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Abstract

We define the affine super Yangian Yz, .,(sl(m|n)) with a coproduct structure. We
also obtain an evaluation homomorphism, that is, a surjective algebra homomorphism from
Ye, 2o (sl(m|n)) to the completion of the universal enveloping algebra of gl(m|n). Motivated
by the AGT conjecture, we also construct a homomorphism & from the affine super Yan-
gian Yz, ., (sl(m|n)) to the universal enveloping algebra of the rectangular W-superalgebra
WE(gl(mi|nl), 1T™1™)) for all m # n,m,n > 2 or m > 3,n = 0. Furthermore, we show that
the image of this homomorphism is dense provided that k + (m —n)(l — 1) # 0. We also give
® by using the evaluation map and coproduct for the affine super Yangian. Moreover, we
define the twisted affine Yangian as a coideal of the affine Yangian and construct a homomor-
phism from the twisted affine Yangian to the universal enveloping algebra of the rectangular
W-algebra of type D.

1 Introduction

Drinfeld ([11], [12]) defined the Yangian of a finite dimensional simple Lie algebra g in order to
obtain a solution of the Yang-Baxter equation. The Yangian is a quantum group which is the
deformation of the current algebra g[z]. He defined it by three different presentations. One of
those presentations is called the Drinfeld presentation whose generators are {h; , xfr | r € Z>o},
where {h;, mf} are Chevalley generators of g. The definition of Yangian as an associative algebra
naturally extends to the case that g is a symmetrizable Kac-Moody Lie algebra in the Drinfeld
presentation. Defining its quasi-Hopf algebra structure is more involved, but this problem has
been settled for affine Kac-Moody Lie algebras in [21], [5] and [47].

It is known that the Yangians are closely related to W-algebras. It was shown in [40] that
there exist surjective homomorphisms from Yangians of type A to rectangular finite W-algebras
of type A. More generally, Brundan and Kleshchev ([9]) constructed a surjective homomorphism
from a shifted Yangian, a subalgebra of the Yangian of type A, to a finite W-algebra of type A.
Using a geometric realization of the Yangian, Schiffmann and Vasserot ([43]) have constructed
a surjective homomorphism from the Yangian of 3[(1) to the universal enveloping algebra of the
principal W-algebra of type A, and proved the celebrated AGT conjecture ([16], [6]).

In the case of the Lie superalgebra sl(m|n), the corresponding Yangian in the Drinfeld presen-
tation was first introduced by Stukopin ([44], see also [17]). The relationship between Yangians
and W-algebras were also studied in the case of finite Lie superalgbras; by Briot and Ragoucy
[7] for sl(m|n) and by Peng [39] for gl(1|n). In the recent paper [15], Gaberdiel, Li, Peng and H.
Zhang defined the Yangian g/;\[( 1]1) for the affine Lie superalgebra gA[(1|1) and obtained the similar
result as [43] in the super setting.

In sections 2-4, we define the affine super Yangian Yz, ., (sl(m|n)) as a quantum group (=an
associative algebra equipped with a coproduct satisfying compatibility conditions) in the Drinfeld
presentation. We upgrade the definition of the Yangian associated with sl(m|n) of Gow [17]
to define the affine super Yangian Y, ., (E[(m|n)) as an associative algebra, see Definition 3.1.
However, to define the coproduct for Yz, ., (gl(m|n)), we need to obtain yet another presentation,
that is, a minimalistic presentation.



Theorem 1.1. The affine super Yangian YEIQ( sl(m|n)) is isomorphic to the associative super-
algebra over C generated by zlr,xl_T,hl,T (0<i<m+n—1r=0,1) subject to the defining
relations (3.17)-(3.25).

By Theorem 1.1, the following assertion gives a coproduct A for Yz, ., (sl(m|n)) that is com-
patible with the defining relations (3.17)-(3.25).

Theorem 1.2. We can define an algebra homomorphism
A: YvEl,Ez (‘;\[(m‘n)) - YTS17€2 (;[(m|n))®yv€1€2 (f/’\[(mln))

that satisfies the coassociativity. Here, Yz, ., (sA[(vnh”L))@YElg2 (sl(m|n)) is the degreewise comple-
tion of Yz, &, (8I(m|n)) @ Ye, c,(sl(m|n)) in the sense of [35].

When g is sl(n), Y (sl(n)) has an evaluation map ev: Y (sl(n)) — U(sl(n)), which enables
us to define actions of Yj(sl(n)) on any highest weight representation of sl(n). In [20], _Guay
showed that the affine Yangian Y, ., (5[( )) has the evaluation map ev: Y, ., (5[( ) — U(g[( ))s
where U (gAI(n)) is a completion of the universal enveloping algebra of g[(n) The surjectivity of
the Guay’s evaluation map is not trivial and was recently shown in [29]. In section 5, we construct
an evaluation map of the affine super Yangian Y, ., (;[(m|n)) (see Theorem 5.1).

Theorem 1.3. Assume ch = (—m + n)e;. Then for all a € C, there exists a non-trivial al-
gebm homomorphism ev,: Yz, ¢, (sl(m|n)) — Ulgl [(m|n))comp,+ determined by (5.2)-(5.5), where

U(g[(m|n))c0mp + @8 a completion of the universal enveloping algebra of g[(m|n)

We know only a little about irreducible representations of the affine super Yangian. In the
case when g is sl(n), the easiest irreducible representations of the affine Yangian are obtained by
the pullback of irreducible highest weight representations of gA[( ) since there exists a surjective
homomorphism from the affine Yangian to the completion of the universal enveloping algebra
of g[( ) ([20], [30], and [29]). In [29], Kodera showed that the image of this homomorphism
topologically generates the completed universal enveloping algebra by using a braid group action
on the affine Yangian. It is natural to try to obtain irreducible representations of the affine super
Yangian in the similar way. In [45], we have constructed a homomorphism from the affine super
Yangian to the completion of the universal enveloping algebra of g?[(m|n) However, we cannot
prove that he image of this homomorphism is dense in the similar way to the one in [29] since we
have no braid group actions on the affine super Yangian. In section 6, we show the statement in
the more primitive way. Owing to this result, we obtain irreducible representations of the affine
super Yangian via this homomorphism.

In sections 7-10 and appendix A, we give a result similar to the work of Ragoucy-Sorba
[40] in the affine super setting. We construct a homomorphism from the affne super Yangian
Yo en (5I(m|n)) to the universal enveloping algebra (see [14] and [33]) of W¥(gl(mi|nl), (1(™1™)),
the rectangular W-algebra associated with g = gl(nl) and a nilpotent element f whose Jordan
form corresponds to the partition (I™). The following theorem is the main result of this paper.

Theorem 1.4. Suppose that m,n >2,m #n orm > 3,n =0, and assume that ] > 2 and

« «
, €a2=-—1-— .
m-—-n m-—-n

g1 =
Then, there exists an algebra homomorphism
2 Yz, e, (sl(mln)) — U (gl(milnd), (101™))),

where UWF (gl(ml|nl), (10™1™))) is the universal enveloping algebra of WF(gl(ml|nl), (1(71™)).
Moreover, the image of ® is dense in UOW*(gl(ml|nl), 1(™™))) provided that o # 0.



By Theorem 1.4, provided that o # 0, any irreducible representation of W*(gl(ml|nl), (1(™1™))
can be seen as an irreducible representation of Yz, ., (sl(m|n)). In the case that | = 1, the corre-
sponding homomorphism is the evaluation map. Thus, the corresponding theorem was previously
shown in [20], [30], [29], [45] and [48].

We expect that the above result will be useful for studying the AGT correspondence for
parabolic sheaves. See [37] for the corresponding result in the quantum toroidal setting.

In order to prove Theorem 1.4, we give explicit generators of the rectangular W-superalgebra
WE(gl(ml|nl), (1t™™)). We define the homomorphism @ concretely by using these generators of
WE(gl(ml|nl), (1™™)) and check that ® is compatible with the defining relations of the minimal-
istic presentation of the affine super Yangian by a direct computation.

For type C'D cases, Brown [8] constructed surjective homomorphisms from twisted Yangians
to rectangular finite W-algebras of type C'D by using twisted Yangians instead of Yangians.
Twisted Yangians were introduced by Olshanskii ([38]) and were further studied in [22, 34, 35]
etc. The twisted Yangian Tj(g,€) is an associative algebra associated with one parameter h, a
finite dimensional simple Lie algebra g, subspaces £, m C g, and a symmetric involution 6: g — g
such that g? = ¢ and m = {z € g | 6(x) = —x}. The twisted Yangian T}, (g, £) can be realized as a
coideal of the finite Yangian Y}, (g).

In sections12-13 and appendix B, we construct the similar result to Theorem 1.4 in type D
setting. The corresponding Yangian is the twisted affine Yangian T'Y, ., (§0(n)) which is defined by
using the Drinfeld J presentation of the Guay’s affine Yangian in the sense of [21]. The Drinfeld
J presentation of the finite Yangian is Drinfeld’s original definition of the finite Yangian ([11])
whose generators are {z, J(z) | € g}, where J(x) is corresponding to = ® z € g ® C[z]. Reffering
to the Drinfeld J presentation of Y} (g), Belliard and Regelskis ([4]) constructed the Drinfeld J
presentation of the twisted Yangian whose generators are {z, B(y) | € ¢,y € m}, where B(y)
is corresponding to y ® z € m ® C[z] when we set h = 0. In [21], Guay-Nakajima-Wendland
constructed the terms J(h;), J(zF) € Yz, ., (sl(n)) in the analogy of the Drinfeld J presentation
of the finite Yangians. We define T'Y, ., (50(n)) as a subalgebra of Yz, ., (sl(n)) in terms of J(h;).
We note that TY;, ., (§0(n)) becomes a coideal of 5751752 (sl(n)).

We construct a surjective homomorphism from the twisted affine Yangian T'Y, ., (§0(n)) to
the universal enveloping algebra of W¥(so(nl), (I")), the rectangular W-algebra associated with
g = so(nl) and a nilpotent element f whose Jordan form corresponds to the partition (I™).

Theorem 1.5. Letn >4 and l be positive even. For any k € C, we set

61:_(/~c+(l71)n—2)h7 cr— ha (k+(@=Dn—2h

n n

There exists an algebra homomorphism
©: TY,, o, (50(n)) = UMW (s0(nl), (I"))).
Moreover, the homomorphism ® is surjective provided that k + (I — 1)n — 2 # 0.

By Theorem 1.5, any (irreducible) representation of W¥(so(nl), (I"*)) can be pulled back as
that of TYz, ., (50(n)). We note that the homomorphism ® can be written by using the coproduct
and the evaluation map for the Guay’s affine Yangian as in [31].

We note that section 2-5 are derived from [45], section 6 is derived from [48], section 7-10 and
appendix A are derived from [46], and section 11-13 and appendix B are derived from [49].
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2 Preliminaries

In this section, we recall the definition and presentation of the Lie superalgebra sl(m|n) (see [25]).
First, we recall the definition of sl(m|n) and gl(m|n).

Definition 2.1. Let us set My ;(C) as the set of k x [ matrices over C. We define the Lie
superalgebras sl(m|n) and gl(m|n) as follows;

gl(mln) = {(é g) ‘ A€ My (C), B € My (C),C € My (C), and D € Mn,n(@} ,

sl(m|n) = {(g g) € gl(mfn)

A B E F
where we define [(C D> , <G Hﬂ as

KA B)(E F)]:<AE—EA+(BG+FC) AF+BH—(EB+FD))'

tr(A) —tr(D) = O} )

¢ p)'\¢ H CE+ DG - (GA+ HC) DH—HD + (CF + GB)

As with sl(m), sl(m|n) has a presentation whose generators are Chevalley generators (see [42]
and [18]).

Proposition 2.2. We set p: {1,--- ,m+n} — {0,1} as

p(i){o (1<i<m),

1 (m+1<i<m-+n).

Suppose that m,n > 2,m #n and A = (@i ;)1<i,j<mtn—1 @5 an (m+n—1) x (m+n — 1) matriz
whose components are

()" &+ ()P ifi =,

— (=17 ifj=i+1,
a; 5 = i op . .
S B CE b ifj=i-1,
0 otherwise.

Then, sl(m|n) is isomorphic to the Lie superalgebra over C defined by the generators {x h; | 1 <
1 <m+n—1} and by the relations

[hi, ]’LJ] =0, [hl,xf] = :tai,jxji, [a:j,a:;] = 5i,jhi; ad(xli)Hlai’jlx;E =0,
[xiv :L’i] =0, [[‘r’r:lT:Lfl’ xi}v [xrjr:wrlv xriﬂ =0,

where the generators xf, are odd and all other generators are even.

The isomorphism V¥ is given by

U(hi) = (1" By — (-0 VB, U()) =B, (ay) = (-1)PP By



Next, we recall the definition of the affinization of sl(m|n) and gl(m|n) (see [36]). Lie super-
algebra sl(m|n) has a non-degenerate invariant bilinear form « : g ® g — C. The bilinear form is
uniquely determined up to the scalar multiple, so we fix it.

Definition 2.3. Suppose that g is sl(m|n) or gl(m|n). Then, we set a Lie superalgebra g as
g ® C[t*'] ® Cc @ Cd whose commutator relations are following;

[a’ ® tsv b ® tu] = [a7 b] ® ts+u + 55s+u,0’<5(aa b)cv
c is a central element of g,
[d,a®1t°] = sa®t’.
We also set a subalgebra g C g as g ® C[t*!] @ Ce.
We have another presentation of ﬁA[(m|n) (see [50]).

Proposition 2.4. Suppose that m,n > 2, m #n and A = (@i j)o<i,j<m+n—1 15 a (M+n) x (m+n)
matriz whose components are

(=) 4+ (1P ifi =,

— (-1 ifj=i+1,

ai; = —(-)"" ifj=i-1,
1 if (4,5) = (0,m+n—1),(m+n-—1,0),
0 otherwise,

Then, s?[(m\n) is 1somorphic to the Lie superalgebra over C defined by the generators {xli, hi,d |
0<i<m-+n-—1} and by the relations

+ . _ 7 . —
ah) =0, [daf]= {0 U0 g gy e 0 (25)
0  (otherwise), 0 (otherwise),
[hi, hi] =0, [hm%i} = iai,jx;'ta [z, 27 = 6 5hi, ad(%i)lﬂai’j‘xf =0, (2.6)
[xoi,xoi] =0, [xvzthwvjr:z] =0,
[[xrjr:L—l’ (Ei}, [‘rrjr:urlv xrinH =0, erjr:wrn—l’ x(:)t]v [xitv xf)t“ =0,

where the generators X and a:oi are odd and all other generators are even.
The isomorphism = is given by

(h) - _El,l - Em+n,m+n +c (7' = 0)7
YUY 1D (D ; _
(=) Ey; — (-1) Eit101 1<i<m+n-—-1),

[1]

[1]

/[H
8

= {Em+n,1 ®t (i=0),

(r7) = | “Bimm @71 (i =0),
) =
E; it (otherwise), ‘

(*1)p(i)E¢+1,i (otherwise).

Moreover, ;[(m\n) is isomorphic to the Lie superalgebra over C defined by the generators {xyi, h; |
0<i<m+mn—1} and by the relations (2.6)-(2.8).

Finally, we set some notations. Let us set {a;}o<i<m+n—1 as a set of simple roots of 5~[(m|n)
and J as a positive root > a;. Moreover, we set A (resp. A.) as a set of roots (resp.
0<i<m+4n—1
positive roots) of sl(m|n). We denote the parity of E, ; as p(E; ;). Obviously, p(E; ;) is equal to
p(i) + p(j). We also set A* and A™ as A, \ Zso0 and A\ Z6. We also take an inner product
on ) Ca; determined by (a;, ;) = a; ;. Assume that g = sl(m|n) and let g, be the
0<i<m+n—1
root « space of g. We set {x%>}1<) <dimg. as a basis of g, which satisfies r(z2,2%,) = &,
for all @ € A,. We also denote the parity of x> by p(a). Moreover, we sometimes identify
{0,--- ,;m+n— 1} with Z/(m + n)Z and denote it by I.



3 The minimalistic presentation of the Affine Super Yan-
gian

First, we define the affine super Yangian Y;, ., (;[(m|n)) This definition is a generalization of
Stukopin’s super Yangian ([44]). Let us set {x,y} as zy + yx.

Definition 3.1. Suppose that m,n > 2 and m # n. The affine super Yangian Y, ., (f/s\[(m|n)) is
the associative super algebra over C generated by x:fw Ty, iy (1€{0,1,--- ;m+n—1},r € Z>o)
with parameters €1,e2 € C subject to the defining relations:

[hir, hjs] =0, (3.2)
[xz,_r’ .13;8] = 5i,jhi,r+87 (33)
[hi707x;‘f¢] S :i:ai,jx;a, (34)
€1+ €2 €1 — €9
(i g1, T5g) = [hips @5 g] = iai,jT{hi,r,xjfs - bi,jT[hi,mxfs]v (3.5)
o0 o] — ook ) = e, 2t ) - 0 P2 ) (36)
+ + + + P
GZ @3 iy By By Esl -1 =0 (i # 9), (3.7)
we 1+la; ;1
[z, 2F,] =0 (i=0,m), (3.8)
Hxiifl,’r’ xf@]? [x'fO’ xil,s]] =0 (Z = 07 m)7
where
()P0 4 ()P i =
—(=1)PFD ifj=i+1,
ai; = — (1" ifj=i—1,
1 if (4,j) =(0,m+n—1),(m+n—1,0),
0 otherwise,
(1P = 1,
(—1)P® ifi=j—1,
bi,j: -1 if (27]):(05m+n_1)7
0 otherwise,
+

and the generators x~ . and xg:r are odd and all other generators are even.

Remark 3.10. In this paper, we set [z,y] as zy — (—1)p(m)p(y)yx for all homogeneous elements x, ¥.
Thus, (3.8) is non-trivial.

We also define the affine super Yangian associated with sl(m/|n).

Definition 3.11. Suppose that m,n > 2 and m # n. We define Y7, ., (sl(mn|n)) is the associative
super algebra over C generated by {xfr, hir,d|i€{0,1,--- ;m+n—1},r € Z>o} with parameters

€1,€2 € C subject to the defining relations (3.2)-(3.9) and

1 if:= —1 if71=
dohi =0, [da]=4" =0 g = =0, (3.12)
' ’ 0 ifiz#0, ’ 0 ifi#0,

+

m,

where the generators =z, . and x(jir are odd and all other generators are even.



One of the difficulty of Definition 3.1 is that the number of generators is infinite. The rest of
this section, we construct a new presentation of the affine super Yangian such that the number of
generators are finite.

Let us set Ei,l =h;1— el ;62 h?,0~ By the definition of i~Li71, we can rewrite (3.5) as
~ €1 — &2
[hi,la 'T;ET] = :I:aivj <l‘;t7r+l — b@j D) ijr> . (313)

By (3.13), we find that Y, ., (sl(m|n)) is generated by 7 , 2} hir (1€{0,1,--- ,m+n—1},r=

2,7 Ve,

0,1). In fact, by (3.13) and (3.3), we have the following relations;

1 7 —_— . .
w?,twrl = i;[hi,l,xﬁ], hiry1 = [xzfr+1>$i,0] if i #£m,0, (3.14)
i1
1 ~
+ +
s iaiﬂ i [hita,0, 73] + bigr 5

€1 — &2 4

7,77

higs1 = 27,41, 770 ifi=m,0  (3.15)

for all r > 1. In the following theorem, we construct the minimalistic presentation of the affine
super Yangian Yz, ., (sl(m|n)) whose generators are xz‘r,x;r,hm (t€{0,1,--- ,m+n—1}r=
0,1). We remark that we have not checked that the presentation is minimalistic yet. However, we
call this presentation “minimalistic presentation” since, in the non-super case, the corresponding

presentation is called “minimalistic presentation”.

Theorem 3.16. Suppose that m,n > 2 and m # n. The affine super Yangian Ye, e, (;[(m|n)) is
isomorphic to the associative super algebra generated by xj"r, Ty iy (1€{0,1,--- ;m+n—1},r=
0,1) subject to the defining relations:

(i, hjs] =0, (3.17)

(270, 25,0 = 8i5hi0, (3.18)

[y, @50] = 0 ghig = (20, 274, (3.19)
[hio,z7,] = *ai x5, (3.20)

mm,xji’o] =*ta;; (mjil - bi,jgl;@xfo) , (3.21)

€1+é2
2

(ad zjy) il (23570) = 0 (i # j),
[a:fo, xito] =0 (:=0,m),

+ + + + .
[[%-1,0@1‘,0}, [%,0»%“,0]] =0 (i=0,m),

+ + + +
[xi,p ‘rj,O] - [xi,oa ‘Tj,l] = +ai,

+ o+ &1 &2, + 4+
{70750} — bi; 5 (%505 %5 0),

+

m,r

where the generators x=, . and z=, are odd and all other generators are even.

The outline of the proof of Theorem 3.16 is similar to that of Theorem 2.13 of [21]. To simplify
the notation, we denote the associtive super algebra defined in Theorem 3.16 as 3751752 (f/:\[(m|n))
We construct mii,r and h;, as the elements of }7;1,52 (g[(m|n)) inductively by (3.14) and (3.15).
Since (3.17)-(3.25) are contained in the defining relations of the affine super Yangian, it is enough
to check that the defining relations of the affine super Yangians (3.2)-(3.9) are deduced from
(3.17)-(3.25) in }751’52 (;[(m|n)) The proof of Theorem 3.16 is divided into eight lemmas, that is,
Lemma 3.26, Lemma 3.31, Lemma 3.35, Lemma 3.36, Lemma 3.37, Lemma 3.38, Lemma 3.57,
and Lemma 3.58.

Most of the defining relations (3.2)-(3.9) are obtained in the same way as that of [32] or [21].
For example, we have the following lemma in a similar way as that of Lemma 2.22 of [21].

Lemma 3.26. (1) The defining relation (3.4) holds for alli,j € I in Y, c, (sl(m|n)).



(2) For alli,j € I, we obtain

~ E1 — €
[hin,23,] = +ai, <x;t,r+1 — by 5 2%3) (3.27)

in Yz, <, (sl(mn)).

Proof. We only show the case that j = 0,m. The other case is proven in the same way as that of
Lemma 2.22 of [21]. We prove (1), (2) by the induction on r. When r = 0, they are nothing but
(3.20) and (3.21). Suppose that (3.4) and (3.27) hold when r = k. First, let us show that (3.4)
holds when r = k + 1. By (3.15), we obtain

~ €1 — &2
P [hi0, [hj11, 7)) + bjj+1—5— lhio, T (3.28)
yEv)

+
[hio, @] jia] = £

By [hi,0, hj1]) = 0, we find that the first term of the right hand side of (3.28) is equal to

1 ~ 1
[hios (11,27 ]] = +

+ [%j+1,1’ [hi,o; 'r]ik]]

@j,5+1 a5,5+1
By the induction hypothesis on r, we can rewrite the right hand side of (3.28) as

1

7 + €1 — €2 +
+ [hy+1.1 Thio, 2501 + bje1 = [hi0, 53]
aj,j+1

Aij 7 + €1 — €2 4
. [P0, 253 ] & @igbj o ——— 25,

75

@i, + €1 — €2 4 €1 —€2 4
= ——(*a;,+1(x; —bjjr1———27,)) £ aibjj 1 —F—27

aj7j+1( J,J+ ( j,k+1 7,3+ 9 j,k)) 4,7%7,J+ 2 j.k
— et
= 0 T -

Thus, we have shown that [h; o, z;'ka] = :I:amxjjka.
Next, we show that (3.4) holds when r = k 4 1. Since we have already proved that (3.4) holds
when r = k 4 1, it is enough to check the relation

+ _ + €1 — &2 4
[hi,lamj,kﬂ] = *a;; (xj,k+2 - bz‘,j42 xj,k+1> :

By (3.15), we obtain

~ 1 ~ =~ €1 — €27
(i, @] = F———[hix, (a0, 25 )] 4 b 1 ———[ha 1, 2] (3.29)
Ajj+1 2

By [hi,1, hj1) = 0, we find that the right hand side of (3.29) is equal to

1 ~ ~ €1 — €2 7
[y, (i, 25 )] 4 by ——— [y, o).

aj,5+1
By the induction hypothesis on r, we can rewrite the right hand side of (3.29) as

1 > 5 €1 — €27
t ——T[hyn s [, 5]+ by o ———[hin, 7]
ajj+1
_ Gy 7. + &1 eg +
= ;1 ([h]+171?mj,k+1] — bi,; B [hj+1717xj,k]>

€1 — & ( 4 €1 — €2 4
- @i,jbj,jﬂT <33j,k+1 - bi,j233j’k> . (3.30)



Since a:jfkﬁ is defined by (3.15), we find that the right hand side of (3.30) is equal to
+ €1 — €2 4 E1 — &2 + €1 — €2 4
+a;; (xj,k+2 —bjn——o k+1) Faigbij—5— (ij,k+1 —bjj—5— l‘j,k)
€1 — &2 + €1 — &2 4
+aijbjjr—g— (xj,kJrl bij—5—7j, k) :
By direct computation, it is equal to

+ €1 — &2 £
tai,; (xj,k+2 —b;; 9 €5, k+1>

This completes the proof. O

Similarly, we also obtain the following lemma in a similar way to the one of [21].

Lemma 3.31. (1) The relation (3.3) holds in 3751 s (sly\l(m|n)) wheni=j andr+s < 2.

( ) Suppose that i,j € I and i # j. Then, the relations (3.3) and (3.6) hold for any r and s
in Vey ey (sl(mi). A

(3) The relation (3.6) holds in Y51 e, (8l(m|n)) when i =7, (r,s) = (1,0).

)

(4) The relation (3.5) holds in Ye, ., (sl(m|n)) when i = j, (r,s) = (1,0).

(5) For alli,j € I, the relation (3 5) holds in Ye, ., (sl(m|n)) when (r,s) = (1,0).

(6) Set hlg as hig — hiohin + ghw. Then, the following equation holds for all i,j € I in
(s(mln));

61 E92

€1 — &2
2

1 _
(zf, — Zath; — b4j€1 £2 z$).

- 1
+ +
[h‘i727 xj,()} = :l:a’zvjxj 2 12 ’L \J j 0 + aiv]b 7,1 277 ? 2 J

(7) For alli,j € I, the relation (3.7) holds in )751,52 (sl(m|n)) when

1.ry=-=1,=0,5€ ZLso,
2.r=1,r=-=1,=0, s € Zso,

3. r=2rp=-=1,=0, s € Lo,
4-(b=>2and)ry=ry=1,r3="---=71,=0, 5 € Zxo.

(8) In Y, oo (sl(m|n)), we have

w
(1, a7) = =

+ €1~ ¢ +
a”[hi,la%ﬁ ({th zfy} = {hio, 2 }) F ajimyi——— 5 il

foralli,j € I such that a;; # 0.
(9) For alli,j € I, we have
[hiz2, hjo]l =0

in Yo, e, (sU(m|n)).
(10) Suppose that i,j € I such that a,; =2 and a; ; = —1. Then,

(hiz2, hia] =0

holds in Y, ., (sl(mn)).



Proof. We only prove (1)-(5) since the proof of (6) (resp. (7), (8), (9)) is same as that of Lemma
2.33 (resp. Lemma 2.34, Lemma 2.35, Proposition 2.36).

The proofs of (1) and (2) are the same as those of Lemma 2.22 and Lemma 2.26 in [21]. In the
case where i, j # 0, m, the proof of (3) (resp. (4) and (5)) is also the same as that of Lemma 2.23
(resp. Lemma 2.24 and Lemma 2.28) in [21]. We omit it. We only show that (3) holds since (4)
and (5) are derived from (3) in a similar way to the one of [21].

Suppose that i = j = 0,m. First, we show that [z;" i1 j‘o] = [z 1+07 j‘l] = 0 holds. Apply-

+

ing ad(hiy1.1) to (3.24), we have +a; ;1[z fl, afol £ ai iz ?[07951 1]. Since [z75 xio] 1s equal to

[t}
[xfo,xii’l], we obtain [xfl,xii)ol = [xfo,xfl] = 0. Next, we show that [z ZQ,xZiO] = [ i1 Zil] =
[xfo,mii,z] holds. Applying ad(hit+1,1) to [xfl,mfo] = [xfo, xzil] = 0, we obtain
ta; z+1([x?,:2a xfo] + [x?,:lv xizl]) =0, (3.32)
+ o+ + o+
iai,i-ﬁ-l([xz 1Ly, 1+ [xi,()’xi,Q]) =0. (3.33)

In the case where j = 0, m and i = j+1, we can prove (5) in a similar way to the one of Lemma 2.28
in [21]. Then, in the similar discussion to that of Lemma 1.4 in [32], there exists h;+1 2 such that

~

+ +
[hit1,2, T30] = £ai,i4127 5.

Applying ad(ﬁi+1’2) to (3.24), we obtain

iai,iﬂ([xfza xito] + [xzi()axziz]) =0. (3.34)

Since (3.32), (3.33), and (3.34) are linearly independent, we obtain [fo,me] = [a:i[l,xii’l] =
[x Zio, Z2] We have proved (3). O
In the case where a;; = —2 and a; ; = 1, we obtain [hi2, hi1] = 0 by changing the proof of

Proposition 2.36 of [21] a little.

Lemma 3.35. Suppose that i,j € I such that a;; = —2 and a; ; = 1. Then, we obtain
[hiz2,hia] =0

in Yz, o, (sl(m|n)).
Proof. We change h; .,

into —h; r, —x

7,17

x,, and x; ., which are written in the proof of Proposition 2.36 of [21],
and z; . Then, we obtain [—hiz2,—hia] = 0. O

By Lemma 3.31 (10) and Lemma 3.35, we obtain the following lemma in the same way as
Proposition 2.39 of [21] since we only need the condition that a;; # 0 and a; ; # 0. We omit the
proof.

Lemma 3.36. Suppose that i,j € I such that a;; # 0 and a; ; # 0. Then, we have
[hj2,hja] =0
in Yz, o, (sl(m|n)).

Therefore, we know that [h; 2, h; 1] = 0 holds for all ¢ € I. By using the relation [h; 2, ki 1] = 0,
we obtain the following lemma in a similar way as that of Theorem 1.2 in [32] since the proof of
these statements needs only the condition that a; ; # 0.

Lemma 3.37. (1) The relation (3.2) holds in }751152 (;[(m|n)) when i = j # 0,m.
(2) The relation (3.3) holds in Yz, ., (sl(m|n)) when i = j # 0, m.
(3) The relation (3.6) holds in Ye, ., (sl(m|n)) when i = j # 0,m.
(4) The relation (3.5) holds in }751,52 (;[(m|n)) when i = j #0,m.

10



Next, we prove the same statement as that of Lemma 3.37 in the case that ¢ = j = 0, m.

Lemma 3.38. (1) The relation (3.6) holds in }751752 (fsA[(m|n)) when ¢ = j = 0,m. In particular,
(3.8) holds in Y, -, (sl(m|n)).

2) The relation (3.3) holds in Ye, ., (sl(m|n)) when i =j =0,m.

3) We obtain [him,xfo} =0 when i =0,m in 3751,52 (;[(m\n))

4) The relation (3.5) holds in Y, ., (sl(m|n)) when i =j =0,m.

(5) The relation (3.2) holds in )751,52 (f:\[(m|n)) when i = j =0, m.

(
(
(

Proof. (1). Tt is enough to check the equality [z, 2F,] = 0. We only show that [z

17“7 ZG _0

holds. We can obtain [z;,.,z;,] = 0 in a similar way. We prove (3.6) holds by the induction on

@, i,

k=r+s. When k =0, it is nothing but (3.24). Applying ad(ﬁi_s_l,l) to [x;fo, zi’o] = 0, we obtain

l'f" 19]

ai7i+1([93z,rlax:0] + [z jm x; Hh)=o.

Since [ij_la z+0] = [z j_o’ j_l] we have [z Z+17 ;“O] = [z j_o’ 21] 0.
Suppose that [z i Ty, x;] = 0 holds for all r, s such that r +s = k, k + 1. Applying ad(hz+1,1) to
[ 2 1] = 0, we have

(hiti, [, el = 0. (3.39)

By Lemma 3.31 (4) and the induction hypothesis, we have

i1 [ 2 )l = a8 2 ) + [ 2l ) (3.40)
Since a; i+1 # 0, we find the relation

[xjj1t+1’x;ik+l—u] = _[xiuﬂx;:k-&-Q—u] (341)

by (3.39) and (3.40). In particular, we obtain

[xz—'i,—u-‘rQ?xzk—u] = [f'fifu’xi%g_ul (3.42)
Applying ad(EH_l,g) to [x:u,x:k_u] =0, we have
(his1.2, [ i )] =0 (3.43)

by the induction hypothesis. By Lemma 3.31 (7), Lemma 3.36 and the induction hypothesis, we
have

hivr2, (27 w5l = aiaa ([ o ol )+ e 2l o)) (3.44)

Since a; ;41 7# 0, we obtain the relation

[x:quZ? xz,_krfu] = _[x:w x:fk+27u]- (3.45)

by (3.43) and (3.44). Since (3.45) and (3.42) are linearly independent, we have shown that
[xz w jk+2 ) = 0 holds.

(2) We prove the statement by the induction on r+s = k. When k = 0, it is nothing but (3.24).
Suppose that [z} i Ty S] = hj s for all 7, s such that r4s < k. Then, we have the following claim.

Claim 3.46. (a) For all r, s, we obtain

g1+ €2 €1 — €2
i, @1 ) = i 3 o] = @i 5 {hirm iy ) — bi,i+1T[hmxf+1,s]- (3.47)

(b) For all r + s = k — 1, we obtain

_ _ €1+e2 _ €1 — €2 _
[hi,r+17$i+1’s] - [hi,r7$i+175+1] = —Q;i+1 T{hiﬂ‘7xi+l,s} - bi,iJrlT[hi,T’xz#l,s]' (3'48)
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Proof. (a) By the definition of h; ,, we have

[hi,r+1,x?+1,s} - [hi77“7xz—‘~_+1,s+1] = [[x;‘",_r+1’xi_,0]’xj_+l,s] - [[$:r7xi,0]7x?—+1,s+1 .

By the Jacobi identity and Lemma 3.31 (4), we obtain
[hiﬂ”+17 x;trl,s} - [hiﬂ“7 xj+1,s+l] = [{[xj:rJrl? 93;:1,3] - [1‘7-;",_7“7 x;"_+1,8+1]}7 11;,0}
By Lemma 3.31 (4), we have
[hi,?“-‘rl’ 13;:_175] - [hiﬂ”v x;—l,s—&-l]

g1+ €2
2

€1 — &2 _
{mz_ﬂx;trl,s} = bijit1 5 [xj,_wijrl,s]’xi,O]'

= [£a;,i+1

By Lemma 3.31 (4), we obtain

g1+ €2 €1 — €2
(i1 1 ) = s Ty 1] = iai,i+1T{hi,mﬁ+1,s} = biirr—o—[hir, i1 )

(b) By the assumption that [.%‘xw 2, = hiptq holds for all p+ ¢ < k, we have

[hi,r+1a$i_+1,s] - [him’xi_-u,s-s-l} = [[$:r7xi,1]7xi_+1,s] - [[‘x:raxi,O]’xi_+1,s+1]
since r + 1 < k. Similar discussion to (a), we have
[hi,r+17x;+1,s] - [hi,r»$;+1,s+1] = [x;tr’ {[$Z17x;+1,s] - [x;,o’ x;+1,s+1]}]'

By Lemma 3.31 (4), we obtain

[hi,r+1ax;+1,s] - [hiﬂ”x;—i-l,s—&-l}

e1+é2, - _ €1 —€2, _ _
= [Cﬂ:m *ai,i+1T{mi,Ov $i+1,s} - bi,i+lT[%,0a xi+1,s]]'

Then, by Lemma 3.31 (4), we have

_ _ €1+ €2 _ 1 — €2 _
[hi,r+1,$i+17s] - [hi,rvxi+17s+1] = —ai,i+1T{hi,raxi+1,s} - bi,iJrlT[hin’xi—i-l,s}'

By the similar discussion to Lemma 1.4 in [32], there exists ﬁi,k such that

hi g = hix + polynomial of {h;; |0 <t <k — 1},
_ | T -
ik, 2fi ] = aiinizfy s [hik T 0] = —Giin@,

Claim 3.49. The following equation holds;

[hi+1,1, hi i) = 0. (3.50)
Proof. By the assumption that [x:p, z; ] = hi . holds for all p 4 ¢ < k we have

(his11, his) = [hisnn, 28] aig) + [f,, (i1, 27,]] = 0

for all s < k. Thus, it is enough to show that [h; &, hiy1,1] = 0 holds. By the definition of h;y1 1,
we obtain

[Ei,kahiJrl,l] = [ﬁi,m [30111717%11,0”
= ai,i+1[xj+1,k+1’xi_+1,0] = Qijit1 x:r+1,1vxi_+1,k]- (3.51)

By Lemma 3.37, it is equal to zero. O

12



Applying ad(?zzurm) to [z, T )] = hik, We obtain

(i1, [z 2]l = (Ris1,1. k] (3.52)

by the induction hypothesis. By Lemma 3.31 (4), we can rewrite (3.52) as

ai i1 ([, i) = [ 2w ]) = [higan, hig] = 0. (3.53)

It is nothing but the statement.
(3) We only show the statement for +. The other case is proven in a similar way. By (2),
[hiﬂ‘?x;‘,—O] is equal to [z}, z; ], 2 ;' Fo]. By (1) and the Jacobi identity, we have

17’ 2,0

Hx:ra‘ri_,o]vxz—'i:o] = [l’:ra [%jo@{toﬁ- (3.54)

The right hand side of (3.54) is equal to [:cl - hiol. By Lemma 3.26 (1), the right hand side is
equal to zero since a;; = 0.

(4) Tt is enough to check the equality [h; ., ] x] = 0. We only show the statement for +. The
other case is proven in a similar way. We prove by the induction on s. When s = 0, it is nothing
but (3). Suppose that [h;,z] +.] = 0 holds. Applying ad(hi+1.1) to [hi,,z z +] =0, we find the
equality

[hiv11, [hir, 2l ]l =0 (3.55)

by the induction hypothesis. By the proof of (2), we obtain [EH 1,hin] = 0. Thus, the right
hand side of (3.55) is equal to [h; ,, [h1+1 1,T; T.J]. By Lemma 3.31 (4), we obtain

~ E1 — €&
i, i1, 2] = @i lhi, (0 — = 5 2bigrint,))- (3.56)

By the induction hypothesis, the right hand side of (3.56) is equal to ai7i+1[hiwr,x;ts+l]. Since
a; i1 # 0, we obtain [hiyr,:cj:s_ﬂ] =0.
(5) By (2), [hir, hi,s) is equal to [h;r, [xj's, ;]| By the Jacobi identity, we have

i (23 s @i o)) = (i, 2] ] + [ (i, 2]
By (4), the right hand side is equal to zero. We have shown the relation [h; ., h; s] = 0. O

We obtain the relation (3.6) by Lemma 3.31 (2), Lemma 3.37 (3), and Lemma 3.38 (1). We
also find that the relation (3.3) holds by Lemma 3.31 (2), Lemma 3.37 (2), and Lemma 3.38 (2).

In the same way as that of Theorem 1.2 in [32], we obtain the defining relations (3.5), (3.2),
and (3.7). Thus, we omit the proof.

Lemma 3.57. (1) The relations (3.5) and (3.2) hold in YE1 62,( [(m|n)) when i # j.
(2) The relation (3.7) holds for all i,j € I in YE1 s (5[(m|n))

We remark that the relation (3.2) holds by Lemma 3.37 (1), Lemma 3.38 (5), and Lemma 3.57
(1). We also find that the relation (3.5) holds by Lemma 3.37 (4), Lemma 3.38 (4), and Lemma 3.57

(1)

Now, it is enough to show that (3.8) and (3.9) are deduced from (3.17)-(3.25). However,
we have already obtained (3.8), since (3.8) is equivalent to (3.6) when ¢ = j = 0,m. Thus, to
accomplish the proof, we only need to show that (3.9) holds.

Lemma 3.58. The relation (3.9) holds for i =0,m in }751752 (E?[(m|n))

Proof. We prove by the induction on k = r+s. When k = 0, it is nothing but (3.25). Suppose that
(3.25) holds for all 7, s such that r +s = k. Applying ad(ﬁzqrg,l) to [[acglt_lﬂ,7 mf0]7 [acfo, xilg]] =0,
we obtain

ai—2,i—1[[$i1,r+1a xito]a [xii,O’ xziﬂ,s]] =0.
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Similarly, Applying ad(hit2,1) to [[a:fiu, xfo], [mfo, xﬁl)s]] = 0, we have

ai+2,i+1[[xf—1,mxfo]v [xfo@z:‘il,sﬂ“ =0.
Thus, we have shown that (3.9) holds for all r, s such that r +s =k + 1. O

This completes the proof of Theorem 3.16. _
By Theorem 3.16, we also obtain the minimalistic presentation of Yz, ., (sl(m|n)).

Theorem 3.59. Suppose that m,n > 2 and m # n. Then, Y, ., (sl(m|n)) is isomorphic to the
+

super algebra generated by x ., x; by (i €{0,1,--- ;m+n—1}r=0,1) subject to the defining
relations (3.17)-(3.25) and
+ ifi=0 —x ifi=0
i) =0, [ =40 0 a2 VIR g0)
’ ’ 0 if i # 0, ’ 0 ifi # 0,

+

where the generators a7 . and xf, are odd and all other generators are even.

The relation (3.12) is derived from (3.60) in a similar way to the one of Lemma 3.26. We omit
the proof.

4 Coproduct for the Affine Super Yangian

In this section, we define the coproduct for the affine super Yangian Yz, ., (sl(m|n)). We recall the
definition of standard degreewise completion (see [33]).

Definition 4.1. Let A = @ A(¢) be a graded algebra. For all i € Z, we set a topology on A(%)
i€z
such that for a € A(i) the set

{a+ > A(i—r)-A@r) | N € Zso}

r>N

forms a fundamental system of open neighborhoods of a. The standard degreewise completion of

Ais @ A(i) where A(i) is the completion of the space A(i). By the definition of A(i), we find
i€Z
that

A=PlmA@)/ Y Al —r)- Ar).
iez N r>N
Let us set the degree on Y, ., (;[(m\n)) determined by
1ifi =0,
0ifi#0,

~1 ifi=0,

d hir :O, d )= d T ) =
eg(hir) eg(z;,) { eg(z;,) {o i 40,

~

Then, Yz, ., (sl(m|n)) and Ye, e, (sI(m|n))®2 become the graded algebra. We define }751,52 (sl(m
(resp. Yz, o, (sl(m|n))®Y:, o, (sl(m|n))) as the standard degreewise completion of Yz, ., (sl(m
(resp. Yz, ,(sl(m|n))®?) in the sense of Definition 4.1.

We prepare some notations. There exists a homomorphism from sl(m|n) to Yoo (sl(m|n))
determined by ®(h;) = hio, ®(zF) = :rii,o, and ®(d) = d. We sometimes denote ®(x) by z

2
in order to simplify the notation. In particular, we denote ®(zP) by zP for all « € A. By

Theorem 5.1, we note that dim(®(g,)) = 1 for all & € A,..

)
)

n
n

14



Theorem 4.3. The linear map A: Y:‘:‘hf:‘z(g[(m|n)) - 5/;1762(a(m|n))®}/€1,82(;’\[(m|n)) unlquely
determined by
A(hio) = hio®1 +1&hio, Axf,) = 23(®1 + 17,

A(hi,l) = hm@l + 1®hi,1 + (61 + 62)hi70®hi70 — (61 + 62) Z Z (OL, Oéi)JCIiua@ZEZO‘
a€Ay 1<k <dimga
(4.4)

is an algebra homomorphism. Moreover, A satisfies the coassociativity.

The rest of this section is devoted to the proof of Theorem 4.3. The outline of the proof
is similar to that of Theorem 4.9 of [21]. In [21], the analogy of the Drinfeld J presentation is
considered in order to prove the existence of the coproduct for the affine Yangian. We construct
elements similar to those constructed in (3.7) of [21]

Definition 4.5. We set

J(hi) = hiq + v, J(aF) = 33?,[1 +w],

K2

where

€1+ &2 ko K €1+¢€2, 9
v; = 5 g E (o, )zt e — 5 h,
a€A; 1<k, <dimgq

€1+ €2 _ €1+ é2 _
+ _ + ko k _ ko k
w; == 2 E : E [‘rz ’ajfa]xaa7 w; = 2 § E : :I"foz[‘roca’mi ]

a€A} 1<k, <dimgq a€Ay 1<ky<dimgq

Then, J(h;) and J(z) are elements of 5/\;1752 (;[(m|n))

Next, we prove the similar results to Lemma 3.9 and Proposition 3.21 in [21]. In fact, they are
(4.8)-(4.11) and (4.27). We prepare one lemma in order to obtain (4.8)-(4.11) and (4.27). It is an
analogy of Proposition 2.4 of [26].

Lemma 4.6 ([36], Lemma 18.4.1). For all o, 8 € AL, we obtain
S et T deels
1<ks<dimgs 1<ko<dimga

if z € 98—a-

Lemma 4.7. The following relations hold:

[7(h),hj] =0, (4.8)
()] = e, ) (@) F asboy 5o, (49)
@t af] = [of, T@) - 25 blet 2t (4.10)

[7(@f).aF] = [oF, J (@) = 61,5 (o). (4.11)

Proof. Since h; 1 commutes with h; by (3.2) and v; commutes with h; by the definition of v;, we
obtain (4.8). We only show the other relations hold for +. In a similar way, we obtain them for
—. First, we prove (4.9) holds for +. By (3.21), the left hand side of (4.9) is equal to

~ 1) g
[hi,1+vi+ 1;_ 2

€1 — €2 €1+ €2 ko ke
- bi,chv;fO) +[ 5 Z Z (a, op)ate ahe 2t (4.12)

@,BEA; 1<ko<dimga

h'i2,0a Z‘j]

= a;,j(z
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By direct computation, the second term of the right hand side of (4.12) is equal to

€1té2 ko ko ot
9 Z Z (Oé?ai)wfa[xa 7xj]

a€A} 1<k, <dimgq

g1+ €2 a)p(oy @
T D D DR G e R R e e (4.13)
a€A; 1<k, <dimga

By Lemma 4.6, (4.13) is equal to
€1 +e
EEY Y - mpal el
a€A; 1<k, <dimgq

£1 + &2 a)p(a;
+ DD S G § L e | AL g P (4.14)

2 Ty
aceAy 1<k, <dimg,

Since (—1)PP) [ghe 44 [zF 2% ] = 0 holds, the sum of the first and second terms of (4.14)

- Jjroa

. €1+ &2 .
is equal to s E E (aj, a0z}, e JzFe . Thus, we obtain
Q€A 1<kq <dimga

E1 — €2 €1+ &2
i), af) = aaglafy — by 5 Rt~ ST (ag, a0l ab ek
a€A; 1<k, <dimgq

Thus, we have obtained (4.9) for +.
Next, we show that (4.10) holds for +. By the definition of J(z;"), [J(z;"), 1] — [z}, J(2])]
is equal to

[37:1795;0} - [37{0795;1] + w2l ] = e wi

. €1+e2 €1 — €2
By (3.22), [x;fl,xjfo] — [xio,xjfl] is equal to 5 ai,j{wj,()a a:;fo} -

bijlw g 2o By the
definition of w;" , we obtain

:_axj} - [xj_’w;_]

__&a1te + ko (ke ot
- 9 Z Z [xz ’xfoz“xa 7xj]

a€A; 1<k, <dimgq

€1 + €2 P(@)p(a) 1, + kol 4] ka
- T Z Z (_1) Hxl 7‘%704]71.]' ]xa

acAy 1<k, <dimgq,

E1 1+ €2 ko
LEEE S S ok ke

a€Ay 1<k, <dimgq

€1 +¢2 pla)p(ei)+p(e)p(a) [ + ko 11,4 ko
+ Z Z (-1) I [,z ][z, oo ]. (4.15)

j M —a 7
ac€Ay 1<k, <dimgq

[w

By Lemma 4.6, we find the equality

the first term of the right hand side of (4.15)

_ _&a1te + [t ko
__T Z Z [xi 7[xj’x—a]]m

ac€Ay 1<k, <dimgq

QX
™

—
+
$)

[\v)

o+ ———[zf, hylx . (4.16)

We also find the relation

the fourth term of the right hand side of (4.15)
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_&ate ple)plad)+pla)p(ed)r, + (ka4 ko
-9 Z Z (1) [Ij 225, 2 e

—) «
€A 1<ko<dimgq

n %(_UP(M)MW) [-Tj—v hi}l‘?— (4.17)

by Lemma 4.6. Applying (4.16) and (4.17) to (4.15), we obtain

[wi 2] -

€1+ €2 €1+ €2 ; .
T Fowl] = 22 lef hylat + 2 ()PP [t py)af

[z}, b 9 i 9
Since m,n > 2, there exists no 4, j such that a; ; # 0 and p(o;)p(;) = 1. Thus, we obtain

€1+ &2
2

Hence, we have obtained

€1+ ¢e2 ai)p(oy €1+e2
T(_l)p( It )[x;rﬂhl]xj = 2 ’J{xz ’ j }

[;E;r,hj]xj +

€1 — €2
—— bi sl o, o).

Finally, we show that [J(z]), z;] = 5”,](h) holds. By the definiton of J(x}), [J(z]),x;] is

)

equal to [x;"'l,xj_,o] + [wj',xj ol- By (3.3), [z 1% 0] 18 05 jhi 1. By direct computation, we have

[wj' ] xj_,O]

e te + ka1 ke
__T Z Z [xz 7x—a][xa 7xj}

a€A; 1<k, <dimgq

€1+ &2 p(a)p(e) i1t ka1 .=1.ka
- > > (-1 [z, 22 25 lage (4.18)

a€Ay 1<k, <dimg,

By Lemma 4.6, we have

the first term of the right hand side of (4.18)
€1+ €2 _
R D D DI T Pt L N PR T)

€A 1<k, <dimgq

By the Jacobi identity, we find the equality

R N | O L EA N |
= = ()Pt at ) ag Jake — (C)POP (Pl o g e
(4.20)
Thus, we obtain
[wj7xj o)

_&ate pla)p(ay) ko1 =1 ka
=5 Z Z (=1 N ate,), 27

a€A} 1<k, <dimgq

€1+ &2 a)p(o aj — - €1+ €2
LRI DD DI G ) il O e N e 030
a€Ay 1<k, <dimgq

€11 € p(@)p(e) ko 1 p—]pke
- T Z Z ( 1) H i ax—a]az]‘ ]xa

a€A; 1<k, <dimgq

_e1te ko ko 51+<‘52 2
=5 Z Z i (v, )z x 0i,jh3,

—ata
a€A; 1<k, <dimgq

where the first equality is due to (4.19) and the second equality is due to (4.20). Then, we
have shown that [J(z;"),z;] = &; ;J(h;). Similarly, we can obtain [z, J(z;)] = d;5J(hi). This
completes the proof. O
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By (4.8)-(4.11), we obtain the following convenient relation.

Corollary 4.21. (1) When i # j,j £1, [J(xzi),x]i] = 0 holds.
(2) Suppose that j <i—1. We have the following relation;

ad(J(«)  J[  ad@p) ] ad@p))

i+1<k<m+n—1 0<k<j—1

=ad(e)ad(J(z5,)) [T adey) J[  ad@)())

i+2<k<m+n—1 0<k<j—1

g1 —¢
= bijit+1 12 2 H ad(zi) H ad(xki)(xf)

i<k<m+n—1 0<k<j—1

(3) For all a € Z Lo and Tyo € B+a, there exists a number df; such that
1<i<m+n-—1

(g, @)[J(hi), 240l = (i, ) I (hy), 24a] = +d 740

(4) Suppose that j <i—1. We have

J(hs), ] adf) ] ad@i)@))]

i<k<m-+n—1 0<k<j—1
=+(as0)  [[  ad@d) [ ad=@)J))
i<k<m+n—1 0<k<j—1
+ e H ad(:v,f) H ad(xf)(xji),
i<k<m-+n—1 0<k<j—1
where o = Z o + Z ag and cy 18 a complex number.
i<k<m+n—1 0<k<j

Proof. We only show the relations for +. The other case is proven in a similar way.
(1) By the definition of the commutator relations of sl(m|n), [z}, x;r] = 0 holds when ¢ # j, j%1.
There exists an index p such that a;, # 0 and a;, = 0. Appling ad(J(h,)) to [z ,27] = 0, we

iy
obtain
€1 — &2

2

by (4.9). Since a;, # 0, we have shown that [J(z]), xﬂ = 0 holds.
(2) By (1), the left hand side is equal to

ad((J(z),ell) [T ad@d) [T ad(@))).

i+2<k<m+n—1 0<k<j—1

ai,p([J(a:T"), xl] - bi p

R afaf]) =0

By (4.11), it is equal to

ad(lz/, J(«} ) [I  ad@d) I adl)E))

i+2<k<m+4n—1 0<k<j—1
€1 — &2
— biis1 ad([z}, =1 4]) II ad(zf) [ ad@h)). (422
i+2<k<m+4n—1 0<k<j—1

By the Jacobi identity, the first term of (4.22) is equal to

ad(@f)ad(J(«fy)) [T ad@@) JI  ad@)()).

i+2<k<m+n—1 0<k<j—1

This completes the proof.

18



(3) It is enough to assume that z4, = H ad(zi)zi. By (4.9), we have
s<k<t—1

[J(hi), xxa] = £6(s > i+ 1> t)a;it1 H ad(xf)J(xil) H ad(zi )z
s<k<i i+2<k<t—1

(s >1i>t)ai, H ad(zi)J (zF) H zaud(:rf)a:ti
s<k<i—1 i+1<k<t—1

+6(s>i—1>1t)a; ;-1 H ad(zi)J(z ) H ad(zi)af

s<k<i—2 i+1<k<t—1

+ d} (o, @) H ad(zi)zi,

s<k<t—1

where d} is a complex number. By a discussion similar to the one in the proof of (2), we find that
there exists a complex number d? such that the sum of the first three terms is equal to

+(o, @) H ad(zi)J(zF) + d2 (v, @) H ad(zi)ai.

s<k<t—1 s<k<t—1
Then, we obtain
(aj, a)[J(hi), 2+a] = (o, @) [T (hy), v+a] = £{(0, @)(d} + d7) — (i, @) (d} + d3)} 2t

We complete the proof.
(4) It is proven in a similar way to the one in the proof of (3). O

Next, in order to obtain (4.27), we prepare {7;}, £0,m» Which are automorphisms of the affine
2(ay, @)

(i, ;)

super Yangian. Let us set {s;}i20,m as an automorphism of A such that s;(a) = o — i

By the definition of ;[(m|n), we can rewrite s; explicitly as follows;
—Qy ifi = j,
si(aj) =Qai+a; ifj=itl,
o otherwise.

It is called a simple reflection. We also define {r;}, £0,m 88 an operator on the affine super Yangian
determined by

7;(z) = exp(ad(z;")) exp ( - ad(xi_)) exp(ad(z]))z. (4.23)
By the defining relation (3.7), 7; is well-defined as an operator on the affine super Yangian. The
following lemma is well-known (see [26]).

Lemma 4.24. (1) The action of 7; preserves the inner product k.
(2) For alla € A, 75(ga) = 9s:(a)-

Then, in a similar way as that of Lemma 3.17 and 3.19 of [21], we can compute the action of
7; on J(h;) and write it explicitly.
Lemma 4.25. When i # 0,m, we obtain
2(0[1‘, Oz]‘)

7—7(‘](}]’])) = J(hj) - (ai 041')

J(hz) + ai,jbj,i(el — 62)}11‘.

Since dimg, = 1 for all & € A'™, we sometimes denote 2k and xke as x_, and z, for all

«
re
ac A,
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Proposition 4.26. Fori,j € I and a positive real Toot «, the following equation holds;

(o, @)[J(hi), o] — (i, ) [T (hy), xa] = €520, (4.27)

2}

(e —x

where ¢f'; is a complexr number such that ¢i'; = —c; ;.

i,
Proof. We divide the proof into two cases; one is that « is even, the other is that « is odd..
Case 1, « is even.
Suppose that « is even. Then, there exists s € Z such that a is an element of Z Za; + s
1<I<m—1
or Z Zo; + s6. We only prove the case where a € Z Z>00; + Z>pd. The other
m+1<Il<m+4n—1 1<i<m-—1
cases are proven in a similar way.
First, we prove the case where a = ay, + 6, where k # 0, m.

Claim 4.28. Suppose that a = aj + s such that k # 0, m. Then, we have

(aiaak)
(ak’ak)

(OZz‘, Oék)

[J(hl)vxa] = (ak ak)

[J(hi), To] + doa, [J(hi),z_a] = [J(h), T—0) — daZ—q,

where d,, is a complex number.

Proof. Let us set
1 + + 4y (ot
Ty = [xk ) H ad(xp ) H ad(xp )(xkfl)}
k+1<p<m+n-—1 0<p<k—2
It is enough to suppose that x4, = ad(zl;)%zi since ad(xly)*z; is nonzero. By the Jacobi
identity, we obtain

[k, @) T (hi) = (o, @) (i), ad () 2]

= 3 ad(elhy) ad([(an, @) (hs) — (ai, @) (h), 2l ) ad(a )" ait
0<t<s—1

+ ad(2ls)*[(ag, @) T (hi) — (i, @) T (hy), ). (4.29)

By (4.9), [(ak, a)J (hi)— (v, @) J (hg), 2] can be written as & fyaif, where fy, is a complex number.
Then, we have
[T (hi), 2]
= [oi, (o, @) (h) = (i, e) I (), JT  ad@ep) T adlep) @)l furks.

k+1<p<m+n-—1 0<p<k—2

By Corollary 4.21 (4), we can rewrite the first term as

+(am o))z,  [[ ad@d) [ ad@d)Ji)

k+1<p<m+n-—1 0<p<k—2
Flana)ana)lt, [ ad@d) ] ad@H)Ii)] £ gaks
k+1<p<m+n—1 0<p<k-2
= ﬂ:gkxié,
where gj, is a complex number. We have obtained the statement. O
Now, let us consider the case where « is a general even root. Any even root o = Z Ot can
0<k<lI

be written as H Sp+k(ap1) by the explicit presentation of s;. Let us prove that the statement
0<k<I—1
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of Proposition 4.26 holds by the induction on [. When [ = 1, it is nothing but Claim 4.28. Assume

that (4.27) holds when | = q. We set « and 3 as H Sp+k(Qprqr1) and H Sp+k (Qprgt1)-
0<k<q 1<k<q

Suppose that x3 is a nonzero element of gg. By Lemma 4.24, g, contains a nonzero element

75, (2g). Thus, we obtain

(o, @)[J(hi), Ts, (2p)] — (@i, @)[J (hj), s, (T£p)]

= {00 = T2 50y ) 5] — (o0 ) [T(0) — T2 1), (029

F {(a, @)apibi p — (i, @)ap jbjp}E1 — €2)T+a (4.30)

by Lemma 4.25. Let us suppose that (ay, 5) # 0. Then, by the induction hypothesis, we find the
relation
(aw, B)

(ataﬂ)

[J(hu), x45] = + [T (he),z45) £ ) i (4.31)

Applying (4.31) to (4.30), we obtain
(vi, B) 2(ai7ap) (O‘paﬁ)

T as] = {005 Taa Tan @002+ i)

(ai,ﬁ B 2(ai,ap)ap>

2(ai7 ap)

(ap, op)

[J(h) —

Qp,
— ) (k) ] + )
o ) 2(ai, ap)
By the definition of s,, o is equal to f — ———-,,. Then, we have
(ap, op)
00 = 208 1) o] = £ () ]+ ). (432
' (apv ap) P (at, B) ’ g

Similarly, we find the relation

—~
~—

k) = T2 1), 9] = 52

Appling (4.32) and (4.33) to the right hand side of (4.30),

(aj, @)[J(hi), s, (z£5)] — (i, ) [ (hy), Ts, (215)]
=47, (o, Lé’ai)c-ﬁx — (o, (o, 0
=x sp{( Js )(Ozt, ) (R ( (2] >(Oét,5

F {(aj, a)ap,ibip — (i, @)ap jbjp}(er — €2)T+a-

([J(he), 28] + €} y2sp). (4.33)

~—

~—

) wig})

~—

This completes the proof of the case where « is even.
Case 2, a is odd.
Here after, we suppose that m is greater than 3. The other case is proven in a similar way.
First, we consider the case where o = Z ; + oy + 80.
1<i<m—1
Claim 4.34. (1) When i # 0,1,m,m + 1, [J(h;), ¥+a] = £ci 214, Where ¢, is a complex number.
(2) We obtain the following equations;

—~
~—

Qp, X

[J(ho), 'I:I:oz} = (al a) [J(hl), Iia] :l: d071xia, (435)
[J(hm)7$ia] = M[J(hl),xia} + dmylxim (4.36)
[ (hong1)s Ta] = W[J(hm), Tio] £ dommi1Ttan (4.37)

where do 1, dp,1, and dy, m1 are complex numbers.
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Proof. (1) When 4 # 0,1,2,m,m + 1, we set z2; = [27, H ad(x;t)(xoi)]. It is sufficient
2<p<m+n—1

Tia = ad(:vié)s Z ad(xf)(:cf,i)

1<i<m-—1

to assume that

since the right hand side is nonzero. In a similar way as that of Claim 4.28, we also have

[J(hi), x%5] = thsals, (4.38)
), Y k) =t Y ad@d)h) (4.39)
1<i<m—1 1<i<m—1

where hs and i, are complex numbers. Thus, we find the equality
[J(hi),wke] = £(shs +ia) ad(@ds)* D ad(a])(zy,)
1<i<m—1
by the Jacobi identity, (4.38), and (4.39). We have proved the statement when i # 0,1,2, m, m~+1.
When i = 2, we set xié as
[xiﬂ, H ad(a:;t) H ad(x;t) ad(xi)}.
m+2<p<m+n—1 0<p<m-—1

It is enough to assume that

Tro =ad(zls)® Y ad(z)(ar)

1<i<m—1

since the right hand side is nonzero. In a similar way as that of Claim 4.28, we also have
[J(hi), 2%5) = £iszls,

J(he), Y ad(zf)(@p)] =£ka Y ad@))(e),

1<i<m-—1 1<i<m-—1

where js and k, are complex numbers. Thus, we find the relation

[J(hi), za] = £(sjs + ko) ad(235)* D ad(af)(ar)

1<i<m—1

by the Jacobi identity, (4) and (4). We have proved the statement when ¢ = 2.

(2) First, we prove that (4.35) holds. By the definition of o, 74, can be written as [z4g, 2],
where 715 is a nonzero element of g,_,,,. Since [J(ho),zE] and [J(h;), 2] is equal to zero by
(4.9), we obtain

[J(ho), z+a] = [[J (o), xiﬁ]v .’L‘i], (4.40)
[J(h1), 220] = [[J (M), 2£5], 275). (4.41)
Then, because 3 is even, we have
(). ssl, 7] = (S5l k] + (o2 s ] (142)
by Case 1. By(4.40), (4.41), and (4.42), we find the equality
ko) za] = (2 (0) 0] + (2 s 5]

Thus we have shown that (4.35) holds. Similarly, we obtain (4.36) since [J(h,), z;}] = 0 holds.
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Finally, we prove that (4.37) holds. We set 24, = [z7, 11 ad(xff)(mg[)]. It is enough
2<p<m+n—1

to check the relation under the assumption that x4, = ad(zi;)* [] ad(:c;,t)(xﬁ) since the

1<p<m—1
right hand side is nonzero. Then, we obtain
[J(hm)a xia]
= Y ad(@ly)tad([J(hm), 2l ad(@ls) 0 [T ad(e)(a7)
1<t<s 1<p<m-—1
+ (), ad(zds) [ ad(@y)(@n)] (4.43)

1<p<m-—1

[J(hmt1), 0]
= Y ad(eiy) "t ad([J (hnr) ads)) ad(eds) ™ [ ad(eg)(er)

1<t<s 1<p<m—1

+ [T () ad(@ds)® [ ad@@) (@) (4.44)

1<p<m-—1

by the Jacobi identity. First, we rewrite the first term of the right hand side of (4.43) and (4.44).
By the assumption m is greater than 3, [J(hy,), 23] = 0 holds by (4.9). Then, in a similar way as
that of Claim 4.28, we find the equalities

[T (hm), 745) = Etszls, (4.45)
[J(hms1), 245] = Fusrls, (4.46)

where t5 and us are complex numbers. Then, we obtain

the first term of the right hand side of (4.43)

= +tsad(zis)® H ad(mf)(mi), (4.47)
1<p<m-—1
the first term of the right hand side of (4.44)
= +ugsad(zis)® H ad(xff)(xi) (4.48)
1<p<m—1

by (4.45) and (4.46). Next, we rewrite the second term of the right hand side of (4.43) and (4.44).
By (4.9), we obtain

the second term of the right hand side of (4.43)

=adzly)® [[  ad@)J (), oy 2l (4.49)
1<p<m-—2
the second term of the right hand side of (4.44)
=ad(ely)”  J] ad(@)I(hme), lom_ps 2]l (4.50)
1<p<m-—2

By (4.9) and (4.10), we find that

[J(hm)v [xrﬂr:z—lv xrin]]

g1 —¢€
= b AT (@) TE]F b1 k0]
_ + + €1~ ¢ + +
= :tam,m—l [xmfla J(xm)] + am,m—l(bm—l,m + bm,m—l) 9 [‘Tm,l, Zm], (451)

[T (hmt), [y, 2]
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€1 — &2

5 [zE_ | zt] (4.52)

m—1>%m

= iam—&-l,m[l’rﬂ;fla J(‘Ty:lr:L)] + am—l—l,mbm,m+l

Since am,m—1 = (@, Q) and Gm1,m = (@, Qm41), by (4.51) and (4.52), we obtain

(@ s ) (), [, -1 230 ]] = (@ @) [T (Banein), 25—y, 23] = Fualar, s am], (4.53)

m—17*m m—1Tm m—1*m
where u,, is a complex number. Thus, we know that

(@0, t1) (the second term of the right hand side of (4.43))
— (@, auy ) (the second term of the right hand side of (4.44))

= ug ad(zds)® H ad(x;t)(xi). (4.54)

1<p<m—1
holds. By (4.47), (4.48), and (4.54), we have

(0‘7 O‘m+1)[*](hrr1)a xia] - (a, O‘m)['](hm-&-l)a xia}
= +(s(, apmy1)ts — s(a, am)us + ug) ad(zs)* H ad(x;,t)(xi).

1<p<m-—1

Then, we have obtained (4.37). O

Next, let us consider the case where « is a general odd root. We only show the case where
a € qy, + Z Z>po 4 s6. The other case is proven in a similar way.

1<t<m—+n-—1,
t#m
Since a € oy, + Z Z>oay + 0, o can be written as H s, ( Z a; + am). Then,
1<t<m+n-—1, 1<t<p 1<i<m
t#m

we prove the statement by the induction on p. When p = 0, it is nothing but Claim 4.34. Other
cases are proven in a similar way as that of Case 1. 0

We easily obtain the following corollary.

Corollary 4.55. The following equations hold;

[J(ha), 03] + [vi, T (hy)] = O, (4.56)
[T (hi), J(hy)] + [03, 03] = 0, (4.57)
where U; = v; + il —552 hi2.
Proof. First, we show that (4.56) holds. Since v; = # > (aj, @)z 2k holds, we obtain
a€AL®
[J(ha), 03] + [vs, T (hy)]
€1+¢€ €1+e
=S S (g ), ol + RS (o)l (),
Qe aEAL
FETE Y (@l e+ T Y (e 0aafra Sl (459)
aeATe aEAT?

By Proposition 4.26, there exists ¢;*; € C such that

€1 +¢e2 €1+ €2

> (g, @) (hi), 2—alTa + > (i, a)[za, J(h)]2a

aeAr aEAY
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g1+ €2
== Z Ci i T—aTa (4.59)

aEAf
and
IS S (o a)rald ()] + TS (s, 0l T(hy)]
aEAff aEAﬂf
- 51;_52 Y &T-atan .
QEAT

Therefore, applying (4.59) and (4.60) to (4.58), we have obtained the relation (4.56). By the
defining relation (3.3), we find the equality

[J(hi) = 03, J(hy) — vj] = [hi;1, hja] = 0. (4.61)
On the other hand, we find the relation
[J(hi) = vi, I (hy) = 03] = [T (ha), T ()] = [v3, T (Ry)] = [T (i), 03] + [03, 05]-

By (4.56), the right hand side of (4) is equal to the left hand side of (4.57). Thus, by (4.61), we
have found that (4.57) holds. O

Now, we are in position to obtain the proof of Theorem 4.3. To simplify the notation, we set
O@)asz@l+ 1@z foral xz €Y, o, (5[(m|n))

Proof of Theorem 4.3. Tt is enough to check that A is compatible with (3.17)-(3.25), which are the
defining relations of the minimalistic presentation of the affine super Yangian. Since the restriction
of A to 5[(m|n) is nothing but the usual coproduct of 5[(m|n) A is compatible with (3.18), (3.23),
(3.24), and (3.25). We also know that A is compatible with (3.20) since A(zfl) is defined as

1 T . .

. _[A(hz‘,l), A(xfo)] if i#m,0,

1 ~ g1 —¢

@ _[A(hiﬂ,l),A(l’fo)] + bi-‘rl,i%
i+1,%

+

+ A(zy,) i i=m,0,

and A(?LHM) and A(ﬁi’l) commute with A(hjo) by the definition. We find that the defining
relation (3.19) (resp. (3.21), (3.22)) is equivalent to (4.11) (resp. (4.9), (4.10)) by the proof of
Lemma 4.7. Tt is easy to show that A is compatible with (4.11), (4.9), and (4.10) in the same way
as that of Theorem 4.9 of [21]. Thus, it is enough to show that A is compatible with (3.17). By
the definition of J(h;), we obtain

[A(hi1), A(hj1)]
[A(J(hi)) — A(vi), A(J(hy)) — A(vy)]
= [A(J(h:)), AT (hy))] + [A(vi), Av))] = [A(T (hi)), A(07)] — [A(vi), AT (hy))], (4.62)
where v; = v; + a2l ;EZ hf It is enough to show that
[A(J(hi)), AT (h;))] + [A(v;), A(07)] = 0 (4.63)
and
[A(T (i), Av)] + [A(v:), A(J(hy))] = 0 (4.64)

hold. We only show that (4.63) holds. The outline of the proof of (4.64) is the same as that of
Theorem 4.9 of [21]. In order to simplify the computation, we define

Q4 = Z ub @ uy + Z Z (—1)P@) gka g gha

1<k<dimb Q€A 1<k, <dimgq
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Q_ = Z Z xﬁ@@xiﬂ

acAy 1<k, <dimgq

Q= 3 drewut Y, D ()Yl ealy 4k @b,

1<k<dimb Q€A 1<k, <dimga

where {u*} and {u;} are basis of h such that r(ug,u!) = dx;. By the definition of J(h;), it is easy

to obtain
€1+ €9

A () = O ) + 5

[hio ©1,9] (4.65)
since we have
Alzy)=z@1+102)(y@1+10y)
_ (_1)p(1)p(y)xy Q1+ (_1)p(x)p(1)1 ® Ty + (_1)p(1)p(1)x ®y -+ (_1)p(x)p(y)y Qx

by the relation (z®y)(zQw) = (—1)p(y)p(z)x2®yw for all homogeneous elements x,y, z, w. Thus,
by (4.65), we obtain

(AT (ha), AT (hy))]
= O (ha), J(hy)]) + 2252

2
- LE20I (), (o © 1,0 +

(O (7)), [hjo @ 1, ]

(61 + 62)2

1 Hhuo ®1, Q], [hj,o ®1, QH
First, we prove that

€1+ €2
2

E1+ €2
2

holds. Since [h; o ®1,Q] = EaeAf (o, ) (T—g ® Ty — Ty ® T_q) holds, we have

(BT (hi)), [hjo ©1,9] - [O(J (hs)); [hio @ 1,9 =0 (4.66)

(O(J (hi)), [hyo ® 1,Q]] — [B(J(hy)), [hio ® 1,9]]
Y (@) ()" VI () wa] @ 20 = (1) Va0 @ [T(h), 7-0))

aEALE

+ [J(hi), 2 0] @ To — 20 @ [J(hi), 24))
= 3 (0 a) (DI (), 6] @ 1 — (~ 1) V0 @ [T(hy), 7-a])
ozeAff
+[T(hy) 0] ® Ta = 20 @ [T(h), 24))

- Z (a, a5)(a, ai)cﬁj((*l)p(a)xa QT—q — (*1)1)(&)1704 QT o+ Toa®Ta —Toa ®Ta)

aEAT®
n Z (O‘vO‘i)(a’aj)c?,i((_l)p(a)xa QT—a — (_1)p(a)xa ®T-a+Toa®Ta —Toa®Ta)
aEA®

=0.

where the third equality is due to Proposition 4.26. Therefore (4.66) holds. Since A(v;) =
O@) — 222 [h, 001,05 — Q_] holds, we obtain

[A(©:), A(v5)]

= 0[5 5]) + 22 (-0, o © 1,24 — Q)]+ [0F,), lhio © 1,94 —2_])
+ W[[hm ®1,04 — Q] [hjo® 1,24 — Q).
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Using this along with Q = Q4 + Q_ and (4.66), we find the equality

[A(T(hi)), AT (Rj)] + [A(W:), Av;)]
= O([J(hi), J (h;)] + [0i, v5])

%(—[D@z)y [hj,O & 1, Q+ — Q_]] -+ [D(ﬂ])’ [hi,O ® 1’ Q+ _ Q—H)
+ @(th,o ®1,04], [hj7o ® 1,4+ Hhi,O ®1,9_], [hj,() ®1,Q_]]). (4.67)

By the same way as the one of Theorem 4.9 in [21], we can check that the sum of the last four
terms of the right hand side of (4.67) vanishes. By Corollary 4.55, O([J(h;), J(h;)] + [0;,7;]) =0
holds. The coassocitivity is proven in a similar way to the one of [21]. We complete the proof. [

By setting the degree on Y, ., (sl(m|n)) determined by (4.2) and deg(d) = 0, we can de-
fine the Yz, .,(sl(m|n)) (vesp. Yz, ., (sl(m|n))®Y:, o, (sl(m|n))) as the degreewise completion of
Y., e, (sl(m|n)) (vesp. Yz, e,(sl(m|n))®?) in the sense of [33]. We regard a represenation of

Y., e, (sl(m|n)) as that of sl(m|n) via ®. By Theorem 4.3, we easily obtain the following corollary.

Corollary 4.68. The linear map A: Y, ., (sl(m|n)) — Y, e, (sI(m|n))®Yz, o, (sl(m|n)) uniquely
determined by

A(hio) = hio®1 +1®hio, Alaf,) =25 @1+ 17, A(d)=de1+1®d,
A(hi1) = hi1®1+ 180h;1 + (e1 + €2)hi 0®hi o — (61 + €2) Z Z (v, o)z @k

a€A; 1<k, <dimgq
is an algebra homomorphism. Moreover, A satisfies the coassociativity.

In particular, A defines an action on Yz, ., (sl(m|n)) on VW for any Yz, ., (sI(m|n))-modules
V, W which are in the category O as sl(m|n)-modules.

5 Evaluation map for the Affine Super Yangian

Since the definition of the affine super Yangian is very complicated, it is not clear whether the
affine super Yangian is trivial or not. In this section, we construct the non-trivial homomorphism
from the affine super Yangian to the completion of U(gl(m|n)). In this section, we define a Lie
superalgebra gT[(m|n)s“ = gl(m|n) ® C[t,t~1] ® Cé @ Cz whose commutator relations are given by

[z, y] @ t“TY + 8y oustr(zy)é if z,y € sl(m|n), ‘
[ @1,y @ 1°] =  [ea s €] @ 4 + Oupw0ustr(Ba,pBi i) + buo 000 pu(—1)7 P02
fz=eqp y=eis

z and ¢ are central elements of é\[(m|n)

For all s € Z, we denote E; ;®t° by E; ;(s). We also set the grading of U(é\[(m|n))/U(§[(m|n))(2—
1) as deg(X (s)) = s and deg(c) = 0. We introduce a completion of U (gl(m/|n)*) /U (gl(m|n)*) (z—
1) following [33] and [21]. For all s € Z, we denote E; ; ® t* by E; ;(s). We also set the grading
of U(gl(m|n)*")/U(gl(m|n)*")(z — 1) as deg(X(s)) = s and deg(c) = 0. Then, we find that
U(gl(m|n)**) /U (gl(m|n)***)(z — 1) becomes a graded algebra and we denote the set of the degree

PN

d elements of U (gl(m|n)**r) /U (gl(m|n)**")(z — 1) by U(gl(m|n)*")4. We obtain the completion
U(gl(mln)*)comp = €D U (@Hm|1)* ) comp.a-
dez

where

U (gl(m|n)*")q = lim U(gl(mln)**)a/ Y U(glim|n)*")a—, U (gl(m[n)*").
N r>N
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Let us state the main result of this section. In order to simplify the notation, we denote €1 + &5

as h.

Theorem 5.1. Assume ch = (—m + n)ey and z = 1. Let v be a complex number. Then, there
exists an algebra homomorphism evy,: Yz, ¢, (sl(m|n)) — U(gl(m|n))comp,+ uniquely determined by

evy, (le)

evy (x;l) =

evv(x;fo) =, evv(:rgo) =z;, evy(hio)=hi, (5.2)
m—+n .
(W= (m—n)en)ag + 133 (~1PP By i(—5)Eia(s +1) if i =0,
520 k=1

(v—(i— 2§(i >m+1)(i —m))er)x)
+ﬁzz 1P B, 1(—3) Er.ita(s)

520 k=1
m—+n
+03° N (—1)"ME (=5 — 1) Epiga (s +1)
5>0 k=i+1
ifi 0,
(5.3)
m—+n
(v—(Mm—n)e1)zg — hz Z (—l)p(k)ELk(—s — 1) Ekm+n(s) ifi =0,
s>0 k=1
(v=>GE—-20(i >m+1)(i—m))er)x;
“DPORY Y ()Y B 4(-5)Biis)
520 k=1
m+n
DPORS T ST ()PP By (s — 1) Era(s + 1)
s>0 k=i+1
ifi # 0,
(5.4)
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(v—(m —n)e1)ho + AEmtnm+n(E11 — )

m—+n
_hz Z p( )Eern k( )Ek,m+n(s)
s>0 k=1
m—+n
—hz Z )Elk —s—1)E1(s+1)
s>0 k=1

ifi=0,

(v = (i = 26 = m+ )i —m)e)h — (=1 VBB i i

evo(hin) = Lp1)r® ZZ VPN E; 1 (—5) Bri(s)

s>0 k=1
m—+n
DPOS S ()M Ei (=5 — DBri(s + 1)
s>0 k=i+1
PSS ()PP B 1 (—5) B i (5)
s>0 k= 1

S 5 e D)

s>0 k=i+1
if i # 0.

(5.5)

The outline of the proof is the same as that of [30]. It is enough to check that ev,, is compatible
with (3.17)-(3.25), which are the defining relations of the minimalistic presentation of the affine
super Yangian. When we restrict ev,, to s?[(m\n)7 ev, is an identity map on s?[(m\n) Thus, ev, is
compatible with (3.18), (3.20), (3.23)-(3.25).

We set a anti-automorphism w: U(gAI(m|n)) — U(é\[(m|n)) as

wXeot)=(-1)"XTat, w(c) =c,

where X7 is a transpose of a matrix X. Then, the compatibility of ev,, with (3.21) and (3.22) for —

are deduced from those for 4+ by applying the anti-automorphism w since we have w(ev, (h; 1)) =

evy(hi1) and w(evv(:z:;-fl)) = (—1)p(i) evy(z; ;). Therefore, it is enough to check the following

lemma.

Lemma 5.6. The following equations hold;

[evv(xxl), evv(xjfo)] = d;jevy(hin), (5.7)
~ €1 —¢
fevo (hin), 2] = asj(evu(a;y) = bij = 23;;), (5.8)
E —|—6 —¢€
evi(aty) af] = ot evo(@)y)] = ai S el ol — by 2], (59)
[CVU(hi,l),CVU(th)] =0. (510)

The rest of the paper is devoted to the proof of Lemma 5.6.

5.1 The proof of (5.7)

We prepare one claim before starting the proof.
Claim 5.11. The following relations hold;

ZZ "N B (=) Erj(s), Exy) (5.12)

s>p k=1
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=64 Z Z P(k)E —8)Epy(s) — (1 p(Ez )P(Eey) Z Z P(k)E (—$)Er4(5)

s>p k=1 s>p k=1
+{or<a<y) =@ >a>y)} Y (-)PIPERED R (s B, (s), (5.13)
s>p
m—+n L
DS )PP B (—5) B j(5), Bay)
s>p k=a
m—4n L . m—+n i
_533”22 ( )E —8)Epy(s) — (1 P( i,5)P( xu)zz ( )E (=) By (s)
s>p k=a s>p k=a
+{0r>a>y) —dx<a<y}d (VPO EDEDI R, (5B, (s). (5.14)
s>p

Proof. We prove only (5.13) since (5.14) is proven in a similar way. By direct computation, the
first term of (5.13) is equal to

5”22 PP B, (=) By (s)

s>p k=1
—0(y < a) Z (—l)p(y)ﬂ’(Ey’j)p(E“”'y)ELy(—s)Ex,j(s)

s>p

+o(a < (L)Z(—1)p(z)+p(EI’j)p(EI’y)Ei,y(_s)Em,j(3)

s>p

— (CAPEIE) S (1P, (B ), (5.15)

s>p k=1

Since p(y) + p(Ey ;)p(Eey) = p(x) + p(Es ;)p(Ey,y), the sum of the second and third terms of
(5.15) is equal to

{dx<a<y) —dx>a>y}d (-)POPEREDE (B, (s).

s>p
Then, we obtain (5.14). O

Suppose that i,j # 0. Other cases are proven in a similar way. By the definition of ev,,(xj"l),
we obtain

levo (@), evu ()]

= [(v— (i = 26(i > m +1)(i —m))er)a, (~1)PV By ]

. |
Y (UMY B (=5) B (9, (-1 B
§>0 k=1

m—+n

+hY Y (- k(=5 = DB i (s + 1), (1)PD B ], (5.16)

s>0 k=i+1

By (5.13), FLZ Z 1P® E, 1 (=) Eripa(s), (=1)?Y E; 41 ], the second term of the right hand
5>0 k=1
side of (5.16), is equal to

(2 Z (1P M E; (=) Br,ita(s), ()P Ej 11 )
50 k=1
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.

.

>0 k=1
_6i7jh ( 1) P(Ei,i+1)p(E;, 1+1)E ( )Ei+1,i+1(3)- (517)

s>0

m—+n
Similarly, by (5.14), [1Y_ > (=1’ B 1(—s — 1) By i (s+1), (=1)"7 Ej41 ], the third term

§>0 k=i+1
of the right hand side of (5.16), is equal to

m—+n

hz Z p(k)E k(=s =1 Ek+1(s +1), (-1 )p(j)EJHvJ]

s>0 k=i+1

_hz Z 8. (=PI R (s — 1)Epi(s + 1)

—RYD D B (IO ED B (s = 1) B (s + 1)
s>0 k=i+1

+hY 8 ()P IEVTPOE, (—s — DBy (s + 1), (5.18)
s>0

We can rewrite the sum of the last term of (5.17) and the last term of (5.18). Since p(E; ;11) =
p(i) + p(i + 1) holds, we obtain

B hz p(El i+1)P(Es, l+1)E ( )Ei-t,-l,i-i-l(s)
s>0

+ FLZ (H—l +p()+p(Eit1,i+1)p(E;, ‘“)E i(=s = DEi1i(s+ 1)
s>0

_ 7hz (*1)p(Ei'i+1)Ez‘,i(*s)Ez‘+1,i+1(8) + hz (71)p(Ei,i+1)Ei,i(7s —1)Eip1a41(s +1)
5>0 5>0

= —h(—l)p(Ei’iJrl)Eiﬂ‘EH_LH_L (519)

Thus, we have shown that [evv(m;‘:l),evv(mjfo)] = 0;,jevy(hi1) holds by (5.17), (5.18) and (5.19).

5.2 The proof of (5.8)

We only show the case where i,j # 0 and when ¢ = 0 and j # 0. The other case is proven in a
similar way.

Case 1, 14,5 # 0.

First, we show the case where 4, j # 0. By the definition of ev, (h; 1), we obtain

[evy (hin), evv(xIOM
= (v (i~ 200 > m+ )i~ m))er)hs — h((Bii)? + (Brsrisa)?), By

1P ZZ ~8)Eyi(s), Ejj+1]

s>0 k=1

m-+n

1y7®) Z Z ik(—s —1)Eg (s + 1), Ej j41]

s>0 k=i+1
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p(1+1 Z H_Lk(fS)Ek,H-l(S)aEj,j+1]

5>0 :1
+
DPISN N ()PP B (=5 — 1) B (s + 1), Ej - (5.20)
>0 k=i+1

Let us compute these terms respectively. By direct computation, the first term of the right hand
side of (5.20) is equal to

[(v—(i—25(i >m+1)(i —m))e1)h; — %ﬁ((Ei,i)Q + (Bit1,i41)%), Bj j+1]

=(w—->{—-2t>m+1)(i— m))sl)ai,jxj'

h
— =(0i;({Eiit1, Eii} — {Eiit1, Biv1i41}) — 0i jri{Eic1,i, Bii} + 0iv1,j{Eit1,i+2, Big1,i41})-

2
(5.21)

By (5.13) and (5.14), we also find that the sum of the second and third terms of the right hand
side of (5.20) is equal to

1P ZZ —5)Eri(5), Ej j11]

§>0 k=1
) m+n A
+ (=1 3T (D)"Y Ey k(=5 — D) Epa(s + 1), Bj i)
k=i+1
p( ) Z Z 8i.4( P(k)E 5 (—5) Ep.i1(s)
s>0 k=1
- ?) Z Z Si+1(— Eji(=8)Ek,(s)
>0 k=1
P65 (- 1PV B (—5) Eii(s)
s>0
m—+n
PO 37 0" Bi(=s = DB (s +1)
s>0 k=i+1
m—+n
YOS G ()P B (s = 1) Epa(s + 1)
s>0 k=i+1
- PN 5 s ()PP P Eerd s (—s — 1) By (s + 1). (5.22)
s>0
By a direct computation, we obtain
the sum of the third and 6-th terms of (5.22) = 70, ; E; i41E; ;. (5.23)

Next, let us rewrite the sum of the first and 4-th terms of (5.22). By the definition of evv(xj’l),
we obtain

the first term of (5.22) + the 4-th term of (5.22)
= 5i7j(evv(xi+71) —(v—=>0—-20(i>m+1)(— m))el)xj) (5.24)

By the definition of evv(as;fl), we also obtain

the second term of (5.22) + the 5-th term of (5.22)
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=—0; j+1h(— ZZ p(k)E —5)Ek,i(s)

+
— i h(=1)PD Y Z —s—1)Eri(s+1)
>0 k=j
— i j+1 BB
= 8151 (=1 evy(afy) — (v — (5 — 260( > m +1)(j — m))er)a) — Wi j41 By iBig. (5.25)

Therefore, by (5.23), (5.24) and (5.25), the sum of first, second and third terms of the right hand
side of (5.20) is equal to

(v=(i—=25(i >m+1)(i— m))sl)ai7ja?;“
h
= 5011, Bii} — {Biiv1, Bivria}) = Oije{ Eimvis Bi} + 0 j{ Eivive, Eivri1})

18 B By + (—1)P96, j(evo(a)) — (v — (i — 20(i > m + 1) (i —m))ey)a;)
— (=)"75; s 1 (evo(zfy) — (v = (j — 200 > m +1)(j — m))er)a)). (5.26)

Similarly to (5.26), we find that the sum of the 4-th and 5-th terms of the right hand side of
(5.20) is equal to

— 1653 Bi 11 Biien — (~1)P 600 levy (0f,) = (0 = (i = 20(7 > m +1)(j — m))er)a])
+ 00410 B 1,001 Eivt en + 0,y (1P (v () = (0 = (1= 2000 > m + 1)(i = m))er)a).

(5.27)
Then, [evu(ﬁi’l)ﬁvv(x;fo)] is equal to the sum of (5.21), (5.26) and (5.27).

(v—=(—20(t >m+1)(i— m))el)aiijj
h
- 5(5i,j({Ei,i+1, Eii} —{Eii+1, Biv1i01}) — Sijri{Bi—1i, Bii} + 6it1,j{Bit1,i42, Biv1,i41})

+w—-(GE—-26G>m+1)(i— m))el)a@jx;r
h
- 5(5i,j({Ei,i+la Ei;} —{Eiit1, Eiz1,i41}) — i jor{Eiz1,i, Eii} + 0iv1,j{Eit1,i42, Bit1,i41})

18 Ei i1 Bi 4+ (—1)P96; j(evo(2)) — (v — (i — 20(i > m + 1) (i —m))ey)a;)

— (=15 (evo(afy) — (v = (5 — 20(i > m+ 1)(j — m))er)a))

— 1053101 Brin — ()P0 (evo (@f) — (v — (1= 2005 = m +1)(j — m))er)z])
+ 01 3hEig1 i1 Big g + 015 (— 1P (evy(afy) — (0 — (i = 20(i > m + 1) (i — m))er)a]).

By (5.21), (5.26) and (5.27), when @ # j,j + 1, [evv(iNLm),evv(:r;fO)] is zero. Provided that i = j,
[eVU (77’1'71>7 €Vu (xjjo)] is equal to

(v— (Z - 25@ >m+ 1)(@ ))El)az zx ({Ez i+1, i z} {El i+1, Ei+17i+1}>
+ hEi i1 iy + (1) (v, (af;) — (v — <z —20(i > m+1)(i — m))er)z})
— hEii1i1 B + (DP Y (evy () — (0 — (i — 26(i > m + 1)(i —m))er)zi).  (5.28)

Since a;; = (—1)p(i) + (—l)p(iﬂ) holds, we have

(v— (i —26(i > m+1)(i —m))er)asz; — (=)D (0 — (i — 26(i > m+1)(i —m))ey)z}
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— (=PI (= (i = 26(i > m+1)(i —m))ey)z =0
and

h
- 5({Ei,i+17 Eii} —{Eii+1,Eiv1,i11}) + hE; i1 Eii — hEip1,i41Ei i1

h
=—-(EiiFiiv1 — Eiiv1Eii + Eig141Fiip1 — Eiiv1Eig1,i41)

St N

= _§(Ei,i+1 — Eiiy1) =0.

Then, we find that [ev, (ki 1), ev, (1:;"0)] is equal to a;; eVU(x;‘)'l).

When i = j + 1, [evy(hin), evv(acj-:o)] is equal to

h
(’U — (Z - 2(5(2 Z m + 1)(’& — m))el)ai’jxj + i{Eifl,i; Ez,z}

— (=) evy(afy) — (v — (G — 26(i > m+1)(j — m))e1)z) — hEj ;. (5.29)
Since a; ; = —(—1)"™ holds, we have
K h h
§{Ei71,iaEz‘,i} - thZE’LZ = §[Ei,iaEi71,i] = _§Ei71,i

and

(v — (i — 26(i > m +1)(i — m))er)ai gzt + (~1)PP (v — (j — 20(i > m + 1)(j — m)er)z
= €1l‘;_.

~ €1 —¢
Then, we find that [evv(hi71),evv(x;to)] is equal to a;;—1(evy(z; ) + aii1 ! 5 2

Ei_1,;).

When i =j — 1, [evv(hi,l),evv(xjo)] is equal to

. . ) h
(v = (i = 26(i > m+1)(i —m))er)a; jz} — 5 ({Bit1i+2, Bitvis})
— (1P (evy (af)) — (0= (i = 20(j = m+1)(G —m))er)z] + hBir1ic1 B (5.30)
Since a; ; = —(—1)"Y) holds, we have

h h h
—§{Ei+1,i+2,Ei+1,~;+1} +hEij1i401 B0 = §[Ei+1,i+1aEi+17i+2] = 5 EirLiv2

and

(v = (i —26(i > m+1)(i —m))er)aijat + (~)"FV (0 — (i = 26( > m+1)(j —m))er)z}
= —e1F; 11,542
~ ) €1 —€
Then, [evy(hi1),evy (%ﬁ-l,o)] is equal to a; ;41(evy (9%11,1) — Qi+l %Eiﬂ,iﬁ)-
Case 2, i =0 and j # 0.
By the definition of ev,,, we obtain
[evy (710,1 ),evy (zj:o)]

= [(v = m — m)ea)ho — Zh(Bmsnmsn)? + (Bra = ), Byyoi]

13T ()P B (=) B (), Ej 1]
s>0 k=1
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ST ()PP E k(s = 1) Era(s + 1), By ). (5.31)
s>0 k=1

By direct computation, the first term of (5.31) is equal to

(v—(m— n)sl)ao,jx;r

h
- 5 ( - 5m+n—1,j({Em+n,m+na Em—i—n—l,m—i—n} + 51,j{E1,27 (El,l - C)})) (532)

We also find that the second term of (5.31) is equal to
hz p(G+1)+p(Ej j+1)p(Ejt1, m+n)E
s>0
_ hz (71)p(j)+p(Ej,j+1)p(Ej,m+n)E

s>0

m+n,j+1 (_S)Ej,m+n(s>

mtn,j+1(—8) Ejm4n(8)

m—+n

1Y G i1 (1Y By 1 k(—5) Brmn (). (5.33)
$>0 k=1

By direct computation, we also know that the third term of (5.31) is equal to

m+n

—hY N ()PP By (=5 — 1) Era(s +1)

s>0 k=1

+ hz p(i+1)+p(Ej,j4+1)p(Ejt1, 1)E1 +1( 5 — l)Ej,l(s +1)
s>0

_ hz p(3)+p(Ej,5+1)p(Ej, 1)E1 ir1(=s —1E;1(s +1). (5.34)

s>0

First, we show that the sum of the first and second terms of (5.33) is equal to zero. By direct
computation, we have

the first term of (5.33) + the second term of (5.33)
= hz (f1)p(j+1)+P(Ej,j+1)p(Ej+1,m+n)E
s>0
N hz (—1)p(j)+p(Ejvj+l)p(Ej,m+n)El
s>0

= 0. (5.35)

mtn,j+1(—8) Ejm4n(s)

m+n,j+1 (_S)Ej,m+n (s)

Similarly, by direct computation, we also obtain

the second term of (5.34) + the third term of (5.34)

= ﬁz (_1)P(j+1)+P(Ej,j+1)P(Ej+1,1)E17j+1(_S _ 1)Ej71(8 + 1)
s>0
_ hz p(3)+p(Ej, ;+1)P(Ej,1)E1’j+1(_s _ 1)Ej’1(s +1)
s>0
=0. (5.36)

Next, we rewrite the third term of (5.33). By direct computation, we have

the third term of (5.33)
m+n—1

=5 > Gming 1 (=1 By 1 k(= 9) B g (5)

s>0 k=1
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+ B3 S i1 (<1 Bt (=5 = 1) Eno e (54 1)
s>0

R TRT ') Lol P oS
= 5m+n,j+1(eVu(l”:_n+n—1,1) —(v—=(m-n+ 1)51) Lontn— 1)

+ h5m+n,j+1 (* 1)p(m+n) Em+n—1,m+nEm+n,m+n . (537)

Similarly, we rewrite the first term of (5.34) as follows;

the first term of (5.34)

m—+n

==k 01Ei(=8)Eia(s) =0y Y 615 (-1)" By (—s — 1) Epa(s +1)
$>0 520 k=2
+ hz 01,;E11E1 2
s>0
= —§j,1(evv(xf,1) (U — 51)1'1 ) + ho; 1E1 1E1 2. (538)
Then, by (5.31), (5.35), (5.36), (5.37), and (5.38), we can rewrite [ev,(ho1), x ;‘0} as

h
5 (ZOmtn g t{Bmtnmin, Bjmin} +01{E1541, (Br1 = 0)})

+ 5m+n7j+1(er(x$+nf1,1) —(v—=(m—-n-— 1)81)1.;7,4»77,71)

+
(v—(m— n)sl)ag,jxj —

+ h5m+n,j+1(_1)p(m+n) Em+n71,m+nEm+n,m+n
- 6j71(evv(xf1 —(v— 51)$T) + o1 E11E 0. (5.39)

By (5.39), when j #0,1,m+n — 1, [evv(ﬁoﬁl),evv(x;fo)] is equal to zero. When j = m+n — 1,
[evy (/;0,1), evy (xjo)] is equal to

h
(U — (m — n)El)l‘:;_i_n_l + §{Em+n,m+n7 Ej,m+n}

+ evv(xfgﬂrn_m) —(v—(m-n+ l)al)xfmm_l + h(_1)p(m+n)Em+n_17m+nEm+n7m+n.
Since

h it
§{E’m+n,m+n7 Em+n—1,m+n} + h(_l)p( " n)Em-‘rn—l,m-‘rnEm-‘rn,m—i-n

h h

= §[Em+n,m+n7E7n+n—1,m+n] - §Em+n—1,m+n-

holds, [ev, (71071), evo (2 1 n_1,0)] is equal to

€1 — €2
+
am+n—1,0(evv (xm+n—1,1) + Om+n—1,0 9 Em+n—1,m+n)-

By (5.39), when j =1, [evv(ﬁo,l), evy(27)] can be written as
h
— (U - (m — ’I’L)El)ifl+ — §{E1’j+1, (El,l — C)} — er(Z'fl) - (’U — 51)(Ef + hE1,1E1,2~
Since
h h h
hE11E 2 — §{E1,2, (B1i—0)} = §[E1,1’ Ey o]+ hcEy o = (5 + hic)Er o

g1 —

holds, [GVU(EOJ),%T,O] = ap(evy(y,) — aos °2 evy(27)) is equivalent to the relation ch =

(m —n)e;. Tt is nothing but assumption. This completes the proof of the case j # 0 and ¢ = 0.
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Other cases are proven in the same way. Thus, we show that

> €1 — &2

[eve (hin),evo(z)0)] = aij(eve(z],) = bi; 5 evy (7))

holds.

5.3 The proof of (5.9)

We only show the case where i,j # 0 and ¢ = 0,5 # 0. The other case is proven in a similar way.
Case 1,1i,5 #0
Suppose that 4,j # 0. First, we let us compute [evu(xifl)ﬁvv(m;fo)]. By the definition of

evy, (ac;fl), we have

[evy(21), evo(a7))]
=[(v— (i = 26(i > m+1)(i —m))e))z], Ej j11]
hz Z k)El k(—=5)Epiv1(5), Ej ji1]

s>0 k=1

m—+n

k
+1Y T ()PP E (s = 1) B (s + 1), By jpal- (5.40)
s>0 k=i+1

By direct computation, the second term of (5.40) is equal to

1Y S (1" By (—8) Eriva(s), By i)

s>0 k=1

*ﬁzthu VPO By (= 5) Er i1 (5)

§>0 k=1

_ hz Z 8i i (— P(k +p(E ‘+1’i)p(Ej’j+1)Ej7k(—S)Ek,i_,_l(s)
s>0 k=1

R0 (— )PP E P B (<) B (). (5.41)
s>0

We also find that the third term of (5.40) is equal to

m-+n

hY > ()" Eik(=s = DEriri(s + 1), Ej ]
s>0 k=i+1
m—+n
=03 G ()PP B (s — 1) By g (s +1)
s>0 k=i+1
m4n
_ hz Z 8iji(— P(k)+P(Ez+1 )p(Ej, a+1)E (=5 — D) Egip1(s+ 1)
s>0 k=i+1
— hz i 5( p(Hl +p(E ”l’i)p(Ei'i“)Ei’iJrl(—s —1DE;i+1(s + 1). (5.42)
s>0

Thus, we can rewrite [evv(xz'l), evy (a:j'o)] as

[(v = (i = 20(i > m +1)(i = m))er)z], Bjjr1]
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+ 1N G ()PP By (—8) B 41 (s)

s>0 k=1
_ hz Z 5; ,y+1 E)+(p(Eiy1,k)+p(Ex,:))p(E;, J+1)E 1 (—5) Egiz1(s)
s>0 k=1
m—+n .
+ hz Z 81,5 (V)PP B k(=5 — 1) By jia (s + 1)
s>0 k=i+1
m+n
_ hz Z 5i’j+1(_1)P(k)+(p(Ei+1,k)+P(Ek,7:))p(Ej,j+1)Ej’k(_S N 1)Ek¢i+1(5 + 1)
s>0 k=i+1
+ hz 5ii ;D( )+p(Eii+1)p(Ej, 1+1)E iie1(—8)Eiiy1(s)
s>0
LR 0 (PR B P E ) B (s 1Y (s 4 1), (5.43)
s>0

Next, let us compute [evv(xjo), evv(mjfl)]. Since it is equal to

7(71)p(Ei,i+1)p(Ej1j+1) eve, (III)7 eV, (IIO)]’

we can rewrite [ev,, (3;2'0), evy, (a:jl)] as
[Eiit1: (v — (5 —26(j > m+1)(j —m))e1)z]]

_ hz Z 5 ’j+1 k)+p(E;,i+1)(p(Ej k) +p(Ek, ]+1))E ( S)Ek,i+1(s)
s>0 k=1

J
+ 0D Gy (1) B (=) B i (s)
s>0 k=1
m4+n
a hz Z 6 J+1 p(k B Es ) ]+1))E ( s — 1)Ek i+1($ + 1)
s>0 k=j+1

m—+n

+ hz Z 5i+1,j(—1)p(k)Eivk( s — 1)E,c j+1 s+1) hZ(s” i Z+1(—S)Ei,i+1(8)

>0 k=j+1 >0
+ 1Y 8 (1) TV E (=5 — 1) By (s + 1). (5.44)

s>0

By (5.43) and (5.44), when i # j,j +1, [ev,(2];), evo (2] )] = [evy (2]), evo (z])] is equal to zero.
When i = j, [evy,(z])), evy(270)] — [evo(2]y), eve(2])] is equal to
[(v— (i =20(i > m+1)(i —m))er)x;, Ej j41]
= [Eii1, (0= (j = 26(j =m+ 1)(j —m))e1)x J‘r]

+ hz )p(l-‘rl 7 z+1( 1, z+1 hz 7, z+1(—8 — 1)Ei7i+1(8 —+ 1)
5>0 5>0
+ hz (—1)"DE; i41(—8)Eii (s hz YOV E, i1 (—s — D) Eia(s+1).  (5.45)
s>0 s>0
Since [z;7, 2] = 0 holds, the first and second term are zero. We also obtain

the third term of (545) + the 4-th term of (545) = h(—l)p(i)Ei7i+1Ei7i+1
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and
the 5-th term of (5.45) + the 6-th term of (5.45) = h(—1)*"""VE; ;1 E; ;14
by direct computation. Thus, we have
[eve (277), evo (250)] = [evo (@), evo(2]1)] = haiiBi i1 B it

since a;; = (—1)P@ 4 (=1)P polds.
When i =5 — 1, [ev,(z ;rl),evv(ac;fo)] - [evv(xjyo),evv(xjfl)] is equal to

[(v—(i— 25(%’ >m+1)(i —m))er)a, Bjja] = [Eiivr, (v — (= 20(5 = m +1)(j — m))er)a]]

J
+ hZZmu VP By k(=) Ep j11(s)
s>0 k=1

m—+n

+hYY T i (V)P E (=5 — 1) B (s + 1)
s>0 k=i+1

—hzz5z+1 D" E; . (—5) B j1a(s)
s>0 k=1

m+n

1YY i ()P E (=5 = DBy (s + 1). (5.46)

>0 k=j+1

By direct computation, we obtain

the third term of (5.46) + the 5-th term of (5.46) —FLZ p(Hl Eiiv1(—8)Eit1.i42(s)
s>0

and

the 4-th term of (5.45) + the 6-th term of (5.45)

=7y (D) VE i1 (= = D) Eipriva(s + 1),
s>0

Then, [ev, (33?:1% evy, (J:j'o)] — [evy(zy), evv(x;-:l)} is equal to

[(v = (i =20(i > m+1)(i = m))e)x], Bjj] = [Erivr, (v = (= 2005 = m+1)(j —m))er)a]]

- hz (_ p(Z—H)Ez z+1( ) i+1, l+2 + hz p(H_l)Ez H—l( s = 1)Ei+17i+2(5 + 1)-
s>0 s>0

Since a; ;41 = —(—1)p(i+1) holds, we have

- hz p(H_l E;it1(—s)Eit1,i+2(s) + hz p(iH)Ei,i-s-l(*S —1DE;1142(s+1)
s>0 s>0

i h h
= ()P VRE; i Biyvire = aiiir 5 B, Bivriva} + aiist 5 1B, Bisrita)
2

2

and

[(v— (i —20(i > m+1)(i —m))er)z], Ejj1] = [Eiivr, (v = ( —26(j = m+1)(j —m))er)z]]

= (_1)p(i+1)51[Ei,i+17Ei+1,i+2] = —a; i+1€1[Fiit1, Bit1,i+2)-
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Then, [ev,(z;), evy (2] )] — [evy (27), evy (2] )] is equal to

€1 — &2

h
ai,i+1§{Ei,i+1a Eit1i42} — Giit1 [Eiit1, Fit1,i42].

When i = j + 1, [evy(2])), evy(z] )] — [evo (z]), evy (z],)] is equal to

[(v—(i— 25@ >m+1)(i —m))er)z], Ejji1] = [Biivr, (v — (5 —26(j = m+1)(j —m))er)z]]

,hzzcglﬁ_l p(k)+p(Eit1,:)p(Ej, 7+1)E k(= S)Ek,i+1(5)
s>0 k=1

m—+n

_hz Z 5”+1 P(k)ﬂ’( i+1,:)P( “H)E R(— s—l)Ek,iH(s—kl)
s>0 k=i+1

+hzzélj+1 p(k)+p(E 1+11)P(E”+1)E 5 (=) Eriv1(s)
s>0 k=1

m—+n

+hY N b ()PP R Er ) B (s 1) By g (s + 1). (5.47)
s>0 k=j5+1

By direct computation, we find that

the 4-th term of (5.45) + the 6-th term of (5.45) —hz E;_1,:(—s)E;it1(s)
s>0

and

the 4-th term of (5.45) + the 6-th term of (5.45) = hz (fl)p(i)Ei_Li(fs —1E; i+1(s +1).
s>0

hold. Since a; ;-1 = —(—1)p(i) holds, we have

- ﬁz (—1)p(i)Ei_17i( z Z+1 —|— hz p(i)Ei_Li(—S - I)Ei,i—i-l(s + 1)
s>0 s>0

h
—0i—1,i{Eiiv1, Bic1:} —

= _h(—l)p(i)Ei—l,iEi,iH =3

§ai71,i[Ei,i+1a Ei_14]

and

[(v = (i =20(i > m+ 1) (i —m))er)z], Bjj1] = [Eiivr, (0 = (j = 26(j = m +1)(j —m))e1)a]]
= _(_l)p(i)sl[Ei,iJrlaEifl,i] = ai,iflf‘:l[Ei,iJrlinfl,i]

holds, [ev, (7)), evs, (a:jo)] — levo(zy), evv(x;:l)] is equal to
(v = (i =26(i > m+1)(i = m))er)z, Ej ] = [Eiivr, (v = (5 = 20() = m+1)(j —m))er)z]]

) N
— W(=1)" By, By} + ()"0 5

2Ei71,¢+1-

€1 —¢&2

2 Ei 1i41-

h
ABic1,i EBii} +aii

Therefore, it is equal to —a; ;1 5

Case 2,i#0and j =0
Suppose that i # 0. First, we compute [evv(x;fl),evv(xa"o)]. By the definition of ev,,, we
obtain

leve (), evu (2g )]
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=[(v—(i—25(i>m+1)(i—m))e1)x;, Emin1(1)]

k
hzz p( )E k )Ek7i+1(5)7Em+n,l(1)]
s>0 k=1

m—+n

+ 03T ()Y E k(s = 1)EBriga (s +1), Emyna (1)]. (5.48)
s>0 k=i+1

By direct computation, the second term of (5.48) is equal to

m—+n—1

hz Z 5m+n,i+1(_1)p(k)Em+n—1,k(_5)Ek,l(5+1)

s>0 k=1

_ hz Emin,1)p(Er, L)‘H’(]-)E ( )Em+n,i(s + 1)
s>0

~ 1Y 61iBmini(l—s)E1a(s) (5.49)

s>0

and the third term of (5.48) is equal to

m-+n
hz Z m+n)Em+n,1,m+n(—s —1DEnini(s+2)
s>0 k=i+1
+ hz (—1)p(Em+"’l)p(E’"+"'i)+p(m+n)EM(fs)Em_._n,i(s +1)
s>0
m—+n
— YN 601" B (= 8) B i (s + 1) + 85,16 En 2(1). (5.50)
s>0 k=2

Next, we rewrite the sum of the second term of (5.49) and the second term of (5.50) as follows;
the second term of (5.49) 4 the second term of (5.50) = 0.
Therefore, [er(fﬂxl), evy(2g)] is equal to

m+n—1

(0 —i1)2, Erpn gt D]+ 53 D" st (1" By (—8) Ei i (s +1)
s>0 k=1
- FLZ 01,iEmin1(1 — s)E1 2(s)
s>0
+ hz 5m+n7i+1(_1)p(m+n)Em+nfl,m+n(_s —1DEmin1(s+2)
s>0
m—+n
ST 01" B (= 8) B 1 (5 + 1) + 85,10 En 2(1). (5.51)
s>0 k=2

Next, let us compute [evv(xj)'o), evy, (x(')*' 1)]- By direct computation, we have

levo(ay), eve(@g4)]

m+n

= [Biir1, (0 = (m—n)e))zd] + [Biie, 2 Y Y (D)"Y B k(=9 Era(s + 1)), (5.52)
s>0 k=1

By direct computation, the second term of (5.52) is equal to

m—+n

RS bminiir (1P Bk (—9) B a (s +1)

s>0 k=1
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_ h’z P(z)+p(Ez i+ 1)P(Emign, z)E . H—l( )Ei,l(s + 1)

s>0
+ hz p(i+1)+p(E; i+1)p(E m+"’i+1)Em+n,i+1(_S)Ei,l(s + 1)
s>0
m—+n
YT Gy ()PP E i () B (s 4 1). (5.53)
s>0 k=1

The sum of the second term of (5.53) and the third term of (5.53) is equal to zero. Thus,
[evy, (xi‘o), evy, (:v(')F 1)] is equal to

m-+n
[Eiit1, (v — (m—mn)er)zf] + hz Z 5m+n,i+1(_1)p(k)Em+n71,k(_s)Ek,1(S +1)
s>0 k=1
m—+n
YT Gy ()PP ER E i () B (s + 1). (5.54)
$>0 k=1

Therefore, when i # 0,1,m+n— 1, [evy(z]), evy (2§ o)] — [evy (x;fo), evy(2g,)] is zero. When

1=1, [evv(xfl),evv(xafo)] - [evv(xfo), evv(aca"l)] is equal to

[(v—e))a, Emini(1)] = [E12, (v — (m —n)er)z]

m+n
— hZEm-l"ﬂ 1(1 — 8 E1 2 hz Z p(k)Em+n7k(—S)Ek72(S + 1)
s>0 s>0 k=2
m—+n
+ B 2(D) +h Y3 (1" B i (—5) Epa(s +1). (5.55)
s>0 k=1

By direct computation, we obtain
the third term of (5.55) + the 4-th term of (5.55) + the 6-th term of (5.55)
= B (1)F1200) = =5 {F1.2(0), B (1} + 5[1200), B s (V)]
Moreover, by direct computation, we obtain

[(v—e1)af, Bpana(D)] = [Er2, (v — (m = n)er)zg] = (m —n — Derfaf, Bpin, (1))

Therefore, [evy (27 ,), evy (25 0)] — [evo (7)), evy (2 ;)] is equal to

22t Epgna ().

S F13(0), B (1)} — 2

by the assumption fiic = (m — n)e;.
When i =m+n —1, [evv(:c;;JrniLl), ev1,(:z:5r70)] — [evv(x:'n+n7170), evv(x(';l)] is equal to
[(v—(m—n+ 1)51) Limtn— 1 Eman 1 (D] = [Emtn—1,m4n, (0 — (m — n)sl)w(ﬂ
m+n—1
+hY Y (1™ By k(=) Bt (s + 1)
520 k=1
m—+n
+hY N ()PP By k(=5 — 1) Epa(s +2)
s>0 k=m+n
m—+n

- hz Z (_1)p(k)Em+n71,k(_8)Ek,1(S + 1)

s>0 k=1
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By direct computation, we obtain

the third term of (5.55) + the 4-th term of (5.55) + the 5-th term of (5.55)
= hEm+n71,m+n (O)Em+n,1(1)
h

= o Bmtn 1m0 Bt (0} + 5 B sm s 0), Enina (U]
Moreover, by direct computation, we have
[(v—(m—=n+De)z], Enrna(1)] = [Eiivr, (v = (m —n)er)ag] = —eifz], 2]
Then, [ev, (x;+n7171), evv(xafo)] - [GVU(%TH”,LO), evy, (xarl)] is equal to

61*52

h
§{Em+n—1,m+n(0) m+n, 1( )} - [xr—i_ernfl’xS_]'

This completes the proof of (5.9).

5.4 The proof of (5.10)

Finally, we show [ev,(hs,1),evy(hj1)] = 0. Suppose that ¢,j # 0. It is enough to show the case
where 7 < 7. We set

m—+n
A= ZZ DB (=8)Ei(s), Bi=>_ > (~1)"MEii(—s— 1)Epi(s + 1),
s>0 k=1 s>0 k=i+1
7 m—+n
=S N Y E k(-9 Erin(s), Di=Y > (~D)PPEiu(—s = DBy (s + 1)
$>0 k=1 §>0 k=i+1

Then, by the definition of ev,(h; 1), we have
[evy (hin),eve(hy1)]
= ()P4, A)) + [Bi, Aj] + [Bi, Bj] + [As, By}
+ (=1 OTPIEILA €] + By, Cy) + [Bi, Dy) + [As, D]}
+ (=1L, A + (D, By) + [Ds, Aj] + [Ci, By}
+ (—1PUEIRPUED LG O] + (D, Cy) + [Di, Dy + [Cy, Dy}
By the definition of A;, B;, C;, and D;, we obtain
[4;, Bj] = [A;,D;] = 0.
Thus, it is enough to show the following lemma.
Lemma 5.56. The following relations hold;
[Aia AJ] + [BMAJ] + [Bl7 B]} = 07
[A;, O] + [Bi, Cj] + [Bi, Dj] + [A;, D] = 0,
[Ci, Aj] + [Di, Bj] + [Di, B;] + [Cy, B;] = 0,
[Ci, Cj] + [Di, Cs] + [Dy, D] = 0.

Proof. We only show that [A;, A;] + [B;, Aj] + [B;, B;] = 0 holds. Other relations are obtained in
the same way. By direct computation, we can rewrite [A;, A;] as follows;

[As, A;]
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= - Z Z (7I)P(kHP(iHP(Ez:,k)P(Ej,i)Ej’k(75 — £)E; (1) Ey.i(s)
5,60 k=1

T30 D0 G () I B () B (s ) Era(s)
5,620 k=1 I=1

=
<

_ Z Z Z 6k,l(_1)p(Ek,i)p(Ej,k)Ei’k(_S)Ej’i(s _ t)Ek:,j ()

5,t>0 k=1 [=1

k) 7 Ey i i
+ Z Z p( )+p(@)+p(Er,i)p(E )Ei7k(78)Ej7i(7t)Ek’j(s+t)
8,6>0 k=1

+ > (5Eii(—5)Ej;(s) — sEj 5(—5) Eii(s))- (5.57)

s>0

N
<

<.

Since we find two relations

the second term of (5.57)

ZZZ% WP ERRER (s 1) By (1) Egi(s)

5,t>0 k=1 l=1

+ ) ZZ&H P ERPER o (5B j(—t — 1) Egi(s + 1+ 1),

5,t>0 k=1 I=1
the third term of (5.57)
i g
= 3 DD Gka (P IRV E, (s — £ — D) Ej (s + 1) Er (1)
5,t>0 k=1 I=1
tJ

+ 3 S ()P B () By () B (s + 8),

5,t>0 k=1 I=1

we have
[AiaAj}
3 Y (AP EIE B (s B, (0o
s,t>0 k=1
i J
+ Z chgk,l( 1)p(Ezk)p(EJ k)E,k(*S E; ;(t)Ep.i(s)
s,t>0 k=1 l=1
i J
+ 3NN ()P E P ES B () By j(—t = 1) B (s + £+ 1)
s,t>0k=11=1
i g
- 3 G (~ 1P P EN B (s — b~ 1) Ejils + 1) By (1)
s,t>0 k=1 1=1

.

i (_l)p(k)+p(i)+p(Ek’i)p(Ei’j)Ei,k(—S)Ej7i(_t)Ek,j(S + 1)
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T Z sEii(=5)Ej;(5) — sEjj(=s)Eii(s)). (5.58)

We simplify the right hand side of (5.58). By direct computation, we obtain

the first term of (5.58) + the second term of (5.58)

_ _ Z Z (k)-i-p(Z +p(E m)p(Em)E R(— S—t)Eij(t)Eki(S)

5,t>0 k=1

Y PR (a0 (0w
5,t>0 k=1
=0 (5.59)

since p(k) + p(3) + p(Ei x)p(E; ;) = p(Eix)p(Ej k). Similarly, we have

the 4-th term of (5.58) + the 6-th term of (5.58) = 0. (5.60)

By (5.59) and (5.60), we find the equality

[Ai, 4; }
Z5kl PP OTP BB (6B i (—t — 1) Eji(s +t + 1)
s,t>0 k=1 I=1
i J
_ Z p(k ) +p(Er)p(Bs) g K(=s—t—1)E;(s + 1) Ey;(t)
s,t>0 k=1 l=1
+ Y (sEii(—s)Ej (s) — sEj (=) Eii(s)).
s>0

Computing the parity, we obtain

Z Z Ei 1)p(E;, k)Ej’k(_s)Ei’j(—t— DEk(s+t+1)

5,t>0 k=1

Y (P By (s DB+ D (0
5,t>0 k=1
+Y (5Eii(=9)E;(s) — sEj;(—5)Eii(s)). (5.61)

s>0
Similarly, by direct computation, we have

(Bi, Bj]
m—4n )
= Z Z (_1):!7(])+p(l)+p(Ej,z);D(Ej,qz)Em(_8 —t—2)E; (s + 1) Ey;(t+1)
5,650 1=j+1
m+n m—+n
— Z Z Z 5;” p(E]k p(Ekl)E k(— S—t—?)Ej,i(S—l—l)Ek’j(t—i—l)
$,t>0 k=i+11l=5+1
m+n m—+n
=3 3T ST G )PERP IR By (s — 1) By (—t) Br(s + £+ 1)

5,t>0 k=i+11l=j+1
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m+n m—4n
T30 D0 D (PRI B (st = 1) (1) Bra(s + 1)
$,t>0 k=i+11=j5+1
m+n m+n
+ 303 N G ()PP ED By (= 1) By (s — 1) Eri(s + £+ 2)
5,t>0 k=i+11=j+1

m—+n
=3 > (OO EIRED Byt — 1) B (—s — 1) Epi(s +t+ 2).
s5,t>01=75+1

We simplify the right hand side of (5.62). By direct computation, we obtain

the first term of (5.62) + the second term of (5.62) =0

and

the 5-th term of (5.62) + the 6-th term of (5.62) =0
By (5.63) and (5.64), we find the equality

[Bi7Bj}
m4+n m-4+n
== > Gl 1)PEIPE | (—s — 1) By o (—) B (s + £ + 1)
5,t>0 k=i+11l=j5+1
m+n m—+n
+ 303N G-I ER By (s — = 1) By (8) Bri(s + 1)
s$,t>0 k=i+11l=75+1

m—+n

== > > (IR (s — DE(—0)Ey(s+ 1+ 1)
s5,t>01=75+1
m+n

+ 30N ()P EIP B (s — = 1)E, () Eyi(s + 1).
5,6>01=j+1

By direct computation, we also obtain

[BivA'}
=2 Z PO, (=5 —t = 1By (£) Ejils +1)
5,6>0 1=1
m—+n
— Z Z p(k +p(0)+p(E; )p(Ej*i)Ej’k(—s —t—1)E; j(t)Er.i(s + 1)
8,t>0 k=i+1
m—+n

LS S G I By (s B0 Bl + 1)
§,6>0 k=i+1 I=1
m+n J
+ 30 3 S G (1) EIPE By () By j(—t — 1) By (s + £+ 1)
s,t>0 k=i+1 =1
m-+n j
- Z Z Zékl PERIPED By (s — 1) Eji(—t)Eyj(s +t +1)
s,t>0 k=i+1 I=1
m+n i
- > Z‘Skl PEINED By (= —t = 1)Ej (s + 1) By (t)

s,t>0 k=i+1 =1
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m—+n
k) E.; .4
+ 30 N (may WO ER IR ED (s — 1) By () B (s + t+ 1)
$,t>0 k=i+1

Z i r()+r() . j(=s = DE; (=) Epi(s +t+1). (5.66)

>0 =1

Let us simplify the right hand side of (5.66). We prepare the following four relations by direct
computation;

the second term of (5.66) + the third term of (5.66)

m—+n

= — Z Z k)+p(i)+p(E, k)P(Ew)E] k(*S*t*1)Ei7j(t)Ek,i(S+1)
s,t>0 k=i+1

m+n J

Ei1)p(E;,
+ 33 S e ()P ERPER By (s — = 1) By (8 Bra(s + 1)
s,t>0 k=i+1 I=1

m—4+n

=— Z Z p(El K)P(E;, z)E p(—s—t—1)E; ;(t)Ex (s + 1), (5.67)

s,t>0 k=j+1
the first term of (5.66) + the 6-th term of (5.66)

J
= ST (-1)PIPOE (—s —t = 1)Ey (8 Eja(s + 1)

+ ZJ: (—1PIPO B, (=5 — t = 1)[E;(t), Bja(s +1)]

— (—1)PERIPER B (s —t — 1) B (s + 1)y (t)

s,t>0 k=1
J
+ 33 ()POPOE (w5 —t — D) E(s + 4 1)
5,t>0 =1
=Y Ei(-s—t—-1)Ej;(s+t+1), (5.68)
s,t>0

the 4-th term of (5.66) + the 8-th term of (5.66)

m—+n

=2 2 Z‘S’Cl 1) E B 4 (<) B (—t = 1) Epa(s + ¢ +1)

s,t>0 k=i+1 =1

-y Z WP B, (—s = 1)Ej(—t)Epi(s +t +1)

5,t>0 1=1

=-Y Z WPEPED B (B, j(—t — 1) Epi(s 4+t + 1)
s,t>0 =1
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J
= SN CPOPOE, (s — 1), B~ ) Brals + £+ 1)
_ (—1)p(Ei'l)p(Ej'l)Ej7l(_S)Ei7j(_t _ 1)El,i(5 +t+ 1)

PO (s —t—1)Ei(s+t+ 1)

ij_

+ Z Ejj(=s—t—1)E;;(s+t+1),
s,t>0
the 5-th term of (5.66) + the 7-th term of (5.66)
m—+n i
Y S S GBI B (s 1B By (s + 14 1)
s,t>0 k=i+1 =1

m—+n

+ Z Z p(k)+p(1 +r(Era)p(Eid) g k(=5 = DE; (=) Epj(s +t+1)
s,t>0 k=i+1
m—+n
Z Z P(Ek $)p(E;, k)E k(=85 = D)E; ;(—=t)Eg j(s +t +1).
5,6>0 k=j+1

Thus, by (5.67)-(5.70), we have

[Biﬂ Aj}
m—+n

=3 N (capPerEI (s — t = 1) By () Bi(s + 1)

s5,1>0 k=j5+1

+ 30 S ()PP I B (—s — = 1)Bj (s + 1) Ery (1)
5,t>0 k=1

= 2 D ) B (<) Byt = DB+ £+ 1)
5,t>0 =1

m—+n

Op(E;,
+ 30 > ()P E  (—s — D)Ej(—0)Er (s + 1+ 1)
$,t>0 k=j+1

= (sEii(=9)E; (s) — sE; j(—5)Eii(s))-

s>0
Adding (5.61), (5.65), and (5.71), we obtain [A;, A;] + [B;, A;] + [Bi, B;] =

This completes the proof of Lemma 5.6.

6 The surjectivity of the evaluation map

(5.69)

(5.70)

(5.71)

In this section, we show that the image of ev,, is dense in the completion of U(gl(m|n)) provided
that €1 # 0. By the definition of ev,,, the image of ev,, contains h; and xli Since h; and aczi are

generators of f:\[(m|7’L), the image of ev, contains 5A[(m|n) Thus, it is enough to prove that the

image of ev,, contains F; ;(s) for all 1 <i <m+n and s € Z.
First, we show that the image of ev, contains E; ;(0).
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Theorem 6.1. We obtain

S )

0<i<m+n—1

evy(

= (v—(m—n)e1)hy +

>

1<i<m4n—1

Proof. By the definition of ev,,(h;

1
(v —(m—n)er)ho — hE?n+n mtn — §hE%1 — chBrymmin
m+n
~hy > " B go(—8) B mn(8)
s>0 k=1
m—+n
—hY 03 ()P E k(s = 1)Epa(s + 1)
$>0 k=1
if i =0,
, , . 1, 1,
) (v—(i—26(i >m+1)(i —m))e1)h; — §hE” - §hEi+1,i+1
v hz -
evolhi1) p( ) p(k) 4
> Z E; 1(—5) B i(5)
s>0 k=1
m4+n
(=103 S ()P By (s = 1) Bgils + 1)

Then, we rewrite the left hand side of (

(v—(m

h
2 (El 1 + Eern m+n)

>

1<i<m—+n

>

1<i<m+n

-

0<i<m+n—1

- >

0<i<m+n—1

(-1

h(—1

1)p(i+1) Z Zl: (—1

— n)&l)ho +

i1), we obtain

s>0 k=i+1

s>0 k=1
m—+n

1)P+D) Z Z

s>0 k=i+1

6.2) as

>

1<i<m+n—1

o g,

D E
s>0 k=1

m—+n

p()z Z

s>0 k=i+1

1)17(1""‘1) - (_

m—+n

1)Pl+D) Z Z

s>0 k=i+1

Adding the first and third terms of (6.3), we have

>

1<i<m—+n

Z Z p(k)E

s>0 k=1
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(v=(i =26 >m+1)(

)p(k)EH-l,k(*

(v— (i —26(i >m—+1)(i —

anm-&-mm-{-n -

P(k)E

$) Bk iv1(s)

p( )E1+1 k( S — I)Ek,i_H(s + 1)

if i £ 0.

m))e1)hi

h
2 (E2 + Ez+1 erl)

>

1<i<m+n-—1
k(=5)Ey.i(s)
(—s —1)Ek(s+1)
) By it1(s)

)Ei—i-l,k(_

PP B k(—s — 1) Eriga(s + 1).

(—s)Ek.,i(s)

—m))e1)h; — hEmtn mtn-

(6.2)

(6.3)



Jj—1

- Y DY )M E k(=9 Bry(s)

1<j<m+n 520 k=1

=h > > Eii(-s)Eis). (6.4)

1<i<m—+n s>0

Adding the second and 4-th terms of (6.3), we obtain

m+n
> ACPOY S (P B s DB+ )
1<i<m+n s>0 k=i+1
- 3 a9y Z DPYE, (=5 — 1) Eg (s +1)
1<j<m+n s>0 k=j

1<i<m+n s>0

Applying (6.4) and (6.5) to (6.3), we find that the left hand side of (6.2) is equal to

(v—(m=n)eho+ Y (V= (i—25(i>m+1)(i —m))er)h;
1<i<m—+n—1

B h
- §(E%’1 + B2 nman) — A mgn — Z §(E121 + Bl i) R Z E;.

1<i<m+n—1 1<i<m+n

By direct computation, it is equal to

(v—(m—mn)e1)ho + Z (v—=(1—20(: > m+1)(i —m))e1)h; — chEptn,m+n-

1<i<m+n—1
Thus, we have obtained Theorem 6.1. O
Since h; is contained in the image of ev,,, the image of ev, contains chAE,, {n m+n-
Corollary 6.6. The image of ev, contains Ep, i, m+n provided that hc # 0.
Next, let us show that the completion of the image of ev, contains E; ;(s) (s # 0).
Theorem 6.7. For all i # 0, we obtain

levey (hin), ()P By — (—1)PUTVE L )t
= hz 0s+a,08CE; i(—s) — hz 0—sta,05cE; ;(5)

s>0 s>0
—+ hz 55+1+a’0(8 —+ 1)CEZ'+1’1'+1(—S — ].) — hz 57571+a,0(5 —+ 1)CE7;+111'+1(S + 1)
s>0 s>0

+ sum of elements of the completion of U(sl(m|n)).
Proof. The proof is done by direct computation. By the definition of ev, (h; 1), we have
fevu(hin), (1" Big = (=P By )]

=[(v=(i—25(i >m+1)(i —m))e)hs, ((~1)*DE;; — (—1)PTVE 1)t
_ (71)p(Ei,i+1)h[E, Fivriss (-1 )P(i)EM _ (*1)p(i+l)Ei+1,i+1)ta]

ZZ 1P M B, (=) B i(s), ()P By — (~ )P By i)t

s>0 k=1

a0



m—+n

D"y (- (=5 = DEpi(s + 1), (1)"D By — ()P By )t

s>0 k=i+1

— [R(=1)PTD{ Z D" Bii11(=8) Erira(s), (1" By i — (= 1)" "V By 400)t%)
s>0 k=1

m—+n

DPEIS N (1) B (=5 — 1) B (s + 1),

§>0 k=i+1
("B = ()" By )i). (6.8)
We can rewrite each terms of the right hand side of (6.8). By an easy computation, we find that

the first two terms of the right hand side of (6.8). Other terms are computed as follows.

Claim 6.9. (1) The 4-th and 5-th terms of the right hand side of (6.8) are elements of the completion
of U(sl(m|n)).
(2) We can rewrite the third term of the right hand side of (6.8) as

fl(—l)p(i) Z 5s+a7088Ei,,‘(—8) — hz 5_S+a’QSCEi7i(S)

s>0 s>0

+ an element of the completion of U(f/s\[(m|n)) (6.10)

(3) We can rewrite 6-th term of the right hand side of (6.8) as

hz Ost1ta,0(8 + 1)cEipy ip1(—s—1) — hz 0—s—14a,0(s +1)cEif1i41(s +1)
s>0 s>0
+ an element of the completion of U(sl(m/|n)). (6.11)

Assuming Claim 6.9, we obtain Theorem 6.7 by adding (6.10) and (6.11). In order to complete
the proof of Theorem 6.7, we prove Claim 6.9.

the proof of Claim 6.9. (1) The proof is due to direct computation. First we prove the 4-th case.
We can rewrite the 4-th term of the right hand side of (6.8) as follows;

m—+n

p( ) Z Z p(k)E k(=5 — D[Eri(s+ 1), ((—1 )p( )Ez i — (_1)p(i+1)Ei+1,i+1)ta]
s>0 k=i+1
m4n
P( )Z Z P(k) k(=5 — 1), (=1 )p(Z)El - (_l)p(z+1)Ei+1,i+1)ta]Ek7i(S +1).
s>0 k=i+1

(6.12)

We rewrite each terms of the right hand side of (6.12). By direct computation, we can rewrite the
first term of the right hand side of (6.12) as

m—+n
Y ()M E k(=5 — 1)Epi(s +1+a)
>0 k=i+1
+ B(=1)POPEDN ()P ED R (—s = 1) Eigra(s + 1+ a). (6.13)

s>0

By direct computation, we can rewrite the second term of the right hand side of (6.12) as

(=1 B (—s — 1+ a)Eipri(s +1)
s>0
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m+n

Y ()PP Ei(—s — 1+ a)Bri(s +1). (6.14)

520 k=i+1
Adding (6.13) and (6.14), we obtain
the 4-th term of the right hand side of (6.8)

m-+n
=03 Y (-1 WE (=5 — DEri(s + 1+ a) + h(=1"D N Eipi(—s — ) Eigp14(s + 1+ a)
s>0 k=i+1 s>0
— h(—l)p(l) Z Ei,i+1(_5 -1+ a)EiJrLi(s + ].)
s>0

m-+n
—hY > (- k(=8 —1+a)Eg;(s+1), (6.15)

s>0 k=i+1

Since all of the terms of the right hand side of (6.15) are elements of the completion of U (s [(m|n))
the 4-th term of the right hand side of (6.8) is an element of the completion of U (sl(m|n)).

Next, we prove the 5-th case. Let us rewrite the 5-th term of the right hand side of (6.8) as
follows;

PO SS™ )P By (=) B (), (<) D By — (1P By )]

s>0 k=1

i+1 i i+1 a
1)Pet )ZZ DPPIB 1 (=5), (1) Eiy — (= 1PV By 100t Eriga (5).
s>0 k=1
(6.16)

We rewrite each terms of the right hand side of (6.16). By direct computation, we can rewrite the
first term of the right hand side of (6.16) as

Y-S ()" B a(=8) Eria (s + a) + B(=1)""V N By i(=8)Bria(s +a). (6.17)
s>0 k=1 s>0

By direct computation, we can also rewrite the first term of the right hand side of (6.16) as

— h(=1)PTISN B i(—s + a)Eiiga( hzz DM E k(e —8)Eria(s).  (6.18)
s>0 s>0 k=1

Adding (6.17) and (6.18), we have
the 5-th term of the right hand side of (6.8)

= hz Z (~D)PP B 1 (—8) By i (s + @) + R(—1)PEHY Z Eiy1i(—8)Eiiv1(s+a)
s>0 k=1 s>0
— h(—l)p(H—l) Z Ei+1,i(—8 +a z z+1 hz Z 7,+17k(a - S)Ek7i+1(5). (619)
s>0 s>0 k=1

Since all of the terms of the right hand side of (6.19) are elements of the completion of U(;[(m|n)),
the 5-th term of the right hand side of (6.8) is an element of the completion of U (;[(m|n))

(2) The proof is due to direct computation. Let us rewrite the third term of the right hand
side of (6.8) as follows;

oy Z PO B, (=) [Eris), (—)PV By — (1P VB, 0 )t]

s>0 k=1
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”ZZ 1P B g (—8), (1) By — ()P B )t Bra(s). (6.20)

§>0 k=1

We rewrite each terms of the right hand side of (6.20). By direct computation, we can rewrite the
first term of the right hand side of (6.20) as

hzz p(k)Ek s)Eyi(s+a)— )ZE” VE;i(s+a)

s>0 k=1 s>0
+h Z 6S+G’OSCE2”Z'<_S) + FLZ 6s+a,OSEi7i(_s) — FLZ (55+a708Ei,i(—8)
s>0 s>0 s>0
= hz Z p(k)E S)E]m(s +a)+ hz 5S+a’oscEi,i(—s). (6.21)
$>0 k=1 s>0

Similarly, we can rewrite the second term of the right hand side of (6.20) as

h(— p(ZZEH —s+a)E;( hzz p(k)E (=s+a)Exq(s)

s>0 s>0 k=1
- hz 6—5+a OSCEz 7 hz 6—5+a OSEz 7 ) + hz 6—s+a,03Ei,i(5)
s>0 s>0 s>0
= —hzz p( )Em (—s+a)Exq(s hz 0_sta,05¢E; ;(s). (6.22)
s>0 k=1 s>0

Adding (6.21) and (6.22), we obtain

the third term of the right hand side of (6.8)

_hzz —8)Ey.i(s+a) — FLZZ —s+4a)Eyi(s)

S0 50 k=1
+ h(=1)P® Z Ssta,08CE; i(—s) — fLZ 0—s+a,05cE; i(s). (6.23)

s>0 s>0

Since the first two terms of the right hand side of (6.23) are elements of the completion of
U(sl(m|n)), we have obtained (6.10).
(3) We rewrite the 6-th term of the right hand side of (6.8) as follows;

m—+n
1)P(1+1) Z Z (—l)p(k)Ei+17k(—S -1)

5>0 k=i+1
[Epivi(s + 1), (“DPV By — (~1)PY By i)t

(Z+1) Z Z (k) L+1,k(—5 —1),

s>0 k=i+1
(D)"Y Ei — ()" VB 1)t Braga (s + 1), (6.24)

We compute each terms of the right hand side of (6.24). By direct computation, we can rewrite
the first term of the right hand side of (6.24) as

m—+n

Y3 (1P Eiy (=5 = 1) Eria(s +1+a)
s>0 k=i+1
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— A=) Bia(—s = DEgrin(s+ 14 a) £ 5 (s + 1D)edssrraoFisniva(—s — 1)

s>0 s>0
- hZ(S + 1)0s+14a,0Bi41,i41(—s — 1) + hZ(S + 1)0s+14a,0Ei41,i41(—s — 1)
s>0 s>0
m—+n A
= hz Z (—l)p( )Ei+1’k(—8 — 1)E}g’i+1(8 +1+ a) + h265+1+a,0(3 + 1)CEZ*+17Z'+1(—S — 1).
§>0 k=142 s>0

(6.25)

By direct computation, we can also rewrite the second term of the right hand side of (6.24) as

W1 B (—s — 1+ a)Eipria(s + 1)
s>0

— hz Z (71)p(k)Ei+1’k(7$ -1+ a)Ek,H_l(s —+ ].) — hz 5_5_1+a,0(8 + ]-)CEi+l,i+l(s + ].)
§>0 k=i+1 5>0

+0Y 6 e atao(s+ DEiriti(s+1) —hY s 1yaols + DEip1in(s +1)
s>0 s>0

m—+n

==Y N ()PP Ei (s — 1+ a) By (s + 1)
s>0 k=i+2

— hz (5,5,1+a’0(8 + 1)CEZ‘+1,Z‘+1(S + 1). (626)
s>0

Adding (6.25) and (6.26), we have

the 6-th term of the right hand side of (6.8)

m—+n
=13 Y (-1)"WE k(s — DB (s +1+a)
§>0 k=142
m+n
— hz Z (—l)p(k)EH_Lk(—S -1+ a)Ek,i—i-l(s + 1)
s>0 k=i+2
+ hz (5S+1+a’0(8 + 1)0Ei+1’i+1(—8 — 1) — hz §,S,1+a’0(8 + 1)CEZ‘+1’Z‘+1(8 + 1) (627)
s>0 s>0

Since the first two terms of the right hand side of (6.27) are elements of the completion of
U(sl(m|n)), we have obtained (6.11). O

This completes the proof of Theorem 6.7. O

By the assumption that m,n > 2 and m # n, we can take 1 < i < m + n — 1 such that
p(i) = p(i+1). By Theorem 6.7, The completion of the image of ev,, contains hc(E; ; + Eiy1,41)t"
for all @ # 0. Provided that fic # 0, the completion of the image of ev,, contains (E; ; +FE;11 ;41)t%
By the assumption that p(i) = p(i + 1), (E;; + Ei+1,i+1)t" is not contained in sl(m|n). Thus, we
obtain the following corollary.

Corollary 6.28. The completion of the image of ev, contains E; ;t* for all a # 0 provided that
he # 0.

By the assumption that ic = —(m — n)e;, we find that Ac is nonzero if and only if e; # 0.
Under the assumption that by Corollary 6.6 and Corollary 6.28, the image of ev,, contains F; ;t°
for all s € Z. Thus, we have the following theorem.

Theorem 6.29. Provided that €1 # 0, the image of ev,, is dense in U(gA[(m|n))C()mp.
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7 Another presentation of affine super Yangians

There exists another presentation of the affine super Yangian.

Proposition 7.1. Suppose that m,n > 2 and m # n. The affine super Yangian Yz, ., (;[(m\n)) is
isomorphic to the associative superalgebra generated by X;'r, X Hiy (ief0,1,--- ;m+n—1},r=
0,1) subject to the following defining relations:

[Hir Hjs) =0, (7.2)
[Xi-t_(H X']TO] = 67;]‘Hi,03 (7 3)
[XII’XJTO] =0y Hin = [X;'O,thl], (7.4)
[Hio, X;,] = +ai X5, (7.5)
[Hix, X) = +ai; (X35) 5 if (6,5) # (0,m+n—1),(m+n—1,0), (7.6)
7 m+n m-—-n
[HO,lyX;ternfl,O] = jF(—l)p( +n) (Xniwrnm —(e+ h)X$+n1)0> , (7.7)
7 m+n m—-n
(A, i) = F (=17 (XSH + e+ 5 h)XS%) : (7.8)

(X5, X35 - X5, X5 = iaijg{xffo,xfo} if (i,5) # (0,m+n—1),(m+n—1,0), (7.9)

+ + + +
[XO,UX } - [XO,O’Xm+n—1,1]

m+n—1,0
m+n h m—n
= (=DM NG, Xm0} — (e 5 WX X o),
(7.10)
(ad X75) el (X5) =0 (i # j), (7.11)
(X750, X5 =0 (i =0,m), (7.12)
[[XiLO’XfOL [Xii,mXil,O]] =0 (Z = O,m), (7-13)
- h
where h = €1 + e, Hi1 = H;1 — inQ’O, e = —(m — n)eq, the generators Xffw and ngr are odd

2
and all other generators are even and we define Xfl o as Xniﬂ_n_1 0

Proof. The homomorphism ¥ from Y;, ., (sl(m|n)) to the superalgebra defined in Proposition 7.1
is given by

\Il(hz O) = Hi,Oa \D(‘rzio) = X’L%O?

)

Ho if i =0,
U(hy) = 25 (i -
(hi) Hiy — i (i >2m)(z m) (61— 22)Hio  ifi £0,
where
1 ifi>m
d(i>m) = ’
(i >m) {0 it i <m.
It is clear that W is an isomorphism. O

Now, we can write down the image of {H, ,, Xfr|r = 0,1} via the evaluation map.

(—m +n)ey

Theorem 7.14 (Ueda [45], Proposition 5.2). Set ¢ = -

homomorphism

. Then, there exists an algebra

evo: Yo, o, (sl(m|n)) — U(gl(m|n)*")comp

%)



uniquely determined by

eVO(XiTO) = SL‘;F, eVO(XijO) = SL’;, GVO(HZ"O) =

h&ho — (—1)p(m+n)hEm+n,m+n(E1,1 - é)

m-+n

+(=1P RS TS (1M B (< 8) B (5)

s>0 k=1
m—+n

—hz Z )Elk (=s—=1)Er1(s+1)

s>0

(1—25(i >m+1)(i—m))

2
evo(H; 1) +h(_1)p(i) Z Z ( 1)p(k)Ez,k(—s)E;m(s)

5>0 k=1

m—+n
+h(-1P0 3T N (- n(—s — DEpi(s + 1)

$>0 k=i+1

P(H—l)zz IJ( )E-i-lk( )Ek,i-',-l(s)
$>0 k=1

m-+n

hia

ifi=0,

_ = kh; — (—1)p(Ei’i“)fLEi,iEHl,iﬂ

1Pty > (~1)"M B (=5 — 1) Epiga(s + 1)

>0 k=i+1
ifi #0,
m—+n
hexg + 0> > (1" By (=) Bra (s + 1)
s>0 k=1
ifi=0,
evo(X;) = _iz200 = szr Dl G ﬁ F+ hz Z p(k)E (—s)Ek.it1(s)
s>0 k=1
m—+n
+03° 3T (1M (=5 = ) Epiga(s +1)
s>0 k=i+1
ifi #0,
m—+n
hezg + (—=1)P"TRY T ST ()PP B (=5 = 1) Ermn(s),
s>0 k=1
ifi=0,
evo(Xin) = _i= 2@ 2m+ 1)(i=m) hx; + (—l)p(i)hz i: (-1) (k)Ei+1,k(—S)Ek,i(S)
2 s>0 k=1
) m—4+n
~1PORY S (PP B k(s - DEils +1) ifi £0.
s>0 k=i+1

It was shown in [48] that the image of evq is dense in U(g?[(m|n)St

61750.
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Remark 7.15. In [45], the evaluation map was defined in terms of the generators h;, and xfr
(r=0,1).

In the non-super case, the affine Yangian was defined in Definition 3.2 of [19] and Definition 2.3
of [20] as follows.

Definition 7.16. Suppose that m > 3 and set two m x m-matrices (a; ;) and (m; ;) as

0 i 1 ifi=j—1,
1 =
' 'fl'—]'7i1 —1 ifi=j+1,
ai; = CrmaEe mij =41 i (i,j) = (0,m— 1),
-1 if (7’7]):(0am_1)7(m_1a0)7 1 f( ) ( 10)
- rz,7)={m—L1,U),

0 otherwise, 0 otherwise

The affine Yangian Y7, ., (E[(m)) is the associative algebra over C generated by xir,sci_’ s Dir
(t € {0,1,--- ,m — 1},r € Z>o) with parameters 1,62 € C subject to the defining relations

(3.2)-(3.7).

Similarly to Proposition 7.1, the affine Yangian Yz, ., (sl(m)) also has a presentation whose
generators are HM,XfT 0<i<m-—1, r=0,1).

Proposition 7.17. The affine Yangian Y., ., (s?[(m)) s isomorphic to the associative algebra
generated by X;\, X, Hi, (i €{0,1,--- ;m —1},r = 0,1) subject to the defining relations (7.2)-

2,7 “h T

(7.5), (7.11) and

[I—N]leXf()] = ia/ij (Xfl) ) Zf (Z?J) # (O7m - 1)) (m - 170)7 (718)
~ m
[HO,17X$—1,0] =F (Xi—m —(e+ gh)eré—l,o) ) (7.19)
(Ho11, Xio) = F (XSi +(e+ %E)ng()) : (7.20)
h e
[Xi:f:hX;'{:O] - [Xz:f:()?Xj:t:l] = iaijg{Xi:f:meO} Zf (27.7) 7é (O7m - 1)a (m - 170)7 (721)

[Xoi,pXi—l,o] - [Xoi,O»Xjﬁ—m]

h m
= i§{X0i,0axi—1,o} —(e+ Eh)[Xoi,Oin—LoL (7.22)

~ h
where h = €1 + &9, Hi,1 = Hi,l — §HZO’ and € = —mes.

The evaluation map for the affine Yangian Y7, ., (;[(m)) was constructed in Section 6 of [20]
and Theorem 3.8 of [30]. In fact, the evaluation map of [20] and [30] was defined in the same
formula as that of Theorem 7.14 by setting n = 0 and assuming all of the parity is equal to zero.
In the non-super case, the surjectivity of the evaluation map was shown in Theorem 4.18 of [29].

8 Generators of rectangular W-superalgebras of type A

We fix some notations for vertex algebras. For a vertex algebra V', we denote the generating field

associated with v € V by v(z) = Z U(n)z_"_l. We also denote the OPE of V' by
nez

(u(s)v)(w)
Z (s)

u(zo(w) ~ Y0 I

s>0

for all u,v € V. We denote the identity vector (resp. the translation operator) by |0) (resp. 9).
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First, we recall the definition of rectangular W-superalgebras of type A (see [27], [28], and [1]).
Let us set
g= g[(m”nl) = @ Ce(s—1)(m+n)+i,(t—1)(m+n)+ja
1<i,j<m+n
1<s,t<l

where €(s_1)(m-+n)+i,(t—1)(m+n)+; 13 the unit matrix whose parity is p(i) + p(j). Since gl(ml|nl) is
isomorphic to gl(m|n) ® gl(l) as a graded vector space, we identify €(s_1)(m+n)+i,(t—1)(m+n)+; €
gl(ml[nl) with e; ; ® es+ € gl(m|n) ® gl(l). We set a parity of e; ; € gl(m|n) as p(¢) + p(j). We

-1 m+n
take an even nilpotent element f = Z Z Cs(m-+n)+i,(s—1)(m+n)+i € gl(minl) and fix k € C. We

s=1 i=1
also take ( | ) as a supersymmetric invariant inner product of g such that

(8.1)

k str(uv) if u or v is an element of sl(ml|ni),
(ulv) = @) (1 P —e.
Estr(uv) + (—1) (1—¢) fu=e;Qer V=265, €Cryry,

where ¢ is a complex number and str is a supertrace of gl(ml|nl). We set

gt = @ Ces(m+n)+i,(s+t)(m+n)+j'
1<i,j<m+n
0<s<i—1
0<s4t<i—1

and fix a sly-triple (e, f) such that
g ={ycgllz,y] =ty}.
Let us set

S={(4,8t)|1<i,j<m+n, 0<s,s+t<1]—1},

S+ {(Z,],s,t)|1§z,]§m+n,O§s,s+t§l71,t21}

For all 8 = (i,4,5,t) € S, we also set ug as €g(mn)+i,(s+t)(m+n)+; and p(f) as the parity of ug.

Then, we have
1=PCus  s20=Po = P Cus.
pes t>0 BeSy
Moreover, let b be @ g;, which is a subalgebra of g. We define s as an inner product of b such
Jj<0
that

k(u,v) = (ulv) + %(ﬁg(u,v) — Kg, (po(u),po(v))) for all u,v € b,

where po: b — go is the projection map and kg (resp. kg, ) is the Killing form on g (resp. go). By
the definition of x, we have

ﬁ(651(m+n)+i1,t1(m+n)+j1 ) 652(m+n)+i2,tz(m+n)+j2)
= Oant20t102000 2010 (= 1)P ) (k4 (L= 1) (m — )
- 5817151 5827t25117j1 5i27j2 (71)p(11)+;0(12)(c - 531782)'

Let b be the Lie superalgebra b @ C[t*!] @ Cy whose commutator relations are

[at™, bt"] = [a, b]t"“ " + Sutw our(a, b)y,

1y is a central element.
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We also set a left b-module V*(b) as U(b)/U(b)(b[t] & C(y — 1)) = U(b[t~']t~'). Then, it has
a vertex algebra structure whose identity vector is 1 and the generating field (ut=1)(2) is equal
to z:(uts)zfs’1 for all u € b. We call V*(b) the universal affine vertex algebra associated with
SEZL
(b, k).
In order to simplify the notation, we denote the generating field (ut~!)(z) as u(z). By the
definition of V*(b), generating fields u(z) and v(z) satisfy the OPE

u(z)v(w) ~

[u, v](w) K(u,v)

Z—w (z —w)? (8.2)

for all u,v € b.
We set a Lie superalgebra a,,, , = @ CJs) g @ Ct(u,) with the following commutator

ug€d<o up€g<o
relations;

[J(u)’ J(v)] _ J([u,v])7 [J(ei"j),qﬁeS,t] _ 5],,5%” . 5i7t(_l)p(em)(p(es,t)+1)¢esyj’ Wu,%] =0,

where the parity of J(#2) (resp. Yy, ) is equal to p(3) (resp. p(B)+1) and we denote Z aﬂJ(“ﬁ‘)
up€g<o
(resp. Z ag¥iuz)) by J(Z“ﬁa‘so apup) (resp. ¢Eu3eg<o agug) for all ag € C. We define an
aﬁinizaﬁsrgfgf O, Dy using the inner product on a,, ,, such that
“m,n(‘](u)7 J(U)) = ’f(u7v)7 Hm,n(‘](u)a y) = “m,n(¢u7¢v) =0.

By (8.2), V*mn(a,, ) contains V*(b). We identify ut~' € V*(b) with J(W¢=1 € VEmn(a,, ).
For all u € ay, p, let u[—s] be ut~*. In this section, we regard V"™ (a,, ) (resp. V*(b)) as a
non-associative superalgebra whose product - is defined by

ul—t] - v[=s] = (u[-t])(—1yv[—s].

We sometimes omit - and denote Ve, ) msnssoiminy i [5) PY Y(wtw)(min)+io(min)+ils] in order
to simplify the notation. A rectangular W-superalgebra W¥ (gl(Im/|in), (1'™!™)) can be realized as

the subalgebra of V" (a,,,) ([27] and [28]) as follows.
Let us set o as k+ (I — 1)(m —n). We can define an odd differential do: V*(b) — V*mr (ay, )

determined by

dol =0, (8.3)
[do, 0] = 0, (8.4)

[dOa e(s—l)(m+n)+j,(t—1)(m+n)+i[71“

~1,3 + i, 7
= Z (_l)p(€ a)Fe(eirp(e 1])6(a71)(m+n)+r7(t71)(m+n)+i[_l]w(sfl)(ern)Jrj,(afl)(ern)Jr'r[_1]
t<a<s,
1<r<m+n
- Z (=1)PCerPlerndiy s mmy ety () il— L€ 1) mtm) 4. (a1) (mtm) e | — 1]
t<a<s,
1<r<m+n
+6(s < (= 1PP (s 1) (metn) 5. (t-1) (metn) 11 [~ 2]
+ (=P DYyt (= 1) metr) il — 1] = Y(sm1) (metmy-ts, (1—2) ety il — 11- (8.5)
Definition 8.6 (Kac-Roan-Wakimoto [23], Theorem 2.4). The rectangular W-superalgebra asso-
l—1 m+n
ciated with a Lie superalgebra gl(m|n) and a nilpotent element f = Z Z €s(m-+n)+i,(s—1)(m+n)+i
s=1 i=1

is the vertex subalgebra defined by
WE(gl(ml|nl), (I""1™)) = {y € V*(6) C V™" (aynn) | do(y) = 0}.
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We denote the rectangular W-superalgebra associated with a Lie superalgebra gl(m|n) and a

nilpotent element f by W¥(gl(Im|in), (1™™))). The rest of this section is devoted to the construc-
tion of two kinds of elements Wi(;-) and Wi(i), which are generators of W¥*(gl(Im|in), (1(™™)).

We regard V*(b)®C|7] and VFm.» (am’n7)®(C[T} as non-associative superalgebras whose defining
relations are given by

u[=t] - v[=s] = (u[=t])nyv[=s], [ u[=s]] = su[-s],

where 7 is an even element. Let dj™: VFmn (ay, ) @ Clr] = V5 (ay,.,) @ C[7] be the odd
differential determined by

dg"1 =0, 1dg"" ul=s]] = [do,ul=s]],  [dg"",7] = 0.

First, let us recall how to construct generators of the principal W-algebra W¥(gl(1), (I')) ([3],

Section 2). We denote by T'(C) a non-associative free algebra associated with a vector space

C and by gl(l)<o the Lie algebra @ Ce; ;. In the principal case, b is equal to gl(l)<o. By
1<j<i<i

Definition 8.6, the principal W-algebra can be defined as

WE(gl(), (') = {z € V"(gl(1)<0) ® C[r] | do(z) = 0}.

Similarly to V*(b) ® C[r], we define a non-associative algebra T'(gl(l)<o[t~!]t™!) ® C[r]. Let us
set mas k+1—1and an | x [ matrix B = (b; j)1<i j<i as

(77 +e1a[—1] ~1 0 0 -
e1[~1] w7 +exa[-1] -1 0
(8.7)
er—1,1[~1] er—1,2[—1] ceo o TTHe—1,-1]—1] -1
L aal-1 er2[—1] eri—1[—1] T+ e [—1]

whose entries are elements of T(gl(l)<o[t™']t™!) ® C[r]. For any matrix A = (a;;)1<ij<s, We
define cdet(A) as

Z sgn(a)ag(l),l (ag(2)72(a0(3)73 cee ag(s_1)7s_1)ao(s)7s) c T(g[(l)go[til]til) ® C[T}
o€ES,

!
By the commutator relation of T'(gl(l)<o[t 1]t ~1)®@C|[7], we can rewrite cdet(B) as Z W) ()i
r=0

such that W e T(gl(l)<o[t™]t71). Let p be the projection map from T(gl(l)<o[t']t™") to
Ve(gl(l)<o) = Ulgl(l)<o[t™']t™1) and W) be p(W ). Proving that [(Zl)’o,p(cdet(B))] =0, we
obtain the following theorem (see Theorem 2.1 of [3]).

Theorem 8.8. The W -superalgebra W*(gl(1), (11)) is generated by {W (" }1<.<;.

Remark 8.9. In [3], the tensor algebra T'(C') should have been defined as a non-associative super-
algebra as above since V(g<o) is non-associative.

Let A; o be a quotient algebra of T'(a; o[t 1]t~1) @ C[r] subjected to the relation
(ea[=1]1ia[—1])cdet(CT™7) — eqn[=1] (i .a[—1]cdet(C' ) = 0 for all 1 < a <4,

where C!'~% is a submatrix of B consisting of the last (I — i) rows and columns. Constructing a
homomorphism

D: T(gl(D)<o[t 't @ C[r] — A1
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determined by

D(es,u[_l]): Z ea,u[_l]ws,a[_l]_ Z wa,u[_l]es,a[_l]

u<a<s u<la<s

+ 6(5 < u)ﬂ-ws,u[*ﬂ + ws,u—i-l[*l] - 7/15—1,11‘[7]-]5

we obtain the relation D(cdet(B)) = 0 in the way similar to the one of Theorem 2.1 of [3].
We regard gl(m|n) as an associative superalgebra whose product - is determined by e; ;- €5, =
d; s€iw- Then, we obtain a non-associative superalgebra gl(m|n) ® V*(b) @ C[r]. We construct a
homomorphism
T: T(gl(l)<olt™]t™") ® Cl7] — gl(m|n) ® V*(b) © C[r]

determined by
T; i(z) = (—1)p(i)x ®ei; €ol(D<olt Mt @gl(m|n) = bttt T(r)=r,
where T; ;(x) is defined as e;; ® T; j(x) = T'(z). Since T is a homomorphism, we obtain

m—+n

Tpj(ay) = 3 (1) P T (@)1, (y).

r=1
By the commutator relation of V*(b) and C[7], Wi(’;) € V*%(b) is defined by

l
Tji(cdet(B)) = > (—1)"IW ) (ar) =", (8.10)
r=0

where B is defined by replacing 7 in (8.7) with a.

Theorem 8.11. For all m,n > 0 such that m # n, the W -superalgebra W*(gl(ml|nl), (10™1™)) is
freely generated by {WZ-(’;) [1<r<l1<ij<m-+n}.

Remark 8.12. In the case when n = 0, Theorem 8.11 is shown in Theorem 3.1 of [3].
Proof. Under the assumption that 7 is equal to «, we denote A; o (vesp. D) as A1 (resp. D). We
construct a homomorphism T7: Ay o — gl(m|n) @ VFimn(a,, ,) @ C[7] determined by
TP (eswlu]) = (=17 e (o 1) ety 1) o)+ (1]
szg (w&w[u]) = 1/)(571)(m+n)+i,(w—1)(m+n)+j [U], Tp(T) =T,
where T} () is defined as e;; ® T};(z) = TP(x). Since T? is a homomorphism, we obtain

m+n

TP (es [~ tbuol-1)) = D (=1)PCPEDITE (o) W [-INTE, ($u0[~1]),
r=1
m—+n
TP (ul—esw[-1)) = D (=1)PeorFPeanrleanr o [P, (eswl-1))

By the definition of T} ; and dy, we have

[d(r)n’naTj,i(GS,w)]
= [d(r)n,n’ (71)p(j)e(s—l)(7n+n)+j,(w—1)(m+n)+i[71]]
i)+p(ei,r)p(ej,r
- Z (71>;D() pleir)p(es )e(a—l)(m+n)+r,(w—1)(m+n)+i[71]¢(s—1)(m+n)+_j,(a—l)(m—i—n)—i—r[71]

w<a<s,
1<r<m+n
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= D (D) "Yam 1) mtn)+r(w—1)(metn) i [ 1€ (s—1) (merm)-. (a=1) (mopm)r [~ 1]
(e
+ (s < W)OY(s—1) (mtn)+7,(w—1) (mtn)+il—2]
Fs(mtn) 4, (w=1) omtn) i1 = Do) metn) 45, w-2) mebm) o[ 1]
= T]Ifi([D7 s w)); (8.13)

where v = p(j) + p(ei,)p(ejr). Thus, the relation [d)"" Tj(a)] = T?,([D,a]) holds for all
a € T(gl(l)<o). Then, we obtain

[dg"™, Ty.i(cdet(B))] = T7,(|D, cdet(B))). (8.14)

Since [D,cdet(B)] = 0 holds by the proof of Theorem 2.1 of [3], the right hand side of (8.14) is

equal to zero. Thus, we have obtained the relation [dyp, Wl(;)] = 0. The rest of the proof is same
as [3]. O

In particular, by (8.10), we have

1
WZ(,J) = Z e(sf1)(m+n)+j,(sfl)(’m+n)+i[_1}7 (815)
1<s<l
2
Wi(,j) = Z s(m+n)+j,(s—1)(m+n)+il—1] + @ Z (8 = D)e(s—1)(mtn)t4.(s—1)(mtn)+i[—2]
1<s<l—1 1<s<lI
+ Z (—1)p(t)+p(ei’t)p(ej’t)GE:’;—I)[—1]65-;2)[_1], (816)
r1<r2
1<t<m+n

where we set e}? a8 €(r—1)(m-n)+j,(r—1) (m-+n)+i-

Theorem 8.17. The rectangular W -superalgebra WF (gl(ml|nl), (10™1™)) is generated by Wi(;) and
&) » : —

Wi (1 <4,j <m+n) provided that « =k + (I —1)(m —n) # 0, m # n and m +n > 2.
Theorem 8.17 is proved in the appendix A.

Remark 8.18. In the case when (m,n) = (1,0) or (0,1), the elements Wi(;i_l or VV}?H do not
exist. This is the reason why we need the condition that m +n > 2 in Theorem 8.17.

9 OPEs of rectangular IW-superalgebras

First, let us recall the definition of the universal enveloping algebras of vertex algebras. For all
vertex algebra V', let L(V') be the Borchards Lie algebra, that is,

L(V) =VaC[t,t™]/Im(0 ®id +id ® d

ol (9.1)

where the commutation relation is given by
a by a at+b—r
[ut®, vt’] = Z <7‘> (u(ryv)t
r>0
for all u,v € V and a,b € Z. Now, we define the universal enveloping algebra of V.

Definition 9.2 (Frenkel-Zhu [14], Matsuo-Nagatomo-Tsuchiya [33]). We set U (V') as the quotient
algebra of the standard degreewise completion of the universal enveloping algebra of L(V') by the
completion of the two-sided ideal generated by

(uayo)t’ = > (a> (1) (ut*ipthti — (—1)PIPO) (pyagpotb—iygiy (9.3)

i
i>0
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0yt —1, (9.4)
where |0) is the identity vector of V. We call U (V') the universal enveloping algebra of V.

Lemma 9.5 (Kac-Roan-Wakimoto [23], Theorem 2.4). There exists a homomorphism from the
universal enveloping algebra of gl(m|n)® to UWF (gl(ml|nl), (17™™))) determined by

E(E t°) =Wt €@ =lat™!, &) =1

In order to construct a homomorphism from the affine super Yangian to the universal enveloping
algebra of W-superalgebras in Section 6, we need to compute the following terms;

WY W2 (w>0), W2)w?, w2),w?.

7,37

First, we compute (W( ))(U)Ws(zt) (u > 0). By direct computation, we obtain the below two
lemmas. We omit the proof

Lemma 9.6. We obtain
2 2 eu v €i,j 2
(Wé}g)(O)Wi(,j) = 5j,uWi(,v) - 5i,v(_1)p( wpes )WIE])
Lemma 9.7. The following equations hold;
2 1 : 1
(WED WD =850 = DaW ) = 6, (-1 (1 = 1) (e = )WY,
W)@ W =1 — Dak(eww, €),:),
(W(l))( )W(2 =0 (for all s > 3).
Corollary 9.8. The following equation holds;
Wb, w2t
_ 5 W teru _ 51 w( 1)1)(517 w)p(ei, J)W( )tSJru
+8j,08(1 = DaW, et =6, (-1 )P<w>(z 1)(lc — 1)sW estut

s(s—1)
2

+ 11 — 1) ak(ew, eji )t T2

The following assertion is also shown by direct calculation.
Lemma 9.9. We obtain
2 2 i j 1 2 i 2
(W( ))( )W( ) ( I)P( )(W( ))(_ )W( ) ( l)pu)(Wj(,i))(—l)WiSj) o (5i,j04+ (71)17( ))aWj(J)
1 1 1 1
+ (=" (1= DaW D) oWy — {1 - 1)%c— 1 - 1)} o)

l(l _ 1)04282W(1) + (71)1’(3‘) l(l — 1)0482W(1) o (71)1’(]‘) l(l — 1)2
0 2 0

1 %(_1)1’@)(1 )aa2 (1)

cad? Wﬁ)

+%(—1>W>(z Dad®W,
and
W W 2 = {1 - 1)%c— (1 - 1)}W D)) - )W(l)—26”aW(2) (-1Pw
— (PO 4 (-1 )P<j>(1_1) WD) CyW + 5510 — 1)a2ow D
+ (~D)PU01 — Dadw Y — (~1)PP10 -1 )caawiﬁi
+ (-1 (1~ 1)adW ]} 0 — ()PP~ Dadw,.

Remark 9.10. In [41], Rapcak defined two kinds of elements of rectangular W-superalgebras of
type A, which are called Uy ; ; and Us; ; (1 <¢,j < m+n) under the assumption that ¢ = 0. The
element U, ; ; is corresponding to (—1)p(l)p(j)Wi(g) (r =1,2), where J(b) in [41] is corresponding

to (—l)p(a)p(b) ep,q in this paper.
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10 Affine super Yangians and rectangular I/ -superalgebras

In this section, we prove the main result of this paper. Here after, we assume that m # n and set

« «
) 52:_1_
m-—-n m-—-n

g1 =

and fix an invariant inner product on gl(m|n) such that ¢ = 0 (see (8.1)).

Theorem 10.1. There exists an algebra homomorphism
®: Y, o, (sl(mn)) — U (gl(minl), (1))

determined by

-1 p(m+4n)1r,(1) (1) l -
®(Hio) ! (0) (Kfm% m+?1+1)W 4 =0
7 (—1)p Wi — (— )p Wz+1 i+1 (i #0),
P X+ _ W1(,1721+nt (7’ = 0)3 P(X ) = (71)p(m+n)Wr(nl<)kn,1t71 (Z = 0)7
( i,O) - (1) . ( i,O) - p(i)yr-(1) .
Wi+1,i (i #0), (—1) WZ i+1 (i #0),

(m+n 2 2 m+n 1
( 1) * )W7(nj-n m+nt7W1( 1)t1+ (71) p(mt )( )O[WT(YLj-TL m+n
_laq)(HO,O) ( ) (m+n)W7€nj—n m+n(W1( —lOé)
(et )Zmin ) o
p m+n s s
Wu m+nt Wm+nu
s>0 u=1
+
Z Z u)W(l t—‘3 1W(1)t9+1
Z u=1
1 =0,
<—1>”<”V?E?t - (- >;(““ W)ﬁ iyt
1—20(1>m+1 m Y (D (L)
+ ®(Hi ) + (—1)P D wwi
B(H;,) = 2, .
_ )Z Z P(u W 1)t—sw(1)ts
s>0u=1
m—+n
_ )Z Z P(U W(l)t s— lw(l)ts+1
s>0u= z+1
Z+1)ZZ P(U)Wul) t_ng(i)l utg
s>0u=1
ek e ) M
BRI DS Vi e U e e
s>0 u=i+1
i #0,
+
Wl(?r)n-&-nt2 + (l )aW1(1731+n la(b 0 0 Z Z p(u)Wu 7n+nt SWl(,lu)tSJrl
s>0 u=1
ifi =0,
1—20(i>m+1)(t—m
B(X) = $ w4 S REEM DO g
m—+n
TS O - 3 S W e
s>0u=1 s>0u=1+1
ifi #0,
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m+n 2 _
(-1 )“ W~ 10®(Xo )
m—+n
p(m+n) Z Z P(U)W l)t_s 1W7(n14)rn " t°,
s>0 u=1
ifi =0,
p(l)W(g) - 2—26(i2m+1)(i—m)q) -
¢(X7:1) ( ) 7,541 2 ( 1,0)
P( ) Z Z W1511+1t_sWi(,1u)ts
s>0u=1
m—+n
PO S (L) i@t
>0 u=i+1
ifi 0.

Proof. It is enough to show that ® is compatible with the defining relations (7.2)-(7.13). By
Lemma 9.5, we find that ® is compatible with (7.3), (7.11), (7.12) and (7.13). Thus, it is enough
to show that ® is compatible with (7.2) and (7.4)-(7.10). We divide the proof into two piecies,
that is, Claim 10.3 and Claim 10.16 below. In Claim 10.3, we show that ® is compatible with
(7.4)-(7.10). In Claim 10.16, we prove that ® is compatible with (7.2).

In order to prove Claims 10.3 and 10.16, we relate ® with the evaluation map of the afiine
super Yangian. We set ev(H, ) and &/(st) (s=0,1) as

&(Hio) = ®(Hio), 6v(Xh) = @(XE),

m n 2 2 m-4+n 1
®(Hon) — {(—0)P" W)t = Wt ()P = 1DaW

ev(Hi) = if i =0,
O(Hi ) — {(-)POWDt— (~1)PIWE) ey ifi#0,

(X)) — (W 2+ (- Dawl) 1} ifi=0,
o(X,) — W)t it 40,
O(X; ) — (~1PIw it =0,
®(X;,) — (~1)POWD e if i #0.

t+1] @ Cé @ Cx whose commutator relations

We define g[(m\n)“ as a Lie superalgebra gl(m|n) ® C|
are

¢ is a central element,
[u®t® v @t = [u,v] @t + S0y 0astr(uv)é, if u or v € sl(m|n)
[Ei ®1% B} ; & t*] = Sayp0astr(Ei i Ej ;)¢ — 6aypoal(lc — 1)(=1)PO P05

We note that gl(m|n)® is the same as gl(m|n)*" except of the inner product on the diagonal part.
By Lemma 9.5, we can prove that év is compatible with (7.3)-(7.13) which are parts of the defining
relations of the affine super Yangian ¥V i ;1o (5[(m\n)) in a way similar to the proof of the

existence of the evaluation map (see Theorem 5. 2 in [45]). This is summarized as the following
lemma.

Lemma 10.2. Let us set

la N la
y €9 = -1 - .
m-—n m-—n

€1 =

Then, ev is compatible with (7.3)-(7.13) which are parts of the defining relations of the affine super
Yangian Yz, &, (sl(m|n)).
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We remark that €v is not an algebra homomorphism since [€v(H; 1), €év(H;1)] is not equal to
zero. See (10.32) below for the details.

Claim 10.3. For all 4,5 € {0,1,--- ,m+n — 1}, ® is compatible with (7.4)-(7.10).

Proof. We only show that ® is compatible with (7.7). The other cases are proven in a similar way.
It is enough to show that

[©(Hon), ®(X,} 40 1.0)]
m-—-n
= _(_1)p(m+n){q>(X:;+n—l,l) - ((m - TL) +a-— 2) Wr(nlin,m—&-n—l ) (104)

[‘I)(ﬁO,l)"I’(X;Hn—l,o)]

m—+n — m--n— m—n
= ()" R(N, ) — (FD)PTY ((mn>+a 5 )Wéﬂln_l,m+n}- (10.5)

y the definition of ®, we can rewrite the leit hand side o 4) as
By the definiti f @ ite the left hand side of (10.4
[©(Ho1), (X, 10 10)]
1 m+n 2 1 2
= Wikt GO TIW ] DV 1 W
— W (1" = D)Wy ] + [V (Hoa) (X 1)l (106)

m+n,m+n—1°

By Corollary 9.8, we obtain

1 m+n 2 m+n 2
_[W'r(nJ)rn,m+n717 (_1)17( * )Wr(n—?—n,m—i-nt] = _(_1)}7( * )Wéﬂ)ﬂn,ernflt? (107)
Wi mn1s Wi E] = 0. (10.8)

By Corollary 9.8, we have

1 1 1
Wi mmin 1 COPTT = D)aW i, ) = — ()P = DaW i, e (10.9)
By Lemma 10.2, we also obtain
(69 (Ho1), (X4 10)]
m+n) ~ m+4n m-mn 1
= (= DPUIIE (X )+ ()P (<m —n) +la - 2) Wi pmin1- (10.10)

The identity (10.4) follows by applying (10.7)-(10.10) to (10.6). We can prove that ® is compatible
with (7.8) in a similar way.
Similarly, by the definition of ®, we obtain

m+n71,m+n]
(_l)p(m-i-n)W(?) {]

m-+n,m+n

(@ (Ho,0), (~1)" " VW)
=—( 1)P(m+n—1)W(1)

m+n—1m+n>

m—+n— 1 2
- [(71)17( * 1)Wr(713—n—1,m+n’ 7W1(,1)t]
— [P TIWL, e (C1PTT = 1)a W )
+ [ev(Ho,1), 6V( Xy, 4 p—1,0)]- (10.11)

By Corollary 9.8, we obtain
m-+n— 1 m—+n 2 m—+n— m+n 2
—[(=)POEEOWL s (FDPOEOWEL ] = (m1)P R gy )t
(10.12)

— (=Pt Dy ) w2 = o. (10.13)

m+n—1m+n>
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By Lemma 9.5, we have

m 1 1
— (PO ) (CDPTT @ Daw

_ (71)p(m+n71)+p(m+n)( )aw(l)

m+n—1m+n-

(10.14)
By Lemma 10.2, we obtain
[6v(Ho,1), (X 10)]
= ()" (X 1)

m4+n m-=n m—4+n—
= 1y ()= ) (W)
(10.15)

The identity (10.5) follows by applying (10.12)-(10.15) to (10.11). Thus, we have shown that ® is

compatible with (7.7). O
Finally, we prove that ® is compatible with (7.2).

Claim 10.16. The following equation holds for all 4,5 € {0,1,--- ,m+n —1}, r,s € {0,1};

(®(Hi,), ®(Hjs)] = 0.

Proof. By Lemma 9.5, we obtain [®(H, o), ®(H; )] = 0. In the similar way as that of Claim 10.3,
we have [®(H, ), ®(H;1)] = 0. Thus, it is enough to show that [®(H; 1), ®(H;1)] = 0. We only
show the case when 4,7 # 0 and ¢ > j. The other case is proven in a similar way. In order to
simplify the notation, we set

X‘ — _ P( Z Z P(U)W t_sW(l)ts
s>0u=1

m4n
p() p(u) (1) —s=1p(Dys+1
E E W, it Wt
s>0 u= z+1

By the definition of év, we obtain

i—20(i >m+1)(i —m)

&V (Hia) = 5 (F)POWD = (~)PEW )
+ (- );U(EZ z+1)W(1)W(1)1 i + X — Xis1 — (Wi(—ol—)l,i+1)2
= X; — X;41 + (the term generated by W <i<m+n}). 10.17
i,

By Lemma 9.5, Lemma 9.6 and (10.17), we obtain

[ev(Hia), ev(Hja)] = [Xi — Xip1, Xj — Xj4a], (10.18)
(S (Hi), (1P PWD = (~)P WD
2 2
= [Xi = X, (0)POWD = (—1)PUIw, L. (10.19)

We remark that [év(H; 1), ev(H, 1)] is not equal to zero since the inner products on the diagonal

parts of gl(m|n)* and gl(m|n)**" are different.

By (10.18), (10.19), and the definition of ®, we obtain
[®(Hi,1), ®(Hj1)]

i i j 2
= [(~1)POWE — (1P IW DL (1P WE ()P ) e
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X = X, (CDPOWSD = ()P OIWE

Jj+1,5+1
3 2 2
FUDPOWD — (—)PIIWE DX — Xa] + X — X, X — X

Thus, it is enough to show the relation
(1wt (~1)POW e + (X, (~1D)POWE ] + [(~)POW D, X)) + (X, X;] =0 (10.20)

holds for all 4,5 € {1,--- ,m +n}, @ > j. Let us compute each terms of the left hand side of
(10.20). First, we compute the first term of the left hand side of (10.20). By Lemma 9.9, we
obtain

(—1POPO @ w2y
_ (_1)p(i)+p(j)(W(2))( )W(2)t2 + (- l)p(1)+p(3)(W(2))( )W( )
= ()P W)y w22 = (1O w D) w2 — 5 aow P2
— ()PP 22 4 (1P (1 — D)W D) oW, Ve
. (_1)p(i)+p(j){(l . 1)20 — (- 1)}(Wj(71]'))(—1)awi(,;)t2

_ Nl —1
71)&02W.(1-)t2 + (4)“”%0482%%)152

%(—1)““@ Dad® W,

(crp@ =1 5 Y ad®* WD + ( P9 (1~ 1)ad?W)e? —
(— l)p(l)+p(1){( 1)2c— (1 — 1)}(Wj(,1j))( 1)W-(1»)t — 26, -OzW.(z)t
— (- 1)1)(])W(2 — (-1 )P( )W 2)t+( 1)17(2 (I-1)a (W( ))(7 )W( )
95,31 (
(=1)

il = Da?ow Dt + (—1)PD1(1 = Dadw Pt — (1711 - 1)2cadW,}t
(1) ) (1)
171~ 1)adW, Pt + (-1)P9 (1 — 1)adw e,

_|_

We can rewrite it as
B (71)p(i)Wi(,§)t+ (—1 )p(j)W»@)t#»( 1) (J)(W( ))( 1)W( )42 — (- 1)p(i)(Wj(,?)(—l)wi(j‘)ﬁ
+ (=D)P (1 = Da(W) oW + (- 1>’°<”(z—1)a<w.<?><,1>w.“->t

— (PO =12 = (1= D} (WD) oW e+ W) CywiPe) (10.21)
since six relations

~8;,j0dW 2 — 25, jaW Dt =0, (10.22)

_(_1)p(i)WZ_(j)t _ (_DP(J')Wj(E_)t - (—1)p(j)8W}?t2
= —((~)PIWDt - (—1)POw ), (10.23)
5. = 5 Y p202w D8 46,510 - D)aow Pt = 0, (10.24)
(fl)p“)@aazwﬁt? + (-1 - 1)adw Pt = 0, (10.25)
—(—1)”“)wcaa2wfj>t2 — ()P~ 1)2cadW PVt =0, (10.26)

%(—1)"@(1 Dad?Wwe? — %( PO (1 — 1)ad® W )t?

~(~1)"P (1 ~ DadW Pt + (1) (1~ 1)adW Pt =0 (10.27)

hold by the definition of the translation operator 0.
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In order to rewrite (10.21), we remark that the following two relations

(xnyy)t = Z T AR (—1)p(z)p(y)yt*5xts, (10.28)
s>0

(w— 1)8y th L=s(y)ts+2 4 (— 1)p(m)p(y)(8y)t1’sxts

s>0

=Y (—(s+ 2t oyt — (—)PPO (1 = sy at) (10.29)
s>0

hold by (9.3) for all ,y € W¥(gl(mi|nl), (1™™)). By (10.28) and (10.29), we also obtain

(@00 + (@)t = Y (—(1+ s)at ™ 7oyt + (~1)POPW gyp=saps), (10.30)
s>0

By (10.28)-(10.30), we can rewrite (10.21) as

AR 0) 4(2) 1\ .(2)
(=)W e+ (-1) Wit

+ P(J) Z W t—S 1w(2)t€+2 P( ) Z W(2 tl QW(I

s>0 s>0

i 1), —s5— 2),s j 2),1—s 1),s

o (_1);0( ) Z Wj(,i)t IWi(,j)t +2 (_1)P(J) Z Wi(,j)tl Wj(,i)t

$>0 >0
+ (=" =1 Y swi W — (100 - 1) Y swiVew e

s>0 s>0
— (1P 12— (- S (—sW e w Ve swPeew D). (10.31)
s>0

Next, let us compute the last term of (10.20). By a computation similar to the proof of the
existence of the evaluation map (see Theorem 5.2 of [45]), it is equal to

(X, X;] = —(—l)p(i)"'p(j)l(lc —1) ZS{WZ.(;)tfst(;)ts W(l)t SW(l)t }
52>0

DPOPDN s D w Ve — whisw Dy, (10.32)
s>0

Finally, let us compute the second term and the third term of (10.20). By the definition of Xj,
we obtain

(2)
X, W2

== T S W e W
R0 ZZ PO e, w@gw e
B )Z > - PeOw e w e wit

_ P()Z Z 1)t—9 1 W(Q)t]W(l)te-‘rl- (1033)
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By Corollary 9.8, the first term of the right hand side of (10.33) is equal to

s>0u= 1

7 u 1 —s 2),s 1 —s 2),s
= _5: . )ZZ P( )W )t W( )t +1+(5(Z>])( )P( )+P(J)Zw( ¢ W( )f, +1

s>0u=1 s>0
_ 51,’]( p(Z Z Z )t—eW(l)ts
s>0u=1
+ (1P =D te - 1) Y swiPrew e (10.34)
s>0

since by (9.1) k(e;,e;,)t°" ! is equal to zero unless s = 0. Similarly to (10.34), we rewrite the
second, third, and 4-th terms of the right hand side of (10.33). By Corollary 9.8, the second term
of the right hand side of (10.33) is equal to

_ p(’L ZZ p(u) W(l)t s W(Q)t]w(l)ts
s>0u=1
—5(i > §)( p( )+p(5) Z tl sW(l)ts + 6 J( )p(i) Z Z (—1)p(")W1E?i)t1’SWi€L)tS
s>0 s>0u=1

L (D) +p(4) (1), —syr7(1) 4

+ (i > ) (=PI — 1)aZst7i tIW
s>0
— (1P =) - 1) Y swiew e, (10.35)
s>0

By Corollary 9.8, the third term of the right hand side of (10.33) is equal to

m—+n

_ p(" Z Z p(u)W )t—S 1[Wl(1t)t9+17Wj(§)t]
s>0 u=i+1 1 ’
m4n
= —4. . P()Z Z P(U)W(l)t—S 1w(2)t9+2
s>0 u=i+1
+6(i < 5)( p(1)+p(j) ZW;?t—s—IWi(j)ts-&-Q
s>0 7
m—+n
0 (1P -1 > 3 (s+ D (-1PIw et et (10.36)
s>0 u=i+1

By Corollary 9.8, the 4-th term of the right hand side of (10.33) is equal to

TRl ) [y @) (D)
pZZZ pu 1t31W2]W»1tS+1
s>0 u=i+1 ’
_6(2 < ])(_1)P(l)+lﬂ(]) ZW]‘(E)t_SWi%)tSJFI
s>0
m—4+n
p(?) Z Z P(u W(2)t—sW(1)tq+1
s>0 u=i+1
+68(i < (=11 1)y (s + Wi tw et (10.37)

s>0
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We prepare some notations.
(10.35), (10.36), (10.37)) by (10.34), (resp. (10.35),,

Ai = (—1)P<j>(1o.34) + (-1)*Y)(10.35), + (—1

= 5. JZZ p(u)W 1)t_sW(2)ts+1 +5JZZ

(10.36),,

s>0u=1 s>0u=1
m4+n m4+n
,]Z Z u)W(l)t—s 1W(2)ts+2 _"_6’]2 Z
s>0 u=i+1 s>0 u=i+1
B = (—1)"Y(10.34), + (-1)"Y)(10.35), + (~1)"(10.36), + (-1
=6(i > J)(_l)P(l) ij‘()?tfswi(j)ts+1 —5(i > 5)(
s>0 s>0
+0(i < H(=DPOS Wt w Bt 50 < ) (-
s>0
Ci; = (-1)*Y(10.35), ( 1)P9)(10.37),
=8> NP1 -1y swiew Ve
s>0
+0(i < H(=DPD 1 - 1)a Y (s + Wt et
s>0
= (,1)?(1) (l _ ]‘)Oéz SWj(;)tisWi(’;)tS,
s>0
D, ; = (—=1)"9(10.34), +(— 1)P9)(10.36),

p(u)W l)t Sw(l)ts

= IS

s>0u=1

m—+n

ZZSJrl

s>0u=1+1
Ei; = (-1)?Y(10.34), + (=1)")(10.35),

(—1POPO e - 1) Y swiPewi e
s>0

D> swiew Ve,

s>0

p(“) W(l)t s— 1W(1)t3+1

- (71)1?(1')4‘17(]')(1 . 1)(16 -

Then, we can rewrite [X;, (—1

Jj, we find that [X;, (-1
hand side of (10.20) is equal to

(10.31) + Ai j + By j + Cijj + Dij + Ei j —
By the definition of A; ; and D; j, we have

Aij—Aj; =0, Dij—D;;=0.
By direct computation, we obtain
Ci,j - Cj,i + (1031)7 + (1031)8 =0,

where we denote the i-th term of (10.31) by (10.31),.
the following two relations

B, ; — Bj; + (10.31),

71

)P(j>(1o.36) + (-1

(Aji + By + Cji+ Dy + Eja) +

+(10.31), + (10.31)4 + (10.31), + (10.31), + (10.31), = 0,

We denote the i-th term of the right hand side of (10.34) (resp.
(10.37),). Let us set

)P9)(10.37),

1Py 2 =y (D

u) W(2)t—SW(1)tS+1

p( ) ZW(2 tl SW(I)tS

p(z Z W Q)t—SW(l)ts-'rl

s>0

)p(])W(2 t] as A; j + B;j + Ci; + D; j + E; j. By exchanging i and
YPOW ] is equal to Aj; + By + Cji + Dy + Ej ;. We find that the left

(10.32).

(10.38)

(10.39)

Hence, by (10.38), it is enough to obtain

(10.40)



Eij— Eji

p(z) ZW(l t_ t5+1

1)P(j) Z Wi%)t—s 1w(2)t8+2
s>0

By Corollary 9.8, we obtain

70 (1) sy (D pst1
PN W e wi

s>0
p()ZW(l)t s— 1W(2)ts+2
s>0
p(i) 15/7(2) p(3) 17/7(2)
+ (=)Wt = (=1)T WS
Appling (10.43) to (10.42), we obtain
_ p(4) D) —s—1177(2) ps4+2
= (-1)PO N Wit w
s>0
p(3) (1), —s—1177(2) s+2 4
PN Wt
s>0
(i) 177(2) () 117 (2)
+ (D)MW - ()P W,

We have shown that (10.40) holds.

+(10.31), +

First, we show that (10.40) holds. Let us compute B; ; —
and (10.40) holds. Suppose that ¢ > j. Then, we can rewrite B; ; —

P(Z) Z W Q)tl Sw(l

s>0 s>0

(10.32) = 0.

(10.41)

Bj;. When i = j, it is equal to zero
Bj; as

(2)—spp7 (1) ps+1
PON WS DL, (10.42)
s>0
p(5) Z W(2)t—sW(1 st
s>0
p(]) Z W(Q)tl sw(l)ts
s>0
(10.43)

'L) Z W(2 tl sw(l)ts
s>0

p(]) Z W 2)t1 sw(l

s>0

Finally, let us compute the left hand side of (10.41). By direct computation, we obtain

Ei;j—FEj;
=2(-1 )(1)+p(J)(l 1)(lc —

_ 2(_1)P(i)+P(j)(l — 1) (le —

s>0
. 2(71):0(1'”17(]') (1—
s>0

%c— l—l}z

s>0

_ (_1)P(i)+p(j){(l

D> swileew e
D> swilew Ve,
s>0

It follows that the left hand side of (10.41) is equal to

2(~1)POPD (- 1y(te - 1)y swieew e
D(e—1)Y sweswie

1)t_gW(1)t9 +SW( )t—sw(l)t )

. (_I)P(i)er(j)l(lC _ 1) Z S{Wi(;)t_swj(;‘)ts - Wj(;)t_SWi(é)ts}

s>0

p(2)+p(5) Z S{W(l = SW(l
s>0

Wj(;) t*S W’L(j)ts}

- _ P( )+p(5) CZ SW(l t—sw( )té—l- W(l)t—éw(l) )

s>0

0.

72

Since ¢ = 0, this is equal to zero. Thus, (10.41) holds. We have shown that [®(H; 1), ®(H;1)] =
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Since we have proved Claim 10.3 and Claim 10.16, we have proven that ® is compatible with
the defining relations of the affine super Yangian. O

Next, let us show that ® is essentially surjective when a # 0.

Theorem 10.44. The image of ® is dense in UW*(gl(mi|nl), (1(™™))) provided that o is
nonzero.

Proof. Suppose that a # 0. By Theorem 8.17, it is enough to show that the completion of the
image of ® contains W(l)ts and W; 2)ts forall 1 <i,5 <m+nand s € Z.

First, we show that W( )ts is contained in the completion of the image of ®. By the definition
of ®(H,) and @(Xfo), the image of ® contains (( )p(i)W(l) (—1)” Py )W(l))t and W )ts for
all i # j and s € Z. Then, by the definition of ®(H; 1), the completion of the image of ® contalns

((_1)p(j)Wj(3) (-1 )P(J+1)W(2) )t

J+1,5+1
D) —aty/(1) 4a (1) —a—175/(1) a+1 p(e]] Yy Dy
=Y W T OW Y Wt T Wt = (S W W .
a>0 a>0

We take 1 < r, g < m +n such that ¢ # r,7 + 1. Then, by Corollary 9.8, we have

W=t (10w — (—1PrIw =S wiiew Ve

a>0
1 —a— 1 a ror41 1
+ ZW7"(+)1,1”+1t 1W7§+)1,r+1t + ( 1) (e * )W(l)W7E+)1 r+1]
a>0
— _( P(T W(Q)ts + ZW(I)t—a-l-s—lWT(%r)ta
a>0 ’
Z St lw(l ks — (—1)Pter T+1)W(1 e 1W¢E~1k)1 Pl

a>0

Let us set Y Wiltots-tw e + S wieetwiiets — (—rpermdwDe—twl) L as
a>0 a>0
Py ,. By Lemma 9.5, we obtain

W Pyl = Wt Py
= (-1 )p(Q)laWT(}T)ts_l +0,1(—1 )p(er ”1)+p(Q)laW7f1)1 1
+ (—1PCew W=t Wy Dy (DL,
Then, by Lemma 9.5 and Corollary 9.8, we have
[Wr(,lq)a Wq(,z'r‘)ts _ (*UMT)P;,T] _ [Wﬁqu)t, Wé?gts—l — (-1 )p(r)Psﬂ}
~( = DaW D=1 + (—1)P(6q’r)zaw<1>f*1 — G (1P i) L
_ (_1)p(q)Wq(,1r)t871Wr(,{]) + (- ) W(l W l)ts 1
_ an(}q)ts—1 _ la(Wé’l,}ts_l (1) eq,r)Wr(; 5= 1) — bea(—1)P p(eq, r+1)laWT(J1r)1 .
— (~1POWD et w D (1P w bW Dt (10.45)

We find that an(}q)ts_l — 051 (—1)" pleq, T+1)laW(+)1 41 18 contained in the completion of the image

of ® by (10.45), we have shown that the completion of the image of ® contains Wq%)ts.
Since we have already shown that the completion of the image of ® contains {Wi%)ts |1<id,j<

m + n}, we find that the completion of the image of ® contains ((—1 )p(i)W@) - (—1)p(j)Wj(72j))t
and WZ(Zilt for all 1 <4,j < m+ n by the definition of ®(H; 1) and @(Xfl) Since there exists
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a pair (4,7) such that p(i) = p(j), it is enough to prove that Wi(i)ts (1 # J), ((fl)p(i)Wi(j) -
(—1)* G )Wj(i))ts, Wj(;)ts, and Wi(j)tS + VVj(?tS are contained in the image of the completion of ®.
Next, we show that the completion of the image of ® contains Wi(j)ts (¢ # j). By Corollary 9.8,
we have

(1,51 P() 7 (2) P(+1) () _ POy @ s (g s o
Wi e (D)7 W55 = (1) w. )] = —(=1)PVWi T (if i # 4.+ 1),

J+1,5+1
) . . 9 . 2 j 2 s
[Wj(+)1,jt h ((—1)p(])Wj(,j) — (=1 1)Wj(—)1,j—1)t] = _(—1)p(J)WJ‘(+)1,jt :

Thus, Wi(j)ts (7 # j) is contained in the completion of the image of ®. By (9.3), we obtain

[((—1)p(i)Wﬁ) _ (—1)p(j)Wj<7§))t, ((—1)p(i)W¢(j) _ (—l)p(j)Wj(?)ts]
_ [((71)p(i)Wi(j) . (71)17(1')Wj(’3))7 ((71)p(i)Wi(j) _ (71)p(j)Wj(§))ts+1]

— (C1)POWD — (—1POWD ) (~1)POWD — (1D D)o
+ ((_1)p(i)Wi(,i) _ (_1)P(j)W](’2j_))(1)((_1)p(i)Wi(3) _ (—1)p(j)Wj(5-))ts
_ ((_1)p(i)Wi(,2i) _ (_1)p(j)Wj(,2j))(O)((_1)p(i)Wi(j) _ (_l)p(j)Wj(E_))ts—H

_ ((—1)p(i)W¢(j) _ (—1)p(j)Wj(§))(1)((—1)p(i)Wﬁ) _ (_1)p(j)W](,§))ts'

By Lemma 9.9, provided that i # j, it is equal to
C2a(W® £ W@ 21w o 1pOw® a1 Ow® ¢ (1w @)
+ (the terms consisting of {Wi(j.) (1<i,j<m+n), Wz(i) (i #7)})
= 2a(W5 + W)

+ (the terms consisting of {Wz(i) (1<4,j <m+n), Wl(i) CEXIDE

Thus, the completion of the image of ® contains Wi(j)ts + Wj(j.)ts. O

We obtain the following theorem in the similar proof as that of Theorem 10.1 and Theo-
rem 10.44.

Theorem 10.46. We assume that m > 3 and l > 2. Let us set

k+(1-1 k+(1-1
o= it=Ym  _  k+(-Dm
m m

Then, there exists an algebra homomorphism
B Yz, e, (sl(m)) = UV (gl(mi), (™))

determined by the same formula as that of Theorem 10.1 under the assumption that n = 0.
Moreover, the image of ® is dense in U(W*(gl(ml), (I™))) provided that k + (I — 1)m # 0.

11 Rectangular W-algebras of type D

For all n € Zo, let I, be {—n+1,—n+3,...,n —1}. Then, gl(n) has a basis {e;; | 4,7 € I},
where e; ; is a matrix unit. Using an n x n matrix J,, € gl(n) whose (i,7) component is equal
to &; _j, we can set so(n) as {z € gl(n) | 27, + J,x = 0}, where 27 is the transpose of x. We
remark that so(n) is not simple but reductive in the sense of this definition. Under this notation,
so0(n) is spanned by the set of matrices {f; ; =e;; —e_; _; | 4,5 € I,}.

In this paper, we suppose that | and n are even positive. For all a € I,,;, we take row(a) € I,
and col(a) € I; such that a = (col(a))n + row(a). By the definition of row(a) and col(a), we have
row(—a) = —row(a) and col(—a) = — col(a).
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We take a nilpotent element f as follows;

f = Z fa,b+ Z fa,b-

a,b€ln; a,beln
row(a)=row(b) row(a)=row(b)>0
col(b)+2=col(a)>2 col(b)+2=col(a)=1

We also set

gy = P  Cfas Cso(nl).
a,bely,
col(b)—col(a)=p

and fix the slo-triple (z, e, f) such that
gp = {y € so(nl) | [z,y] = py}.

Let b = @gr and ¢ = @gr, then b and ¢ are subalgebras of so(nl). We take an invariant inner
r<0 r#0
product on so(nl) by

(fa1,b1 ) fa2,b2)
= k(0ay b20b1,a5 — Oay+as,0001+b3,0) + Oay by 0as.by (6(col(ar) col(az) > 0) — d(col(aq) col(az) < 0)).

We fix some notations about vertex algebras. For a vertex algebra V', we denote the generating
field associated with v € V by v(z) = Z v(n)z_”_l and the vacuum vector (resp. the translation

nez
operator) by |0) (resp. 9). We also denote the OPE of u,v € V by

(u(s)v)(w)
3o e

u(z)v(w) ~ (z — w)>*1 :

s>0

There exists a non-degenerate invariant inner product on so(nl) determined by
K:(fahbl ) faz,bz) = (6111,172 6171,&2 - 6a1+a2706b1+b270)a + 6a1,b1 6a27b2 <5C01(a1)7001(a2) - 6001(a1)+001(t12),0)’

where o = k+ (I — 1)n — 2. Let b= b[t*!] @ Cy be the affinization of b associated with the inner
product k. We define a left b-module V*(b) as U(b)/U(b)(b[t] & C(y — 1)) = U(b[t~1]¢"1). Then,
V*(b) has a vertex algebra structure whose vacuum vector is 1 and the generating field (ut=1)(z)
is equal to Z(uts)zfsfl for all u € b. We denote the generating field (ut~!)(z) also by u(z). We

SEZL
call V*(b) the universal affine vertex algebra associated with (b,x). By the definition of V*(b),

generating fields u(z) and v(z) satisfy

(11.1)

for all u,v € b.
Let a be a Lie superalgebra generated by {J(), ), | u € b, v € ¢} with the following commutator
relations;

[J(u)’ J(v)] — J([uﬂf])’ [J(u)’q/}U] = Ylu)s [t 0] = 0,

where J(® is an even element and 1), is an odd element. We define a vertex algebra VF(a)
associated with a Lie superalgebra a and the inner product on a determined by

RIM,TW) = k(u,0), &I, 0) = R(tu, 90) = 0.
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In this section, we regard V*(a) (resp. V*(b)) as a non-associative superalgebra whose product
- is defined by u - v = u(_yyv. In order to simplify the notation, we denote Jt* € V*(a) by u[s]

and set
~ 0 ifi>0,
1=
1 ifi<O.

By [23], WF(so0(nl), (I")) can be realized as a vertex subalgebra of V*(b).
Definition 11.2. We define W¥(so(nl), (I")) as

W (so(nl), (I")) = {y € V*(b) | do(y) = 0},
where do: V*(b) — V¥(a) is an odd differential determined by

[do,1] =0, [do, 0] =0, (11.3)
[do, fap[—1]]
= > Feal=1ty, [-1] - > Vfon [ fac[~1]
col(b)<col(c)<col(a) col(b)<col(c)<col(a)
+ apy, ,[—2] + 6(col(a) > col(—a) > col(b))vy, ,[—2] + d(col(a) > col(—b) > col(b))vy, ,[—2]
(PO = ()T Ty (), (11.4)

where i = row(a), j = row(b), p = col(a), ¢ = col(b).

Especially, we have

(o, fapl =11 = (D)7 ZFETE Ty 1] = (P 1) (11.5)
provided that col(a) = col(b) = p,row(a) = j,row(b) = ¢ and
[do, fap[—1]]

= Z fcyb[_l}wfa,c [_1] - Z wfc,b[_l]fa,c[_l] + ad}fa,b[_2]

col(c)=col(b) col(a)=col(c)

+ 611711#]“&,1, [_2] —+ (_1)p+2+(ﬁ+p+2)}\wf

a+2n,b[_” - (—1)p_2+(p_2+p—4)~iw

fa,b72n[_1]’ (11.6)
provided that col(a) = col(b) 4+ 2 = p,row(a) = j,row(b) = i.

In the following theorem, we give two kinds of elements of W*(so(nl), (I")), which are in fact
generators of W¥(so(nl), (I")) (see Theorem 11.20).

Theorem 11.7. For i,j € I,,, the rectangular W -algebra W¥(so(nl), (I")) has the following ele-
ments;

(1 p-(G+i
Wz‘(,j) — Z (—1)P GG+ )fa,b[—lL
row(a)=j,row(b)=1,
col(a)=col(b)=p

= FGHDP p+pT4p 27
Wz(i) —a Z (—1)P G+ )§fa7b[_2] + Z (_1)p+p j+p—2 Fanl=1]
row(a)=j,row(b)=t, row(a)=j,row(b)=1,
col(a)=col(b)=p col(a)=col(b)+2=p
T Z (_1)(T+i).p+(j+r).q-fa17b1 [_1]f02,b2 [_1]

row(az)=j,row(b1)=t,
p=col(a1)=col(b1)<col(az)=col(bz)=q
row(ai)=row(b2)=r

1 545 (G473
+ 3 Z (_1)p+P G+ )fa,b[_2]~
row(a)=j,row(b)=1,
col(a)=col(b)=p
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Proof. By Definition 11.2, it is enough to show that [dp, Wl(;)} = 0. We only show the case when

r = 2. The case when r = 1 is proven in a similar way. By the definition of Wﬁ% we have

[dOv Wz‘(?]

D DI e VR e ) S N S CE VLA S )

row(a)=j,row(b)=t, row(a)=j,row(b)=t,
col(a)=col(b)=p col(a)=col(b)+2=p
+ [do, > (~) PO o (1] fan 1]

rOW(ag):j,row(bl):i7
p=col(a1)=col(b1)<col(az)=col(bz)=q
row(ai)=row(bz)=r

1 545 G+
+ 5 ldo, > ()PP g 2] (11.8)
row(a)=j,row(b)=t,

col(a)=col(b)=p

We compute each terms in the right hand side of (11.8). First, we compute the first term of the
right hand side of (11.8). By (11.5) and (11.3), we can rewrite it as

TTRAPTEG+pID
@ Z (_1)1? prey pz§¢fa+2n,b[—2]

row(a)=j,row(b)=t,
col(a)=col(b)=p

P+p—2-i4p-3 P
ca Y (PRl L) (11.9)
row(a)=j,row(b)=t,
col(a)=col(b)=p

Replacing a and b with a + 2n and b + 2n, we can rewrite the second term of (11.9) as

TTRapTR P+ 2
o Y ()RR, (11.10)
row(a)=j,row(b)=t,
col(a)=col(b)=p
Since col(a + 2n) = col(a) + 2, we find that

the first term of the right hand side of (11.8)

. Z (_1);4-\2+p/-.i-\2~}+5~?¢
row(a)=j,row(b)=t,
col(a)=col(b)=p

2 (11.11)

fa+2n,b[_

by applying (11.10) to (11.9).
Next, we compute the second term of the right hand side of (11.8). By (11.5), we can rewrite
it as

Z (_1)Bl¢fa1+2n,b1 [_1]fa2,b2 [_1]
row(az)=j,row(b1)=1,
p=col(a1)=col(b1)<col(az)=col(bz)=q
row(aq)=row(bz)=r

- Z (71)ﬁlwfa1+2n,b1 [*1].}0&2,172 [*1]
row(az)=j,row(b1)=1,
p=col(ai)=col(b1)<col(az)=col(bz)=q
row(a1)=row(bz)=r

+ Z (_1)B2f01,b1 [_]‘]{lpfag,bz—Qn[_]']

row (az)=j,row(b1)=t,
p=col(ai)=col(b1)<col(az)=col(bz)=q
row(ai)=row(bz)=r
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- Z (_1)B2fa1,b1 [_1]¢fa2,b272n[_1]’ (1112)

row(az)=j,row(b1)=1,
p=col(a1)=col(b1)<col(az)=col(bz)=q
row(a1)=row(bz)=r
where we set
Bi=F+1) P+ (G +7)-G+p+2+F+p+2) -7,
fo= F+7) P+ (G+7) T+T+@+T-2) 7
By a direct computation, we can rewrite the sum of the first two terms of (11.12) as

T q—2+7-G+3
Z (_1) ! - qwfa1+2n,b1 [_1]faz7bz [_1] (11'13)
row(az)=j,row(by)=t,
col(a1)+2=col(b1)+2=col(az)=col(b2)=q
row(a1)=row(b2)

and the sum of the last two terms of (11.12) as

Tp+jp+2+p+2
_ Z (—1) p+i-p+2+p+ fal,b1[71]wfa2,b272n [—1]. (11.14)

row(az)=j,row(b1)=1,
col(ay)=col(by)=col(az)—2=col(b2)—2=p
row(a1)=row(bz)

Adding (11.13) and (11.14), we have

the third term of the right hand side of (11.8)
G R
= Z (_1) e q+qwfa1+2n,b1 [_l]fa27b2[_1H

rOW(az):onw(bl ):i,
col(a)+2=col(by)+2=col(as)=col(bs)=q
row(ay)=row(b2)

T T PTRAPTE
_ Z (-1) p+j-p+2+p+ Far s [—1]wfa21,)2_2n[—1], (11.15)
row(az)=j,row(b1)=t,
col(al):col(bl)2:c0{(a2)—21:001(b2)—2:p
row(ai)=row(bz)

Next, we compute the 4-th term of the right hand side of (11.8). By a direct computation, we
obtain

1 545 G+
D SNV R W)
row(a)=j,row(b)=t,

col(a)=col(b)=p

1 (PO T o (T 7
_ Z (_1)p+2+(p+p+2)1+p+p U+ )¢a+2n,b[—2]

row(a)=j,row(b)=t,
col(a)=col(b)=p

Z (_1)ﬁ+(ﬁ+ﬁ)2+ﬁ+ﬁ.(3+€)wa’bizn[_2]. (11.16)

row(a)=j,row(b)=1,
col(a)=col(b)=p

[N

By a direct computation, we find that the second term of the right hand side of (11.16) is equal
to

1 o W e, W v e, Wi, Wi
D D A AR WP (11.17)
row(a)=j,row(b)=t,

col(a)=col(b)=p

Then, we have

the third term of the right hand side of (11.8) = —(—1)"tsj —nss—2] (11.18)
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by applying (11.17) to (11.16).
Finally, we compute the second term of (11.8). By (11.6), we can rewrite the right hand side
of the second term of (11.8) as

> (—O)PHPIR g gy (1]

row(a)=j7,row(b)=t,
col(a)=col(b)+2=col(c)+2=p

- 2 (PP [ facl 1]
row(a)=j,row(b)=t,
col(a)=col(c)=col(b)+2=p

P+pj+p—2- 7
+ Z (71)p+17 A wfa,b [72] + (71) ¢fn+j,—n+i [72]
row(a)=j,row(b)=t,
col(a)=col(b)+2=p

p+pt2+pi2j+p—2-1
=+ Z (_1)10 b preuTe wfa+2n,b[_”
row(a)=j,row(b)=1,
col(a)=col(b)+2=p

_ Z (_1)p+2+p+p72-i+p+2~jdjfaﬂn)b [_1}. (11.19)
row(a)=j,row(b)=1,

col(a)=col(b)+2=p

We can easily find that the sum of the last two terms of (11.19) is equal to zero. We also find
that the sum of (11.15)(resp. (11.11), (11.18)) and first and second terms (resp. third term, 4-th
term) of (11.19) is equal to zero. O

Theorem 11.20. Assume that n > 4 and o # 0. The rectangular W -algebra W¥(so(nl), (I")) is
generated by {Wl(;) |1<4,7<mn,r=1,2}.

The proof of Theorem 11.20 is given in the appendix B. We prepare one lemma in order to
prove the main theorem.

Lemma 11.21. (1) The following relations hold;

(Wi(l)) W(2 _ 61 ww(Q) o 5] vw(Q) ( )Z+J5 _vw(Q)

—wji(

-1 )?+36 . W.(?)
[ —1
WENWWS = —=ald, Wi + 810 WS) 4+ 0o Wi, 462, WE) )
1 1

j [ 1 v (1
+ 5(_1):0(J)Jr:0( )5v,7iW£j)7w _ 2( )P(J)+P( S W,j),v

1,—V?

1 W, L p)+pw) &
— 6 W 4 (-1 _
26 ,]Wz,w + 2( ) 6 W
(W) Wi =0 (s 2 2).
(2) We define a grading on V*(b) by setting deg(x[—s]) = j if t € bNg;. Then, we obtain
W yW2 = (1 +ad;; —a(-1 )5, )P 4 W) + higher terms.

The proof is due to a direct computation. We omit it.

12 Twisted affine Yangian

Let us recall the Drinfeld J presentation of the finite Yangian Y;(g). It is the original definition
of Drinfeld ([11]).
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Definition 12.1 ([10], Section 12). Suppose that g is a Kac-Moody Lie algebra of finite type.
The Yangian Y3 (g) is the associative algbra over C with generators {x, J(z)|z € g} subject to the
following defining relations:

xy —yx = [z,y] for all z,y € g,
J(ax + by) = aJ(x) + bJ(y) for all a,b € C,
Iz, y]) = [z, J(y)],
[T(2), J([y, 2D)] + [T (2), I ([, )] + [T (), T (2, 2])] = B> D ([, €als [[9: &), [25 el {€as G0, €63,

a,b,ceA

[[J(x), J(W)], [z, J(w)]] + [ (2), J(w)]; [z, T (y)]]
=0 Y ([ &l [y &, [z w), €) + (2, &l [[w, &), 2. 9], €ID) {6as &, T (60D}

a,b,ceA

where (, ) is a non-zero invariant bilinear form, {£,}seca is an orthonormal basis of g and

1
{0, 8,8} = ﬂzﬂecgﬂ(a)gﬂ(b)fﬂ(c G being the group of permutations of {a,b,c}. By Def-
inition 12.1,we note that there exists an isomorphism of xn: Yi(g) — Y_r(g) determined by
x+— 2z and J(x) — J(x).

Belliard and Regelskis ([4]) gave generators of twisted Yangians in the words of the Drinfeld
J presentation.

Theorem 12.2 ([4], Theorem 5.5). Let (g, ge) be a symmetric pair of a finite-dimensional simple
complex Lie algebra g of rank(g) > 2 with respect to the involution 0, such that g° is the positive
eigenspace of 0. Let {X,} (resp. {Y,}) be a basis of ¢° (resp. {x € g | 0(z) = —z}). We
decompose the Cartan element of g into Ce¢+ Cy,, where Ce (resp. Cy) is an element of U(¥) (resp.

C[m]). Then, the twisted yangian Ty (g, 8?) is isomorphic to the subalgebra of Y3, (g) generated by
{X4, B(Y},)}, where

B(Y,) = J(Yp) + g [Y;,, CE]-

Belliard and Regelskis also gave the Drinfeld J presentation of twisted Yangians whose gener-
ators are {X,, B(Y,)}. Its defining relations contain the relation [X,, B(Y,)] = B([X,,Y,]). By
Theorem 12.2, we can realize T;(g, g%) as a subalgebra of Y_p(g) via xx.

There exists the following symmetric pair decomposition of sl(n);

= P ce, - (*1)%76—@—1')@( D ‘C(ez‘,fr(*l)ﬂje—j,—i)ﬂﬁ[(n)»

4,j€In i,j€In

Let ¢t be @ Cl(e;; — (— )lﬂe,j,,i) and m be @ C(e;; + (—1)7+§e,j’,i) N sl(n). Setting
i,jE€I, 1,J€In
H; =ei; —€iy2i12 € sl(n), by Theorem 12.2, we can rewrite B(H; — H_;_3) as

h U+o pEE
J(H; = Hoiog) + 3 [Hi = Hoia, Y (ewn = (—1) emu i) (v — (1) ey )]

u>v

In a similar way to Theorem 12.2, we define the twisted affine Yangian of type D. We have a
decomposition sl(n) = t®m ® (C[til] We remark that € is isomorphic to §0(n) and m @ C[t*!] =

[hi — /LFQ,E} +[[hi —h_ie 2,3],3] _ N
By the similar formula in Section 3 of [21], we can define J(h;) as an element of Yz, ., (sl(n));
I I
J(hz) = hi,l + 5 Z (Oéi,’)/)l‘_vl‘v 2]?%2,
veAL
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where Al is a set of positive real root of sl(n) and x~ is a root y element such that (z,,z_,) = L.
By the definition of J(h;) and Theorem 4.3, we obtain

RUI(h) = 00 0) + 5 3 (0 )y @y — 2y @)

veAak

h

=00 (hi)) + 5 > i@z, (12.3)
YEA e

where A, is a set of real roots of ;I(n)
Definition 12.4. Let us set B(h; — h_;_2) as
I

T(hi = hoica) + 1Y (ewn = (<1 Temu )t (en = (=1 Temu )™ i — hoyo]
m3
h a4 —m 4T m
+ g[z (eu,v - (71) + 67v7,u)t (ev,u - (*1) + efu,fv)t ahi - h*i*Z]-
=

(12.5)

We define TY;, ., (s0(n)) as a subalgebra of 3751,52 (;[(n)) topologically generated by € and B(h; —
h_i_g).

By the definition of T'Y,, .,(50(n)), the universal enveloping algebra of % can be embedded into
TY, e, (50(n)).

~

Proposition 12.6. The restriction of the coproduct A: Ye, ., (sl(n)) — Yo e (sA[(n))<§>Y;152 (sl(n))
gies a coideal structure to TY;, .,(§0(n)). That is, we have

~ o~

A(TYYQ €2 (573(71))) C TY'El,Ez (5/\0 (n))®}/€17€2 (5[(71)),

where the completed tensor product Yg, ., (.f?[(n))(}%TYEh62 ($0(n)) is defined in the same way as
Ve, 20 (81(n))®Yz, ey (s1(n)).

Proof. Tt is enough to show that A(B(h; —h_;_3)) C TYz, ,(50(n))®Yz, , (s(n)). By the defini-
tion of B(h; — h_;_2) and (12.3), we find that

A(B(hi —h_i—2)) =O(B(hi —h_;_2)) + C; + C_j = Ciyos — C_i_5+ Dy + D_; — Diyo — D_i_o,

where
h
C’L = 5 Z [ei,iax’y] ®I—’Y7
VEAe
h G+ —m o m
D; = g[Z(ew — (1) ey )T @ (epn — (—1) ey o)™, Oey il
s

By a direct computation, we obtain

h h
Ci = —5 E ‘euﬂ;t_s X ei’uts + 5 E ‘ei’utsﬁ_l ® eu,it_s_l. (127)
uFl uFi
SEL SEZL

By a direct computation, we also obtain

h 547 - h 5+ % _
D; = 712(4) Tle it @ ey it — 1 S (=) e it @ ey it

v#1 vFE—1
SEL SEZL
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h a+i —s s h U+—1 —s s
+ZZ(_1) eoiput ™" @ erut’ + S (=) et @ et (12.8)

uFi uFE—1
SEZL SEZL
By setting
Fi= S ) e, a @ et + S () e i eett, (129)
2 ‘ ’ ’ 2 / > > ?
E) uFi
SEL SEZL

we obtain D; + D_; = F; + F_; by a direct computation. We denote the a-th term of the right
hand side of (12.7) (resp. (12.9)) by C; o (vesp. F; o). Then, we find that

h —s T+i —s S
Cin+Fip=—5> (ewit™ = (=1)" ey ut ™) @ eiut”,

SEZ

h ) i ) .
Cio+Fi1 = 5 E (int® — (1) e _ut*) @ ey it .
uFi
SEZ

Since C; 1 + Fi o and C; 5 + F; 1 are contained in T'Yz, ., (50(n))®Yz, o, (sl(n)), we find that
A(B(hi —h_i_3)) =0(B(hi —h_; 9))+Ci+C_i —Ciyo—C_i 9o+ Fi+F_;—Fjg—F_; 5

is contained in TYz, o, (50(n))®Yz, o, (sl(n)). O

13 Twisted affine Yangians and rectangular W -algebras of
type D

Before starting the homomorohism from twisted affine Yangians to universal enveloping algebras
of rectangular W-algebras of type D, we recall the another proof of Theorem 10.1 given in [31].
In [31], we construct ® by using the coproduct and evaluation map for the affine super Yangian
and the Miura map of a rectangular W-superalgebra.

The projection gl(nl) — go = gl(n)®! induces the Miura transformation ([24])

p: WH(glmifnd), 17"1)) = V™ (gl(m|n)™").
The Miura transformation also induces the injective homomorphism ([13], [2])

fi: U (gl(ml|nl), (10"1™)))) = U(gl(m|n)EL,,.

where U(g[(m|n))Comp is the standard degreewise completion of U(gl(n))®! in the sense of [33].
By the definition of u, we have

wile) = 3 el e (13.1)

1<r<i
and
2 u E..i)p(Ey,j r1),—s (r2),s r
e D S O ) L e NN (A D 120 53§ (13.2)
1<r; <ro<l’ 1<r<I
SEZ
1<u<m+n

Theorem 13.3. [Kodera-Ueda, [31]] There exists an algebra homomorphism

®: Yz, oy (sl(mln)) = U (gl(ml|nl), (10"17)))),
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satisfying the commutator diagram

Yz, o (8(m[n))@ - - BY., ., (s1(mn))

(evo ®eva ®-®ev(_1)a)

=

U(gl(m|n))& --- SU (gl(m|n)).

l

UW*(gl(imlin), (1071M)))

Since there exists an isomorphism Y, ., (g[(m|n)) — Yae, zes (f/,\[(m|n)) determined by h;, —
2" h; » and xli, — sc’"xi, for all z # 0, it is enough to assume that i = &1 + €3 = —1. Setting

h = —1 in Theorem 13.3, we find that D is equal to ®. Thus, the proof of Theorem 13.3 becomes
another proof of Theorem 10.1.
Next, we construct a homomorphsim from the twisted affine Yangian to the universal enveloping

l
algebra of the rectangular W-algebra of type D. Let I’ be 3 There exists an isomorphism
U: go— g[f?l/ = £ determined by

(I)(f%b) = Crow(a),row(b) [—1] if col(a) = COl(b) > 0.

We denote 1871 @ ¢; ; ® 18V ~" by eg? The projection so(nl) — go induces the Miura transfor-
mation ([24])

pp: Wr(so(nl), (I™)) — VI(£),

where

F(e(rl) (r2)

ab 2 €c,d ) = 6a7d(sb,c§ﬁ,r2a + 6a,b6€,d6hﬂ"2'

The Miura transformation also induces the injective homomorphism ([13], [2])
fip: UWF(so(nl), (")) = U(al(n)) &mp:
where U(gl(n))&!

comp 1s the standard degreewise completion of U (gl(n))‘@l in the sense of [33]. By
the definition of up, we have

Ap (W) = 37 (€] — (~1)"el) e
1<r<l’
and
Y= T e Y e

157‘1<7‘2§l/ 1ST‘1<7’2Sl/

SEZL SEZL
— Y )T el - N7 ()Tl o) g
1<r,rp <I/ 7“711,<le

u<i,s>0 s>1
— Y YT el ST (c) e el e
1<ry,ra<I’ 1<ry,ro <’

u>1,s>0 u>i,s>1
o Z e(—r'l,)—it_sez(‘jf)ts _ Z 62(7;1)]5—56(_7’?) its

1<ry,rp <V’ 1<ry,ro <V’

s>0 s>1

2r+ Da+1 (
=S (2r 2)0< NS :

1<r<t’

2 1 1 ¢
2r+Da+1 ¢ (13.4)

—i,—i

1<r<l’
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Theorem 13.5. Forn >4 andl > 2, there exists a homomorphism

defined by jip o ® =

l ~
(Q eve,) o A, where &, =
r=1

®: TY (50(n)) — UWF (s0(nl), (I")))

2r+1)a+ lh
Nl

l ~
Proof. Tt is enough to show that ((@ eve,) o AY)(B(h; — h_;_2)) can be written by the sum of

the image of fip.

By the proof of Proposition 12.6, we obtain

l
(&Qeve,) o A)(

= Dl(evo(B(hi — h—i—

B(hi — h,ifg))

2))) +Cl+CL, —Cly,

l ! 1 1
—C, o+ Fy+F, —F 5~

Fl_i_g + GZ - G,H_Q,

where
h r s (r ; h r s (r —s
Cl=—3 > ealede+es > eivees (13.6)
1§7'1<7'2§l/ 1S7'1<7‘2§ll
uF#i,SEZ uF#i,S€EL
h h
1 n o+i_(r1)  ,—s (7‘2) s +i (Tl) —s (r2) s
Fl =3 S (et e+ S (DTl e e, (13.7)
1<ry<ra <’ 1<r <ro <’
v#£1,8EZ u#i,s€EZL
2r+1a+1 (T) @2r+1a+1 ¢
;i =h h -~ e 13.
Z +h) 5 € i i (13.8)
1<rl’ 1<r<l’
By the definition of C! and F}, we have
Cl - E Z (7‘1) t s (7‘2) ts + ij’ Z (T‘l) tS (7‘2) t S (139)
—1i 2 —u,—z —z,—u 2 —1, —u,—1%
1<r <ra I 1<r<ra <l
uFi,S€EZL u#i,SEZL
h D44 (r1),—s r h A+i (r1),—s T ;
Flo=—2 Y ()™ et @ el 4+ 5 > (T et el 10 (13.10)
1<ry<ra<l’ 1<ry <ra I’
v#£i,SEZL u#i,s€Z

Thus, it is enough to prove that C! +CL, + F! + F!, + G+ h(fip

by the sum of the image of fip. We compute C! +CL, + F! + FL, + G; + h(ip
We denote the i-th term of (equation number) by (equation number),.

we obtain

(13.6), + h(13.4

(13.9), + h(13.4

(13.7),

- _h Z

1<r<l/,
u<i,s>0

,hz

1<r<il’
u>1,5>0

(Wﬁ)t+ Wg)_zt)) can be written
(W e+ WE_ ).
By a direct computation,

T 3 T 3 h T — T
h=h > eg,;)t—éeaf)t5+§ S elimeelme, (13.11)
1<r <ra<l’ 1<r <rp<l’
SEL SEL,uFi
T T h T — T
b=t Y et S e )
1<r1<r2<l 1<r <ro <’
SEL SEL,uF—1

+ (13.10), + h(13.4), + h(13.4) + h(13.4), + h(13.4),

atiy(r) - ati (r —5(")
el e ts he Y ()" earel)
1<r<l’,
u<i,s>1
—1)TH) el —h Y (—1) T e el
1<r<i’
u>i,5>1
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r r h A+ (r1),— T
S )R e - h Y R e,

| S

1<r <ro <l ’ ’ 2 1<ri<ra<l’
u#i,S€EL u#i,S€EL
h(13.4)y + h(13.4),, + G = 0. (13.14)

By a direct computation, we obtain

(13.6), + (13.9), + (13.7); + (13.10); + (13.11), + (13.12), + (13.13), + (13.13),
— (ﬁl — Dl)(g Z(e“’ —e_y i)t (ey; — e,i’,v)ts)

vF£L
s>0
~ h
+ (Al - Dl)(§ Z(ei,v - e_v,_i)tfs(ew — e_i,_v)ts), (1315)

v#£i
s>1

n(13.4), 4 h(13.4)4 + (13.11), + (13.12),

A h —S S
=(A'-0Y (- E(ei,i —e_i—i)>+ hZ(ei,i —e_i i)t (eq —e_i_i)t°)
s>0
— DZ(Z e_j—it %€ it° — Ze” Se_j_it%). (13.16)
s>0 s>1
Then, we obtain
®eVg (Bhy = hoi—2)) + h(jip (W7t + W) _it))
— Oevo(Blhi —h—i2)) = OHh S (1) e, _t=2el)t)
u<i,s>0
O Y (D" et e _ut?)
u<i,s>1
—0OYh Z (—1)a+?e,i,,ut_selu Lh Z quZel atTe_i _yt®)
u>1,5>0 u>i,8>1
~ h
l l -
+ (A -0)(5 Z(ei,v — ey i)t (e — €—i—u)t?)
vF£L
s>0
N l h —s s
+ (A -0 )(5 Z(ei,v - e—v,—i)t (ev,i - e—i,—v)t )
E)
s>1
+ (Al - Dl)( E(ez i—e_ii)?+ hz (e — e—i—i)t "(eii — e—i,—i)t°)
2 £ k)
s>0
hZe_l_ﬂf Se”terhZe“ Se_;_it%).
s>0 s>1

Thus, it is enough to show that

GVO(B(}LZ‘ — h,ifg)) —h Z (—1)a+16 Z’,ut_s ETutS —h Z (—1)a+7€i’ut_s€,i,,uts

u<i,s>0 u<i,s>1
—h § (_1)u+z€—i,—u ez ut® —h Z u—Hez u 756—1’,—uts
u>1,s>0 u>i,s>1
— hz G,iﬁfitiseiyits + hz eiﬂ-tfse,i,,its (1317)
5>0 s>1
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is equal to

h -5 s h —s s
5 Z(ei,v - 670’,Z‘)t (ev,i - G,i’,v)t + 5 Z(ei,v - €,v’,i)t (ev,i - e*i,fv)t

e
s>0

2

v#£1
s>1

h _
— (e —ei )+ hY (e —e i i)t (e — e i)t".
s>0

Here after, we prove this statement. By a direct computation, we obtain

where

A —75611

By changing 1 to —¢, we have

+5 Zem

u>z 1>V
s>0 s>0

+ g > ewit”

u<i
s>1

evO(J(hl)) = Al — Ai+2,

h
“e;ul® + 5 Z it "ey it’

h _ _
Sei,uts + 5 Z €t S€U7Z‘ts + ﬁz ei,it 861'71‘755.
1<v s>0

s>1

A= 72 2t Ze_u Lt et Ze_ ot ey it

u<2 z<u
s>0 5>0
h - s h —s s —s s
+ 5 Z €y, —it Te_j _t° + 5 Z e_j ot Te_y, it + hz e_i—it Te_; i,
s>0

u>1
s>1

1>
s>1

By a direct computation, we also obtain

8

u<v
s>1

h 4D _ 45
[Z(eum - (=1 * e—v,—u)t” *(€pu — (—1) " €—u,—)t, i +e—i ]

h

h ati s T4 s
=5 Z (-1 + e_i—yt %€ t° — 3 Z (-1) + ey, —it ey it?

u<i
s>1

+5 2

u< %
s>1

h
g[Z(eu,v -

u>v
s>0

e Z u+z€7 7ut

h A~
ei,—utise—i,uts I Z (*1)l+v+1e—v,itisev,—itsa

Then, we have

(13.17), +

u>1
s>0

u+1+1

(_1)u+ve—v,—u)tis(ev,u -

h (71)a+?+1

(13.21), +

' ue—i,—u)tis (ei,u

= S ewi ()

i<V
s>1

_ h 4o _
€iut e it — 5 > (1) T e, it e, it

2 £
—1<v
s>1

(_1)@4-36_“7_1})1557 €+ e—i,—i]

_ h Z 4o _
Sei’uts — 5 : (—1)Z+v6,v7,it Sew-ts
1>
5>0

2 &
—1>v
s>0
(13.21), + (13.18), + (13.19),

— (1) Memu )
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(13.17), + (13.21), + (13.21), + (13.18), + (13.19),,
S e () e ) e — (1) e )

i>v
s>0

(13.17), + (13.20), + (13.20), + (13.18),, + (13.19),
h P P
=5 2 (ews = (=1 ems )t (e — (<1) e )t
S
(13.17) + (13.20), + (13.20), + (13.18), + (13.19),
h Tan X Tan X
= 5 Z(ei’v - (—1)Z+u€,v’,i)t_6(ev’i - (—1) * G,i’,v)té,
i<v
s>1

(13.11), + (13.12), + (13.4), + (13.4) + (13.18), + (13.18), + (13.19), + (13.19),

h —S S
_E(ei,i —e_i—i)* + hZ(ei,i —e_j i)t %(eii —e—i—i)t’.
s>0
Adding the above five relations, we complete the proof of Theorem 13.5. O

Theorem 13.22. Provided that o > 0, the homomorphism ® is surjective.

Proof. We denote the image of TY (So(n)) via ® by Im®. By Theorem 11.20, it is enough to show
that {W(T)tS |1 <45 <n,r =125 € Z} is contained in Im®. By the definition of ®(U(¥)),

Im® contains W( )t5 for all ¢ # j. Take (i,7) such that ¢ # +j,—i — 2. By the definition of
®(B(h; — hl+2)) we find that

1 ~—
Vi = (W(z) Wz(iQ z+2 t - Z W l)t mW 1)tm - §(Wz(,1))2

7,1
m>1

(1 m 1) m 1 ~— 1
+ Z Wz‘(+)2,i+2t W( yo,ip2t T *(Wz‘(+)2,z'+2)2

2
m>1

is contained in Im®. By Lemma 11.21, we find that [v;, Wﬁ)ts] is equal to

i j =~(2),s -1 — (1)
Yis = (L+ 80t — (—1)P< PIDS )W a1 4 Bjape + 0oiy + -2 W)t

) s 1 1 1
78W£z —]t + 5j —i— 2W£z) 2,4 5(5] i+2Wz’(+)2i
_ Z W(l)t—m+sw(1 Z W 1)t_mW 1)tm+9

m>1 m>1

1 1
— (Lo )W wewl - S+ Sy WIW e

1 —m+s 1 m
— (8742 — 8j—i—2) > Wi, g Wz(+)2 ipal

m>1
1 m 1 m+s
— (872 — 0j—i2) > Wi ot Wz(+)23t *
m>1
1 1) Lstir(1 o1
- 5(5j7i+2 - 5j,*i*2)(W](zZ,-2t Wi(+)2,i+2 + Wz‘(+)2,i+2W(z+2t ) (13~23)

for all ¢ # j. Then, by Lemma 11.21, we obtain

Wt i.8] = WY 7i.04]
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-1 D+l =) |, Ty
= oL+ Gz — (1P ) (WY + WD)+ —

I =),
iOZWl(j)thrl

+ completion of sum of terms of U (E).

Then, we find that W( Jts+1 is contained in Im®. Since (W,gl) Wq(}q))ts‘H is contained in Im®

for all p, ¢, we find that W,Slp)ts"‘1 is contained in Im® for all p.

Since W(J)tS is contained in Im® for all i, j, (W( ) W(2))t is contained in Im®. By using
Lemma 11.21 (1), we obtain

wie (W = wii

2,0 )

[—1 —~
= (24 655 (~1) WDt 4 5 sa(2+ §i )WVt (13.24)

By (13.24) and (13.23), we find that W(2 t* (i # j) is contained in Im®. By using Lemma 11.21
(1), we have

() T2 s — (2 )
[Wi(ﬂz‘rQ’ Wi(+)2,it J=01+ 62i+2,0)(Wi(+)27i+2 W( te.

Since ﬁ//ﬁi? and AW/i(i)27its are contained in Im®, (W(2)

42042 Wi?)ts is contained in Im®. By
using Lemma 11.21 (1), we obtain

Ir-(2 I1-(2 2 2 S 2 2 2 2 s
(W2 =W o)t WD =W, )] — (WD =W, ), (WS =W )t
= a(W(Q) + W(+)2 i)t

for all i =i + 2. By the assumption a > 0, (W(Q) + W(f_)z i42)t° is contained in Im®. Since we

have already shown that (Wﬁ) - Wfi)h 4o)t° is contained in Im®, Wi(j)t*"' is contained in Im®.
This completes the proof. O

A The proof of Theorem 8.17

In this section, we prove Theorem 8.17. We define a grading on b by setting deg(x) = j if x € bNg;.

Since
l—r

{Ze(r+s—1)(m+n)+j,(s—1)(m+n)+i | 0<r<Ii- 1, 1< Za] <m-+ n}
s=1
forms a basis of gl(mi|nl)f = {g € gl(mi|nl)|[f, g] = 0}, it is enough to show that Wl(i) and Wz(i)
generate the term whose form is

l—r

Z e(rJrsf1)(m+n)+j,(sfl)(m+n)+i[_1] + hlgher terms
s=1

forall 0 <r <l—-1, 1<4,j5 <m+mn by Theorem 4.1 of [27]. We show that W( ) and W()
generate these terms by two claims, that is, Claim A.4 and Claim A.5. In Claim A 4 below, We
show that W(l) and W( ) generate the term whose form is

l—r
(—1)P@ Z €(r4-s—1) (m+n)+i,(s—1) (mtn)+i[— 1]
s=1
) l—r
— (—1)P0H Z €(rts—1)(mtn)+it+1,(s—1)(m+n)+i+1|—1] 4+ higher terms
s=1
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or
l

r

€(r+4s—1)(m+n)+j,(s—1)(m+n)+i|—1] + higher terms (i # j)

Il
-

S

forall 0 <r <[ —1. In Claim A.5 below, we prove that Wl(? and Wl(i) generate the term whose

form is
l—r

Z €(r+s—1)(mtn)+i,(s—1)(m+n)+i[—1] + higher terms
s=1
1-0
forall1 <r <[—1. Since Z €(0-+5—1)(m-+n)-+i,(s—1)(m+n)+i|—1] is nothing but WY Theorem 8.17

i, 0

s=1
is derived from Claim A.4 and Claim A.5.
In order to prove Claims A.4 and A.5, we prepare the following claim.

Claim A.1. (1) The following equation holds for all 0 <w <1 —1, 1 <, j,u,v < m+ n;

-1 l—w
(Z es(m+n)+j,(s—1)(m+n)+i[_1})(0) Z €(w+t—1)(m+n)+u,(t—1)(m+n)+v[_1]
s=1 t=1

l—w—1

= i u Z €(wt) (mtn)+4, (t—1) (mA4n)+v[—1]
t=1
l—w—1
_5j,v(_1)p(6i’j)p(eu’v) Z e(w+t)(m+n)+u,(t—l)(m+n)+i[_1]' (A2)

t=1
(2) We obtain

l—r

1

(Wz(,]))(())(z e('r‘Jrsfl)(m+n)+z,(sfl)(m+n)+y[_1])

s=1

l—r

=i Z €(r+s—1)(m+n)+j,(s—1) (m+n)+y[—1]
s=1
l—r

- 5j,y(—1)p(ei’j)p(e”) Z €(rts—1)(m+n)+e,(s—1)(mtn)+il—1] (A.3)

s=1
forall0<r<Ii—-1, 1 <4, j,z,y <m+n.

Claim A.1 is proven by direct computation. We omit the proof. By (A.2) and (A.3), it is easy
to obtain the following claim.

Claim A.4. (1) For all 0 < r <1 —1, the elements WZ(? and W generate the term whose form

2%
1S
l—r
> €t s—1)(metn)+is(s—1)(m4n)+i[— 1] + higher terms (i # j).
s=1

(2) For all 0 <r <1 —1, the elements Wz(i) and Wi(j-) generate the term whose form is

l—r

(_I)P(l) Z e(r+s—1)(m+n)+i7(s—1)(m+n)+i[_1]
s=1
) l—r
- (—1)p(2+1) Z €(rts—1)(mtn)+it1,(s—1)(m+n)+i+1][—1] + higher terms.
s=1

89



Proof. First, let us show (1). Since Wl(? has the form such that

-1

Z es(m+n)+j,(sfl)(m+n)+i[_1] + degree 0 terms,

s=1

we obtain
-1 r
2 rorr(1 1 .
((Wi(,i))(o)) Wj(,z‘) = ((Z es(ern)Jri,(s1)(m+n)+i[—1])(0)> Wj(’i) + higher terms

s=1

foralli#j, 0<r<Il—1. By (A.2), we have

l—r

2 1 .
((Wi(,i))(O))TWj(,i) = Z €(r+s—1)(m-+n)+i,(s—1)(m+n)+;[— 1] + higher terms.

s=1

Thus, we have proved (1).
Next, let us prove (2). By (1), the element whose form is
l—r
Z €(r+s—1)(m-+n)+i,(s—1)(m+n)+i+1[—1] + higher terms
s=1

is generated by Wi%) and Wi(j). By (A.3), we have

l—r

1 .
(Wi(,izrl)(o) ( Z €(r4-5—1)(m-+n)+i,(s—1)(m—+n)+i+1|—1] + higher terms)

s=1

l

r

€(r4s—1)(mtn)+i+1,(s—1)(mtn)+i+1|—1]

s=1
l—r
_ (,1)p(ei,i+1) Z €(r+5—1)(mtn)+i,(s—1)(m+n)+i[—1] + higher terms.
s=1
Thus, we have proved (2). O

Claim A.5. The elements Wl(? and Wl(i) generate the term whose form is

Z €(t-47—1)(m-n)-+i,(t—1)(m+n)+i|— 1] + higher terms
1<t<l—r

forall 1 <r<[-1.
Proof. 1t is enough to show that
2 1 2 rp(1
(Wi(,i))(l)(Wi(,il-1)(0){(W¢(,i))(0)} Wi(+)1,i

= (1P Z €(t—1)(mtn)+i,(t—r—1) (m-+n)+i|— 1]

1<t<i
i+1
+ (71);}( T Z (¢ —1)(m+n)+i,(t—r—1) (m+n)+i|— 1]
1<t<i
— (_]_)P(Z),r Z e(t—1)(m+n)+i+1,(t—7“—1)(m+n)+i+l[_1] + hlgher terms (AG)
1<t<l

since we have already shown that

P(ei,z‘+1)€

Z (e(t—1)(mtn)+i,(t—r—1)(mtn)+i[—1] = (=1) (t—1) (m-+n)+it1,(t—r—1) (mA4n)+i+1[—1])

1<t<l
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is generated by Wi(;) and Wi(j). Let us set

2
Z = Z es(m+n)+i,(571)(m+n)+i[_1}7 W= Wz(z) -7

1<s<l—1

The element W( ) is the sum of degree —1 element Z and degree 0 element W. We can rewrite
the left hand blde of (A.6) as

1 r 1 1
Z(1)(W¢(i3r1)(0)( (0)) Wi(+)1i+W(1)(Wi(,izrl)(O)( )" Wz(+)lz
+ > Zay(W, )0 (Z0)" ™ Wio)(Z0y) W + higher terms. (A7)

1<d<r

In order to simplify the notation, here after, we denote Z €(bt-5—1) (m+n)+i,(s—a) (m+n)+5 [~ U
a<s<l—b
by Z €(bt-5—1) (m+n)+i,(s—a) (m+n)+j|—u]. Let us compute the each terms of (A.7). First, we

1<s<l
compute the first term of (A.7). By (A.2) and (A.3), we have

(Wi(j)ﬂ)(o)(Z(O))rWﬁ)l,i

= Z €(t—1)(m+n)+i+1,(t—r—1)(m+n)+i+1 [—1]
1<t<l

— (—yPled) D e(em1) mrn) i, (t—r—1)(metm) il — 1. (A.8)

1<t<l

Applying (A.8) to the first term of (A.7), we obtain

the first term of (A.7) = ( Z €s(m—+n)+i,(s—1)(m+n)+i|—1]) (1) (the right hand side of (A.8)) =

1<t<1

since K (€s(mn)-4j,(s—1)n-+js €(t—1)(m+n)+i,(t—r—1)(m+n)+i) = 0. Next, let us compute the second
term of (A.7). By (A.8), it is the sum of

P00 ST Vel 1) 0 (YD et ny it (mre D mmy i [—1])

r1<r2 1<t<t

1<u<m+n -
— (PN 0P 1) 0 (Y ety -1 mem i1 (A9)

ri<rs 1<t<l
1<u<m+4n
and
(a Z (s— 1)65,51)[—2])(1) Z €(t—1)(m+n)+it1,(t—r—1)(m+n)+i+1[—1]
2<s<l 1<t<l
- (_1)1)(61"“1)(04 Z (s — 1)31(',81')[_2])(1) Z €(t—1)(m+n)+i,(t—r—1)(mtn)+i—1]).  (A.10)
2<s<1 1<t<l

Let us compute (A.9) and (A.10). By direct computation, the second term of (A.9) is equal to

i+1 r T
— (=P S €, 172, ety (mepm) tis(t—r—1) (meamy4il] [~ 1]
1§21§<'rz2+n
1<t<l

*(*UWH) Z 'i(egi)ve(t—1)(m+n)+i,(t—r—1)(m+n)+i)€fﬂ)[*1]
71<Tr2
1<u<m+4n
1<t<l
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— (FDPEEY ST ()P (€l ety ety () (memy i [ 1]
r1<T2
1<u<m+n
1<i<1
i+1
= —(=1)P+Y Z €(t—1)(mtn)+i,(t—r—1)(m+n)+i|—1] + 04 0.
1<t<l

By the similar computation, the first term of (A.9) is equal to
i+1
(—1)Pe+Y D €=ty manm)+is (t—r—1)(mn) i~ 1]-
1<t<i
By direct computation, we rewrite the second term of (A.10) as
(—1yPena Z (s — 1)[61(‘,51')7e(t—1)(m+n)+i,(t—7‘—1)(m+n)+i] [-1]
1<s<l

1<t<l

= (~1)Prpg > ettty mtn) i, (t—r—1) (mern)+il— 1.

1<t<l

By the similar computation, we find that the first term of (A.10) is zero. Thus, we obtain

the sum of first two terms of (A.7) = (—1)p(ei”'+1)ra Z €(t—1)(m4n)+i,(t—r—1)(m+n)+i|—1]-
1<t<l

(A.11)

Finally, we compute the third term of (A.7). Since the relation ( Z (s— l)eg)si) [—2])(0) = 0 holds,
1<s<l
we can rewrite the third term of (A.7) as

> ZoWid)o(Ze) ™ (D" 3 e = 1el =)o) (Zo) T W

1<d<r r1<T2
1<t<m+n
Let us set
1 — 7 r r — 1
Ta=Zoy(W )0 (Zo)" ™" Ba= (D" 3 el [=1el? 1)) (Z0) Wi,
1§7;1§<n22+n

Then, the third term of (A.7) is equal to Z Tu(Ba)-
1<d<r
We rewrite By and Ty. By (A.2) and (A.3), Ty is the sum of 7} and 77 such that

r—d
r—d r—d—
Tt} = _Z< g ) (Z(O)) d g( Z e(s+g)(m+n)+i+1,(s—1)(m+n)+i[_1])(1), (A12)
9—=0 1<s<l
1 —
T3 = (W )0 (Z0)" ™ Za). (A.13)
Since
_ 1
(Z(o))d IWi(+)1,i: Z e(tfl)(m+n)+i,(t7d)(m+n)+i+1[_1}- (A.14)
d<t<l

by (A.2) and (A.3), By is equal to

(PP ST V1P 1)) Y eamtymen)bist—d many+ici[~1]
1<r;<re<l d<t<l
1<u<m+n
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= (-1)*® Z Z Tl) E?, €(t—1)(m+n)+i,(t—d) (m+n)+i+1)[—1]

1<r;<re <l d<t<l
1<u<m—+n

> 2 GO el ey i) mby i1 ] 1]
1<r1<re<ld<t<l
1<u<m+n

+ Z Z u'L)ﬂe(t 1) (men) i, (t—d) (m+n)+i+1)€ (”)[—2]. (A.15)

1<r1<ro<l d<t<l
1<u<m+n

By direct computation, we find that the first term of the right hand side of (A.15) is equal to
(—1)P® Z ez('j;‘l)[_1]e(t—l)(m+n)+i,(t—d)(m+n)+i+1[_1] (A.16)
d<ri<t<l
and the second term of the right hand side of (A.15) is equal to
Z (_1)1)(“)652)[_1]e(tfl)(m+n)+u,(t7d)(m+n)+i+1[_1]

d<t<rs<l
1<u<m+n

i+1 T
— (—1PHY > 65@21[—1]6(t—l)(m+n)+z‘,(t—d)(m+n)+z‘[—1}' (A.17)
t—d+1<rs

By the definition of &, the third term of the right hand side of (A.15) is equal to
daaa > (r2—1)el2) [-2]. (A.18)
1<ra<l

Adding (A.16), (A.17), and (A.18), we obtain

Bd:(—l)p(z) Z eg?)[_1]€(t71)(m+n)+i,(tfd)(m+n)+i+1[_1]

5

d<r;<t<l
+ Z (~1)P™e Eu)[ 1e—1)(m+n)+u,(t—d)(m+n)+i+1[—1]
d<t<ry<l
1<u<m+n
_(_1)p(i) Z 5231[ 1]e(tfl)(ern)Jri,(tfd)(m+n)+i[_1]
t—dt1<ry<l
+dgaa Y (ra—1)el’?) [-2]
1<ra<l
= p(l Ze e(t 1) (m+n)+i,(t— d)(m+n)+z+1[ 1])
Tl;ﬁt
+ Z p(u [—1]e(t—1)(m-+n)+u,(t—d) (m-+n)+i+1[—1]
ro>t
— (-1P? > es"2) = 1]e 1) ety i, () (metm)+i[— 1]
t—d+1<rs<l
+dgaa Y (r2—1)el?) 2], (A.19)
1<ry<i

Now, we compute Ty(By). We divide By into two parts such that

Bl — p(l) Z e( 1) e(t 1)(m+’ﬂ)+l (t d)(m-‘rn)-'rl"!‘l[ 1]
r1#t
+ Z p(u [=1ew—1)(mtn)+u,(t—d)(m+n)+it1[—1]
Tzi't
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(=P 3 el ety mem i t—d) )i 1,
t—dt1<ry<l

B =640 Y (r2—1)el"?),[-2].

1<ry<l

First, let us compute T,(B32). By (A.2) and (A.3), we obtain

Ta(B3) = =601 ()P (r =)o > ey man) i, (t—r—1) (metn)+i[— 1 (A.20)

1<t<I

Next, let us compute Ty(B}) = T} (BL) + T3(Bl). We compute T} (BY) and T3 (B}) respectively.
In order to compute TC} (B}ﬂ7 we prepare the following three relations;

Y (Elorg)mtnytitrs—n(m+m+il~1)

1<s<1
(-1 Z eggl)[_1]e(tfl)(m+n)+i,(t7d)(m+n)+i+1[_1})
r1#t
= —(—1)Pt*Y D e(em1)(mn) i, (t—g—d—1)(m+n)+il— 1], (A.21)
1<t<l

Y (eorgmimtitt,s-neminil— 1))
1<s<l

(30 ()" = Uew 1y eminy b armem i [-1) =0, (A.22)
ro>t
uFi

D (e(stg mtn) it (s-Dmim+il— 1))

1<s<l

(DR T el ey -y +il = 1)

t—d+1<ra<l

= *(*Dp(iﬂ) Z e(t—l)(m+n)+i,(t—g—d—1)(m+n)+i[*1}- (A.23)

1<t<l

We only show the relation (A.23) holds. The other relations are proven similarly. By direct
computation, (A.23) is equal to

(—1)1)(1) Z Z He(s+g)(m+n)+i+l,(s—1)(m+n)+iv61(224).1]7 e(t—l)n+i,(t—d)n+i)][_]-]
1<s<l t—d+1<ra<l

i+1
= —(—1)Pi+Y Z €(t—1)(mn)+i,(t—g—d—1) (m4n)+i|—1]-

1<t<l
Thus, we have obtained (A.23). By (A.21)-(A.23) and (A.12), we find the relation
T1(B)) =0. (A.24)

Similarly to (A.21)-(A.23), we obtain the following three equations;

Z (s(man) i, (s—1)(mtn)+i[— 1) (1)

1<s<1
: ((_1)17(%) Z el(';l)[_1]e(t71)(m+n)+i,(t7d)(m+n)+i+1[_1])
Tl#t
= _(_1)17(1) Z €(t—1)(mn)+i, (t—d—1) (m+n)+i+1[—1], (A.25)

1<t<i
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E: (Es(m—n)+i,(s—1)(m+n)+i[—1]) (1)

1<s<l
O (1 e 1) ) st )t i [—1]) = 0, (A.26)
ro>t
ki
Z (63(m+n)+i,(s—1)(m+n)+i[_1})(1)
1<s<1
(=073 el ey i ngmy il —1]) = 0. (A.27)
t—d+1<ro<l

By (A.25)-(A.27) and (A.13), we obtain

i 1 r—
Tc%(Bcll) = _(_1)p( )(Wi(,ill)(o)(z(o)) d Z e(t—1)(m+n)+i,(t—d—l)(m+n)+i+1[_1]

1<t<1

= —(—1)11(1) Z €(t—1)(mAn)+i+1,(t—r—1)(mtn)+i+1[—1]
1<t<l

+ (—1)PCtY D ettty man) i, (t—r—1) (mem)+il— 1, (A.28)
1<t<i

where the second equality is due to (A.2) and (A.3). By (A.20), (A.24) and (A.28), we have

Y Tu(Ba) = ()" = Do Y etymipny i1 men) il 1]
1<d<r 1<t<l

- (_1)17(1)7" Z €(t—1)(mtn)+i+1,(t—r—1)(m+n)4i+1[—1]
1<t<l

+(—1)p(i+1)7" Z €(t—1) (m-+n)-+i,(t—r—1) (mtn)+i [~ 1]- (A.29)

1<t<l

Adding (A.11) and (A.29), (A.7) is equal to

(—1Pag D (1) man) i, (t—r—1) (merm)+il— 1]
1<t<l
i+1
— (1P Z €(t—1)(m+n)+i,(t—r—1) (m+n)+i|— 1]
1<t<i

+ (—1)p(i)7‘ Z €(t—1)(mtn)+i+1,(t—r—1)(m+n)+i+1[— 1] + higher terms.
1<t<1

We have obtained (A.6). O

Since we complete the proof of Claims A.4 and A.5, we have proved Theorem 8.17.

B Generators of rectangular 1W-algebras of type D

This section is devoted to the proof of Theorem 11.20. We define a grading on b by setting

deg(z) = jif x € bNg;. For a,b € I, let v, be > q4+2u+Dp-j+q-i, where p =
0<2u<qg—p
col(a),q = col(b), j = row(a),i = row(b). Since

{ > (1) fup [0<s<I—1,1<4i,j<n}

row(a)=j,row(b)=1,
col(a)=col(b)+2s
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forms a basis of so(nl)/ = {g € so(nl)|[f,g] = 0}, it is enough to show that ﬁ//l(;) and Wﬁ)
generate the term whose form is

Z (=1)7** fu p[—1] + higher terms
row(a)=j,row(b)=t,
col(a)=col(b)+2s

forall0 < s<1l—1, 1<4,j <n by Theorem 4.1 of [27]. The proof is completed by two claims,
that is, Lemma B.1 and Lemma B.3. In order to simplify computations, we prepare the following
notations. Let us set

Zii= 3 (—1)PH PR ] Vi =W — Z

row(a)=t,row(b)=1,
col(a)=col(b)+2=p

Then, Z;; is a degree —2 term and V;; is a degree —1 term. We also denote the condition that
row(a) = 4,row(b) = j, col(a) = col(b) + 2 by (A), ;, the condition that

row(ag) = i,row(b1) = j,p = col(a1) = col(b1) < col(az) = col(b2) = g,row(ay) = row(by) =7

by (B)i ;, the condition that row(a) = i,row(b) = j, col(a) = col(b)+2s by (C); ;, and the condition
that row(c) = i,row(d) = j, col(c) = col(d) + 2s by (D)3 ;. Moreover, for all a; € V*(gl(n))®" and
s; € 7, we set

(@) (60 (@2) 53+ (@) s = (@) o0) ((@2) ) (- (@) sya) +-))-
Lemma B.1. (1) For alli # j, {ngrq) |1 <p.g<n,r=1,2} generate

Z (=1)7 fo p[—1] + higher terms.
©.

2) For all i # 7, w1 <p,qg<n,r=1,2} generate
P,q

ST () fupl=1 = 3T (1) fupl~1] + higher terms.

()4 (©)5

Proof. (1) By a direct computation, we obtain

(O D™ fapl=1) ) D (1) fapl-1]

()50 (@i
=0 > (D" fap[~1 = Gju > (=1 fap[-1]
()3 )t
— 0w Z (_1)8+2+3+7a,bfa)b[_1]+5i7_u Z (_1)S+§+3+’Ya,bfa)b[_1]- (B.2)
(@), ((ehiaas

By (B.2), we have the following equation;
(WJ(E))S/W/:%) = (Zj,j)swi(j) + higher terms
= Z (=1)7** fu p[—1] + higher terms

row(a)=j,row(b)=t,
col(a)=col(b)+2s

for all i # —j,j. Then, we have proven (1) in the case that j # i, —i. Taking p € I,, such that
i # +p, we obtain

Wy))o) > (1) fup[-1] = 3 (1) £, [ 1]

row(a)=p,row(b)=—1, row(a)=p,row(b)=—1,
col(a)=col(b)+s col(a)=col(b)+s
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by (B.2). We have shown (1) in the case that j = —i. This completes the proof of (1).
(2) It is enough to show the case when i # +j since the case that ¢ = —j is naturally derived
from other cases. By (B.2), we obtain

W) 3 (—1)"* fop[~1]

row(a)=i,row(b)=j,
col(a)=col(b)+s

_ Z (_1)i+j+"/a,bfa7b[_1] _ Z (_1)i+j+7a,bfa)b[_1]
row(a)=j,row(b)=j4, row(a)=i,row(b)=i,
col(a)=col(b)+s col(a)=col(b)+s
for all ¢ # £j. TWe have shown (2). O

Lemma B.3. Suppose that j # +i. We obtain

1,7

==s > (=) fap[-1] + s > (—=1)"" fap[-1]

row(a)=t,row(b)=1, row(a)=j7,row(b)=j,
col(a)=col(b)+2s col(a)=col(b)+2s

+a > (=1)7* fos[—1].

row(a)=t,row(b)=1,
col(a)=col(b)+2s

W)y (W) o) (W 2) ) WY

Proof. By the degree of Z; ; and V; ;, we obtain

WO WED) 0 (W) o) WY
= (Z“m(W( ))(0)((Zm)(0)) W+ Vi) oy W) 0)(Zii)0) WY
+ 3 (Zi) WD 0 (Zi) ) ™ (Vi) 0)(Zii)0)) " WY + higher terms. (B.4)

1<t<s

We compute each terms of the right hand side of (B.4). Let us compute the first term of the right
hand side of (B.4). By (B.2), we obtain

W0 (Zi) ) Wi = 3 (~1)™ fapl=1 = 3 (1) fa[-1]. (B.5)

(@) (@)
By (B.2) and (B.5), we have
(Z:) oy Wi )0y (Zii) ) W) = 0. (B.6)
Next, let us compute the second term of the right hand side of (B.4). By (B.5), we obtain
(Vi) (W5 )0 (Zi)0)) W3

= Y << DD £ (1] Foy iy [~ 1) 1) Fa[=1]

(A0 (C):,

Y () T ] a1 () fas [~ 1]

(A)i,i,(C)F

a Y LMy Do (1" fasl-1) (B.7)

()7 (©)3:
By a direct computation, we obtain

the first term of (B.7) = the second term of (B.7)

97



_ (71)G“"?)‘(:E-FP/—\S)-‘t"Ya,bfa,b[il]

3
row(a)=t,row(b)=1,
col(a)=col(b)+s=p

the third term of (B.7) = « Z (—1)%’b8fa,b[—1]~
(O

Thus, we obtain

Vi) oy WD) 0 (Zii) ) WY = a D7 (=1 sfap]-1]. (B.8)
(@i

Next, let us compute the third term of (B.4). By (B.2), we obtain

Since

Vi) = (3 (=) TP T 1) fay =1 0

(A)ii
holds, we can rewrite (V;,i)(o)((Zi7i)(0))t’1WJ»(,1i) as
Z (_1)Blfa17171[_1][fa2’b27fa,b][_l] + Z (_l)ﬁlfaz,b[_l][fahblvfa,b][_l]v
(A)i,i,(C)e 5" (414,055

~

where 81 = vup + (F+14) - (D + q) such that row(a;) = r,col(a1) = p,col(az) = ¢. By a direct
computation, we can rewrite (VM)(O)((Zm)(o))tflwo.) as

Jst
Z (_1)616b2,afa1,b1 [_1]fa2,b[_1} + Z (_1),81§b2,7bfa1,bl [_1}fa,fa2[_1]
(A (O (A)iin(O)
+ Z (_1)ﬂ16b1,afa2,b2[_1]fa17b[_1] - Z (_1)516a1,bfa2,b2[_1]fa,b1 [_1]
(A)i,i,(C) 5 (A)a,i ()51
col(b) —1+n
— Y (DPbuafual Ul 48 Y (-1 O g
(A)ii ()5 @i
(B.9)

Let us denote the sum of the first five terms of (B.9) by B,. We can rewrite

(Zi.2) )y WD) 0)(Zi.) ()™ (Vi) 0) (Zii) o)) T WY

75

- z_: (r ; t) (Zi) @) ™90 (-1 feal=1D) ) B + (W) 0)((Zi) ) (Zi.i) 1)) Be

9=0 (D)?,

i (Zi,i)(1)(Wi(é))(o)((zi,i)(o))sét,l Z a(—l)"’a,bw

t—1
(C)i,j

Jan[=2]. (B.10)

Let us compute each terms of (B.10). By a direct computation, we obtain
the third term of (B.10) = —d;,a > (1) (5 — 1) fap[—1]. (B.11)

row(a)=t,row(b)=t,
col(a)=col(b)+2s
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Next, we compute the first term of (B.10). By (B.9), we can rewrite ( Z (=1)" fe.al—1]) (1) B

(D){.;
as

(1) 748, o[ ferds Faron)s Fazp)[<1]
(A)ii, (O (D),

i,

+ (— 1) %48y, [ ferds farbi)s far—az)[~1]

(]

(A)i,i,(C)i 5 (D)Y,

+ (_1)ﬁ1+%)d5bl,a[[fc,dafazyb2]7fal,b][_l]

(]

(A)i,i(O)5(DYY

(_1)ﬁ1+%7d5a17b[[f6,d7 fa27b2}7 fCl,bl} [_1]

Aol

(A)i,i (O (DY,

- <_1)I81+%,d6a17*a [[fC,d7 faz,b2]f*b1,b] [_1]'
(A)iviv(c tilv(D)?,i

L2

~

(B.12)

We compute each terms of the right hand side of (B.12). By a direct computation, we obtain

the first term of (B.12) = — Z (—1)61"_%”16172,@5(17@15c)bfa2)b1 [—1],
(4)i,1,(0);5(D)Y ;
the second term of (B.12) =0,

the third term of (B.12) = — Z (—1)51+7“‘d5b1’a6d7,b25a2’,a1fc,b[—l]
(A)s,6, ()5 (D),
- Z (_]-)BIJF’YC’d(sbl,aad,fbg5c,bfa1,7a2[_]—]7
(A)i,i, (O (D),
the 4-th term of (B.12) = Z (1) 745, 8 eBd.afab [—1],
(A)i, i, (O (D),
the 5-th term of (B.12) = Z (_1)51+’Yc’d5a1,7a5d,a26b2,7b1fc,b[_l]
(A)i,, (O (D)Y
+ Z (_1)61+%’d5a1,—a6d7a26670f—b17b2[_1]'

(A)i,i,(O); 51 (D)
Since

(B.13) = —(B.16), the first term of (B.15) = —the first term of (B.17),
the second term of (B.15) = —the second term of (B.17)

hold, we obtain
the first term of (B.10) =0

by adding (B.13)-(B.17).

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

Next, let us compute the second term of (B.10). By a direct computation, we also obtain

((Zi,6) )" "((Zs,1) (1)) Bt
= Z (_1)51+7662,a[[f0,dafahbl]afa27b][_1]

(A),i,(C) 51 (D)

+ Z (_1)51+7C’d6b27—b[[f0,dafahbl]?fa,—az][_l]

(A)i,, (O (D))
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+ Z (_1)Bl+'yc’d5b17a[[fc,dvfa27b2]7fa1,b][_1]

(A)i,, (O (D))

- Z (_l)ﬁl—i_%’daal,b[[fc,dvfa27b2]7fa,bl][_l]

(A)s,:,(O)5H (D)),

- Z (71)614_%@5(11,—(1[“6,117faz,bQ]vf—b1,b][71]'

(A)s,:,(O)5H (D)),
Let us compute each terms of (B.19). By a direct computation, we obtain

the first term of (B.19) = 0,

the second term of (B.19) = Z (= 1)y, 46, cOaafar,—an[1],
(A)i,i-(C)i 5 (D)
the third term of (B.19) = > (—1) 7998y, 0B, eOa,ar fas,b[—1]

(A)i,i,(C) (D)5,
- Z (_1)B1+76Yd6d7—b26—67(11 faz,b[_l]’
(A)s,0, ()5 (D)},
the 4-th term of (B.19) =0,
the 5-th term of (B.19) = Z (—1)61+%’d5a17—a5d,a25b27—b1 fep[—1]
(A)i,i,(C)i5(D)]
- > (=164, 0, fan 1]
(A)i,0, (O (D)E
Since

(B.21) = —the first term of (B.24), (B.22), = —the second term of (B.24),
(B.22), = > (=17 fap[=1]

row(a)=i,row(b)=j,
col(a)=col(b)+s

hold, we obtain

the second term of (B.10) = Z (=1)7" fap[—1].

row(a)=t,row(b)=j,
col(a)=col(b)+s

by adding (B.20)-(B.24). Adding (B.11), (B.18) and (B.25), we obtain
the third term of (B.4)
=—s > (1) fap[-1] +s > (=1)"" fap[-1]

row(a)=14,row(b)=1, row (a)=j,row(b)=j,
col(a)=col(b)+2s col(a)=col(b)+2s

—a > (=1)""(s = 1) fa[-1]
row(a)=t,row(b)=1,

col(a)=col(b)+2s

by (B.2). Adding (B.6), (B.8) and (B.26), we obtain the proof.
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