈 ∈ Ū}
= −𝜑𝑋 (𝑥0). (4.16)

Here, the first equality follows from the closedness of Ū. The second equality
follows from the following two observations:

• a compact connected set 𝐾 which contains two points 0 and 𝑥 ∈ 𝐴 has
a measure H𝜑𝑋 (𝐾) ≥ 𝜑𝑋 (𝑥) ≥ 𝜑𝑋 (𝑥0) (see, e.g., [13, Lemma 3.4]); and

• the Hausdorff measure H𝜑𝑋 (𝑆) of the segment 𝑆 connecting 0 and 𝑥0 is
equal to 𝜑𝑋 (𝑥0).

By combining (4.15) with (4.16), we obtain (4.14) and the proof of Lemma 4.12
is completed. □

Remark 4.13. From Lemma 4.12, we have

P𝑝 (0↔ 𝑛𝜕C) ≈ exp(−𝑛)

for the unit ball C with respect to the norm 𝜑𝑋 (·). Therefore, this ball can
be interpreted as the region where the cluster 𝐶 can spread within a certain
probability cost.

The second lemma for the proof of Theorem 1.8 is a modified version of
Lemma 3.23. Here, we say that a path 𝛾 = (𝑒1, 𝑒2, . . . , 𝑒𝑟) is open if 𝑒𝑖 is
open for any 𝑖 = 1, 2, . . . , 𝑟.
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Lemma 4.14. Let 𝛾1, . . . , 𝛾𝑛 be paths in 𝑋1 which start from the origin 0
and let �̃�1, �̃�2, . . . , �̃�𝑛 be their liftings. Then the following inequality holds:

P𝑝

(
𝑛⋃
𝑖=1

{𝛾𝑖 is open}
)
≤ P𝑝

(
𝑛⋃
𝑖=1

{�̃�𝑖 is open}
)
.

Proof. Recall that an edge 𝑒 ∈ 𝐸 is assumed to be open (resp. closed) if
and only if 𝑡𝑒 = 1 (resp. 𝑡𝑒 = 0). For a path 𝛾 = (𝑒1, . . . , 𝑒𝑟) in 𝑋, we define
𝑇 ′(𝛾) as the number of closed edges in 𝛾:

𝑇 ′(𝛾) =
𝑟∑
𝑖=1

(1 − 𝑡𝑒𝑖 ).

Lemma 3.23 can be applied to 𝑇 ′ and we have

P𝑝

(
𝑛⋂
𝑖=1

{𝑇 ′1(𝛾𝑖) ≥ 1}
)
≥ P𝑝

(
𝑛⋂
𝑖=1

{𝑇 ′(�̃�𝑖) ≥ 1}
)
.

By taking the complement, we obtain Lemma 4.14. □

Theorem 1.8 can be proved as follows.

Proof of Theorem 1.8. Take 𝑥1 ∈ D1 with 𝜑𝑋1 (𝑥1) ≤ 1 arbitrarily. Let
𝑁 ∈ Z>0 be the minimum number with 𝑁𝑥1 ∈ Γ1. We take a number 𝑘 ∈ Z≥0
arbitrarily. Let Λ𝑅 be the ball with radius 𝑅:

Λ𝑅 := {𝑦1 ∈ 𝑋 : 𝑑𝑋1 (0, 𝑦1) ≤ 𝑅}.

We take 𝑅 sufficiently large that Λ𝑅 includes 0 and 𝑘𝑁𝑥1. Let {𝛾1, 𝛾2, . . . , 𝛾𝑛}
be the set of all self-avoiding paths in Λ𝑅 from 0 to 𝑘𝑁𝑥1. By Lemma 4.14,
we have

P𝑝

(
𝑛⋃
𝑖=1

{𝛾𝑖 is open}
)
≤ P𝑝

(
𝑛⋃
𝑖=1

{�̃�𝑖 is open}
)
,

where 𝛾𝑖 is the lifting of 𝛾𝑖 which starts from the origin 0 ∈ 𝑋. Since the end
point of each lifting �̃�𝑖 is in 𝜔

−1(𝑘𝑁𝑥1), the right hand side is bounded above
by

P𝑝 (0↔ 𝜔−1(𝑘𝑁𝑥1) in 𝑋). (4.17)
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The projective relation (1.11) implies that vertices in 𝜔−1(𝑘𝑁𝑥1) are realized
in 𝑃−1(𝑘𝑁𝑥1). Therefore (4.17) is also bounded above by

P𝑝 (0↔ 𝑃−1(𝑘𝑁𝑥1) in 𝑋) = P𝑝 (0↔ 𝑘𝑁𝑃−1(𝑥1) in 𝑋).

Letting 𝑅 →∞ implies

P𝑝 (0↔ 𝑘𝑁𝑥1 in 𝑋1) ≤ P𝑝 (0↔ 𝑘𝑁𝑃−1(𝑥1) in 𝑋).

Therefore we have

𝜑𝑋1 (𝑥1) = lim
𝑘→∞
− 1

𝑘𝑁
log P𝑝 (0↔ 𝑘𝑁𝑥1 in 𝑋1)

≥ lim sup
𝑘→∞

− 1

𝑘𝑁
log P𝑝 (0↔ 𝑘𝑁𝑃−1(𝑥1) in 𝑋). (4.18)

From Lemma 4.12, the last expression of (4.18) is equal to 𝜑𝑋 (𝑦) for some
point 𝑦 ∈ 𝑃−1(𝑥1). Combining 𝜑𝑋1 (𝑥1) ≤ 1 with (4.18), we have 𝜑𝑋 (𝑦) ≤ 1.
Thus we obtain

C1 ∩ D1 ⊂ 𝑃(C).

Since 𝑃(C) is closed, the proof of Theorem 1.8 is completed. □
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Chapter 5

Conclusion

This thesis first formulated the FPP model on the so-called crystal lat-
tices and established the shape theorem in this context (Theorem 1.5). The
monotonicity of the limit shapes under covering maps was also given (Theo-
rem 1.6). This result is derived from the covering monotonicity (1.7) of the
critical probabilities, and, in a special case, provides insight into the limit
shape of the cubic lattice model. As an analogy of this result, this thesis
also presented the covering monotonicity of the unit ball with respect to the
inverse correlation length (Theorem 1.8).

Several studies have been conducted on the formulation of periodic lat-
tices in the context of percolation theory, as exemplified by Kesten [19] and
Grimmett [16]. This thesis uses the formulation of “crystal lattices”, which
was introduced by Kotani and Sunada [21]. The crystal lattice studied here
comes from discrete geometric analysis and has several good properties re-
garding the study of percolation theory. In the conclusion of this thesis, we
mention these properties and discuss future prospects for percolation models
on crystal lattices.

1. Projective relation

The first property of crystal lattices to be considered is the projective relation
(1.11) of crystal lattices. In the context of percolation theory, the covering
monotonicity (1.7) plays an important role in giving an estimate for the crit-
ical probability. Note that the critical probability itself is obtained from the
graph structure. The projective relation enables us to derive this result to the
covering monotonicity of the “shape” of percolation clusters (Theorems 1.6
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and 1.8). Similar to the importance of (1.7) for the evaluation of the critical
probabilities, these results are expected to have implications for the shape of
percolation clusters.

2. L𝑑 structures of a 𝑑-dimensional crystal lattice

The second property is that a 𝑑-dimensional crystal lattice retains the prop-
erties of the cubic lattice L𝑑. As we introduced in Section 2.1.3, a periodic
realization (Φ, 𝜌) of a 𝑑-dimensional crystal lattice 𝑋 induces the lattice
group Γ = 𝜌(𝐿), which is a linear transformation of Z𝑑. By focusing on this
Γ, we can obtain the norm 𝜇(·) in the FPP model (Proposition 3.3) and show
that the limit shape depends on only the period of the realization (Proposi-
tion 3.10). Moreover, as shown by (2.2) in Section 2.1.3, a crystal lattice can
be considered as a 𝑑-dimensional array of trees, which plays a key role in the
proof of Lemma 3.8.

As a further study, it is expected that these 𝑑-dimensional structures can
be applied to considerations of the critical exponents, values that describe
the behavior of physical quantities near phase transitions. For example, in
the bond percolation model on the cubic lattice L𝑑, it is believed that the
percolation probability 𝜃 (𝑝) behaves as

𝜃 (𝑝) ≈ (𝑝 − 𝑝𝑐 (L𝑑))𝛽

as 𝑝 ↓ 𝑝𝑐 (L𝑑) for some 𝛽 > 0. This constant 𝛽, which depends on the
dimension 𝑑, is called a critical exponent. In the research community of
percolation theory, the critical exponent 𝛽 is expected to be the same for any
𝑑-dimensional graph. The crystal lattice will make a significant contribution
to the consideration of such problems.

3. Standard realization

As mentioned in Section 1.1.4, one of the main subjects of study for crystal
lattices comes from the concept of standard realization, that is, periodic real-
ization with maximal symmetry. Figure 5.1 shows the standard realizations
of the cubic lattice and the triangular lattice.
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Figure 5.1: Standard realizations of the cubic lattice (left) and
the triangular lattice (right).

When we consider the FPP model on the cubic lattice, we usually think
of the standard realization, like that on the left. The paper [2] provides a
simulation study of the FPP model on the two-dimensional cubic lattice and
observes that the larger the variability of the time distribution, the closer to
the Euclidean ball the limit shape becomes. Though the paper [9] shows that
the limit shape is not the Euclidean ball in the high-dimensional case, it is
still interesting that the limit shape obtained from the standard realization
is close to a highly symmetric object.

The same can be said for the inverse correlation length. The paper [12]
studies the site percolation model on the triangular lattice T, given by the
vertices 𝑚 + 𝑛𝑒𝑖𝜋/3 for 𝑚, 𝑛 ∈ Z and edges linking nearest neighbors together.
This realization is nothing but the standard realization of T as shown in
Figure 5.1. In this case, the inverse correlation length is proved to approach
a constant multiple of the 𝐿2-norm as 𝑝 ↑ 𝑝site𝑐 (T).

We thus pose the following question: for the standard realization Φ :
𝑋 → R𝑑 of a crystal lattice 𝑋, does the following hold?

• the limit shape B in the FPP model approaches the Euclidean ball as
the variance of the time distribution increases; and

• the unit ball C with respect to the inverse correlation length 𝜑𝑋 comes
closer to the Euclidean ball as 𝑝 ↑ 𝑝𝑐 (𝑋).

72



References

[1] M. Aizenman, H. Kesten, and C. M. Newman, Uniqueness of the infinite cluster
and continuity of connectivity functions for short and long range percolation, Comm.
Math. Phys. 111 (1987), no. 4, 505–531. MR901151

[2] S. E. Alm and M. Deijfen, First passage percolation on Z2: a simulation study, J.
Stat. Phys. 161 (2015), no. 3, 657–678, DOI 10.1007/s10955-015-1356-0. MR3406703

[3] A. Auffinger, M. Damron, and J. Hanson, 50 years of first-passage percolation, Uni-
versity Lecture Series, vol. 68, American Mathematical Society, Providence, RI, 2017.
MR3729447

[4] I. Benjamini and O. Schramm, Percolation beyond Z𝑑, many questions and a few
answers, Electron. Comm. Probab. 1 (1996), no. 8, 71–82, DOI 10.1214/ECP.v1-978.
MR1423907

[5] R. M. Burton and M. Keane, Density and uniqueness in percolation, Comm. Math.
Phys. 121 (1989), no. 3, 501–505. MR990777

[6] M. Campanino and L. Russo, An upper bound on the critical percolation probabil-
ity for the three-dimensional cubic lattice, Ann. Probab. 13 (1985), no. 2, 478–491.
MR781418
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