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1 Introduction

Let X = (Xt)t≥0 be a stochastic process on a state space S with a finite lifetime ζ.
A probability measure ν on S is called a quasi-stationary distribution of X when the
distribution of Xt with the initial distribution ν conditioned to survive at time t is time-
invariant, that is, the following holds:

Pν [Xt ∈ dx | ζ > t] = ν(dx) (t > 0), (1.1)

where Pν denotes the underlying probability measure of X with its initial distribution ν.

In the present thesis, we study the case where X is an irreducible one-dimensional
diffusion on [0, b) or [0, b] (0 < b ≤ ∞) stopped at 0 with the finite lifetime ζ = T0, the
first hitting time of the boundary 0. The main objective of the present thesis is to study
a domain of attraction of quasi-stationary distributions, that is, for a quasi-stationary
distribution ν we study a sufficient condition for an initial distribution µ such that

µt(dx) := Pµ[Xt ∈ dx | T0 > t] −−−→
t→∞

ν(dx). (1.2)

Here and hereafter all the convergence of probability distributions is in the sense of the
weak convergence.

Many studies (e.g., Hening and Kolb [11], Kolb and Steinsaltz [15], Littin [19] and
Mandl [22]) have dealt with convergence (1.2) in the case when µ is compactly supported
and it has been shown that convergence (1.2) holds and the limit distribution ν does not
depend on the choice of a compactly supported µ. The limit measure ν is sometimes
called Yaglom limit or the minimal quasi-stationary distribution. On the other hand, for
some diffusions there exist infinitely many quasi-stationary distributions. Although it is a
natural problem to know what initial distributions we can take so that convergence (1.2)
holds for a given quasi-stationary distribution ν, there are very few studies dealing with
this problem for non-minimal quasi-stationary distributions. The author only knows two
papers: Lladser and San Mart́ın [20] and Mart́ınez, Picco and San Mart́ın [24], whose
results we generalize in the present thesis. For this reason, we focus on convergence (1.2)
when ν is a non-minimal quasi-stationary distribution.

One of our main results is a general theorem which reduces the convergence (1.2) to
the tail behavior of T0. We denote the set of probability measures on a set I by P(I) or
PI. For a class P ⊂ P [0, b) of initial distributions, we say that the first hitting uniqueness
holds on P if

the map P ∋ µ 7−→ Pµ[T0 ∈ dt] is injective. (1.3)

As the class P , we shall take

Pexp = {µ ∈ P(I) | Pµ[T0 ∈ dt] = λe−λtdt (λ > 0)}, (1.4)

the set of initial distributions with exponential hitting probabilities. For birth and death
processes, we can show the first hitting uniqueness on P(N) by the argument in [8, Propo-
sition 5.6]. We refer to Rogers [25] as a general study of the first hitting uniqueness. He
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gave a condition for a one-dimensional diffusion to satisfy the first hitting uniqueness on
P(0,∞). The condition is, however, difficult to check in general and too strong to ensure
the first hitting uniqueness. Indeed, he remarked that the Brownian motion with a con-
stant negative drift does not satisfy his condition but the first hitting uniqueness holds on
P(0,∞). The reason why we consider the class Pexp is that when ν is a quasi-stationary
distribution, Pν [T0 ∈ dt] is exponentially distributed. Indeed, from the definition of quasi-
stationary distributions, it holds Pν [Xt+s ∈ dx | T0 > t] = Pν [Xs ∈ dx]. Thus it follows
Pν [T0 > t+ s | T0 > t] = Pν [Xt+s > 0 | T0 > t] = Pν [Xs > 0] = Pν [T0 > s]. The following
is one of the main results in the present thesis, which will be proven in Section 4.1.

Theorem 1.1. Let X be a d
dm

d
ds
-diffusion on [0, b) (0 < b ≤ ∞) and set for µ ∈ P [0, b),

µt(dx) = Pµ[Xt ∈ dx | T0 > t]. (1.5)

Then for λ > 0, the following are equivalent:

(i) lim
t→∞

Pµ[T0 > t+ s]

Pµ[T0 > t]
= e−λs (s > 0). (1.6)

(i)’ lim
t→∞

1

Pµ[T0 > t]

∫ ∞

t

Pµ[T0 > s]ds = 1/λ. (1.7)

(ii) Pµt [T0 ∈ ds] −−−→
t→∞

λe−λsds. (1.8)

Suppose, in addition, that the first hitting uniqueness holds on Pexp and that

Pν [T0 ∈ dt] = λe−λtdt for some ν ∈ P(0, b). (1.9)

Then the following is also equivalent to (i), (i)’ and (ii):

(iii) µt −−−→
t→∞

ν. (1.10)

The other main result is an application of Theorem 1.1 to the class of diffusion called
Kummer diffusions with negative drifts. A Kummer diffusion Y (α,β) (α > 0, β ∈ R) is a
diffusion on [0,∞) stopped upon hitting 0 whose local generator L(α,β) on (0,∞) is

L(α,β) = x
d2

dx2
+ (−α + 1− βx)

d

dx
. (1.11)

Note that the process Y (α,β) is also called a radial Ornstein-Uhlenbeck process in some
literature (see e.g., [3] and [10]). Write

g(α,β)γ (x) := Ex[e
−γT0 ] =

∫ ∞

0

e−γtPx[T0 ∈ dt] (γ ≥ 0), (1.12)

which is the Laplace transform of the first hitting time of 0 for Y (α,β). Then g
(α,β)
γ is a

γ-eigenfunction for L(α,β), i.e., L(α,β)g
(α,β)
γ = γg

(α,β)
γ (see e.g., [26, p.292]). We define a

Kummer diffusion with a negative drift Y (α,β,γ) (γ ≥ 0) as the h-transform of Y (α,β) by
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the function g
(α,β)
γ , that is, the process Y (α,β,γ) is a diffusion on [0,∞) stopped at 0 whose

local generator on (0,∞) is

L(α,β,γ) =
1

g
(α,β)
γ

(L(α,β) − γ)g(α,β)γ . (1.13)

We sometimes omit (α, β) and write L[γ] = L(α,β,γ), Y [γ] = Y (α,β,γ), gγ = g
(α,β)
γ , etc.

Note that L[0] = L(α,β,0) = L(α,β) and Y [0] = Y (α,β,0) = Y (α,β).

If we write

Ỹ (α,β,γ) :=
√
2Y (α,β,γ), (1.14)

then the local generator L̃(α,β,γ) of Ỹ (α,β,γ) on (0,∞) is given as

L̃(α,β,γ) =
1

2

d2

dx2
+

(
1− 2α

2x
− βx

2
+

(g̃
(α,β)
γ )′

g̃
(α,β)
γ

)
d

dx
, (1.15)

where g̃
(α,β)
γ (x) = Ẽx[e

−γT̃0 ] denotes the Laplace transform of the first hitting time of

0 for Ỹ (α,β,0) starting from x. When α = 1/2 and γ = 0, the process Ỹ (1/2,β,0) is the

Ornstein-Uhlenbeck process and, when β = 0, the process Ỹ (α,0,γ) is the Bessel process
with a negative drift (see e.g., [10]). The other main result is to give a concrete sufficient
condition for convergence (1.2) for Kummer diffusions with negative drifts. We classify
Y [γ] = Y (α,β,γ) (α > 0, β ∈ R, γ ≥ 0) into the following five cases by β and γ:

Case 1: β = 0, γ > 0.

Case 2: β > 0, γ ≥ 0.

Case 3: β < 0, γ > 0.

Case 1’: β = 0, γ = 0.

Case 3’: β < 0, γ = 0.

(1.16)

We will show in Proposition 4.8 that non-minimal quasi-stationary distributions exist only
in the Case 1-3. The following theorem is another main result in the present thesis. We
denote the set of integrable functions on I w.r.t. the measure ν by L1(I, ν) and denote
f(x) ∼ g(x) (x→ ∞) when limx→∞ f(x)/g(x) = 1.

Theorem 1.2. Let X = Y [γ] = Y (α,β,γ) (α > 0, β ∈ R, γ ≥ 0) satisfying one of the Case
1-3 in (1.16) and let µ ∈ P(0,∞). Then the following holds:

(i) If the Case 1 holds and µ(dx) = ρ(x)dx for some ρ ∈ L1((0,∞), dx) and

log ρ(x) ∼ (δ − 2
√
γ)
√
x (x→ ∞) (1.17)

for some 0 < δ < 2
√
γ, then it holds

µt −−−→
t→∞

νλ (1.18)

with λ = γ − δ2/4 ∈ (0, λ
[γ]
0 ), where λ

[γ]
0 = γ > 0 is the spectral bottom.
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(ii) If the Case 2 holds and

µ(x,∞) ∼ x−α−γ/β+δℓ(x) (x→ ∞) (1.19)

for some 0 < δ < α+ γ/β and some slowly varying function ℓ at ∞, then it holds

µt −−−→
t→∞

νλ (1.20)

with λ = β(α− δ) + γ ∈ (0, λ
[γ]
0 ), where λ

[γ]
0 = αβ + γ > 0 is the spectral bottom.

(iii) If the Case 3 holds and

µ(x,∞) ∼ x−1+γ/β+δℓ(x) (x→ ∞) (1.21)

for some 0 < δ < 1− γ/β and some slowly varying function ℓ at ∞. then it holds

µt −−−→
t→∞

νλ (1.22)

with λ = −β(1− δ) + γ ∈ (0, λ
[γ]
0 ), where λ

[γ]
0 = −β + γ > 0 is the spectral bottom.

Renewal dynamical approach for quasi-stationary distributions

To investigate convergence (1.2) for more general diffusions, we obtain several partial
results through the renewal dynamical approach, which was introduced in Ferrari, Kesten,
Mart́ınez and Picco [9] to show the existence of the minimal quasi-stationary distribution
for Markov chains on N. By extending the method to one-dimensional diffusions, we
give a characterization of quasi-stationary distributions and a necessary condition for the
convergence (1.2) through the renewal dynamical approach. In the approach, we introduce
a transform Φ of probability measures.

Let X be an irreducible d
dm

d
ds
-diffusion on [0, b) (0 < b ≤ ∞) stopped at 0 with

Px[T0 <∞] = 1 and assume there exists non-minimal quasi-stationary distributions (note
that a necessary and sufficient condition for the existence of non-minimal quasi-stationary
distributions is given in Section 3.3). Define

Pm = {µ ∈ P(0, b) | EµT
n
0 <∞ (n ≥ 1)}. (1.23)

For µ ∈ P(0, b) and the transition density p(t, x, y) w.r.t. the speed measure dm of X, we
denote

p(t, µ, y) :=

∫ b

0

p(t, x, y)µ(dx). (1.24)

For µ ∈ P(0, b), we define a measure Φµ by

Φµ(A) =
1

EµT0

∫ ∞

0

Pµ[Xt ∈ A]dt =
1

EµT0

∫
A

dm(y)

∫ ∞

0

p(t, µ, y)dt. (1.25)
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When EµT0 <∞, the measure Φµ is a probability since Pµ[Xt ∈ (0, b)] = Pµ[T0 > t]. The
distribution Φµ can be interpreted as the limit distribution of the conservative stochastic
process which behaves as X until T0 and as soon as it hits 0, it jumps into a random point
in (0, b) according to the probability µ and starts afresh (see e.g., Ben-Ari and Pinsky
[1]).

We will prove in Proposition 5.1 that Φ preserves Pm. Quasi-stationary distributions
are characterized as the fixed points of Φ in Pm, which we will show in Proposition 5.9. We
also show in Theorem 5.2 that for the convergence (1.2), it is necessary that Φnµ converges
to the same limit as n→ ∞. As we have seen above, there is a close relationship between
quasi-stationary distributions and the transform Φ. However, the author cannot give any
sufficient condition for the convergence (1.2) from the renewal dynamical approach.

Outline of the thesis

The remainder of the present thesis is organized as follows. In Section 2, we will recall pre-
vious studies on quasi-stationary distributions for one-dimensional diffusions. In Section
3, we will recall several known results on one-dimensional diffusions, the quasi-stationary
distributions and the spectral theory for second-order ordinary differential operators. In
Section 4.1, we will show Theorem 1.1, a general result for convergence to quasi-stationary
distributions. In Section 4.2, we will give the hitting density of Kummer diffusions with
negative drifts. In Section 4.3, we will show Theorem 1.2, which gives a sufficient condi-
tion for convergence to non-minimal quasi-stationary distributions for the class of Kum-
mer diffusions with negative drifts. In Section 5, we will consider the renewal dynamical
approach of initial distributions and show its relation to convergence to quasi-stationary
distributions. In Appendix 6, we will give a sufficient condition for the spectral measure
of a diffusion to have its Laplace transform.

2 Previous studies

We briefly review several previous studies on quasi-stationary distributions for one-dimensional
diffusions to compare with our main results.

For the case where there is a natural boundary, Mandl [22] gave a sufficient condi-
tion for the convergence to the minimal quasi-stationary distributions, which was a first
remarkable result for quasi-stationary distributions of one-dimensional diffusions. His
condition has been weakened by many authors e.g., Collet, Mart́ınez and San Mart́ın [7],
Hening and Kolb [11], Kolb and Steinsaltz [15] and Mart́ınez and San Mart́ın [23]. Under
certain weak assumptions it is shown that convergence to the minimal quasi-stationary
distribution follows for all compactly supported initial distributions.

The case where there is an entrance boundary has also been widely studied. Cattiaux,
Collet, Lambert, Mart́ınez, Méléard and San Mart́ın [4] and Littin [19] showed that there
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always exists a unique quasi-stationary distribution and convergence to the unique quasi-
stationary distribution always holds for all compactly supported initial distributions.

Here we briefly mention Takeda’s results [28] of quasi-stationary distributions for gen-
eral symmetric Markov processes. He proved existence and uniqueness of the quasi-
stationary distribution under the tightness property, which is equivalent for one-dimensional
diffusions to absence of natural boundaries. He also showed that converge to the unique
quasi-stationary distribution from all initial distributions holds under the assumption of
the tightness property and intrinsic ultracontractivity, which is a stronger assumption
than the presence of the entrance boundary.

Let us come back to the study for one-dimensional diffusion. In the case where the
right boundary is natural, we have non-minimal quasi-stationary distributions. Firstly,
Mart́ınez, Picco and San Mart́ın [24] studied Brownian motions with negative drifts and
showed convergence to non-minimal quasi-stationary distributions under the assumptions
on tail behavior of the initial distribution.

Theorem 2.1 ([24, Theorem 1.1]). Let Bt be a standard Brownian motion and let α > 0
and consider the process

Xt = Bt − αt. (2.1)

For an initial distribution µ on (0,∞) assume µ(dx) = ρ(x)dx for some ρ ∈ L1((0,∞), dx)
satisfying

log ρ(x) ∼ −(α− δ)x (x→ ∞) (2.2)

for some δ ∈ (0, α). Then it holds

Pµ[Xt ∈ dx | T0 > t] −−−→
t→∞

νλ(dx), (2.3)

with

λ = (α2 − δ2)/2 and νλ(dx) = Cλe
−αx sinh(x

√
α2 − 2λ)dx (2.4)

for the normalizing constant Cλ.

Remark 2.2. When α = 1/2, β = 0 and γ > 0, the process
√
2Y (1/2,0,γ) is a Brownian

motion with a negative drift −
√
2γt. Hence this theorem is generalized by (i) of Theorem

1.2.

Secondly, Lladser and San Mart́ın [20] studied Ornstein-Uhlenbeck processes:

Theorem 2.3 ([20, Theorem 1.1]). Let α > 0. Let X be the solution of the following
SDE:

dXt = dBt − αXtdt, (2.5)
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where B is a standard Brownian motion. For an initial distribution µ on (0,∞) assume
µ(dx) = ρ(x)dx for some ρ ∈ L1((0,∞), dx) satisfying

ρ(x) ∼ x−2+δℓ(x) (x→ ∞) (2.6)

for some δ ∈ (0, 1) and a slowly varying function ℓ at ∞. Then it holds

Pµ[Xt ∈ dx | T0 > t] −−−→
t→∞

νλ(dx) (2.7)

with

λ = α(1− δ) and νλ(dx) = Cλψ−λ(x)e
−αx2

dx (2.8)

for the normalizing constant Cλ, where u = ψ−λ denotes the unique solution for the
following differential equation:

1

2

d2

dx2
u− αx

d

dx
u = −λu, lim

x→+0
u(x) = 0, lim

x→+0

d

dx
u(x) = 1 (x ∈ (0,∞)). (2.9)

Remark 2.4. In Theorem 1.2 (ii), if µ(dx) = ρ(x)dx for ρ ∈ L1((0,∞), dx) and

ρ(x) ∼ x−α−γ/β+δ−1ℓ(x) (x→ ∞), (2.10)

for a slowly varying function ℓ, then (1.19) holds from Karamata’s theorem [2, Proposition
1.5.8]. Hence (ii) of Theorem 1.2 is an extension of [20, Theorem 1.1].

3 Preliminaries

In this section, we recall several known results on one-dimensional diffusions and their
quasi-stationary distributions.

3.1 Feller’s canonical form of second-order differential operators

Let (X,Px)x∈I be a one-dimensional diffusion on I = [0, b) or [0, b] (0 < b ≤ ∞), that is,
the process X is a time-homogeneous strong Markov process on I which has a continuous
path up to its lifetime. Throughout this thesis, we always assume

Px[Ty <∞] > 0 (x ∈ I \ {0}, y ∈ [0, b)), (3.1)

where Ty denotes the first hitting time of y and, assume the point 0 is a trap;

Xt = 0 for t ≥ T0. (3.2)

Let us recall Feller’s classification of the boundaries (see e.g., Itô [12]). There exist
a Radon measure m on I \ {0} with full support and a strictly increasing continuous
function s on (0, b) such that the local generator L on (0, b) is represented by

L =
d

dm

d

ds
. (3.3)
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We callm the speed measure and s the scale function ofX and we sayX is a d
dm

d
ds
-diffusion.

Let c = 0 or b and take d ∈ (0, b). Set

I(c) =

∫ d

c

ds(x)

∫ x

c

dm(y), J(c) =

∫ d

c

dm(x)

∫ x

c

ds(y). (3.4)

The boundary c is classified as follows:

The boundary c is


regular when I(c) <∞, J(c) <∞.

exit when I(c) = ∞, J(c) <∞.

entrance when I(c) <∞, J(c) = ∞.

natural when I(c) = ∞, J(c) = ∞.

(3.5)

Since Px[T0 < ∞] > 0 for every x > 0, the boundary 0 is necessarily regular or exit,
equivalently J(0) <∞. Note that in this case s(0) := limx→+0 s(x) > −∞ holds. We also
assume that the boundary b is not exit and that the boundary b is reflecting when it is
regular.

Let us consider a diffusion on I whose local generator L on (0, b) is

L = a(x)
d2

dx2
+ c(x)

d

dx
(x ∈ (0, b)) (3.6)

for functions a and c. Assume a(x) > 0 (x ∈ (0, b)). Then L = d
dm

d
ds
, where

dm(x) =
1

a(x)
exp

(∫ x

d

c(y)

a(y)
dy

)
dx, ds(x) = exp

(
−
∫ x

d

c(y)

a(y)
dy

)
dx (3.7)

for arbitrary taken d ∈ (0, b).

3.2 Spectral theory for second-order differential operators

Let us briefly review several results on the spectral theory of second-order differential
operators. For the details, see e.g., Coddington and Levinson [6] and Kotani [16].

Set I = (0, b) (0 < b ≤ ∞). Let dm be a Radon measure on I with full support and
let s : I → (−∞,∞) be a strictly-increasing continuous function. We assume that the

boundary 0 is regular or exit, i.e.
∫ d

0
dm(x)

∫ x

0
ds(y) <∞ for some 0 < d < b and assume

the boundary b is natural, i.e.,
∫ b

d
dm(x)

∫ b

x
ds(y) = ∞ and

∫ b

d
ds(x)

∫ b

x
dm(y) = ∞ for

some 0 < d < b. Let u = ψλ be defined by (3.13). Set

gλ(x) = ψλ(x)

∫ b

x

ds(y)

ψλ(y)2
(λ ≥ 0). (3.8)

Then the function u = gλ is the unique, non-increasing solution for

d

dm

d+

ds
u = λu, lim

x→+0
u(x) = 1, (3.9)
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where d+

ds
is the right-differentiation w.r.t. s; d+

ds
f(x) := limh→+0

f(x+h)−f(x)
s(x+h)−s(x)

. Define the
Green function

Gλ(x, y) = Gλ(y, x) := ψλ(x)gλ(y) (0 ≤ x ≤ y < b, λ ≥ 0). (3.10)

Then there exists a unique Radon measure σ on [0,∞), which we call the spectral measure,
such that

Gλ(x, y) =

∫ ∞

0

ψ−ξ(x)ψ−ξ(y)

λ+ ξ
σ(dξ) (3.11)

and the transition density p(t, x, y) w.r.t. dm of d
dm

d
ds
-diffusion absorbed at 0 is given as

p(t, x, y) =

∫ ∞

0

e−λtψ−λ(x)ψ−λ(y)σ(dλ) (t > 0, x, y ∈ I) (3.12)

(see McKean [13] for the details).

3.3 Quasi-stationary distributions

Let us summarize known results on quasi-stationary distributions for one-dimensional
diffusions and give a necessary and sufficient condition for existence of quasi-stationary
distributions. Let X be a d

dm
d
ds
-diffusion on I = [0, b) or [0, b] (0 < b ≤ ∞). We define a

function u = ψλ as the unique solution of the following equation:

d

dm

d+

ds
u(x) = λu(x), lim

x→+0
u(x) = 0, lim

x→+0

d

ds
u(x) = 1 (x ∈ (0, b), λ ∈ R). (3.13)

Note that from the assumption that the boundary 0 is regular or exit, the function ψλ al-
ways exists. The operator L = − d

dm
d
ds

defines a non-negative definite self-adjoint operator
on L2(I, dm) := {f : I → R |

∫
I
|f |2dm < ∞}. Here we assume the Dirichlet boundary

condition at 0 and the Neumann boundary condition at b if the boundary b is regular.
We denote the infimum of the spectrum of L by λ0 ≥ 0.

Let us consider the case where the boundary b is not natural. It is then known that
there is a unique quasi-stationary distribution (noting that Takeda [28] showed the cor-
responding result for general Markov processes with the tightness property):

Proposition 3.1 (see e.g., [19, Lemma 2.2, Theorem 4.1]). Assume the boundary b is
not natural. Then it holds λ0 > 0 and the function ψ−λ0 is strictly positive and integrable
w.r.t. dm and, there is a unique quasi-stationary distribution given as

νλ0(dx) = λψ−λ0(x)dm(x), Pνλ0
[T0 ∈ dt] = λ0e

−λ0tdt. (3.14)

Moreover, for every probability distribution µ on (0, b) with a compact support, it holds

µt −−−→
t→∞

νλ0 . (3.15)
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We now assume the boundary b is natural. We check that in this case, s(b) = ∞ is
equivalent to finiteness of the lifetime T0. Since it holds

Px[Tb <∞] = 0 (x ∈ (0, b)), (3.16)

and

s(x)− s(0)

s(M)− s(0)
= Px[TM < T0] (0 < x < M < b) (3.17)

(see e.g., Itô [12]), by taking limit M → b we have from (3.16)

s(x)− s(0)

s(b)− s(0)
= Px[T0 = ∞]. (3.18)

Hence it follows

Px[T0 <∞] = 1 for some / any x > 0 ⇔ s(b) = ∞. (3.19)

Thus s(b) = ∞ is equivalent to finiteness of T0.

We recall the following good properties for the function ψλ:

Proposition 3.2 ([8, Lemma 6.18]). Suppose the boundary b is natural and s(b) = ∞.
Then for λ > 0 the following hold:

(i) For 0 < λ ≤ λ0, the function ψ−λ is strictly positive on I \ {0} and

1 = λ

∫ b

0

ψ−λ(x)dm(x). (3.20)

(ii) For λ > λ0, the function ψ−λ change signs on I.

Now we state a necessary and sufficient condition for existence of non-minimal quasi-
stationary distributions. This result has been shown in [8, Theorem 6.34] when the
boundary 0 is regular.

Theorem 3.3. Suppose that the boundary 0 is regular or exit and that the boundary b is
natural. Then a non-minimal quasi-stationary distribution exists if and only if

λ0 > 0 and s(b) = ∞. (3.21)

This condition is equivalent to

m(d, b) <∞ for some d ∈ (0, b) and lim sup
x→b

s(x)m(x, b) <∞. (3.22)

In this case, a probability measure ν is a quasi-stationary distribution if and only if

ν(dx) = λψ−λ(x)dm(x) =: νλ(dx), Pνλ [T0 ∈ dt] = λe−λtdt for some 0 < λ ≤ λ0.
(3.23)
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Proof. We may assume without loss of generality that s(0) = 0. The equivalence between
(3.21) and (3.22) follows from [18, Theorem 3 (ii), Appendix I]. The fact that νλ (λ ∈
(0, λ0]) is a quasi-stationary distribution can be seen by the exactly same argument in [8,
Lemma 6.18]. Thus we only show that every quasi-stationary distribution is given by νλ
for some λ ∈ (0, λ0].

Let µ be a quasi-stationary distribution with

Pµ[T0 > t] = e−βt (β ∈ (0, λ0]). (3.24)

Since it holds

Px[Xt ∈ A, T0 > t] =

∫ b

0

p(t, x, y)1A(y)dm(y), (3.25)

the probability measure µ is absolutely continuous w.r.t. dm, we denote the density by ρ.
Then it holds

ρ(x) = eβt
∫ b

0

p(t, x, y)ρ(y)dm(y) (t > 0) (3.26)

for dm-a.e. x ∈ I. Define

ρt(x) :=

∫ b

0

p(t, x, y)ρ(y)dm(y) (= e−βtρ(x)) (t ≥ 0). (3.27)

Then it follows ∫ ∞

0

ρt(x)dt = (1/β)ρ(x). (3.28)

On the other hand, we have∫ ∞

0

ρt(x)dt =

∫ b

0

ρ(y)dm(y)

∫ ∞

0

p(t, x, y)dt (3.29)

=

∫ b

0

(s(x) ∧ s(y))ρ(y)dm(y) (3.30)

=

∫ x

0

s(y)ρ(y)dm(y) + s(x)

∫ b

x

ρ(y)dm(y), (3.31)

where we used the well-known formula:

Ex

[∫ T0

0

f(Xt)dt

]
=

∫ b

0

(s(x) ∧ s(y))f(y)dm(y) (3.32)

(see e.g., [26, Theorem 49.1] and [14, Lemma 23.10]). Thus for dm-a.e. x ∈ I, we obtain
the equality

(1/β)ρ(x) =

∫ x

0

s(y)ρ(y)dm(y) + s(x)

∫ b

x

ρ(y)dm(y). (3.33)
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Since the RHS of (3.33) is right-continuous, we have the right-continuous version of ρ.
By differentiation, it holds

(1/β)dρ(x) = s(x)ρ(x)dm+

(∫ b

x

ρ(y)dm(y)

)
ds− s(x)ρ(x)dm (3.34)

=

(∫ b

x

ρ(y)dm(y)

)
ds. (3.35)

Hence we obtain

d

dm

d+

ds
ρ = −βρ (x ∈ I). (3.36)

This implies ρ = Cψ−β for some constant C > 0. Since µ = ρ dm is a probability, from
Proposition 3.2 (i), it follows C = β.

Remark 3.4. Under the assumptions of Theorem 3.3, the spectral measure has its sup-
port on [λ0,∞).

For probability distributions on (0, b), let us recall the stochastic order. For µ1, µ2 ∈
P(0, b), we define µ1 ⪯ µ2 by

µ2(0, x] ≤ µ1(0, x] (x > 0). (3.37)

(We refer to [27] as an extensive reference on stochastic orders.) The following proposition
says that the stochastic order is a total one for quasi-stationary distributions, which was
shown by Cavender [5] for birth and death processes.

Proposition 3.5. Suppose the boundary b is natural and (3.21) holds. Then it holds

νλ ⪯ νλ′ (0 < λ′ ≤ λ ≤ λ0). (3.38)

In particular, the distribution νλ0 is the minimal one in this order. This is why we call
νλ0 the minimal quasi-stationary distribution.

Proof. From (3.13), it holds

ψ−λ(x) = s(x)− λ

∫ x

0

ds(y)

∫ y

0

ψ−λ(z)dm(z) (x > 0, λ ∈ R). (3.39)

Hence it follows

νλ(0, x] = λ

∫ x

0

ψ−λ(y)dm(y) = 1− d+

ds
ψ−λ(x) (x > 0, 0 < λ ≤ λ0). (3.40)

Let 0 < λ′ ≤ λ ≤ λ0. From (3.40) and a similar argument in [8, Lemma 6.11], we have

d+

ds
ψ−λ(x) ≤

d+

ds
ψ−λ′(x) (x > 0), (3.41)

which yields νλ ⪯ νλ′ .
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4 Proof of main results

In this section, we study the convergence (1.2) from the perspective of the first hitting
uniqueness.

4.1 Convergence to quasi-stationary distributions

Here we give a proof of Theorem 1.1.

Proof of Theorem 1.1. At first, we show the equivalence of (i) and (i)’. Let g(t) :=
Pµ[T0 > log t]. Then it is not difficult to see that (i) is equivalent to

lim
t→∞

g(st)

g(t)
= s−λ (s > 0), (4.1)

the regular variation of the function g at ∞ of order −λ.

Assume (i) holds. By Potter’s theorem [2, Theorem 1.5.6], for 0 < ε < λ, there exists
C > 0 such that

Pµ[T0 > t+ s]

Pµ[T0 > t]
≤ Ce−(λ−ε)s (s, t > 0). (4.2)

By the dominated convergence theorem, we have

1

Pµ[T0 > t]

∫ ∞

t

Pµ[T0 > s]ds =

∫ ∞

0

Pµ[T0 > t+ s]

Pµ[T0 > t]
ds

t→∞−−−→ 1

λ
. (4.3)

Next we assume (i)’. Since

1

Pµ[T0 > log t]

∫ ∞

log t

Pµ[T0 > s]ds =
1

g(t)

∫ ∞

t

g(s)

s
ds

t→∞−−−→ 1

λ
, (4.4)

we may see from Karamata’s theorem [2, Theorem 1.6.1] that the function g(t) varies
regularly at ∞ with exponent −λ.

Next we show the equivalence of (i) and (ii). From the Markov property, we have

Pµt [T0 > s] =
Pµ[T0 > t+ s]

Pµ[T0 > t]
(t, s ≥ 0). (4.5)

Now it is obvious that (i) and (ii) are equivalent.

Since it is obvious that (iii) implies (i), we finally show that (ii) implies (iii). Since
P [0, b], the class of probability measures on the compactification [0, b], is compact under
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the topology of weak convergence, we can take a sequence {tn}n which diverges to ∞ such
that

µtn −−−→
n→∞

θ ∈ P [0, b]. (4.6)

From (ii), we have

Pµtn
[T0 ∈ ds] −−−→

n→∞
λe−λsds. (4.7)

On the other hand, for fixed t > 0 we have

Pµtn
[T0 > t] =

∫
[0,b]

Px[T0 > t]µtn(dx), (4.8)

where we understand

Px[T0 > t] =

{
0 x = 0,

1 x = b.
(4.9)

Note that since the boundary b is natural, the function x 7→ Px[T0 > t] is continuous on
[0, b]. From (4.6), we obtain

lim
n→∞

Pµtn
[T0 > t] =

∫
[0,b]

Px[T0 > t]θ(dx). (4.10)

Then from (4.7), it follows that∫
[0,b]

Px[T0 > t]θ(dx) = e−λt. (4.11)

Since it holds that

lim
t→0

Px[T0 > t] = 1{x > 0}, lim
t→∞

Px[T0 > t] = 1{x = b} (x ∈ [0, b]), (4.12)

we have from the dominated convergence theorem and (4.11) that θ{0} = θ{b} = 0.
Therefore θ ∈ P(0, b) and Pθ[T0 ∈ ds] = λe−λsds. Then since the first hitting uniqueness
holds on Pexp, we have θ = ν. The limit distribution θ does not depend on the choice of
the sequence {tn} and therefore we obtain (iii).

Remark 4.1. Provided that the first hitting uniqueness holds on Pexp and X satisfies
the condition of Theorem 3.3, an initial distribution µ ∈ P [0, b) satisfying Pµ[T0 ∈ dt] =
λe−λtdt for some 0 < λ ≤ λ0 must satisfy µ = νλ.

We give a sufficient condition for (i) of Theorem 1.1 via the hitting density.

Proposition 4.2. Assume the hitting densities fx of 0 exist, i.e., there exists a non-
negative jointly measurable function fx(t) such that

Px[T0 ∈ dt] = fx(t)dt (0 < x < b, t > 0). (4.13)
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Let µ ∈ P(0, b) and assume the function

fµ(t) :=

∫ ∞

0

fx(t)µ(dx) (0 < x < b, t > 0) (4.14)

is differentiable in t > 0 and

− lim
t→∞

d

dt
log fµ(t) = λ ∈ (0, λ0]. (4.15)

Then it holds

lim
t→∞

Pµ[T0 > t+ s]

Pµ[T0 > t]
= e−λs (s > 0). (4.16)

Proof. Set h(u) = fµ(log u) for u > 1. From (4.15), we have

lim
t→∞

th′(t)

h(t)
= lim

t→∞

eth′(et)

h(et)
= −λ. (4.17)

Thus the function h varies regularly at ∞ with exponent −λ. From L’Hôpital’s rule, we
have for u = es > 1

lim
t→∞

Pµ[T0 > t+ log u]

Pµ[T0 > t]
= lim

t→∞

fµ(t+ log u)

fµ(t)
= lim

t→∞

h(etu)

h(et)
= u−λ = e−λs. (4.18)

Remark 4.3. We may expect that Proposition 4.2 would be extended with (4.15) being
replaced by

log fµ(t) ∼ −λt (t→ ∞), (4.19)

which is weaker than (4.15) by L’Hôpital’s rule. In general, however, it does not hold.
We give a counterexample which satisfies (4.19) but not the condition (i) in Theorem 1.1.
Let us find a positive function f of the form

f(t) = e(−λ+ε(t))t (4.20)

with a function ε(t) varnishing at ∞ but not satisfying∫∞
t+s

f(u)du∫∞
t
f(u)du

−−−→
t→∞

e−λs (s > 0). (4.21)

By the change of variables, we can see that (4.21) is equivalent to that the function

h(t) :=

∫ ∞

t

u−λ−1+ε(log u)du (4.22)
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varies regularly with exponent −λ at ∞. If the function ε is non-increasing, by the
monotone density theorem [2, Theorem 1.7.2] it is equivalent to the slow variation of

k(s) = sε(log s) (s > 1). (4.23)

We now set

ε(s) = 2−n (4n < s ≤ 4n+1, n ∈ N), (4.24)

and then the function ε vanishes at ∞ and

k(e · exp(4n))
k(exp(4n))

=
exp(2n + 2−n)

exp(2n+1)
= exp(−2n + 2−n) −−−→

n→∞
0. (4.25)

So the function k does not vary slowly.

We give a sufficient condition for existence of the hitting densities of 0. For this purpose,
we need the following condition on decay of the spectral measure σ of − d

dm
d
ds
:

(S)

∫ ∞

0

e−λtσ(dλ) <∞ (t > 0). (4.26)

A sufficient condition for (S) is given in Proposition 6.3. The following result by Yano
[30] gives existence and a spectral representation of the hitting densities.

Proposition 4.4 ([30, Proposition 2.1]). Assume (S) holds. Then for any 0 < x < b the
distribution of T0 under Px has a density fx(t) on (0,∞) w.r.t. the Lebesgue measure, that
is, the following hold:

Px[T0 ∈ dt] = fx(t)dt (0 < x < b, t > 0). (4.27)

The hitting densities have a spectral representation:

fx(t) =

∫ ∞

0

e−λtψ−λ(x)σ(dλ) (0 < x < b, t > 0). (4.28)

and have another representation:

fx(t) =
d

ds(y)
p(t, x, y)

∣∣∣∣
y=0

(0 < x < b, t > 0). (4.29)

4.2 Hitting densities of Kummer diffusions with negative drifts

Let us give the hitting densities of Kummer diffusions with negative drifts. At first we
give a speed measure and a scale function for Kummer diffusions with negative drifts. Fix
α > 0 and β ∈ R. From (1.11), we have

L[0] = L(α,β) = x
d2

dx2
+ (−α + 1− βx)

d

dx
=

d

dm[0]

d

ds[0]
(4.30)
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with

dm[0](x) := dm(α,β)(x) = x−αe−βxdx, ds[0](x) := ds(α,β)(x) = xα−1eβxdx. (4.31)

In addition, for γ ≥ 0, we have

L[γ] = L(α,β,γ) = x
d2

dx2
+

(
−α + 1− βx+

xg′γ(x)

gγ(x)

)
d

dx
=

d

dm[γ]

d

ds[γ]
(4.32)

with

dm[γ] = g2γdm
[0] ds[γ] = g−2

γ ds[0], (4.33)

where gγ is the function given in (1.12). Note that since gγ(0) = 1, the classification of
the boundary 0 for L[γ] does not depend on γ ≥ 0. The boundary ∞ for L[γ] is always
natural, which we will see in Proposition 4.7. We also have

L[γ] = L[0] +
xg′γ
gγ

d

dx
(4.34)

and, by the obvious relation

g̃γ(x) = gγ(x
2/2), (4.35)

it follows

L̃(α,β,γ) = L̃(α,β,0) +
g̃′γ
g̃γ

d

dx
, (4.36)

which implies (1.15).

We summarize several results on the hitting densities for Kummer diffusions with
negative drifts. Note that from (4.31) and Proposition 6.3, the condition (S) holds for

d
dm[0]

d
ds[0]

.

Theorem 4.5. For the process Y (α,β,γ) (α > 0, β ∈ R, γ ≥ 0), the hitting densities f
[γ]
x

of 0 and the spectral measure σ[γ] for L[γ] are given as

f [γ]
x (t) =

e−γt

gγ(x)
f [0]
x (t) (0 < x <∞, t > 0) (4.37)

and

σ[γ](dλ) = σ[0](d(λ− γ)) (4.38)

for

f [0]
x (t) =


1

Γ(α)
xαt−α−1e−x/t (β = 0),

xαeβt

Γ(α)

(
βe−βt

1− e−βt

)1+α

exp

(
−xβe−βt

1− e−βt

)
(β ̸= 0),

(4.39)
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and

σ[0](dλ) =



βα+1

∞∑
n=0

(α)n+1

n!Γ(α)
δβ(n+α)(dλ) (β > 0),

1

Γ(α)2
λαdλ (β = 0),

(−β)α+1

∞∑
n=0

(α)n+1

n!Γ(α)
δ(−β)(n+1)(dλ) (β < 0),

(4.40)

where (a)k (a ∈ R, k ∈ N) is a Pochhammer symbol

(a)k = a(a+ 1) · · · (a+ k − 1). (4.41)

In particular, the infimum of the spectrum of −L[γ] on L2((0,∞), dm[γ]) is

λ
[γ]
0 =


αβ + γ (β > 0),

γ (β = 0),

− β + γ (β < 0).

(4.42)

Remark 4.6. From e.g., [21, Section 3.7], we have

gγ(x) =



1

2α−1Γ(α)
(2
√
γx)αKα(2

√
γx) (β = 0),

Γ(α + γ/β)

Γ(α)
(βx)αU(α + γ/β, α + 1, βx) (β > 0),

Γ(1− γ/β)

Γ(α)
(−βx)αeβxU(1− γ/β, α + 1;−βx) (β < 0),

(4.43)

where Kα denotes the modified Bessel function of the second kind (see e.g., [21, Section
3.1]) and U denotes the Tricomi confluent hypergeometric function:

U(a, b;x) =
1

Γ(a)

∫ ∞

0

e−sxsa−1(1 + s)b−a−1ds (a > 0, b ∈ R, x > 0). (4.44)

Note that

Kα(x) ∼ 2α−1Γ(α)x−α, U(a, b;x) ∼ Γ(b− 1)

Γ(a)
x−b+1 (x→ +0, a > 0, b > 1) (4.45)

and

Kα(x) ∼
√

π

2x
e−x, U(a, b, x) ∼ x−a (x→ +∞, a > 0) (4.46)

(see e.g., [21, Section 3.14.1]).

Although Theorem 4.5 can be easily shown by compiling some known results, we give
a proof for completeness.
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Proof of Theorem 4.5. At first, we show (4.37) and (4.39). We denote the transition
probability of Y [γ] = Y (α,β,γ) by

Px[Y
[γ]
t ∈ dy] = p[γ](t, x, y)dm[γ](y) (4.47)

Then it holds

p[γ](t, x, y) = e−γt p
[0](t, x, y)

gγ(x)gγ(y)
, (4.48)

(see e.g., [29, p.172]), where we write Px for the underlying probability measure for Y [γ]

starting from x. From [3, Appendix 1], the transition density p[0](t, x, y) is given as

p[0](t, x, y) =


1

t
(xy)α/2e−(x+y)/tIα

(
2
√
xy

t

)
(β = 0),

βe−αβt/2

1− e−βt
(xy)α/2 exp

(
−(x+ y)βe−βt

1− e−βt

)
Iα

(
2
√
xyβe−βt/2

1− e−βt

)
(β ̸= 0),

(4.49)

where the function Iν is the modified Bessel function of the first kind:

Iν(x) =
∞∑
n=0

1

n!Γ(n+ ν + 1)

(x
2

)ν+2n

(ν ∈ R, x ∈ R). (4.50)

We now have

Px[T
[γ]
0 > t] =

∫ b

0

p[γ](t, x, y)dm[γ](y) (4.51)

=
e−γt

gγ(x)

∫ b

0

p[0](t, x, y)gγ(y)dm
[0](y) (4.52)

=
e−γt

gγ(x)

∫ b

0

p[0](t, x, y)dm[0](y)

∫ ∞

0

e−γuf [0]
y (u)du (4.53)

=
e−γt

gγ(x)

∫ ∞

0

e−γudu

∫ b

0

p[0](t, x, y)f [0]
y (u)dm[0](y) (4.54)

=
e−γt

gγ(x)

∫ ∞

0

e−γuf [0]
x (u+ t)du (4.55)

=
1

gγ(x)

∫ ∞

t

e−γuf [0]
x (u)du. (4.56)

This shows (4.37). Then from Proposition 4.4 we obtain (4.39).

From [29, p.173] we have (4.38). We show (4.40). First we consider the case β > 0.
By some computation, we can check that

ψλ(x) =
1

α
xαM(λ/β + α, 1 + α; βx) (x > 0, λ ∈ R), (4.57)
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where the function M is Kummer’s confluent hypergeometric function:

M(a, b;x) =
∞∑
n=0

(a)nx
n

(b)nn!
(a, b ∈ R, x ∈ R). (4.58)

We consider the values of λ for which the function ψλ is square-integrable. We may assume
λ < 0. Since the asymptotic behavior of the function M is given by

M(a, b;x) ∼ Γ(b)

Γ(a)
xa−bex (x→ ∞) (4.59)

for a ̸= 0,−1,−2, · · · (see e.g., [21, p.289]), the function ψλ is not square-integrable w.r.t.
dm when λ/β + α ̸= 0,−1,−2, · · · . When λ/β + α = 0,−1,−2, · · · , the function ψλ is a
polynomial and obviously square-integrable w.r.t. dm. Note that

M(−n, 1 + α; βx) =
n!

(1 + α)n
L(α)
n (βx), (4.60)

where L
(α)
n (x) is the n-th Laguerre polynomial of parameter α, that is,

L(α)
n (x) = ex

x−α

n!

dn

dxn
(e−xxn+α) (n ∈ N) (4.61)

(see e.g., [21, p.241]). Since the Laguerre polynomials {L(α)
n (x)}n comprise an orthogonal

basis of L2((0,∞), xαe−xdx), the functions {ψ−β(α+n)(x)} is so on L2((0,∞), x−αe−βxdx).
Hence the spectral measure only have the point spectrum and the support of σ is {β(α+
n), n ≥ 0}. Since it holds∫ ∞

0

L
(α)
i (x)L

(α)
j (x)xαe−xdx = δij

Γ(i+ α + 1)

i!
(i, j ∈ N) (4.62)

(see e.g., [21, p.241]), it follows∫ ∞

0

ψ−β(α+n)(x)
2dm(x) =

(n!)2

α2βα+1{(1 + α)n}2

∫ ∞

0

L(α)
n (x)2xαe−xdx (4.63)

=
n!Γ(α)

βα+1(α)n+1

. (4.64)

Hence we obtain

σ{β(n+ α)} =
βα+1(α)n+1

n!Γ(α)
(n ≥ 0). (4.65)

Next we show the case β < 0. Let us consider the map

L2((0,∞), dm(α,−β)) ∋ f 7−→ eβxf ∈ L2((0,∞), dm(α,β)). (4.66)

Obviously, this map is unitary. Moreover, since it holds

L(α,β)(eβxψ
(α,−β)
λ (x)) = (λ− β(α− 1))(eβxψ

(α,−β)
λ (x)) (4.67)
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and

d

ds(α,β)
(eβxψ

(α,−β)
λ (x)) = βx1−αψ

(α,−β)
λ (x) + eβx

d

ds(α,−β)
ψ

(α,−β)
λ (x), (4.68)

we can see from (4.57) that

ψ
(α,β)
λ (x) = eβxψ

(α,−β)
λ+β(α−1), (4.69)

where we denote the function defined in (3.13) for L(α,β) by ψ
(α,β)
λ . Then from the unitarity

of the map (4.66) and the argument for the case β > 0, the functions {ψ(α,β)
−β(n+1), n ≥ 0}

comprise the orthogonal basis of L2((0,∞), dm(α,β)) and therefore we obtain (4.40) for
β < 0.

Finally, we show the case β = 0. Note that we can see from some computation that

ψλ(x) = Γ(α)
(x
λ

)α/2
Iα(2

√
λx) (x > 0, λ ∈ R). (4.70)

From (4.28) and (4.39), we have∫ ∞

0

e−λtψ−λ(x)σ
[0](dλ) =

1

Γ(α)
xαt−α−1e−x/t. (4.71)

Since it holds that

d

dx
(xνIν(x)) = xνIν−1(x), Iν(x) ∼

ex√
2πx

(ν ∈ R, x→ ∞) (4.72)

(see e.g., [21, p.67, p.139]), we can see

d

dx

∫ ∞

0

e−λt

∣∣∣∣ ddxψ−λ(x)

∣∣∣∣σ[0](dλ) <∞ (x > 0). (4.73)

Thus we have ∫ ∞

0

e−λtσ[0](dλ) =
d

ds(x)

∫ ∞

0

e−λtψ−λ(x)σ
[0](dλ)

∣∣∣∣
x=0

(4.74)

=
d

ds(x)

1

Γ(α)
xαt−α−1e−x/t

∣∣∣∣
x=0

(4.75)

=
αt−α−1

Γ(α)
. (4.76)

From the uniqueness of the Laplace transform, we obtain (4.40).

We give the classification of the boundary ∞ for L[γ]:

Proposition 4.7. For α > 0, β ∈ R, γ ≥ 0, the boundary ∞ for L[γ] is natural.
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Proof. Let β > 0. From (4.43) and (4.46), we have

s(x)− s(1) =

∫ x

1

yα−1eβy
dy

g2γ(y)
(4.77)

≍
∫ x

1

yα+2γ/β−1eβydy −−−→
x→∞

∞, (4.78)

where f1 ≍ f2 means there exists a constant c > 0 such that (1/c)f1(x) ≤ f2(x) ≤ cf1(x)
for large x > 0. Note that from L’Hôpital’s rule, it holds for δ ∈ R∫ ∞

x

yδe−βydy ∼ 1

β
xδe−βx (x→ ∞). (4.79)

We have∫ ∞

1

ds[γ](x)

∫ ∞

x

dm[γ](y) ≍
∫ ∞

1

xα+2γ/β−1e−βxdx

∫ ∞

x

y−α−2γ/βe−βydy (4.80)

≍
∫ ∞

1

dx

x
= ∞. (4.81)

Thus the boundary ∞ is natural. We can show the cases of β = 0 and β < 0 by the
similar argument and hence we omit them.

4.3 Convergence to non-minimal quasi-stationary distributions for Kummer
diffusions with negative drifts

Let us apply Theorem 1.1 to Kummer diffusions with negative drifts and give a sufficient
condition on initial distributions under which the conditional process converges to each
non-minimal quasi-stationary distribution specified.

The following proposition gives a necessary and sufficient condition for that of Theorem
3.3:

Proposition 4.8. For L(α,β,γ) (α > 0, β ∈ R, γ ≥ 0), the condition of Theorem 3.3 holds
if and only if one of the Case 1-3 in (1.16) holds.

Proof. Let β > 0. Obviously, it holds m[γ](1,∞) <∞ and s[γ](∞) = ∞. From (4.46), we
have

m[γ](x,∞)(s[γ](x)− s[γ](1)) ≍ (x−α−2γ/βe−βx)(xα+2γ/β−1eβx) (4.82)

≍ 1/x −−−→
x→∞

0. (4.83)

Let β = 0. We can easily check s[γ](∞) = ∞ for γ ≥ 0 and

lim
x→∞

m[0](x,∞)(s[0](x)− s[0](1)) = ∞. (4.84)
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For γ > 0, from (4.46) it holds

m[γ](x,∞)(s[γ](x)− s[γ](1)) ≍ e−4
√
γx · e4

√
γx = 1. (4.85)

Let β < 0. It holds s[0](∞) <∞ from (4.31). For γ > 0, we have from (4.43)

s[γ](x)− s[γ](1) ≍
∫ x

1

y−α−γ/βe−βydy (4.86)

≍ x1−α−2γ/βe−βx −−−→
x→∞

∞. (4.87)

Similarly, we can show m[γ](1, x) ≍ x−2+α+2γ/βeβx and thus m[γ](1,∞) < ∞. Then it
holds

m[γ](x,∞)(s[γ](x)− s[γ](1)) ≍ 1/x −−−→
x→∞

0. (4.88)

We give a proof of Theorem 1.2 after several preparatory results. For the process
Y (α,β,γ), the first hitting uniqueness holds on P(0,∞). We show this fact in more general
settings as follows:

Theorem 4.9. Let X be a d
dm

d
ds
-diffusion on [0, b) (0 < b ≤ ∞) and s(b) = ∞. Suppose

the hitting densities fx(t) of 0 have the following form

fx(t) = u(x)w(t)e−v(x)y(t) (0 < x < b, t > 0) (4.89)

for some strictly positive functions u(x) and v(x) on (0, b) and some strictly positive
function w(t) and y(t) on (0,∞). In addition, suppose v is strictly increasing continuous
and y(0,∞) = (0,∞). Then the first hitting uniqueness holds on P(0,∞).

Proof. Suppose µ1 and µ2 ∈ P(I) satisfy

Pµ1 [T0 ∈ dt] = Pµ2 [T0 ∈ dt] (4.90)

and set µ = µ1 − µ2. It holds ∫ b

0

fx(t)µ(dx) = 0 (t > 0). (4.91)

Note that from the continuity of fx(t)/w(t) w.r.t. t, the equality (4.91) holds for every
t > 0. From (4.89) and by a change of variables, we have

0 =

∫ v(b)

v(0)

u(v−1(x))e−xy(t)µ(v−1(dx)). (4.92)

Since y(0,∞) = (0,∞), it holds from the uniqueness of the Laplace transform

u(x)µ(dx) = 0 on (0, b). (4.93)

Since u(x) > 0, we obtain the desired result.
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For the proof of (i) of Theorem 1.2, we need the following lemma, which enables us to
cut off the integral region for the asymptotic behavior of the Laplace transform:

Lemma 4.10. Let f : (0,∞) → [0,∞) and assume

log f(x) ∼ δ
√
x (x→ ∞) (4.94)

for δ > 0 and ∫ ∞

0

e−x/tf(x)dx <∞ (t > 0). (4.95)

Then for every ε > 0, it holds

log

∫ ∞

0

e−x/tf(x)dx ∼ δ2

4
t (4.96)

and ∫ ∞

0

e−x/tf(x)dx ∼
∫ (δ2/4+ε)t2

(δ2/4−ε)t2
e−x/tf(x)dx (t→ ∞). (4.97)

Proof. Since it holds

lim
t→∞

∫ 1

0

e−x/tf(x)dx <∞ and lim
t→∞

∫ ∞

1

e−x/tf(x)dx = ∞, (4.98)

we may assume without loss of generality that f(x) = 0 for 0 < x < 1. It is enough to
show

lim
t→∞

∫ (δ2/4−ε)t

1
e−x/tf(x)dx∫∞

1
e−x/tf(x)dx

= 0 (4.99)

and

lim
t→∞

∫∞
(δ2/4+ε)t

e−x/tf(x)dx∫∞
1

e−x/tf(x)dx
= 0. (4.100)

Let

h(x) =
log(x2f(x))√

x
− δ (x > 1). (4.101)

Then from (4.94), we have limx→∞ h(x) = 0. It follows∫ ∞

1

e−x/tf(x)dx =

∫ ∞

1

e−φt(x)
dx

x2
(4.102)

where

φt(x) = x/t− (δ + h(x))
√
x (4.103)
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Note that

φt(x) =
1

t

(√
x− δ + h(x)

2
t

)2

− (δ + h(x))2

4
t. (4.104)

Let θ := δ/2−
√
δ2/4− ε > 0 and take R > 1 so that

|h(x)| < θ and
2δ|h(x)|+ h(x)2

4
< θ2/8 (x > R). (4.105)

Then for R < x < (δ2/4− ε)t2, it follows

δ + h(x)

2
t−

√
x >

δ + h(x)

2
t− t

√
δ2/4− ε >

θ

2
t (4.106)

and thus

φt(x) ≥ (θ2/8− δ2/4)t. (4.107)

Then it follows ∫ (δ2/4−ε)t2

R

e−φt(x)
dx

x2
≤ e(δ

2/4−θ2/8)t

∫ (δ2/4−ε)t2

R

dx

x2
(4.108)

≤ e(δ
2/4−θ2/8)t. (4.109)

For showing (4.99), it is hence enough to show

log

∫ ∞

1

e−x/tf(x)dx ∼ δ2

4
t (t→ ∞). (4.110)

From [2, Theorem 4.12.10 (ii)], it holds

log

∫ x

0

f(y)dy ∼ δ
√
x (x→ ∞). (4.111)

From Kohlbecker’s Tauberian Theorem [2, Theorem 4.12.1], we obtain therefore (4.110).
We can show (4.100) by a similar argument.

Now we proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2. First we show (i). From Proposition 4.2 and Theorem 4.5, it is
enough to show

lim
t→∞

d

dt
log

∫ ∞

0

e−x/t xα/2

Kα(2
√
γx)

µ(dx) = δ2/4. (4.112)

From (4.46), it holds

log ρ̃(x) := log
xα/2ρ(x)

Kα(2
√
γx)

∼ δ
√
x (x→ ∞). (4.113)
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Take ε > 0. Since it holds

d

dt
log

∫ ∞

0

e−x/t xα/2

Kα(2
√
γx)

µ(dx) =

∫∞
0

e−x/txρ̃(x)dx

t2
∫∞
0

e−x/tρ̃(x)dx
, (4.114)

we have from (4.113) and Lemma 4.10∫∞
0

e−x/txρ̃(x)dx

t2
∫∞
0

e−x/tρ̃(x)dx
∼

∫ (δ2/4+ε)t2

(δ2/4−ε)t2
e−x/txρ̃(x)dx

t2
∫ (δ2/4+ε)t2

(δ2/4−ε)t2
e−x/tρ̃(x)dx

(4.115)

and obviously we have∫ (δ2/4+ε)t2

(δ2/4−ε)t2
e−x/txρ̃(x)dx ⋚ (δ2/4± ε)t2

∫ (δ2/4+ε)t2

(δ2/4−ε)t2
e−x/tρ̃(x)dx. (4.116)

Since ε > 0 can be taken arbitrary small, we obtain∫∞
0

e−x/txρ̃(x)dx

t2
∫∞
0

e−x/tρ̃(x)dx

t→∞−−−→ δ2/4. (4.117)

Next we show (ii). From the proof of Proposition 4.2, it is enough to show that the
function fµ(log t) varies regularly at ∞ with exponent −λ. From Theorem 4.5, we have

fµ(log t) =
1

Γ(α)
tβ−γh(t)1+α

∫ ∞

0

xα

gγ(x)
e−h(t)xµ(dx), (4.118)

where

h(t) =
β

tβ − 1
(t > 1). (4.119)

The inverse function h−1 of h is given as

h−1(s) =

(
1 +

β

s

)1/β

(s > 0). (4.120)

Note that the function h−1(s) varies regularly at s = 0 with exponent −1/β. By consid-
ering the function f(log h−1(s)), it follows that the function fµ(log t) varies regularly at
t = ∞ with exponent −λ if and only if the function∫ ∞

0

xα

gγ(x)
e−sxµ(dx) (4.121)

varies regularly at s = 0 with exponent −α − (γ − λ)/β. From Karamata’s Tauberian
Theorem [2, Theorem 1.7.1], it is equivalent to that the function∫ x

0

yα

gγ(y)
µ(dy) (4.122)
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varies regularly at x = ∞ with exponent α+(γ−λ)/β. Then from (4.46) and [2, Theorem
1.6.4], it is equivalent to the function µ(x,∞) varies regularly at x = ∞ with exponent
−λ/β, and therefore we obtain (ii).

Finally, we show (iii). The proof of this case is quite similar to that of (ii). From
Theorem 4.5, we have

fµ(log t) =
1

Γ(α)
tβ−γh(t)1+α

∫ ∞

0

xα

gγ(x)
e−h(t)xµ(dx). (4.123)

Note that for β < 0, it holds limt→∞ h(t) = −β. Then the function fµ(log t) varies
regularly at t = ∞ with exponent −λ if and only if the function∫ ∞

0

xα

gγ(x)
e−h(t)xµ(dx) =

(−β)−αΓ(α)

Γ(1− γ/β)

∫ ∞

0

e−(h(t)+β)x

U(1− γ/β, α + 1;−βx)
µ(dx) (4.124)

varies regularly at t = ∞ with exponent −λ−β+γ. Note that the function h−1(s) varies
regularly at s = −β + 0 with exponent −1/β. Thus, by denoting u = s + β, the regular
variation at t = ∞ of (4.124) with exponent −λ− β + γ is equivalent to that at u = 0 of∫ ∞

0

e−ux

U(1− γ/β, α + 1;−βx)
µ(dx) (4.125)

with exponent 1+(λ−γ)/β. Using (4.46), the rest of the proof can be made by the same
argument in (ii) and hence we omit it. The proof is complete.

5 Renewal dynamical approach to quasi-stationary distributions

For every d
dm̃

d
ds
-diffusion X on (0, b) (0 < b ≤ ∞) satisfying (3.21), the diffusion s(X) is

d
dm

d
dx
-diffusion on (0,∞) for dm(x) = dm̃(s−1(x)). Thus we may assume without loss of

generality that the diffusion is under the natural scale: s(x) = x. In this section, we only
consider such natural scale diffusions on (0,∞).

Let us recall that the transform Φ was introduced in (1.25). We ensure that Φ preserves
Pm.

Proposition 5.1. For n ≥ 1, we have

EΦµT
n
0 =

EµT
n+1
0

(n+ 1)EµT0
. (5.1)

More generally, we have for 0 ≤ k ≤ m

EΦmµT
n
0 =

(
n+ k

n

)−1

·
EΦm−kµT

n+k
0

EΦm−kµT
k
0

. (5.2)
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Proof. Since (5.2) follows from (5.1) by induction, we only prove (5.1). Note Pµ[T0 > t] =∫∞
0
µ(dx)

∫∞
0
p(t, x, y)dm(y). It follows that

EΦµT
n
0 = n

∫ ∞

0

tn−1PΦµ[T0 > t]dt (5.3)

= n

∫ ∞

0

tn−1dt

∫ ∞

0

p(t,Φµ, y)dm(y) (5.4)

=
n

EµT0

∫ ∞

0

ds

∫ ∞

0

tn−1dt

∫ ∞

0

dm(y)

∫ ∞

0

p(s, µ, x)p(t, x, y)dm(x) (5.5)

=
n

EµT0

∫ ∞

0

tn−1dt

∫ ∞

0

ds

∫ ∞

0

p(s+ t, µ, y)dm(y) (5.6)

=
n

EµT0

∫ ∞

0

tn−1dt

∫ ∞

t

ds

∫ ∞

0

p(s, µ, y)dm(y) (5.7)

=
1

EµT0

∫ ∞

0

snds

∫ ∞

0

p(s, µ, y)dm(y) (5.8)

=
EµT

n+1
0

(n+ 1)EµT0
. (5.9)

The following theorem shows that for an initial distribution µ, convergence of Φnµ as
n→ ∞ is necessary for convergence of µt as t→ ∞.

Theorem 5.2. Let µ ∈ Pm and ν ∈ P(0,∞). Assume

µt −−−→
t→∞

ν. (5.10)

Then it holds

Φnµ −−−→
n→∞

ν. (5.11)

For the proof of Theorem 5.2, we need the density of Φnµ.

Proposition 5.3. For n ≥ 1, the probability measure Φnµ has a density w.r.t. dm given
by

fµ
n (x) =

n

EµT n
0

∫ ∞

0

tn−1p(t, µ, x)dt. (5.12)

Proof. We show by induction. The case n = 1 is obvious. Assume the assertion holds for
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n = k. By Proposition 5.1, we have

Φk+1µ(A) =
1

EΦkµT0

∫ ∞

0

dt

∫
A

p(t,Φkµ, y)dm(y) (5.13)

=
(k + 1)EµT

k
0

EµT
k+1
0

∫ ∞

0

dt

∫ ∞

0

fµ
k (x)dm(x)

∫
A

p(t, x, y)dm(y) (5.14)

=
k(k + 1)

EµT
k+1
0

∫ ∞

0

dt

∫ ∞

0

dm(x)

∫ ∞

0

sk−1p(s, µ, x)ds

∫
A

p(t, x, y)dm(y) (5.15)

=
k + 1

EµT
k+1
0

∫
A

dm(y)

∫ ∞

0

tkp(t, µ, y)dt. (5.16)

We give a proof of Theorem 5.2.

Proof of Theorem 5.2. By Proposition 5.3, we have

Φnµ(A) =
n

EµT n
0

∫
A

dm(x)

∫ ∞

0

tn−1p(t, µ, x)dt (5.17)

=
n

EµT n
0

∫ ∞

0

tn−1µt(A)Pµ[T0 > t]dt. (5.18)

By changing variables by t′ = tn

EµTn
0
, it follows for ||T0||p,µ = (EµT

p
0 )

1/p (p > 0) that

Φnµ(A) =

∫ ∞

0

µt1/n||T0||n,µ
(A)Pµ[T0 > t1/n||T0||n,µ]dt (5.19)

=

∫ ∞

0

µt1/n||T0||n,µ
(A)βn(dt) (5.20)

where βn(dt) = Pµ[T0 > t1/n||T0||n,µ]dt. Note that βn is a probability measure on [0,∞).
Since limn→∞ ||T0||n,µ = ess. supµ T0 = ∞, we have from the dominated convergence
theorem

βn[0, R] =

∫ R

0

Pµ[T0 > t1/n||T0||n,µ]dt
n→∞−−−→ 0 (5.21)

for every R > 0. Hence it follows that βn −−−→
n→∞

δ∞ on P [0,∞]. Then from (5.10) we have

lim
n→∞

Φnµ(A) = ν(A). (5.22)

For µ ∈ Pm we define the normalized n-th moment of T0 under µ by

mµ
n :=

1

n!
EµT

n
0 . (5.23)

The following theorem gives a sufficient condition for convergence of Φnµ as n→ ∞.
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Theorem 5.4. Let µ ∈ Pm and assume the following hold:

lim
n→∞

mµ
n−1

mµ
n

= λ > 0. (5.24)

Then we have

lim
n→∞

fµ
n (x) = λψ−λ(x) (x > 0), (5.25)

Φnµ −−−→
n→∞

νλ. (5.26)

For the proof, we need some preparation. For a function g : (0,∞) → R with∫ x

0

dy

∫ ∞

y

|g(z)|dm(z) <∞, (5.27)

we define

Kg(x) :=

∫ x

0

dy

∫ ∞

y

g(z)dm(z) =

∫ ∞

0

(x ∧ y)g(y)dm(y) (x > 0). (5.28)

Let us recall the formula (3.32). Then for a function g with (5.27), it holds

Eµ

∫ T0

0

g(Xt)dt =

∫ ∞

0

µ(dx)

∫ ∞

0

(x ∧ y)g(y)dm(y) =

∫ ∞

0

Kg(x)µ(dx). (5.29)

Applying (5.29), we obtain another representation of fµ
n different from (5.12).

Proposition 5.5. For µ ∈ Pm, the density fµ
n of Φnµ satisfies

fµ
n (x) =

n!

EµT n
0

Kn−1Gµ(x), (5.30)

where Gµ(x) :=
∫ x

0
µ(y,∞)dy and we denote Kℓg := K(Kℓ−1g) (ℓ ≥ 1).

Proof. From (5.29), we have for g ∈ L1((0,∞), dm),∫ ∞

0

g(y)Φµ(dy) =
1

EµT0

∫ ∞

0

g(y)dm(y)

∫ ∞

0

p(t, µ, y)dt (5.31)

=
1

EµT0

∫ T0

0

Eµ[g(Xt)]dt (5.32)

=
1

EµT0

∫ ∞

0

µ(dx)

∫ ∞

0

(x ∧ y)g(y)dm(y) (5.33)

=
1

EµT0

∫ ∞

0

Gµ(y)g(y)dm(y). (5.34)
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Since it holds that

GΦµ(x) =

∫ x

0

Φµ(y,∞)dy (5.35)

=
1

EµT0

∫ x

0

dy

∫ ∞

y

Gµ(z)dm(z) (5.36)

=
1

EµT0
KGµ(x) (5.37)

it follows from Proposition 5.1 and (formal) self-adjointness of K under dm that∫ ∞

0

g(y)Φnµ(dy) (5.38)

=
1

EΦn−1µT0

∫ ∞

0

GΦn−1µ(y)g(y)dm(y) (5.39)

=
1

(EΦn−1µT0)(EΦn−2µT0)

∫ ∞

0

KGΦn−2µ(y)g(y)dm(y) (5.40)

=
1

(EΦn−1µT0)(EΦn−2µT0)

∫ ∞

0

GΦn−2µ(y)Kg(y)dm(y) (5.41)

= · · · (5.42)

=
1

(EΦn−1µT0)(EΦn−2µT0) · · · (EΦµT0)(EµT0)

∫ ∞

0

Kn−1Gµ(y)g(y)dm(y) (5.43)

=
n!

EµT n
0

∫ ∞

0

Kn−1Gµ(y)g(y)dm(y). (5.44)

The proof is complete.

Now we prove Theorem 5.4.

Proof of Theorem 5.4. From Proposition 5.5, it holds

fµ
n (x) =

1

mµ
n
Kn−1Gµ(x). (5.45)

For a function g with ∫ R

0

dy

∫ y

0

|g(z)|dm(z) <∞ (5.46)

for every R > 0, define

Ig(x) =

∫ x

0

dy

∫ y

0

g(z)dm(z) (x > 0). (5.47)

Let g ∈ L1((0,∞), dm). We have

Kg(x) =

∫ x

0

dy

∫ ∞

y

g(z)dm(z) (5.48)

= x

∫ ∞

0

g(z)dm(z)− Ig(x). (5.49)

33



Then it follows that

Kn−1Gµ(x) = x

∫ ∞

0

Kn−2Gµ(y)dm(y)− IKn−2Gµ(x) (5.50)

= mµ
n−1x− IKn−2Gµ(x) (5.51)

= mµ
n−1x− I(mµ

n−2x− IKn−3Gµ(x)) (5.52)

= mµ
n−1x−mµ

n−2Ix+ I2Kn−3Gµ(x) (5.53)

= · · · (5.54)

=
n−1∑
k=1

(−1)k−1mµ
n−kI

k−1x+ (−1)n−1In−1Gµ(x). (5.55)

Then we have

fµ
n (x) =

n−1∑
k=1

(−1)k−1m
µ
n−k

mµ
n
Ik−1x+ (−1)n−1 1

mµ
n
In−1Gµ(x). (5.56)

From (5.24) we have M := supn≥0
mµ

n−1

mµ
n
< ∞ where we regard mµ

0 = 1. Hence it follows
that

n−1∑
k=1

mµ
n−k

mµ
n
Ik−1x ≤

∞∑
n=1

MnIn−1x =MψM(x) <∞. (5.57)

Next we show the second term in the RHS of (5.56) vanishes as n→ ∞. It is not difficult
to check that

InGµ(x) ≤
1

n!
x

(∫ x

0

ydm(y)

)n

. (5.58)

and

mµ
n ≥M−n. (5.59)

Therefore we obtain for every R > 0

lim
n→∞

sup
x∈[0,R]

1

mµ
n
In−1|Gµ(x)| = 0. (5.60)

Then from (5.56) and the dominated convergence theorem, we have

lim
n→∞

fµ
n (x) = λψ−λ(x). (5.61)

From (5.57) and (5.58), we have

fµ
n (x) ≤MψM(x) +

Mn

(n− 1)!
x

(∫ x

0

ydm(y)

)n−1

≤MψM(x) +MxeM
∫ x
0 ydm(y) (5.62)
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and, it is obvious that ∫ R

0

(MψM(x) +MxeM
∫ x
0 ydm(y))dm(x) <∞ (5.63)

for every R > 0. Hence from the dominated convergence theorem, it follows that

Φnµ −−−→
n→∞

νλ. (5.64)

The next proposition shows that condition (i) in Theorem 1.1 is sufficient for (5.24).

Proposition 5.6. Let µ ∈ Pm and assume the condition (i) in Theorem 1.1 for λ ∈ (0, λ0]
is satisfied. Then (5.24) holds.

Proof. By integrating by parts, it holds for n ≥ 2

mµ
n =

1

(n− 1)!

∫ ∞

0

tn−1Pµ[T0 > t]dt (5.65)

=
1

(n− 2)!

∫ ∞

0

tn−2

(∫ ∞

t

Pµ[T0 > s]ds

)
dt. (5.66)

Then for h(t) = 1
Pµ[T0>t]

∫∞
t

Pµ[T0 > s]ds, it holds

mµ
n =

1

(n− 2)!

∫ ∞

0

tn−2Pµ[T0 > t]h(t)dt (5.67)

For R > 0 it is not difficult to see∫ R

0
tn−2Pµ[T0 > t]h(t)dt∫∞

R
tn−2Pµ[T0 > t]h(t)dt

n→∞−−−→ 0. (5.68)

From Theorem 1.1 (i)’, it follows

lim
n→∞

mµ
n

mµ
n−1

= lim
R→∞

lim
n→∞

∫∞
R
tn−2Pµ[T0 > t]h(t)dt∫∞
R
tn−2Pµ[T0 > t]dt

=
1

λ
. (5.69)

Note that from [8, Theorem 6.26 (iii), (iv)], if the initial distribution µ is compactly
supported, the condition (i) in Theorem 1.1 holds for λ = λ0. By Proposition 5.6 and
Theorem 5.4, we obtain the following corollary.

Corollary 5.7. Let µ ∈ P(0,∞) with the compact support. Then the convergence (5.25)
and (5.26) holds for λ = λ0.
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Remark 5.8. In [9, Theorem 4.1], for Markov chains on N it was shown under some weak
assumptions that the condition (5.24) holds for λ = λ0 if the initial distribution is a point
mass.

The set of quasi-stationary distributions coincides with the set of fixed points of Φ on
Pm.

Proposition 5.9. For µ ∈ Pm, Φµ = µ if and only if µ = νλ for λ ∈ (0, λ0].

Proof. Assume Φµ = µ. From (5.37), it holds

Gµ(x) = λKGµ(x), (5.70)

where λ = (EµT0)
−1. Right-differentiating both sides, we have

µ(x,∞) = λ

∫ ∞

x

Gµ(y)dm(y). (5.71)

Thus µ has a density w. r. t. dm and we denote it by ρ. Then we have

d

dm

d+

dx
ρ(x) = −λρ(x), ρ(0) = 0,

d+

dx
ρ(0) = λ. (5.72)

Hence it follows

ρ(x) = λψ−λ(x) m-a.e. (5.73)

Since it holds

inf
x>0

ψ−λ(x) ≥ 0 ⇔ λ ≤ λ0 (5.74)

(see e.g., [8, Lemma 6.7]), it follows λ ∈ (0, λ0].

Let λ ∈ (0, λ0]. We show Φνλ = νλ. From Proposition 5.5, it is enough to show

ψ−λ(x) = Gµ(x). (5.75)

It holds

Gµ(x) =

∫ x

0

dy

∫ ∞

y

λψ−λ(z)dm(z) (5.76)

= x− λ

∫ x

0

dy

∫ y

0

ψ−λ(z)dm(z) (5.77)

= ψ−λ(x). (5.78)
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6 Appendix: Existence of the Laplace transform of spectral
measures

We give a sufficient condition of existence of the Laplace transform of spectral measures
by applying the theory of strings with singular boundary developed by Kotani [17].

At first we recall the strings with a left entrance boundary. We say that a function w :
R → [0,∞] is a string on R if w is non-decreasing and right-continuous. Set ℓ = inf{x ∈
R | w(x) = ∞}. We assume the boundary−∞ is regular or entrance;

∫ δ

−∞w(x)dx <∞ for
some δ < ℓ. By a similar argument for a string on (0,∞), there exists a spectral measure
σ on (0,∞) such that the transition density q(t, x, y) w.r.t. dw for d

dw
d
dx
-(generalized)

diffusion with Neumann boundary condition at −∞ is given by

q(t, x, y) =

∫ ∞

0

e−λtφ−λ(x)φ−λ(y)σ(dλ), (6.1)

where the function u = φλ is the solution for the following equation:

d

dw

d

dx
u = λu, u(0) = 1,

d+

dx
u(0) = 0 (λ ∈ R,−∞ < x < ℓ) (6.2)

For a string m on (0,∞), its dual string w = m∗ defined by

m∗(x) = inf{y > 0 | m(y) > x} (6.3)

is a string on R. In addition, if the boundary 0 for m is regular or exit, then the boundary
−∞ for m∗ is regular or entrance, accordingly. The spectral measure σ of − d

dm∗
d
dx

is
represented by the spectral measure θ of − d

dm
d
dx

as follows:

Proposition 6.1 (Yano [30, Theorem 2.2]). Let m be a string on (0,∞) and let m∗ denote
its dual string. Assume the following holds:

(S∗)

∫ ∞

0

λe−λtσ(dλ) <∞ for all t > 0. (6.4)

Then the condition (S) holds for d
dm

d
dx

and it holds

θ(dλ) = λσ(dλ) on (0,∞). (6.5)

We recall a result of Kotani [17] of the tail behavior of the spectral measures for strings
on R.

Proposition 6.2 (Kotani [17, pp. 803–804]). Let w be a string on R whose boundary −∞
is regular or entrance. Let ϕ : [0, 1] → [0,∞) be a function satisfying the following three
conditions:

(i) ϕ is a strictly-increasing, convex function and ϕ(0) = 0, ϕ′(1−) <∞.
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(ii) lim supy→+0 ϕ(xy)/ϕ(y) <∞ (x > 0).

(iii) lim infy→+0 ϕ(xy)/ϕ(y) > 0 (0 < x ≤ 1).

Then ∫ δ

−∞
ϕ(W (x))dx ∈ (0,∞) for some δ < ℓ (6.6)

if and only if ∫ 1

0

p(t)ϕ(t)dt <∞, (6.7)

where

W (x) =

∫ x

−∞
w(y)dy (x ∈ R) and p(t) =

∫ ∞

0

e−λtσ(dλ) (t > 0). (6.8)

Now we can show the result we aimed at.

Proposition 6.3. Let m be a speed measure and s be a scale function on (0, b) (0 < b ≤
∞). Then if |s(0)| <∞ and

m(x, c] ≤ C(s(x)− s(0))−δ (0 < x < c) (6.9)

for some C > 0, 0 < c < b and 0 < δ < 1, the condition (S) holds.

Proof of Proposition 6.3. Define s̃(x) := s(x) − s(0) and denote its inverse function by
s̃−1. By considering dm(s̃−1(x)) instead of dm, we may assume without loss of generality
that s(x) = x. We may also assume that b > 1 and c = 1. By abuse of notation, we
denote a string defined through the measure m by

m(x) =

{
−m(x, 1] (0 < x < 1),

m(1, x] (x ≥ 1).
(6.10)

Since it holds that |m(x)| ≤ Cx−δ (0 < x < 1), we have

m∗(x) ≤ C1/δ|x|−1/δ (x < −C). (6.11)

Then it follows for M∗(x) =
∫ x

−∞m∗(y)dy that

M∗(x) ≤ C ′|x|−(1/δ−1) (x < −C) (6.12)

for some C ′ > 0. When we take β > 1 so that β(1/δ − 1) > 1, we have∫ −C

−∞
M∗(x)βdx <∞. (6.13)

From Proposition 6.2 for ϕ(t) = tβ, this yields∫ 1

0

p(t)tβdt <∞. (6.14)

Note that, since the function p is non-increasing, it follows from (6.7) that p(t) <∞ (t >
0). Therefore, combining with Proposition 6.1, we obtain the desired result.
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