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Abstract

We define the affine super Yangian Yε1,ε2(ŝl(m|n)) with a coproduct structure. We
also obtain an evaluation homomorphism, that is, a surjective algebra homomorphism from
Yε1,ε2(ŝl(m|n)) to the completion of the universal enveloping algebra of ĝl(m|n). Motivated
by the AGT conjecture, we also construct a homomorphism Φ from the affine super Yan-
gian Yε1,ε2(ŝl(m|n)) to the universal enveloping algebra of the rectangular W -superalgebra
Wk(gl(ml|nl), (l(m|n))) for all m ̸= n,m, n ≥ 2 or m ≥ 3, n = 0. Furthermore, we show that
the image of this homomorphism is dense provided that k+ (m− n)(l− 1) ̸= 0. We also give
Φ by using the evaluation map and coproduct for the affine super Yangian. Moreover, we
define the twisted affine Yangian as a coideal of the affine Yangian and construct a homomor-
phism from the twisted affine Yangian to the universal enveloping algebra of the rectangular
W -algebra of type D.

1 Introduction

Drinfeld ([11], [12]) defined the Yangian of a finite dimensional simple Lie algebra g in order to
obtain a solution of the Yang-Baxter equation. The Yangian is a quantum group which is the
deformation of the current algebra g[z]. He defined it by three different presentations. One of
those presentations is called the Drinfeld presentation whose generators are {hi,r, x±i,r | r ∈ Z≥0},
where {hi, x±i } are Chevalley generators of g. The definition of Yangian as an associative algebra
naturally extends to the case that g is a symmetrizable Kac-Moody Lie algebra in the Drinfeld
presentation. Defining its quasi-Hopf algebra structure is more involved, but this problem has
been settled for affine Kac-Moody Lie algebras in [21], [5] and [47].

It is known that the Yangians are closely related to W -algebras. It was shown in [40] that
there exist surjective homomorphisms from Yangians of type A to rectangular finite W -algebras
of type A. More generally, Brundan and Kleshchev ([9]) constructed a surjective homomorphism
from a shifted Yangian, a subalgebra of the Yangian of type A, to a finite W -algebra of type A.
Using a geometric realization of the Yangian, Schiffmann and Vasserot ([43]) have constructed

a surjective homomorphism from the Yangian of ĝl(1) to the universal enveloping algebra of the
principal W -algebra of type A, and proved the celebrated AGT conjecture ([16], [6]).

In the case of the Lie superalgebra sl(m|n), the corresponding Yangian in the Drinfeld presen-
tation was first introduced by Stukopin ([44], see also [17]). The relationship between Yangians
and W -algebras were also studied in the case of finite Lie superalgbras; by Briot and Ragoucy
[7] for sl(m|n) and by Peng [39] for gl(1|n). In the recent paper [15], Gaberdiel, Li, Peng and H.

Zhang defined the Yangian ĝl(1|1) for the affine Lie superalgebra ĝl(1|1) and obtained the similar
result as [43] in the super setting.

In sections 2-4, we define the affine super Yangian Yε1,ε2(ŝl(m|n)) as a quantum group (=an
associative algebra equipped with a coproduct satisfying compatibility conditions) in the Drinfeld
presentation. We upgrade the definition of the Yangian associated with sl(m|n) of Gow [17]

to define the affine super Yangian Yε1,ε2(ŝl(m|n)) as an associative algebra, see Definition 3.1.

However, to define the coproduct for Yε1,ε2(ŝl(m|n)), we need to obtain yet another presentation,
that is, a minimalistic presentation.
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Theorem 1.1. The affine super Yangian Yε1,ε2(ŝl(m|n)) is isomorphic to the associative super-
algebra over C generated by x+i,r, x

−
i,r, hi,r (0 ≤ i ≤ m + n − 1, r = 0, 1) subject to the defining

relations (3.17)-(3.25).

By Theorem 1.1, the following assertion gives a coproduct ∆ for Yε1,ε2(ŝl(m|n)) that is com-
patible with the defining relations (3.17)-(3.25).

Theorem 1.2. We can define an algebra homomorphism

∆: Yε1,ε2(ŝl(m|n))→ Yε1,ε2(ŝl(m|n))⊗̂Yε1,ε2(ŝl(m|n))

that satisfies the coassociativity. Here, Yε1,ε2(ŝl(m|n))⊗̂Yε1,ε2(ŝl(m|n)) is the degreewise comple-

tion of Yε1,ε2(ŝl(m|n))⊗ Yε1,ε2(ŝl(m|n)) in the sense of [33].

When g is sl(n), Yh(sl(n)) has an evaluation map ev : Yh(sl(n)) ↠ U(sl(n)), which enables
us to define actions of Yh(sl(n)) on any highest weight representation of sl(n). In [20], Guay

showed that the affine Yangian Yε1,ε2(ŝl(n)) has the evaluation map ev : Yε1,ε2(ŝl(n))→ Ũ(ĝl(n)),

where Ũ(ĝl(n)) is a completion of the universal enveloping algebra of ĝl(n). The surjectivity of
the Guay’s evaluation map is not trivial and was recently shown in [29]. In section 5, we construct

an evaluation map of the affine super Yangian Yε1,ε2(ŝl(m|n)) (see Theorem 5.1).

Theorem 1.3. Assume c~ = (−m + n)ε1. Then, for all a ∈ C, there exists a non-trivial al-

gebra homomorphism eva : Yε1,ε2(ŝl(m|n)) → U(ĝl(m|n))comp,+ determined by (5.2)-(5.5), where

U(ĝl(m|n))comp,+ is a completion of the universal enveloping algebra of ĝl(m|n).

We know only a little about irreducible representations of the affine super Yangian. In the
case when g is ŝl(n), the easiest irreducible representations of the affine Yangian are obtained by

the pullback of irreducible highest weight representations of ĝl(n) since there exists a surjective
homomorphism from the affine Yangian to the completion of the universal enveloping algebra
of ĝl(n) ([20], [30], and [29]). In [29], Kodera showed that the image of this homomorphism
topologically generates the completed universal enveloping algebra by using a braid group action
on the affine Yangian. It is natural to try to obtain irreducible representations of the affine super
Yangian in the similar way. In [45], we have constructed a homomorphism from the affine super

Yangian to the completion of the universal enveloping algebra of ĝl(m|n). However, we cannot
prove that he image of this homomorphism is dense in the similar way to the one in [29] since we
have no braid group actions on the affine super Yangian. In section 6, we show the statement in
the more primitive way. Owing to this result, we obtain irreducible representations of the affine
super Yangian via this homomorphism.

In sections 7-10 and appendix A, we give a result similar to the work of Ragoucy-Sorba
[40] in the affine super setting. We construct a homomorphism from the affne super Yangian

Yε1,ε2(ŝl(m|n)) to the universal enveloping algebra (see [14] and [33]) of Wk(gl(ml|nl), (l(m|n))),
the rectangular W -algebra associated with g = gl(nl) and a nilpotent element f whose Jordan
form corresponds to the partition (ln). The following theorem is the main result of this paper.

Theorem 1.4. Suppose that m,n ≥ 2,m 6= n or m ≥ 3, n = 0, and assume that l ≥ 2 and

ε1 =
α

m− n
, ε2 = −1− α

m− n
.

Then, there exists an algebra homomorphism

Φ: Yε1,ε2(ŝl(m|n))→ U(Wk(gl(ml|nl), (l(m|n)))),

where U(Wk(gl(ml|nl), (l(m|n)))) is the universal enveloping algebra of Wk(gl(ml|nl), (l(m|n))).
Moreover, the image of Φ is dense in U(Wk(gl(ml|nl), (l(m|n)))) provided that α 6= 0.
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By Theorem 1.4, provided that α 6= 0, any irreducible representation ofWk(gl(ml|nl), (l(m|n)))

can be seen as an irreducible representation of Yε1,ε2(ŝl(m|n)). In the case that l = 1, the corre-
sponding homomorphism is the evaluation map. Thus, the corresponding theorem was previously
shown in [20], [30], [29], [45] and [48].

We expect that the above result will be useful for studying the AGT correspondence for
parabolic sheaves. See [37] for the corresponding result in the quantum toroidal setting.

In order to prove Theorem 1.4, we give explicit generators of the rectangular W -superalgebra
Wk(gl(ml|nl), (l(m|n))). We define the homomorphism Φ concretely by using these generators of
Wk(gl(ml|nl), (l(m|n))) and check that Φ is compatible with the defining relations of the minimal-
istic presentation of the affine super Yangian by a direct computation.

For type CD cases, Brown [8] constructed surjective homomorphisms from twisted Yangians
to rectangular finite W -algebras of type CD by using twisted Yangians instead of Yangians.
Twisted Yangians were introduced by Olshanskii ([38]) and were further studied in [22, 34, 35]
etc. The twisted Yangian Th(g, k) is an associative algebra associated with one parameter h, a
finite dimensional simple Lie algebra g, subspaces k,m ⊂ g, and a symmetric involution θ : g→ g
such that gθ = k and m = {x ∈ g | θ(x) = −x}. The twisted Yangian Th(g, k) can be realized as a
coideal of the finite Yangian Yh(g).

In sections12-13 and appendix B, we construct the similar result to Theorem 1.4 in type D
setting. The corresponding Yangian is the twisted affine Yangian TYε1,ε2(ŝo(n)) which is defined by
using the Drinfeld J presentation of the Guay’s affine Yangian in the sense of [21]. The Drinfeld
J presentation of the finite Yangian is Drinfeld’s original definition of the finite Yangian ([11])
whose generators are {x, J(x) | x ∈ g}, where J(x) is corresponding to x⊗ z ∈ g⊗C[z]. Reffering
to the Drinfeld J presentation of Yh(g), Belliard and Regelskis ([4]) constructed the Drinfeld J
presentation of the twisted Yangian whose generators are {x,B(y) | x ∈ k, y ∈ m}, where B(y)
is corresponding to y ⊗ z ∈ m ⊗ C[z] when we set h = 0. In [21], Guay-Nakajima-Wendland

constructed the terms J(hi), J(x
±
i ) ∈ Ỹε1,ε2(ŝl(n)) in the analogy of the Drinfeld J presentation

of the finite Yangians. We define TYε1,ε2(ŝo(n)) as a subalgebra of Ỹε1,ε2(ŝl(n)) in terms of J(hi).

We note that TYε1,ε2(ŝo(n)) becomes a coideal of Ỹε1,ε2(ŝl(n)).
We construct a surjective homomorphism from the twisted affine Yangian TYε1,ε2(ŝo(n)) to

the universal enveloping algebra of Wk(so(nl), (ln)), the rectangular W -algebra associated with
g = so(nl) and a nilpotent element f whose Jordan form corresponds to the partition (ln).

Theorem 1.5. Let n ≥ 4 and l be positive even. For any k ∈ C, we set

ε1 = − (k + (l − 1)n− 2)~
n

, ε2 = ~+
(k + (l − 1)n− 2)~

n
.

There exists an algebra homomorphism

Φ: TYε1,ε2(ŝo(n))→ U(Wk(so(nl), (ln))).

Moreover, the homomorphism Φ is surjective provided that k + (l − 1)n− 2 6= 0.

By Theorem 1.5, any (irreducible) representation of Wk(so(nl), (ln)) can be pulled back as
that of TYε1,ε2(ŝo(n)). We note that the homomorphism Φ can be written by using the coproduct
and the evaluation map for the Guay’s affine Yangian as in [31].

We note that section 2-5 are derived from [45], section 6 is derived from [48], section 7-10 and
appendix A are derived from [46], and section 11-13 and appendix B are derived from [49].
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2 Preliminaries

In this section, we recall the definition and presentation of the Lie superalgebra ŝl(m|n) (see [25]).
First, we recall the definition of sl(m|n) and gl(m|n).

Definition 2.1. Let us set Mk,l(C) as the set of k × l matrices over C. We define the Lie
superalgebras sl(m|n) and gl(m|n) as follows;

gl(m|n) =
{(

A B
C D

) ∣∣∣∣ A ∈Mm,m(C), B ∈Mm,n(C), C ∈Mn,m(C), and D ∈Mn,n(C)
}
,

sl(m|n) =
{(

A B
C D

)
∈ gl(m|n)

∣∣∣∣ tr(A)− tr(D) = 0

}
,

where we define

[(
A B
C D

)
,

(
E F
G H

)]
as

[(
A B
C D

)
,

(
E F
G H

)]
=

(
AE − EA+ (BG+ FC) AF +BH − (EB + FD)
CE +DG− (GA+HC) DH −HD + (CF +GB)

)
.

As with sl(m), sl(m|n) has a presentation whose generators are Chevalley generators (see [42]
and [18]).

Proposition 2.2. We set p : {1, · · · ,m+ n} → {0, 1} as

p(i) =

{
0 (1 ≤ i ≤ m),

1 (m+ 1 ≤ i ≤ m+ n).

Suppose that m,n ≥ 2,m 6= n and A = (ai,j)1≤i,j≤m+n−1 is an (m+ n− 1)× (m+ n− 1) matrix
whose components are

ai,j =


(−1)p(i) + (−1)p(i+1)

if i = j,

−(−1)p(i+1)
if j = i+ 1,

−(−1)p(i) if j = i− 1,

0 otherwise.

Then, sl(m|n) is isomorphic to the Lie superalgebra over C defined by the generators {x±i , hi | 1 ≤
i ≤ m+ n− 1} and by the relations

[hi, hj ] = 0, [hi, x
±
j ] = ±ai,jx

±
j , [x+i , x

−
j ] = δi,jhi, ad(x±i )

1+|ai,j |
x±j = 0,

[x±m, x
±
m] = 0, [[x±m−1, x

±
m], [x±m+1, x

±
m]] = 0,

where the generators x±m are odd and all other generators are even.
The isomorphism Ψ is given by

Ψ(hi) = (−1)p(i)Eii − (−1)p(i+1)
Ei+1,i+1, Ψ(x+i ) = Ei,i+1, Ψ(x−i ) = (−1)p(i)Ei+1,i.
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Next, we recall the definition of the affinization of sl(m|n) and gl(m|n) (see [36]). Lie super-
algebra sl(m|n) has a non-degenerate invariant bilinear form κ : g⊗ g→ C. The bilinear form is
uniquely determined up to the scalar multiple, so we fix it.

Definition 2.3. Suppose that g is sl(m|n) or gl(m|n). Then, we set a Lie superalgebra g̃ as
g⊗ C[t±1]⊕ Cc⊕ Cd whose commutator relations are following;

[a⊗ ts, b⊗ tu] = [a, b]⊗ ts+u + sδs+u,0κ(a, b)c,

c is a central element of g̃,

[d, a⊗ ts] = sa⊗ ts.

We also set a subalgebra ĝ ⊂ g̃ as g⊗ C[t±1]⊕ Cc.

We have another presentation of ŝl(m|n) (see [50]).

Proposition 2.4. Suppose that m,n ≥ 2,m 6= n and A = (ai,j)0≤i,j≤m+n−1 is a (m+n)×(m+n)
matrix whose components are

ai,j =



(−1)p(i) + (−1)p(i+1)
if i = j,

−(−1)p(i+1)
if j = i+ 1,

−(−1)p(i) if j = i− 1,

1 if (i, j) = (0,m+ n− 1), (m+ n− 1, 0),

0 otherwise,

Then, s̃l(m|n) is isomorphic to the Lie superalgebra over C defined by the generators {x±i , hi, d |
0 ≤ i ≤ m+ n− 1} and by the relations

[d, hi] = 0, [d, x+i ] =

{
x+i (i = 0),

0 (otherwise),
[d, x−i ] =

{
−x−i (i = 0),

0 (otherwise),
(2.5)

[hi, hj ] = 0, [hi, x
±
j ] = ±ai,jx

±
j , [x+i , x

−
j ] = δi,jhi, ad(x±i )

1+|ai,j |
x±j = 0, (2.6)

[x±0 , x
±
0 ] = 0, [x±m, x

±
m] = 0, (2.7)

[[x±m−1, x
±
m], [x±m+1, x

±
m]] = 0, [[x±m+n−1, x

±
0 ], [x

±
1 , x

±
0 ]] = 0, (2.8)

where the generators x±m and x±0 are odd and all other generators are even.
The isomorphism Ξ is given by

Ξ(hi) =

{
−E1,1 − Em+n,m+n + c (i = 0),

(−1)p(i)Eii − (−1)p(i+1)
Ei+1,i+1 (1 ≤ i ≤ m+ n− 1),

Ξ(x+i ) =

{
Em+n,1 ⊗ t (i = 0),

Ei,i+1 (otherwise),
Ξ(x−i ) =

{
−E1,m+n ⊗ t−1 (i = 0),

(−1)p(i)Ei+1,i (otherwise).

Moreover, ŝl(m|n) is isomorphic to the Lie superalgebra over C defined by the generators {x±i , hi |
0 ≤ i ≤ m+ n− 1} and by the relations (2.6)-(2.8).

Finally, we set some notations. Let us set {αi}0≤i≤m+n−1 as a set of simple roots of s̃l(m|n)
and δ as a positive root

∑
0≤i≤m+n−1

αi. Moreover, we set ∆ (resp. ∆+) as a set of roots (resp.

positive roots) of s̃l(m|n). We denote the parity of Ei,j as p(Ei,j). Obviously, p(Ei,j) is equal to
p(i) + p(j). We also set ∆re

+ and ∆re as ∆+ \ Z>0δ and ∆ \ Zδ. We also take an inner product

on
⊕

0≤i≤m+n−1

Cαi determined by (αi, αj) = ai,j . Assume that g = s̃l(m|n) and let gα be the

root α space of g. We set {xkα
α }1≤kα≤dimgα as a basis of gα which satisfies κ(xpα, x

q
−α) = δp,q

for all α ∈ ∆+. We also denote the parity of xkα
α by p(α). Moreover, we sometimes identify

{0, · · · ,m+ n− 1} with Z/(m+ n)Z and denote it by I.
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3 The minimalistic presentation of the Affine Super Yan-
gian

First, we define the affine super Yangian Yε1,ε2(ŝl(m|n)). This definition is a generalization of
Stukopin’s super Yangian ([44]). Let us set {x, y} as xy + yx.

Definition 3.1. Suppose that m,n ≥ 2 and m 6= n. The affine super Yangian Yε1,ε2(ŝl(m|n)) is
the associative super algebra over C generated by x+i,r, x

−
i,r, hi,r (i ∈ {0, 1, · · · ,m+n−1}, r ∈ Z≥0)

with parameters ε1, ε2 ∈ C subject to the defining relations:

[hi,r, hj,s] = 0, (3.2)

[x+i,r, x
−
j,s] = δi,jhi,r+s, (3.3)

[hi,0, x
±
j,r] = ±ai,jx

±
j,r, (3.4)

[hi,r+1, x
±
j,s]− [hi,r, x

±
j,s+1] = ±ai,j

ε1 + ε2
2
{hi,r, x±j,s} − bi,j

ε1 − ε2
2

[hi,r, x
±
j,s], (3.5)

[x±i,r+1, x
±
j,s]− [x±i,r, x

±
j,s+1] = ±ai,j

ε1 + ε2
2
{x±i,r, x

±
j,s} − bi,j

ε1 − ε2
2

[x±i,r, x
±
j,s], (3.6)∑

w∈S1+|ai,j |

[x±i,rw(1)
, [x±i,rw(2)

, . . . , [x±i,rw(1+|ai,j |)
, x±j,s] . . . ]] = 0 (i 6= j), (3.7)

[x±i,r, x
±
i,s] = 0 (i = 0,m), (3.8)

[[x±i−1,r, x
±
i,0], [x

±
i,0, x

±
i+1,s]] = 0 (i = 0,m), (3.9)

where

ai,j =



(−1)p(i) + (−1)p(i+1)
if i = j,

−(−1)p(i+1)
if j = i+ 1,

−(−1)p(i) if j = i− 1,

1 if (i, j) = (0,m+ n− 1), (m+ n− 1, 0),

0 otherwise,

bi,j =



−(−1)p(i+1)
if i = j + 1,

(−1)p(i) if i = j − 1,

−1 if (i, j) = (0,m+ n− 1),

1 if (i, j) = (m+ n− 1, 0),

0 otherwise,

and the generators x±m,r and x±0,r are odd and all other generators are even.

Remark 3.10. In this paper, we set [x, y] as xy− (−1)p(x)p(y)yx for all homogeneous elements x, y.
Thus, (3.8) is non-trivial.

We also define the affine super Yangian associated with s̃l(m|n).

Definition 3.11. Suppose that m,n ≥ 2 and m 6= n. We define Yε1,ε2(s̃l(m|n)) is the associative
super algebra over C generated by {x±i,r, hi,r, d | i ∈ {0, 1, · · · ,m+n−1}, r ∈ Z≥0} with parameters
ε1, ε2 ∈ C subject to the defining relations (3.2)-(3.9) and

[d, hi,r] = 0, [d, x+i,r] =

{
1 if i = 0,

0 if i 6= 0,
[d, x−i,r] =

{
−1 if i = 0,

0 if i 6= 0,
(3.12)

where the generators x±m,r and x±0,r are odd and all other generators are even.
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One of the difficulty of Definition 3.1 is that the number of generators is infinite. The rest of
this section, we construct a new presentation of the affine super Yangian such that the number of
generators are finite.

Let us set h̃i,1 = hi,1 −
ε1 + ε2

2
h2i,0. By the definition of h̃i,1, we can rewrite (3.5) as

[h̃i,1, x
±
j,r] = ±ai,j

(
x±j,r+1 − bi,j

ε1 − ε2
2

x±j,r

)
. (3.13)

By (3.13), we find that Yε1,ε2(ŝl(m|n)) is generated by x+i,r, x
−
i,r, hi,r (i ∈ {0, 1, · · · ,m+n−1}, r =

0, 1). In fact, by (3.13) and (3.3), we have the following relations;

x±i,r+1 = ± 1

ai,i
[h̃i,1, x

±
i,r], hi,r+1 = [x+i,r+1, x

−
i,0] if i 6= m, 0, (3.14)

x±i,r+1 = ± 1

ai+1,i
[h̃i+1,1, x

±
i,r] + bi+1,i

ε1 − ε2
2

x±i,r, hi,r+1 = [x+i,r+1, x
−
i,0] if i = m, 0 (3.15)

for all r ≥ 1. In the following theorem, we construct the minimalistic presentation of the affine
super Yangian Yε1,ε2(ŝl(m|n)) whose generators are x+i,r, x

−
i,r, hi,r (i ∈ {0, 1, · · · ,m + n − 1}, r =

0, 1). We remark that we have not checked that the presentation is minimalistic yet. However, we
call this presentation “minimalistic presentation” since, in the non-super case, the corresponding
presentation is called “minimalistic presentation”.

Theorem 3.16. Suppose that m,n ≥ 2 and m 6= n. The affine super Yangian Yε1,ε2(ŝl(m|n)) is
isomorphic to the associative super algebra generated by x+i,r, x

−
i,r, hi,r (i ∈ {0, 1, · · · ,m+n−1}, r =

0, 1) subject to the defining relations:

[hi,r, hj,s] = 0, (3.17)

[x+i,0, x
−
j,0] = δi,jhi,0, (3.18)

[x+i,1, x
−
j,0] = δi,jhi,1 = [x+i,0, x

−
j,1], (3.19)

[hi,0, x
±
j,r] = ±ai,jx

±
j,r, (3.20)

[h̃i,1, x
±
j,0] = ±ai,j

(
x±j,1 − bi,j

ε1 − ε2
2

x±j,0

)
, (3.21)

[x±i,1, x
±
j,0]− [x±i,0, x

±
j,1] = ±ai,j

ε1 + ε2
2
{x±i,0, x

±
j,0} − bi,j

ε1 − ε2
2

[x±i,0, x
±
j,0], (3.22)

(adx±i,0)
1+|ai,j |(x±j,0) = 0 (i 6= j), (3.23)

[x±i,0, x
±
i,0] = 0 (i = 0,m), (3.24)

[[x±i−1,0, x
±
i,0], [x

±
i,0, x

±
i+1,0]] = 0 (i = 0,m), (3.25)

where the generators x±m,r and x±0,r are odd and all other generators are even.

The outline of the proof of Theorem 3.16 is similar to that of Theorem 2.13 of [21]. To simplify

the notation, we denote the associtive super algebra defined in Theorem 3.16 as Ỹε1,ε2(ŝl(m|n)).
We construct x±i,r and hi,r as the elements of Ỹε1,ε2(ŝl(m|n)) inductively by (3.14) and (3.15).
Since (3.17)-(3.25) are contained in the defining relations of the affine super Yangian, it is enough
to check that the defining relations of the affine super Yangians (3.2)-(3.9) are deduced from

(3.17)-(3.25) in Ỹε1,ε2(ŝl(m|n)). The proof of Theorem 3.16 is divided into eight lemmas, that is,
Lemma 3.26, Lemma 3.31, Lemma 3.35, Lemma 3.36, Lemma 3.37, Lemma 3.38, Lemma 3.57,
and Lemma 3.58.

Most of the defining relations (3.2)-(3.9) are obtained in the same way as that of [32] or [21].
For example, we have the following lemma in a similar way as that of Lemma 2.22 of [21].

Lemma 3.26. (1) The defining relation (3.4) holds for all i, j ∈ I in Ỹε1,ε2(ŝl(m|n)).
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(2) For all i, j ∈ I, we obtain

[h̃i,1, x
±
j,r] = ±ai,j

(
x±j,r+1 − bi,j

ε1 − ε2
2

x±j,r

)
(3.27)

in Ỹε1,ε2(ŝl(m|n)).

Proof. We only show the case that j = 0,m. The other case is proven in the same way as that of
Lemma 2.22 of [21]. We prove (1), (2) by the induction on r. When r = 0, they are nothing but
(3.20) and (3.21). Suppose that (3.4) and (3.27) hold when r = k. First, let us show that (3.4)
holds when r = k + 1. By (3.15), we obtain

[hi,0, x
±
j,k+1] = ±

1

aj,j+1
[hi,0, [h̃j+1,1, x

±
j,k]] + bj,j+1

ε1 − ε2
2

[hi,0, x
±
j,k]. (3.28)

By [hi,0, hj,1] = 0, we find that the first term of the right hand side of (3.28) is equal to

± 1

aj,j+1
[hi,0, [h̃j+1,1, x

±
j,k]] = ±

1

aj,j+1
[h̃j+1,1, [hi,0, x

±
j,k]].

By the induction hypothesis on r, we can rewrite the right hand side of (3.28) as

± 1

aj,j+1
[h̃j+1,1, [hi,0, x

±
j,k]] + bj,j+1

ε1 − ε2
2

[hi,0, x
±
j,k]

=
ai,j
aj,j+1

[h̃j+1,1, x
±
j,k]± ai,jbj,j+1

ε1 − ε2
2

x±j,k

=
ai,j
aj,j+1

(
± aj,j+1(x

±
j,k+1 − bj,j+1

ε1 − ε2
2

x±j,k)
)
± ai,jbj,j+1

ε1 − ε2
2

x±j,k

= ±ai,jx±j,k+1.

Thus, we have shown that [hi,0, x
±
j,k+1] = ±ai,jx

±
j,k+1.

Next, we show that (3.4) holds when r = k+1. Since we have already proved that (3.4) holds
when r = k + 1, it is enough to check the relation

[h̃i,1, x
±
j,k+1] = ±ai,j

(
x±j,k+2 − bi,j

ε1 − ε2
2

x±j,k+1

)
.

By (3.15), we obtain

[h̃i,1, x
±
j,k+1] = ±

1

aj,j+1
[h̃i,1, [h̃j+1,1, x

±
j,k]] + bj,j+1

ε1 − ε2
2

[h̃i,1, x
±
j,k]. (3.29)

By [hi,1, hj,1] = 0, we find that the right hand side of (3.29) is equal to

± 1

aj,j+1
[h̃j+1,1, [h̃i,1, x

±
j,k]] + bj,j+1

ε1 − ε2
2

[h̃i,1, x
±
j,k].

By the induction hypothesis on r, we can rewrite the right hand side of (3.29) as

± 1

aj,j+1
[h̃j+1,1, [h̃i,1, x

±
j,k]] + bj,j+1

ε1 − ε2
2

[h̃i,1, x
±
j,k]

=
ai,j
aj,j+1

(
[h̃j+1,1, x

±
j,k+1]− bi,j

ε1 − ε2
2

[h̃j+1,1, x
±
j,k]

)
± ai,jbj,j+1

ε1 − ε2
2

(
x±j,k+1 − bi,j

ε1 − ε2
2

x±j,k

)
. (3.30)
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Since x±j,k+2 is defined by (3.15), we find that the right hand side of (3.30) is equal to

± ai,j
(
x±j,k+2 − bj,j+1

ε1 − ε2
2

x±j,k+1

)
∓ ai,jbi,j

ε1 − ε2
2

(
x±j,k+1 − bj,j+1

ε1 − ε2
2

x±j,k

)
± ai,jbj,j+1

ε1 − ε2
2

(
x±j,k+1 − bi,j

ε1 − ε2
2

x±j,k

)
.

By direct computation, it is equal to

±ai,j
(
x±j,k+2 − bi,j

ε1 − ε2
2

x±j,k+1

)
.

This completes the proof.

Similarly, we also obtain the following lemma in a similar way to the one of [21].

Lemma 3.31. (1) The relation (3.3) holds in Ỹε1,ε2(ŝl(m|n)) when i = j and r + s ≤ 2.
(2) Suppose that i, j ∈ I and i 6= j. Then, the relations (3.3) and (3.6) hold for any r and s

in Ỹε1,ε2(ŝl(m|n)).
(3) The relation (3.6) holds in Ỹε1,ε2(ŝl(m|n)) when i = j, (r, s) = (1, 0).

(4) The relation (3.5) holds in Ỹε1,ε2(ŝl(m|n)) when i = j, (r, s) = (1, 0).

(5) For all i, j ∈ I, the relation (3.5) holds in Ỹε1,ε2(ŝl(m|n)) when (r, s) = (1, 0).

(6) Set h̃i,2 as hi,2 − hi,0hi,1 +
1

3
h3i,0. Then, the following equation holds for all i, j ∈ I in

Ỹε1,ε2(ŝl(m|n));

[h̃i,2, x
±
j,0] = ±ai,jx

±
j,2 ±

1

12
a3i,jx

±
j,0 ∓ ai,jbi,j

ε1 − ε2
2

(x±j,1 −
1

2
x±j hi − bi,j

ε1 − ε2
2

x±j ).

(7) For all i, j ∈ I, the relation (3.7) holds in Ỹε1,ε2(ŝl(m|n)) when

1. r1 = · · · = rb = 0, s ∈ Z≥0,

2. r1 = 1, r2 = · · · = rb = 0, s ∈ Z≥0,

3. r1 = 2, r2 = · · · = rb = 0, s ∈ Z≥0,

4. (b ≥ 2 and) r1 = r2 = 1, r3 = · · · = rb = 0, s ∈ Z≥0.

(8) In Ỹε1,ε2(ŝl(m|n)), we have

[hj,1, x
±
i,1] =

ai,j
ai,i

[hi,1, x
±
i,1]±

ai,j
2

({hj,0, x±i,1} − {hi,0, x
±
i,1})∓ aj,imj,i

ε1 − ε2
2

x±i,1,

for all i, j ∈ I such that ai,i 6= 0.
(9) For all i, j ∈ I, we have

[hi,2, hj,0] = 0

in Ỹε1,ε2(ŝl(m|n)).
(10)Suppose that i, j ∈ I such that ai,i = 2 and ai,j = −1. Then,

[hi,2, hi,1] = 0

holds in Ỹε1,ε2(ŝl(m|n)).
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Proof. We only prove (1)-(5) since the proof of (6) (resp. (7), (8), (9)) is same as that of Lemma
2.33 (resp. Lemma 2.34, Lemma 2.35, Proposition 2.36).

The proofs of (1) and (2) are the same as those of Lemma 2.22 and Lemma 2.26 in [21]. In the
case where i, j 6= 0,m, the proof of (3) (resp. (4) and (5)) is also the same as that of Lemma 2.23
(resp. Lemma 2.24 and Lemma 2.28) in [21]. We omit it. We only show that (3) holds since (4)
and (5) are derived from (3) in a similar way to the one of [21].

Suppose that i = j = 0,m. First, we show that [x+i,1, x
+
i,0] = [x+i,0, x

+
i,1] = 0 holds. Apply-

ing ad(h̃i+1,1) to (3.24), we have ±ai,i+1[x
±
i,1, x

+
i,0] ± ai,i+1[x

±
i,0, x

±
i,1]. Since [x±i,1, x

±
i,0] is equal to

[x±i,0, x
±
i,1], we obtain [x±i,1, x

±
i,0] = [x±i,0, x

±
i,1] = 0. Next, we show that [x±i,2, x

±
i,0] = [x±i,1, x

±
i,1] =

[x±i,0, x
±
i,2] holds. Applying ad(h̃i+1,1) to [x±i,1, x

±
i,0] = [x±i,0, x

±
i,1] = 0, we obtain

±ai,i+1([x
±
i,2, x

±
i,0] + [x±i,1, x

±
i,1]) = 0, (3.32)

±ai,i+1([x
±
i,1, x

±
i,1] + [x±i,0, x

±
i,2]) = 0. (3.33)

In the case where j = 0,m and i = j+1, we can prove (5) in a similar way to the one of Lemma 2.28

in [21]. Then, in the similar discussion to that of Lemma 1.4 in [32], there exists ĥi+1,2 such that

[ĥi+1,2, x
±
i,0] = ±ai,i+1x

±
i,2.

Applying ad(ĥi+1,2) to (3.24), we obtain

±ai,i+1([x
±
i,2, x

±
i,0] + [x±i,0, x

±
i,2]) = 0. (3.34)

Since (3.32), (3.33), and (3.34) are linearly independent, we obtain [x±i,2, x
±
i,0] = [x±i,1, x

±
i,1] =

[x±i,0, x
±
i,2]. We have proved (3).

In the case where ai,i = −2 and ai,j = 1, we obtain [hi,2, hi,1] = 0 by changing the proof of
Proposition 2.36 of [21] a little.

Lemma 3.35. Suppose that i, j ∈ I such that ai,i = −2 and ai,j = 1. Then, we obtain

[hi,2, hi,1] = 0

in Ỹε1,ε2(ŝl(m|n)).

Proof. We change hi,r, x
+
i,r, and x

−
i,r, which are written in the proof of Proposition 2.36 of [21],

into −hi,r, −x+i,r, and x
−
i,r. Then, we obtain [−hi,2,−hi,1] = 0.

By Lemma 3.31 (10) and Lemma 3.35, we obtain the following lemma in the same way as
Proposition 2.39 of [21] since we only need the condition that ai,i 6= 0 and ai,j 6= 0. We omit the
proof.

Lemma 3.36. Suppose that i, j ∈ I such that ai,i 6= 0 and ai,j 6= 0. Then, we have

[hj,2, hj,1] = 0

in Ỹε1,ε2(ŝl(m|n)).

Therefore, we know that [hi,2, hi,1] = 0 holds for all i ∈ I. By using the relation [hi,2, hi,1] = 0,
we obtain the following lemma in a similar way as that of Theorem 1.2 in [32] since the proof of
these statements needs only the condition that ai,i 6= 0.

Lemma 3.37. (1) The relation (3.2) holds in Ỹε1,ε2(ŝl(m|n)) when i = j 6= 0,m.

(2) The relation (3.3) holds in Ỹε1,ε2(ŝl(m|n)) when i = j 6= 0,m.

(3) The relation (3.6) holds in Ỹε1,ε2(ŝl(m|n)) when i = j 6= 0,m.

(4) The relation (3.5) holds in Ỹε1,ε2(ŝl(m|n)) when i = j 6= 0,m.
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Next, we prove the same statement as that of Lemma 3.37 in the case that i = j = 0,m.

Lemma 3.38. (1) The relation (3.6) holds in Ỹε1,ε2(ŝl(m|n)) when i = j = 0,m. In particular,

(3.8) holds in Ỹε1,ε2(ŝl(m|n)).
(2) The relation (3.3) holds in Ỹε1,ε2(ŝl(m|n)) when i = j = 0,m.

(3) We obtain [hi,r, x
±
i,0] = 0 when i = 0,m in Ỹε1,ε2(ŝl(m|n)).

(4) The relation (3.5) holds in Ỹε1,ε2(ŝl(m|n)) when i = j = 0,m.

(5) The relation (3.2) holds in Ỹε1,ε2(ŝl(m|n)) when i = j = 0,m.

Proof. (1). It is enough to check the equality [x±i,r, x
±
i,s] = 0. We only show that [x+i,r, x

+
i,s] = 0

holds. We can obtain [x−i,r, x
−
i,s] = 0 in a similar way. We prove (3.6) holds by the induction on

k = r + s. When k = 0, it is nothing but (3.24). Applying ad(h̃i+1,1) to [x+i,0, x
+
i,0] = 0, we obtain

ai,i+1([x
+
i,1, x

+
i,0] + [x+i,0, x

+
i,1]) = 0.

Since [x+i,1, x
+
i,0] = [x+i,0, x

+
i,1], we have [x+i,1, x

+
i,0] = [x+i,0, x

+
i,1] = 0.

Suppose that [x+i,r, x
+
i,s] = 0 holds for all r, s such that r+ s = k, k+1. Applying ad(h̃i+1,1) to

[x+i,u, x
+
i,k+1−u] = 0, we have

[h̃i+1,1, [x
+
i,u, x

+
i,k+1−u]] = 0. (3.39)

By Lemma 3.31 (4) and the induction hypothesis, we have

[h̃i+1,1, [x
+
i,u, x

+
i,k+1−u]] = ai,i+1([x

+
i,u+1, x

+
i,k+1−u] + [x+i,u, x

+
i,k+2−u]). (3.40)

Since ai,i+1 6= 0, we find the relation

[x+i,u+1, x
+
i,k+1−u] = −[x

+
i,u, x

+
i,k+2−u] (3.41)

by (3.39) and (3.40). In particular, we obtain

[x+i,u+2, x
+
i,k−u] = [x+i,u, x

+
i,k+2−u]. (3.42)

Applying ad(h̃i+1,2) to [x+i,u, x
+
i,k−u] = 0, we have

[h̃i+1,2, [x
+
i,u, x

+
i,k−u]] = 0 (3.43)

by the induction hypothesis. By Lemma 3.31 (7), Lemma 3.36 and the induction hypothesis, we
have

[h̃i+1,2, [x
+
i,u, x

+
i,k−u]] = ai,i+1([x

+
i,u+2, x

+
i,k−u] + [x+i,u, x

+
i,k+2−u]). (3.44)

Since ai,i+1 6= 0, we obtain the relation

[x+i,u+2, x
+
i,k−u] = −[x

+
i,u, x

+
i,k+2−u]. (3.45)

by (3.43) and (3.44). Since (3.45) and (3.42) are linearly independent, we have shown that
[x+i,u, x

+
i,k+2−u] = 0 holds.

(2) We prove the statement by the induction on r+s = k. When k = 0, it is nothing but (3.24).
Suppose that [x+i,r, x

−
i,s] = hi,r+s for all r, s such that r+s ≤ k. Then, we have the following claim.

Claim 3.46. (a) For all r, s, we obtain

[hi,r+1, x
+
i+1,s]− [hi,r, x

+
i+1,s+1] = ai,i+1

ε1 + ε2
2
{hi,r, x+i+1,s} − bi,i+1

ε1 − ε2
2

[hi,r, x
+
i+1,s]. (3.47)

(b) For all r + s = k − 1, we obtain

[hi,r+1, x
−
i+1,s]− [hi,r, x

−
i+1,s+1] = −ai,i+1

ε1 + ε2
2
{hi,r, x−i+1,s} − bi,i+1

ε1 − ε2
2

[hi,r, x
−
i+1,s]. (3.48)
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Proof. (a) By the definition of hi,r, we have

[hi,r+1, x
+
i+1,s]− [hi,r, x

+
i+1,s+1] = [[x+i,r+1, x

−
i,0], x

+
i+1,s]− [[x+i,r, x

−
i,0], x

+
i+1,s+1].

By the Jacobi identity and Lemma 3.31 (4), we obtain

[hi,r+1, x
+
i+1,s]− [hi,r, x

+
i+1,s+1] = [{[x+i,r+1, x

+
i+1,s]− [x+i,r, x

+
i+1,s+1]}, x

−
i,0].

By Lemma 3.31 (4), we have

[hi,r+1, x
+
i+1,s]− [hi,r, x

+
i+1,s+1]

= [±ai,i+1
ε1 + ε2

2
{x+i,r, x

+
i+1,s} − bi,i+1

ε1 − ε2
2

[x+i,r, x
+
i+1,s], x

−
i,0].

By Lemma 3.31 (4), we obtain

[hi,r+1, x
+
i+1,s]− [hm,r, x

+
m+1,s+1] = ±ai,i+1

ε1 + ε2
2
{hi,r, x+i+1,s} − bi,i+1

ε1 − ε2
2

[hi,r, x
+
i+1,s].

(b) By the assumption that [x+i,p, x
−
i,q] = hi,p+q holds for all p+ q ≤ k, we have

[hi,r+1, x
−
i+1,s]− [hi,r, x

−
i+1,s+1] = [[x+i,r, x

−
i,1], x

−
i+1,s]− [[x+i,r, x

−
i,0], x

−
i+1,s+1]

since r + 1 ≤ k. Similar discussion to (a), we have

[hi,r+1, x
−
i+1,s]− [hi,r, x

−
i+1,s+1] = [x+i,r, {[x

−
i,1, x

−
i+1,s]− [x−i,0, x

−
i+1,s+1]}].

By Lemma 3.31 (4), we obtain

[hi,r+1, x
−
i+1,s]− [hi,r, x

−
i+1,s+1]

= [x+i,r,−ai,i+1
ε1 + ε2

2
{x−i,0, x

−
i+1,s} − bi,i+1

ε1 − ε2
2

[x−i,0, x
−
i+1,s]].

Then, by Lemma 3.31 (4), we have

[hi,r+1, x
−
i+1,s]− [hi,r, x

−
i+1,s+1] = −ai,i+1

ε1 + ε2
2
{hi,r, x−i+1,s} − bi,i+1

ε1 − ε2
2

[hi,r, x
−
i+1,s].

By the similar discussion to Lemma 1.4 in [32], there exists h̃i,k such that

h̃i,k = hi,k + polynomial of {hi,t | 0 ≤ t ≤ k − 1},

[h̃i,k, x
+
i+1,1] = ai,i+1x

+
i+1,k+1, [h̃i,k, x

−
i+1,0] = −ai,i+1x

−
i+1,k.

Claim 3.49. The following equation holds;

[h̃i+1,1, hi,k] = 0. (3.50)

Proof. By the assumption that [x+i,p, x
−
i,q] = hi,k holds for all p+ q ≤ k we have

[h̃i+1,1, hi,s] = [[h̃i+1,1, x
+
i,s], x

−
i,0] + [x+i,s, [h̃i+1,1, x

−
i,0]] = 0

for all s < k. Thus, it is enough to show that [h̃i,k, hi+1,1] = 0 holds. By the definition of hi+1,1,
we obtain

[h̃i,k, hi+1,1] = [h̃i,k, [x
+
i+1,1, x

−
i+1,0]]

= ai,i+1[x
+
i+1,k+1, x

−
i+1,0]− ai,i+1[x

+
i+1,1, x

−
i+1,k]. (3.51)

By Lemma 3.37, it is equal to zero.
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Applying ad(h̃i+1,1) to [x+i,r, x
−
i,k−r] = hi,k, we obtain

[h̃i+1,1, [x
+
i,r, x

−
i,k−r]] = [h̃i+1,1, hi,k] (3.52)

by the induction hypothesis. By Lemma 3.31 (4), we can rewrite (3.52) as

ai,i+1([x
+
i,r+1, x

−
i,k−r]− [x+i,r, x

−
i,k−r+1]) = [h̃i+1,1, hi,k] = 0. (3.53)

It is nothing but the statement.
(3) We only show the statement for +. The other case is proven in a similar way. By (2),

[hi,r, x
+
i,0] is equal to [[x+i,r, x

−
i,0], x

+
i,0]. By (1) and the Jacobi identity, we have

[[x+i,r, x
−
i,0], x

+
i,0] = [x+i,r, [x

−
i,0, x

+
i,0]]. (3.54)

The right hand side of (3.54) is equal to [x+i,r, hi,0]. By Lemma 3.26 (1), the right hand side is
equal to zero since ai,i = 0.

(4) It is enough to check the equality [hi,r, x
±
i,s] = 0. We only show the statement for +. The

other case is proven in a similar way. We prove by the induction on s. When s = 0, it is nothing
but (3). Suppose that [hi,r, x

+
i,s] = 0 holds. Applying ad(h̃i+1,1) to [hi,r, x

+
i,s] = 0, we find the

equality
[h̃i+1,1, [hi,r, x

+
i,s]] = 0 (3.55)

by the induction hypothesis. By the proof of (2), we obtain [h̃i+1,1, hi,n] = 0. Thus, the right

hand side of (3.55) is equal to [hi,r, [h̃i+1,1, x
+
i,s]]. By Lemma 3.31 (4), we obtain

[hi,r, [h̃i+1,1, x
+
i,s]] = ai,i+1[hi,r, (x

+
i,s+1 −

ε1 − ε2
2

bi+1,ix
+
i,s)]. (3.56)

By the induction hypothesis, the right hand side of (3.56) is equal to ai,i+1[hi,r, x
+
i,s+1]. Since

ai,i+1 6= 0, we obtain [hi,r, x
+
i,s+1] = 0.

(5) By (2), [hi,r, hi,s] is equal to [hi,r, [x
+
i,s, x

−
i,0]]. By the Jacobi identity, we have

[hi,r, [x
+
i,s, x

−
i,0]] = [[hi,r, x

+
i,s], x

−
i,0] + [x+i,s, [hi,r, x

−
i,0]].

By (4), the right hand side is equal to zero. We have shown the relation [hi,r, hi,s] = 0.

We obtain the relation (3.6) by Lemma 3.31 (2), Lemma 3.37 (3), and Lemma 3.38 (1). We
also find that the relation (3.3) holds by Lemma 3.31 (2), Lemma 3.37 (2), and Lemma 3.38 (2).

In the same way as that of Theorem 1.2 in [32], we obtain the defining relations (3.5), (3.2),
and (3.7). Thus, we omit the proof.

Lemma 3.57. (1) The relations (3.5) and (3.2) hold in Ỹε1,ε2(ŝl(m|n)) when i 6= j.

(2) The relation (3.7) holds for all i, j ∈ I in Ỹε1,ε2(ŝl(m|n)).

We remark that the relation (3.2) holds by Lemma 3.37 (1), Lemma 3.38 (5), and Lemma 3.57
(1). We also find that the relation (3.5) holds by Lemma 3.37 (4), Lemma 3.38 (4), and Lemma 3.57
(1).

Now, it is enough to show that (3.8) and (3.9) are deduced from (3.17)-(3.25). However,
we have already obtained (3.8), since (3.8) is equivalent to (3.6) when i = j = 0,m. Thus, to
accomplish the proof, we only need to show that (3.9) holds.

Lemma 3.58. The relation (3.9) holds for i = 0,m in Ỹε1,ε2(ŝl(m|n)).

Proof. We prove by the induction on k = r+s. When k = 0, it is nothing but (3.25). Suppose that

(3.25) holds for all r, s such that r+ s = k. Applying ad(h̃i+2,1) to [[x±i−1,r, x
±
i,0], [x

±
i,0, x

±
i+1,s]] = 0,

we obtain
ai−2,i−1[[x

±
i−1,r+1, x

±
i,0], [x

±
i,0, x

±
i+1,s]] = 0.
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Similarly, Applying ad(h̃i+2,1) to [[x±i−1,r, x
±
i,0], [x

±
i,0, x

±
i+1,s]] = 0, we have

ai+2,i+1[[x
±
i−1,r, x

±
i,0], [x

±
i,0, x

±
i+1,s+1]] = 0.

Thus, we have shown that (3.9) holds for all r, s such that r + s = k + 1.

This completes the proof of Theorem 3.16.
By Theorem 3.16, we also obtain the minimalistic presentation of Yε1,ε2(s̃l(m|n)).

Theorem 3.59. Suppose that m,n ≥ 2 and m 6= n. Then, Yε1,ε2(s̃l(m|n)) is isomorphic to the
super algebra generated by x+i,r, x

−
i,r, hi,r (i ∈ {0, 1, · · · ,m+n− 1}, r = 0, 1) subject to the defining

relations (3.17)-(3.25) and

[d, hi,r] = 0, [d, x+i,r] =

{
x+i,r if i = 0,

0 if i 6= 0,
[d, x−i,r] =

{
−x−i,r if i = 0,

0 if i 6= 0,
(3.60)

where the generators x±m,r and x±0,r are odd and all other generators are even.

The relation (3.12) is derived from (3.60) in a similar way to the one of Lemma 3.26. We omit
the proof.

4 Coproduct for the Affine Super Yangian

In this section, we define the coproduct for the affine super Yangian Yε1,ε2(ŝl(m|n)). We recall the
definition of standard degreewise completion (see [33]).

Definition 4.1. Let A =
⊕
i∈Z

A(i) be a graded algebra. For all i ∈ Z, we set a topology on A(i)

such that for a ∈ A(i) the set

{a+
∑
r>N

A(i− r) ·A(r) | N ∈ Z≥0}

forms a fundamental system of open neighborhoods of a. The standard degreewise completion of
A is

⊕
i∈Z

Â(i) where Â(i) is the completion of the space A(i). By the definition of Â(i), we find

that
Â =

⊕
i∈Z

lim←−
N

A(i)/
∑
r>N

A(i− r) ·A(r).

Let us set the degree on Yε1,ε2(ŝl(m|n)) determined by

deg(hi,r) = 0, deg(x+i,r) =

{
1 if i = 0,

0 if i 6= 0,
deg(x−i,r) =

{
−1 if i = 0,

0 if i 6= 0.
(4.2)

Then, Yε1,ε2(ŝl(m|n)) and Yε1,ε2(ŝl(m|n))⊗2 become the graded algebra. We define Ŷε1,ε2(ŝl(m|n))
(resp. Yε1,ε2(ŝl(m|n))⊗̂Yε1,ε2(ŝl(m|n))) as the standard degreewise completion of Yε1,ε2(ŝl(m|n))
(resp. Yε1,ε2(ŝl(m|n))⊗2) in the sense of Definition 4.1.

We prepare some notations. There exists a homomorphism from s̃l(m|n) to Yε1,ε2(s̃l(m|n))
determined by Φ(hi) = hi,0, Φ(x±i ) = x±i,0, and Φ(d) = d. We sometimes denote Φ(x) by x
in order to simplify the notation. In particular, we denote Φ(xpα) by xpα for all α ∈ ∆. By
Theorem 5.1, we note that dim(Φ(gα)) = 1 for all α ∈ ∆re.
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Theorem 4.3. The linear map ∆: Yε1,ε2(ŝl(m|n)) → Yε1,ε2(ŝl(m|n))⊗̂Yε1,ε2(ŝl(m|n)) uniquely
determined by

∆(hi,0) = hi,0⊗1 + 1⊗hi,0, ∆(x±i,0) = x±i,0⊗1 + 1⊗x±i,0,

∆(hi,1) = hi,1⊗1 + 1⊗hi,1 + (ε1 + ε2)hi,0⊗hi,0 − (ε1 + ε2)
∑

α∈∆+

∑
1≤kα≤dimgα

(α, αi)x
kα
−α⊗xkα

α

(4.4)

is an algebra homomorphism. Moreover, ∆ satisfies the coassociativity.

The rest of this section is devoted to the proof of Theorem 4.3. The outline of the proof
is similar to that of Theorem 4.9 of [21]. In [21], the analogy of the Drinfeld J presentation is
considered in order to prove the existence of the coproduct for the affine Yangian. We construct
elements similar to those constructed in (3.7) of [21]

Definition 4.5. We set

J(hi) = hi,1 + vi, J(x±i ) = x±i,1 + w±
i ,

where

vi =
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

(α, αi)x
kα
−αx

kα
α −

ε1 + ε2
2

h2i ,

w+
i = −ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

[x+i , x
kα
−α]x

kα
α , w−

i =
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

xkα
−α[x

kα
α , x−i ].

Then, J(hi) and J(x
±
i ) are elements of Ŷε1,ε2(ŝl(m|n)).

Next, we prove the similar results to Lemma 3.9 and Proposition 3.21 in [21]. In fact, they are
(4.8)-(4.11) and (4.27). We prepare one lemma in order to obtain (4.8)-(4.11) and (4.27). It is an
analogy of Proposition 2.4 of [26].

Lemma 4.6 ([36], Lemma 18.4.1). For all α, β ∈ ∆+, we obtain∑
1≤kβ≤dimgβ

[x
kβ

β , z]⊗ xkβ

−β =
∑

1≤kα≤dimgα

xkα
α ⊗ [z, xkα

−α]

if z ∈ gβ−α.

Lemma 4.7. The following relations hold:

[J(hi), hj ] = 0, (4.8)

[J(hi), x
±
j ] = ±(αi, αj)J(x

±
j )∓ ai,jbi,j

ε1 − ε2
2

x±j,0, (4.9)

[J(x±i ), x
±
j ] = [x±i , J(x

±
j )]−

ε1 − ε2
2

bi,j [x
±
i,0, x

±
j,0], (4.10)

[J(x±i ), x
∓
j ] = [x±i , J(x

∓
j )] = δi,jJ(hi). (4.11)

Proof. Since hi,1 commutes with hj by (3.2) and vi commutes with hj by the definition of vi, we
obtain (4.8). We only show the other relations hold for +. In a similar way, we obtain them for
−. First, we prove (4.9) holds for +. By (3.21), the left hand side of (4.9) is equal to

[h̃i,1 + vi +
ε1 + ε2

2
h2i,0, x

+
j ]

= ai,j(x
+
j,1 − bi,j

ε1 − ε2
2

x+j,0) +
[ε1 + ε2

2

∑
α,β∈∆+

∑
1≤kα≤dimgα

(α, αi)x
kα
−αx

kα
α , x+j

]
. (4.12)
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By direct computation, the second term of the right hand side of (4.12) is equal to

ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dimgα

(α, αi)x
kα
−α[x

kα
α , x+j ]

+
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

(−1)p(α)p(αj)(α, αi)[x
kα
−α, x

+
j ]x

kα
α . (4.13)

By Lemma 4.6, (4.13) is equal to

ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dimgα

(α− αj , αi)[x
+
j , x

kα
−α]x

kα
α

+
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

(−1)p(α)p(αj)(α, αi)[x
kα
−α, x

+
j ]x

kα
α . (4.14)

Since (−1)p(α)p(αj)[xkα
−α, x

+
j ]+ [x+j , x

kα
−α] = 0 holds, the sum of the first and second terms of (4.14)

is equal to −ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dimgα

(αj , αi)[x
+
j , x

kα
−α]x

kα
α . Thus, we obtain

[J(hi), x
+
j ] = ai,j(x

+
j,1 − bi,j

ε1 − ε2
2

x+j,0)−
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

(αj , αi)[x
+
j , x

kα
−α]x

kα
α .

Thus, we have obtained (4.9) for +.
Next, we show that (4.10) holds for +. By the definition of J(x+i ), [J(x

+
i ), x

+
j ] − [x+i , J(x

+
j )]

is equal to

[x+i,1, x
+
j,0]− [x+i,0, x

+
j,1] + [w+

i , x
+
j ]− [x+i , w

+
j ].

By (3.22), [x+i,1, x
+
j,0]− [x+i,0, x

+
j,1] is equal to

ε1 + ε2
2

ai,j{x+i,0, x
+
j,0} −

ε1 − ε2
2

bi,j [x
+
i,0, x

+
j,0]. By the

definition of w+
i , we obtain

[w+
i , x

+
j ]− [x+i , w

+
j ]

= −ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dimgα

[x+i , x
kα
−α][x

kα
α , x+j ]

− ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dimgα

(−1)p(α)p(αj)[[x+i , x
kα
−α], x

+
j ]x

kα
α

+
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

[x+i , [x
+
j , x

kα
−α]]x

kα
α

+
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

(−1)p(α)p(αi)+p(αj)p(αi)[x+j , x
kα
−α][x

+
i , x

kα
α ]. (4.15)

By Lemma 4.6, we find the equality

the first term of the right hand side of (4.15)

= −ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dimgα

[x+i , [x
+
j , x

kα
−α]]x

kα
α +

ε1 + ε2
2

[x+i , hj ]x
+
j . (4.16)

We also find the relation

the fourth term of the right hand side of (4.15)
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=
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

(−1)p(α)p(αi)+p(αj)p(αi)[x+j , [x
kα
−α, x

+
i ]]x

kα
α

+
ε1 + ε2

2
(−1)p(αi)p(αj)[x+j , hi]x

+
i (4.17)

by Lemma 4.6. Applying (4.16) and (4.17) to (4.15), we obtain

[w+
i , x

+
j ]− [x+i , w

+
j ] =

ε1 + ε2
2

[x+i , hj ]x
+
j +

ε1 + ε2
2

(−1)p(αi)p(αj)[x+j , hi]x
+
i .

Since m,n ≥ 2, there exists no i, j such that ai,j 6= 0 and p(αi)p(αj) = 1. Thus, we obtain

ε1 + ε2
2

[x+i , hj ]x
+
j +

ε1 + ε2
2

(−1)p(αi)p(αj)[x+j , hi]x
+
i = −ε1 + ε2

2
ai,j{x+i , x

+
j }.

Hence, we have obtained

[J(x+i ), x
+
j ]− [x+i , J(x

+
j )] = −

ε1 − ε2
2

bi,j [x
+
i,0, x

+
j,0].

Finally, we show that [J(x+i ), x
−
j ] = δi,jJ(hi) holds. By the definiton of J(x+i ), [J(x

+
i ), x

−
j ] is

equal to [x+i,1, x
−
j,0] + [w+

i , x
−
j,0]. By (3.3), [x+i,1, x

−
j,0] is δi,jhi,1. By direct computation, we have

[w+
i , x

−
j,0]

= −ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dimgα

[x+i , x
kα
−α][x

kα
α , x−j ]

− ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dimgα

(−1)p(α)p(αj)[[x+i , x
kα
−α], x

−
j ]x

kα
α . (4.18)

By Lemma 4.6, we have

the first term of the right hand side of (4.18)

= −ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dimgα

[x+i , [x
−
j , x

kα
−α]]x

kα
α −

ε1 + ε2
2

δi,jh
2
i . (4.19)

By the Jacobi identity, we find the equality

[x+i , [x
−
j , x

kα
−α]] = −(−1)

p(α)p(αj)[x+i , [x
kα
−α, x

−
j ]]

= −(−1)p(α)p(αj)[[x+i , x
kα
−α], x

−
j ]x

kα
α − (−1)p(α)p(αj)(−1)p(α)p(αi)[xkα

−α, [x
+
i , x

−
j ]]x

kα
α .

(4.20)

Thus, we obtain

[w+
i , x

−
j,0]

=
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

(−1)p(α)p(αj)[[x+i , x
kα
−α], x

−
j ]x

kα
α

+
ε1 + ε2

2
δi,j

∑
α∈∆+

∑
1≤kα≤dimgα

(−1)p(α)p(αj)(−1)p(α)p(αj)[xkα
−α, [x

+
i , x

−
j ]]x

kα
α −

ε1 + ε2
2

δi,jh
2
i

− ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dimgα

(−1)p(α)p(αj)[[x+i , x
kα
−α], x

−
j ]x

kα
α

=
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dimgα

δi,j(αi, α)x
kα
−αx

kα
α −

ε1 + ε2
2

δi,jh
2
i ,

where the first equality is due to (4.19) and the second equality is due to (4.20). Then, we
have shown that [J(x+i ), x

−
i ] = δi,jJ(hi). Similarly, we can obtain [x+i , J(x

−
j )] = δi,jJ(hi). This

completes the proof.
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By (4.8)-(4.11), we obtain the following convenient relation.

Corollary 4.21. (1) When i 6= j, j ± 1, [J(x±i ), x
±
j ] = 0 holds.

(2) Suppose that j < i− 1. We have the following relation;

ad(J(x±i ))
∏

i+1≤k≤m+n−1

ad(x±k )
∏

0≤k≤j−1

ad(x±k )(x
±
j )

= ad(x±i ) ad(J(x
±
i+1))

∏
i+2≤k≤m+n−1

ad(x±k )
∏

0≤k≤j−1

ad(x±k )(x
±
j )

− bi,i+1
ε1 − ε2

2

∏
i≤k≤m+n−1

ad(x±k )
∏

0≤k≤j−1

ad(x±k )(x
±
j ).

(3) For all α ∈
∑

1≤l≤m+n−1

Z≥0αi and x±α ∈ g±α, there exists a number dαi,j such that

(αj , α)[J(hi), x±α]− (αi, α)[J(hj), x±α] = ±dαi,jx±α.

(4) Suppose that j < i− 1. We have

[J(hs),
∏

i≤k≤m+n−1

ad(x±k )
∏

0≤k≤j−1

ad(x±k )(x
±
j )]

= ±(αs, α)
∏

i≤k≤m+n−1

ad(x±k )
∏

0≤k≤j−1

ad(x±k )J(x
±
j )

± c2
∏

i≤k≤m+n−1

ad(x±k )
∏

0≤k≤j−1

ad(x±k )(x
±
j ),

where α =
∑

i≤k≤m+n−1

αk +
∑

0≤k≤j

αk and c2 is a complex number.

Proof. We only show the relations for +. The other case is proven in a similar way.
(1) By the definition of the commutator relations of ŝl(m|n), [x+i , x

+
j ] = 0 holds when i 6= j, j±1.

There exists an index p such that ai,p 6= 0 and aj,p = 0. Appling ad(J(hp)) to [x+i , x
+
j ] = 0, we

obtain

ai,p([J(x
+
i ), x

+
j ]− bi,p

ε1 − ε2
2

[x+i , x
+
j ]) = 0

by (4.9). Since ai,p 6= 0, we have shown that [J(x+i ), x
+
j ] = 0 holds.

(2) By (1), the left hand side is equal to

ad([J(x+i ), x
+
i+1])

∏
i+2≤k≤m+n−1

ad(x+k )
∏

0≤k≤j−1

ad(x+k )(x
+
j ).

By (4.11), it is equal to

ad([x+i , J(x
+
i+1)])

∏
i+2≤k≤m+n−1

ad(x+k )
∏

0≤k≤j−1

ad(x+k )(x
+
j )

− bi,i+1
ε1 − ε2

2
ad([x+i , x

+
i+1])

∏
i+2≤k≤m+n−1

ad(x+k )
∏

0≤k≤j−1

ad(x+k )(x
+
j ). (4.22)

By the Jacobi identity, the first term of (4.22) is equal to

ad(x+i ) ad(J(x
+
i+1))

∏
i+2≤k≤m+n−1

ad(x+k )
∏

0≤k≤j−1

ad(x+k )(x
+
j ).

This completes the proof.
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(3) It is enough to assume that x±α =
∏

s≤k≤t−1

ad(x±k )x
±
t . By (4.9), we have

[J(hi), x±α] = ±δ(s ≥ i+ 1 ≥ t)ai,i+1

∏
s≤k≤i

ad(x±k )J(x
±
i+1)

∏
i+2≤k≤t−1

ad(x±k )x
±
t

± δ(s ≥ i ≥ t)ai,i
∏

s≤k≤i−1

ad(x±k )J(x
±
i )

∏
i+1≤k≤t−1

ad(x±k )x
±
t

± δ(s ≥ i− 1 ≥ t)ai,i−1

∏
s≤k≤i−2

ad(x±k )J(x
±
i−1)

∏
i+1≤k≤t−1

ad(x±k )x
±
t

± d1i (αi, α)
∏

s≤k≤t−1

ad(x±k )x
±
t ,

where d1i is a complex number. By a discussion similar to the one in the proof of (2), we find that
there exists a complex number d2i such that the sum of the first three terms is equal to

±(αi, α)
∏

s≤k≤t−1

ad(x±k )J(x
±
t )± d2i (αi, α)

∏
s≤k≤t−1

ad(x±k )x
±
t .

Then, we obtain

(αj , α)[J(hi), x±α]− (αk, α)[J(hj), x±α] = ±{(αj , α)(d
1
i + d2i )− (αi, α)(d

1
j + d2j )}x±α.

We complete the proof.
(4) It is proven in a similar way to the one in the proof of (3).

Next, in order to obtain (4.27), we prepare {τi}i ̸=0,m, which are automorphisms of the affine

super Yangian. Let us set {si}i̸=0,m as an automorphism of ∆ such that si(α) = α− 2(αi, α)

(αi, αi)
αi.

By the definition of ŝl(m|n), we can rewrite si explicitly as follows;

si(αj) =


−αj if i = j,

αi + αj if j = i± 1,

αj otherwise.

It is called a simple reflection. We also define {τi}i ̸=0,m as an operator on the affine super Yangian
determined by

τi(x) = exp(ad(x+i )) exp
(
− ad(x−i )

)
exp(ad(x+i ))x. (4.23)

By the defining relation (3.7), τi is well-defined as an operator on the affine super Yangian. The
following lemma is well-known (see [26]).

Lemma 4.24. (1) The action of τi preserves the inner product κ.
(2) For all α ∈ ∆, τi(gα) = gsi(α).

Then, in a similar way as that of Lemma 3.17 and 3.19 of [21], we can compute the action of
τi on J(hj) and write it explicitly.

Lemma 4.25. When i 6= 0,m, we obtain

τi(J(hj)) = J(hj)−
2(αi, αj)

(αi, αi)
J(hi) + ai,jbj,i(ε1 − ε2)hi.

Since dimgα = 1 for all α ∈ ∆re, we sometimes denote xkα
−α and xkα

α as x−α and xα for all
α ∈ ∆re

+ .
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Proposition 4.26. For i, j ∈ I and a positive real root α, the following equation holds;

(αj , α)[J(hi), xα]− (αi, α)[J(hj), xα] = cαi,jxα, (4.27)

where cαi,j is a complex number such that cαi,j = −c
−α
i,j .

Proof. We divide the proof into two cases; one is that α is even, the other is that α is odd..
Case 1, α is even.

Suppose that α is even. Then, there exists s ∈ Z such that α is an element of
∑

1≤l≤m−1

Zαi+sδ

or
∑

m+1≤l≤m+n−1

Zαi + sδ. We only prove the case where α ∈
∑

1≤l≤m−1

Z≥0αi + Z≥0δ. The other

cases are proven in a similar way.
First, we prove the case where α = αk + sδ, where k 6= 0,m.

Claim 4.28. Suppose that α = αk + sδ such that k 6= 0,m. Then, we have

[J(hi), xα] =
(αi, αk)

(αk, αk)
[J(hk), xα] + dαxα, [J(hi), x−α] =

(αi, αk)

(αk, αk)
[J(hk), x−α]− dαx−α,

where dα is a complex number.

Proof. Let us set

x1±δ = [x±k ,
∏

k+1≤p≤m+n−1

ad(x±p )
∏

0≤p≤k−2

ad(x±p )(x
±
k−1)].

It is enough to suppose that x±α = ad(x1±δ)
sx±k since ad(x1±δ)

sx±k is nonzero. By the Jacobi
identity, we obtain

[(αk, α)J(hi)− (αi, α)J(hk), ad(x
1
±δ)

sx±k ]

=
∑

0≤t≤s−1

ad(x1±δ)
t ad([(αk, α)J(hi)− (αi, α)J(hk), x

1
±δ]) ad(x

1
±δ)

s−1−tx±k

+ ad(x1±δ)
s[(αk, α)J(hi)− (αi, α)J(hk), x

±
k ]. (4.29)

By (4.9), [(αk, α)J(hi)−(αi, α)J(hk), x
±
k ] can be written as ±fkx±k , where fk is a complex number.

Then, we have

[J(hi), x
1
±δ]

= [x±k , [(αk, α)J(hi)− (αi, α)J(hk),
∏

k+1≤p≤m+n−1

ad(x±p )
∏

0≤p≤k−2

ad(x±p )(x
±
k−1)]]± fkx

1
±δ.

By Corollary 4.21 (4), we can rewrite the first term as

± (αk, α)(αi, α)[x
±
k ,

∏
k+1≤p≤m+n−1

ad(x±p )
∏

0≤p≤k−2

ad(x±p )J(x
±
k−1)]

∓ (αk, α)(αi, α)[x
±
k ,

∏
k+1≤p≤m+n−1

ad(x±p )
∏

0≤p≤k−2

ad(x±p )J(x
±
k−1)]± gkx

1
±δ

= ±gkx1±δ,

where gk is a complex number. We have obtained the statement.

Now, let us consider the case where α is a general even root. Any even root α =
∑

0≤k≤l

αp+k can

be written as
∏

0≤k≤l−1

sp+k(αp+l) by the explicit presentation of si. Let us prove that the statement
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of Proposition 4.26 holds by the induction on l. When l = 1, it is nothing but Claim 4.28. Assume

that (4.27) holds when l = q. We set α and β as
∏

0≤k≤q

sp+k(αp+q+1) and
∏

1≤k≤q

sp+k(αp+q+1).

Suppose that xβ is a nonzero element of gβ . By Lemma 4.24, gα contains a nonzero element
τsp(xβ). Thus, we obtain

(αj , α)[J(hi), τsp(x±β)]− (αi, α)[J(hj), τsp(x±β)]

= τsp

{
(αj , α)

[
J(hi)−

2(αi, αp)

(αp, αp)
J(hp), x±β

]
− (αi, α)

[
J(hj)−

2(αi, αp)

(αp, αp)
J(hp), (x±β)

]}
∓ {(αj , α)ap,ibi,p − (αi, α)ap,jbj,p}(ε1 − ε2)x±α (4.30)

by Lemma 4.25. Let us suppose that (αt, β) 6= 0. Then, by the induction hypothesis, we find the
relation

[J(hu), x±β ] = ±
(αu, β)

(αt, β)
[J(ht), x±β ]± cβu,tx±β . (4.31)

Applying (4.31) to (4.30), we obtain[
J(hi)−

2(αi, αp)

(αp, αp)
J(hp), x±β

]
= ±

{ (αi, β)

(αt, β)
− 2(αi, αp)

(αp, αp)
· (αp, β)

(αt, β)

}
([J(ht), x±β ] + cβi,tx±β)

= ±

(
αi, β −

2(αi, αp)

(αp, αp)
αp

)
(αt, β)

([J(ht), x±β ] + cβi,tx±β).

By the definition of sp, α is equal to β − 2(αi, αp)

(αp, αp)
αp. Then, we have

[J(hi)−
2(αi, αp)

(αp, αp)
J(hp), x±β ] = ±

(α, αi)

(αt, β)
([J(ht), x±β ] + cβi,tx±β). (4.32)

Similarly, we find the relation

[J(hj)−
2(αj , αp)

(αp, αp)
J(hp), x±β ] = ±

(α, αj)

(αt, β)
([J(ht), x±β ] + cβj,tx±β). (4.33)

Appling (4.32) and (4.33) to the right hand side of (4.30),

(αj , α)[J(hi), τsp(x±β)]− (αi, α)[J(hj), τsp(x±β)]

= ±τsp
{
(αj , α)

(α, αi)

(αt, β)
cβi,tx±β − (αi, α)

(α, αj)

(αt, β)
cβj,tx±β}

∓ {(αj , α)ap,ibi,p − (αi, α)ap,jbj,p}(ε1 − ε2)x±α.

This completes the proof of the case where α is even.
Case 2, α is odd.
Here after, we suppose that m is greater than 3. The other case is proven in a similar way.

First, we consider the case where α =
∑

1≤l≤m−1

αi + αm + sδ.

Claim 4.34. (1) When i 6= 0, 1,m,m+ 1, [J(hi), x±α] = ±ciαx±α, where cα is a complex number.
(2) We obtain the following equations;

[J(h0), x±α] =
(α0, α)

(α1, α)
[J(h1), x±α]± d0,1x±α, (4.35)

[J(hm), x±α] =
(αm, α)

(α1, α)
[J(h1), x±α]± dm,1x±α, (4.36)

[J(hm+1), x±α] =
(αm+1, α)

(αm, α)
[J(hm), x±α]± dm,m+1x±α, (4.37)

where d0,1, dm,1, and dm,m+1 are complex numbers.
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Proof. (1) When i 6= 0, 1, 2,m,m + 1, we set x2±δ = [x±1 ,
∏

2≤p≤m+n−1

ad(x±p )(x
±
0 )]. It is sufficient

to assume that
x±α = ad(x2±δ)

s
∑

1≤l≤m−1

ad(x±i )(x
±
m)

since the right hand side is nonzero. In a similar way as that of Claim 4.28, we also have

[J(hi), x
2
±δ] = ±hδx2±δ, (4.38)

[J(hi),
∑

1≤l≤m−1

ad(x±i )(x
±
m)] = ±iα

∑
1≤l≤m−1

ad(x±i )(x
±
m), (4.39)

where hδ and iα are complex numbers. Thus, we find the equality

[J(hi), x
kα
α ] = ±(shδ + iα) ad(x

2
±δ)

s
∑

1≤l≤m−1

ad(x±i )(x
±
m)

by the Jacobi identity, (4.38), and (4.39). We have proved the statement when i 6= 0, 1, 2,m,m+1.
When i = 2, we set x3±δ as

[x±m+1,
∏

m+2≤p≤m+n−1

ad(x±p )
∏

0≤p≤m−1

ad(x±p ) ad(x
±
m)].

It is enough to assume that

x±α = ad(x3±δ)
s

∑
1≤l≤m−1

ad(x±i )(x
±
m)

since the right hand side is nonzero. In a similar way as that of Claim 4.28, we also have

[J(hi), x
3
±δ] = ±jδx3±δ,

[J(hi),
∑

1≤l≤m−1

ad(x±i )(x
±
m)] = ±kα

∑
1≤l≤m−1

ad(x±i )(x
±
m),

where jδ and kα are complex numbers. Thus, we find the relation

[J(hi), xα] = ±(sjδ + kα) ad(x
2
±δ)

s
∑

1≤l≤m−1

ad(x±i )(x
±
m)

by the Jacobi identity, (4) and (4). We have proved the statement when i = 2.
(2) First, we prove that (4.35) holds. By the definition of α, x±α can be written as [x±β , x

±
m],

where x±β is a nonzero element of gα−αm
. Since [J(h0), x

±
m] and [J(h1), x

±
m] is equal to zero by

(4.9), we obtain

[J(h0), x±α] = [[J(h0), x±β ], x
±
m], (4.40)

[J(h1), x±α] = [[J(h1), x±β ], x
±
m]. (4.41)

Then, because β is even, we have

[[J(h0), x±β ], x
±
m] =

(α0, β)

(α1, β)
[[J(h1), x±β ], x

±
m] +

(α0, β)

(α1, β)
[x±β , x

±
m] (4.42)

by Case 1. By(4.40), (4.41), and (4.42), we find the equality

[J(h0), x±α] =
(α0, β)

(α1, β)
[J(h1), x±α] +

(α0, β)

(α1, β)
[x±β , x

±
m].

Thus we have shown that (4.35) holds. Similarly, we obtain (4.36) since [J(hm), x+m] = 0 holds.
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Finally, we prove that (4.37) holds. We set x4±δ = [x±1 ,
∏

2≤p≤m+n−1

ad(x±p )(x
±
0 )]. It is enough

to check the relation under the assumption that x±α = ad(x4±δ)
s

∏
1≤p≤m−1

ad(x±p )(x
±
m) since the

right hand side is nonzero. Then, we obtain

[J(hm), x±α]

=
∑

1≤t≤s

ad(x4±δ)
t−1 ad([J(hm), x4±δ]) ad(x

4
±δ)

s−t
∏

1≤p≤m−1

ad(x±p )(x
±
m)

+ [J(hm), ad(x4±δ)
s

∏
1≤p≤m−1

ad(x±p )(x
±
m)] (4.43)

[J(hm+1), x±α]

=
∑

1≤t≤s

ad(x4±δ)
t−1 ad([J(hm+1), x

4
±δ]) ad(x

4
±δ)

s−t
∏

1≤p≤m−1

ad(x±p )(x
±
m)

+ [J(hm+1), ad(x
4
±δ)

s
∏

1≤p≤m−1

ad(x±p )(x
±
m)] (4.44)

by the Jacobi identity. First, we rewrite the first term of the right hand side of (4.43) and (4.44).
By the assumption m is greater than 3, [J(hm), x±1 ] = 0 holds by (4.9). Then, in a similar way as
that of Claim 4.28, we find the equalities

[J(hm), x4±δ] = ±tδx4±δ, (4.45)

[J(hm+1), x
4
±δ] = ±uδx4±δ, (4.46)

where tδ and uδ are complex numbers. Then, we obtain

the first term of the right hand side of (4.43)

= ±tδ ad(x4±δ)
s

∏
1≤p≤m−1

ad(x±p )(x
±
m), (4.47)

the first term of the right hand side of (4.44)

= ±uδ ad(x4±δ)
s

∏
1≤p≤m−1

ad(x±p )(x
±
m) (4.48)

by (4.45) and (4.46). Next, we rewrite the second term of the right hand side of (4.43) and (4.44).
By (4.9), we obtain

the second term of the right hand side of (4.43)

= ad(x4±δ)
s

∏
1≤p≤m−2

ad(x±p )[J(hm), [x±m−1, x
±
m]], (4.49)

the second term of the right hand side of (4.44)

= ad(x4±δ)
s

∏
1≤p≤m−2

ad(x±p )[J(hm+1), [x
±
m−1, x

±
m]].. (4.50)

By (4.9) and (4.10), we find that

[J(hm), [x±m−1, x
±
m]]

= ±am,m−1[J(x
±
m−1), x

±
m]∓ am,m−1bm,m−1

ε1 − ε2
2

[x±m−1, x
±
m]

= ±am,m−1[x
±
m−1, J(x

±
m)]∓ am,m−1(bm−1,m + bm,m−1)

ε1 − ε2
2

[x±m−1, x
±
m], (4.51)

[J(hm+1), [x
±
m−1, x

±
m]]
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= ±am+1,m[x±m−1, J(x
±
m)]∓ am+1,mbm,m+1

ε1 − ε2
2

[x±m−1, x
±
m]. (4.52)

Since am,m−1 = (α, αm) and am+1,m = (α, αm+1), by (4.51) and (4.52), we obtain

(α, αm+1)[J(hm), [x±m−1, x
±
m]]− (α, αm)[J(hm+1), [x

±
m−1, x

±
m]] = ±uα[x±m−1, x

±
m], (4.53)

where uα is a complex number. Thus, we know that

(α, αm+1)(the second term of the right hand side of (4.43))

− (α, αm)(the second term of the right hand side of (4.44))

= uα ad(x4±δ)
s

∏
1≤p≤m−1

ad(x±p )(x
±
m). (4.54)

holds. By (4.47), (4.48), and (4.54), we have

(α, αm+1)[J(hm), x±α]− (α, αm)[J(hm+1), x±α]

= ±(s(α, αm+1)tδ − s(α, αm)uδ + uα) ad(x
4
±δ)

s
∏

1≤p≤m−1

ad(x±p )(x
±
m).

Then, we have obtained (4.37).

Next, let us consider the case where α is a general odd root. We only show the case where

α ∈ αm +
∑

1≤t≤m+n−1,
t̸=m

Z≥0αt + sδ. The other case is proven in a similar way.

Since α ∈ αm +
∑

1≤t≤m+n−1,
t ̸=m

Z≥0αt + sδ, α can be written as
∏

1≤t≤p

sit(
∑

1≤i≤m

αi + αm). Then,

we prove the statement by the induction on p. When p = 0, it is nothing but Claim 4.34. Other
cases are proven in a similar way as that of Case 1.

We easily obtain the following corollary.

Corollary 4.55. The following equations hold;

[J(hi), ṽj ] + [ṽi, J(hj)] = 0, (4.56)

[J(hi), J(hj)] + [ṽi, ṽj ] = 0, (4.57)

where ṽi = vi +
ε1 + ε2

2
hi

2.

Proof. First, we show that (4.56) holds. Since ṽi =
ε1 + ε2

2

∑
α∈∆re

+

(αj , α)x
kα
−αx

kα
α holds, we obtain

[J(hi), ṽj ] + [ṽi, J(hj)]

=
ε1 + ε2

2

∑
α∈∆re

+

(αj , α)[J(hi), x−α]xα +
ε1 + ε2

2

∑
α∈∆re

+

(αj , α)x−α[J(hi), xα]

+
ε1 + ε2

2

∑
α∈∆re

+

(αi, α)[x−α, J(hj)]xα +
ε1 + ε2

2

∑
α∈∆re

+

(αi, α)x−α[xα, J(hj)]. (4.58)

By Proposition 4.26, there exists cαi,j ∈ C such that

ε1 + ε2
2

∑
α∈∆re

+

(αj , α)[J(hi), x−α]xα +
ε1 + ε2

2

∑
α∈∆re

+

(αi, α)[x−α, J(hj)]xα
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= −ε1 + ε2
2

∑
α∈∆re

+

cαi,jx−αxα (4.59)

and

ε1 + ε2
2

∑
α∈∆re

+

(αj , α)x−α[J(hi), xα] +
ε1 + ε2

2

∑
α∈∆re

+

(αi, α)x−α[xα, J(hj)]

=
ε1 + ε2

2

∑
α∈∆re

+

cαi,jx−αxα. (4.60)

Therefore, applying (4.59) and (4.60) to (4.58), we have obtained the relation (4.56). By the
defining relation (3.3), we find the equality

[J(hi)− ṽi, J(hj)− ṽj ] = [hi,1, hj,1] = 0. (4.61)

On the other hand, we find the relation

[J(hi)− ṽi, J(hj)− ṽj ] = [J(hi), J(hj)]− [ṽi, J(hj)]− [J(hi), ṽj ] + [ṽi, ṽj ].

By (4.56), the right hand side of (4) is equal to the left hand side of (4.57). Thus, by (4.61), we
have found that (4.57) holds.

Now, we are in position to obtain the proof of Theorem 4.3. To simplify the notation, we set
□(x) as x⊗ 1 + 1⊗ x for all x ∈ Yε1,ε2(ŝl(m|n)).

Proof of Theorem 4.3. It is enough to check that ∆ is compatible with (3.17)-(3.25), which are the
defining relations of the minimalistic presentation of the affine super Yangian. Since the restriction
of ∆ to ŝl(m|n) is nothing but the usual coproduct of ŝl(m|n), ∆ is compatible with (3.18), (3.23),
(3.24), and (3.25). We also know that ∆ is compatible with (3.20) since ∆(x±i,1) is defined as

± 1

ai,i
[∆(h̃i,1),∆(x±i,0)] if i 6= m, 0,

± 1

ai+1,i
[∆(h̃i+1,1),∆(x±i,0)] + bi+1,i

ε1 − ε2
2

∆(x±i,0) if i = m, 0,

and ∆(h̃i+1,1) and ∆(h̃i,1) commute with ∆(hj,0) by the definition. We find that the defining
relation (3.19) (resp. (3.21), (3.22)) is equivalent to (4.11) (resp. (4.9), (4.10)) by the proof of
Lemma 4.7. It is easy to show that ∆ is compatible with (4.11), (4.9), and (4.10) in the same way
as that of Theorem 4.9 of [21]. Thus, it is enough to show that ∆ is compatible with (3.17). By
the definition of J(hi), we obtain

[∆(hi1),∆(hj1)]

= [∆(J(hi))−∆(ṽi),∆(J(hj))−∆(ṽj)]

= [∆(J(hi)),∆(J(hj))] + [∆(ṽi),∆(ṽj)]− [∆(J(hi)),∆(ṽj)]− [∆(ṽi),∆(J(hj))], (4.62)

where ṽi = vi +
ε1 + ε2

2
h2i . It is enough to show that

[∆(J(hi)),∆(J(hj))] + [∆(ṽi),∆(ṽj)] = 0 (4.63)

and
[∆(J(hi)),∆(ṽj)] + [∆(ṽi),∆(J(hj))] = 0 (4.64)

hold. We only show that (4.63) holds. The outline of the proof of (4.64) is the same as that of
Theorem 4.9 of [21]. In order to simplify the computation, we define

Ω+ =
∑

1≤k≤dimh

uk ⊗ uk +
∑

α∈∆+

∑
1≤kα≤dimgα

(−1)p(α)xkα
α ⊗ x

kα
−α,
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Ω− =
∑

α∈∆+

∑
1≤kα≤dimgα

xkα
−α ⊗ xkα

α ,

Ω =
∑

1≤k≤dimh

uk ⊗ uk +
∑

α∈∆+

∑
1≤kα≤dimgα

((−1)p(α)xkα
α ⊗ x

kα
−α + xkα

−α ⊗ xkα
α ),

where {uk} and {uk} are basis of h such that κ(uk, u
l) = δk,l. By the definition of J(hi), it is easy

to obtain

∆(J(hi)) = □(J(hi)) +
ε1 + ε2

2
[hi,0 ⊗ 1,Ω] (4.65)

since we have

∆(xy) = (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)

= (−1)p(1)p(y)xy ⊗ 1 + (−1)p(x)p(1)1⊗ xy + (−1)p(1)p(1)x⊗ y + (−1)p(x)p(y)y ⊗ x

by the relation (x⊗y)(z⊗w) = (−1)p(y)p(z)xz⊗yw for all homogeneous elements x, y, z, w. Thus,
by (4.65), we obtain

[∆(J(hi)),∆(J(hj))]

= □([J(hi), J(hj)]) +
ε1 + ε2

2
[□(J(hi)), [hj,0 ⊗ 1,Ω]]

− ε1 + ε2
2

[□(J(hj)), [hi,0 ⊗ 1,Ω]] +
(ε1 + ε2)

2

4
[[hi,0 ⊗ 1,Ω], [hj,0 ⊗ 1,Ω]].

First, we prove that

ε1 + ε2
2

[□(J(hi)), [hj,0 ⊗ 1,Ω]]− ε1 + ε2
2

[□(J(hj)), [hi,0 ⊗ 1,Ω]] = 0 (4.66)

holds. Since [hj,0 ⊗ 1,Ω] =
∑

α∈∆re
+
(α, αi)(x−α ⊗ xα − xα ⊗ x−α) holds, we have

[□(J(hi)), [hj,0 ⊗ 1,Ω]]− [□(J(hj)), [hi,0 ⊗ 1,Ω]]

=
∑

α∈∆re
+

(α, αj)((−1)p(α)[J(hi), xα]⊗ x−α − (−1)p(α)xα ⊗ [J(hi), x−α])

+ [J(hi), x−α]⊗ xα − x−α ⊗ [J(hi), xα])

−
∑

α∈∆re
+

(α, αi)((−1)p(α)[J(hj), xα]⊗ x−α − (−1)p(α)xα ⊗ [J(hj), x−α])

+ [J(hj), x−α]⊗ xα − x−α ⊗ [J(hj), xα])

=
∑

α∈∆re
+

(α, αj)(α, αi)c
α
i,j((−1)

p(α)
xα ⊗ x−α − (−1)p(α)xα ⊗ x−α + x−α ⊗ xα − x−α ⊗ xα)

−
∑

α∈∆re
+

(α, αi)(α, αj)c
α
j,i((−1)

p(α)
xα ⊗ x−α − (−1)p(α)xα ⊗ x−α + x−α ⊗ xα − x−α ⊗ xα)

= 0.

where the third equality is due to Proposition 4.26. Therefore (4.66) holds. Since ∆(ṽi) =

□(ṽi)−
ε1 + ε2

2
[hi,0 ⊗ 1,Ω+ − Ω−] holds, we obtain

[∆(ṽi),∆(ṽj)]

= □([ṽi, ṽj ]) +
ε1 + ε2

2
(−[□(ṽi), [hj,0 ⊗ 1,Ω+ − Ω−]] + [□(ṽj), [hi,0 ⊗ 1,Ω+ − Ω−]])

+
(ε1 + ε2)

2

4
[[hi,0 ⊗ 1,Ω+ − Ω−], [hj,0 ⊗ 1,Ω+ − Ω−]].
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Using this along with Ω = Ω+ +Ω− and (4.66), we find the equality

[∆(J(hi)),∆(J(hj))] + [∆(ṽi),∆(ṽj)]

= □([J(hi), J(hj)] + [ṽi, ṽj ])

+
ε1 + ε2

2
(−[□(ṽi), [hj,0 ⊗ 1,Ω+ − Ω−]] + [□(ṽj), [hi,0 ⊗ 1,Ω+ − Ω−]])

+
(ε1 + ε2)

2

2
([[hi,0 ⊗ 1,Ω+], [hj,0 ⊗ 1,Ω+]] + [[hi,0 ⊗ 1,Ω−], [hj,0 ⊗ 1,Ω−]]). (4.67)

By the same way as the one of Theorem 4.9 in [21], we can check that the sum of the last four
terms of the right hand side of (4.67) vanishes. By Corollary 4.55, □([J(hi), J(hj)] + [ṽi, ṽj ]) = 0
holds. The coassocitivity is proven in a similar way to the one of [21]. We complete the proof.

By setting the degree on Yε1,ε2(s̃l(m|n)) determined by (4.2) and deg(d) = 0, we can de-

fine the Ŷε1,ε2(s̃l(m|n)) (resp. Yε1,ε2(s̃l(m|n))⊗̂Yε1,ε2(s̃l(m|n))) as the degreewise completion of

Yε1,ε2(s̃l(m|n)) (resp. Yε1,ε2(s̃l(m|n))⊗2) in the sense of [33]. We regard a represenation of

Yε1,ε2(s̃l(m|n)) as that of s̃l(m|n) via Φ. By Theorem 4.3, we easily obtain the following corollary.

Corollary 4.68. The linear map ∆: Yε1,ε2(s̃l(m|n)) → Yε1,ε2(s̃l(m|n))⊗̂Yε1,ε2(s̃l(m|n)) uniquely
determined by

∆(hi,0) = hi,0⊗1 + 1⊗hi,0, ∆(x±i,0) = x±i,0⊗1 + 1⊗x±i,0 ∆(d) = d⊗ 1 + 1⊗ d,

∆(hi,1) = hi,1⊗1 + 1⊗hi,1 + (ε1 + ε2)hi,0⊗hi,0 − (ε1 + ε2)
∑

α∈∆+

∑
1≤kα≤dimgα

(α, αi)x
kα
−α⊗xkα

α

is an algebra homomorphism. Moreover, ∆ satisfies the coassociativity.
In particular, ∆ defines an action on Yε1,ε2(s̃l(m|n)) on V ⊗W for any Yε1,ε2(s̃l(m|n))-modules

V,W which are in the category O as s̃l(m|n)-modules.

5 Evaluation map for the Affine Super Yangian

Since the definition of the affine super Yangian is very complicated, it is not clear whether the
affine super Yangian is trivial or not. In this section, we construct the non-trivial homomorphism
from the affine super Yangian to the completion of U(ĝl(m|n)). In this section, we define a Lie

superalgebra ĝl(m|n)str = gl(m|n)⊗C[t, t−1]⊕Cc̃⊕Cz whose commutator relations are given by

[x⊗ tu, y ⊗ tv] =


[x, y]⊗ tu+v + δu+v,0ustr(xy)c̃ if x, y ∈ sl(m|n),
[ea,b, ei,i]⊗ tu+v + δu+v,0ustr(Ea,bEi,i)c̃+ δu+v,0δa,bu(−1)p(a)+p(i)

z

if x = ea,b, y = ei,i,

z and c̃ are central elements of ĝl(m|n).

For all s ∈ Z, we denote Ei,j⊗ts by Ei,j(s). We also set the grading of U(ĝl(m|n))/U(ĝl(m|n))(z−
1) as deg(X(s)) = s and deg(c) = 0. We introduce a completion of U(ĝl(m|n)str)/U(ĝl(m|n)str)(z−
1) following [33] and [21]. For all s ∈ Z, we denote Ei,j ⊗ ts by Ei,j(s). We also set the grading

of U(ĝl(m|n)str)/U(ĝl(m|n)str)(z − 1) as deg(X(s)) = s and deg(c) = 0. Then, we find that

U(ĝl(m|n)str)/U(ĝl(m|n)str)(z− 1) becomes a graded algebra and we denote the set of the degree

d elements of U(ĝl(m|n)str)/U(ĝl(m|n)str)(z − 1) by U(ĝl(m|n)str)d. We obtain the completion

U(ĝl(m|n)str)comp =
⊕
d∈Z

U(ĝl(m|n)str)comp,d,

where
U(ĝl(m|n)str)d = lim←−

N

U(ĝl(m|n)str)d/
∑
r>N

U(ĝl(m|n)str)d−rU(ĝl(m|n)str)r.
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Let us state the main result of this section. In order to simplify the notation, we denote ε1 + ε2
as ~.

Theorem 5.1. Assume c~ = (−m + n)ε1 and z = 1. Let υ be a complex number. Then, there

exists an algebra homomorphism evυ : Yε1,ε2(ŝl(m|n))→ U(ĝl(m|n))comp,+ uniquely determined by

evυ(x
+
i,0) = x+i , evυ(x

−
i,0) = x−i , evυ(hi,0) = hi, (5.2)

evυ(x
+
i,1) =



(υ − (m− n)ε1)x+0 + ~
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,1(s+ 1) if i = 0,

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i

+~
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s)

+~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1)

if i 6= 0,

(5.3)

evυ(x
−
i,1) =



(υ − (m− n)ε1)x−0 − ~
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s− 1)Ek,m+n(s) if i = 0,

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
−
i

+(−1)p(i)~
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i(s)

+(−1)p(i)~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i(s+ 1)

if i 6= 0,

(5.4)
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evυ(hi,1) =



(υ − (m− n)ε1)h0 + ~Em+n,m+n(E1,1 − c)

−~
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,m+n(s)

−~
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s− 1)Ek,1(s+ 1)

if i = 0,

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi − (−1)p(Ei,i+1)~Ei,iEi+1,i+1

+~(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s)

+~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1)

−~(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s)

−~(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1)

if i 6= 0.

(5.5)

The outline of the proof is the same as that of [30]. It is enough to check that evυ is compatible
with (3.17)-(3.25), which are the defining relations of the minimalistic presentation of the affine

super Yangian. When we restrict evυ to ŝl(m|n), evυ is an identity map on ŝl(m|n). Thus, evυ is
compatible with (3.18), (3.20), (3.23)-(3.25).

We set a anti-automorphism ω : U(ĝl(m|n))→ U(ĝl(m|n)) as

ω(X ⊗ tr) = (−1)rXT ⊗ tr, ω(c) = c,

where XT is a transpose of a matrix X. Then, the compatibility of evυ with (3.21) and (3.22) for −
are deduced from those for + by applying the anti-automorphism ω since we have ω(evυ(hi,1)) =

evυ(hi,1) and ω(evυ(x
+
i,1)) = (−1)p(i) evυ(x−i,1). Therefore, it is enough to check the following

lemma.

Lemma 5.6. The following equations hold;

[evυ(x
+
i,1), evυ(x

−
j,0)] = δi,j evυ(hi,1), (5.7)

[evυ(h̃i,1), x
+
j ] = ai,j(evυ(x

+
j,1)− bi,j

ε1 − ε2
2

x+j ), (5.8)

[evυ(x
+
i,1), x

+
j ]− [x+i , evυ(x

+
j,1)] = ai,j

ε1 + ε2
2
{x+i , x

+
j } − bi,j

ε1 − ε2
2

[x+i , x
+
j ], (5.9)

[evυ(hi,1), evυ(hj,1)] = 0. (5.10)

The rest of the paper is devoted to the proof of Lemma 5.6.

5.1 The proof of (5.7)

We prepare one claim before starting the proof.

Claim 5.11. The following relations hold;

[
∑
s≥p

a∑
k=1

(−1)p(k)Ei,k(−s)Ek,j(s), Ex,y] (5.12)
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= δj,x
∑
s≥p

a∑
k=1

(−1)p(k)Ei,k(−s)Ek,y(s)− (−1)p(Ei,j)p(Ex,y)
∑
s≥p

a∑
k=1

(−1)p(k)Ex,k(−s)Ek,j(s)

+ {δ(x ≤ a < y)− δ(x > a ≥ y)}
∑
s≥p

(−1)p(x)+p(Ex,j)p(Ex,y)Ei,y(−s)Ex,j(s), (5.13)

[
∑
s≥p

m+n∑
k=a

(−1)p(k)Ei,k(−s)Ek,j(s), Ex,y]

= δj,x
∑
s≥p

m+n∑
k=a

(−1)p(k)Ei,k(−s)Ek,y(s)− (−1)p(Ei,j)p(Ex,y)
∑
s≥p

m+n∑
k=a

(−1)p(k)Ex,k(−s)Ek,j(s)

+ {δ(x ≥ a > y)− δ(x < a ≤ y)}
∑
s≥p

(−1)p(x)+p(Ex,j)p(Ex,y)Ei,y(−s)Ex,j(s). (5.14)

Proof. We prove only (5.13) since (5.14) is proven in a similar way. By direct computation, the
first term of (5.13) is equal to

δj,x
∑
s≥p

a∑
k=1

(−1)p(k)Ei,k(−s)Ek,y(s)

− δ(y ≤ a)
∑
s≥p

(−1)p(y)+p(Ey,j)p(Ex,y)Ei,y(−s)Ex,j(s)

+ δ(x ≤ a)
∑
s≥p

(−1)p(x)+p(Ex,j)p(Ex,y)Ei,y(−s)Ex,j(s)

− (−1)p(Ei,j)p(Ex,y)
∑
s≥p

a∑
k=1

(−1)p(k)Ex,k(−s)Ek,j(s). (5.15)

Since p(y) + p(Ey,j)p(Ex,y) = p(x) + p(Ex,j)p(Ex,y), the sum of the second and third terms of
(5.15) is equal to

{δ(x ≤ a < y)− δ(x > a ≥ y)}
∑
s≥p

(−1)p(x)+p(Ex,j)p(Ex,y)Ei,y(−s)Ex,j(s).

Then, we obtain (5.14).

Suppose that i, j 6= 0. Other cases are proven in a similar way. By the definition of evυ(x
+
i,1),

we obtain

[evυ(x
+
i,1), evυ(x

−
j,0)]

= [(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , (−1)

p(j)
Ej+1,j ]

+ [~
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), (−1)p(j)Ej+1,j ]

+ [~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1), (−1)p(j)Ej+1,j ]. (5.16)

By (5.13), [~
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), (−1)p(j)Ej+1,j ], the second term of the right hand

side of (5.16), is equal to

[~
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), (−1)p(j)Ej+1,j ]
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= δi,j~
∑
s≥0

i∑
k=1

(−1)p(i)+p(k)
Ei,k(−s)Ek,i(s)

− δi,j~
∑
s≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ei,i+1)Ei+1,k(−s)Ek,i+1(s)

− δi,j~
∑
s≥0

(−1)p(Ei,i+1)p(Ei,i+1)Ei,i(−s)Ei+1,i+1(s). (5.17)

Similarly, by (5.14), [~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+1), (−1)p(j)Ej+1,j ], the third term

of the right hand side of (5.16), is equal to

[~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1), (−1)p(j)Ej+1,j ]

= ~
∑
s≥0

m+n∑
k=i+1

δi,j(−1)p(k)+p(i)
Ei,k(−s− 1)Ek,i(s+ 1)

− ~
∑
s≥0

m+n∑
k=i+1

δi,j(−1)p(k)+p(i)+p(Ei,i+1)Ei+1,k(−s− 1)Ek,i+1(s+ 1)

+ ~
∑
s≥0

δi,j(−1)p(i+1)+p(i)
Ei,i(−s− 1)Ei+1,i+1(s+ 1). (5.18)

We can rewrite the sum of the last term of (5.17) and the last term of (5.18). Since p(Ei,i+1) =
p(i) + p(i+ 1) holds, we obtain

− ~
∑
s≥0

(−1)p(Ei,i+1)p(Ei,i+1)Ei,i(−s)Ei+1,i+1(s)

+ ~
∑
s≥0

(−1)p(i+1)+p(i)+p(Ei+1,i+1)p(Ei,i+1)Ei,i(−s− 1)Ei+1,i+1(s+ 1)

= −~
∑
s≥0

(−1)p(Ei,i+1)Ei,i(−s)Ei+1,i+1(s) + ~
∑
s≥0

(−1)p(Ei,i+1)Ei,i(−s− 1)Ei+1,i+1(s+ 1)

= −~(−1)p(Ei,i+1)Ei,iEi+1,i+1. (5.19)

Thus, we have shown that [evυ(x
+
i,1), evυ(x

−
j,0)] = δi,j evυ(hi,1) holds by (5.17), (5.18) and (5.19).

5.2 The proof of (5.8)

We only show the case where i, j 6= 0 and when i = 0 and j 6= 0. The other case is proven in a
similar way.

Case 1, i, j 6= 0.
First, we show the case where i, j 6= 0. By the definition of evυ(hi,1), we obtain

[evυ(h̃i,1), evυ(x
+
j,0)]

= [(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi −
1

2
~((Ei,i)

2 + (Ei+1,i+1)
2), Ej,j+1]

+ [~(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s), Ej,j+1]

+ [~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1), Ej,j+1]
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− [~(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s), Ej,j+1]

− [~(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1), Ej,j+1]. (5.20)

Let us compute these terms respectively. By direct computation, the first term of the right hand
side of (5.20) is equal to

[(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi −
1

2
~((Ei,i)

2 + (Ei+1,i+1)
2), Ej,j+1]

= (υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)ai,jx
+
j

− ~
2
(δi,j({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1})− δi,j+1{Ei−1,i, Ei,i}+ δi+1,j{Ei+1,i+2, Ei+1,i+1}).

(5.21)

By (5.13) and (5.14), we also find that the sum of the second and third terms of the right hand
side of (5.20) is equal to

[~(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s), Ej,j+1]

+ [~(−1)p(i)
m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1), Ej,j+1]

= ~(−1)p(i)
∑
s≥0

i∑
k=1

δi,j(−1)p(k)Ei,k(−s)Ek,i+1(s)

− ~(−1)p(i)
∑
s≥0

i∑
k=1

δi,j+1(−1)p(k)Ej,k(−s)Ek,i(s)

+ ~(−1)p(i)
∑
s≥0

δi,j(−1)p(i)Ei,i+1(−s)Ei,i(s)

+ ~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

δi,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1)

− ~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

δi,j+1(−1)p(k)Ej,k(−s− 1)Ek,i(s+ 1)

− ~(−1)p(i)
∑
s≥0

δi,j(−1)p(i+1)+p(Ei,i+1)p(Ei+1,i)Ei,i+1(−s− 1)Ei,i(s+ 1). (5.22)

By a direct computation, we obtain

the sum of the third and 6-th terms of (5.22) = ~δi,jEi,i+1Ei,i. (5.23)

Next, let us rewrite the sum of the first and 4-th terms of (5.22). By the definition of evυ(x
+
i,1),

we obtain

the first term of (5.22) + the 4-th term of (5.22)

= δi,j(evυ(x
+
i,1)− (υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x

+
i ). (5.24)

By the definition of evυ(x
+
i,1), we also obtain

the second term of (5.22) + the 5-th term of (5.22)
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= −δi,j+1~(−1)p(i)
∑
s≥0

j∑
k=1

(−1)p(k)Ej,k(−s)Ek,i(s)

− δi,j+1~(−1)p(i)
∑
s≥0

m+n∑
k=j+1

(−1)p(k)Ej,k(−s− 1)Ek,i(s+ 1)

− ~δi,j+1Ej,iEi,i

= −δi,j+1(−1)p(i)(evυ(x+j,1)− (υ − (j − 2δ(i ≥ m+ 1)(j −m))ε1)x
+
j )− ~δi,j+1Ej,iEi,i. (5.25)

Therefore, by (5.23), (5.24) and (5.25), the sum of first, second and third terms of the right hand
side of (5.20) is equal to

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)ai,jx
+
j

− ~
2
(δi,j({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1})− δi,j+1{Ei−1,i, Ei,i}+ δi+1,j{Ei+1,i+2, Ei+1,i+1})

+ ~δi,jEi,i+1Ei,i + (−1)p(i)δi,j(evυ(x+i,1)− (υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i )

− (−1)p(i)δi,j+1(evυ(x
+
j,1)− (υ − (j − 2δ(i ≥ m+ 1)(j −m))ε1)x

+
j ). (5.26)

Similarly to (5.26), we find that the sum of the 4-th and 5-th terms of the right hand side of
(5.20) is equal to

− ~δj,iEi+1,i+1Ei,i+1 − (−1)p(i+1)
δi+1,j(evυ(x

+
j,1)− (υ − (i− 2δ(j ≥ m+ 1)(j −m))ε1)x

+
j )

+ δi+1,j~Ei+1,i+1Ei+1,j+1 + δi,j(−1)p(i+1)
(evυ(x

+
i,1)− (υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x

+
i ).

(5.27)

Then, [evυ(h̃i,1), evυ(x
+
j,0)] is equal to the sum of (5.21), (5.26) and (5.27).

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)ai,jx
+
j

− ~
2
(δi,j({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1})− δi,j+1{Ei−1,i, Ei,i}+ δi+1,j{Ei+1,i+2, Ei+1,i+1})

+ (υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)ai,jx
+
j

− ~
2
(δi,j({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1})− δi,j+1{Ei−1,i, Ei,i}+ δi+1,j{Ei+1,i+2, Ei+1,i+1})

+ ~δi,jEi,i+1Ei,i + (−1)p(i)δi,j(evυ(x+i,1)− (υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i )

− (−1)p(i)δi,j+1(evυ(x
+
j,1)− (υ − (j − 2δ(i ≥ m+ 1)(j −m))ε1)x

+
j )

− ~δj,iEi+1,i+1Ei,i+1 − (−1)p(i+1)
δi+1,j(evυ(x

+
j,1)− (υ − (i− 2δ(j ≥ m+ 1)(j −m))ε1)x

+
j )

+ δi+1,j~Ei+1,i+1Ei+1,j+1 + δi,j(−1)p(i+1)
(evυ(x

+
i,1)− (υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x

+
i ).

By (5.21), (5.26) and (5.27), when i 6= j, j ± 1, [evυ(h̃i,1), evυ(x
+
j,0)] is zero. Provided that i = j,

[evυ(h̃i,1), evυ(x
+
i,0)] is equal to

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)ai,ix
+
i −

~
2
({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1})

+ ~Ei,i+1Ei,i + (−1)p(i)(evυ(x+i,1)− (υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i )

− ~Ei+1,i+1Ei,i+1 + (−1)p(i+1)
(evυ(x

+
i,1)− (υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x

+
i ). (5.28)

Since ai,i = (−1)p(i) + (−1)p(i+1)
holds, we have

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)ai,ix
+
i − (−1)p(i)(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x

+
i
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− (−1)p(i+1)
(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x

+
i = 0

and

− ~
2
({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1}) + ~Ei,i+1Ei,i − ~Ei+1,i+1Ei,i+1

= −~
2
(Ei,iEi,i+1 − Ei,i+1Ei,i + Ei+1,i+1Ei,i+1 − Ei,i+1Ei+1,i+1)

= −~
2
(Ei,i+1 − Ei,i+1) = 0.

Then, we find that [evυ(h̃i,1), evυ(x
+
i,0)] is equal to ai,i evυ(x

+
i,1).

When i = j + 1, [evυ(h̃i,1), evυ(x
+
j,0)] is equal to

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)ai,jx
+
j +

~
2
{Ei−1,i, Ei,i}

− (−1)p(i)(evυ(x+j,1)− (υ − (j − 2δ(i ≥ m+ 1)(j −m))ε1)x
+
j )− ~Ej,iEi,i. (5.29)

Since ai,j = −(−1)p(i) holds, we have

~
2
{Ei−1,i, Ei,i} − ~Ej,iEi,i =

~
2
[Ei,i, Ei−1,i] = −

~
2
Ei−1,i

and

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)ai,jx
+
j + (−1)p(i)(υ − (j − 2δ(i ≥ m+ 1)(j −m)ε1)x

+
j

= ε1x
+
j .

Then, we find that [evυ(h̃i,1), evυ(x
+
j,0)] is equal to ai,i−1(evυ(x

+
i−1) + ai,i−1

ε1 − ε2
2

Ei−1,i).

When i = j − 1, [evυ(h̃i,1), evυ(x
+
j,0)] is equal to

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)ai,jx
+
j −

~
2
({Ei+1,i+2, Ei+1,i+1})

− (−1)p(i+1)
(evυ(x

+
j,1)− (υ − (i− 2δ(j ≥ m+ 1)(j −m))ε1)x

+
j + ~Ei+1,i+1Ei+1,j+1. (5.30)

Since ai,j = −(−1)p(j) holds, we have

−~
2
{Ei+1,i+2, Ei+1,i+1}+ ~Ei+1,i+1Ei+1,j+1 =

~
2
[Ei+1,i+1, Ei+1,i+2] =

~
2
Ei+1,i+2

and

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)ai,jx
+
j + (−1)p(i+1)

(υ − (i− 2δ(j ≥ m+ 1)(j −m))ε1)x
+
j

= −ε1Ei+1,i+2

Then, [evυ(h̃i,1), evυ(x
+
i+1,0)] is equal to ai,i+1(evυ(x

+
i+1,1)− ai,i+1

ε1 − ε2
2

Ei+1,i+2).

Case 2, i = 0 and j 6= 0.
By the definition of evυ, we obtain

[evυ(h̃0,1), evυ(x
+
j,0)]

= [(υ − (m− n)ε1)h0 −
1

2
~((Em+n,m+n)

2 + (E1,1 − c)2), Ej,j+1]

− [~
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,m+n(s), Ej,j+1]
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− [~
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s− 1)Ek,1(s+ 1), Ej,j+1]. (5.31)

By direct computation, the first term of (5.31) is equal to

(υ − (m− n)ε1)a0,jx+j

− ~
2

(
− δm+n−1,j({Em+n,m+n, Em+n−1,m+n}+ δ1,j{E1,2, (E1,1 − c)})

)
(5.32)

We also find that the second term of (5.31) is equal to

~
∑
s≥0

(−1)p(j+1)+p(Ej,j+1)p(Ej+1,m+n)Em+n,j+1(−s)Ej,m+n(s)

− ~
∑
s≥0

(−1)p(j)+p(Ej,j+1)p(Ej,m+n)Em+n,j+1(−s)Ej,m+n(s)

+ ~
∑
s≥0

m+n∑
k=1

δm+n,j+1(−1)p(k)Em+n−1,k(−s)Ek,m+n(s). (5.33)

By direct computation, we also know that the third term of (5.31) is equal to

− ~
∑
s≥0

m+n∑
k=1

δ1,j(−1)p(k)E1,k(−s− 1)Ek,2(s+ 1)

+ ~
∑
s≥0

(−1)p(j+1)+p(Ej,j+1)p(Ej+1,1)E1,j+1(−s− 1)Ej,1(s+ 1)

− ~
∑
s≥0

(−1)p(j)+p(Ej,j+1)p(Ej,1)E1,j+1(−s− 1)Ej,1(s+ 1). (5.34)

First, we show that the sum of the first and second terms of (5.33) is equal to zero. By direct
computation, we have

the first term of (5.33) + the second term of (5.33)

= ~
∑
s≥0

(−1)p(j+1)+p(Ej,j+1)p(Ej+1,m+n)Em+n,j+1(−s)Ej,m+n(s)

− ~
∑
s≥0

(−1)p(j)+p(Ej,j+1)p(Ej,m+n)Em+n,j+1(−s)Ej,m+n(s)

= 0. (5.35)

Similarly, by direct computation, we also obtain

the second term of (5.34) + the third term of (5.34)

= ~
∑
s≥0

(−1)p(j+1)+p(Ej,j+1)p(Ej+1,1)E1,j+1(−s− 1)Ej,1(s+ 1)

− ~
∑
s≥0

(−1)p(j)+p(Ej,j+1)p(Ej,1)E1,j+1(−s− 1)Ej,1(s+ 1)

= 0. (5.36)

Next, we rewrite the third term of (5.33). By direct computation, we have

the third term of (5.33)

= ~
∑
s≥0

m+n−1∑
k=1

δm+n,j+1(−1)p(k)Em+n−1,k(−s)Ek,m+n(s)
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+ ~
∑
s≥0

δm+n,j+1(−1)p(m+n)
Em+n−1,m+n(−s− 1)Em+n,m+n(s+ 1)

+ ~δm+n,j+1(−1)p(m+n)
Em+n−1,m+nEm+n,m+n

= δm+n,j+1(evυ(x
+
m+n−1,1)− (υ − (m− n+ 1)ε1)x

+
m+n−1)

+ ~δm+n,j+1(−1)p(m+n)
Em+n−1,m+nEm+n,m+n. (5.37)

Similarly, we rewrite the first term of (5.34) as follows;

the first term of (5.34)

= −~
∑
s≥0

δ1,jE1,1(−s)E1,2(s)− ~
∑
s≥0

m+n∑
k=2

δ1,j(−1)p(k)E1,k(−s− 1)Ek,2(s+ 1)

+ ~
∑
s≥0

δ1,jE1,1E1,2

= −δj,1(evυ(x+1,1)− (υ − ε1)x+1 ) + ~δj,1E1,1E1,2. (5.38)

Then, by (5.31), (5.35), (5.36), (5.37), and (5.38), we can rewrite [evυ(h̃0,1), x
+
j,0] as

(υ − (m− n)ε1)a0,jx+j −
~
2
(−δm+n,j+1{Em+n,m+n, Ej,m+n}+ δ1,j{E1,j+1, (E1,1 − c)})

+ δm+n,j+1(evυ(x
+
m+n−1,1)− (υ − (m− n− 1)ε1)x

+
m+n−1)

+ ~δm+n,j+1(−1)p(m+n)
Em+n−1,m+nEm+n,m+n

− δj,1(evυ(x+1,1 − (υ − ε1)x+1 ) + ~δj,1E1,1E1,2. (5.39)

By (5.39), when j 6= 0, 1,m + n − 1, [evυ(h̃0,1), evυ(x
+
j,0)] is equal to zero. When j = m + n − 1,

[evυ(h̃0,1), evυ(x
+
j,0)] is equal to

(υ − (m− n)ε1)x+m+n−1 +
~
2
{Em+n,m+n, Ej,m+n}

+ evυ(x
+
m+n−1,1)− (υ − (m− n+ 1)ε1)x

+
m+n−1 + ~(−1)p(m+n)

Em+n−1,m+nEm+n,m+n.

Since

~
2
{Em+n,m+n, Em+n−1,m+n}+ ~(−1)p(m+n)

Em+n−1,m+nEm+n,m+n

=
~
2
[Em+n,m+n, Em+n−1,m+n]−

~
2
Em+n−1,m+n.

holds, [evυ(h̃0,1), evυ(x
+
m+n−1,0)] is equal to

am+n−1,0(evυ(x
+
m+n−1,1) + am+n−1,0

ε1 − ε2
2

Em+n−1,m+n).

By (5.39), when j = 1, [evυ(h̃0,1), evυ(x
+
1,0)] can be written as

− (υ − (m− n)ε1)x+1 −
~
2
{E1,j+1, (E1,1 − c)} − evυ(x

+
1,1)− (υ − ε1)x+1 + ~E1,1E1,2.

Since

~E1,1E1,2 −
~
2
{E1,2, (E1,1 − c)} =

~
2
[E1,1, E1,2] + ~cE1,2 = (

~
2
+ ~c)E1,2

holds, [evυ(h̃0,1), x
+
1,0] = a0,1(evυ(x

+
1,1) − a0,1

ε1 − ε2
2

evυ(x
+
1,0)) is equivalent to the relation c~ =

(m− n)ε1. It is nothing but assumption. This completes the proof of the case j 6= 0 and i = 0.
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Other cases are proven in the same way. Thus, we show that

[evυ(h̃i,1), evυ(x
+
j,0)] = ai,j(evυ(x

+
j,1)− bi,j

ε1 − ε2
2

evυ(x
+
j,0))

holds.

5.3 The proof of (5.9)

We only show the case where i, j 6= 0 and i = 0, j 6= 0. The other case is proven in a similar way.
Case 1, i, j 6= 0
Suppose that i, j 6= 0. First, we let us compute [evυ(x

+
i,1), evυ(x

+
j,0)]. By the definition of

evυ(x
+
i,1), we have

[evυ(x
+
i,1), evυ(x

+
j,0)]

= [(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , Ej,j+1]

+ [~
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), Ej,j+1]

+ [~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1), Ej,j+1]. (5.40)

By direct computation, the second term of (5.40) is equal to

[~
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), Ej,j+1]

= ~
∑
s≥0

i∑
k=1

δi+1,j(−1)p(k)Ei,k(−s)Ek,j+1(s)

− ~
∑
s≥0

i∑
k=1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s)Ek,i+1(s)

+ ~
∑
s≥0

δj,i(−1)p(i)+p(Ei,i+1)p(Ei,i+1)Ei,i+1(−s)Ei,i+1(s). (5.41)

We also find that the third term of (5.40) is equal to

[~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1), Ej,j+1]

= ~
∑
s≥0

m+n∑
k=i+1

δi+1,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1)

− ~
∑
s≥0

m+n∑
k=i+1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s− 1)Ek,i+1(s+ 1)

− ~
∑
s≥0

δi,j(−1)p(i+1)+p(Ei+1,i)p(Ei,i+1)Ei,i+1(−s− 1)Ei,i+1(s+ 1). (5.42)

Thus, we can rewrite [evυ(x
+
i,1), evυ(x

+
j,0)] as

[(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , Ej,j+1]
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+ ~
∑
s≥0

i∑
k=1

δi+1,j(−1)p(k)Ei,k(−s)Ek,j+1(s)

− ~
∑
s≥0

i∑
k=1

δi,j+1(−1)p(k)+(p(Ei+1,k)+p(Ek,i))p(Ej,j+1)Ej,k(−s)Ek,i+1(s)

+ ~
∑
s≥0

m+n∑
k=i+1

δi+1,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1)

− ~
∑
s≥0

m+n∑
k=i+1

δi,j+1(−1)p(k)+(p(Ei+1,k)+p(Ek,i))p(Ej,j+1)Ej,k(−s− 1)Ek,i+1(s+ 1)

+ ~
∑
s≥0

δj,i(−1)p(i)+p(Ei,i+1)p(Ej,i+1)Ei,i+1(−s)Ei,i+1(s)

− ~
∑
s≥0

δi,j(−1)p(i+1)+p(Ei+1,i)p(Ei,i+1)Ei,i+1(−s− 1)Ei,i+1(s+ 1). (5.43)

Next, let us compute [evυ(x
+
i,0), evυ(x

+
j,1)]. Since it is equal to

−(−1)p(Ei,i+1)p(Ej,j+1)[evυ(x
+
j,1), evυ(x

+
i,0)],

we can rewrite [evυ(x
+
i,0), evυ(x

+
j,1)] as

[Ei,i+1, (υ − (j − 2δ(j ≥ m+ 1)(j −m))ε1)x
+
j ]

− ~
∑
s≥0

j∑
k=1

δi,j+1(−1)p(k)+p(Ei,i+1)(p(Ej,k)+p(Ek,j+1))Ej,k(−s)Ek,i+1(s)

+ ~
∑
s≥0

j∑
k=1

δi+1,j(−1)p(k)Ei,k(−s)Ek,j+1(s)

− ~
∑
s≥0

m+n∑
k=j+1

δi,j+1(−1)p(k)+p(Ei,i+1)(p(Ej,k)+p(Ek,j+1))Ej,k(−s− 1)Ek,i+1(s+ 1)

+ ~
∑
s≥0

m+n∑
k=j+1

δi+1,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1)− ~
∑
s≥0

δi,j(−1)p(i)Ei,i+1(−s)Ei,i+1(s)

+ ~
∑
s≥0

δi,j(−1)p(i+1)
Ei,i+1(−s− 1)Ei,i+1(s+ 1). (5.44)

By (5.43) and (5.44), when i 6= j, j±1, [evυ(x
+
i,1), evυ(x

+
j,0)]− [evυ(x

+
i,0), evυ(x

+
j,1)] is equal to zero.

When i = j, [evυ(x
+
i,1), evυ(x

+
j,0)]− [evυ(x

+
i,0), evυ(x

+
j,1)] is equal to

[(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , Ej,j+1]

− [Ei,i+1, (υ − (j − 2δ(j ≥ m+ 1)(j −m))ε1)x
+
j ]

+ ~
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s)Ei,i+1(s)− ~

∑
s≥0

(−1)p(i)Ei,i+1(−s− 1)Ei,i+1(s+ 1)

+ ~
∑
s≥0

(−1)p(i)Ei,i+1(−s)Ei,i+1(s)− ~
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s− 1)Ei,i+1(s+ 1). (5.45)

Since [x+i , x
+
i ] = 0 holds, the first and second term are zero. We also obtain

the third term of (5.45) + the 4-th term of (5.45) = ~(−1)p(i)Ei,i+1Ei,i+1
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and

the 5-th term of (5.45) + the 6-th term of (5.45) = ~(−1)p(i+1)
Ei,i+1Ei,i+1

by direct computation. Thus, we have

[evυ(x
+
i,1), evυ(x

+
j,0)]− [evυ(x

+
i,0), evυ(x

+
j,1)] = ~ai,iEi,i+1Ei,i+1

since ai,i = (−1)p(i) + (−1)p(i+1)
holds.

When i = j − 1, [evυ(x
+
i,1), evυ(x

+
j,0)]− [evυ(x

+
i,0), evυ(x

+
j,1)] is equal to

[(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , Ej,j+1]− [Ei,i+1, (υ − (j − 2δ(j ≥ m+ 1)(j −m))ε1)x

+
j ]

+ ~
∑
s≥0

i∑
k=1

δi+1,j(−1)p(k)Ei,k(−s)Ek,j+1(s)

+ ~
∑
s≥0

m+n∑
k=i+1

δi+1,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1)

− ~
∑
s≥0

j∑
k=1

δi+1,j(−1)p(k)Ei,k(−s)Ek,j+1(s)

− ~
∑
s≥0

m+n∑
k=j+1

δi+1,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1). (5.46)

By direct computation, we obtain

the third term of (5.46) + the 5-th term of (5.46) = −~
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s)Ei+1,i+2(s)

and

the 4-th term of (5.45) + the 6-th term of (5.45)

= ~
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s− 1)Ei+1,i+2(s+ 1).

Then, [evυ(x
+
i,1), evυ(x

+
j,0)]− [evυ(x

+
i,0), evυ(x

+
j,1)] is equal to

[(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , Ej,j+1]− [Ei,i+1, (υ − (j − 2δ(j ≥ m+ 1)(j −m))ε1)x

+
j ]

− ~
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s)Ei+1,i+2(s) + ~

∑
s≥0

(−1)p(i+1)
Ei,i+1(−s− 1)Ei+1,i+2(s+ 1).

Since ai,i+1 = −(−1)p(i+1)
holds, we have

− ~
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s)Ei+1,i+2(s) + ~

∑
s≥0

(−1)p(i+1)
Ei,i+1(−s− 1)Ei+1,i+2(s+ 1)

= −(−1)p(i+1)~Ei,i+1Ei+1,i+2 = ai,i+1
~
2
{Ei,i+1, Ei+1,i+2}+ ai,i+1

~
2
[Ei,i+1, Ei+1,i+2]

and

[(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , Ej,j+1]− [Ei,i+1, (υ − (j − 2δ(j ≥ m+ 1)(j −m))ε1)x

+
j ]

= (−1)p(i+1)
ε1[Ei,i+1, Ei+1,i+2] = −ai,i+1ε1[Ei,i+1, Ei+1,i+2].
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Then, [evυ(x
+
i,1), evυ(x

+
j,0)]− [evυ(x

+
i,0), evυ(x

+
j,1)] is equal to

ai,i+1
~
2
{Ei,i+1, Ei+1,i+2} − ai,i+1

ε1 − ε2
2

[Ei,i+1, Ei+1,i+2].

When i = j + 1, [evυ(x
+
i,1), evυ(x

+
j,0)]− [evυ(x

+
i,0), evυ(x

+
j,1)] is equal to

[(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , Ej,j+1]− [Ei,i+1, (υ − (j − 2δ(j ≥ m+ 1)(j −m))ε1)x

+
j ]

− ~
∑
s≥0

i∑
k=1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s)Ek,i+1(s)

− ~
∑
s≥0

m+n∑
k=i+1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s− 1)Ek,i+1(s+ 1)

+ ~
∑
s≥0

j∑
k=1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s)Ek,i+1(s)

+ ~
∑
s≥0

m+n∑
k=j+1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s− 1)Ek,i+1(s+ 1). (5.47)

By direct computation, we find that

the 4-th term of (5.45) + the 6-th term of (5.45) = −~
∑
s≥0

(−1)p(i)Ei−1,i(−s)Ei,i+1(s)

and

the 4-th term of (5.45) + the 6-th term of (5.45) = ~
∑
s≥0

(−1)p(i)Ei−1,i(−s− 1)Ei,i+1(s+ 1).

hold. Since ai,i−1 = −(−1)p(i) holds, we have

− ~
∑
s≥0

(−1)p(i)Ei−1,i(−s)Ei,i+1(s) + ~
∑
s≥0

(−1)p(i)Ei−1,i(−s− 1)Ei,i+1(s+ 1)

= −~(−1)p(i)Ei−1,iEi,i+1 =
~
2
ai−1,i{Ei,i+1, Ei−1,i} −

~
2
ai−1,i[Ei,i+1, Ei−1,i]

and

[(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , Ej,j+1]− [Ei,i+1, (υ − (j − 2δ(j ≥ m+ 1)(j −m))ε1)x

+
j ]

= −(−1)p(i)ε1[Ei,i+1, Ei−1,i] = ai,i−1ε1[Ei,i+1, Ei−1,i].

holds, [evυ(x
+
i,1), evυ(x

+
j,0)]− [evυ(x

+
i,0), evυ(x

+
j,1)] is equal to

[(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , Ej,j+1]− [Ei,i+1, (υ − (j − 2δ(j ≥ m+ 1)(j −m))ε1)x

+
j ]

− ~(−1)p(i){Ei−1,i, Ei,i+1}+ (−1)p(i) ~
2
Ei−1,i+1.

Therefore, it is equal to −ai,i−1
~
2
{Ei−1,i, Ei,i+1}+ ai,i−1

ε1 − ε2
2

Ei−1,i+1.

Case 2, i 6= 0 and j = 0
Suppose that i 6= 0. First, we compute [evυ(x

+
i,1), evυ(x

+
0,0)]. By the definition of evυ, we

obtain

[evυ(x
+
i,1), evυ(x

+
0,0)]
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= [(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)x
+
i , Em+n,1(1)]

+ [~
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), Em+n,1(1)]

+ [~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1), Em+n,1(1)]. (5.48)

By direct computation, the second term of (5.48) is equal to

~
∑
s≥0

m+n−1∑
k=1

δm+n,i+1(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1)

− ~
∑
s≥0

(−1)p(Em+n,1)p(E1,i)+p(1)
Ei,1(−s)Em+n,i(s+ 1)

− ~
∑
s≥0

δ1,iEm+n,1(1− s)E1,2(s) (5.49)

and the third term of (5.48) is equal to

~
∑
s≥0

m+n∑
k=i+1

(−1)p(m+n)
Em+n−1,m+n(−s− 1)Em+n,1(s+ 2)

+ ~
∑
s≥0

(−1)p(Em+n,1)p(Em+n,i)+p(m+n)
Ei,1(−s)Em+n,i(s+ 1)

− ~
∑
s≥0

m+n∑
k=2

δ1,i(−1)p(k)Em+n,k(−s)Ek,1(s+ 1) + δi,1cEm+n,2(1). (5.50)

Next, we rewrite the sum of the second term of (5.49) and the second term of (5.50) as follows;

the second term of (5.49) + the second term of (5.50) = 0.

Therefore, [evυ(x
+
i,1), evυ(x

+
0,0)] is equal to

[(υ − iε1)x+i , Em+n,1(1)] + ~
∑
s≥0

m+n−1∑
k=1

δm+n,i+1(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1)

− ~
∑
s≥0

δ1,iEm+n,1(1− s)E1,2(s)

+ ~
∑
s≥0

δm+n,i+1(−1)p(m+n)
Em+n−1,m+n(−s− 1)Em+n,1(s+ 2)

− ~
∑
s≥0

m+n∑
k=2

δ1,i(−1)p(k)Em+n,k(−s)Ek,1(s+ 1) + δi,1cEm+n,2(1). (5.51)

Next, let us compute [evυ(x
+
i,0), evυ(x

+
0,1)]. By direct computation, we have

[evυ(x
+
i,0), evυ(x

+
0,1)]

= [Ei,i+1, (υ − (m− n)ε1)x+0 ] + [Ei,i+1, ~
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,1(s+ 1)]. (5.52)

By direct computation, the second term of (5.52) is equal to

~
∑
s≥0

m+n∑
k=1

δm+n,i+1(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1)
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− ~
∑
s≥0

(−1)p(i)+p(Ei,i+1)p(Em+n,i)Em+n,i+1(−s)Ei,1(s+ 1)

+ ~
∑
s≥0

(−1)p(i+1)+p(Ei,i+1)p(Em+n,i+1)Em+n,i+1(−s)Ei,1(s+ 1)

− ~
∑
s≥0

m+n∑
k=1

δ1,i(−1)p(k)+p(E1,2)p(Em+n,1)Em+n,k(−s)Ek,i+1(s+ 1). (5.53)

The sum of the second term of (5.53) and the third term of (5.53) is equal to zero. Thus,
[evυ(x

+
i,0), evυ(x

+
0,1)] is equal to

[Ei,i+1, (υ − (m− n)ε1)x+0 ] + ~
∑
s≥0

m+n∑
k=1

δm+n,i+1(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1)

− ~
∑
s≥0

m+n∑
k=1

δ1,i(−1)p(k)+p(E1,2)p(Em+n,1)Em+n,k(−s)Ek,2(s+ 1). (5.54)

Therefore, when i 6= 0, 1,m+ n− 1, [evυ(x
+
i,1), evυ(x

+
0,0)]− [evυ(x

+
i,0), evυ(x

+
0,1)] is zero. When

i = 1, [evυ(x
+
1,1), evυ(x

+
0,0)]− [evυ(x

+
1,0), evυ(x

+
0,1)] is equal to

[(υ − ε1)x+1 , Em+n,1(1)]− [E1,2, (υ − (m− n)ε1)x+0 ]

− ~
∑
s≥0

Em+n,1(1− s)E1,2(s)− ~
∑
s≥0

m+n∑
k=2

(−1)p(k)Em+n,k(−s)Ek,2(s+ 1)

+ cEm+n,2(1) + ~
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,2(s+ 1). (5.55)

By direct computation, we obtain

the third term of (5.55) + the 4-th term of (5.55) + the 6-th term of (5.55)

= −~Em+n,1(1)E1,2(0) = −
~
2
{E1,2(0), Em+n,1(1)}+

~
2
[E1,2(0), Em+n,1(1)].

Moreover, by direct computation, we obtain

[(υ − ε1)x+1 , Em+n,1(1)]− [E1,2, (υ − (m− n)ε1)x+0 ] = (m− n− 1)ε1[x
+
1 , Em+n,1(1)].

Therefore, [evυ(x
+
1,1), evυ(x

+
0,0)]− [evυ(x

+
1,0), evυ(x

+
0,1)] is equal to

−~
2
{E1,2(0), Em+n,1(1)} −

ε1 − ε2
2

[x+1 , Em+n,1(1)].

by the assumption ~c = (m− n)ε1.
When i = m+ n− 1, [evυ(x

+
m+n−1,1), evυ(x

+
0,0)]− [evυ(x

+
m+n−1,0), evυ(x

+
0,1)] is equal to

[(υ − (m− n+ 1)ε1)x
+
m+n−1, Em+n,1(1)]− [Em+n−1,m+n, (υ − (m− n)ε1)x+0 ]

+ ~
∑
s≥0

m+n−1∑
k=1

(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1)

+ ~
∑
s≥0

m+n∑
k=m+n

(−1)p(k)Em+n−1,k(−s− 1)Ek,1(s+ 2)

− ~
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1).
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By direct computation, we obtain

the third term of (5.55) + the 4-th term of (5.55) + the 5-th term of (5.55)

= ~Em+n−1,m+n(0)Em+n,1(1)

=
~
2
{Em+n−1,m+n(0), Em+n,1(1)}+

~
2
[Em+n−1,m+n(0), Em+n,1(1)].

Moreover, by direct computation, we have

[(υ − (m− n+ 1)ε1)x
+
i , Em+n,1(1)]− [Ei,i+1, (υ − (m− n)ε1)x+0 ] = −ε1[x

+
i , x

+
0 ]

Then, [evυ(x
+
m+n−1,1), evυ(x

+
0,0)]− [evυ(x

+
m+n−1,0), evυ(x

+
0,1)] is equal to

~
2
{Em+n−1,m+n(0), Em+n,1(1)} −

ε1 − ε2
2

[x+m+n−1, x
+
0 ].

This completes the proof of (5.9).

5.4 The proof of (5.10)

Finally, we show [evυ(hi,1), evυ(hj,1)] = 0. Suppose that i, j 6= 0. It is enough to show the case
where i < j. We set

Ai =
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s), Bi =
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1),

Ci =
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s), Di =
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1).

Then, by the definition of evυ(hi,1), we have

[evυ(hi,1), evυ(hj,1)]

= (−1)p(i)+p(j){[Ai, Aj ] + [Bi, Aj ] + [Bi, Bj ] + [Ai, Bj ]}

+ (−1)p(i)+p(j+1){[Ai, Cj ] + [Bi, Cj ] + [Bi, Dj ] + [Ai, Dj ]}

+ (−1)p(i+1)+p(j){[Ci, Aj ] + [Di, Bj ] + [Di, Aj ] + [Ci, Bj ]}

+ (−1)p(i+1)+p(j+1){[Ci, Cj ] + [Di, Cj ] + [Di, Dj ] + [Ci, Dj ]}.

By the definition of Ai, Bi, Ci, and Di, we obtain

[Ai, Bj ] = [Ai, Dj ] = 0.

Thus, it is enough to show the following lemma.

Lemma 5.56. The following relations hold;

[Ai, Aj ] + [Bi, Aj ] + [Bi, Bj ] = 0,

[Ai, Cj ] + [Bi, Cj ] + [Bi, Dj ] + [Ai, Dj ] = 0,

[Ci, Aj ] + [Di, Bj ] + [Di, Bj ] + [Ci, Bj ] = 0,

[Ci, Cj ] + [Di, Cj ] + [Di, Dj ] = 0.

Proof. We only show that [Ai, Aj ] + [Bi, Aj ] + [Bi, Bj ] = 0 holds. Other relations are obtained in
the same way. By direct computation, we can rewrite [Ai, Aj ] as follows;

[Ai, Aj ]
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= −
∑
s,t≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ei,k)p(Ej,i)Ej,k(−s− t)Ei,j(t)Ek,i(s)

+
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−t)Ei,j(−s+ t)Ek,i(s)

−
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,k)Ei,k(−s)Ej,i(s− t)Ek,j(t)

+
∑
s,t≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ek,i)p(Ei,j)Ei,k(−s)Ej,i(−t)Ek,j(s+ t)

+
∑
s≥0

(sEi,i(−s)Ej,j(s)− sEj,j(−s)Ei,i(s)). (5.57)

Since we find two relations

the second term of (5.57)

=
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s− t)Ei,j(t)Ek,i(s)

+
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s)Ei,j(−t− 1)Ek,i(s+ t+ 1),

the third term of (5.57)

=
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,l)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

+
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ek,j)Ei,k(−s)Ej,i(−t)Ek,j(s+ t),

we have

[Ai, Aj ]

= −
∑
s,t≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ei,k)p(Ej,i)Ej,k(−s− t)Ei,j(t)Ek,i(s)

+
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s− t)Ei,j(t)Ek,i(s)

+
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s)Ei,j(−t− 1)Ek,i(s+ t+ 1)

−
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,l)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

−
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ek,j)Ei,k(−s)Ej,i(−t)Ek,j(s+ t)

+
∑
s,t≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ek,i)p(Ei,j)Ei,k(−s)Ej,i(−t)Ek,j(s+ t)
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+
∑
s≥0

(sEi,i(−s)Ej,j(s)− sEj,j(−s)Ei,i(s)). (5.58)

We simplify the right hand side of (5.58). By direct computation, we obtain

the first term of (5.58) + the second term of (5.58)

= −
∑
s,t≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ei,k)p(Ej,i)Ej,k(−s− t)Ei,j(t)Ek,i(s)

+
∑
s,t≥0

i∑
k=1

(−1)p(Ei,k)p(Ej,k)Ej,k(−s− t)Ei,j(t)Ek,i(s)

= 0 (5.59)

since p(k) + p(i) + p(Ei,k)p(Ej,i) = p(Ei,k)p(Ej,k). Similarly, we have

the 4-th term of (5.58) + the 6-th term of (5.58) = 0. (5.60)

By (5.59) and (5.60), we find the equality

[Ai, Aj ]

=
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(k)+p(l)+p(Ei,k)p(Ej,l)Ej,l(−s)Ei,j(−t− 1)Ek,i(s+ t+ 1)

−
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(k)+p(l)+p(Ek,i)p(Ej,l)Ei,k(−s− t− 1)Ej,i(s+ 1)El,j(t)

+
∑
s≥0

(sEi,i(−s)Ej,j(s)− sEj,j(−s)Ei,i(s)).

Computing the parity, we obtain

[Ai, Aj ]

=
∑
s,t≥0

i∑
k=1

(−1)p(Ei,k)p(Ej,k)Ej,k(−s)Ei,j(−t− 1)Ek,i(s+ t+ 1)

−
∑
s,t≥0

i∑
k=1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

+
∑
s≥0

(sEi,i(−s)Ej,j(s)− sEj,j(−s)Ei,i(s)). (5.61)

Similarly, by direct computation, we have

[Bi, Bj ]

=
∑
s,t≥0

m+n∑
l=j+1

(−1)p(j)+p(l)+p(Ej,l)p(Ej,i)Ei,l(−s− t− 2)Ej,i(s+ 1)El,j(t+ 1)

−
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ej,k)p(Ek,i)Ei,k(−s− t− 2)Ej,i(s+ 1)Ek,j(t+ 1)

−
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ej,k)p(Ek,i)Ei,k(−s− 1)Ej,i(−t)Ek,j(s+ t+ 1)
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+
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ek,i)p(Ek,j)Ej,l(−s− t− 1)Ei,j(t)Ek,i(s+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ek,i)p(Ek,j)Ej,k(−t− 1)Ei,j(−s− 1)Ek,i(s+ t+ 2)

−
∑
s,t≥0

m+n∑
l=j+1

(−1)p(j)+p(l)+p(Ej,i)p(El,j)Ej,l(−t− 1)Ei,j(−s− 1)El.i(s+ t+ 2). (5.62)

We simplify the right hand side of (5.62). By direct computation, we obtain

the first term of (5.62) + the second term of (5.62) = 0 (5.63)

and

the 5-th term of (5.62) + the 6-th term of (5.62) = 0 (5.64)

By (5.63) and (5.64), we find the equality

[Bi, Bj ]

= −
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ej,k)p(Ek,i)Ei,k(−s− 1)Ej,i(−t)Ek,j(s+ t+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ek,i)p(Ek,j)Ej,k(−s− t− 1)Ei,j(t)Ek,i(s+ 1)

= −
∑
s,t≥0

m+n∑
l=j+1

(−1)p(Ej,l)p(El,i)Ei,l(−s− 1)Ej,i(−t)El,j(s+ t+ 1)

+
∑
s,t≥0

m+n∑
l=j+1

(−1)p(El,i)p(El,j)Ej,l(−s− t− 1)Ei,j(t)El,i(s+ 1). (5.65)

By direct computation, we also obtain

[Bi, Aj ]

=
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,l(−s− t− 1)El,j(t)Ej,i(s+ 1)

−
∑
s,t≥0

m+n∑
k=i+1

(−1)p(k)+p(i)+p(Ei,k)p(Ej,i)Ej,k(−s− t− 1)Ei,j(t)Ek,i(s+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,l)Ej,l(−s− t− 1)Ei,j(t)Ek,i(s+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,l)Ej,l(−s)Ei,j(−t− 1)Ek,i(s+ t+ 1)

−
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,l)Ei,k(−s− 1)Ej,i(−t)El,j(s+ t+ 1)

−
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,l)Ei,k(−s− t− 1)Ej,i(s+ 1)El,j(t)
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+
∑
s,t≥0

m+n∑
k=i+1

(−1)p(k)+p(i)+p(Ek,i)p(Ei,j)Ei,k(−s− 1)Ej,i(−t)Ek,j(s+ t+ 1)

−
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,j(−s− 1)Ej,l(−t)El,i(s+ t+ 1). (5.66)

Let us simplify the right hand side of (5.66). We prepare the following four relations by direct
computation;

the second term of (5.66) + the third term of (5.66)

= −
∑
s,t≥0

m+n∑
k=i+1

(−1)p(k)+p(i)+p(Ei,k)p(Ej,i)Ej,k(−s− t− 1)Ei,j(t)Ek,i(s+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s− t− 1)Ei,j(t)Ek,i(s+ 1)

= −
∑
s,t≥0

m+n∑
k=j+1

(−1)p(Ei,k)p(Ej,i)Ej,k(−s− t− 1)Ei,j(t)Ek,i(s+ 1), (5.67)

the first term of (5.66) + the 6-th term of (5.66)

=
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,l(−s− t− 1)El,j(t)Ej,i(s+ 1)

−
∑
s,t≥0

j∑
l=1

m+n∑
k=i+1

δk,l(−1)p(Ek,i)p(Ej,k)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

=
∑
s,t≥0

i∑
k=1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

+
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,l(−s− t− 1)[El,j(t), Ej,i(s+ 1)]

=
∑
s,t≥0

i∑
k=1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

+
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,l(−s− t− 1)El,i(s+ t+ 1)

−
∑
s,t≥0

Ei,i(−s− t− 1)Ej,j(s+ t+ 1), (5.68)

the 4-th term of (5.66) + the 8-th term of (5.66)

=
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s)Ei,j(−t− 1)Ek,i(s+ t+ 1)

−
∑
s,t≥0

j∑
l=1

(−1)p(k)+p(l)
Ei,j(−s− 1)Ej,l(−t)El,i(s+ t+ 1)

= −
∑
s,t≥0

i∑
l=1

(−1)p(Ei,l)p(Ej,l)Ej,l(−s)Ei,j(−t− 1)El,i(s+ t+ 1)
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−
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
[Ei,j(−s− 1), Ej,l(−t)]El,i(s+ t+ 1)

= −
∑
s,t≥0

i∑
l=1

(−1)p(Ei,l)p(Ej,l)Ej,l(−s)Ei,j(−t− 1)El,i(s+ t+ 1)

−
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,l(−s− t− 1)El,i(s+ t+ 1)

+
∑
s,t≥0

Ej,j(−s− t− 1)Ei,i(s+ t+ 1), (5.69)

the 5-th term of (5.66) + the 7-th term of (5.66)

= −
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,k)Ei,k(−s− 1)Ej,i(−t)Ek,j(s+ t+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

(−1)p(k)+p(i)+p(Ek,i)p(Ei,j)Ei,k(−s− 1)Ej,i(−t)Ek,j(s+ t+ 1)

=
∑
s,t≥0

m+n∑
k=j+1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− 1)Ej,i(−t)Ek,j(s+ t+ 1). (5.70)

Thus, by (5.67)-(5.70), we have

[Bi, Aj ]

= −
∑
s,t≥0

m+n∑
k=j+1

(−1)p(Ei,k)p(Ej,i)Ej,k(−s− t− 1)Ei,j(t)Ek,i(s+ 1)

+
∑
s,t≥0

i∑
k=1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

−
∑
s,t≥0

i∑
l=1

(−1)p(Ei,l)p(Ej,l)Ej,l(−s)Ei,j(−t− 1)El,i(s+ t+ 1)

+
∑
s,t≥0

m+n∑
k=j+1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− 1)Ej,i(−t)Ek,j(s+ t+ 1)

−
∑
s≥0

(sEi,i(−s)Ej,j(s)− sEj,j(−s)Ei,i(s)). (5.71)

Adding (5.61), (5.65), and (5.71), we obtain [Ai, Aj ] + [Bi, Aj ] + [Bi, Bj ] = 0.

This completes the proof of Lemma 5.6.

6 The surjectivity of the evaluation map

In this section, we show that the image of evυ is dense in the completion of U(ĝl(m|n)) provided
that ε1 6= 0. By the definition of evυ, the image of evυ contains hi and x

±
i . Since hi and x

±
i are

generators of ŝl(m|n), the image of evυ contains ŝl(m|n). Thus, it is enough to prove that the
image of evυ contains Ei,i(s) for all 1 ≤ i ≤ m+ n and s ∈ Z.

First, we show that the image of evυ contains Ei,i(0).
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Theorem 6.1. We obtain

evυ(
∑

0≤i≤m+n−1

h̃i,1)

= (υ − (m− n)ε1)h0 +
∑

1≤i≤m+n−1

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi − c~Em+n,m+n. (6.2)

Proof. By the definition of evυ(hi,1), we obtain

evυ(h̃i,1) =



(υ − (m− n)ε1)h0 −
1

2
~E2

m+n,m+n −
1

2
~E2

1,1 − c~Em+n,m+n

−~
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,m+n(s)

−~
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s− 1)Ek,1(s+ 1)

if i = 0,

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi −
1

2
~E2

i,i −
1

2
~E2

i+1,i+1

+~(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s)

+~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1)

−~(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s)

−~(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1)

if i 6= 0.

Then, we rewrite the left hand side of (6.2) as

(υ − (m− n)ε1)h0 +
∑

1≤i≤m+n−1

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi

− ~
2
(E2

1,1 + E2
m+n,m+n)− c~Em+n,m+n −

∑
1≤i≤m+n−1

~
2
(E2

i,i + E2
i+1,i+1)

+
∑

1≤i≤m+n

~(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s)

+
∑

1≤i≤m+n

~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1)

−
∑

0≤i≤m+n−1

~(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s)

−
∑

0≤i≤m+n−1

~(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1). (6.3)

Adding the first and third terms of (6.3), we have∑
1≤i≤m+n

~(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s)
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−
∑

1≤j≤m+n

~(−1)p(j)
∑
s≥0

j−1∑
k=1

(−1)p(k)Ej,k(−s)Ek,j(s)

= ~
∑

1≤i≤m+n

∑
s≥0

Ei,i(−s)Ei,i(s). (6.4)

Adding the second and 4-th terms of (6.3), we obtain

∑
1≤i≤m+n

~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1)

−
∑

1≤j≤m+n

~(−1)p(j)
∑
s≥0

m+n∑
k=j

(−1)p(k)Ej,k(−s− 1)Ek,j(s+ 1)

= −~
∑

1≤i≤m+n

∑
s≥0

Ei,i(−s− 1)Ei,i(s+ 1). (6.5)

Applying (6.4) and (6.5) to (6.3), we find that the left hand side of (6.2) is equal to

(υ − (m− n)ε1)h0 +
∑

1≤i≤m+n−1

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi

− ~
2
(E2

1,1 + E2
m+n,m+n)− c~Em+n,m+n −

∑
1≤i≤m+n−1

~
2
(E2

i,i + E2
i+1,i+1) + ~

∑
1≤i≤m+n

E2
i,i.

By direct computation, it is equal to

(υ − (m− n)ε1)h0 +
∑

1≤i≤m+n−1

(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi − c~Em+n,m+n.

Thus, we have obtained Theorem 6.1.

Since hi is contained in the image of evυ, the image of evυ contains c~Em+n,m+n.

Corollary 6.6. The image of evυ contains Em+n,m+n provided that ~c 6= 0.

Next, let us show that the completion of the image of evυ contains Ei,i(s) (s 6= 0).

Theorem 6.7. For all i 6= 0, we obtain

[evυ(hi,1), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]

= ~
∑
s≥0

δs+a,0scEi,i(−s)− ~
∑
s≥0

δ−s+a,0scEi,i(s)

+ ~
∑
s≥0

δs+1+a,0(s+ 1)cEi+1,i+1(−s− 1)− ~
∑
s≥0

δ−s−1+a,0(s+ 1)cEi+1,i+1(s+ 1)

+ sum of elements of the completion of U(ŝl(m|n)).

Proof. The proof is done by direct computation. By the definition of evυ(hi,1), we have

[evυ(hi,1), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]

= [(υ − (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi, ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]

− (−1)p(Ei,i+1)~[Ei,iEi+1,i+1, ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]

+ [~(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]
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+ [~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]

− [~(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]

− [~(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1),

((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]. (6.8)

We can rewrite each terms of the right hand side of (6.8). By an easy computation, we find that
the first two terms of the right hand side of (6.8). Other terms are computed as follows.

Claim 6.9. (1) The 4-th and 5-th terms of the right hand side of (6.8) are elements of the completion

of U(ŝl(m|n)).
(2) We can rewrite the third term of the right hand side of (6.8) as

~(−1)p(i)
∑
s≥0

δs+a,0scEi,i(−s)− ~
∑
s≥0

δ−s+a,0scEi,i(s)

+ an element of the completion of U(ŝl(m|n)). (6.10)

(3) We can rewrite 6-th term of the right hand side of (6.8) as

~
∑
s≥0

δs+1+a,0(s+ 1)cEi+1,i+1(−s− 1)− ~
∑
s≥0

δ−s−1+a,0(s+ 1)cEi+1,i+1(s+ 1)

+ an element of the completion of U(ŝl(m|n)). (6.11)

Assuming Claim 6.9, we obtain Theorem 6.7 by adding (6.10) and (6.11). In order to complete
the proof of Theorem 6.7, we prove Claim 6.9.

the proof of Claim 6.9. (1) The proof is due to direct computation. First we prove the 4-th case.
We can rewrite the 4-th term of the right hand side of (6.8) as follows;

~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)[Ek,i(s+ 1), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]

+ ~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)[Ei,k(−s− 1), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]Ek,i(s+ 1).

(6.12)

We rewrite each terms of the right hand side of (6.12). By direct computation, we can rewrite the
first term of the right hand side of (6.12) as

~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1 + a)

+ ~(−1)p(i)+p(i+1)
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s− 1)Ei+1,i(s+ 1 + a). (6.13)

By direct computation, we can rewrite the second term of the right hand side of (6.12) as

− ~(−1)p(i)
∑
s≥0

Ei,i+1(−s− 1 + a)Ei+1,i(s+ 1)
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− ~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1 + a)Ek,i(s+ 1). (6.14)

Adding (6.13) and (6.14), we obtain

the 4-th term of the right hand side of (6.8)

= ~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1 + a) + ~(−1)p(i)
∑
s≥0

Ei,i+1(−s− 1)Ei+1,i(s+ 1 + a)

− ~(−1)p(i)
∑
s≥0

Ei,i+1(−s− 1 + a)Ei+1,i(s+ 1)

− ~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1 + a)Ek,i(s+ 1), (6.15)

Since all of the terms of the right hand side of (6.15) are elements of the completion of U(ŝl(m|n)),
the 4-th term of the right hand side of (6.8) is an element of the completion of U(ŝl(m|n)).

Next, we prove the 5-th case. Let us rewrite the 5-th term of the right hand side of (6.8) as
follows;

− ~(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)[Ek,i+1(s), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]

− ~(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)[Ei+1,k(−s), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]Ek,i+1(s).

(6.16)

We rewrite each terms of the right hand side of (6.16). By direct computation, we can rewrite the
first term of the right hand side of (6.16) as

~
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s+ a) + ~(−1)p(i+1)
∑
s≥0

Ei+1,i(−s)Ei,i+1(s+ a). (6.17)

By direct computation, we can also rewrite the first term of the right hand side of (6.16) as

− ~(−1)p(i+1)
∑
s≥0

Ei+1,i(−s+ a)Ei,i+1(s)− ~
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(a− s)Ek,i+1(s). (6.18)

Adding (6.17) and (6.18), we have

the 5-th term of the right hand side of (6.8)

= ~
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s+ a) + ~(−1)p(i+1)
∑
s≥0

Ei+1,i(−s)Ei,i+1(s+ a)

− ~(−1)p(i+1)
∑
s≥0

Ei+1,i(−s+ a)Ei,i+1(s)− ~
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(a− s)Ek,i+1(s). (6.19)

Since all of the terms of the right hand side of (6.19) are elements of the completion of U(ŝl(m|n)),
the 5-th term of the right hand side of (6.8) is an element of the completion of U(ŝl(m|n)).

(2) The proof is due to direct computation. Let us rewrite the third term of the right hand
side of (6.8) as follows;

~(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)[Ek,i(s), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]
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+ ~(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)[Ei,k(−s), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]Ek,i(s). (6.20)

We rewrite each terms of the right hand side of (6.20). By direct computation, we can rewrite the
first term of the right hand side of (6.20) as

~
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s+ a)− ~(−1)p(i)
∑
s≥0

Ei,i(−s)Ei,i(s+ a)

+ ~
∑
s≥0

δs+a,0scEi,i(−s) + ~
∑
s≥0

δs+a,0sEi,i(−s)− ~
∑
s≥0

δs+a,0sEi,i(−s)

= ~
∑
s≥0

i−1∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s+ a) + ~
∑
s≥0

δs+a,0scEi,i(−s). (6.21)

Similarly, we can rewrite the second term of the right hand side of (6.20) as

~(−1)p(i)
∑
s≥0

Ei,i(−s+ a)Ei,i(s)− ~
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s+ a)Ek,i(s)

− ~
∑
s≥0

δ−s+a,0scEi,i(s)− ~
∑
s≥0

δ−s+a,0sEi,i(s) + ~
∑
s≥0

δ−s+a,0sEi,i(s)

= −~
∑
s≥0

i−1∑
k=1

(−1)p(k)Ei,k(−s+ a)Ek,i(s)− ~
∑
s≥0

δ−s+a,0scEi,i(s). (6.22)

Adding (6.21) and (6.22), we obtain

the third term of the right hand side of (6.8)

= ~
∑
s≥0

i−1∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s+ a)− ~
∑
s≥0

i−1∑
k=1

(−1)p(k)Ei,k(−s+ a)Ek,i(s)

+ ~(−1)p(i)
∑
s≥0

δs+a,0scEi,i(−s)− ~
∑
s≥0

δ−s+a,0scEi,i(s). (6.23)

Since the first two terms of the right hand side of (6.23) are elements of the completion of

U(ŝl(m|n)), we have obtained (6.10).
(3) We rewrite the 6-th term of the right hand side of (6.8) as follows;

− ~(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)

[Ek,i+1(s+ 1), ((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]

− ~(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)[Ei+1,k(−s− 1),

((−1)p(i)Ei,i − (−1)p(i+1)
Ei+1,i+1)t

a]Ek,i+1(s+ 1). (6.24)

We compute each terms of the right hand side of (6.24). By direct computation, we can rewrite
the first term of the right hand side of (6.24) as

~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1 + a)
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− ~(−1)p(i+1)
∑
s≥0

Ei+1,i+1(−s− 1)Ei+1,i+1(s+ 1 + a) + ~
∑
s≥0

(s+ 1)cδs+1+a,0Ei+1,i+1(−s− 1)

− ~
∑
s≥0

(s+ 1)δs+1+a,0Ei+1,i+1(−s− 1) + ~
∑
s≥0

(s+ 1)δs+1+a,0Ei+1,i+1(−s− 1)

= ~
∑
s≥0

m+n∑
k=i+2

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1 + a) + ~
∑
s≥0

δs+1+a,0(s+ 1)cEi+1,i+1(−s− 1).

(6.25)

By direct computation, we can also rewrite the second term of the right hand side of (6.24) as

~(−1)p(i+1)
∑
s≥0

Ei+1,i+1(−s− 1 + a)Ei+1,i+1(s+ 1)

− ~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1 + a)Ek,i+1(s+ 1)− ~
∑
s≥0

δ−s−1+a,0(s+ 1)cEi+1,i+1(s+ 1)

+ ~
∑
s≥0

δ−s−1+a,0(s+ 1)Ei+1,i+1(s+ 1)− ~
∑
s≥0

δ−s−1+a,0(s+ 1)Ei+1,i+1(s+ 1)

= −~
∑
s≥0

m+n∑
k=i+2

(−1)p(k)Ei+1,k(−s− 1 + a)Ek,i+1(s+ 1)

− ~
∑
s≥0

δ−s−1+a,0(s+ 1)cEi+1,i+1(s+ 1). (6.26)

Adding (6.25) and (6.26), we have

the 6-th term of the right hand side of (6.8)

= ~
∑
s≥0

m+n∑
k=i+2

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1 + a)

− ~
∑
s≥0

m+n∑
k=i+2

(−1)p(k)Ei+1,k(−s− 1 + a)Ek,i+1(s+ 1)

+ ~
∑
s≥0

δs+1+a,0(s+ 1)cEi+1,i+1(−s− 1)− ~
∑
s≥0

δ−s−1+a,0(s+ 1)cEi+1,i+1(s+ 1). (6.27)

Since the first two terms of the right hand side of (6.27) are elements of the completion of

U(ŝl(m|n)), we have obtained (6.11).

This completes the proof of Theorem 6.7.

By the assumption that m,n ≥ 2 and m 6= n, we can take 1 ≤ i ≤ m + n − 1 such that
p(i) = p(i+1). By Theorem 6.7, The completion of the image of evυ contains ~c(Ei,i+Ei+1,i+1)t

a

for all a 6= 0. Provided that ~c 6= 0, the completion of the image of evυ contains (Ei,i+Ei+1,i+1)t
a.

By the assumption that p(i) = p(i+ 1), (Ei,i + Ei+1,i+1)t
a is not contained in ŝl(m|n). Thus, we

obtain the following corollary.

Corollary 6.28. The completion of the image of evυ contains Ei,it
a for all a 6= 0 provided that

~c 6= 0.

By the assumption that ~c = −(m − n)ε1, we find that ~c is nonzero if and only if ε1 6= 0.
Under the assumption that by Corollary 6.6 and Corollary 6.28, the image of evυ contains Ei,it

s

for all s ∈ Z. Thus, we have the following theorem.

Theorem 6.29. Provided that ε1 6= 0, the image of evυ is dense in U(ĝl(m|n))comp.
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7 Another presentation of affine super Yangians

There exists another presentation of the affine super Yangian.

Proposition 7.1. Suppose that m,n ≥ 2 and m 6= n. The affine super Yangian Yε1,ε2(ŝl(m|n)) is
isomorphic to the associative superalgebra generated by X+

i,r, X
−
i,r,Hi,r (i ∈ {0, 1, · · · ,m+n−1}, r =

0, 1) subject to the following defining relations:

[Hi,r,Hj,s] = 0, (7.2)

[X+
i,0, X

−
j,0] = δijHi,0, (7.3)

[X+
i,1, X

−
j,0] = δijHi,1 = [X+

i,0, X
−
j,1], (7.4)

[Hi,0, X
±
j,r] = ±aijX

±
j,r, (7.5)

[H̃i,1, X
±
j,0] = ±aij

(
X±

j,1

)
, if (i, j) 6= (0,m+ n− 1), (m+ n− 1, 0), (7.6)

[H̃0,1, X
±
m+n−1,0] = ∓(−1)

p(m+n)

(
X±

m+n−1,1 − (ε+
m− n

2
~)X±

m+n−1,0

)
, (7.7)

[H̃m+n−1,1, X
±
0,0] = ∓(−1)

p(m+n)

(
X±

0,1 + (ε+
m− n

2
~)X±

0,0

)
, (7.8)

[X±
i,1, X

±
j,0]− [X±

i,0, X
±
j,1] = ±aij

~
2
{X±

i,0, X
±
j,0} if (i, j) 6= (0,m+ n− 1), (m+ n− 1, 0), (7.9)

[X±
0,1, X

±
m+n−1,0]− [X±

0,0, X
±
m+n−1,1]

= ±(−1)p(m+n) ~
2
{X±

0,0, X
±
m+n−1,0} − (ε+

m− n
2

~)[X±
0,0, X

±
m+n−1,0],

(7.10)

(adX±
i,0)

1+|aij |(X±
j,0) = 0 (i 6= j), (7.11)

[X±
i,0, X

±
i,0] = 0 (i = 0,m), (7.12)

[[X±
i−1,0, X

±
i,0], [X

±
i,0, X

±
i+1,0]] = 0 (i = 0,m), (7.13)

where ~ = ε1 + ε2, H̃i,1 = Hi,1 −
~
2
H2

i,0, ε = −(m − n)ε2, the generators X±
m,r and X±

0,r are odd

and all other generators are even and we define X±
−1,0 as X±

m+n−1,0.

Proof. The homomorphism Ψ from Yε1,ε2(ŝl(m|n)) to the superalgebra defined in Proposition 7.1
is given by

Ψ(hi,0) = Hi,0, Ψ(x±i,0) = X±
i,0,

Ψ(hi,1) =

H0,1 if i = 0,

Hi,1 −
i− 2δ(i > m)(i−m)

2
(ε1 − ε2)Hi,0 if i 6= 0,

where

δ(i > m) =

{
1 if i > m,

0 if i ≤ m.

It is clear that Ψ is an isomorphism.

Now, we can write down the image of {Hi,r, X
±
i,r|r = 0, 1} via the evaluation map.

Theorem 7.14 (Ueda [45], Proposition 5.2). Set c̃ =
(−m+ n)ε1

~
. Then, there exists an algebra

homomorphism
ev0 : Yε1,ε2(ŝl(m|n))→ U(ĝl(m|n)str)comp
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uniquely determined by

ev0(X
+
i,0) = x+i , ev0(X

−
i,0) = x−i , ev0(Hi,0) = hi,

ev0(Hi,1) =



~c̃h0 − (−1)p(m+n)~Em+n,m+n(E1,1 − c̃)

+(−1)p(m+n)~
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,m+n(s)

−~
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s− 1)Ek,1(s+ 1)

if i = 0,

− (i− 2δ(i ≥ m+ 1)(i−m))

2
~hi − (−1)p(Ei,i+1)~Ei,iEi+1,i+1

+~(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s)

+~(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1)

−~(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s)

−~(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1)

if i 6= 0,

ev0(X
+
i,1) =



~c̃x+0 + ~
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,1(s+ 1)

if i = 0,

− i− 2δ(i ≥ m+ 1)(i−m)

2
~x+i + ~

∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s)

+~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1)

if i 6= 0,

ev0(X
−
i,1) =



~c̃x−0 + (−1)p(m+n)~
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s− 1)Ek,m+n(s),

if i = 0,

− i− 2δ(i ≥ m+ 1)(i−m)

2
~x−i + (−1)p(i)~

∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i(s)

+(−1)p(i)~
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i(s+ 1) if i 6= 0.

It was shown in [48] that the image of ev0 is dense in U(ĝl(m|n)str)comp in the case when
ε1 6= 0.
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Remark 7.15. In [45], the evaluation map was defined in terms of the generators hi,r and x±i,r
(r = 0, 1).

In the non-super case, the affine Yangian was defined in Definition 3.2 of [19] and Definition 2.3
of [20] as follows.

Definition 7.16. Suppose that m ≥ 3 and set two m×m-matrices (ai,j) and (mi,j) as

aij =


2 if i = j,

−1 if i = j ± 1,

−1 if (i, j) = (0,m− 1), (m− 1, 0),

0 otherwise,

mi,j =



1 if i = j − 1,

−1 if i = j + 1,

1 if (i, j) = (0,m− 1),

−1 if (i, j) = (m− 1, 0),

0 otherwise.

The affine Yangian Yε1,ε2(ŝl(m)) is the associative algebra over C generated by x+i,r, x
−
i,r, hi,r

(i ∈ {0, 1, · · · ,m − 1}, r ∈ Z≥0) with parameters ε1, ε2 ∈ C subject to the defining relations
(3.2)-(3.7).

Similarly to Proposition 7.1, the affine Yangian Yε1,ε2(ŝl(m)) also has a presentation whose
generators are Hi,r, X

±
i,r (0 ≤ i ≤ m− 1, r = 0, 1).

Proposition 7.17. The affine Yangian Yε1,ε2(ŝl(m)) is isomorphic to the associative algebra
generated by X+

i,r, X
−
i,r,Hi,r (i ∈ {0, 1, · · · ,m− 1}, r = 0, 1) subject to the defining relations (7.2)-

(7.5), (7.11) and

[H̃i,1, X
±
j,0] = ±aij

(
X±

j,1

)
, if (i, j) 6= (0,m− 1), (m− 1, 0), (7.18)

[H̃0,1, X
±
m−1,0] = ∓

(
X±

m−1,1 − (ε+
m

2
~)X±

m−1,0

)
, (7.19)

[H̃m−1,1, X
±
0,0] = ∓

(
X±

0,1 + (ε+
m

2
~)X±

0,0

)
, (7.20)

[X±
i,1, X

±
j,0]− [X±

i,0, X
±
j,1] = ±aij

~
2
{X±

i,0, X
±
j,0} if (i, j) 6= (0,m− 1), (m− 1, 0), (7.21)

[X±
0,1, X

±
m−1,0]− [X±

0,0, X
±
m−1,1]

= ±~
2
{X±

0,0, X
±
m−1,0} − (ε+

m

2
~)[X±

0,0, X
±
m−1,0], (7.22)

where ~ = ε1 + ε2, H̃i,1 = Hi,1 −
~
2
H2

i,0, and ε = −mε2.

The evaluation map for the affine Yangian Yε1,ε2(ŝl(m)) was constructed in Section 6 of [20]
and Theorem 3.8 of [30]. In fact, the evaluation map of [20] and [30] was defined in the same
formula as that of Theorem 7.14 by setting n = 0 and assuming all of the parity is equal to zero.
In the non-super case, the surjectivity of the evaluation map was shown in Theorem 4.18 of [29].

8 Generators of rectangular W -superalgebras of type A

We fix some notations for vertex algebras. For a vertex algebra V , we denote the generating field

associated with v ∈ V by v(z) =
∑
n∈Z

v(n)z
−n−1. We also denote the OPE of V by

u(z)v(w) ∼
∑
s≥0

(u(s)v)(w)

(z − w)s+1

for all u, v ∈ V . We denote the identity vector (resp. the translation operator) by |0〉 (resp. ∂).
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First, we recall the definition of rectangular W -superalgebras of type A (see [27], [28], and [1]).
Let us set

g = gl(ml|nl) =
⊕

1≤i,j≤m+n
1≤s,t≤l

Ce(s−1)(m+n)+i,(t−1)(m+n)+j ,

where e(s−1)(m+n)+i,(t−1)(m+n)+j is the unit matrix whose parity is p(i) + p(j). Since gl(ml|nl) is
isomorphic to gl(m|n) ⊗ gl(l) as a graded vector space, we identify e(s−1)(m+n)+i,(t−1)(m+n)+j ∈
gl(ml|nl) with ei,j ⊗ es,t ∈ gl(m|n) ⊗ gl(l). We set a parity of ei,j ∈ gl(m|n) as p(i) + p(j). We

take an even nilpotent element f =

l−1∑
s=1

m+n∑
i=1

es(m+n)+i,(s−1)(m+n)+i ∈ gl(ml|nl) and fix k ∈ C. We

also take ( | ) as a supersymmetric invariant inner product of g such that

(u|v) =

{
k str(uv) if u or v is an element of sl(ml|nl),
k str(uv) + (−1)p(i)+p(j)

(1− c) if u = ei,i ⊗ er1,r1 , v = ej,j ⊗ er2,r2 ,
(8.1)

where c is a complex number and str is a supertrace of gl(ml|nl). We set

gt =
⊕

1≤i,j≤m+n
0≤s≤l−1

0≤s+t≤l−1

Ces(m+n)+i,(s+t)(m+n)+j .

and fix a sl2-triple (x, e, f) such that

gt = {y ∈ g | [x, y] = ty}.

Let us set

S = {(i, j, s, t) | 1 ≤ i, j ≤ m+ n, 0 ≤ s, s+ t ≤ l − 1},
S+ = {(i, j, s, t) | 1 ≤ i, j ≤ m+ n, 0 ≤ s, s+ t ≤ l − 1, t ≥ 1}.

For all β = (i, j, s, t) ∈ S, we also set uβ as es(m+n)+i,(s+t)(m+n)+j and p(β) as the parity of uβ .
Then, we have

g =
⊕
β∈S

Cuβ , g≥0 =
⊕
t≥0

gt =
⊕
β∈S+

Cuβ .

Moreover, let b be
⊕
j≤0

gj , which is a subalgebra of g. We define κ as an inner product of b such

that

κ(u, v) = (u|v) + 1

2

(
κg(u, v)− κg0

(p0(u), p0(v))
)
for all u, v ∈ b,

where p0 : b→ g0 is the projection map and κg (resp. κg0
) is the Killing form on g (resp. g0). By

the definition of κ, we have

κ(es1(m+n)+i1,t1(m+n)+j1 , es2(m+n)+i2,t2(m+n)+j2)

= δs1,t2δt1,s2δi1,j2δj1,i2(−1)
p(i1)(k + (l − 1)(m− n))

− δs1,t1δs2,t2δi1,j1δi2,j2(−1)
p(i1)+p(i2)(c− δs1,s2).

Let b̂ be the Lie superalgebra b⊗ C[t±1]⊕ Cy whose commutator relations are

[atu, btv] = [a, b]tu+v + δu+v,0uκ(a, b)y,

y is a central element.
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We also set a left b̂-module V κ(b) as U(b̂)/U(b̂)(b[t] ⊕ C(y − 1)) ∼= U(b[t−1]t−1). Then, it has
a vertex algebra structure whose identity vector is 1 and the generating field (ut−1)(z) is equal

to
∑
s∈Z

(uts)z−s−1 for all u ∈ b. We call V κ(b) the universal affine vertex algebra associated with

(b, κ).
In order to simplify the notation, we denote the generating field (ut−1)(z) as u(z). By the

definition of V κ(b), generating fields u(z) and v(z) satisfy the OPE

u(z)v(w) ∼ [u, v](w)

z − w
+

κ(u, v)

(z − w)2
(8.2)

for all u, v ∈ b.

We set a Lie superalgebra am,n =
⊕

uβ∈g≤0

CJ (uβ)⊕
⊕

uβ∈g<0

Cψ(uβ) with the following commutator

relations;

[J (u), J (v)] = J ([u,v]), [J (ei,j), ψes,t ] = δj,sψei,t − δi,t(−1)
p(ei,j)(p(es,t)+1)

ψes,j , [ψu, ψv] = 0,

where the parity of J (uβ) (resp. ψuβ
) is equal to p(β) (resp. p(β)+1) and we denote

∑
uβ∈g≤0

aβJ
(uβ)

(resp.
∑

uβ∈g<0

aβψ(uβ)) by J
(
∑

uβ∈g≤0
aβuβ)

(resp. ψ∑
uβ∈g<0

aβuβ
) for all aβ ∈ C. We define an

affinization of am,n by using the inner product on am,n such that

κm,n(J
(u), J (v)) = κ(u, v), κm,n(J

(u), ψv) = κm,n(ψu, ψv) = 0.

By (8.2), V κm,n(am,n) contains V
κ(b). We identify ut−1 ∈ V κ(b) with J (u)t−1 ∈ V κm,n(am,n).

For all u ∈ am,n, let u[−s] be ut−s. In this section, we regard V κm,n(am,n) (resp. V
κ(b)) as a

non-associative superalgebra whose product · is defined by

u[−t] · v[−s] = (u[−t])(−1)v[−s].

We sometimes omit · and denote ψe(v+w)(m+n)+j,v(m+n)+i
[s] by ψ(v+w)(m+n)+j,v(m+n)+i[s] in order

to simplify the notation. A rectangular W -superalgebra Wk(gl(lm|ln), (l(m|n))) can be realized as
the subalgebra of V κm,n(am,n) ([27] and [28]) as follows.

Let us set α as k+(l− 1)(m−n). We can define an odd differential d0 : V
κ(b)→ V κm,n(am,n)

determined by

d01 = 0, (8.3)

[d0, ∂] = 0, (8.4)

[d0, e(s−1)(m+n)+j,(t−1)(m+n)+i[−1]]

=
∑

t<a≤s,
1≤r≤m+n

(−1)p(ei,j)+p(ei,r)p(er,j)e(a−1)(m+n)+r,(t−1)(m+n)+i[−1]ψ(s−1)(m+n)+j,(a−1)(m+n)+r[−1]

−
∑

t≤a<s,
1≤r≤m+n

(−1)p(ei,r)p(er,j)ψ(a−1)(m+n)+r,(t−1)(m+n)+i[−1]e(s−1)(m+n)+j,(a−1)(m+n)+r[−1]

+ δ(s < t)(−1)p(j)αψ(s−1)(m+n)+j,(t−1)(m+n)+i[−2]

+ (−1)p(j)ψs(m+n)+j,(t−1)(m+n)+i[−1]− ψ(s−1)(m+n)+j,(t−2)(m+n)+i[−1]. (8.5)

Definition 8.6 (Kac-Roan-Wakimoto [23], Theorem 2.4). The rectangular W -superalgebra asso-

ciated with a Lie superalgebra gl(m|n) and a nilpotent element f =

l−1∑
s=1

m+n∑
i=1

es(m+n)+i,(s−1)(m+n)+i

is the vertex subalgebra defined by

Wk(gl(ml|nl), (l(m|n))) = {y ∈ V κ(b) ⊂ V κm,n(am,n) | d0(y) = 0}.
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We denote the rectangular W -superalgebra associated with a Lie superalgebra gl(m|n) and a
nilpotent element f byWk(gl(lm|ln), (l(m|n))). The rest of this section is devoted to the construc-

tion of two kinds of elements W
(1)
i,j and W

(2)
i,j , which are generators of Wk(gl(lm|ln), (l(m|n))).

We regard V κ(b)⊗C[τ ] and V κm,n(am,n)⊗C[τ ] as non-associative superalgebras whose defining
relations are given by

u[−t] · v[−s] = (u[−t])(−1)v[−s], [τ, u[−s]] = su[−s],

where τ is an even element. Let d̃m,n
0 : V κm,n(am,n) ⊗ C[τ ] → V κm,n(am,n) ⊗ C[τ ] be the odd

differential determined by

d̃m,n
0 1 = 0, [d̃m,n

0 , u[−s]] = [d0, u[−s]], [d̃m,n
0 , τ ] = 0.

First, let us recall how to construct generators of the principal W -algebra Wk(gl(l), (l1)) ([3],
Section 2). We denote by T (C) a non-associative free algebra associated with a vector space

C and by gl(l)≤0 the Lie algebra
⊕

1≤j≤i≤l

Cei,j . In the principal case, b is equal to gl(l)≤0. By

Definition 8.6, the principal W -algebra can be defined as

Wk(gl(l), (l1)) = {x ∈ V κ(gl(l)≤0)⊗ C[τ ] | d0(x) = 0}.

Similarly to V κ(b) ⊗ C[τ ], we define a non-associative algebra T (gl(l)≤0[t
−1]t−1) ⊗ C[τ ]. Let us

set π as k + l − 1 and an l × l matrix B = (bi,j)1≤i,j≤l as

πτ + e1,1[−1] −1 0 . . . 0

e2,1[−1] πτ + e2,2[−1] −1 . . . 0

...
...

. . .
...

el−1,1[−1] el−1,2[−1] . . . π τ + el−1,l−1[−1] −1
el,1[−1] el,2[−1] . . . el,l−1[−1] πτ + el,l[−1]


(8.7)

whose entries are elements of T (gl(l)≤0[t
−1]t−1) ⊗ C[τ ]. For any matrix A = (ai,j)1≤i,j≤s, we

define cdet(A) as∑
σ∈Ss

sgn(σ)aσ(1),1
(
aσ(2),2(aσ(3),3 · · · aσ(s−1),s−1)aσ(s),s

)
∈ T (gl(l)≤0[t

−1]t−1)⊗ C[τ ].

By the commutator relation of T (gl(l)≤0[t
−1]t−1)⊗C[τ ], we can rewrite cdet(B) as

l∑
r=0

W̃ (r)(πτ)l−r

such that W̃ (r) ∈ T (gl(l)≤0[t
−1]t−1). Let p be the projection map from T (gl(l)≤0[t

−1]t−1) to

V κ(gl(l)≤0) = U(gl(l)≤0[t
−1]t−1) and W (r) be p(W̃ (r)). Proving that [d̃1,00 , p(cdet(B))] = 0, we

obtain the following theorem (see Theorem 2.1 of [3]).

Theorem 8.8. The W -superalgebra Wk(gl(l), (l1)) is generated by {W (r)}1≤r≤l.

Remark 8.9. In [3], the tensor algebra T (C) should have been defined as a non-associative super-
algebra as above since V (g≤0) is non-associative.

Let A1,0 be a quotient algebra of T (a1,0[t
−1]t−1)⊗ C[τ ] subjected to the relation

(ea,1[−1]ψi,a[−1])cdet(Cl−i)− ea,1[−1](ψi,a[−1]cdet(Cl−i)) = 0 for all 1 ≤ a ≤ i,

where Cl−i is a submatrix of B consisting of the last (l − i) rows and columns. Constructing a
homomorphism

D : T (gl(l)≤0[t
−1]t−1)⊗ C[τ ]→ A1,0
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determined by

D(es,u[−1]) =
∑

u<a≤s

ea,u[−1]ψs,a[−1]−
∑

u≤a<s

ψa,u[−1]es,a[−1]

+ δ(s < u)πψs,u[−2] + ψs,u+1[−1]− ψs−1,u[−1],

we obtain the relation D(cdet(B)) = 0 in the way similar to the one of Theorem 2.1 of [3].
We regard gl(m|n) as an associative superalgebra whose product · is determined by ei,j ·es,u =

δj,sei,u. Then, we obtain a non-associative superalgebra gl(m|n)⊗ V κ(b)⊗ C[τ ]. We construct a
homomorphism

T : T (gl(l)≤0[t
−1]t−1)⊗ C[τ ]→ gl(m|n)⊗ V κ(b)⊗ C[τ ]

determined by

Ti,j(x) = (−1)p(i)x⊗ ei,j ∈ gl(l)≤0[t
−1]t−1 ⊗ gl(m|n) = b[t−1]t−1, T (τ) = τ,

where Ti,j(x) is defined as ej,i ⊗ Ti,j(x) = T (x). Since T is a homomorphism, we obtain

Ti,j(xy) =

m+n∑
r=1

(−1)p(ei,r)p(ej,r)Tr,i(x)Tj,r(y).

By the commutator relation of V κ(b) and C[τ ], W (r)
i,j ∈ V κ(b) is defined by

Tj,i(cdet(B)) =

l∑
r=0

(−1)p(j)W (r)
i,j (ατ)

l−r, (8.10)

where B is defined by replacing π in (8.7) with α.

Theorem 8.11. For all m,n ≥ 0 such that m 6= n, the W -superalgebra Wk(gl(ml|nl), (l(m|n))) is

freely generated by {W (r)
i,j | 1 ≤ r ≤ l, 1 ≤ i, j ≤ m+ n}.

Remark 8.12. In the case when n = 0, Theorem 8.11 is shown in Theorem 3.1 of [3].

Proof. Under the assumption that π is equal to α, we denote A1,0 (resp. D) as Ā1,0 (resp. D̄). We
construct a homomorphism T p : Ā1,0 → gl(m|n)⊗ V κm,n(am,n)⊗ C[τ ] determined by

T p
i,j(es,w[u]) = (−1)p(j)e(s−1)(m+n)+i,(w−1)(m+n)+j [u],

T p
i,j(ψs,w[u]) = ψ(s−1)(m+n)+i,(w−1)(m+n)+j [u], T p(τ) = τ,

where T p
i,j(x) is defined as ej,i ⊗ T p

i,j(x) = T p(x). Since T p is a homomorphism, we obtain

T p
i,j(es,w[−1]ψu,v[−1]) =

m+n∑
r=1

(−1)p(ei,r)p(ej,r)T p
r,j(es,w[−1])T

p
i,r(ψu,v[−1]),

T p
i,j(ψu,v[−1]es,w[−1]) =

m+n∑
r=1

(−1)p(ei,r)+p(ei,r)p(ej,r)T p
r,j(ψu,v[−1])T p

i,r(es,w[−1]).

By the definition of Tj,i and d0, we have

[d̃m,n
0 , Tj,i(es,w)]

= [d̃m,n
0 , (−1)p(j)e(s−1)(m+n)+j,(w−1)(m+n)+i[−1]]

=
∑

w<a≤s,
1≤r≤m+n

(−1)p(i)+p(ei,r)p(ej,r)e(a−1)(m+n)+r,(w−1)(m+n)+i[−1]ψ(s−1)(m+n)+j,(a−1)(m+n)+r[−1]

61



−
∑

w≤a<s,
1≤r≤m+n

(−1)γψ(a−1)(m+n)+r,(w−1)(m+n)+i[−1]e(s−1)(m+n)+j,(a−1)(m+n)+r[−1]

+ δ(s < w)αψ(s−1)(m+n)+j,(w−1)(m+n)+i[−2]
+ ψs(m+n)+j,(w−1)(m+n)+i[−1]− ψ(s−1)(m+n)+j,(w−2)(m+n)+i[−1]

= T p
j,i([D̄, es,w]), (8.13)

where γ = p(j) + p(ei,r)p(ej,r). Thus, the relation [d̃m,n
0 , Tj,i(a)] = T p

j,i([D̄, a]) holds for all
a ∈ T (gl(l)≤0). Then, we obtain

[d̃m,n
0 , Tj,i(cdet(B))] = T p

j,i([D̄, cdet(B)]). (8.14)

Since [D̄, cdet(B)] = 0 holds by the proof of Theorem 2.1 of [3], the right hand side of (8.14) is

equal to zero. Thus, we have obtained the relation [d0,W
(r)
i,j ] = 0. The rest of the proof is same

as [3].

In particular, by (8.10), we have

W
(1)
i,j =

∑
1≤s≤l

e(s−1)(m+n)+j,(s−1)(m+n)+i[−1], (8.15)

W
(2)
i,j =

∑
1≤s≤l−1

es(m+n)+j,(s−1)(m+n)+i[−1] + α
∑

1≤s≤l

(s− 1)e(s−1)(m+n)+j,(s−1)(m+n)+i[−2]

+
∑

r1<r2
1≤t≤m+n

(−1)p(t)+p(ei,t)p(ej,t)e
(r1)
t,i [−1]e(r2)j,t [−1], (8.16)

where we set e
(r)
j,i as e(r−1)(m+n)+j,(r−1)(m+n)+i.

Theorem 8.17. The rectangularW -superalgebraWk(gl(ml|nl), (l(m|n))) is generated byW
(1)
i,j and

W
(2)
i,j (1 ≤ i, j ≤ m+ n) provided that α = k + (l − 1)(m− n) 6= 0, m 6= n and m+ n ≥ 2.

Theorem 8.17 is proved in the appendix A.

Remark 8.18. In the case when (m,n) = (1, 0) or (0, 1), the elements W
(1)
i,i+1 or W

(2)
i,i+1 do not

exist. This is the reason why we need the condition that m+ n ≥ 2 in Theorem 8.17.

9 OPEs of rectangular W -superalgebras

First, let us recall the definition of the universal enveloping algebras of vertex algebras. For all
vertex algebra V , let L(V ) be the Borchards Lie algebra, that is,

L(V ) = V⊗C[t, t−1]/Im(∂ ⊗ id+ id⊗ d

dt
), (9.1)

where the commutation relation is given by

[uta, vtb] =
∑
r≥0

(
a
r

)
(u(r)v)t

a+b−r

for all u, v ∈ V and a, b ∈ Z. Now, we define the universal enveloping algebra of V .

Definition 9.2 (Frenkel-Zhu [14], Matsuo-Nagatomo-Tsuchiya [33]). We set U(V ) as the quotient
algebra of the standard degreewise completion of the universal enveloping algebra of L(V ) by the
completion of the two-sided ideal generated by

(u(a)v)t
b −

∑
i≥0

(
a
i

)
(−1)i(uta−ivtb+i − (−1)p(u)p(v)(−1)avta+b−iuti), (9.3)
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|0〉t−1 − 1, (9.4)

where |0〉 is the identity vector of V . We call U(V ) the universal enveloping algebra of V .

Lemma 9.5 (Kac-Roan-Wakimoto [23], Theorem 2.4). There exists a homomorphism from the

universal enveloping algebra of ĝl(m|n)κ to U(Wk(gl(ml|nl), (l(m|n)))) determined by

ξ(Ei,jt
s) =W

(1)
j,i t

s, ξ(c̃) = lαt−1, ξ(x) = 1.

In order to construct a homomorphism from the affine super Yangian to the universal enveloping
algebra of W -superalgebras in Section 6, we need to compute the following terms;

(W
(1)
i,j )(u)W

(2)
s,t (u ≥ 0), (W

(2)
i,i )(0)W

(2)
j,j , (W

(2)
i,i )(1)W

(2)
j,j .

First, we compute (W
(1)
i,j )(u)W

(2)
s,t (u ≥ 0). By direct computation, we obtain the below two

lemmas. We omit the proof.

Lemma 9.6. We obtain

(W (1)
u,v)(0)W

(2)
i,j = δj,uW

(2)
i,v − δi,v(−1)

p(eu,v)p(ei,j)W
(2)
u,j .

Lemma 9.7. The following equations hold;

(W (1)
v,w)(1)W

(2)
i,j = δj,v(l − 1)αW

(1)
i,w − δv,w(−1)

p(w)
(l − 1)(lc− 1)W

(1)
i,j ,

(W (1)
v,w)(2)W

(2)
i,j = l(l − 1)ακ(ew,v, ej,i),

(W (1)
v,w)(s)W

(2)
i,j = 0 (for all s ≥ 3).

Corollary 9.8. The following equation holds;

[W (1)
v,wt

s,W
(2)
i,j t

u]

= δj,vW
(2)
i,w t

s+u − δi,w(−1)p(ev,w)p(ei,j)W
(2)
v,j t

s+u

+ δj,vs(l − 1)αW
(1)
i,w t

s+u−1 − δv,w(−1)p(w)
(l − 1)(lc− 1)sW

(1)
i,j t

s+u−1

+
s(s− 1)

2
l(l − 1)ακ(ew,v, ej,i)t

s+u−2.

The following assertion is also shown by direct calculation.

Lemma 9.9. We obtain

(W
(2)
i,i )(0)W

(2)
j,j = (−1)p(i)(W (1)

i,j )(−1)W
(2)
j,i − (−1)p(j)(W (1)

j,i )(−1)W
(2)
i,j − (δi,jα+ (−1)p(i))∂W (2)

j,j

+ (−1)p(j)(l − 1)α(W
(1)
j,i )(−1)∂W

(1)
i,j − {(l − 1)2c− (l − 1)}(W (1)

j,j )(−1)∂W
(1)
i,i

+ δi,j
l(l − 1)

2
α2∂2W

(1)
i,i + (−1)p(j) l(l − 1)

2
α∂2W

(1)
i,i − (−1)p(j) l(l − 1)2

2
cα∂2W

(1)
i,i

+
1

2
(−1)p(i)(l − 1)α∂2W

(1)
j,j −

1

2
(−1)p(j)(l − 1)α∂2W

(1)
i,i

and

(W
(2)
i,i )(1)W

(2)
j,j = −{(l − 1)2c− (l − 1)}(W (1)

j,j )(−1)W
(1)
i,i − 2δi,jαW

(2)
i,i − (−1)p(i)W (2)

j,j

− (−1)p(j)W (2)
i,i + (−1)p(j)(l − 1)α(W

(1)
j,i )(−1)W

(1)
i,j + δi,j l(l − 1)α2∂W

(1)
i,i

+ (−1)p(j)l(l − 1)α∂W
(1)
i,i − (−1)p(j)l(l − 1)2cα∂W

(1)
i,i

+ (−1)p(i)(l − 1)α∂W
(1)
j,j − (−1)p(j)(l − 1)α∂W

(1)
i,i .

Remark 9.10. In [41], Rapčák defined two kinds of elements of rectangular W -superalgebras of
type A, which are called U1,i,j and U2,i,j (1 ≤ i, j ≤ m+n) under the assumption that c = 0. The

element Ur,i,j is corresponding to (−1)p(i)p(j)W (r)
i,j (r = 1, 2), where J

(x)
a,b in [41] is corresponding

to (−1)p(a)p(b)eb,a in this paper.
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10 Affine super Yangians and rectangular W -superalgebras

In this section, we prove the main result of this paper. Here after, we assume that m 6= n and set

ε1 =
α

m− n
, ε2 = −1− α

m− n

and fix an invariant inner product on gl(m|n) such that c = 0 (see (8.1)).

Theorem 10.1. There exists an algebra homomorphism

Φ: Yε1,ε2(ŝl(m|n))→ U(Wk(gl(ml|nl), (l(m|n))))

determined by

Φ(Hi,0) =

{
(−1)p(m+n)

W
(1)
m+n,m+n −W

(1)
1,1 + lα (i = 0),

(−1)p(i)W (1)
i,i − (−1)p(i+1)

W
(1)
i+1,i+1 (i 6= 0),

Φ(X+
i,0) =

{
W

(1)
1,m+nt (i = 0),

W
(1)
i+1,i (i 6= 0),

Φ(X−
i,0) =

{
(−1)p(m+n)

W
(1)
m+n,1t

−1 (i = 0),

(−1)p(i)W (1)
i,i+1 (i 6= 0),

Φ(Hi,1) =



(−1)p(m+n)
W

(2)
m+n,m+nt−W

(2)
1,1 t+ (−1)p(m+n)

(l − 1)αW
(1)
m+n,m+n

−lαΦ(H0,0) + (−1)p(m+n)
W

(1)
m+n,m+n(W

(1)
1,1 − lα)

−(−1)p(m+n)
∑
s≥0

m+n∑
u=1

(−1)p(u)W (1)
u,m+nt

−sW
(1)
m+n,ut

s

+
∑
s≥0

m+n∑
u=1

(−1)p(u)W (1)
u,1t

−s−1W
(1)
1,ut

s+1,

i = 0,

(−1)p(i)W (2)
i,i t− (−1)p(i+1)

W
(2)
i+1,i+1t

+
i− 2δ(i ≥ m+ 1)(i−m)

2
Φ(Hi,0) + (−1)p(Ei,i+1)W

(1)
i,i W

(1)
i+1,i+1

−(−1)p(i)
∑
s≥0

i∑
u=1

(−1)p(u)W (1)
u,i t

−sW
(1)
i,u t

s

−(−1)p(i)
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (1)
u,i t

−s−1W
(1)
i,u t

s+1

+(−1)p(i+1)
∑
s≥0

i∑
u=1

(−1)p(u)W (1)
u,i+1t

−sW
(1)
i+1,ut

s

+(−1)p(i+1)
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (1)
u,i+1t

−s−1W
(1)
i+1,ut

s+1

i 6= 0,

Φ(X+
i,1) =



W
(2)
1,m+nt

2 + (l − 1)αW
(1)
1,m+nt− lαΦ(X

+
0,0)−

∑
s≥0

m+n∑
u=1

(−1)p(u)W (1)
u,m+nt

−sW
(1)
1,ut

s+1

if i = 0,

W
(2)
i+1,it+

i− 2δ(i ≥ m+ 1)(i−m)

2
Φ(X+

i,0)

−
∑
s≥0

i∑
u=1

(−1)p(u)W (1)
u,i t

−sW
(1)
i+1,ut

s −
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (1)
u,i t

−s−1W
(1)
i+1,ut

s+1

if i 6= 0,
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Φ(X−
i,1) =



(−1)p(m+n)
W

(2)
m+n,1 − lαΦ(X

−
0,0)

−(−1)p(m+n)
∑
s≥0

m+n∑
u=1

(−1)p(u)W (1)
1,ut

−s−1W
(1)
m+n,ut

s,

if i = 0,

(−1)p(i)W (2)
i,i+1t+

i− 2δ(i ≥ m+ 1)(i−m)

2
Φ(X−

i,0)

−(−1)p(i)
∑
s≥0

i∑
u=1

(−1)p(u)W (1)
u,i+1t

−sW
(1)
i,u t

s

−(−1)p(i)
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (1)
u,i+1t

−s−1W
(1)
i,u t

s+1

if i 6= 0.

Proof. It is enough to show that Φ is compatible with the defining relations (7.2)-(7.13). By
Lemma 9.5, we find that Φ is compatible with (7.3), (7.11), (7.12) and (7.13). Thus, it is enough
to show that Φ is compatible with (7.2) and (7.4)-(7.10). We divide the proof into two piecies,
that is, Claim 10.3 and Claim 10.16 below. In Claim 10.3, we show that Φ is compatible with
(7.4)-(7.10). In Claim 10.16, we prove that Φ is compatible with (7.2).

In order to prove Claims 10.3 and 10.16, we relate Φ with the evaluation map of the afiine
super Yangian. We set ẽv(Hi,s) and ẽv(X±

i,s) (s = 0, 1) as

ẽv(Hi,0) = Φ(Hi,0), ẽv(X±
i,0) = Φ(X±

i,0),

ẽv(Hi,1) =


Φ(H0,1)− {(−1)p(m+n)

W
(2)
m+n,m+nt−W

(2)
1,1 t+ (−1)p(m+n)

(l − 1)αW
(1)
m+n,m+n}

if i = 0,

Φ(Hi,1)− {(−1)p(i)W (2)
i,i t− (−1)p(i+1)

W
(2)
i+1,i+1t} if i 6= 0,

ẽv(X+
i,1) =

{
Φ(X+

i,1)− {W
(2)
1,m+nt

2 + (l − 1)αW
(1)
1,m+nt} if i = 0,

Φ(X+
i,1)−W

(2)
i+1,it if i 6= 0,

ẽv(X−
i,1) =

{
Φ(X−

i,1)− (−1)p(m+n)
W

(2)
m+n,1 if i = 0,

Φ(X−
i,1)− (−1)p(i)W (2)

i,i+1t if i 6= 0.

We define ĝl(m|n)κ as a Lie superalgebra gl(m|n)⊗C[t±1]⊕Cc̃⊕Cx whose commutator relations
are

c̃ is a central element,

[u⊗ ta, v ⊗ tb] = [u, v]⊗ ta+b + δa+b,0a str(uv)c̃, if u or v ∈ sl(m|n)

[Ei,i ⊗ ta, Ej,j ⊗ tb] = δa+b,0a str(Ei,iEj,j)c̃− δa+b,0al(lc− 1)(−1)p(i)+p(j)
x.

We note that ĝl(m|n)κ is the same as ĝl(m|n)str except of the inner product on the diagonal part.
By Lemma 9.5, we can prove that ẽv is compatible with (7.3)-(7.13) which are parts of the defining

relations of the affine super Yangian Y lα
m−n ,−1− lα

m−n
(ŝl(m|n)) in a way similar to the proof of the

existence of the evaluation map (see Theorem 5.2 in [45]). This is summarized as the following
lemma.

Lemma 10.2. Let us set

ε̃1 =
lα

m− n
, ε̃2 = −1− lα

m− n
.

Then, ẽv is compatible with (7.3)-(7.13) which are parts of the defining relations of the affine super

Yangian Yε̃1,ε̃2(ŝl(m|n)).
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We remark that ẽv is not an algebra homomorphism since [ẽv(Hi,1), ẽv(Hj,1)] is not equal to
zero. See (10.32) below for the details.

Claim 10.3. For all i, j ∈ {0, 1, · · · ,m+ n− 1}, Φ is compatible with (7.4)-(7.10).

Proof. We only show that Φ is compatible with (7.7). The other cases are proven in a similar way.
It is enough to show that

[Φ(H̃0,1),Φ(X
+
m+n−1,0)]

= −(−1)p(m+n){Φ(X+
m+n−1,1)−

(
(m− n) + α− m− n

2

)
W

(1)
m+n,m+n−1}, (10.4)

[Φ(H̃0,1),Φ(X
−
m+n−1,0)]

= (−1)p(m+n){Φ(X−
m+n−1,1)− (−1)p(m+n−1)

(
(m− n) + α− m− n

2

)
W

(1)
m+n−1,m+n}. (10.5)

By the definition of Φ, we can rewrite the left hand side of (10.4) as

[Φ(H̃0,1),Φ(X
+
m+n−1,0)]

= −[W (1)
m+n,m+n−1, (−1)

p(m+n)
W

(2)
m+n,m+nt] + [W

(1)
m+n,m+n−1,W

(2)
1,1 t]

− [W
(1)
m+n,m+n−1, (−1)

p(m+n)
(l − 1)αW

(1)
m+n,m+n] + [ẽv(H̃0,1), ẽv(X

+
m+n−1,0)]. (10.6)

By Corollary 9.8, we obtain

−[W (1)
m+n,m+n−1, (−1)

p(m+n)
W

(2)
m+n,m+nt] = −(−1)

p(m+n)
W

(2)
m+n,m+n−1t, (10.7)

[W
(1)
m+n,m+n−1,W

(2)
1,1 t] = 0. (10.8)

By Corollary 9.8, we have

−[W (1)
m+n,m+n−1, (−1)

p(m+n)
(l − 1)αW

(1)
m+n,m+n] = −(−1)

p(m+n)
(l − 1)αW

(1)
m+n,m+n−1. (10.9)

By Lemma 10.2, we also obtain

[ẽv(H̃0,1), ẽv(X
+
m+n−1,0)]

= −(−1)p(m+n)
ẽv(X+

m+n−1,1) + (−1)p(m+n)

(
(m− n) + lα− m− n

2

)
W

(1)
m+n,m+n−1. (10.10)

The identity (10.4) follows by applying (10.7)-(10.10) to (10.6). We can prove that Φ is compatible
with (7.8) in a similar way.

Similarly, by the definition of Φ, we obtain

[Φ(H̃0,1), (−1)p(m+n−1)
W

(1)
m+n−1,m+n]

= −[(−1)p(m+n−1)
W

(1)
m+n−1,m+n, (−1)

p(m+n)
W

(2)
m+n,m+nt]

− [(−1)p(m+n−1)
W

(1)
m+n−1,m+n,−W

(2)
1,1 t]

− [(−1)p(m+n−1)
W

(1)
m+n−1,m+n, (−1)

p(m+n)
(l − 1)αW

(1)
m+n,m+n]

+ [ẽv(H̃0,1), ẽv(X
−
m+n−1,0)]. (10.11)

By Corollary 9.8, we obtain

−[(−1)p(m+n−1)
W

(1)
m+n−1,m+n, (−1)

p(m+n)
W

(2)
m+n,m+nt] = (−1)p(m+n−1)+p(m+n)

W
(2)
m+n−1,m+nt,

(10.12)

−[(−1)p(m+n−1)
W

(1)
m+n−1,m+n,W

(2)
1,1 t] = 0. (10.13)
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By Lemma 9.5, we have

− [(−1)p(m+n−1)
W

(1)
m+n−1,m+n, (−1)

p(m+n)
(l − 1)αW

(1)
m+n,m+n]

= (−1)p(m+n−1)+p(m+n)
(l − 1)αW

(1)
m+n−1,m+n. (10.14)

By Lemma 10.2, we obtain

[ẽv(H̃0,1), ẽv(X
−
m+n−1,0)]

= (−1)p(m+n)
ẽv(X−

m+n−1,1)

− (−1)p(m+n)

(
(m− n) + lα− m− n

2

)(
(−1)p(m+n−1)

W
(1)
m+n−1,m+n

)
.

(10.15)

The identity (10.5) follows by applying (10.12)-(10.15) to (10.11). Thus, we have shown that Φ is
compatible with (7.7).

Finally, we prove that Φ is compatible with (7.2).

Claim 10.16. The following equation holds for all i, j ∈ {0, 1, · · · ,m+ n− 1}, r, s ∈ {0, 1};

[Φ(Hi,r),Φ(Hj,s)] = 0.

Proof. By Lemma 9.5, we obtain [Φ(Hi,0),Φ(Hj,0)] = 0. In the similar way as that of Claim 10.3,
we have [Φ(Hi,0),Φ(Hj,1)] = 0. Thus, it is enough to show that [Φ(Hi,1),Φ(Hj,1)] = 0. We only
show the case when i, j 6= 0 and i > j. The other case is proven in a similar way. In order to
simplify the notation, we set

Xi = −(−1)p(i)
∑
s≥0

i∑
u=1

(−1)p(u)W (1)
u,i t

−sW
(1)
i,u t

s

− (−1)p(i)
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (1)
u,i t

−s−1W
(1)
i,u t

s+1.

By the definition of ẽv, we obtain

ẽv(Hi,1) =
i− 2δ(i ≥ m+ 1)(i−m)

2
((−1)p(i)W (1)

i,i − (−1)p(i+1)W
(1)
i+1,i+1)

+ (−1)p(Ei,i+1)W
(1)
i,i W

(1)
i+1,i+1 +Xi −Xi+1 − (W

(1)
i+1,i+1)

2

= Xi −Xi+1 + (the term generated by {W (1)
i,i t

0|1 ≤ i ≤ m+ n}). (10.17)

By Lemma 9.5, Lemma 9.6 and (10.17), we obtain

[ẽv(Hi,1), ẽv(Hj,1)] = [Xi −Xi+1, Xj −Xj+1], (10.18)

[ẽv(Hi,1), ((−1)p(j)W (2)
j,j − (−1)p(j+1)

W
(2)
j+1,j+1)t]

= [Xi −Xi+1, ((−1)p(j)W (2)
j,j − (−1)p(j+1)

W
(2)
j+1,j+1)t]. (10.19)

We remark that [ẽv(Hi,1), ẽv(Hj,1)] is not equal to zero since the inner products on the diagonal

parts of ĝl(m|n)κ and ĝl(m|n)str are different.
By (10.18), (10.19), and the definition of Φ, we obtain

[Φ(Hi,1),Φ(Hj,1)]

= [((−1)p(i)W (2)
i,i − (−1)p(i+1)

W
(2)
i+1,i+1)t, ((−1)

p(j)
W

(2)
j,j − (−1)p(j+1)

W
(2)
j+1,j+1)t]
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+ [Xi −Xi+1, ((−1)p(j)W (2)
j,j − (−1)p(j+1)

W
(2)
j+1,j+1)t]

+ [((−1)p(i)W (2)
i,i − (−1)p(i+1)

W
(2)
i+1,i+1)t,Xj −Xj+1] + [Xi −Xi+1, Xj −Xj+1].

Thus, it is enough to show the relation

[(−1)p(i)W (2)
i,i t, (−1)

p(j)
W

(2)
j,j t] + [Xi, (−1)p(j)W (2)

j,j t] + [(−1)p(i)W (2)
i,i t,Xj ] + [Xi, Xj ] = 0 (10.20)

holds for all i, j ∈ {1, · · · ,m + n}, i ≥ j. Let us compute each terms of the left hand side of
(10.20). First, we compute the first term of the left hand side of (10.20). By Lemma 9.9, we
obtain

(−1)p(i)+p(j)
[W

(2)
i,i t,W

(2)
j,j t]

= (−1)p(i)+p(j)
(W

(2)
i,i )(0)W

(2)
j,j t

2 + (−1)p(i)+p(j)
(W

(2)
i,i )(1)W

(2)
j,j t

= (−1)p(j)(W (1)
i,j )(−1)W

(2)
j,i t

2 − (−1)p(i)(W (1)
j,i )(−1)W

(2)
i,j t

2 − δi,jα∂W (2)
j,j t

2

− (−1)p(j)∂W (2)
j,j t

2 + (−1)p(i)(l − 1)α(W
(1)
j,i )(−1)∂W

(1)
i,j t

2

− (−1)p(i)+p(j){(l − 1)2c− (l − 1)}(W (1)
j,j )(−1)∂W

(1)
i,i t

2

+ δi,j
l(l − 1)

2
α2∂2W

(1)
i,i t

2 + (−1)p(i) l(l − 1)

2
α∂2W

(1)
i,i t

2

− (−1)p(i) l(l − 1)2

2
cα∂2W

(1)
i,i t

2 +
1

2
(−1)p(j)(l − 1)α∂2W

(1)
j,j t

2 − 1

2
(−1)p(i)(l − 1)α∂2W

(1)
i,i t

2

− (−1)p(i)+p(j){(l − 1)2c− (l − 1)}(W (1)
j,j )(−1)W

(1)
i,i t− 2δi,jαW

(2)
i,i t

− (−1)p(j)W (2)
j,j t− (−1)p(i)W (2)

i,i t+ (−1)p(i)(l − 1)α(W
(1)
j,i )(−1)W

(1)
i,j t

+ δi,j l(l − 1)α2∂W
(1)
i,i t+ (−1)p(j)l(l − 1)α∂W

(1)
i,i t− (−1)p(i)l(l − 1)2cα∂W

(1)
i,i t

− (−1)p(i)(l − 1)α∂W
(1)
i,i t+ (−1)p(j)(l − 1)α∂W

(1)
j,j t.

We can rewrite it as

− (−1)p(i)W (2)
i,i t+ (−1)p(j)W (2)

j,j t+ (−1)p(j)(W (1)
i,j )(−1)W

(2)
j,i t

2 − (−1)p(i)(W (1)
j,i )(−1)W

(2)
i,j t

2

+ (−1)p(i)(l − 1)α(W
(1)
j,i )(−1)∂W

(1)
i,j t

2 + (−1)p(i)(l − 1)α(W
(1)
j,i )(−1)W

(1)
i,j t

− (−1)p(i)+p(j){(l − 1)2c− (l − 1)}
(
(W

(1)
j,j )(−1)∂W

(1)
i,i t

2 + (W
(1)
j,j )(−1)W

(1)
i,i t
)

(10.21)

since six relations

−δi,jα∂W (2)
j,j t

2 − 2δi,jαW
(2)
j,j t = 0, (10.22)

−(−1)p(i)W (2)
i,i t− (−1)p(j)W (2)

j,j t− (−1)p(j)∂W (2)
j,j t

2

= −((−1)p(i)W (2)
i,i t− (−1)p(j)W (2)

j,j t), (10.23)

δi,j
l(l − 1)

2
α2∂2W

(1)
i,i t

2 + δi,j l(l − 1)α2∂W
(1)
i,i t = 0, (10.24)

(−1)p(i) l(l − 1)

2
α∂2W

(1)
i,i t

2 + (−1)p(i)l(l − 1)α∂W
(1)
i,i t = 0, (10.25)

−(−1)p(i) l(l − 1)2

2
cα∂2W

(1)
i,i t

2 − (−1)p(i)l(l − 1)2cα∂W
(1)
i,i t = 0, (10.26)

1

2
(−1)p(j)(l − 1)α∂2W

(1)
j,j t

2 − 1

2
(−1)p(i)(l − 1)α∂2W

(1)
i,i t

2

−(−1)p(i)(l − 1)α∂W
(1)
i,i t+ (−1)p(j)(l − 1)α∂W

(1)
j,j t = 0 (10.27)

hold by the definition of the translation operator ∂.
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In order to rewrite (10.21), we remark that the following two relations

(x(−1)y)t =
∑
s≥0

xt−1−syts+1 + (−1)p(x)p(y)yt−sxts, (10.28)

(x(−1)∂y)t
2 =

∑
s≥0

xt−1−s(∂y)ts+2 + (−1)p(x)p(y)(∂y)t1−sxts

=
∑
s≥0

(−(s+ 2)xt−1−syts+1 − (−1)p(x)p(y)(1− s)yt−sxts) (10.29)

hold by (9.3) for all x, y ∈ Wk(gl(ml|nl), (l(m|n))). By (10.28) and (10.29), we also obtain

(x(−1)∂y)t
2 + (x(−1)y)t =

∑
s≥0

(−(1 + s)xt−1−syt1+s + (−1)p(x)p(y)syt−sxts). (10.30)

By (10.28)-(10.30), we can rewrite (10.21) as

− (−1)p(i)W (2)
i,i t+ (−1)p(j)W (2)

j,j t

+ (−1)p(j)
∑
s≥0

W
(1)
i,j t

−s−1W
(2)
j,i t

s+2 + (−1)p(i)
∑
s≥0

W
(2)
j,i t

1−sW
(1)
i,j t

s

− (−1)p(i)
∑
s≥0

W
(1)
j,i t

−s−1W
(2)
i,j t

s+2 − (−1)p(j)
∑
s≥0

W
(2)
i,j t

1−sW
(1)
j,i t

s

+ (−1)p(j)(l − 1)α
∑
s≥0

sW
(1)
i,j t

−sW
(1)
j,i t

s − (−1)p(i)(l − 1)α
∑
s≥0

sW
(1)
j,i t

−sW
(1)
i,j t

s

− (−1)p(i)+p(j){(l − 1)2c− (l − 1)}
∑
s≥0

(−sW (1)
j,j t

−sW
(1)
i,i t

s + sW
(1)
i,i t

−sW
(1)
j,j t

s). (10.31)

Next, let us compute the last term of (10.20). By a computation similar to the proof of the
existence of the evaluation map (see Theorem 5.2 of [45]), it is equal to

[Xi, Xj ] = −(−1)p(i)+p(j)
l(lc− 1)

∑
s≥0

s{W (1)
i,i t

−sW
(1)
j,j t

s −W (1)
j,j t

−sW
(1)
i,i t

s}

− (−1)p(i)+p(j)
∑
s≥0

s{W (1)
i,i t

−sW
(1)
j,j t

s −W (1)
j,j t

−sW
(1)
i,i t

s}. (10.32)

Finally, let us compute the second term and the third term of (10.20). By the definition of Xi,
we obtain

[Xi,W
(2)
j,j t]

= −(−1)p(i)
∑
s≥0

i∑
u=1

(−1)p(u)W (1)
u,i t

−s[W
(1)
i,u t

s,W
(2)
j,j t]

− (−1)p(i)
∑
s≥0

i∑
u=1

(−1)p(u)[W (1)
u,i t

−s,W
(2)
j,j t]W

(1)
i,u t

s

− (−1)p(i)
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (1)
u,i t

−s−1[W
(1)
i,u t

s+1,W
(2)
j,j t]

− (−1)p(i)
∑
s≥0

m+n∑
u=i+1

(−1)p(u)[W (1)
u,i t

−s−1,W
(2)
j,j t]W

(1)
i,u t

s+1. (10.33)
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By Corollary 9.8, the first term of the right hand side of (10.33) is equal to

− (−1)p(i)
∑
s≥0

i∑
u=1

(−1)p(u)W (1)
u,i t

−s[W
(1)
i,u t

s,W
(2)
j,j t]

= −δi,j(−1)p(i)
∑
s≥0

i∑
u=1

(−1)p(u)W (1)
u,i t

−sW
(2)
i,u t

s+1 + δ(i ≥ j)(−1)p(i)+p(j)
∑
s≥0

W
(1)
j,i t

−sW
(2)
i,j t

s+1

− δi,j(−1)p(i)(l − 1)α
∑
s≥0

i∑
u=1

(−1)p(u)sW (1)
u,i t

−sW
(1)
i,u t

s

+ (−1)p(i)(l − 1)(lc− 1)
∑
s≥0

sW
(1)
i,i t

−sW
(1)
j,j t

s (10.34)

since by (9.1) κ(ei,u, ej,j)t
s−1 is equal to zero unless s = 0. Similarly to (10.34), we rewrite the

second, third, and 4-th terms of the right hand side of (10.33). By Corollary 9.8, the second term
of the right hand side of (10.33) is equal to

− (−1)p(i)
∑
s≥0

i∑
u=1

(−1)p(u)[W (1)
u,i t

−s,W
(2)
j,j t]W

(1)
i,u t

s

= −δ(i ≥ j)(−1)p(i)+p(j)
∑
s≥0

W
(2)
j,i t

1−sW
(1)
i,j t

s + δi,j(−1)p(i)
∑
s≥0

i∑
u=1

(−1)p(u)W (2)
u,i t

1−sW
(1)
i,u t

s

+ δ(i ≥ j)(−1)p(i)+p(j)
(l − 1)α

∑
s≥0

sW
(1)
j,i t

−sW
(1)
i,j t

s

− (−1)p(i)(l − 1)(lc− 1)
∑
s≥0

sW
(1)
j,j t

−sW
(1)
i,i t

s. (10.35)

By Corollary 9.8, the third term of the right hand side of (10.33) is equal to

− (−1)p(i)
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (1)
u,i t

−s−1[W
(1)
i,u t

s+1,W
(2)
j,j t]

= −δi,j(−1)p(i)
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (1)
u,i t

−s−1W
(2)
i,u t

s+2

+ δ(i < j)(−1)p(i)+p(j)
∑
s≥0

W
(1)
j,i t

−s−1W
(2)
i,j t

s+2

− δi,j(−1)p(i)(l − 1)α
∑
s≥0

m+n∑
u=i+1

(s+ 1)(−1)p(u)W (1)
u,i t

−s−1W
(1)
i,u t

s+1. (10.36)

By Corollary 9.8, the 4-th term of the right hand side of (10.33) is equal to

− (−1)p(i)
∑
s≥0

m+n∑
u=i+1

(−1)p(u)[W (1)
u,i t

−s−1,W
(2)
j,j t]W

(1)
i,u t

s+1

= −δ(i < j)(−1)p(i)+p(j)
∑
s≥0

W
(2)
j,i t

−sW
(1)
i,j t

s+1

+ δi,j(−1)p(i)
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (2)
u,i t

−sW
(1)
i,u t

s+1

+ δ(i < j)(−1)p(i)+p(j)
(l − 1)α

∑
s≥0

(s+ 1)W
(1)
j,i t

−s−1W
(1)
i,j t

s+1. (10.37)
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We prepare some notations. We denote the i-th term of the right hand side of (10.34) (resp.
(10.35), (10.36), (10.37)) by (10.34)i (resp. (10.35)i, (10.36)i, (10.37)i). Let us set

Ai,j = (−1)p(j)(10.34)1 + (−1)p(j)(10.35)2 + (−1)p(j)(10.36)1 + (−1)p(j)(10.37)2

= −δi,j
∑
s≥0

i∑
u=1

(−1)p(u)W (1)
u,i t

−sW
(2)
i,u t

s+1 + δi,j
∑
s≥0

i∑
u=1

(−1)p(u)W (2)
u,i t

1−sW
(1)
i,u t

s

− δi,j
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (1)
u,i t

−s−1W
(2)
i,u t

s+2 + δi,j
∑
s≥0

m+n∑
u=i+1

(−1)p(u)W (2)
u,i t

−sW
(1)
i,u t

s+1,

Bi,j = (−1)p(j)(10.34)2 + (−1)p(j)(10.35)1 + (−1)p(j)(10.36)3 + (−1)p(j)(10.37)1
= δ(i ≥ j)(−1)p(i)

∑
s≥0

W
(1)
j,i t

−sW
(2)
i,j t

s+1 − δ(i ≥ j)(−1)p(i)
∑
s≥0

W
(2)
j,i t

1−sW
(1)
i,j t

s

+ δ(i < j)(−1)p(i)
∑
s≥0

W
(1)
j,i t

−s−1W
(2)
i,j t

s+2 − δ(i < j)(−1)p(i)
∑
s≥0

W
(2)
j,i t

−sW
(1)
i,j t

s+1,

Ci,j = (−1)p(j)(10.35)3 + (−1)p(j)(10.37)3
= δ(i ≥ j)(−1)p(i)(l − 1)α

∑
s≥0

sW
(1)
j,i t

−sW
(1)
i,j t

s

+ δ(i < j)(−1)p(i)(l − 1)α
∑
s≥0

(s+ 1)W
(1)
j,i t

−s−1W
(1)
i,j t

s+1

= (−1)p(i)(l − 1)α
∑
s≥0

sW
(1)
j,i t

−sW
(1)
i,j t

s,

Di,j = (−1)p(j)(10.34)3 + (−1)p(j)(10.36)3

= −δi,j(l − 1)α
∑
s≥0

i∑
u=1

s(−1)p(u)W (1)
u,i t

−sW
(1)
i,u t

s

− δi,j(l − 1)α
∑
s≥0

m+n∑
u=i+1

(s+ 1)(−1)p(u)W (1)
u,i t

−s−1W
(1)
i,u t

s+1,

Ẽi,j = (−1)p(j)(10.34)4 + (−1)p(j)(10.35)4
= (−1)p(i)+p(j)

(l − 1)(lc− 1)
∑
s≥0

sW
(1)
i,i t

−sW
(1)
j,j t

s

− (−1)p(i)+p(j)
(l − 1)(lc− 1)

∑
s≥0

sW
(1)
j,j t

−sW
(1)
i,i t

s.

Then, we can rewrite [Xi, (−1)p(j)W (2)
j,j t] as Ai,j +Bi,j + Ci,j +Di,j + Ẽi,j . By exchanging i and

j, we find that [Xj , (−1)p(i)W (2)
i,i t] is equal to Aj,i +Bj,i +Cj,i +Dj,i + Ẽj,i. We find that the left

hand side of (10.20) is equal to

(10.31) +Ai,j +Bi,j + Ci,j +Di,j + Ẽi,j − (Aj,i +Bj,i + Cj,i +Dj,i + Ẽj,i) + (10.32).

By the definition of Ai,j and Di,j , we have

Ai,j −Aj,i = 0, Di,j −Dj,i = 0. (10.38)

By direct computation, we obtain

Ci,j − Cj,i + (10.31)7 + (10.31)8 = 0, (10.39)

where we denote the i-th term of (10.31) by (10.31)i. Hence, by (10.38), it is enough to obtain
the following two relations

Bi,j −Bj,i + (10.31)1 + (10.31)2 + (10.31)3 + (10.31)4 + (10.31)5 + (10.31)6 = 0, (10.40)
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Ẽi,j − Ẽj,i + (10.31)9 + (10.32) = 0. (10.41)

First, we show that (10.40) holds. Let us compute Bi,j −Bj,i. When i = j, it is equal to zero
and (10.40) holds. Suppose that i > j. Then, we can rewrite Bi,j −Bj,i as

(−1)p(i)
∑
s≥0

W
(1)
j,i t

−sW
(2)
i,j t

s+1 − (−1)p(i)
∑
s≥0

W
(2)
j,i t

1−sW
(1)
i,j t

s

− (−1)p(j)
∑
s≥0

W
(1)
i,j t

−s−1W
(2)
j,i t

s+2 + (−1)p(j)
∑
s≥0

W
(2)
i,j t

−sW
(1)
j,i t

s+1. (10.42)

By Corollary 9.8, we obtain

(−1)p(i)
∑
s≥0

W
(1)
j,i t

−sW
(2)
i,j t

s+1 + (−1)p(j)
∑
s≥0

W
(2)
i,j t

−sW
(1)
j,i t

s+1

= (−1)p(i)
∑
s≥0

W
(1)
j,i t

−s−1W
(2)
i,j t

s+2 + (−1)p(j)
∑
s≥0

W
(2)
i,j t

1−sW
(1)
j,i t

s

+ (−1)p(i)W (2)
i,i t− (−1)p(j)W (2)

j,j t (10.43)

Appling (10.43) to (10.42), we obtain

Bi,j −Bj,i

= (−1)p(i)
∑
s≥0

W
(1)
j,i t

−s−1W
(2)
i,j t

s+2 − (−1)p(i)
∑
s≥0

W
(2)
j,i t

1−sW
(1)
i,j t

s

− (−1)p(j)
∑
s≥0

W
(1)
i,j t

−s−1W
(2)
j,i t

s+2 + (−1)p(j)
∑
s≥0

W
(2)
i,j t

1−sW
(1)
j,i t

s

+ (−1)p(i)W (2)
i,i t− (−1)p(j)W (2)

j,j t.

We have shown that (10.40) holds.
Finally, let us compute the left hand side of (10.41). By direct computation, we obtain

Ẽi,j − Ẽj,i

= 2(−1)p(i)+p(j)
(l − 1)(lc− 1)

∑
s≥0

sW
(1)
i,i t

−sW
(1)
j,j t

s

− 2(−1)p(i)+p(j)
(l − 1)(lc− 1)

∑
s≥0

sW
(1)
j,j t

−sW
(1)
i,i t

s.

It follows that the left hand side of (10.41) is equal to

2(−1)p(i)+p(j)
(l − 1)(lc− 1)

∑
s≥0

sW
(1)
i,i t

−sW
(1)
j,j t

s

− 2(−1)p(i)+p(j)
(l − 1)(lc− 1)

∑
s≥0

sW
(1)
j,j t

−sW
(1)
i,i t

s

− (−1)p(i)+p(j){(l − 1)2c− (l − 1)}
∑
s≥0

(−sW (1)
j,j t

−sW
(1)
i,i t

s + sW
(1)
i,i t

−sW
(1)
j,j t

s)

− (−1)p(i)+p(j)
l(lc− 1)

∑
s≥0

s{W (1)
i,i t

−sW
(1)
j,j t

s −W (1)
j,j t

−sW
(1)
i,i t

s}

− (−1)p(i)+p(j)
∑
s≥0

s{W (1)
i,i t

−sW
(1)
j,j t

s −W (1)
j,j t

−sW
(1)
i,i t

s}

= −(−1)p(i)+p(j)
c
∑
s≥0

(−sW (1)
j,j t

−sW
(1)
i,i t

s + sW
(1)
i,i t

−sW
(1)
j,j t

s).

Since c = 0, this is equal to zero. Thus, (10.41) holds. We have shown that [Φ(Hi,1),Φ(Hj,1)] =
0.
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Since we have proved Claim 10.3 and Claim 10.16, we have proven that Φ is compatible with
the defining relations of the affine super Yangian.

Next, let us show that Φ is essentially surjective when α 6= 0.

Theorem 10.44. The image of Φ is dense in U(Wk(gl(ml|nl), (l(m|n)))) provided that α is
nonzero.

Proof. Suppose that α 6= 0. By Theorem 8.17, it is enough to show that the completion of the

image of Φ contains W
(1)
i,j t

s and W
(2)
i,j t

s for all 1 ≤ i, j ≤ m+ n and s ∈ Z.
First, we show that W

(1)
j,j t

s is contained in the completion of the image of Φ. By the definition

of Φ(Hi,0) and Φ(X±
i,0), the image of Φ contains ((−1)p(i)W (1)

i,i − (−1)p(j)W (1)
j,j )t and W

(1)
i,j t

s for
all i 6= j and s ∈ Z. Then, by the definition of Φ(Hi,1), the completion of the image of Φ contains

((−1)p(j)W (2)
j,j − (−1)p(j+1)

W
(2)
j+1,j+1)t

−
∑
a≥0

W
(1)
j,j t

−aW
(1)
j,j t

a +
∑
a≥0

W
(1)
j+1,j+1t

−a−1W
(1)
j+1,j+1t

a+1 − (−1)p(ej,j+1)W
(1)
j,j W

(1)
j+1,j+1.

We take 1 ≤ r, q ≤ m+ n such that q 6= r, r + 1. Then, by Corollary 9.8, we have

[W (1)
q,r t

s−1, ((−1)p(r)W (2)
r,r − (−1)p(r+1)

W
(2)
r+1,r+1)t−

∑
a≥0

W (1)
r,r t

−aW (1)
r,r t

a

+
∑
a≥0

W
(1)
r+1,r+1t

−a−1W
(1)
r+1,r+1t

a+1 − (−1)p(er,r+1)W (1)
r,r W

(1)
r+1,r+1]

= −(−1)p(r)W (2)
q,r t

s +
∑
a≥0

W (1)
q,r t

−a+s−1W (1)
r,r t

a

+
∑
a≥0

W (1)
r,r t

−a−1W (1)
q,r t

a+s − (−1)p(er,r+1)W (1)
q,r t

s−1W
(1)
r+1,r+1.

Let us set
∑
a≥0

W
(1)
q,r t−a+s−1W

(1)
r,r ta +

∑
a≥0

W
(1)
r,r t−a−1W

(1)
q,r ta+s − (−1)p(er,r+1)W

(1)
q,r ts−1W

(1)
r+1,r+1 as

P s
q,r. By Lemma 9.5, we obtain

[W (1)
r,q , P

s
q,r]− [W (1)

r,q t, P
s−1
q,r ]

= −(−1)p(q)lαW (1)
r,r t

s−1 + δs,1(−1)p(er,r+1)+p(q)
lαW

(1)
r+1,r+1

+ (−1)p(eq,r)W (1)
q,r t

s−1W (1)
r,q −W (1)

r,q W
(1)
q,r t

s−1.

Then, by Lemma 9.5 and Corollary 9.8, we have

[W (1)
r,q ,W

(2)
q,r t

s − (−1)p(r)P s
q,r]− [W (1)

r,q t,W
(2)
q,r t

s−1 − (−1)p(r)P s−1
q,r ]

= −(l − 1)αW (1)
q,q t

s−1 + (−1)p(eq,r)lαW (1)
r,r t

s−1 − δs,1(−1)p(eq,r+1)lαW
(1)
r+1,r+1

− (−1)p(q)W (1)
q,r t

s−1W (1)
r,q + (−1)p(r)W (1)

r,q W
(1)
q,r t

s−1

= αW (1)
q,q t

s−1 − lα(W (1)
q,q t

s−1 − (−1)p(eq,r)W (1)
r,r t

s−1)− δs,1(−1)p(eq,r+1)lαW
(1)
r+1,r+1

− (−1)p(q)W (1)
q,r t

s−1W (1)
r,q + (−1)p(r)W (1)

r,q W
(1)
q,r t

s−1. (10.45)

We find that αW
(1)
q,q ts−1− δs,1(−1)p(eq,r+1)lαW

(1)
r+1,r+1 is contained in the completion of the image

of Φ by (10.45), we have shown that the completion of the image of Φ contains W
(1)
q,q ts.

Since we have already shown that the completion of the image of Φ contains {W (1)
i,j t

s | 1 ≤ i, j ≤
m + n}, we find that the completion of the image of Φ contains ((−1)p(i)W (2)

i,i − (−1)p(j)W (2)
j,j )t

and W
(2)
i,i±1t for all 1 ≤ i, j ≤ m + n by the definition of Φ(Hi,1) and Φ(X±

i,1). Since there exists
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a pair (i, j) such that p(i) = p(j), it is enough to prove that W
(2)
i,j t

s (i 6= j), ((−1)p(i)W (2)
i,i −

(−1)p(j)W (2)
j,j )t

s, W
(1)
j,j t

s, and W
(2)
i,i t

s +W
(2)
j,j t

s are contained in the image of the completion of Φ.

Next, we show that the completion of the image of Φ contains W
(2)
i,j t

s (i 6= j). By Corollary 9.8,
we have

[W
(1)
i,j t

s−1, ((−1)p(j)W (2)
j,j − (−1)p(j+1)

W
(2)
j+1,j+1)t] = −(−1)

p(j)
W

(2)
i,j t

s (if i 6= j, j + 1),

[W
(1)
j+1,jt

s−1, ((−1)p(j)W (2)
j,j − (−1)p(j−1)

W
(2)
j−1,j−1)t] = −(−1)

p(j)
W

(2)
j+1,jt

s.

Thus, W
(2)
i,j t

s (i 6= j) is contained in the completion of the image of Φ. By (9.3), we obtain

[((−1)p(i)W (2)
i,i − (−1)p(j)W (2)

j,j )t, ((−1)
p(i)

W
(2)
i,i − (−1)p(j)W (2)

j,j )t
s]

− [((−1)p(i)W (2)
i,i − (−1)p(j)W (2)

j,j ), ((−1)
p(i)

W
(2)
i,i − (−1)p(j)W (2)

j,j )t
s+1]

= ((−1)p(i)W (2)
i,i − (−1)p(j)W (2)

j,j )(0)((−1)
p(i)

W
(2)
i,i − (−1)p(j)W (2)

j,j )t
s+1

+ ((−1)p(i)W (2)
i,i − (−1)p(j)W (2)

j,j )(1)((−1)
p(i)

W
(2)
i,i − (−1)p(j)W (2)

j,j )t
s

− ((−1)p(i)W (2)
i,i − (−1)p(j)W (2)

j,j )(0)((−1)
p(i)

W
(2)
i,i − (−1)p(j)W (2)

j,j )t
s+1

= ((−1)p(i)W (2)
i,i − (−1)p(j)W (2)

j,j )(1)((−1)
p(i)

W
(2)
i,i − (−1)p(j)W (2)

j,j )t
s.

By Lemma 9.9, provided that i 6= j, it is equal to

− 2α(W
(2)
i,i +W

(2)
j,j )t

s − 2(−1)p(i)W (2)
i,i − 2(−1)p(j)W (2)

j,j + 2((−1)p(i)W (2)
i,i + (−1)p(j)W (2)

j,j )t
s

+ (the terms consisting of {W (1)
i,j (1 ≤ i, j ≤ m+ n), W

(2)
i,j (i 6= j)})

= −2α(W (2)
i,i +W

(2)
j,j )t

s

+ (the terms consisting of {W (1)
i,j (1 ≤ i, j ≤ m+ n), W

(2)
i,j (i 6= j)}).

Thus, the completion of the image of Φ contains W
(2)
i,i t

s +W
(2)
j,j t

s.

We obtain the following theorem in the similar proof as that of Theorem 10.1 and Theo-
rem 10.44.

Theorem 10.46. We assume that m ≥ 3 and l ≥ 2. Let us set

ε1 =
k + (l − 1)m

m
, ε2 = −1− k + (l − 1)m

m
.

Then, there exists an algebra homomorphism

Φ: Yε1,ε2(ŝl(m))→ U(Wk(gl(ml), (lm)))

determined by the same formula as that of Theorem 10.1 under the assumption that n = 0.
Moreover, the image of Φ is dense in U(Wk(gl(ml), (lm))) provided that k + (l − 1)m 6= 0.

11 Rectangular W -algebras of type D

For all n ∈ Z>0, let In be {−n + 1,−n + 3, . . . , n − 1}. Then, gl(n) has a basis {ei,j | i, j ∈ In},
where ei,j is a matrix unit. Using an n × n matrix Jn ∈ gl(n) whose (i, j) component is equal
to δi,−j , we can set so(n) as {x ∈ gl(n) | xTJn + Jnx = 0}, where xT is the transpose of x. We
remark that so(n) is not simple but reductive in the sense of this definition. Under this notation,
so(n) is spanned by the set of matrices {fi,j = ei,j − e−j,−i | i, j ∈ In}.

In this paper, we suppose that l and n are even positive. For all a ∈ Inl, we take row(a) ∈ In
and col(a) ∈ Il such that a = (col(a))n+ row(a). By the definition of row(a) and col(a), we have
row(−a) = − row(a) and col(−a) = − col(a).
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We take a nilpotent element f as follows;

f =
∑

a,b∈Inl

row(a)=row(b)
col(b)+2=col(a)≥2

fa,b +
∑

a,b∈Inl

row(a)=row(b)>0
col(b)+2=col(a)=1

fa,b.

We also set
gp =

⊕
a,b∈Inl,

col(b)−col(a)=p

Cfa,b ⊂ so(nl).

and fix the sl2-triple (x, e, f) such that

gp = {y ∈ so(nl) | [x, y] = py}.

Let b =
⊕
r≤0

gr and c =
⊕
r ̸=0

gr, then b and c are subalgebras of so(nl). We take an invariant inner

product on so(nl) by

(fa1,b1 , fa2,b2)

= k(δa1,b2δb1,a2
− δa1+a2,0δb1+b2,0) + δa1,b1δa2,b2(δ(col(a1) col(a2) > 0)− δ(col(a1) col(a2) < 0)).

We fix some notations about vertex algebras. For a vertex algebra V , we denote the generating

field associated with v ∈ V by v(z) =
∑
n∈Z

v(n)z
−n−1 and the vacuum vector (resp. the translation

operator) by |0〉 (resp. ∂). We also denote the OPE of u, v ∈ V by

u(z)v(w) ∼
∑
s≥0

(u(s)v)(w)

(z − w)s+1
.

There exists a non-degenerate invariant inner product on so(nl) determined by

κ(fa1,b1 , fa2,b2) = (δa1,b2δb1,a2
− δa1+a2,0δb1+b2,0)α+ δa1,b1δa2,b2(δcol(a1),col(a2) − δcol(a1)+col(a2),0),

where α = k + (l− 1)n− 2. Let b̂ = b[t±1]⊕Cy be the affinization of b associated with the inner

product κ. We define a left b̂-module V κ(b) as U(b̂)/U(b̂)(b[t]⊕C(y− 1)) ∼= U(b[t−1]t−1). Then,
V κ(b) has a vertex algebra structure whose vacuum vector is 1 and the generating field (ut−1)(z)

is equal to
∑
s∈Z

(uts)z−s−1 for all u ∈ b. We denote the generating field (ut−1)(z) also by u(z). We

call V κ(b) the universal affine vertex algebra associated with (b, κ). By the definition of V κ(b),
generating fields u(z) and v(z) satisfy

u(z)v(w) ∼ [u, v](w)

z − w
+

κ(u, v)

(z − w)2
(11.1)

for all u, v ∈ b.
Let a be a Lie superalgebra generated by {J (u), ψv | u ∈ b, v ∈ c} with the following commutator

relations;

[J (u), J (v)] = J ([u,v]), [J (u), ψv] = ψ[u,v], [ψu, ψv] = 0,

where J (u) is an even element and ψv is an odd element. We define a vertex algebra V κ̃(a)
associated with a Lie superalgebra a and the inner product on a determined by

κ̃(J (u), J (v)) = κ(u, v), κ̃(J (u), ψv) = κ̃(ψu, ψv) = 0.
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In this section, we regard V κ̃(a) (resp. V κ(b)) as a non-associative superalgebra whose product
· is defined by u · v = u(−1)v. In order to simplify the notation, we denote J (u)ts ∈ V κ̃(a) by u[s]
and set

î =

{
0 if i ≥ 0,

1 if i < 0.

By [23], Wk(so(nl), (ln)) can be realized as a vertex subalgebra of V κ(b).

Definition 11.2. We define Wk(so(nl), (ln)) as

Wk(so(nl), (ln)) = {y ∈ V κ(b) | d0(y) = 0},

where d0 : V
κ(b)→ V κ̃(a) is an odd differential determined by

[d0, 1] = 0, [d0, ∂] = 0, (11.3)

[d0, fa,b[−1]]

=
∑

col(b)≤col(c)<col(a)

fc,b[−1]ψfa,c
[−1]−

∑
col(b)<col(c)≤col(a)

ψfc,b [−1]fa,c[−1]

+ αψfa,b
[−2] + δ(col(a) > col(−a) > col(b))ψfa,b

[−2] + δ(col(a) ≥ col(−b) > col(b))ψfa,b
[−2]

+ (−1)p̂+2+(p̂+p̂+2)·̂i
ψfa+2n,b

[−1]− (−1)q̂+(q̂+q̂−2)·̂j
ψfa,b−2n

[−1], (11.4)

where i = row(a), j = row(b), p = col(a), q = col(b).

Especially, we have

[d0, fa,b[−1]] = (−1)p̂+2+(p̂+p̂+2)·̂j
ψfa+2n,b

[−1]− (−1)p̂+(p̂+p̂−2)·̂i
ψfa,b−2n

[−1] (11.5)

provided that col(a) = col(b) = p, row(a) = j, row(b) = i and

[d0, fa,b[−1]]

=
∑

col(c)=col(b)

fc,b[−1]ψfa,c [−1]−
∑

col(a)=col(c)

ψfc,b [−1]fa,c[−1] + αψfa,b
[−2]

+ δp,1ψfa,b
[−2] + (−1)p̂+2+(p̂+p̂+2)·̂j

ψfa+2n,b
[−1]− (−1)p̂−2+(p̂−2+p̂−4)·̂i

ψfa,b−2n
[−1], (11.6)

provided that col(a) = col(b) + 2 = p, row(a) = j, row(b) = i.
In the following theorem, we give two kinds of elements of Wk(so(nl), (ln)), which are in fact

generators of Wk(so(nl), (ln)) (see Theorem 11.20).

Theorem 11.7. For i, j ∈ In, the rectangular W -algebra Wk(so(nl), (ln)) has the following ele-
ments;

W̃
(1)
i,j =

∑
row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂·(ĵ+î)
fa,b[−1],

W̃
(2)
i,j = α

∑
row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂·(ĵ+î) p

2
fa,b[−2] +

∑
row(a)=j,row(b)=i,
col(a)=col(b)+2=p

(−1)p̂+p̂·̂j+p̂−2·̂i
fa,b[−1]

+
∑

row(a2)=j,row(b1)=i,
p=col(a1)=col(b1)<col(a2)=col(b2)=q

row(a1)=row(b2)=r

(−1)(r̂+î)·p̂+(ĵ+r̂)·q̂
fa1,b1 [−1]fa2,b2 [−1]

+
1

2

∑
row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂+p̂·(ĵ+î)
fa,b[−2].

76



Proof. By Definition 11.2, it is enough to show that [d0, W̃
(r)
i,j ] = 0. We only show the case when

r = 2. The case when r = 1 is proven in a similar way. By the definition of W̃
(2)
i,j , we have

[d0, W̃
(2)
i,j ]

= [d0, α
∑

row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂·(ĵ+î) p

2
fa,b[−2]] + [d0,

∑
row(a)=j,row(b)=i,
col(a)=col(b)+2=p

(−1)p̂+p̂·̂j+p̂−2·̂i
fa,b[−1]]

+ [d0,
∑

row(a2)=j,row(b1)=i,
p=col(a1)=col(b1)<col(a2)=col(b2)=q

row(a1)=row(b2)=r

(−1)(r̂+î)·p̂+(ĵ+r̂)·q̂
fa1,b1 [−1]fa2,b2 [−1]]

+
1

2
[d0,

∑
row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂+p̂·(ĵ+î)
fa,b[−2]]. (11.8)

We compute each terms in the right hand side of (11.8). First, we compute the first term of the
right hand side of (11.8). By (11.5) and (11.3), we can rewrite it as

α
∑

row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂+2+p̂+2·̂j+p̂·̂i p

2
ψfa+2n,b

[−2]

− α
∑

row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂+p̂−2·̂i+p̂·̂j p

2
ψfa,b−2n

[−2]. (11.9)

Replacing a and b with a+ 2n and b+ 2n, we can rewrite the second term of (11.9) as

α
∑

row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂+2+p̂+2·̂j+p̂·̂i p+ 2

2
ψfa+2n,b

[−2] (11.10)

Since col(a+ 2n) = col(a) + 2, we find that

the first term of the right hand side of (11.8)

= −α
∑

row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂+2+p̂+2·̂j+p̂·̂i
ψfa+2n,b

[−2] (11.11)

by applying (11.10) to (11.9).
Next, we compute the second term of the right hand side of (11.8). By (11.5), we can rewrite

it as ∑
row(a2)=j,row(b1)=i,

p=col(a1)=col(b1)<col(a2)=col(b2)=q
row(a1)=row(b2)=r

(−1)β1ψfa1+2n,b1
[−1]fa2,b2 [−1]

−
∑

row(a2)=j,row(b1)=i,
p=col(a1)=col(b1)≤col(a2)=col(b2)=q

row(a1)=row(b2)=r

(−1)β1ψfa1+2n,b1
[−1]fa2,b2 [−1]

+
∑

row(a2)=j,row(b1)=i,
p=col(a1)=col(b1)≤col(a2)=col(b2)=q

row(a1)=row(b2)=r

(−1)β2fa1,b1 [−1]ψfa2,b2−2n
[−1]
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−
∑

row(a2)=j,row(b1)=i,
p=col(a1)=col(b1)<col(a2)=col(b2)=q

row(a1)=row(b2)=r

(−1)β2fa1,b1 [−1]ψfa2,b2−2n
[−1], (11.12)

where we set

β1 = (r̂ + î) · p̂+ (ĵ + r̂) · q̂ + p̂+ 2 + (p̂+ p̂+ 2) · r̂,

β2 = (r̂ + î) · p̂+ (ĵ + r̂) · q̂ + q̂ + (q̂ + q̂ − 2) · r̂.

By a direct computation, we can rewrite the sum of the first two terms of (11.12) as∑
row(a2)=j,row(b1)=i,

col(a1)+2=col(b1)+2=col(a2)=col(b2)=q
row(a1)=row(b2)

(−1)̂i·q̂−2+ĵ·q̂+q̂
ψfa1+2n,b1

[−1]fa2,b2 [−1] (11.13)

and the sum of the last two terms of (11.12) as

−
∑

row(a2)=j,row(b1)=i,
col(a1)=col(b1)=col(a2)−2=col(b2)−2=p

row(a1)=row(b2)

(−1)̂i·p̂+ĵ·p̂+2+p̂+2
fa1,b1 [−1]ψfa2,b2−2n

[−1]. (11.14)

Adding (11.13) and (11.14), we have

the third term of the right hand side of (11.8)

=
∑

row(a2)=j,row(b1)=i,
col(a1)+2=col(b1)+2=col(a2)=col(b2)=q

row(a1)=row(b2)

(−1)̂i·q̂−2+ĵ·q̂+q̂
ψfa1+2n,b1

[−1]fa2,b2 [−1]]

−
∑

row(a2)=j,row(b1)=i,
col(a1)=col(b1)=col(a2)−2=col(b2)−2=p

row(a1)=row(b2)

(−1)̂i·p̂+ĵ·p̂+2+p̂+2
fa1,b1 [−1]ψfa2,b2−2n

[−1]. (11.15)

Next, we compute the 4-th term of the right hand side of (11.8). By a direct computation, we
obtain

1

2
[d0,

∑
row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂+p̂·(ĵ+î)
fa,b[−2]]

=
1

2

∑
row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂+2+(p̂+p̂+2)ĵ+p̂+p̂·(ĵ+î)
ψa+2n,b[−2]

− 1

2

∑
row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂+(p̂+p̂−2)̂i+p̂+p̂·(ĵ+î)
ψa,b−2n[−2]. (11.16)

By a direct computation, we find that the second term of the right hand side of (11.16) is equal
to

− 1

2

∑
row(a)=j,row(b)=i,
col(a)=col(b)=p

(−1)p̂+2+(p̂+2+p̂)̂i+p̂+2+p̂+2·(ĵ+î)
ψa+2n,b[−2] (11.17)

Then, we have

the third term of the right hand side of (11.8) = −(−1)̂iψn+j,−n+i[−2] (11.18)
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by applying (11.17) to (11.16).
Finally, we compute the second term of (11.8). By (11.6), we can rewrite the right hand side

of the second term of (11.8) as∑
row(a)=j,row(b)=i,

col(a)=col(b)+2=col(c)+2=p

(−1)p̂+p̂·̂j+p̂−2·̂i
fc,b[−1]ψfa,c [−1]

−
∑

row(a)=j,row(b)=i,
col(a)=col(c)=col(b)+2=p

(−1)p̂+p̂·̂j+p̂−2·̂i
ψfc,b [−1]fa,c[−1]

+ α
∑

row(a)=j,row(b)=i,
col(a)=col(b)+2=p

(−1)p̂+p̂·̂j+p̂−2·̂i
ψfa,b

[−2] + (−1)̂iψfn+j,−n+i
[−2]

+
∑

row(a)=j,row(b)=i,
col(a)=col(b)+2=p

(−1)p̂+p̂+2+p̂+2·̂j+p̂−2·̂i
ψfa+2n,b

[−1]

−
∑

row(a)=j,row(b)=i,
col(a)=col(b)+2=p

(−1)p̂+2+p̂+p̂−2·̂i+p̂+2·̂j
ψfa+2n,b

[−1]. (11.19)

We can easily find that the sum of the last two terms of (11.19) is equal to zero. We also find
that the sum of (11.15)(resp. (11.11), (11.18)) and first and second terms (resp. third term, 4-th
term) of (11.19) is equal to zero.

Theorem 11.20. Assume that n ≥ 4 and α 6= 0. The rectangular W -algebra Wk(so(nl), (ln)) is

generated by {W̃ (r)
i,j | 1 ≤ i, j ≤ n, r = 1, 2}.

The proof of Theorem 11.20 is given in the appendix B. We prepare one lemma in order to
prove the main theorem.

Lemma 11.21. (1) The following relations hold;

(W̃
(1)
i,j )(0)W̃

(2)
v,w = δi,wW̃

(2)
v,j − δj,vW̃

(2)
i,w + (−1)̂i+ĵ

δi,−vW̃
(2)
−w,j − (−1)̂i+ĵ

δj,−wW̃
(2)
i,−v,

(W̃ (1)
v,w)(1)W̃

(2)
i,j =

l − 1

2
α(δj,vW̃

(1)
i,w + δi,wW̃

(1)
v,j + δ−w,jW̃

(1)
i,−v + δ−v,iW̃

(1)
−w,j)

+
1

2
(−1)p(j)+p(i)

δv,−iW
(1)
−j,w −

1

2
(−1)p(j)+p(v)

δw,iW
(1)
−j,−v

− 1

2
δv,jW

(1)
i,w +

1

2
(−1)p(v)+p(w)

δ−w,jW
(1)
i,−v,

(W̃ (1)
v,w)(s)W̃

(2)
i,j = 0 (s ≥ 2).

(2) We define a grading on V κ(b) by setting deg(x[−s]) = j if x ∈ b ∩ gj. Then, we obtain

(W̃
(2)
i,i )(1)W̃

(2)
j,j = (1 + αδi,j − α(−1)̂i+ĵ

δi,−j)(W̃
(2)
i,i + W̃

(2)
j,j ) + higher terms.

The proof is due to a direct computation. We omit it.

12 Twisted affine Yangian

Let us recall the Drinfeld J presentation of the finite Yangian Y~(g). It is the original definition
of Drinfeld ([11]).
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Definition 12.1 ([10], Section 12). Suppose that g is a Kac-Moody Lie algebra of finite type.
The Yangian Y~(g) is the associative algbra over C with generators {x, J(x)|x ∈ g} subject to the
following defining relations:

xy − yx = [x, y] for all x, y ∈ g,

J(ax+ by) = aJ(x) + bJ(y) for all a, b ∈ C,
J([x, y]) = [x, J(y)],

[J(x), J([y, z])] + [J(z), J([x, y])] + [J(y), J([z, x])] = ~2
∑

a,b,c∈A

([x, ξa], [[y, ξb], [z, ξc]]){ξa, ξb, ξc},

[[J(x), J(y)], [z, J(w)]] + [[J(z), J(w)], [x, J(y)]]

= ~2
∑

a,b,c∈A

(
([x, ξa], [[y, ξb], [[z, w], ξc]]) + ([z, ξa], [[w, ξb], [[x, y], ξc]])

)
{ξa, ξb, J(ξc)},

where ( , ) is a non-zero invariant bilinear form, {ξa}a∈A is an orthonormal basis of g and

{ξa, ξb, ξc} =
1

24

∑
π∈G ξπ(a)ξπ(b)ξπ(c), G being the group of permutations of {a, b, c}. By Def-

inition 12.1,we note that there exists an isomorphism of χ~ : Y~(g) → Y−~(g) determined by
x 7→ x and J(x) 7→ J(x).

Belliard and Regelskis ([4]) gave generators of twisted Yangians in the words of the Drinfeld
J presentation.

Theorem 12.2 ([4], Theorem 5.5). Let
(
g, gθ

)
be a symmetric pair of a finite-dimensional simple

complex Lie algebra g of rank(g) ≥ 2 with respect to the involution θ, such that gθ is the positive
eigenspace of θ. Let {Xa} (resp. {Yp}) be a basis of gθ (resp. {x ∈ g | θ(x) = −x}). We
decompose the Cartan element of g into Ck+Cm, where Ck (resp. Cm) is an element of U(k) (resp.
C[m]). Then, the twisted yangian T~(g, g

θ) is isomorphic to the subalgebra of Yh(g) generated by
{Xa, B(Yp)}, where

B(Yp) = J(Yp) +
~
4

[
Yp, Ck

]
.

Belliard and Regelskis also gave the Drinfeld J presentation of twisted Yangians whose gener-
ators are {Xa, B(Yp)}. Its defining relations contain the relation [Xa, B(Yp)] = B([Xa, Yp]). By
Theorem 12.2, we can realize T~(g, g

θ) as a subalgebra of Y−~(g) via χ~.
There exists the following symmetric pair decomposition of sl(n);

sl(n) =
⊕

i,j∈In

C(ei,j − (−1)̂i+ĵ
e−j,−i)⊕

( ⊕
i,j∈In

C(ei,j + (−1)̂i+ĵ
e−j,−i) ∩ sl(n)

)
,

Let k be
⊕

i,j∈In

C(ei,j − (−1)̂i+ĵ
e−j,−i) and m be

⊕
i,j∈In

C(ei,j + (−1)̂i+ĵ
e−j,−i) ∩ sl(n). Setting

Hi = ei,i − ei+2,i+2 ∈ sl(n), by Theorem 12.2, we can rewrite B(Hi −H−i−2) as

J(Hi −H−i−2) +
~
8

[
Hi −H−i−2,

∑
u>v

(eu,v − (−1)û+v̂
e−v,−u)(ev,u − (−1)û+v̂

e−u,−v)
]
.

In a similar way to Theorem 12.2, we define the twisted affine Yangian of type D. We have a
decomposition ŝl(n) = k̂⊕m⊗C[t±1]. We remark that k̂ is isomorphic to ŝo(n) and m⊗C[t±1] =

[hi − h−i−2, k̂] + [[hi − h−i−2, k̂], k̂].

By the similar formula in Section 3 of [21], we can define J(hi) as an element of Ỹε1,ε2(ŝl(n));

J(hi) = hi,1 +
~
2

∑
γ∈∆+

re

(αi, γ)x−γxγ −
~
2
h2i ,

80



where ∆+
re is a set of positive real root of ŝl(n) and xγ is a root γ element such that (xγ , x−γ) = 1.

By the definition of J(hi) and Theorem 4.3, we obtain

∆̃(J(hi)) = □(J(hi)) +
~
2

∑
γ∈∆+

re

(αi, γ)(xγ ⊗ x−γ − x−γ ⊗ xγ)

= □(J(hi)) +
~
2

∑
γ∈∆re

[hi, xγ ]⊗ x−γ , (12.3)

where ∆re is a set of real roots of ŝl(n).

Definition 12.4. Let us set B(hi − h−i−2) as

J(hi − h−i−2) +
~
8
[
∑
u<v
m≥1

(eu,v − (−1)û+v̂
e−v,−u)t

−m(ev,u − (−1)û+v̂
e−u,−v)t

m, hi − h−i−2]

+
~
8
[
∑
u>v
m≥0

(eu,v − (−1)û+v̂
e−v,−u)t

−m(ev,u − (−1)û+v̂
e−u,−v)t

m, hi − h−i−2].

(12.5)

We define TYε1,ε2(ŝo(n)) as a subalgebra of Ỹε1,ε2(ŝl(n)) topologically generated by k̂ and B(hi −
h−i−2).

By the definition of TYε1,ε2(ŝo(n)), the universal enveloping algebra of k̂ can be embedded into
TYε1,ε2(ŝo(n)).

Proposition 12.6. The restriction of the coproduct ∆̃ : Ỹε1,ε2(ŝl(n))→ Yε1,ε2(ŝl(n))⊗̂Yε1,ε2(ŝl(n))
gives a coideal structure to TYε1,ε2(ŝo(n)). That is, we have

∆̃(TYε1,ε2(ŝo(n))) ⊂ TYε1,ε2(ŝo(n))⊗̂Yε1,ε2(ŝl(n)),

where the completed tensor product Yε1,ε2(ŝl(n))⊗̂TYε1,ε2(ŝo(n)) is defined in the same way as

Yε1,ε2(ŝl(n))⊗̂Yε1,ε2(ŝl(n)).

Proof. It is enough to show that ∆̃(B(hi−h−i−2)) ⊂ TYε1,ε2(ŝo(n))⊗̂Yε1,ε2(ŝl(n)). By the defini-
tion of B(hi − h−i−2) and (12.3), we find that

∆̃(B(hi − h−i−2)) = □(B(hi − h−i−2)) + Ci + C−i − Ci+2 − C−i−2 +Di +D−i −Di+2 −D−i−2,

where

Ci =
~
2

∑
γ∈∆re

[ei,i, xγ ]⊗ x−γ ,

Di =
~
8
[
∑
u ̸=v
m∈Z

(eu,v − (−1)û+v̂
e−v,−u)t

−m ⊗ (ev,u − (−1)û+v̂
e−u,−v)t

m,□ei,i].

By a direct computation, we obtain

Ci = −
~
2

∑
u ̸=i
s∈Z

eu,it
−s ⊗ ei,uts +

~
2

∑
u̸=i
s∈Z

ei,ut
s+1 ⊗ eu,it−s−1. (12.7)

By a direct computation, we also obtain

Di = −
~
4

∑
v ̸=i
s∈Z

(−1)v̂+î
e−v,−it

−s ⊗ ev,its −
~
4

∑
v ̸=−i
s∈Z

(−1)v̂+−̂i
e−v,it

−s ⊗ ev,−it
s
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+
~
4

∑
u̸=i
s∈Z

(−1)û+î
e−i,−ut

−s ⊗ ei,uts +
~
4

∑
u̸=−i
s∈Z

(−1)û+−̂i
ei,−ut

−s ⊗ e−i,ut
s. (12.8)

By setting

Fi = −
~
2

∑
v ̸=i
s∈Z

(−1)v̂+î
e−v,−it

−s ⊗ ev,its +
~
2

∑
u ̸=i
s∈Z

(−1)û+î
e−i,−ut

−s ⊗ ei,uts, (12.9)

we obtain Di +D−i = Fi + F−i by a direct computation. We denote the a-th term of the right
hand side of (12.7) (resp. (12.9)) by Ci,a (resp. Fi,a). Then, we find that

Ci,1 + Fi,2 = −~
2

∑
u ̸=i
s∈Z

(eu,it
−s − (−1)û+î

e−i,−ut
−s)⊗ ei,uts,

Ci,2 + Fi,1 =
~
2

∑
u ̸=i
s∈Z

(ei,ut
s − (−1)û+î

e−i,−ut
s)⊗ eu,it−s.

Since Ci,1 + Fi,2 and Ci,2 + Fi,1 are contained in TYε1,ε2(ŝo(n))⊗̂Yε1,ε2(ŝl(n)), we find that

∆̃(B(hi − h−i−2)) = □(B(hi − h−i−2)) + Ci + C−i − Ci+2 − C−i−2 + Fi + F−i − Fi+2 − F−i−2

is contained in TYε1,ε2(ŝo(n))⊗̂Yε1,ε2(ŝl(n)).

13 Twisted affine Yangians and rectangular W -algebras of
type D

Before starting the homomorohism from twisted affine Yangians to universal enveloping algebras
of rectangular W -algebras of type D, we recall the another proof of Theorem 10.1 given in [31].
In [31], we construct Φ by using the coproduct and evaluation map for the affine super Yangian
and the Miura map of a rectangular W -superalgebra.

The projection gl(nl)→ g0 = gl(n)⊗l induces the Miura transformation ([24])

µ : Wk(gl(ml|nl), (l(m|n)))→ V κ(gl(m|n)⊗l).

The Miura transformation also induces the injective homomorphism ([13], [2])

µ̃ : U(Wk(gl(ml|nl), (l(m|n))))→ U(ĝl(m|n))⊗l
comp,

where U(ĝl(m|n))⊗l
comp is the standard degreewise completion of U(ĝl(n))⊗l in the sense of [33].

By the definition of µ, we have

µ̃(W
(1)
i,j t

s) =
∑

1≤r≤l

e
(r)
j,i t

s (13.1)

and

µ̃(W
(2)
i,j t) =

∑
1≤r1<r2≤l′

s∈Z
1≤u≤m+n

(−1)p(u)+p(Eu,i)p(Eu,j)e
(r1)
u,i t

−se
(r2)
j,u t

s −
∑

1≤r≤l

(r − 1)αE
[r]
j,i . (13.2)

Theorem 13.3. [Kodera-Ueda, [31]] There exists an algebra homomorphism

Φ: Yε1,ε2(ŝl(m|n))→ U(Wk(gl(ml|nl), (l(m|n)))),
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satisfying the commutator diagram

Yε1,ε2(ŝl(m|n))

l︷ ︸︸ ︷
Yε1,ε2(ŝl(m|n))⊗̂ · · · ⊗̂Yε1,ε2(ŝl(m|n))

⟲

U(W k(gl(lm|ln), (l(m|n)))) U(ĝl(m|n))⊗̂ · · · ⊗̂U(ĝl(m|n))︸ ︷︷ ︸
l

.

∆̂l

Φ̃ (ev0 ⊗ evα ⊗···⊗ev(l−1)α)

µ̃

Since there exists an isomorphism Yε1,ε2(ŝl(m|n)) → Yxε1,xε2(ŝl(m|n)) determined by hi,r 7→
xrhi,r and x±i,r 7→ xrx±i,r for all x 6= 0, it is enough to assume that ~ = ε1 + ε2 = −1. Setting

~ = −1 in Theorem 13.3, we find that Φ̃ is equal to Φ. Thus, the proof of Theorem 13.3 becomes
another proof of Theorem 10.1.

Next, we construct a homomorphsim from the twisted affine Yangian to the universal enveloping

algebra of the rectangular W -algebra of type D. Let l′ be
l

2
. There exists an isomorphism

Ψ: g0 → gl⊗l′

n = L determined by

Φ(fa,b) = erow(a),row(b)[−1] if col(a) = col(b) > 0.

We denote 1⊗r−1 ⊗ ei,j ⊗ 1⊗l′−r by e
(r)
i,j . The projection so(nl)→ g0 induces the Miura transfor-

mation ([24])

µD : Wk(so(nl), (ln))→ V Γ(L),

where

Γ(e
(r1)
a,b , e

(r2)
c,d ) = δa,dδb,cδr1,r2α+ δa,bδc,dδr1,r2 .

The Miura transformation also induces the injective homomorphism ([13], [2])

µ̃D : U(Wk(so(nl), (ln)))→ U(ĝl(n))⊗l
comp,

where U(ĝl(n))⊗l
comp is the standard degreewise completion of U(ĝl(n))⊗l in the sense of [33]. By

the definition of µD, we have

µ̃D(W̃
(1)
i,j t

s) =
∑

1≤r≤l′

(e
(r)
j,i − (−1)̂i+ĵ

e
(r)
−i,−j)t

s

and

µ̃D(W̃
(2)
i,i t) =

∑
1≤r1<r2≤l′

s∈Z

e
(r1)
u,i t

−se
(r2)
i,u ts +

∑
1≤r1<r2≤l′

s∈Z

e
(r1)
u,−it

−se
(r2)
−i,ut

s

−
∑

1≤r1,r2≤l′

u<i,s≥0

(−1)û+î
e
(r1)
−i,−ut

−se
(r2)
i,u ts −

∑
r1,r2
u<i
s≥1

(−1)û+î
e
(r1)
i,u t−se

(r2)
−i,−ut

s

−
∑

1≤r1,r2≤l′

u>i,s≥0

(−1)û+î
e
(r1)
−i,−ut

−se
(r2)
i,u ts −

∑
1≤r1,r2≤l′

u>i,s≥1

(−1)û+î
e
(r1)
i,u t−se

(r2)
−i,−ut

s

−
∑

1≤r1,r2≤l′

s≥0

e
(r1)
−i,−it

−se
(r2)
i,i ts −

∑
1≤r1,r2≤l′

s≥1

e
(r1)
i,i t−se

(r2)
−i,−it

s

−
∑

1≤r≤l′

(2r + 1)α+ 1

2
e
(r)
i,i −

∑
1≤r≤l′

(2r + 1)α+ 1

2
e
(r)
−i,−i. (13.4)
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Theorem 13.5. For n ≥ 4 and l ≥ 2, there exists a homomorphism

Φ: TY (ŝo(n))→ U(Wk(so(nl), (ln)))

defined by µ̃D ◦ Φ = (
l⊗

r=1
evξr ) ◦ ∆̃l, where ξr =

(2r + 1)α+ 1

2
~.

Proof. It is enough to show that ((
l⊗

r=1
evξr ) ◦ ∆̃l)(B(hi − h−i−2)) can be written by the sum of

the image of µ̃D.
By the proof of Proposition 12.6, we obtain

((

l⊗
r=1

evξr ) ◦ ∆̃l)(B(hi − h−i−2))

= □l(ev0(B(hi − h−i−2))) + Cl
i + Cl

−i − Cl
i+2 − Cl

−i−2 + F l
i + F l

−i − F l
i+2 − F l

−i−2 +Gi −Gi+2,

where

Cl
i = −

~
2

∑
1≤r1<r2≤l′

u ̸=i,s∈Z

e
(r1)
u,i t

−se
(r2)
i,u ts +

~
2

∑
1≤r1<r2≤l′

u̸=i,s∈Z

e
(r1)
i,u tse

(r2)
u,i t

−s, (13.6)

F l
i = −~

2

∑
1≤r1<r2≤l′

v ̸=i,s∈Z

(−1)v̂+î
e
(r1)
−v,−it

−se
(r2)
v,i t

s +
~
2

∑
1≤r1<r2≤l′

u̸=i,s∈Z

(−1)û+î
e
(r1)
−i,−ut

−se
(r2)
i,u ts, (13.7)

Gi = ~
∑

1≤r≤l′

(2r + 1)α+ 1

2
e
(r)
i,i + ~

∑
1≤r≤l′

(2r + 1)α+ 1

2
e
(r)
−i,−i. (13.8)

By the definition of Cl
i and F

l
i , we have

Cl
−i = −

~
2

∑
1≤r1<r2≤l′

u̸=i,s∈Z

e
(r1)
−u,−it

−se
(r2)
−i,−ut

s +
~
2

∑
1≤r1<r2≤l′

u ̸=i,s∈Z

e
(r1)
−i,−ut

se
(r2)
−u,−it

−s, (13.9)

F l
−i = −

~
2

∑
1≤r1<r2≤l′

v ̸=i,s∈Z

(−1)v̂+î
e
(r1)
v,i t

−s ⊗ e(r2)v,i t
s +

~
2

∑
1≤r1<r2≤l′

u̸=i,s∈Z

(−1)û+î
e
(r1)
i,u t−s ⊗ e(r2)−i,−ut

s. (13.10)

Thus, it is enough to prove that Cl
i+C

l
−i+F

l
i +F

l
−i+Gi+~(µ̃D(W̃

(2)
i,i t+W̃

(2)
−i,−it)) can be written

by the sum of the image of µ̃D. We compute Cl
i +C

l
−i+F

l
i +F

l
−i+Gi+~(µ̃D(W̃

(2)
i,i t+ W̃

(2)
−i,−it)).

We denote the i-th term of (equation number) by (equation number)i. By a direct computation,
we obtain

(13.6)1 + ~(13.4)1 = ~
∑

1≤r1<r2≤l′

s∈Z

e
(r1)
i,i t−se

(r2)
i,i ts +

~
2

∑
1≤r1<r2≤l′

s∈Z,u̸=i

e
(r1)
u,i t

−se
(r2)
i,u ts, (13.11)

(13.9)1 + ~(13.4)2 = ~
∑

1≤r1<r2≤l
s∈Z

e
(r1)
−i,−it

−se
(r2)
−i,−it

s +
~
2

∑
1≤r1<r2≤l′

s∈Z,u̸=−i

e
(r1)
u,−it

−se
(r2)
−i,ut

s, (13.12)

(13.7)2 + (13.10)2 + ~(13.4)3 + ~(13.4)4 + ~(13.4)5 + ~(13.4)6
= −~

∑
1≤r≤l′,
u<i,s≥0

(−1)û+î
e
(r)
−i,−ut

−se
(r)
i,ut

s − ~
∑

1≤r≤l′,
u<i,s≥1

(−1)û+î
e
(r)
i,ut

−se
(r)
−i,−ut

s

− ~
∑

1≤r≤l′

u>i,s≥0

(−1)û+î
e
(r)
−i,−ut

−se
(r)
i,ut

s − ~
∑

1≤r≤l′

u>i,s≥1

(−1)û+î
e
(r1)
i,u t−se

(r1)
−i,−ut

s
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− ~
2

∑
1≤r1<r2≤l′

u ̸=i,s∈Z

(−1)û+î
e
(r1)
−i,−ut

−se
(r2)
i,u ts − ~

2

∑
1≤r1<r2≤l′

u ̸=i,s∈Z

(−1)û+î
e
(r1)
i,u t−se

(r2)
−i,−ut

s, (13.13)

~(13.4)9 + ~(13.4)10 +Gi = 0. (13.14)

By a direct computation, we obtain

(13.6)2 + (13.9)2 + (13.7)1 + (13.10)1 + (13.11)2 + (13.12)2 + (13.13)5 + (13.13)6

= (∆̃l −□l)
(~
2

∑
v ̸=i
s≥0

(ei,v − e−v,−i)t
−s(ev,i − e−i,−v)t

s
)

+ (∆̃l −□l)
(~
2

∑
v ̸=i
s≥1

(ei,v − e−v,−i)t
−s(ev,i − e−i,−v)t

s
)
, (13.15)

~(13.4)7 + ~(13.4)8 + (13.11)1 + (13.12)1

= (∆̃l −□l)
(
− ~

2
(ei,i − e−i,−i)

2 + ~
∑
s≥0

(ei,i − e−i,−i)t
−s(ei,i − e−i,−i)t

s
)

−□l(
∑
s≥0

e−i,−it
−sei,it

s −
∑
s≥1

ei,it
−se−i,−it

s). (13.16)

Then, we obtain

((

l⊗
r=1

evξr ) ◦ ∆̃l)(B(hi − h−i−2)) + ~(µ̃D(W̃
(2)
i,i t+ W̃

(2)
−i,−it))

= □l(ev0(B(hi − h−i−2))−□l(~
∑

u<i,s≥0

(−1)û+î
e−i,−ut

−se
(r)
i,ut

s)

−□l(~
∑

u<i,s≥1

(−1)û+î
ei,ut

−se−i,−ut
s)

−□l(~
∑

u>i,s≥0

(−1)û+î
e−i,−ut

−sei,ut
s)−□l(~

∑
u>i,s≥1

(−1)û+î
ei,ut

−se−i,−ut
s)

+ (∆̃l −□l)
(~
2

∑
v ̸=i
s≥0

(ei,v − e−v,−i)t
−s(ev,i − e−i,−v)t

s
)

+ (∆̃l −□l)
(~
2

∑
v ̸=i
s≥1

(ei,v − e−v,−i)t
−s(ev,i − e−i,−v)t

s
)

+ (∆̃l −□l)
(
− ~

2
(ei,i − e−i,−i)

2 + ~
∑
s≥0

(ei,i − e−i,−i)t
−s(ei,i − e−i,−i)t

s
)

−□l(~
∑
s≥0

e−i,−it
−sei,it

s + ~
∑
s≥1

ei,it
−se−i,−it

s).

Thus, it is enough to show that

ev0(B(hi − h−i−2))− ~
∑

u<i,s≥0

(−1)û+î
e−i,−ut

−se
(r)
i,ut

s − ~
∑

u<i,s≥1

(−1)û+î
ei,ut

−se−i,−ut
s

− ~
∑

u>i,s≥0

(−1)û+î
e−i,−ut

−sei,ut
s − ~

∑
u>i,s≥1

(−1)û+î
ei,ut

−se−i,−ut
s

− ~
∑
s≥0

e−i,−it
−sei,it

s + ~
∑
s≥1

ei,it
−se−i,−it

s (13.17)
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is equal to

~
2

∑
v ̸=i
s≥0

(ei,v − e−v,−i)t
−s(ev,i − e−i,−v)t

s +
~
2

∑
v ̸=i
s≥1

(ei,v − e−v,−i)t
−s(ev,i − e−i,−v)t

s

− ~
2
(ei,i − e−i,−i)

2 + ~
∑
s≥0

(ei,i − e−i,−i)t
−s(ei,i − e−i,−i)t

s.

Here after, we prove this statement. By a direct computation, we obtain

ev0(J(hi)) = Ai −Ai+2,

where

Ai = −
~
2
e2i,i +

~
2

∑
u>i
s≥0

eu,it
−sei,ut

s +
~
2

∑
i>v
s≥0

ei,vt
−sev,it

s

+
~
2

∑
u<i
s≥1

eu,it
−sei,ut

s +
~
2

∑
i<v
s≥1

ei,vt
−sev,it

s + ~
∑
s≥0

ei,it
−sei,it

s. (13.18)

By changing i to −i, we have

A−i = −
~
2
e2−i,−i +

~
2

∑
u<i
s≥0

e−u,−it
−se−i,−ut

s +
~
2

∑
i<v
s≥0

e−i,−vt
−se−v,−it

s

+
~
2

∑
u>i
s≥1

e−u,−it
−se−i,−ut

s +
~
2

∑
i>v
s≥1

e−i,−vt
−se−v,−it

s + ~
∑
s≥0

e−i,−it
−se−i,−it

s. (13.19)

By a direct computation, we also obtain

~
8
[
∑
u<v
s≥1

(eu,v − (−1)û+v̂
e−v,−u)t

−s(ev,u − (−1)û+v̂
e−u,−v)t

s, ei,i + e−i,−i]

=
~
2

∑
u<i
s≥1

(−1)û+î
e−i,−ut

−sei,ut
s − ~

2

∑
i<v
s≥1

(−1)̂i+v̂
e−v,−it

−sev,it
s

+
~
2

∑
u<−i
s≥1

(−1)û+î+1
ei,−ut

−se−i,ut
s − ~

2

∑
−i<v
s≥1

(−1)̂i+v̂+1
e−v,it

−sev,−it
s, (13.20)

~
8
[
∑
u>v
s≥0

(eu,v − (−1)û+v̂
e−v,−u)t

−s(ev,u − (−1)û+v̂
e−u,−v)t

s, ei,i + e−i,−i]

=
~
2

∑
u>i
s≥0

(−1)û+î
e−i,−ut

−sei,ut
s − ~

2

∑
i>v
s≥0

(−1)̂i+v̂
e−v,−it

−sev,it
s

+
~
2

∑
u>−i
s≥0

(−1)û+î+1
ei,−ut

−se−i,ut
s − ~

2

∑
−i>v
s≥0

(−1)̂i+v̂+1
e−v,it

−sev,−it
s, (13.21)

Then, we have

(13.17)4 + (13.21)1 + (13.21)4 + (13.18)2 + (13.19)3

=
~
2

∑
u>i
s≥0

(eu,i − (−1)̂i+û
e−i,−u)t

−s(ei,u − (−1)̂i+û
e−u,−i)

s,
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(13.17)2 + (13.21)2 + (13.21)3 + (13.18)3 + (13.19)4

=
~
2

∑
i>v
s≥0

(ei,v − (−1)̂i+û
e−v,−i)t

−s(ev,i − (−1)̂i+û
e−i,−v)t

s,

(13.17)3 + (13.20)1 + (13.20)4 + (13.18)4 + (13.19)5

=
~
2

∑
u<i
s≥1

(eu,i − (−1)̂i+û
e−i,−u)t

−s(ei,u − (−1)̂i+û
e−u,−i)t

s,

(13.17)5 + (13.20)2 + (13.20)3 + (13.18)5 + (13.19)2

=
~
2

∑
i<v
s≥1

(ei,v − (−1)̂i+û
e−v,−i)t

−s(ev,i − (−1)̂i+û
e−i,−v)t

s,

(13.11)1 + (13.12)1 + (13.4)7 + (13.4)8 + (13.18)1 + (13.18)6 + (13.19)1 + (13.19)6

= −~
2
(ei,i − e−i,−i)

2 + ~
∑
s≥0

(ei,i − e−i,−i)t
−s(ei,i − e−i,−i)t

s.

Adding the above five relations, we complete the proof of Theorem 13.5.

Theorem 13.22. Provided that α ≥ 0, the homomorphism Φ is surjective.

Proof. We denote the image of TY (ŝo(n)) via Φ by ImΦ. By Theorem 11.20, it is enough to show

that {W̃ (r)
i,j t

s | 1 ≤ i, j ≤ n, r = 1, 2, s ∈ Z} is contained in ImΦ. By the definition of Φ(U (̂k)),

ImΦ contains W̃
(1)
j,i t

s for all i 6= j. Take (i, j) such that i 6= ±j,−i − 2. By the definition of
Φ(B(hi − hi+2)), we find that

γi = (W̃
(2)
i,i − W̃

(2)
i+2,i+2)t−

∑
m≥1

W̃
(1)
i,i t

−mW̃
(1)
i,i t

m − 1

2
(W̃

(1)
i,i )

2

+
∑
m≥1

W̃
(1)
i+2,i+2t

−mW̃
(1)
i+2,i+2t

m +
1

2
(W̃

(1)
i+2,i+2)

2

is contained in ImΦ. By Lemma 11.21, we find that [γi, W̃
(1)
j,i t

s] is equal to

γi,s = (1 + δj,i+2 − (−1)p(i)+p(j)
δ−j,i+2)W̃

(2)
j,i t

s+1 +
l − 1

2
sα(1 + δj,i+2 + δ−i,j + δ−j,i+2)W̃

(1)
j,i t

s

+
1

2
sW

(1)
−i,−jt

s +
1

2
δj,−i−2W

(1)
−i−2,i −

1

2
δj,i+2W

(1)
i+2,i

−
∑
m≥1

W̃
(1)
j,i t

−m+sW̃
(1)
i,i t

m −
∑
m≥1

W̃
(1)
i,i t

−mW̃
(1)
j,i t

m+s

− 1

2
(1 + δ−i,j)W̃

(1)
j,i t

sW̃
(1)
i,i −

1

2
(1 + δ−i,j)W̃

(1)
i,i W̃

(1)
j,i t

s

− (δj,i+2 − δj,−i−2)
∑
m≥1

W̃
(1)
i+2,jt

−m+sW̃
(1)
i+2,i+2t

m

− (δj,i+2 − δj,−i−2)
∑
m≥1

W̃
(1)
i+2,i+2t

−mW̃
(1)
i+2,jt

m+s

− 1

2
(δj,i+2 − δj,−i−2)(W̃

(1)
j,i+2t

sW̃
(1)
i+2,i+2 + W̃

(1)
i+2,i+2W̃

(1)
j,i+2t

s) (13.23)

for all i 6= j. Then, by Lemma 11.21, we obtain

[W̃
(1)
i,j t, γi,s]− [W̃

(1)
i,j , γi,s+1]
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=
l − 1

2
α(1 + δj,i+2 − (−1)p(i)+p(j)

δ−j,i+2)(W̃
(1)
i,i + W̃

(1)
j,j )t

s+1 − l

2
αW̃

(1)
i,i t

s+1

+ completion of sum of terms of U (̂k).

Then, we find that W̃
(1)
i,i t

s+1 is contained in ImΦ. Since (W̃
(1)
p,p − W̃ (1)

q,q )ts+1 is contained in ImΦ

for all p, q, we find that W̃
(1)
p,p ts+1 is contained in ImΦ for all p.

Since W̃
(1)
i,j t

s is contained in ImΦ for all i, j, (W̃
(2)
i,i − W̃

(2)
j,j )t is contained in ImΦ. By using

Lemma 11.21 (1), we obtain

[W̃
(1)
j,i t

s, (W̃
(2)
i,i − W̃

(2)
j,j )t]

= (2 + δi,−j(−1)î+ĵ
)W̃

(2)
j,i t

s+1 +
l − 1

2
sα(2 + δi,−j)W̃

(1)
j,i t

s. (13.24)

By (13.24) and (13.23), we find that W̃
(2)
i,j t

s (i 6= j) is contained in ImΦ. By using Lemma 11.21
(1), we have

[W̃
(1)
i,i+2, W̃

(2)
i+2,it

s] = (1 + δ2i+2,0)(W̃
(2)
i+2,i+2 − W̃

(2)
i,i )t

s.

Since W̃
(1)
i,i+2 and W̃

(2)
i+2,it

s are contained in ImΦ, (W̃
(2)
i+2,i+2 − W̃

(2)
i,i )t

s is contained in ImΦ. By
using Lemma 11.21 (1), we obtain

[(W̃
(2)
i,i − W̃

(2)
i+2,i+2)t, (W̃

(2)
i,i − W̃

(2)
i+2,i+2)t

s]− [(W̃
(2)
i,i − W̃

(2)
i+2,i+2), (W̃

(2)
i,i − W̃

(2)
i+2,i+2)t

s+1]

= α(W̃
(2)
i,i + W̃

(2)
i+2,i+2)t

s

for all î = î+ 2. By the assumption α ≥ 0, (W̃
(2)
i,i + W̃

(2)
i+2,i+2)t

s is contained in ImΦ. Since we

have already shown that (W̃
(2)
i,i − W̃

(2)
i+2,i+2)t

s is contained in ImΦ, W̃
(2)
i,i t

s is contained in ImΦ.
This completes the proof.

A The proof of Theorem 8.17

In this section, we prove Theorem 8.17. We define a grading on b by setting deg(x) = j if x ∈ b∩gj .
Since

{
l−r∑
s=1

e(r+s−1)(m+n)+j,(s−1)(m+n)+i | 0 ≤ r ≤ l − 1, 1 ≤ i, j ≤ m+ n}

forms a basis of gl(ml|nl)f = {g ∈ gl(ml|nl)|[f, g] = 0}, it is enough to show that W
(1)
i,j and W

(2)
i,j

generate the term whose form is

l−r∑
s=1

e(r+s−1)(m+n)+j,(s−1)(m+n)+i[−1] + higher terms

for all 0 ≤ r ≤ l − 1, 1 ≤ i, j ≤ m + n by Theorem 4.1 of [27]. We show that W
(1)
i,j and W

(2)
i,j

generate these terms by two claims, that is, Claim A.4 and Claim A.5. In Claim A.4 below, we

show that W
(1)
i,j and W

(2)
i,j generate the term whose form is

(−1)p(i)
l−r∑
s=1

e(r+s−1)(m+n)+i,(s−1)(m+n)+i[−1]

− (−1)p(i+1)
l−r∑
s=1

e(r+s−1)(m+n)+i+1,(s−1)(m+n)+i+1[−1] + higher terms
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or
l−r∑
s=1

e(r+s−1)(m+n)+j,(s−1)(m+n)+i[−1] + higher terms (i 6= j)

for all 0 ≤ r ≤ l − 1. In Claim A.5 below, we prove that W
(1)
i,j and W

(2)
i,j generate the term whose

form is
l−r∑
s=1

e(r+s−1)(m+n)+i,(s−1)(m+n)+i[−1] + higher terms

for all 1 ≤ r ≤ l−1. Since
l−0∑
s=1

e(0+s−1)(m+n)+i,(s−1)(m+n)+i[−1] is nothing butW
(1)
i,i , Theorem 8.17

is derived from Claim A.4 and Claim A.5.
In order to prove Claims A.4 and A.5, we prepare the following claim.

Claim A.1. (1) The following equation holds for all 0 ≤ w ≤ l − 1, 1 ≤ i, j, u, v ≤ m+ n;

(

l−1∑
s=1

es(m+n)+j,(s−1)(m+n)+i[−1])(0)
l−w∑
t=1

e(w+t−1)(m+n)+u,(t−1)(m+n)+v[−1]

= δi,u

l−w−1∑
t=1

e(w+t)(m+n)+j,(t−1)(m+n)+v[−1]

− δj,v(−1)p(ei,j)p(eu,v)
l−w−1∑
t=1

e(w+t)(m+n)+u,(t−1)(m+n)+i[−1]. (A.2)

(2) We obtain

(W
(1)
i,j )(0)(

l−r∑
s=1

e(r+s−1)(m+n)+x,(s−1)(m+n)+y[−1])

= δi,x

l−r∑
s=1

e(r+s−1)(m+n)+j,(s−1)(m+n)+y[−1]

− δj,y(−1)p(ei,j)p(ex,y)
l−r∑
s=1

e(r+s−1)(m+n)+x,(s−1)(m+n)+i[−1] (A.3)

for all 0 ≤ r ≤ l − 1, 1 ≤ i, j, x, y ≤ m+ n.

Claim A.1 is proven by direct computation. We omit the proof. By (A.2) and (A.3), it is easy
to obtain the following claim.

Claim A.4. (1) For all 0 ≤ r ≤ l − 1, the elements W
(1)
i,j and W

(2)
i,j generate the term whose form

is
l−r∑
s=1

e(r+s−1)(m+n)+i,(s−1)(m+n)+j [−1] + higher terms (i 6= j).

(2) For all 0 ≤ r ≤ l − 1, the elements W
(1)
i,j and W

(2)
i,j generate the term whose form is

(−1)p(i)
l−r∑
s=1

e(r+s−1)(m+n)+i,(s−1)(m+n)+i[−1]

− (−1)p(i+1)
l−r∑
s=1

e(r+s−1)(m+n)+i+1,(s−1)(m+n)+i+1[−1] + higher terms.
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Proof. First, let us show (1). Since W
(2)
i,j has the form such that

l−1∑
s=1

es(m+n)+j,(s−1)(m+n)+i[−1] + degree 0 terms,

we obtain

((W
(2)
i,i )(0))

rW
(1)
j,i =

(
(

l−1∑
s=1

es(m+n)+i,(s−1)(m+n)+i[−1])(0)

)r

W
(1)
j,i + higher terms

for all i 6= j, 0 ≤ r ≤ l − 1. By (A.2), we have

((W
(2)
i,i )(0))

rW
(1)
j,i =

l−r∑
s=1

e(r+s−1)(m+n)+i,(s−1)(m+n)+j [−1] + higher terms.

Thus, we have proved (1).
Next, let us prove (2). By (1), the element whose form is

l−r∑
s=1

e(r+s−1)(m+n)+i,(s−1)(m+n)+i+1[−1] + higher terms

is generated by W
(1)
i,j and W

(2)
i,j . By (A.3), we have

(W
(1)
i,i+1)(0)

( l−r∑
s=1

e(r+s−1)(m+n)+i,(s−1)(m+n)+i+1[−1] + higher terms
)

=

l−r∑
s=1

e(r+s−1)(m+n)+i+1,(s−1)(m+n)+i+1[−1]

− (−1)p(ei,i+1)
l−r∑
s=1

e(r+s−1)(m+n)+i,(s−1)(m+n)+i[−1] + higher terms.

Thus, we have proved (2).

Claim A.5. The elements W
(1)
i,j and W

(2)
i,j generate the term whose form is∑

1≤t≤l−r

e(t+r−1)(m+n)+i,(t−1)(m+n)+i[−1] + higher terms

for all 1 ≤ r ≤ l − 1.

Proof. It is enough to show that

(W
(2)
i,i )(1)(W

(1)
i,i+1)(0){(W

(2)
i,i )(0)}

rW
(1)
i+1,i

= (−1)p(ei,i+1)α
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]

+ (−1)p(i+1)
r
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]

− (−1)p(i)r
∑

1≤t≤l

e(t−1)(m+n)+i+1,(t−r−1)(m+n)+i+1[−1] + higher terms (A.6)

since we have already shown that∑
1≤t≤l

(e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]− (−1)p(ei,i+1)e(t−1)(m+n)+i+1,(t−r−1)(m+n)+i+1[−1])
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is generated by W
(1)
i,j and W

(2)
i,j . Let us set

Z =
∑

1≤s≤l−1

es(m+n)+i,(s−1)(m+n)+i[−1], W =W
(2)
i,i − Z.

The element W
(2)
i,i is the sum of degree −1 element Z and degree 0 element W . We can rewrite

the left hand side of (A.6) as

Z(1)(W
(1)
i,i+1)(0)(Z(0))

rW
(1)
i+1,i +W(1)(W

(1)
i,i+1)(0)(Z(0))

rW
(1)
i+1,i

+
∑

1≤d≤r

Z(1)(W
(1)
i,i+1)(0)(Z(0))

r−dW(0)(Z(0))
d−1W

(1)
i+1,i + higher terms. (A.7)

In order to simplify the notation, here after, we denote
∑

a≤s≤l−b

e(b+s−1)(m+n)+i,(s−a)(m+n)+j [−u]

by
∑

1≤s≤l

e(b+s−1)(m+n)+i,(s−a)(m+n)+j [−u]. Let us compute the each terms of (A.7). First, we

compute the first term of (A.7). By (A.2) and (A.3), we have

(W
(1)
i,i+1)(0)(Z(0))

rW
(1)
i+1,i

=
∑

1≤t≤l

e(t−1)(m+n)+i+1,(t−r−1)(m+n)+i+1[−1]

− (−1)p(ei,i+1)
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]. (A.8)

Applying (A.8) to the first term of (A.7), we obtain

the first term of (A.7) = (
∑

1≤t≤l

es(m+n)+i,(s−1)(m+n)+i[−1])(1)(the right hand side of (A.8)) = 0

since κ(es(m+n)+j,(s−1)n+j , e(t−1)(m+n)+i,(t−r−1)(m+n)+i) = 0. Next, let us compute the second
term of (A.7). By (A.8), it is the sum of

(−1)p(i)(
∑

r1<r2
1≤u≤m+n

e
(r1)
u,i [−1]e(r2)i,u [−1])(1)(

∑
1≤t≤l

e(t−1)(m+n)+i+1,(t−r−1)(m+n)+i+1[−1])

− (−1)p(i+1)
(

∑
r1<r2

1≤u≤m+n

e
(r1)
u,i [−1]e(r2)i,u [−1])(1)(

∑
1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]) (A.9)

and

(α
∑

2≤s≤l

(s− 1)e
(s)
i,i [−2])(1)

∑
1≤t≤l

e(t−1)(m+n)+i+1,(t−r−1)(m+n)+i+1[−1]

− (−1)p(ei,i+1)(α
∑

2≤s≤l

(s− 1)e
(s)
i,i [−2])(1)

∑
1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]). (A.10)

Let us compute (A.9) and (A.10). By direct computation, the second term of (A.9) is equal to

− (−1)p(i+1)
∑

r1<r2
1≤u≤m+n

1≤t≤l

[e
(r1)
u,i , [e

(r2)
i,u , e(t−1)(m+n)+i,(t−r−1)(m+n)+i]][−1]

− (−1)p(i+1)
∑

r1<r2
1≤u≤m+n

1≤t≤l

κ(e
(r2)
i,u , e(t−1)(m+n)+i,(t−r−1)(m+n)+i)e

(r1)
u,i [−1]
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− (−1)p(i+1)
∑

r1<r2
1≤u≤m+n

1≤t≤l

(−1)p(ei,u)κ(e(r1)u,i , e(t−1)(m+n)+i,(t−r−1)(m+n)+i)e
(r2)
i,u [−1]

= −(−1)p(i+1)
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1] + 0 + 0.

By the similar computation, the first term of (A.9) is equal to

(−1)p(i+1)
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1].

By direct computation, we rewrite the second term of (A.10) as

(−1)p(ei,i+1)α
∑

1≤s≤l
1≤t≤l

(s− 1)[e
(s)
i,i , e(t−1)(m+n)+i,(t−r−1)(m+n)+i][−1]

= (−1)p(ei,i+1)rα
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1].

By the similar computation, we find that the first term of (A.10) is zero. Thus, we obtain

the sum of first two terms of (A.7) = (−1)p(ei,i+1)rα
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1].

(A.11)

Finally, we compute the third term of (A.7). Since the relation (
∑

1≤s≤l

(s−1)e
(s)
i,i [−2])(0) = 0 holds,

we can rewrite the third term of (A.7) as∑
1≤d≤r

Z(1)(W
(1)
i,i+1)(0)(Z(0))

r−d · ((−1)p(i)
∑

r1<r2
1≤t≤m+n

e
(r1)
t,i [−1]e(r2)i,t [−1])(0)(Z(0))

d−1W
(1)
i+1,i.

Let us set

Td = Z(1)(W
(1)
i,i+1)(0)(Z(0))

r−d, Bd = ((−1)p(i)
∑

r1<r2
1≤t≤m+n

e
(r1)
t,i [−1]e(r2)i,t [−1])(0)(Z(0))

d−1W
(1)
i+1,i

Then, the third term of (A.7) is equal to
∑

1≤d≤r

Td(Bd).

We rewrite Bd and Td. By (A.2) and (A.3), Td is the sum of T 1
d and T 2

d such that

T 1
d = −

r−d∑
g=0

(
r − d
g

)
(Z(0))

r−d−g(
∑

1≤s≤l

e(s+g)(m+n)+i+1,(s−1)(m+n)+i[−1])(1), (A.12)

T 2
d = (W

(1)
i,i+1)(0)(Z(0))

r−dZ(1). (A.13)

Since

(Z(0))
d−1W

(1)
i+1,i =

∑
d≤t≤l

e(t−1)(m+n)+i,(t−d)(m+n)+i+1[−1]. (A.14)

by (A.2) and (A.3), Bd is equal to

((−1)p(i)
∑

1≤r1<r2≤l
1≤u≤m+n

e
(r1)
u,i [−1]e(r2)i,u [−1])(0)

∑
d≤t≤l

e(t−1)(m+n)+i,(t−d)(m+n)+i+1[−1]
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= (−1)p(i)
∑

1≤r1<r2≤l
1≤u≤m+n

∑
d≤t≤l

e
(r1)
u,i [−1][e(r2)i,u , e(t−1)(m+n)+i,(t−d)(m+n)+i+1][−1]

+
∑

1≤r1<r2≤l
1≤u≤m+n

∑
d≤t≤l

(−1)p(u)e(r2)i,u [−1][e(r1)u,i , e(t−1)(m+n)+i,(t−d)(m+n)+i+1][−1]

+
∑

1≤r1<r2≤l
1≤u≤m+n

∑
d≤t≤l

(−1)p(u)κ(e(r1)u,i , e(t−1)(m+n)+i,(t−d)(m+n)+i+1)e
(r2)
i,u [−2]. (A.15)

By direct computation, we find that the first term of the right hand side of (A.15) is equal to

(−1)p(i)
∑

d≤r1<t≤l

e
(r1)
i,i [−1]e(t−1)(m+n)+i,(t−d)(m+n)+i+1[−1] (A.16)

and the second term of the right hand side of (A.15) is equal to∑
d≤t<r2≤l
1≤u≤m+n

(−1)p(u)e(r2)i,u [−1]e(t−1)(m+n)+u,(t−d)(m+n)+i+1[−1]

− (−1)p(i+1)
∑

t−d+1<r2

e
(r2)
i,i+1[−1]e(t−1)(m+n)+i,(t−d)(m+n)+i[−1]. (A.17)

By the definition of κ, the third term of the right hand side of (A.15) is equal to

δd,1α
∑

1≤r2≤l

(r2 − 1)e
(r2)
i,i+1[−2]. (A.18)

Adding (A.16), (A.17), and (A.18), we obtain

Bd = (−1)p(i)
∑

d≤r1<t≤l

e
(r1)
i,i [−1]e(t−1)(m+n)+i,(t−d)(m+n)+i+1[−1]

+
∑

d≤t<r2≤l
1≤u≤m+n

(−1)p(u)e(r2)i,u [−1]e(t−1)(m+n)+u,(t−d)(m+n)+i+1[−1]

− (−1)p(i)
∑

t−d+1<r2≤l

e
(r2)
i,i+1[−1]e(t−1)(m+n)+i,(t−d)(m+n)+i[−1]

+ δd,1α
∑

1≤r2≤l

(r2 − 1)e
(r2)
i,i+1[−2]

= (−1)p(i)
∑
r1 ̸=t

e
(r1)
i,i [−1]e(t−1)(m+n)+i,(t−d)(m+n)+i+1[−1])

+
∑
r2>t
u ̸=i

(−1)p(u)e(r2)i,u [−1]e(t−1)(m+n)+u,(t−d)(m+n)+i+1[−1]

− (−1)p(i)
∑

t−d+1<r2≤l

e
(r2)
i,i+1[−1]e(t−1)(m+n)+i,(t−d)(m+n)+i[−1]

+ δd,1α
∑

1≤r2≤l

(r2 − 1)e
(r2)
i,i+1[−2]. (A.19)

Now, we compute Td(Bd). We divide Bd into two parts such that

B1
d = (−1)p(i)

∑
r1 ̸=t

e
(r1)
i,i [−1]e(t−1)(m+n)+i,(t−d)(m+n)+i+1[−1]

+
∑
r2>t
u ̸=i

(−1)p(u)e(r2)i,u [−1]e(t−1)(m+n)+u,(t−d)(m+n)+i+1[−1]
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− (−1)p(i)
∑

t−d+1<r2≤l

e
(r2)
i,i+1[−1]e(t−1)(m+n)+i,(t−d)(m+n)+i[−1],

B2
d = δd,1α

∑
1≤r2≤l

(r2 − 1)e
(r2)
i,i+1[−2].

First, let us compute Td(B
2
d). By (A.2) and (A.3), we obtain

Td(B
2
d) = −δd,1(−1)

p(ei,i+1)(r − 1)α
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]. (A.20)

Next, let us compute Td(B
1
d) = T 1

d (B
1
d) + T 2

d (B
1
d). We compute T 1

d (B
1
d) and T

2
d (B

1
d) respectively.

In order to compute T 1
d (B

1
d), we prepare the following three relations;∑

1≤s≤l

(e(s+g)(m+n)+i+1,(s−1)(m+n)+i[−1])(1)

· ((−1)p(i)
∑
r1 ̸=t

e
(r1)
i,i [−1]e(t−1)(m+n)+i,(t−d)(m+n)+i+1[−1])

= −(−1)p(i+1)
∑

1≤t≤l

e(t−1)(m+n)+i,(t−g−d−1)(m+n)+i[−1], (A.21)

∑
1≤s≤l

(e(s+g)(m+n)+i+1,(s−1)(m+n)+i[−1])(1)

· (
∑
r2>t
u̸=i

(−1)p(u)e(r2)i,u [−1]e(t−1)(m+n)+u,(t−d)(m+n)+i+1[−1]) = 0, (A.22)

∑
1≤s≤l

(e(s+g)(m+n)+i+1,(s−1)(m+n)+i[−1])(1)

· ((−1)p(i)
∑

t−d+1<r2≤l

e
(r2)
i,i+1[−1]e(t−1)(m+n)+i,(t−d)(m+n)+i[−1])

= −(−1)p(i+1)
∑

1≤t≤l

e(t−1)(m+n)+i,(t−g−d−1)(m+n)+i[−1]. (A.23)

We only show the relation (A.23) holds. The other relations are proven similarly. By direct
computation, (A.23) is equal to

(−1)p(i)
∑

1≤s≤l

∑
t−d+1<r2≤l

[[e(s+g)(m+n)+i+1,(s−1)(m+n)+i, e
(r2)
i,i+1], e(t−1)n+i,(t−d)n+i)][−1]

= −(−1)p(i+1)
∑

1≤t≤l

e(t−1)(m+n)+i,(t−g−d−1)(m+n)+i[−1].

Thus, we have obtained (A.23). By (A.21)-(A.23) and (A.12), we find the relation

T 1
d (B

1
d) = 0. (A.24)

Similarly to (A.21)-(A.23), we obtain the following three equations;∑
1≤s≤l

(es(m+n)+i,(s−1)(m+n)+i[−1])(1)

· ((−1)p(i)
∑
r1 ̸=t

e
(r1)
i,i [−1]e(t−1)(m+n)+i,(t−d)(m+n)+i+1[−1])

= −(−1)p(i)
∑

1≤t≤l

e(t−1)(m+n)+i,(t−d−1)(m+n)+i+1[−1], (A.25)
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∑
1≤s≤l

(es(m+n)+i,(s−1)(m+n)+i[−1])(1)

· (
∑
r2>t
u̸=i

(−1)p(u)e(r2)i,u [−1]e(t−1)(m+n)+u,(t−d)(m+n)+i+1[−1]) = 0, (A.26)

∑
1≤s≤l

(es(m+n)+i,(s−1)(m+n)+i[−1])(1)

· ((−1)p(i)
∑

t−d+1<r2≤l

e
(r2)
i,i+1[−1]e(t−1)(m+n)+i,(t−d)(m+n)+i[−1]) = 0. (A.27)

By (A.25)-(A.27) and (A.13), we obtain

T 2
d (B

1
d) = −(−1)

p(i)
(W

(1)
i,i+1)(0)(Z(0))

r−d
∑

1≤t≤l

e(t−1)(m+n)+i,(t−d−1)(m+n)+i+1[−1]

= −(−1)p(i)
∑

1≤t≤l

e(t−1)(m+n)+i+1,(t−r−1)(m+n)+i+1[−1]

+ (−1)p(i+1)
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1], (A.28)

where the second equality is due to (A.2) and (A.3). By (A.20), (A.24) and (A.28), we have∑
1≤d≤r

Td(Bd) = −(−1)p(ei,i+1)(r − 1)α
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]

− (−1)p(i)r
∑

1≤t≤l

e(t−1)(m+n)+i+1,(t−r−1)(m+n)+i+1[−1]

+ (−1)p(i+1)
r
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]. (A.29)

Adding (A.11) and (A.29), (A.7) is equal to

(−1)p(ei,i+1)α
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]

− (−1)p(i+1)
r
∑

1≤t≤l

e(t−1)(m+n)+i,(t−r−1)(m+n)+i[−1]

+ (−1)p(i)r
∑

1≤t≤l

e(t−1)(m+n)+i+1,(t−r−1)(m+n)+i+1[−1] + higher terms.

We have obtained (A.6).

Since we complete the proof of Claims A.4 and A.5, we have proved Theorem 8.17.

B Generators of rectangular W -algebras of type D

This section is devoted to the proof of Theorem 11.20. We define a grading on b by setting

deg(x) = j if x ∈ b ∩ gj . For a, b ∈ Inl, let γa,b be
∑

0<2u≤q−p

q̂ + 2u + p̂ · ĵ + q̂ · î, where p =

col(a), q = col(b), j = row(a), i = row(b). Since

{
∑

row(a)=j,row(b)=i,
col(a)=col(b)+2s

(−1)γa,bfa,b | 0 ≤ s ≤ l − 1, 1 ≤ i, j ≤ n}
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forms a basis of so(nl)f = {g ∈ so(nl)|[f, g] = 0}, it is enough to show that W̃
(1)
i,j and W̃

(2)
i,j

generate the term whose form is∑
row(a)=j,row(b)=i,
col(a)=col(b)+2s

(−1)γa,bfa,b[−1] + higher terms

for all 0 ≤ s ≤ l − 1, 1 ≤ i, j ≤ n by Theorem 4.1 of [27]. The proof is completed by two claims,
that is, Lemma B.1 and Lemma B.3. In order to simplify computations, we prepare the following
notations. Let us set

Zi,i =
∑

row(a)=i,row(b)=i,
col(a)=col(b)+2=p

(−1)p̂+p̂·̂i+p̂−2·̂i
fa,b[−1], Vi,i = W̃

(2)
i,i − Zi,i.

Then, Zi,i is a degree −2 term and Vi,i is a degree −1 term. We also denote the condition that
row(a) = i, row(b) = j, col(a) = col(b) + 2 by (A)i,j , the condition that

row(a2) = i, row(b1) = j, p = col(a1) = col(b1) < col(a2) = col(b2) = q, row(a1) = row(b2) = r

by (B)i,j , the condition that row(a) = i, row(b) = j, col(a) = col(b)+2s by (C)si,j , and the condition

that row(c) = i, row(d) = j, col(c) = col(d) + 2s by (D)si,j . Moreover, for all ai ∈ V κ(gl(n))⊗l and
si ∈ Z, we set

(a1)(s1)(a2)(s2) · · · (au−1)(su−1)au = (a1)(s1)

(
(a2)(s2)

(
· · · ((au−1)(su−1)au) · · ·

))
.

Lemma B.1. (1) For all i 6= j, {W̃ (r)
p,q | 1 ≤ p.q ≤ n, r = 1, 2} generate∑

(C)sj,i

(−1)γa,bfa,b[−1] + higher terms.

(2) For all i 6= j, {W̃ (r)
p,q | 1 ≤ p, q ≤ n, r = 1, 2} generate∑

(C)si,i

(−1)γa,bfa,b[−1]−
∑
(C)sj,j

(−1)γa,bfa,b[−1] + higher terms.

Proof. (1) By a direct computation, we obtain

(
∑
(C)sj,i

(−1)γa,bfa,b[−1])(0)
∑

(C)sv,u

(−1)γa,bfa,b[−1]

= δi,v
∑

(C)s+t
j,u

(−1)γa,bfa,b[−1]− δj,u
∑

(C)s+t
v,i

(−1)γa,bfa,b[−1]

− δ−j,v

∑
(C)s+t

−i,u

(−1)s+î+ĵ+γa,bfa,b[−1] + δi,−u

∑
(C)s+t

v,−j

(−1)s+î+ĵ+γa,bfa,b[−1]. (B.2)

By (B.2), we have the following equation;

(W̃
(2)
j,j )

sW̃
(1)
i,j = (Zj,j)

sW̃
(1)
i,j + higher terms

=
∑

row(a)=j,row(b)=i,
col(a)=col(b)+2s

(−1)γa,bfa,b[−1] + higher terms

for all i 6= −j, j. Then, we have proven (1) in the case that j 6= i,−i. Taking p ∈ In such that
i 6= ±p, we obtain

(W̃
(1)
p,i )(0)

∑
row(a)=p,row(b)=−i,

col(a)=col(b)+s

(−1)γa,bfa,b[−1] =
∑

row(a)=p,row(b)=−i,
col(a)=col(b)+s

(−1)γa,bfa,b[−1]
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by (B.2). We have shown (1) in the case that j = −i. This completes the proof of (1).
(2) It is enough to show the case when i 6= ±j since the case that i = −j is naturally derived

from other cases. By (B.2), we obtain

(W̃
(1)
i,j )(0)

∑
row(a)=i,row(b)=j,
col(a)=col(b)+s

(−1)γa,bfa,b[−1]

=
∑

row(a)=j,row(b)=j,
col(a)=col(b)+s

(−1)î+ĵ+γa,bfa,b[−1]−
∑

row(a)=i,row(b)=i,
col(a)=col(b)+s

(−1)î+ĵ+γa,bfa,b[−1]

for all i 6= ±j. TWe have shown (2).

Lemma B.3. Suppose that j 6= ±i. We obtain

(W̃
(2)
i,i )(1)(W̃

(1)
i,j )(0)((W̃

(2)
i,i )(0))

sW̃
(1)
j,i

= −s
∑

row(a)=i,row(b)=i,
col(a)=col(b)+2s

(−1)γa,bfa,b[−1] + s
∑

row(a)=j,row(b)=j,
col(a)=col(b)+2s

(−1)γa,bfa,b[−1]

+ α
∑

row(a)=i,row(b)=i,
col(a)=col(b)+2s

(−1)γa,bfa,b[−1].

Proof. By the degree of Zi,i and Vi,i, we obtain

(W̃
(2)
i,i )(1)(W̃

(1)
i,j )(0)((W̃

(2)
i,i )(0))

sW̃
(1)
j,i

= (Zi,i)(1)(W̃
(1)
i,j )(0)((Zi,i)(0))

sW̃
(1)
j,i + (Vi,i)(1)(W̃

(1)
i,j )(0)((Zi,i)(0))

sW̃
(1)
j,i

+
∑

1≤t≤s

(Zi,i)(1)(W̃
(1)
i,j )(0)((Zi,i)(0))

s−t(Vi,i)(0)((Zi,i)(0))
t−1W̃

(1)
j,i + higher terms. (B.4)

We compute each terms of the right hand side of (B.4). Let us compute the first term of the right
hand side of (B.4). By (B.2), we obtain

(W̃
(1)
i,j )(0)((Zi,i)(0))

sW̃
(1)
j,i =

∑
(C)sj,j

(−1)γa,bfa,b[−1]−
∑
(C)si,i

(−1)γa,bfa,b[−1]. (B.5)

By (B.2) and (B.5), we have

(Zi,i)(1)(W̃
(1)
i,j )(0)((Zi,i)(0))

sW̃
(1)
j,i = 0. (B.6)

Next, let us compute the second term of the right hand side of (B.4). By (B.5), we obtain

(Vi,i)(1)(W̃
(1)
i,j )(0)((Zi,i)(0))

sW̃
(1)
j,i

=
∑

(A)i,i,(C)sj,j

((−1)(r̂+î)·(p̂+q̂)+γa,bfa1,b1 [−1]fa2,b2 [−1])(1)fa,b[−1]

−
∑

(A)i,i,(C)si,i

((−1)(r̂+î)·(p̂+q̂)+γa,bfa1,b1 [−1]fa2,b2 [−1])(1)fa,b[−1]

+ (α
∑
(C)pi,i

p

2
fa,b[−2])(1)

∑
(C)si,i

(−1)γa,bfa,b[−1]. (B.7)

By a direct computation, we obtain

the first term of (B.7) = the second term of (B.7)
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=
∑

row(a)=i,row(b)=i,
col(a)=col(b)+s=p

(−1)(ĵ+î)·(p̂+p̂−s)+γa,bfa,b[−1],

the third term of (B.7) = α
∑
(C)si,i

(−1)γa,bsfa,b[−1].

Thus, we obtain

(Vi,i)(1)(W̃
(1)
i,j )(0)((Zi,i)(0))

sW̃
(1)
j,i = α

∑
(C)si,i

(−1)γa,bsfa,b[−1]. (B.8)

Next, let us compute the third term of (B.4). By (B.2), we obtain

((Zi,i)(0))
t−1W̃

(1)
j,i =

∑
(C)t−1

i,i

(−1)γa,bfa,b[−1].

Since

(Vi,i)(0) = (
∑
(A)i,i

(−1)(r̂+î)·p̂+(̂i+r̂)·q̂
fa1,b1 [−1]fa2,b2 [−1])(0)

holds, we can rewrite (Vi,i)(0)((Zi,i)(0))
t−1W̃

(1)
j,i as∑

(A)i,i,(C)t−1
i,j

(−1)β1fa1,b1 [−1][fa2,b2 , fa,b][−1] +
∑

(A)i,i,(C)t−1
i,j

(−1)β1fa2,b2 [−1][fa1,b1 , fa,b][−1],

where β1 = γa,b + (r̂ + î) · (p̂ + q̂) such that row(a1) = r, col(a1) = p, col(a2) = q. By a direct

computation, we can rewrite (Vi,i)(0)((Zi,i)(0))
t−1W̃

(1)
j,i as∑

(A)i,i,(C)t−1
i,j

(−1)β1δb2,afa1,b1 [−1]fa2,b[−1] +
∑

(A)i,i,(C)t−1
i,j

(−1)β1δb2,−bfa1,b1 [−1]fa,−a2
[−1]

+
∑

(A)i,i,(C)t−1
i,j

(−1)β1δb1,afa2,b2 [−1]fa1,b[−1]−
∑

(A)i,i,(C)t−1
i,j

(−1)β1δa1,bfa2,b2 [−1]fa,b1 [−1]

−
∑

(A)i,i,(C)t−1
i,j

(−1)β1δa1,−afa2,b2 [−1]f−b1,b[−1] + δt,1
∑

(C)t−1
i,j

α(−1)γa,b
(col(b)− 1 + n)

2
fa,b[−2].

(B.9)

Let us denote the sum of the first five terms of (B.9) by Bt. We can rewrite

(Zi,i)(1)(W̃
(1)
i,j )(0)((Zi,i)(0))

s−t(Vi,i)(0)((Zi,i)(0))
t−1W̃

(1)
j,i

as

−
s−t∑
g=0

(
r − t
g

)
((Zi,i)(0))

s−t−g(
∑
(D)gj,i

(−1)γc,dfc,d[−1])(1)Bt + (W̃
(1)
i,j )(0)((Zi,i)(0))

s−t((Zi,i)(1))Bt

+ (Zi,i)(1)(W̃
(1)
i,j )(0)((Zi,i)(0))

sδt,1
∑

(C)t−1
i,j

α(−1)γa,b
(col(b)− 1 + n)

2
fa,b[−2]. (B.10)

Let us compute each terms of (B.10). By a direct computation, we obtain

the third term of (B.10) = −δt,1α
∑

row(a)=i,row(b)=i,
col(a)=col(b)+2s

(−1)γa,b(s− 1)fa,b[−1]. (B.11)
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Next, we compute the first term of (B.10). By (B.9), we can rewrite (
∑
(D)gj,i

(−1)γc,dfc,d[−1])(1)Bt

as ∑
(A)i,i,(C)t−1

i,j ,(D)gi,i

(−1)β1+γc,dδb2,a[[fc,d, fa1,b1 ], fa2,b][−1]

+
∑

(A)i,i,(C)t−1
i,j ,(D)gi,i

(−1)β1+γc,dδb2,−b[[fc,d, fa1,b1 ], fa,−a2
][−1]

+
∑

(A)i,i,(C)t−1
i,j ,(D)gi,i

(−1)β1+γc,dδb1,a[[fc,d, fa2,b2 ], fa1,b][−1]

−
∑

(A)i,i,(C)t−1
i,j ,(D)gi,i

(−1)β1+γc,dδa1,b[[fc,d, fa2,b2 ], fa,b1 ][−1]

−
∑

(A)i,i,(C)t−1
i,j ,(D)gi,i

(−1)β1+γc,dδa1,−a[[fc,d, fa2,b2 ]f−b1,b][−1]. (B.12)

We compute each terms of the right hand side of (B.12). By a direct computation, we obtain

the first term of (B.12) = −
∑

(A)i,i,(C)t−1
i,j ,(D)gi,i

(−1)β1+γc,dδb2,aδd,a1δc,bfa2,b1 [−1], (B.13)

the second term of (B.12) = 0, (B.14)

the third term of (B.12) = −
∑

(A)i,i,(C)t−1
i,j ,(D)gi,i

(−1)β1+γc,dδb1,aδd,−b2δa2,−a1fc,b[−1]

−
∑

(A)i,i,(C)t−1
i,j ,(D)gi,i

(−1)β1+γc,dδb1,aδd,−b2δc,bfa1,−a2
[−1], (B.15)

the 4-th term of (B.12) =
∑

(A)i,i,(C)t−1
i,j ,(D)gi,i

(−1)β1+γc,dδa1,bδb2,cδd,afa2,b1 [−1], (B.16)

the 5-th term of (B.12) =
∑

(A)i,i,(C)t−1
i,j ,(D)gi,i

(−1)β1+γc,dδa1,−aδd,a2
δb2,−b1fc,b[−1]

+
∑

(A)i,i,(C)t−1
i,j ,(D)gi,i

(−1)β1+γc,dδa1,−aδd,a2δb,cf−b1,b2 [−1]. (B.17)

Since

(B.13) = −(B.16), the first term of (B.15) = −the first term of (B.17),

the second term of (B.15) = −the second term of (B.17)

hold, we obtain
the first term of (B.10) = 0 (B.18)

by adding (B.13)-(B.17).
Next, let us compute the second term of (B.10). By a direct computation, we also obtain

((Zi,i)(0))
s−t((Zi,i)(1))Bt

=
∑

(A)i,i,(C)t−1
i,j ,(D)1i,i

(−1)β1+γ
δb2,a[[fc,d, fa1,b1 ], fa2,b][−1]

+
∑

(A)i,i,(C)t−1
i,j ,(D)1i,i

(−1)β1+γc,dδb2,−b[[fc,d, fa1,b1 ], fa,−a2
][−1]
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+
∑

(A)i,i,(C)t−1
i,j ,(D)1i,i

(−1)β1+γc,dδb1,a[[fc,d, fa2,b2 ], fa1,b][−1]

−
∑

(A)i,i,(C)t−1
i,j ,(D)1i,i

(−1)β1+γc,dδa1,b[[fc,d, fa2,b2 ], fa,b1 ][−1]

−
∑

(A)i,i,(C)t−1
i,j ,(D)1i,i

(−1)β1+γc,dδa1,−a[[fc,d, fa2,b2 ], f−b1,b][−1]. (B.19)

Let us compute each terms of (B.19). By a direct computation, we obtain

the first term of (B.19) = 0, (B.20)

the second term of (B.19) =
∑

(A)i,i,(C)t−1
i,j ,(D)1i,i

(−1)β1+γc,dδb2,−bδb1,cδd,afa1,−a2
[−1], (B.21)

the third term of (B.19) =
∑

(A)i,i,(C)t−1
i,j ,(D)1i,i

(−1)β1+γc,dδb1,aδb2,cδd,a1
fa2,b[−1]

−
∑

(A)i,i,(C)t−1
i,j ,(D)1i,i

(−1)β1+γc,dδd,−b2δ−c,a1
fa2,b[−1], (B.22)

the 4-th term of (B.19) = 0, (B.23)

the 5-th term of (B.19) =
∑

(A)i,i,(C)t−1
i,j ,(D)1i,i

(−1)β1+γc,dδa1,−aδd,a2
δb2,−b1fc,b[−1]

−
∑

(A)i,i,(C)t−1
i,j ,(D)2i,i

(−1)β1+γ
δd,−b2δc,b1fa2,b[−1]. (B.24)

Since

(B.21) = −the first term of (B.24), (B.22)2 = −the second term of (B.24),

(B.22)1 =
∑

row(a)=i,row(b)=j,
col(a)=col(b)+s

(−1)γa,bfa,b[−1]

hold, we obtain

the second term of (B.10) =
∑

row(a)=i,row(b)=j,
col(a)=col(b)+s

(−1)γa,bfa,b[−1]. (B.25)

by adding (B.20)-(B.24). Adding (B.11), (B.18) and (B.25), we obtain

the third term of (B.4)

= −s
∑

row(a)=i,row(b)=i,
col(a)=col(b)+2s

(−1)γa,bfa,b[−1] + s
∑

row(a)=j,row(b)=j,
col(a)=col(b)+2s

(−1)γa,bfa,b[−1]

− α
∑

row(a)=i,row(b)=i,
col(a)=col(b)+2s

(−1)γa,b(s− 1)fa,b[−1] (B.26)

by (B.2). Adding (B.6), (B.8) and (B.26), we obtain the proof.
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[38] G. I. Olshanskĭı. Twisted Yangians and infinite-dimensional classical Lie algebras. InQuantum
groups (Leningrad, 1990), volume 1510 of Lecture Notes in Math., pages 104–119. Springer,
Berlin, 1992.

[39] Y. N. Peng. On shifted super Yangians and a class of finite W -superalgebras. J. Algebra,
422:520–562, 2015.

[40] E. Ragoucy and P. Sorba. Yangian realisations from finite W -algebras. Comm. Math. Phys.,
203(3):551–572, 1999.
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