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Abstract

In process algebra, we can express security properties using an equivalence on
processes. However, it is not clear which equivalence is the most suitable for the
purpose. Indeed, several definitions of some properties are proposed. For example,
the definition of privacy is not unique. This situation means that we are not certain
how to express an intuitive security notion. Namely, there is a gap between an
intuitive security notion and the formulation. Proper formalization is essential for
verification, and our purpose is to bridge this gap.

In the case of the applied pi calculus, an outputted message is not explicitly
expressed. This feature suggests that trace equivalence appropriately expresses in-
distinguishability for attackers in the applied pi calculus. By chasing interchanging
bound names and scope extrusions, we prove that trace equivalence is a congru-
ence. Therefore, a security property expressed using trace equivalence is preserved
by an application of a context.

Moreover, we construct an epistemic logic for the applied pi calculus. We show
that its logical equivalence agrees with trace equivalence. It means that trace
equivalence is suitable in the presence of a non-adaptive attacker. Besides, we
define several security properties using our epistemic logic.
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Chapter 1

Introduction

1.1 Background and Motivation

Information technology is indispensable to our daily lives in modern society, and
many communication protocols are developed to transmit data securely. Verifica-
tion of security properties of each protocol is essential, but it is not easy.

In the first place, how to formalize security notions is unclear. Various defini-
tions of the same security property have been proposed. We will show an example
later. One of our goals is to give a foundation for formalization. Besides, how
to model communication and concurrency is also unclear; many such models have
also been developed. In this work, we focus on process algebra because it allows
us to handle parallel composition naturally.

In process algebra, information hiding such as secrecy is represented using an
equivalence on processes. Various equivalences exist (cf. [35]), but which is the
most suitable for expressing confidentiality is unclear. We show privacy as an
example. Delaune et al. [12] defined privacy in electronic voting regarding the
applied pi calculus [2], which extends the π-calculus [26, 27], as follows.

Definition 1 ([12, Definition 9]). A voting protocol respects vote-privacy (or just
privacy) if

S[VA{a/v}|VB{b/v}] ≈l S[VA{b/v}|VB{a/v}]

for all possible votes a and b.

VA and VB denote the voters containing the free variable v to express a vote. {a/v}
and {b/v} are substitutions. S is an evaluation context and denotes other voters
and authorities. Intuitively, when the protocol respects privacy, this definition
states that an attacker cannot distinguish two situations where votes are swapped.
Note that indistinguishability is expressed using labeled bisimilarity ≈l in this
definition. Is it the most suitable? This question is nontrivial. Indeed, Chadha et
al. [7] gave another definition and claimed that trace equivalence is more suitable
regarding privacy than bisimilarity. We also claim that trace equivalence is more
suitable to express security properties in the presence of a non-adaptive attacker.
Similar arguments are not abundant in previous work.
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In the applied pi calculus, a process can send not only names but also terms,
but we do not explicitly express sent messages. We indirectly represent them
using variables to refer messages. This feature enables us to handle cryptographic
protocols naturally and suggests that trace equivalence means indistinguishability
for attackers. This is because attackers whom we consider can observe only labeled
transitions. We recall the syntax and semantics of the applied pi calculus in §2.3.

Both bisimilarity and trace equivalence on labeled transition systems (LTSs)
are well studied. Bisimilarity for the applied pi calculus is also well studied. How-
ever, trace equivalence for the applied pi calculus (and other variants of the π-
calculus) has not drawn as much attention as bisimilarity. This is perhaps because
trace equivalence is much coarser than bisimilarity. However, security properties
sometimes require that different processes are regarded as the same. For example,
consider secrecy. We want to make two processes that send different messages
indistinguishable. In this case, trace equivalence is enough, but bisimilarity is not
always optimal because it is too strong. Bisimilarity requires that possible actions
for each process are the same. However, a non-adaptive attacker cannot detect
a difference in feasibility. Here, “non-adaptive” means that the attacker cannot
control participants. Thereby, a fine equivalence such as bisimilarity is not always
adequate. Bisimilarity is probably suitable for more powerful attackers.

In addition, bisimilarity is a congruence. That is, an application of a context
preserve bisimilarity. This property enables us to handle processes algebraically,
so this is also why bisimilarity draws attention.

Epistemic logic is often used to express confidentiality directly (e.g. [7, 24, 33]).
For example, when a message M sent by an agent a is anonymous, we might say
that an adversary cannot know who sent M . In epistemic logic, we can express
it with a formula such as ¬KSend(a,M). This logical formulation is close to our
intuition. Nevertheless, research into an epistemic logic for the applied pi calculus
is not abundant.

In this thesis, we assume that attackers can observe only labeled transitions.
Remarkably, they cannot observe what action participants can do. This assump-
tion is natural because attackers in this thesis are non-adaptive. We also assume
that an attacker can send messages to participants. In other words, we suppose
that an attacker dominates the network.

This thesis is an extended version of [28].

1.2 Contributions

We show that trace equivalence for the applied pi calculus is a congruence in
chapter 3. We introduce concurrent normal forms for proving it. Second, we
give an epistemic logic that characterizes trace equivalence in chapter 4. Besides,
we define security properties such as role interchangeability, secrecy [24, 33], and
openness, which generalizes identity, using our epistemic logic. Moreover, we show
that parallel composition does not generally preserve secrecy and openness.

On the other hand, trace equivalence characterizes total secrecy, so an appli-
cation of contexts preserves it.
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Our results suggest that trace equivalence is more suitable to express (non-
probabilistic) security notions than bisimilarity.
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Chapter 2

Process Algebra

2.1 CCS

Process algebras are a family of frameworks to model concurrent systems. CCS
(Calculus of Communicating Systems) [25] is a typical example.

CCS processes are abstractions of concurrent systems. They are made of ac-
tions and co-actions. Formally, they are defined by Backus–Naur form.

P,Q ::= 0 | a.P | a.P | τ.P | P |Q | P +Q | P \L | P [f ] | fixj({Xi = Pi : i ∈ I})

0 is a null process. It acts nothing. a is an action, and a is the co-action of a.
a and a are complementary such as receiving and sending a message. τ is a silent
action. An environment cannot observe a τ action.

P |Q is a parallel composition of P and Q. This composition does not force
them to synchronize. P +Q is a nondeterministic branch.
\L is a restriction operator, where L is a set of labels. If a is in L, P \L cannot

act a nor a. [f ] is relabeling operator.
fixj is a fixed-point operator. fixj({Xi = Pi : i ∈ I}) is j-th component of a

fixed-point of {Xi = Pi : i ∈ I}.
Their behavior is formally defined by structural operational semantics. We

show representative rules.

α.P
α−→ P

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′

α.P acts α at first and behaves like P . Complementary actions a and a can be
simultaneously done, and then an environment cannot observe it.

For example, a vending machine is represented as a below process VM .

VM = fix(X = coin.button.juice.X)

This vending machine sells only juice. The action coin expresses receiving a
coin. When the button is pushed, the process does button. juice is providing a
cup of juice.
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On the other hand, a customer is also represented as a process.

C = coin.button.juice.0

The action coin means that the customer inserts a coin. coin and coin are
complementary. Processes can do complementary actions simultaneously.

VM | C = coin.button.juice.V M | coin.button.juice.0
−→ button.juice.V M | button.juice.0
−→ juice.V M | juice.0
−→ VM | 0

2.2 The π-calculus

The π-calculus [26, 27] is a CCS-style process algebra. π-calculus processes can
interchange channels as messages, so we can express mobility using the π-calculus.
Processes can use channels received from other processes to communicate. That
is, an interaction between processes can change communication topology.

π-calculus processes are defined as below:

P,Q ::= 0 | x(y).P | xy.P | τ.P | P |Q | P +Q | (x)P | [x = y]P | A(x1, ..., xn)

x(y).P receives a channel on x and substitutes it for y. xy.P sends a channel y
on x. (x) is a restriction operator. (x)P cannot use the channel x to communicate
with an environment but can use it in P . We can consider that (x)P creates
a new channel x and behaves like P . The environment does not know x, so it
cannot use x. [x = y] is a match operator. [x = y]P behaves like P when x = y
holds. Otherwise, it behaves like 0. A is an agent identifier. The defining equation

A(x1, ..., xn)
def
= P decides behavior of A.

We show representative rules.

xy.P
xy−→ P

z 6∈ fn((y)P )

x(y).P
x(z)−→ P{z/y}

P
xy−→ P ′ Q

x(z)−→ Q′

P |Q τ−→ P ′|Q′{y/z}

P
xy−→ P ′ y 6= x w 6∈ fn((y)P )

(y)P
x(w)−→ P ′{w/y}

P
x(w)−→ P ′ Q

x(w)−→ Q′

P |Q τ−→ (w)(P ′|Q′)}

The first rule expresses sending a channel y. The second rule expresses receiving
a channel. Notice that a scheme of late instantiation is adopted. We regard z as a
placeholder in the second rule. It is instantiated only when internal communication
happens. In fact, Q receives a concrete channel y from P in the third rule.
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In the fourth rule, (y)P sends the bound name y to an environment. This
rule allows α-conversion of y to avoid a collision with a free name. The fifth rule
happens a scope extrusion. The scope of the bound name w grows through the
transition. The fourth rule is named open, and the fifth rule is named close.

We illustrate a change of communication topology.

xy.0 | x(z).zw.0 | y(z).0
τ−→ 0 | yw.0 | y(z).0
τ−→ 0 | 0 | 0

At first, the first process sends a channel y to the second process. Then,
the second process can use y to send a channel w to the third process. The
second process could not communicate with the third process at the start of these
transitions.

These processes can make other transitions.

xy.0 | x(z).zw.0 | y(z).0
τ−→ 0 | yw.0 | y(z).0
yw−→ 0 | 0 | y(z).0

The second process sends w to an environment to use the channel y received
from the first process.

We also illustrate a scope extrusion.

(y)(xy.y(v).0) | x(z).zw.0 | yw.0 τ−→ (y)(y(v).0 | yw.0) | yw.0
τ−→ 0 | 0 | yw.0

The first process sends a bound name y to the second process. Then, a scope
extrusion happens, and the second process uses the bound name y. Although the
third process also has the name y, it cannot communicate with the first process.
This is because the scope of the bound name y does not cover the third process.

2.3 The Applied Pi Calculus

The applied pi calculus [2] is an extension of the π-calculus. Functions and equa-
tions are added to the π-calculus. In addition, we distinguish between names and
variables. Thus we can handle cryptographic protocols naturally using the applied
pi calculus to assume that perfect encryption exists.

2.3.1 Syntax

Let Σ be a signature equipped with an equational theory. Terms are made from
names, variables, and function symbols. We say that a term is ground when it
contains no variables.

For example, symmetric-key encryption enc(x, y), decryption dec(x, y), and
hash function h(x) are often used. enc and dec are function symbols with arity
2, and h is a function symbol with arity 1. enc(x, y) expresses a ciphertext of x
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obtained to use a key y, and dec(x, y) expresses decryption of x using a key y.
enc and dec have an equation dec(enc(x, y), y) = x. On the other hand, h has no
equations.

We recall the syntax of the applied pi calculus. Here, M,N... range over terms,
while n on names and x on variables.

P,Q ::= 0 | M〈N〉.P | M(x).P | νn.P |
if M = N then P else Q | P +Q | P |Q | !P

A,B ::= P | νn.A | νx.A | A|B | {M/x}
P,Q, ... are plain processes. ν is a binding operator. Bound names are often

interpreted as nonces, secret keys, and so on. In other words, νn is regarded as
creating a new value n. νn.A does not require that n occurs in A, but νx.A requires
that x occurs in A. νx hides x from an environment. | is a parallel composition
operator. Parallel composition is asynchronous. + is a nondeterministic choice
operator. ! is a replication operator. That is, !P is unbounded copies of P . We
often omit .0 at the end of an expression. For example, we abbreviate a〈b〉.0|c(x).0
to a〈b〉|c(x).

Plain processes are similar to π-calculus processes, but they are not the same.
A π-calculus process can send only a name. On the other hand, an applied pi
calculus process can send a term. Besides, a channel consists of a term. An object
of an input prefix is a variable, so names do not change while the process runs.
This invariance is also a difference from π-calculus.

A,B, ... are extended processes. We call {M/x} an active substitution. This
notion is peculiar to the applied pi calculus. An active substitution {M/x} substi-
tutes M for x in a neighbor process. νu.νv.A is often abbreviated to νuv.A. We
say that A is finite if A contains no replications.

fn(A) and bn(A) denote the sets of free names and bound names of a process
A, respectively. fv and bv are similar to them. If fn(A)∩bn(A) = ∅ and no bound
names are restricted twice, we say that A is name-distinct. Variable-distinctness is
defined similarly. n(M) denotes the set of names that appear in a term M . v(M)
is similar to it.

The domain dom(A) of an extended process A is inductively defined below. If
variables in neighbor concurrently running processes are in dom(A), the process
A affects those variables. If fv(A) = dom(A), we say that A is closed.

dom(P ) = ∅, dom(νn.A) = dom(A), dom(νx.A) = dom(A) \ {x},
dom(A|B) = dom(A) ∪ dom(B), dom({M/x}) = {x}

The domain of A is the set of references to messages that A sends to an envi-
ronment.

2.3.2 Semantics

A context is an expression containing one hole. Contexts are given by the syntax
below:

7



C[ ] ::= | M〈N〉.C[ ] | M(x).C[ ] | νn.C[ ]

| if M = N then C[ ] else Q | if M = N then P else C[ ]

| C[ ] +Q | P + C[ ] | C[ ]|B | A|C[ ] | !C[ ] | νx.C[ ]

C[A] denotes the result of replacing the hole with the process A if it is syntac-
tically correct. For example, M〈N〉.C[{a/x}] is not correct.

An evaluation context is a context whose hole is neither under a replication, a
conditional branch, a nondeterministic branch, nor an action prefix. That is, they
are given by the syntax below:

E[ ] ::= | νn.E[ ] | E[ ]|B | A|E[ ] | νx.E[ ]

For example, P | and νn. are evaluation contexts, but M〈N〉. is not an
evaluation context.

Structural equivalence ≡ is the smallest equivalence relation on extended pro-
cesses that is closed under applications of evaluation contexts and α-conversion,
such that:

A|0 ≡ A

(A|B)|C ≡ A|(B|C)

A|B ≡ B|A
(νu.A)|B ≡ νu.(A|B) if u /∈ fn(B) ∪ fv(B)

νu.νv.A ≡ νv.νu.A

!P ≡ P |!P
(P +Q) +R ≡ P + (Q+R)

P +Q ≡ Q+ P

νx.{M/x} ≡ 0

A|{M/x} ≡ A{M/x}|{M/x}
{M/x} ≡ {N/x} if Σ `M = N

where [M/x] is a capture-avoiding substitution. That is, A[M/x] is the result
of replacing x in A with M . Note that structurally equivalent processes do not
always have the same free names.

The second from the last represents how an active substitution {M/x} acts.
In the original applied pi calculus, νn.0 ≡ 0 is also required, but we removed

it. This is because we want to keep the number of bound names.

Definition 2. Internal reduction → is the smallest relation on extended processes
closed under structural equivalence and applications of evaluation contexts, such
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that:

if M = N then P else Q→ P when Σ `M = N

if M = N then P else Q→ Q when Σ 6`M = N

P +Q→ P

M〈N〉.P | M(x).Q→ P | Q[N/x],

where terms M and N in the second rule are ground.

Internal reductions are silent. In other words, an environment cannot notice
that a process makes an internal reduction.

Note that the original version of the applied pi calculus does not contain a
nondeterministic choice operator +. We adopt the definition in [12]. This operator
does not increase the expressive power of the original version of the applied pi
calculus because P + Q and νc.(c〈s〉|c(x).P |c(x).Q) are bisimilar (where c and x
do not appear in P nor Q). Bisimilarity is the most strong behavioral equivalence.
We will give the definition later.

The last line represents synchronous communication on a channel M . We
emphasize that an environment cannot observe what is interchanged.

Next, we recall labeled semantics and requisite equivalence relations.

M(x).P
M(N)−→ P [N/x]

x /∈ fv(M〈N〉.P )

M〈N〉.P νx.M〈x〉−→ P |{N/x}

A
α−→ A′ u does not appear in α.

νu.A
α−→ νu.A′

A
α−→ A′ bv(α) ∩ fv(B) = ∅

A|B α−→ A′|B
A ≡ A′ A′

α−→ B′ B′ ≡ B

A
α−→ B

The first rule expresses an input. Note that a scheme of early instantiation is
adopted. This scheme is different from the π-calculus.

In the π-calculus, an environment is regarded as other processes. On the other
hand, we regard an environment as an attacker in the applied pi calculus. The
attacker can send arbitrary possible messages, so early instantiation is suitable.

The second rule represents an output. Note that an active substitution {N/x}
is generated, and the term N does not appear in the action label νx.M〈x〉. That
is, the attacker cannot know the structure of the message N in general.

No rules correspond to open and close, but scope extrusions can happen by
internal reductions. For example,

νb.(a〈b〉.b(x)) | a(y).y〈c〉 | b〈d〉 −→ νb.(b(x) | b〈c〉) | b〈d〉
−→ 0 | 0 | b〈d〉

A frame is an extended process generated from 0 and active substitutions using
restriction and parallel composition. fr(A) denotes a process obtained by replacing
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plain processes in A with 0, and we call it a frame of A. We can consider that
fr(A) is a list of messages exported by A.

µ denotes an action. We define =⇒ as the transitive reflexive closure of −→,
and

α
=⇒ as =⇒ α−→=⇒.

µ
=⇒ is the former when µ is silent and is the latter

otherwise.

Definition 3. (M = N)ϕ
def⇔ v(M) ∪ v(N) ⊆ dom(ϕ) and Mσ = Nσ where

ϕ ≡ νñ.σ and ñ ∩ n(M,N) = ∅ for some names ñ and active substitutions σ.

(M = N)ϕ means that an attacker cannot distinguish M and N using ϕ.

Definition 4. The static equivalence on closed frames is given by

ϕ ≈s ψ
def⇔ dom(ϕ) = dom(ψ) and ∀M,N ; (M = N)ϕ⇔ (M = N)ψ

for closed frames ϕ and ψ. The static equivalence on closed processes is given by

A ≈s B
def⇔ fr(A) ≈s fr(B)

for closed processes A and B.

Static equivalence means that an attacker has the same information about
which terms are equal.

Definition 5. A trace tr is a finite derivation

tr = A0
µ1

=⇒ ...
µn

=⇒ An

such that every Ai is closed and fv(µi) ⊆ dom(Ai−1) for all i. If An can perform
no actions, the trace tr is said to be complete or maximal.

Given a trace tr, let tr[i] be its i-th process Ai, and tr[i, j] be the trace

Ai
µi+1
=⇒ ...

µj
=⇒ Aj

where 0 ≤ i ≤ j ≤ n. The length of the trace tr is denoted by |tr| = n.

If each
µi

=⇒ accord with
µi−→, we say that tr is full.

An attacker can observe traces but cannot observe the structure of the process.

Definition 6. Let tr be a trace A0
µ1

=⇒ ...
µn

=⇒ An and tr′ be a trace B0

µ′1=⇒ ...
µ′m=⇒

Bm. Static equivalence between tr and tr′ is defined below:

tr ∼t tr′
def⇔ n = m and µi = µ′i and Ai ≈s Bi for all i.

An attacker cannot distinguish statically equivalent traces.
tr(A) denotes a set of traces of A, and trmax(A) denotes a set of maximal

traces of A.
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Definition 7. Let A and B be closed processes.

A ⊆t B
def⇔ ∀tr ∈ tr(A) ∃tr′ ∈ tr(B) s.t. tr ∼t tr′,

A ≈t B
def⇔ A ⊆t B and B ⊆t A.

Let A and B be (not necessarily closed) two processes. Let σ be a map that maps a
variables in (fv(A)\dom(A))∪(fv(B)\dom(B)) to ground terms. When Aσ ⊆t Bσ
holds for every such σ, we also denote it as A ⊆t B. A ≈t B is similarly defined.

A ⊆t B means that each trace of A is imitated by some trace of B.
We later show that non-adaptive active attackers cannot distinguish trace

equivalent processes.

Problem 1.
Input: Closed extended processes A,B, and a trace tr ∈ tr(B).
Question: Does there exist a trace tr′ ∈ tr(A) such that tr ∼t tr′?

Proposition 1. There are signatures for which Problem 1 is undecidable, even
though the input processes are restricted to plain processes.

Proof. It is proved in [3, Proposition 5] that static equivalence is undecidable in
general. We reduce the decision problem for static equivalence to Problem 1.

Let ϕ and ψ be closed frames. We assume that dom(ϕ) = dom(ψ).
Let ϕ = νñ.{M1/x1, ...,Ml/xl}, ψ = νm̃.{N1/x1, ...,Nl/xl}.
Let P = νñ.a〈M1〉...a〈Ml〉, Q = νm̃.a〈N1〉...a〈Nl〉, where a /∈ ñ ∪ m̃.
Let

tr = P
νx1.a〈x1〉−→ νñ.(a〈M2〉...a〈Ml〉|{M1/x1})

νx2.a〈x2〉−→ ...

νxl.a〈xl〉−→ νñ.{M1/x1, ...,Ml/xl}.

We prove that ϕ ≈s ψ iff there exists a trace tr′ ∈ tr(A) such that tr ∼t tr′.
A trace tr′ ∈ tr(Q) whose actions correspond to tr is the only below:

Q
νx1.a〈x1〉−→ ...

νxl.a〈xl〉−→ νm̃.{N1/x1, ...,Nl/xl}.

We assume that tr ∼t tr′. Then, νñ.{M1/x1, ...,Ml/xl} ≈s νm̃.{N1/x1, ...,Nl/xl},
so ⇐ holds.

Next, we assume that ϕ ≈s ψ. Then,

fr(tr[i]) ≡νxi+1...xl.ϕ

fr(tr′[i]) ≡νxi+1...xl.ψ.

Therefore, it follows that tr ∼t tr′. Namely, ⇒ also holds.

Proposition 2. If the static equivalence on a signature Σ is decidable, Problem 1
is decidable for finite A.

11



Proof. The number of traces in tr(A) whose actions correspond to ones in tr is
finite because every action yields finitely many processes.

We only have to check whether each process is statically equivalent to the
correspondent process in tr for such traces.

In general, trace equivalence is undecidable. However, if processes contain no
replications, and the equational theory on Σ is a subterm convergent destructor
rewriting system, then trace equivalence is coNEXP complete [8].

Labeled bisimilarity is also usually used. If two processes are bisimilar, they
can imitate each other.

Definition 8. A binary relation R between closed extended processes is called a
labeled simulation if and only if whenever ARB,

1. A ≈s B

2.

[A
µ−→ A′ and A′ : closed and fv(µ) ⊆ dom(A)]

⇒ ∃B′ s.t. B
µ

=⇒ B′ and ARB

If both R and R−1 are labeled simulations, we say that R is a labeled bisimulation.
We call the largest labeled bisimulation a labeled bisimilarity.

It is proved in [1, Theorem 4.1] that the labeled bisimilarity is closed by ap-
plying an evaluation context.

Labeled bisimilarity requires two processes to have the same feasibility. How-
ever, the condition may be too strong if an attacker cannot control participants
directly. We show that trace equivalence is more suitable than labeled bisimilarity
in Chapter 4.
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Chapter 3

Congruency of Trace Equivalence

Congruence is a crucial notion for concurrent systems. We say that an equivalence
relation ≈ between systems is a congruence if A ≈ B implies C[A] ≈ C[B] for any
system A,B, and any context C[ ]. This condition may look natural, but whether
it is satisfied is not evident in many cases.

Theorem 1, which states that trace equivalence for the applied pi calculus is a
congruence, is our main result. Even though trace equivalence for the π-calculus
is not a congruence, Theorem 1 holds. This is ascribed to the difference between
the π-calculus and the applied pi calculus, namely, to the fact that names and
variables are distinguished in the applied pi calculus. This is why adding an input
prefix does not break trace equivalence. Besides, a scheme of late instantiation for
an input transition is used in the π-calculus, so parallel composition may break
trace equivalence. On the other hand, a scheme of early instantiation is used in
the applied pi calculus. This scheme enables us to decompose a trace of a parallel
composed process into traces of component processes.

Example 1. We consider the π-calculus and put

P = z(z′) | yy′.ww′ and Q = z(z′).yy′.ww′ + yy′.z(z′).ww′ + yy′.ww′.z(z′).

Then, x(z).P and x(z).Q are trace equivalent because y cannot be substituted into
z, but xy | x(z).P and xy | x(z).Q are not trace equivalent. The former process
can make the transition below:

xy | x(z).P
τ−→ y(z′) | yy′.ww′ τ−→ ww′

ww′−→ 0

However, xy | x(z).Q cannot do ww′ before doing yy′.
On the other hand, x(z).P and x(z).Q are not trace equivalent in the applied pi

calculus (when we regard x, y, y′, w, and w′ as names). This is because instantiation
is early. x(z).P can make the transition below:

x(z).P
x(y)−→ y(z′) | yy′.ww′ → ww′

νv.w〈v〉−→ {w′/v}
However, x(z).Q cannot do νv.w〈v〉 before doing νu.y〈u〉 after doing x(y).

Abadi et al. [2] defined partial normal forms to prove that labeled bisimilarity
is closed by applications of closing evaluation contexts. They gave operational
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semantics on partial normal forms and classified transitions between ordinal pro-
cesses into six cases using partial normal forms.

To prove the following theorem, we use partial normal forms and define concur-
rent normal forms of traces. Moreover, transitions in a concurrent normal trace
have to be particular forms.

Abadi et al. [2] studied decomposition and composition of reductions on partial
normal forms. We study decomposition and composition of concurrent normal
traces.

Theorem 1. ≈t is a congruence.

The proof is very long and complicated, so we only present an outline of our
proof for the proposition below. Other cases are easy. The proof is given in
Appendix A.

Proposition 3. A ≈t B ⇒ A|C ≈t B|C.

Proof outline. First, we define concurrent normal forms. A concurrent normal
form is a particular form of a trace of a parallel composed process. A concurrent
normal trace captures changes of scopes of bound names. Each process in a con-
current normal trace is of the form νr̃s̃.(νx̃.(σ|P )ρ | νỹ.(ρ|Q)σ), where σ and ρ
are (active) substitutions. Terms sent by the left process are accumulated in σ,
and bound names sent by the left process are accumulated in s̃. Variables to refer
messages sent by synchronous communication are bound. Symmetric cases are
similar.

Second, for any trace t of A|C, we prove that there exists a concurrent normal
trace t′ of A|C such that t ∼t t′. Thus, we have to consider only concurrent normal
traces.

Third, given a concurrent normal trace tr of A|C, we prove that we can con-
struct traces of A and C which each process in them is of the form νs̃.(σ|P )ρ or
νr̃.(ρ|Q)σ.

Finally, we take a trace tr′ of B which is statically equivalent to the extracted
trace of A as the above, combine it with tr′, and prove that the result is statically
equivalent to the given trace tr. 2

Example 2. Let h be a unary function symbol which has no equations.
νm.a(x).x〈m〉 ≈t νm.a(x).x〈h(m)〉 holds. Then,

νm.a(x).x〈m〉 | νn.a〈n〉.n(y).b〈y〉 ≈t νm.a(x).x〈h(m)〉 | νn.a〈n〉.n(y).b〈y〉

is shown as follows.
We arbitrarily take a trace tr of the left-hand side. We consider

tr : νm.a(x).x〈m〉 | νn.a〈n〉.n(y).b〈y〉
νz.a〈z〉−→ νm.a(x).x〈m〉 | νn.(n(y).b〈y〉 | {n/z})
a(z)−→νmn.(n〈m〉 | n(y).b〈y〉 | {n/z})
−→νmn.(b〈m〉 | {n/z})

νw.b〈w〉−→ νmn.{n/z,m/w}

14



as an example. We transform it into a concurrent normal form.

tr′ : νm.a(x).x〈m〉 | νn.a〈n〉.n(y).b〈y〉
νz.a〈z〉−→ νn.((νm.a(x).x〈m〉)[n/z] | n(y).b〈y〉 | {n/z})
a(z)−→νn.((νm.z〈m〉)[n/z] | n(y).b〈y〉 | {n/z})
−→νnm.((νv.{m/v})[n/z] | (b〈v〉 | {n/z})[m/v])

νw.b〈w〉−→ νnm.((νv.{m/v})[n/z, v/w] | {n/z, v/w}[m/v])

Next, we decompose it into traces of component processes.

tr1 : νm.a(x).x〈m〉 tr2 : νn.a〈n〉.n(y).b〈y〉
a(n)−→(νm.z〈m〉)[n/z]

νz.a〈z〉−→ νn.(n(y).b〈y〉 | {n/z})
νv.n〈v〉−→ (νm.{m/v})[n/z]

z(m)−→νn.(b〈v〉 | {n/z})[m/v]
νw.b〈w〉−→ νn.{n/z, v/w}[m/v]

We can take a trace of νm.a(x).x〈h(m)〉 which is statically equivalent to the former
because νm.a(x).x〈m〉 ≈t νm.a(x).x〈h(m)〉 holds.

tr3 : νm.a(x).x〈h(m)〉
a(n)−→(νm.z〈h(m)〉)[n/z]

νv.n〈v〉−→ (νm.{h(m)/v})[n/z]

Finally, we compose tr2 and tr3 and obtain a desired trace tr4.

tr4 : νm.a(x).x〈h(m)〉 | νn.a〈n〉.n(y).b〈y〉
νz.a〈z〉−→ νn.((νm.a(x).x〈h(m)〉)[n/z] | n(y).b〈y〉 | {n/z})
a(z)−→νn.((νm.z〈h(m)〉)[n/z] | n(y).b〈y〉 | {n/z})
−→νnm.((νv.{h(m)/v})[n/z] | (b〈v〉 | {n/z})[h(m)/v])

νw.b〈w〉−→ νnm.((νv.{h(m)/v})[n/z, v/w] | {n/z, v/w}[h(m)/v])

2

We briefly compare trace equivalence and may-testing equivalence [9] before
moving on to the next chapter.

Definition 9.

A ⇓ a if and only if ∃E,M,P s.t. A⇒ E[a〈M〉.P ]

A ⇓ a means that A can use the channel a to send a term after several reduc-
tions.
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Definition 10. A test (C, c) is a pair of an evaluation context C and a channel c.
Let A be a closed extended process. We assume that A does not contain c. When
C[A] ⇓ c, we say that A passes the test.

Definition 11. Two closed extended processes A and B are may-testing equivalent
if and only if they pass the same tests.

Cheval et al. [9] proved that trace equivalence is equivalent to may-testing
equivalence for image-finite processes. Here, image-finite means that each sequence
of actions generates finitely many frames up to static equivalence.

May-testing equivalence is a congruence, so trace equivalence is also a congru-
ence. On the other hand, taking all processes into account, may-testing equivalence
does not imply trace equivalence. Indeed, they gave a concrete counterexample.
Thus, we cannot use the same technique.

We can regard contexts as concrete attackers. Note that how to attack is
decided before the target process operates. This is why may-testing equivalence is
coarser than trace equivalence.
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Chapter 4

An Epistemic Logic for the
Applied Pi Calculus

We omit several proofs in this chapter. They are given in Appendix B.

4.1 Syntax

We propose an epistemic logic for the applied pi calculus. Our logic is inspired by
[7], but it is a bit different. We give the syntax of formulas.

δ ::=> | M1 = M2 | M ∈ dom | δ1 ∨ δ2 | ¬δ
ϕ ::=δ | ϕ1 ∨ ϕ2 | ¬ϕ | 〈µ〉−ϕ | Fϕ | Kϕ

where M1,M2, and M are terms, and µ is an action. We call δ a static formula
and ϕ a modal formula. A static formula δ mentions equality of terms. On the
other hand, a modal formula ϕ mentions traces.
〈µ〉−ϕ states that the previous action is µ, and ϕ holds just before observing

µ. Fϕ states that ϕ holds some time or other. The operator K expresses an
attacker’s knowledge, i.e., Kϕ means the attacker knows that ϕ holds.

We often use abbreviations. Notably, P expresses ¬K¬, and G expresses ¬F¬.
Pϕ means that an attacker does not know ϕ does not hold. In other words, the
attacker thinks that the possibility that ϕ holds remains. Gϕ means that ϕ is
always true.

4.2 Semantics

Our logic is an LTL-like logic with an epistemic operator. Let A be a name-
variable-distinct process. We define sv(A) = fv(A) \ dom(A). Let ρ be an assign-
ment which maps sv(A) to ground terms, tr ∈ tr(Aρ), 0 ≤ i ≤ |tr|, and M1 and
M2 be terms. Remember that fr(A) is a frame of A.

We suppose that δ and ϕ contain no variables other than sv(A) ∪ dom(tr[i]).

17



We omit the semantics of logical operators because they are defined as expected.

A, ρ, tr, i |= M1 = M2 iff (M1ρ = M2ρ)fr(tr[i])

A, ρ, tr, i |= M ∈ dom iff M is a variable x, and x ∈ dom(tr[i])

A, ρ, tr, i |= 〈µ〉−ϕ iff tr[i− 1]
µ

=⇒ tr[i] in tr and A, ρ, tr, i− 1 |= ϕ

A, ρ, tr, i |= Fϕ iff ∃j ≥ i s.t. A, ρ, tr, j |= ϕ

A, ρ, tr, i |= Kϕ iff ∀ρ′∀tr′ ∈ tr(Aρ′); tr[0, i] ∼t tr′[0, i]⇒ A, ρ′, tr′, i |= ϕ

We suppose that an attacker does not know what terms are assigned to free
variables before the process runs. In other words, secret information is expressed as
the assignment ρ. Hence, the definition of K contains a quantifier over assignments
∀ρ′. Recall that an attacker can observe only labeled transitions, so accessibility
is defined based on static equivalence on traces.

We also define the satisfiability of formulas containing free variables. We put
ỹ = dom(tr[i]). Let x̃ = sv(A). We suppose that ϕ contains no variables other
than x̃, ỹ, and z̃.

A, ρ, tr, i |= ϕ(x̃, ỹ, z̃) iff ∀M̃ ;A, ρ, tr, i |= ϕ(x̃, ỹ, M̃),

where M̃ is a sequence of ground terms.
From now, we suppose that all processes are name-variable-distinct. We often

omit restriction of a domain of definition. D(ρ) is a domain of definition of ρ.
When a formula ϕ is satisfied over all possible runs of a process A at the start

of the run, we say that A satisfies ϕ.

Definition 12. A |= ϕ
def⇔ ∀ρ ∀tr ∈ tr(Aρ);A, ρ, tr, 0 |= ϕ

Note that A 6|= ϕ is not equivalent to A |= ¬ϕ.

Definition 13. A vs B
def⇔ ∀δ ∀ρ;A, ρ�sv(A)

, Aρ, 0 |= δ ⇒ B, ρ�sv(B)
, Bρ, 0 |= δ.

A ≡s B
def⇔ A vs B and B vs A.

Lemma 1. If sv(A) = sv(B), then

[∀ρ;Aρ ≈s Bρ]⇔ A ≡s B

Definition 14. A vL B
def⇔ ∀ρ ∀tr ∈ tr(Aρ) ∃tr′ ∈ tr(Bρ)

s.t. ∀i ∀ϕ; [A, ρ�sv(A)
, tr, i |= ϕ⇔ B, ρ�sv(B)

, tr′, i |= ϕ]

A ≡L B
def⇔ A vL B and B vL A.

Proposition 4. A vL B ⇒ [∀ϕ;B |= ϕ⇒ A |= ϕ].

Proof. Assuming that B |= ϕ, we arbitrarily take ρ and tr ∈ tr(Aρ).
By assumption, there exists tr′ ∈ tr(Bρ) such that

∀i∀ϕ′; [A, ρ�sv(A)
, tr, i |= ϕ′ ⇔ B, ρ�sv(B)

, tr′, i |= ϕ′]. (4.1)

Then, B, ρ�sv(B)
, tr′, 0 |= ϕ because of B |= ϕ.

By (4.1), A, ρ�sv(A)
, tr, 0 |= ϕ.

By arbitrariness of ρ and tr, it holds that A |= ϕ.
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May-testing equivalence does not imply trace equivalence. The counterexample
below is given in [9], but we only modify notation.

A = νbc1.(c1〈token〉|c1(x).c〈b〉|c1(x).B)

B = νc2.(c2〈h(a)〉|c2(x).c〈x〉|!c2(x).c2〈h(x)〉),

where h is a function symbol which has no equations.
A and B are may-testing equivalent, but they are not trace equivalent. In

addition, A and B satisfy the same formulas. 0 denotes the null substitution.

Lemma 2. For any ϕ and the above A and B, we consider two traces.

tr : A =⇒ A1 =⇒ ... =⇒ Ak
νy.c〈y〉
=⇒ A′1 =⇒ ... =⇒ A′m

tr′ : B =⇒ B1 =⇒ ... =⇒ Bk
νy.c〈y〉
=⇒ B′1 =⇒ ... =⇒ B′m,

where fr(A′m) ≡ νbc1c2.{hn(a)/y} and fr(B′m) ≡ νc2.{hn(a)/y}. Then,

A, 0, tr, i |= ϕ⇔ B, 0, tr′, i |= ϕ

for any i.

Lemma 3. For any ϕ and the above A and B, we consider two traces.

tr : A =⇒ A1 =⇒ ... =⇒ Ak
νy.c〈y〉
=⇒ A′1 =⇒ ... =⇒ A′m

tr′ : B =⇒ B1 =⇒ ... =⇒ Bk
νy.c〈y〉
=⇒ B′1 =⇒ ... =⇒ B′m,

where fr(A′m) ≡ νbc1c2.{b/y} and fr(B′m) ≡ νc2.{hn+1(a)/y}. n is the number of h
occurring in ϕ. Then,

A, 0, tr, i |= ϕ⇔ B, 0, tr′, i |= ϕ

for any i.

Lemma 4. For any ϕ and the above A and B, we consider two traces.

tr : A =⇒ A1 =⇒ ... =⇒ Ak

tr′ : B =⇒ B1 =⇒ ... =⇒ Bk

Then,
A, 0, tr, i |= ϕ⇔ B, 0, tr′, i |= ϕ

for any i.

Proof. We simultaneously prove Lemma 2, 3, and 4 by induction on ϕ.

1. > or M ∈ dom.

These cases are trivial.
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2. M1 = M2

Lemma 2 and 4 trivially hold.

For Lemma 3, (M1 = M2)fr(A
′
m) ⇔ (M1 = M2)fr(B

′
m) because hn+1(a)

behaves like a fresh name in M1 = M2.

3. ϕ1 ∨ ϕ2,¬ϕ, 〈µ〉−ϕ or Fϕ

These cases follow from induction hypothesis.

4. Kϕ

We assume that A, 0, tr, i |= Kϕ.

For and tr′′ ∈ tr(A) such as tr[0, i] ∼t tr′′[0, i], it holds that A, 0, tr′′, i |= ϕ.

We arbitarily take tr′′′ ∈ tr(B) such as tr′[0, i] ∼t tr′′′[0, i].

Then, we can choose tr′′ ∈ tr(A) such as tr[0, i] ∼t tr′′[0, i] to apply Lemma
2, 3, or 4.

Proposition 5. For the above A and B,

∀ϕ; [A |= ϕ⇔ B |= ϕ]

Proof. It immediately follows from Lemma 2, 3, and 4.

We consider the situation below:
The unknown process X exists. The attacker knows that X equals A or B and

wants to attack a target using X. Then, he starts to attack, presuming that X is
equal to A. If X is really equal to A, there is no problem. If X is equal to B, he
eventually notices that his premise is wrong and can do it over.

In any case, he can attack based on correct information about X. Hence, we
consider that A should be distinguished from B.

If infinite logical disjunction is allowed, we can discern A and B using our
epistemic logic. Indeed,

A 6|= (〈νx.c〈x〉〉−>)→
∨
n

x = hn(a)

B |= (〈νx.c〈x〉〉−>)→
∨
n

x = hn(a)

Thus, A 6≡L B. Our epistemic logic is LTL-like, so Definition 14 is reasonable
as logical equivalence. We prove that trace equivalence corresponds with logical
equivalence ≡L in the next section. Following the results, we consider that trace
equivalence is more suitable than may-testing equivalence.
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4.3 Correspondence with Trace Equivalence

We prove that trace equivalent processes satisfy the same formulas.

Theorem 2. If sv(A) = sv(B), then
1. A ≈t B ⇒ A vL B; 2. A vL B ⇒ A ⊆t B
Proof outline.
1) We prove

∀ρ ∀tr ∈ tr(Aρ), tr′ ∈ tr(Bρ);

tr ∼t tr′ ⇒ ∀i ∀ϕ; [A, ρ, tr, i |= ϕ⇔ B, ρ, tr′, i |= ϕ],

by induction on the syntax of formulas.
2) We arbitrarily take an assignment ρ and tr ∈ tr(Aρ).
By A vL B, ∃tr′ ∈ tr(Bρ) s.t.∀i ∀ϕ; [A, ρ, tr, i |= ϕ⇔ B, ρ, tr′, i |= ϕ].
Then, we can prove tr ∼t tr′.
By arbitrariness of tr, it immediately follows that A vL B ⇒ A ⊆t B. 2

Why is the antecedent of 1 trace equivalence? In other words, does the converse
of 2 hold? The answer is “no.” The converse of 2 does not hold. The cause is the
existence of the epistemic operator K. We give a counterexample.

Example 3.

A = x〈s〉
B = x〈s〉+ a〈s〉

A ⊆t B obviously holds. Nevertheless,

A 6|= G(〈νy.a〈y〉〉−> → P (x 6= a))

B |= G(〈νy.a〈y〉〉−> → P (x 6= a))

The contraposition of Proposition 4 implies A 6vL B.

Moreover, A ⊆t B does not imply that [∀ϕ;A |= ϕ ⇒ B |= ϕ]. The cause is
the existence of the temporal operator F . We give a counterexample.

Example 4.

A = a〈s〉
B = a〈s〉.b〈s〉

A ⊆t B obviously holds. Nevertheless,

A |= G(¬〈νy.b〈y〉〉−>)

B 6|= G(¬〈νy.b〈y〉〉−>)

We can immediately conclude that the following theorem holds.

Theorem 3. A ≈t B ⇔ A ≡L B.

This theorem suggests that trace equivalence is suitable to define security prop-
erties. We give Proposition 6 as an example in the following section.
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4.4 Application

We define minimal secrecy. We regard it as generalized minimal anonymity [18].
Anonymity means that who takes the action, such as casting a ballot, is hidden
from an attacker. If an action a performed by an agent i is minimally anonymous,
an observer cannot concern that the agent i have performed the action a. On the
other hand, if a variable x satisfying a property δ is minimally secret, an attacker
cannot concern that the variable x satisfies the property δ. Recall that δ denotes
a static formula.

Definition 15. A variable x is minimally secret with respect to δ in A iff

A |= G(P (¬δ(x))).

This definition means that attackers cannot be sure that δ(x) is true.
This property is not robust. For instance, although x is minimally secret with

respect to a nontrivial formula δ, x is not always minimally secret with respect to
¬δ. Hereafter, we often omit objects of outputs.

Example 5. We put δ(z) : z 6= a ∧ z 6= b.
We consider a process

if x = a then c else d.

Then x is minimally secret with respect to δ, but not secret with respect to ¬δ.

Moreover, ∨ does not preserve minimally secret. However, ∧ preserves it.
Although x is minimally secret in A, x is not always secret in A|A. Besides,

restriction does not always preserve minimal secrecy.

Example 6. We put δ(z) : z = a. We put

P = if x = a then (a〈s〉+ b〈s〉) else a〈s〉, Q = if x = b then b〈s〉 else c〈s〉.

Then x is minimally secret with respect to δ in P + Q, but not secret in (P +
Q)|(P +Q).

Example 7. We put δ(z) : z = a. Then, x is minimally secret with respect to δ
in x+ a, but not secret in νa.(x+ a).

We define total secrecy. We can also regard it as generalized total anonymity
[18]. If an action a performed by an agent i is totally anonymous, an observer
thinks that it is possible that any agent has performed the action. That is, the
observer can obtain no information about the performer. On the other hand, if a
variable x is totally secret, an attacker cannot concern that the variable x satisfies
any property δ. Total secrecy states that attackers can obtain no information
about x.
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Definition 16. x is totally secret in A(x, ỹ) iff

∀δ(z, z̃, w̃);A(x, ỹ) |= G(P (¬δ(x, ỹ, w̃)))

where δ contains no variables other than ones in {z} ∪ z̃ ∪ w̃ and satisfies that

∀Ñ∀ψ∃M : ground s.t. ψ |= ¬δ(M, Ñ, w̃).

Besides, |ỹ| = |z̃| and w̃ ∩ ({x} ∪ ỹ) = ∅.

The latter condition means that δ is nontrivial in any case.

Proposition 6. x is totally secret in A(x, ỹ) iff A(x, ỹ) ≈t A(x′, ỹ).

Proof. ⇒) We suppose for the sake of contradiction that A(x, ỹ) 6≈t A(x′, ỹ).

There exist M1,M2, and Ñ that are ground such that A(M1, Ñ) 6≈t A(M2, Ñ).

We suppose that A(M1, Ñ) 6⊆t A(M2, Ñ). Then, there exists tr ∈ tr(A(M1, Ñ))

such that any trace of A(M2, Ñ) is not statically equivalent to tr.

We put δ(z, z̃) : z 6= M2 ∨ z̃ 6= Ñ . Then

A(x, ỹ), (x 7→M1, ỹ 7→ Ñ), tr, |tr| |= Kδ(x, ỹ).

This contradicts total secrecy.
⇐) We arbitrarily take δ, ρ, tr ∈ tr(A(ρ(x), ρ(ỹ))) and i, where δ meets the

demand of Definition 16.
We take M such that fr(tr[i]) |= ¬δ(M,ρ(ỹ), w̃). Let ρ′ be

ρ′(y) =

{
M (y = x)

ρ(y) (otherwise).

By assumption, A(ρ(x), ρ(ỹ)) ≈t A(M,ρ(ỹ)).
Hence, there exists tr′ ∈ tr(A(M,ρ(ỹ))) such that tr ∼t tr′.
Then, A(x, ỹ), ρ′, tr′, i |= ¬δ(M,ρ(ỹ), w̃).
Therefore, A(x, ỹ), ρ, tr, i |= P (¬δ(x, ρ(ỹ), w̃)).
Then, A(x, ỹ) |= G(P (¬δ(x, ρ(ỹ), w̃))).

Theorem 4. If x is totally secret in A(x, ỹ), then x is also totally secret in
E[A(x, ỹ)] for every context E[ ] which does not contain x.

Proof. It immediately follows from Theorem 1 and Proposition 6.

If the context E[ ] contains x, Theorem 4 does not hold. Indeed,

E[ ] = if x = a then else 0

is a counterexample.
Our framework can generalize role interchangeability [24]. When xi satisfies a

property δk, and xl satisfies a property δj, an attacker thinks that it is possible
that xl satisfies a property δk and xi satisfies a property δj.
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Definition 17. We put sv(A) = {x1, ..., xp}, J = {1, ..., q}, and I = {1, ..., p}.
(xi, δk) is role interchangeable regarding {δj(zj, ỹj)}j∈J in A iff

A(x1, ..., xp) |= G(δk(xi, ỹk)→
∧
l∈I

∧
j∈J

(δj(xl, ỹj)→ P (δk(xl, ỹk) ∧ δj(xi, ỹj))))

where ỹj ∩ {x1, ..., xp} = ∅ for all j ∈ J .

Proposition 7.
∀M̃ ∀i ∀tr ∈ tr(A(M1, ...,Mp))

∃Ñ ∃tr′ ∈ tr(A(Mi, N2, ..., Ni−1,M1, Ni+1, ..., Np)) s.t. tr ∼t tr′

⇔ (x1, δk) is role interchangeable with respect to {δj} in A for all {δj} and k.

Corollary 1. ∀l ∈ I \ {i};A(x1, ..., xi, ..., xl, ..., xp) ≈t A(x1, ..., xl, ..., xi, ..., xp)
⇒ (xi, δk) is role interchangeable with respect to {δj} in A for all {δj} and k.

The converse holds only when p = 2.

Proposition 8. A(x1, x2) ≈t A(x2, x1)
⇔ (x1, δk) is role interchangeable with respect to {δj}j∈J in A for all {δj}j∈J

and k.

We give a counterexample for p = 3.

Example 8. We put

A(x, y, z) = if x = y then x+ z else if x = z then x+ y else y + z

Then, (x, δk) is role interchangeable regarding {δj} in A for all {δj}j∈J and k
by Proposition 7, but A(a, b, a) 6≈t A(b, a, a). Thus, A(x, y, z) 6≈t A(y, x, z).

We can also consider role permutativity. Mano [23] showed that it is strictly
stronger than role interchangeability. Role permutativity states that even if p
values are swapped, an attacker cannot notice it. Here, Sp denotes the symmetric
group on {1, ..., p}.

Definition 18. We put sv(A) = {x1, ..., xp}, J = {1, ..., q}, and I = {1, ..., p}.
{δj}j∈J is role permutable in A iff

∀n ≤ p ∀ψ ∈ Sp;A(x1, ..., xp) |= G(
∧
k≤n

δik(xik , ỹk)→ P (
∧
k≤n

δik(xiψ(k)
, ỹk)))

where ỹj ∩ {x1, ..., xp} = ∅ for all j and each ik differs.

Proposition 9. ∀ψ ∈ Sp;A(x1, ..., xp) ≈t A(xψ(1), ..., xψ(p))
⇔ {δj}j∈J is role permutable in A for all {δj}j∈J .

The proof is similar to Proposition 7.
We define openness. We regard it as generalized identity [33]. Identity is the

property of revealing what a specific agent i performed. If x is open, the value of x
is disclosed. Parallel composition does not preserve openness of a specific variable.

24



Definition 19. x is open in A under ∆(x) iff

∀ρ ∀tr ∈ trmax(Aρ);A, ρ, tr, |tr| |= ∆(x)→ K(∆(x)→ (x = xρ)).

Example 9. We put ∆(z) : z = r ∨ z = s,

P = if x = r then a〈n〉 else b〈n〉 and Q = if x = r then b〈n〉 else a〈n〉.

Then x is open in P and Q under ∆(x), but x is not open in P |Q under ∆(x).

P |Q, [x 7→ r], ab, 2 6|= ∆(x)→ K(∆(x)→ (x = r)),

where ab is

P |Q νy.a〈y〉−→ Q|{n/y} νz.b〈z〉−→ {n/y, n/z}.

Note that it is proved in [33] that identity is preserved by parallel composition.
However, the definition of parallel composition is much different from our defini-
tion. The authors considered the case that a specific agent performs two different
actions.

Problem 2.
Input: An extended process A, an assignment ρ, a trace tr ∈ tr(Aρ), an

integer 0 ≤ i ≤ |tr|, and a formula ϕ.
Question: Does A, ρ, tr, i |= ϕ hold?

Proposition 10. Even if the word problem in Σ is decidable, Problem 2 can be
undecidable.

Abadi and Cortier [3] proved that static equivalence can be undecidable even
if the word problem in Σ is decidable. Proposition 10 follows from it.

We a bit change semantics of Kϕ. We repeat it.

A, ρ, tr, i |= Kϕ iff ∀ρ′ ∀tr′ ∈ tr(Aρ′); tr[0, i] ∼t tr′[0, i]⇒ A, ρ′, tr′, i |= ϕ,

Now, we restrict ρ′ to be an assignment to names.
We also change the definition of satisfaction. We repeat it.

A |= ϕ iff ∀ρ ∀tr ∈ tr(Aρ);A, ρ, tr, 0 |= ϕ

Now, we restrict ρ to be an assignment which maps free variables to only names
and restrict inputted messages in tr to be only variables. That is, we assume that
an attacker cannot tamper with a message. In other words, the attacker can only
transfer messages without any change.

Problem 3.
Input: An extended process A and a formula ϕ.
Question: Does A |= ϕ hold?

A convergent subterm theory is an equational theory defined by finite equations
whose each right-hand side is a proper subterm of the left-hand side.

Proposition 11. If the equational theory on Σ is a convergent subterm theory and
the extended process A is finite, Problem 3 is decidable.
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4.5 Comparison with the Work of Chadha et al.

4.5.1 Epistemic Logic

Chadha et al. [7] proposed epistemic logic for the applied pi calculus. We compare
our logic and their logic in this subsection.

First, they added events to the applied pi calculus as follows. e is an event,
and M̃ is a sequence of terms. They are parameters of e.

P,Q ::= ... | e(M̃).P

e(M̃).P −→ P | [e(M̃)]

[e(M̃)] is an event store. When an event e(M̃) happens, an event store [e(M̃)] is
generated.

Event stores cannot do any internal reduction and labeled transition. An en-
vironment cannot observe any event and event store, so this enrichment does not
affect behavioral equivalences.

They defined static formulas Has and êvt. Has directly represents attackers’
knowledge. Has(T̂ ) means that an attacker can obtain a term T from a frame.

êvt(T̂1, .., T̂r) means that the event evt parametrized by T1, ..., Tr had occurred.
In addition, their logic contains a quantifier over terms.

Their logic is α-sensitive. As a matter of fact, α-equivalent processes do not
always satisfy the same formulas in their framework because secret values are
expressed as bound names or through events.

We show an example. νn.0 satisfies Has(m̂), but νm.0 does not satisfy it.
In addition, statically equivalent processes do not always satisfy the same closed
formulas.

On the other hand, we express secret values as assignments to free variables,
so our logic is sensitive to changing variables.

Information about a term handled in their logic is its value and its structure.
For example, ∃z.Has(hash(z)) means that an attacker has the hash of something.

Our logic cannot express information about structures. Information about
terms is expressed as a relationship between terms. That is, our logic can express
partial information about secret values.

Three kinds of modal operators, �,� and K are introduced in their paper. �ϕ
means that ϕ is always true in the future. � is a backward temporal operator,
and K is an epistemic operator. Kϕ means that an attacker knows that ϕ is true.

Alternatively, our logic also has an epistemic operator K and a forward tempo-
ral operator F , but F is like the dual of �. Fϕ means that ϕ holds some time or
other. Furthermore, 〈µ〉− is introduced to express an attacker’s knowledge about
the dynamic behavior of the target process. In contrast, their logic cannot de-
scribe information about transitions. Indeed, a〈n〉.0 and b〈n〉.0 are not even trace
equivalent, but they satisfy the same formulas in their logic.

Chadha et al. directly expressed an agreement property of authentication using
their logic. Our logic cannot directly express it, but it is difficult to express the
agreement property in the original applied pi calculus anyway.
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4.5.2 Privacy

Chadha et al. developed the definition of privacy in e-voting as follows. They
considered protocol instances in which two voters Alice and Bob participate, and
voting options are 0 and 1.

Chadha et al. called

V = Σva,vb∈{0,1}votes(va, vb).V (va, vb)

a voting process. votes(va, vb) is an event, which means that Alice voted va and
Bob voted vb.

On the other hand, votes are expressed as values of free variables in our frame-
work.

Definition 20 ( [7, Definition 9]). The voting process V respects privacy if V |=
Aprivacy ∧Bprivacy where

- Aprivacy
def
= ∧v∈{0,1}2(K(Avote(v))→ Bvote(v)), and

- Bprivacy
def
= ∧v∈{0,1}2(K(Bvote(v))→ Avote(v)).

Avote(v) means that Alice voted v, and Bvote(v) is similar.
Minimal secrecy of a vote never holds because an attacker trivially knows votes

when all votes agree. We consider protocol instances in which m voters participate
and n voting options exist. Let vi be a vote of i. We consider the property below:

∨j,kvj 6= vk → ∧i∧vG(K(vi = v)→ v1 = v∧ ...∧vi−1 = v∧vi+1 = v∧ ...∧vm = v)

The consequence in G(...) implies that vi 6= v due to the antecedent condition, so
we can rewrite the property.

∨j,kvj 6= vk → ∧i ∧v G(K(vi = v)→ vi 6= v)

Moreover, we take the contraposition in G.

∨j,kvj 6= vk → ∧i ∧v G(vi = v → P (vi 6= v))

That is,
∨j,kvj 6= vk → ∧i ∧v G(P (vi 6= v))

This consequence is exactly minimal secrecy. Besides, minimal secrecy of voting
implies privacy, so privacy and minimal secrecy of voting agree under the disagree-
ment condition ∨j,kvj 6= vk.

It was shown that V (0,1) ≈t V (1,0) implies that V respects privacy, and the
partial converse was given in [7]. We give several similar properties of minimal
secrecy.

Chadha et al. defined publishing traces and abort traces. We slightly extend
their definition.
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Definition 21. We arbitrarily take votes v1, ...,vm.
A maximal trace tr ∈ trmax(V (v1, ...,vm)) is a publishing trace if for any

v′1, ...,v
′
m such that {v1, ...,vm} 6= {v′1, ...,v′m} as multisets, there is no tr′ ∈

tr(V (v′1, ...,v
′
m)) such that tr′ is statically equivalent to tr.

We say that tr is an abort trace if it is not a publishing trace.

Intuitively, a maximal trace tr is publishing if a poll is declared in the trace.
On the other hand, an environment cannot know the voting result in an abort
trace.

Definition 22. We arbitrarily take votes v1, ...,vm and an abort trace tr ∈
trmax(V (v1, ...,vm)). We say that a voting process V is equivalent for aborts if
for any votes v′1, ...,v

′
m there exists a tr′ ∈ trmax(V (v′1, ...,v

′
m)) such that tr′ is

statically equivalent to tr.

If a voting process V is equivalent for aborts, every abort trace does not leak
information about votes.

Proposition 12. We assume that a voting process V is equivalent for aborts,
and minimal secrecy of each vote in V (v1, ..., vm) holds under the disagreement
condition ∨j,kvj 6= vk.

1. m = 2⇒ V (v1, v2) ≈t V (v2, v1).

2. m = 3 and n = 2⇒ V (v1, v2, v3) ≈t V (v2, v1, v3).

3. Otherwise, V (v1, ..., vi, ..., vj, ..., vm) ≈t V (v1, ..., vj, ..., vi, ..., vm) does not al-
ways hold.

Proof. 1: Given a and b are different votes.
For the sake of contradiction, we suppose that V (a, b) 6⊆t V (b, a).
There exists a maximal trace tr ∈ trmax(V (a, b)) such that any trace of V (b, a)

is not statically equivalent to tr.
V is equivalent for aborts, so tr is publishing.
Hence any trace of V (p, q) is not statically equivalent to tr if {p, q} 6= {a, b}.
Thus, an attacker knows that voter 1 voted a, and it contradicts minimal

secrecy.
2: For the sake of contradiction, we suppose that V (0,1,0) 6⊆t V (1,0,0).
There exists a maximal trace tr ∈ trmax(V (0,1,0)) such that any trace of

V (1,0,0) is not statically equivalent to tr.
V is equivalent for aborts, so tr is publishing.
Hence any trace of V (p, q, r) is not statically equivalent to tr if {p, q, r} 6=

{0,1,0} as multisets.
Thus, an attacker knows that voter 1 voted 0, and it contradicts minimal

secrecy.
3: If m = 4 and n = 2, there exists a counterexample. We consider a process

V (v1, v2, v3, v4) as below. Here, all signals are the same.

� If the number of 1 is one, V sends a signal on a channel a.
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� If (v1, v2, v3, v4) = (0,0,1,1), (0,1,0,1), (1,0,1,0), V sends a signal on a
channel b.

� If (v1, v2, v3, v4) = (0,1,1,0), (1,0,0,1), (1,1,0,0), V sends a signal on a
channel c.

� If the number of 1 is three, V sends a signal on a channel d.

� If all votes are 0, V sends a signal on a channel e.

� If all votes are 1, V sends a signal on a channel f .

V is equivalent for aborts, but V (0,0,1,1) 6≈t V (1,0,0,1).
If m = 3 and n = 3, there also exists a counterexample. We consider a process

V (v1, v2, v3) as below. Here, all signals are the same.

� If (v1, v2, v3) = (0,1,2), (2,1,0), (1,2,0), V sends a signal on a channel a.

� If (v1, v2, v3) = (0,2,1), (1,0,2), (2,0,1), V sends a signal on a channel b.

� If the number of 0 is two and the number of 1 is one, V sends a signal on a
channel c.

� If the number of 0 is two and the number of 2 is one, V sends a signal on a
channel d.

� If the number of 0 is one and the number of 1 is two, V sends a signal on a
channel e.

� If the number of 0 is one and the number of 2 is two, V sends a signal on a
channel f .

� If the number of 1 is two and the number of 2 is one, V sends a signal on a
channel g.

� If the number of 1 is one and the number of 2 is two, V sends a signal on a
channel h.

V is equivalent for aborts, but V (0,1,2) 6≈t V (1,0,2).
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Chapter 5

Related Work

5.1 Process Algebras

Logics about behavior of labeled transition systems originate from Hennessy-
Milner logic [19] that is a modal logic characterizing observational congruence.
That is, observational equivalent systems satisfy the same modal formulas when
these systems are image-finite.

Process algebra is a special LTS. The spi calculus [4] is an extension of the
π-calculus [26, 27]. It enables us to handle symmetric-key encryption based on the
Dolev-Yao model [13]. In the spi calculus, two ciphertexts obtained by encrypting
two different plaintexts are indistinguishable unless an observer gets a secret key.
Abadi and Gordon formalized security properties using testing equivalence. This
testing equivalence is a bit different from may-testing equivalence for the applied
pi calculus. The former considers only parallel compositions as tests.

We focused on the applied pi calculus [2] because it is more expressive than the
spi calculus. That is, we intend to handle more various security notions. In this
calculus, a process can send not only names but also terms via alias variables. Due
to this feature, we can handle not only secrecy but also stricter properties. The
authors proved that observational equivalence and labeled bisimilarity correspond.

Chadha et al. [7] already developed an epistemic logic for the applied pi cal-
culus. They defined formulas Has and êvt. Has directly represents attackers’
knowledge, and êvt means that a particular event had occurred. Temporal modal-
ities were also used, but they do neither mention the just previous nor next action.
The epistemic operator K was defined based on static equivalence on traces. The
authors suggested that trace equivalence is more suitable than labeled bisimilarity
when we consider privacy. However, a correspondent relation between logic and
behavior of processes was not provided.

Horne [20] introduced quasi-open bisimilarity, and he proved that it coincides
with open bisimilarity. Moreover, intuitionistic modal logic FM characterizes
quasi-open bisimilarity. The law of excluded middle does not hold in the logic
because processes containing a free variable are also considered.

Parrow et al. [29] defined nominal transition systems and developed modal logic
characterizing bisimilarity for a nominal transition system. Process algebra is one
of nominal transition systems. A nominal transition system has a nominal set of
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states and a nominal set of actions. A nominal set [30] is a set with a permutation
action, and each element has a finite support. If a and b are not in the support
of an element X in a nominal set, the transposition (a, b) does not affect X. A
support of a process corresponds with a set of free names of the process.

Fiore and Abadi [15] developed symbolic models of processes. They gave a
procedure to decide whether an environment can derive a message M . Their
technique can be used for verification. However, equivalences on processes were
not studied in the paper.

Goubault-Larrecq et al. [17] proposed probabilistic applied pi calculus. In this
calculus, our Theorem 1 no longer holds. It is known that trace distribution
preorder [31] is not a congruence. On the other hand, it is shown in [5] that
probabilistic trace equivalence for nondeterministic and probabilistic LTS is a con-
gruence concerning parallel composition. Probabilistic trace equivalence is coarser
than trace distribution equivalence. The former considers traces weighted by prob-
ability, but the latter considers the probabilistic distribution of traces. Which is
better is not clear.

Knight et al. [22] developed spatial and epistemic process calculus. Their study
is for concurrent constraint programming, so their processes can add constraints.
They proved that observational equivalence is a congruence. Their processes do not
have labeled actions, so observational equivalence states that equivalent processes
provide the same results. On the other hand, in the applied pi calculus, trace
equivalent processes provide equivalent traces and indistinguishable information.

5.2 Logics for Concurrent Systems

Knight et al. [21] defined an epistemic logic for an LTS. This framework is based
on Hennessy-Milner logic, and it handles multiple agents’ knowledge. They also
proved weak completeness. However, compositionality was not discussed.

Toninho and Caires [32] proposed a dynamic spatial epistemic logic, which
reasons what information a process can obtain. The epistemic operator means not
only an attacker’s knowledge but also a participant’s knowledge, so, for example,
the logic can reason a correspondence assertion.

Tsukada et al. [33] studied sequential and parallel compositionality of security
notions using an epistemic logic for a multiagent system. They proved that neither
anonymity nor privacy is generally preserved by composition and gave a sufficient
condition for preservation. However, this word “parallel” merely means that the
same agent acts two actions in the paper. That is, concurrency was not considered.

Clarkson and Schneider [11] generalized trace properties to hyperproperties,
and Clarkson et al. [10] developed hyperLTL and hyperCTL* for hyperproperties.
A trace property is a set of traces. On the other hand, a hyperproperty is a
set of sets of traces. Hyperproperties can express security properties which trace
properties cannot express. The authors regarded systems as sets of traces, so
hyperproperties are properties about systems. Our security properties are also
proper hyperproperties. The advantage of our work over these works is relating
trace equivalence to attackers’ knowledge. In previous work, the relation between
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equivalence and knowledge is not clear.

5.3 Other Approaches

Canetti et al. [6] defined implementation for task-PIOAs (Probabilistic I/O Au-
tomata). According to their definition, T1 implements T2 iff the set of behaviors
of T1 composed with E is included in the set of behaviors of T2 composed with
E for every environment E . Here, behavior is the set of trace distributions. The
implementation relation is preserved by parallel composition.

Giro and D’Argenio [16] pointed out that ordinary schedulers may give rise
to unnatural behavior. For example, an attacker can guess secret information to
be subject to a particular scheduler. To solve this problem, they provided several
reasonable subclasses of schedulers.

Eisentraut et al. [14] also studied subclasses of schedulers for probabilistic au-
tomata. They defined late distribution bisimulation and proved that late distri-
bution bisimulation concerning distributed schedulers is compositional. We may
need to specify subclasses of schedulers to state a probabilistic variant of Theorem
1.

In this paper, we characterized trace equivalence in terms of our epistemic
logic. That is, we showed that a non-adaptive active intruder cannot distinguish
trace equivalent processes. We also focused on how composition of systems affects
security properties. We proved that any composition preserves total secrecy and
role permutativity. This is because trace equivalence is a congruence.
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Chapter 6

Conclusions

6.1 Summary

In this paper, we proved that an application of a context preserves trace equivalence
for the applied pi calculus. That is, trace equivalence is a congruence. This
theorem is our first main result. Although trace equivalence for the π-calculus is
not a congruence, trace equivalence for the applied pi calculus is a congruence. This
contrast is ascribed to the following two differences. First, names and variables
are distinguished in the applied pi calculus, but they are not distinguished in
the π-calculus. Second, late instantiation is adopted in the π-calculus, but early
instantiation is adopted in the applied pi calculus. We introduced concurrent
normal traces to prove it. A concurrent normal trace explicitly indicates scope
extrusions and terms each component process sent.

In addition, we provided an epistemic logic for the applied pi calculus. This
logic is an LTL-like logic, so we can describe several security notions. We formu-
lated minimal secrecy, total secrecy, role interchangeability, role permutativity, and
openness. We regard them as generalized security properties regarding multiagent
systems.

Minimal secrecy of x with respect to δ means that an attacker cannot concern
that the variable x satisfies the property δ. Total secrecy of x means that an
attacker can obtain no information about x. We associated trace equivalence with
total secrecy. Role interchangeability (resp. permutativity) means that properties
of two (resp. several) variables can be swapped. If x is open, an environment can
know the value of x.

Minimal secrecy is not robust. Indeed, an application of a context does not
preserve minimal secrecy. However, total secrecy is preserved because trace equiv-
alence is a congruence. We also give necessary and sufficient conditions for role
interchangeability and role permutativity, respectively using trace equivalence.
Openness is also not robust.

We conclude that trace equivalence is suitable to express non-probabilistic in-
distinguishability in the view of security in the presence of a non-adaptive active
adversary.
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6.2 Future Work

First, our epistemic logic states an adversary’s knowledge. We intend to construct
a logic for a process’s knowledge. It will bridge the gap between multiagent systems
and process calculi. Ufferman et al. [34] proposed a dynamic epistemic logic whose
knowledge updates are expressed as π-calculus processes. However, the relation
between process equivalence and logic is unclear. Bisimilar processes do not always
happen the same update. We would like to construct a logic such that a certain
process equivalence implies that every agent can obtain the same information.

Second, formalizations of other security properties such as non-malleability are
also the next topics.

Finally, what logic is suitable for security in the presence of an adaptive attacker
is still open.
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[34] Eric Ufferman, Pedro Arturo Góngora, and Francisco Hernández Quiroz. A
complete proof system for a dynamic epistemic logic based upon finite π-
calculus processes. In Advances in Modal Logic, pages 470–482, 2010.

[35] R. J. van Glabbeek. The linear time - branching time spectrum. In J. C. M.
Baeten and J. W. Klop, editors, CONCUR 1990, volume 458 of LNCS, pages
278–297, Berlin, Heidelberg, 1990. Springer.

37



Appendix A

Proof of Theorem 1

This chapter proves the theorem below by case analysis, and this is our main
result.

Theorem 1. ≈t is a congruence.

When A and B are name-variable-distinct and fn(A)∩bn(B) = bn(A)∩fn(B) =
bn(A) ∩ bn(B) = ∅, we say that A and B are bind-exclusive.

In this appendix, we assume that every process is bind-exclusive. Otherwise,
we α-convert processes so that it is satisfied. This appendix uses many results
about partial normal forms in [1].

A.1 Partial Normal Forms

Partial normal forms make considering internal reductions easy. The partial nor-
mal form of A is written as pnf(A). We call a process which is in the partial
normal form a normal process.

Definition 23. Let σ and ρ be active substitutions.
We assume that

σ|ρ ≡ {M1/x1, ...,Mn/xn}

where each Mi does not contain x1, ..., xi by reordering. We define σ0 = 0 and
σi+1 = σi{Mi+1/xi+1}|{Mi+1/xi+1}. Then, we also define σ ] ρ = σn.

Definition 24. We suppose that pnf(A) = νñ.(σ|P ) and pnf(B) = νm̃.(ρ|Q).

pnf(P ) =0|P
pnf({M/x}) ={M/x}|0

pnf(νn.A) =νnñ.(σ|P )

pnf(νx.A) =νñ.(σdom(σ)\{x}|P )

pnf(A|B) =νñm̃.(σ ] ρ|(P |Q)(σ ] ρ)).

Note that A ≡ pnf(A).
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A.2 Lemmas for the Proof

First, we summarize lemmas for the proof. Hereafter, P,Q, ... are plain processes,
and A,B, ... are extended processes.

Lemma 5. [P
ασ−→ A]⇒ [σ|P α−→ σ|A].

Proof. We prove this lemma by case analysis.

1. α = N(M)

By [1, Lemma B.10], P ≡ νñ.(Nσ(x).P ′|P2) and A ≡ νñ.(P ′{Mσ/x}|P2)
for some ñ, P ′, P2.

Hence, σ|P ≡ σ|νñ.(N(x).P ′|P2) and σ|A ≡ σ|νñ.(P ′{M/x}|P2).

Therefore, σ|P α−→ σ|A.

2. α = νx.N〈x〉
By [1, Lemma B.10], P ≡ νñ.(Nσ〈Mσ〉.P ′|P2) and A ≡ νñ.(P ′|{Mσ/x}|P2)
for some ñ, P ′, P2.

Hence, σ|P ≡ σ|νñ.(N〈M〉.P ′|P2) and σ|A ≡ σ|νñ.(P ′|{M/x}|P2).

Therefore, σ|P α−→ σ|A.

Lemma 6.

νu.A
µ−→ B and A : closed and fv(µ) ⊆ dom(νu.A) and n(µ) ∩ bn(νu.A) = ∅

⇒ ∃B′ s.t. A µ−→ B′ and B ≡ νu.B′

Proof. Let pnf(A) = νñ.(σ|P ). We prove this lemma by case analysis.

1. u is a name n, and µ is silent.

pnf(νn.A) = νnñ.(σ|P ).

By [1, Lemma B.23], P −→ P ′ and B ≡ νnñ.(σ|P ′) for some closed P ′.

Therefore, A ≡ νñ.(σ|P ) −→ νñ.(σ|P ′) because internal reductions are
closed by an application of an evaluation context.

B′ = νñ.(σ|P ′) satisfies this lemma.

2. u is a name n, and µ is a labeled action α.

pnf(νn.A) = νnñ.(σ|P ).

By [1, Lemma B.19], P
ασ−→ C and B ≡ νnñ.(σ|C) for some C.

By Lemma 5, σ|P α−→ σ|C.

Therefore, A ≡ νñ.(σ|P )
α−→ νñ.(σ|C).

B′ = νñ.(σ|C) satisfies this lemma.
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3. u is a variable x, and µ is silent.

pnf(νx.A) = νñ.(σ′|P ) where σ′ = σ|dom(σ)\{x}. Note that σ′ ≡ νx.σ.

By [1, Lemma B.23], P −→ P ′ and B ≡ νñ.(σ′|P ′) for some closed P ′.

Therefore, A ≡ νñ.(σ|P ) −→ νñ.(σ|P ′) because internal reductions are
closed by an application of an evaluation context.

B′ = νñ.(σ|P ′) satisfies this lemma.

4. u is a variable x, and µ is a labelled action α.

pnf(νx.A) = νñ.(σ′|P ) where σ′ = σ|dom(σ)\{x}.

By [1, Lemma B.19], P
ασ′−→ C and B ≡ νñ.(σ′|C) for some C.

By Lemma 5, σ′|P α−→ σ′|C.

Therefore, A ≡ νñ.(σ|P )
α−→ νñ.(σ|C).

B′ = νñ.(σ|C) satisfies this lemma.

Lemma 7. Let νñ.(σ|P ) be a closed normal process.
νñ.(σ|P )

α−→ A and ασ = βσ and fv(α) ⊆ dom(σ) and ñ ∩ (n(α) ∪ n(β)) = ∅
⇒ νñ.(σ|P )

β−→ A.

Proof. Let νñ.(σ|P ) be a closed normal process.
By [1, Lemma B.19], P

ασ−→ B ∧ A ≡ νñ.(σ|B).

By the assumption, P
βσ−→ B.

By Lemma 5, σ|P β−→ σ|B, so νñ.(σ|P )
β−→ νñ.(σ|B).

Therefore, νñ.(σ|P )
β−→ A.

Lemma 8.
σ|A µ−→ σ|B and dom(σ) ∩ fv(µ) = ∅ and [x ∈ dom(σ)⇒ xσ: closed]

⇒ Aσ
µ−→ Bσ.

Proof. Let x̃ = dom(σ).

νx̃.(σ|A)
µ−→ νx̃.(σ|B) because dom(σ) ∩ fv(µ) = ∅.

That is, Aσ
µ−→ Bσ.

Lemma 9. σ|P µ−→ B and σ|P : closed normal and fv(µ) ⊆ dom(σ)

⇒ ∃B′ s.t. Pσ
µσ−→ B′ and B ≡ σ|B′.

Proof.

1. µ is silent.

By [1, Lemma B.23], P −→ Q and B ≡ σ|Q.

By [1, Lemma B.3], Pσ −→ Qσ.

σ|Qσ ≡ σ|Q ≡ B, so B′ ≡ Qσ satisfies this lemma.
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2. µ is a labeled action α.

By [1, Lemma B.19], P
ασ−→ C ∧B ≡ σ|C for some C.

By [1, Lemma B.11], Pσ
ασ−→ Cσ.

σ|Cσ ≡ σ|C ≡ B, so B′ ≡ Cσ satisfies this lemma.

A.3 The Case of Applying a Context without

Parallel Composition

We start to prove Theorem 1. First of all, we consider the application of a context
without parallel composition. This case is straightforward, and the proof is simple,
but some propositions rely on Proposition 3.

First, we define unfolding and safe traces.

Definition 25. Let tr be a trace A0
µ1

=⇒ ...
µn

=⇒ An. We arbitrarily take processes
A01, ..., A0m0 , ..., An−1,1, ..., An−1,mn−1 such that

A0 −→ A01 −→ ... −→ A0l0

µ1−→ A0,l0+1 −→ ... −→ A0m0 = A1 −→ ... −→ An

and each transition is derived without α-conversion. If µi is silent, mi can be 0.
The above derivation is denoted by unfold(tr).

Every internal reduction is explicitly displayed in unfold(tr). This form is
convenient for analyzing traces. Note that unfold(tr) is not always unique.

Definition 26. A trace tr is safe with respect to A.
def⇔ Every action in tr contains

no elements in bn(A)∪bv(A), and each transition is derived without α-conversion.
If tr is a trace of A, we merely say that tr is safe or tr is a safe trace.

Example 10.

νm.a(x).b〈f(x,m)〉 a(m)−→ νn.b〈f(m,n)〉 νy.b〈y〉−→ νn.{f(m,n)/y}

This trace is not safe because α-conversion happened in the first transition.

We give another definition of trace equivalence.

Definition 27. Let A and B be two closed name-variable-distinct extended pro-
cesses. A ⊆′t B if and only if we can always complete the procedure below.

1. We α-convert A and B such that A and B are bind-exclusive.

2. We arbitrarily choose a trace tr of A which is safe with respect to A and B.

3. We take a safe trace of B which is statically equivalent to tr.
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When A ⊆′t B and B ⊆′t A, we denote by A ≈′t B.
Let A and B be two name-variable-distinct extended processes. We α-convert A

and B such that A and B are bind-exclusive. Let σ be a map that maps a variable
in sv(A) ∪ sv(B) to a ground term. When Aσ ⊆′t Bσ for any σ and capture-
avoiding, we also say that they are trace equivalent and denote as A ⊆′t B. A ≈′t B
is similarly defined.

Note that σ causes capture-avoiding substitution.
This definition may look strange, but this is equivalent to the previous defini-

tion.

Proposition 13.
Let A and B be two closed name-variable-distinct extended processes.

A ⊆′t B ⇔ A ⊆t B

Proof. ⇒) We arbitrarily take a trace tr of A.
First, we α-convert A and B to A′ and B′ respectively such that A′ and B′ are

bind-exclusive and they bind no names in actions that are in tr. We replace A
with A′ in tr.

Secondly, we convert processes in tr to structurally equivalent processes such
that

C
µ

=⇒ D in tr ⇒ fn(D) ⊆ fn(C) ∪ n(µ).

Thirdly, we α-convert processes in tr such that every transition is derived without
α-conversion.

Now, we got a safe trace tr′′ of A′, so we can obtain a safe trace tr′ of B′ such
that tr′′ ∼t tr′ because of A ⊆′t B.

Then, we α-convert B′ in tr′′ to B and obtain a trace of B that is statically
equivalent to tr.
⇐) We α-convert A and B to A′ and B′ respectively such that A′ and B′ are

bind-exclusive.
Next, we arbitrarily choose a trace tr of A′ which is safe with respect to A′

and B′.
We α-convert A′ in tr to A.
By assumption, we obtain a trace tr′ of B that is statically equivalent to tr.
We replace B with B′ in tr′.
Moreover, we convert processes in tr′ to structural equivalent processes such

that
C

µ
=⇒ D in tr′ ⇒ fn(D) ⊆ fn(C) ∪ n(µ).

In addition, we α-convert processes in tr′ such that every transition is derived
without α-conversion.

Now, we got a safe trace of B′ that is statically equivalent to tr.

Hereafter, we adopt Definition 27 as trace equivalence. That is, ≈t means ≈′t
in Definition 27.

Proposition 14. P ≈t Q⇒M〈N〉.P ≈t M〈N〉.Q
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Proof. Assume that P ≈t Q.
It is sufficient to prove that Mσ〈Nσ〉.Pσ ≈t Mσ〈Nσ〉.Qσ for all assignments

σ. Thus, we can suppose that P,Q,M , and N are closed without loss of generality.
We arbitrarily take a safe trace tr of M〈N〉.P . Here, unfold(tr) is

M〈N〉.P νx.M〈x〉−→ A
µ−→ ...

and A ≡ P |{N/x} for some x.
By Proposition 3, P |{N/x} ≈t Q|{N/x}, so there exists a trace of Q|{N/x}

which is statically equivalent to the part A
µ−→ ... of unfold(tr). We add

M〈N〉.Q νx.M〈x〉−→ to it, and we get a trace of M〈N〉.Q that is statically equiva-
lent to unfold(tr). We omit some silent actions and get the desired trace. Hence,
M〈N〉.P ⊆t M〈N〉.Q and vice versa.

Proposition 15. P ≈t Q⇒M(x).P ≈t M(x).Q

Proof. Assume that P ≈t Q.
For all assignments σ, it is sufficient to prove that Mσ(x).Pσ ≈t Mσ(x).Qσ.

Thus, we can suppose that M is closed and fv(P ) ∪ fv(Q) ⊆ {x} without loss of
generality. Note that x is not mapped by σ because it is not free in M(x).P and
M(x).Q.

We arbitrarily take a safe trace tr of M(x).P . Here, unfold(tr) is

M(x).P
M(N)−→ P ′

µ−→ ...

and P ′ ≡ P{N/x} for some ground N .
By P{N/x} ≈s Q{N/x}, there exists a trace of Q{N/x} which is statically

equivalent to the part P ′
µ−→ ... of unfold(tr). We add M(x).Q

M(N)−→ to it, and
we get the desired trace of M(x).Q that is statically equivalent to unfold(tr). We
omit some silent actions and get the desired trace. Hence, M(x).P ⊆t M(x).Q
and vice versa.

Proposition 16. A ≈t B ⇒ νu.A ≈t νu.B (When u is a variable, u ∈ dom(A).)

Proof. Assume that A ≈t B.
For all assignments σ, it is sufficient to prove that (νu.A)σ ≈t (νu.B)σ. Thus,

we can suppose that A and B are closed without loss of generality. We arbitrarily
take a safe trace tr of νu.A. Here, unfold(tr) is

νu.A
µ1−→ C1

µ2−→ ...

By Lemma 6, there exists C ′1 such that A
µ1−→ C ′1 and C1 ≡ νu.C ′1. Moreover,

we use Lemma 6 repeatedly, and we get

unfold(tr) ∼t νu.A
µ1−→ νu.C ′1

µ2−→νu.C ′2
µ3−→ ...

A
µ1−→ C ′1

µ2−→ C ′2
µ3−→ ...
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We take a trace of B which is statically equivalent to the second line and add νu.
to each process. This processing is possible because tr is safe. Recall that every
action in a safe trace contains no bound names and bound variables in the first
process. Hence, µi does not contain u.

B
µ1−→ D1

µ2−→ D2
µ3−→ ...

νu.B
µ1−→ νu.D1

µ2−→νu.D2
µ3−→ ...

The last line is statically equivalent to unfold(tr). Note that restriction pre-
serves static equivalence. We omit some internal reductions and get the desired
trace. Hence, νu.A ⊆t νu.B and vice versa.

Proposition 17. P ≈t Q⇒ if M = N then P else R ≈t if M = N then Q else R.

Proof. Assume that P ≈t Q. For all assignments σ, it is sufficient to prove that

if Mσ = Nσ then Pσ else Rσ ≈t if Mσ = Nσ then Qσ else Rσ.

Thus, we can suppose that P,Q,R,M , and N are closed without loss of generality.
We arbitrarily take a safe trace tr of if M = N then P else R. Here, unfold(tr) is

if M = N then P else R −→ A
µ−→ ...

We know that A ≡ P or A ≡ R, so we can regard A
µ−→ ... as a trace of P or R.

In the former case, there exists a trace of Q which is statically equivalent to it. We
add if M = N then Q else R −→ to it and get a trace of if M = N then Q else R
which is statically equivalent to unfold(tr).

In the latter case, we add if M = N then Q else R −→ to A
µ−→ ... and get a

trace of if M = N then Q else R which is statically equivalent to unfold(tr). We
omit some internal reductions and get the desired trace. Hence,

if M = N then P else R ⊆t if M = N then Q else R

and vice versa.

Proposition 18. P ≈t Q⇒ P +R ≈t Q+R.

Proof. Assume that P ≈t Q. For all assignments σ, it is sufficient to prove that

Pσ +Rσ ≈t Qσ +Rσ.

Thus, we can suppose that P,Q, and R are closed without loss of generality.
We arbitrarily take a safe trace tr of P + R. Here, unfold(tr) is P + R −→

A
µ−→ .... We know that A ≡ P or A ≡ R, so we can regard A

µ−→ ... as a trace of
P or R. In the former case, there exists a trace of Q which is statically equivalent
to it. We add Q+R −→ to it and get a trace of Q+R which is statically equivalent
to unfold(tr).

In the latter case, we add Q + R −→ to A
µ−→ ... and get a trace of Q + R

which is statically equivalent to unfold(tr). We omit some internal reductions and
get the desired trace. Hence, P +R ⊆t Q+R and vice versa.
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The case of replication needs several lemmas.

Lemma 10. If A and P are closed and A|!P −→ B, it holds one of the following:

1. ∃A′ s.t. A −→ A′ and B ≡ A′|!P .

2. ∃P ′′ s.t. P |P −→ P ′′ and B ≡ A|P ′′|!P .

3. ∃E s.t. A|P −→ E and B ≡ E|!P .

Proof. Let pnf(A) = νñ.(σ|Q).
Then, pnf(A|!P ) = νñ.(σ|Q|!P ). Note that n(P ) ∩ ñ = ∅.
By [1, Lemma B.23], Q|!P −→ R and B ≡ νñ.(σ|R) for some closed R.
By [1, Lemma B.24], we consider the following four cases:

1. Q −→ Q′ and R ≡ Q′|!P for some closed Q′.

A ≡ νñ.(σ|Q) −→ νñ.(σ|Q′) and νñ.(σ|Q′)|!P ≡ νñ.(σ|Q′|!P ) ≡ B.

Then, A′ = νñ.(σ|Q′) satisfies case 1 of this lemma.

2. !P −→ P ′ and R ≡ Q|P ′ for some closed P ′.

By [1, Lemma B.24], P |P −→ P ′′ and P ′ ≡ P ′′|!P for some closed P ′′.

B ≡ νñ.(σ|R) ≡ νñ.(σ|Q)|P ′′|!P ≡ A|P ′′|!P , so case 1 of this lemma is
satisfied.

3. Q
N(x)−→ B′ and !P

νx.N〈x〉−→ C and R ≡ νx.(B′|C) for some B′, C, x, and ground
N .

By [1, Lemma B.18], P
νx.N〈x〉−→ D and C ≡ D|!P for some D.

Then,

A|!P −→ B ≡νñ.(σ|νx.(B′|D|!P ))

≡νñ.(σ|νx.(B′|D)|!P )

≡νñ.(σ|νx.(B′|D))|!P

Thus, E = νñ.(σ|νx.(B′|D)) satisfies case 3 of this lemma.

4. !P
N(x)−→ B′ and Q

νx.N〈x〉−→ C and R ≡ νx.(B′|C) for some B′, C, x, and ground
N .

By [1, Lemma B.18], P
N(x)−→ D and B′ ≡ D|!P for some D.

Then,

A|!P −→ B ≡νñ.(σ|νx.(D|!P |C))

≡νñ.(σ|νx.(D|C)|!P )

≡νñ.(σ|νx.(D|C))|!P

Thus, E = νñ.(σ|νx.(D|C)) satisfies case 3 of this lemma.
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Corollary 2. If A and P are closed and A|!P −→ B, then A|P |P −→ C and B ≡
C|!P for some C.

Lemma 11. If A and P are closed and A|!P α−→ B and fv(α) ⊆ dom(A) and
n(α) ∩ bn(A|!P ) = ∅, it holds one of the following:

1. ∃E s.t. A
α−→ E and B ≡ E|!P .

2. ∃F s.t. A|P α−→ F and B ≡ F |!P .

Proof. Let pnf(A) = νñ.(σ|Q).
Then, pnf(A|!P ) = νñ.(σ|Q|!P ).
By [1, Lemma B.19], Q|!P ασ−→ C and B ≡ νñ.(σ|C) for some C.
By [1, Lemma B.18], we consider the following two cases:

1. Q
ασ−→ D and C ≡ D|!P for some D.

By Lemma 5, σ|Q α−→ σ|D.

Thus, A ≡ νñ.(σ|Q)
α−→ νñ.(σ|D).

In addition, νñ.(σ|D)|!P ≡ νñ.(σ|D|!P ) ≡ B, so E = νñ.(σ|D) satisfies case
1 of this lemma.

2. !P
ασ−→ D and C ≡ Q|D for some D.

By [1, Lemma B.18], P
ασ−→ E and D ≡ E|!P for some E.

By Lemma 5, σ|P α−→ σ|E.

Thus, A|P ≡ νñ.(σ|Q)|P α−→ νñ.(σ|Q|E).

In addition, νñ.(σ|Q|E)|!P ≡ νñ.(σ|Q|E|!P ) ≡ B, so F = νñ.(σ|Q|E) satis-
fies case 2 of this lemma.

Corollary 3. If A and P are closed and A|!P α−→ B and fv(α) ⊆ dom(A) and
n(α) ∩ bn(A|!P ) = ∅, then A|P α−→ C and B ≡ C|!P for some C.

Proposition 19. P ≈t Q⇒!P ≈t !Q.

Proof. Assume that P ≈t Q.
For all assignments σ, it is sufficient to prove that !Pσ ≈t!Qσ. Thus, we can

suppose that P and Q are closed without loss of generality.
We arbitrarily take a safe trace tr of !P . By corollary 2 and 3, we obtain a

trace tr′ which is of the form

P n|!P µ1−→ A1|!P
µ2−→ A2|!P

µ3−→ ...

for some n and statically equivalent to unfold(tr). We also obtain

P n µ1−→ A1
µ2−→ A2

µ3−→ ...
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to remove !P from each process in tr′. Here, n depends on tr, and P n is n
concurrent processes. Strictly speaking, processes in P n are not the same when
bn(P ) 6= ∅. In this case, we α-convert P and make processes in P n bind-exclusive.

By Proposition 3, P n ≈t Qn, so there exists a trace of Qn which is statically
equivalent to

P n µ1−→ A1
µ2−→ A2

µ3−→ ...

We add |!Q to each process in the trace, omit some internal reductions and get
the desired trace. Hence, !P ⊆t!Q and vice versa.

A.4 The Case of Parallel Composition

A.4.1 A Definition of a Concurrent Normal Trace

Proposition 3. A ≈t B ⇒ A|C ≈t B|C.

In this section, we always assume that structural equivalent processes are con-
structed without α-conversion.

We define action between active substitutions and also define concurrent normal
forms of traces.

Definition 28.
[σρ] = (σ ] ρ)|dom(σ)

Lemma 12. σρ ≡ [σρ].

Proof. Let ỹ = dom(ρ). Then, σρ ≡ νỹ.(σ|ρ) ≡ νỹ.(σ ] ρ) ≡ [σρ].

Lemma 13. ρσ ≡ ρ[σρ].

Proof. Let x̃ = dom(σ). Then,

ρσ ≡ νx̃.(ρ|σ)

≡ νx̃.(ρ|σρ)

≡ νx̃.(ρ|[σρ]) By Lemma 12

≡ ρ[σρ].

Lemma 14. (σ|P )ρ ≡ [σρ]|P [ρσ].

Proof. Let ỹ = dom(ρ). Then,

(σ|P )ρ = σρ|Pρ
≡ [σρ]|Pρ
≡ [σρ]|Pρ[σρ]

≡ [σρ]|νỹ.(P |ρ[σρ])

≡ [σρ]|νỹ.(P |ρσ) By Lemma 13

≡ [σρ]|Pρσ.
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Concurrent normal forms are designed to record communication completely.

Definition 29. A concurrent normal trace tr of A|C is a trace which satisfies the
following conditions.

1. tr is full and safe.

2. Each process in tr is of the form νr̃ms̃m.(νx̃m.Amρm|νỹm.Cmσm).

In addition, The conditions below are satisfied.

� fv(Am) \ dom(Am) ⊆ dom(ρm) and fv(Cm) \ dom(Cm) ⊆ dom(σm).

� n(ρm) ∩ s̃m = ∅ and n(σm) ∩ r̃m = ∅.
� Am = σm|Pm and Cm = ρm|Qm and they are normal for some Pm and
Qm, and n(Qm) ∩ s̃m = ∅ and n(Pm) ∩ r̃m = ∅.

Let Dm = νr̃ms̃m.(νx̃m.Amρm|νỹm.Cmσm).

3. For every Dm −→ Dm+1 in tr, it holds one of the following:

(a) Amρm −→ Am+1ρm and elements in Dm+1 except for Am+1 are same as
counterparts in Dm.

(b) Cmσm −→ Cm+1σm and elements in Dm+1 except for Cm+1 are same as
counterparts in Dm.

(c) � Amρm
N ′ρm(x)−→ Am+1ρm and Cmσm

νx.N ′σm〈x〉−→ νm̃.Cm+1σm,

� r̃m+1 = r̃mm̃,

� ρm+1 = ρm ] {M/x},
� m̃ = n(M) ∩ bn(Cm),

� (N ′ρm)[σmρm] = (N ′σm)[ρmσm]: ground,

� r̃m ∩ n(N ′) = ∅ and s̃m ∩ n(N ′) = ∅,
� M [σmρm]: ground,

� ỹm+1 = ỹmx,

� n(M) ∩ s̃m = ∅,
for some N ′,M , and x, and the other parts of Dm+1 are the same as
counterparts in Dm.

(d) � Cmσm
N ′σm(x)−→ Cm+1σm,

� Amρm
νx.N ′ρm〈x〉−→ νm̃.Am+1ρm,

� s̃m+1 = s̃mm̃,

� σm+1 = σm ] {M/x},
� m̃ = n(M) ∩ bn(Am),

� (N ′ρm)[σmρm] = (N ′σm)[ρmσm]: ground,

� s̃m ∩ n(N ′) = ∅,
� r̃m ∩ n(N ′) = ∅.,
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� M [ρmσm]: ground,

� x̃m+1 = x̃mx,

� n(M) ∩ r̃m = ∅,
for some N ′,M , and x, and the other parts of Dm+1 are the same as
counterparts in Dm.

4. For every Dm
N(M)−→ Dm+1 in tr, it holds one of the following:

(a) Amρm
N(M)[ρmσm]−→ Am+1ρm and elements in Dm+1 except for Am+1 are

the same as counterparts in Dm.

(b) Cmσm
N(M)[σmρm]−→ Cm+1σm and elements in Dm+1 except for Cm+1 are

the same as counterparts in Dm.

5. For every Dm
νx.N〈x〉−→ Dm+1 in tr, it holds one of the following:

(a) � Amρm
νx.N〈x〉[ρmσm]−→ νm̃.Am+1ρm,

� σm+1 = σm ] {M/x},
� s̃m+1 = s̃mm̃,

� m̃ ⊆ n(M)

� M [ρmσm]: ground,

� n(M) ∩ r̃m = ∅,
and the other parts of Dm+1 are the same as counterparts in Dm.

(b) � Cmσm
νx.N〈x〉[σmρm]−→ νm̃.Cm+1σm,

� ρm+1 = ρm ] {M/x},
� r̃m+1 = r̃mm̃,

� m̃ ⊆ n(M),

� M [σmρm]: ground,

� n(M) ∩ s̃m = ∅,
and the other parts of Dm+1 are the same as counterparts in Dm.

6. (a) At 3a, let A′m be a process obtained by applying ρm to only for the part
related to the transition from Am. Then, A′m −→ Am+1, and 3b is
similar.

(b) At 3c, let A′m be a process obtained by substituting only for the part

related to the transition from Am. Then, A′m
(N ′ρm)[σmρm](x)−→ Am+1. Cm

is similar, and 3d is similar.

(c) At 4a, let A′m be a process obtained by substituting only for the part

related to the transition from Am. Then, A′m
N(ρm]σm)(M)−→ Am+1, and 4b

is similar.
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(d) At 5a, let A′m be a process obtained by substituting only for the part

related to the transition from Am. Then, A′m
νx.N(ρm]σm)〈x〉−→ Am+1, and

5b is similar.

What does the form νr̃ms̃m.(νx̃m.Amρm|νỹm.Cmσm) express? First, r̃m is a
sequence of bound names which is sent to the left process or the environment by
the right process. Similarly, s̃m is a sequence of bound names sent by the left
process.

Usually, synchronous communication does not have to generate an active sub-
stitution. Nevertheless, concurrent normal forms require synchronous communi-
cation to generate an active substitution, and the alias variable is restricted. As a
result, σm displays terms the left process sent to the right process or the environ-
ment. Moreover, names appearing in σm are not in r̃m because σm is defined from
the point of view of the left process.

For instance,

νrs.(νx.({s/x}|f(y, s)〈m〉){r/y}|νy.({r/y}|f(r, x)(z)){s/x})

satisfies the condition 2. The left process sent s, and the right process sent r. They
used synchronous communication, so x and y are restricted respectively, and each
scope is spreaded.

A.4.2 A Transformation into a Concurrent Normal Form

We can transform all safe traces of a parallel composed process into a concurrent
normal form.

Lemma 15. For any full safe trace of A|C, there exists a concurrent normal trace
of A|C such that they are statically equivalent.

Proof. We transform the given trace in order from the top. Assuming that we
transformed the first m-th process.

We suppose that νr̃s̃.(νx̃.Amρ|νỹ.Cmσ)
µ−→ D.

By Lemma 6, νx̃.Amρ|νỹ.Cmσ
µ−→ D′ and D ≡ νr̃s̃.D′.

Let Am = σ|P and Cm = ρ|Q. Note that Amρ ≡ [σρ]|P [ρσ] and Cmσ ≡
[ρσ]|Q[σρ] by Lemma 14.

Then, νx̃ỹ.σ ] ρ|P [ρσ]|Q[σρ]
µ−→ D′.

That is, (σ ] ρ)|dom(σ]ρ)\x̃ỹ|P [ρσ]|Q[σρ]
µ−→ D′.

First, we consider when µ is silent.
By [1, Lemma B.23], P [ρσ]|Q[σρ] −→ R and D′ ≡ (σ ] ρ)|dom(σ]ρ)\x̃ỹ|R for

some closed R.
We consider four cases.

1. P [ρσ] −→ P ′[ρσ] and R ≡ P ′[ρσ]|Q[σρ] for some P ′ where fv(P ′) ⊆ dom(ρ).
Furthermore, let P ′′ be a process obtained by applying [ρσ] to only for the
part related to the transition from P . Then, P ′′ −→ P ′. This reduction is
possible if we suitably choose P ′.
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Amρ −→ [σρ]|P ′[ρσ] ≡ (σ|P ′)ρ.

Hence,

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ) −→ D ≡ νr̃s̃.((σ ] ρ)|dom(σ]ρ)\x̃ỹ|P ′[ρσ]|Q[σρ])

≡ νr̃s̃.(νx̃.(σ|P ′)ρ|νỹ.Cmσ).

This is the desired form.

2. Q[σρ] −→ Q′[σρ] and R ≡ P [ρσ]|Q′[σρ] for some Q′ where fv(Q′) ⊆ dom(σ).
Furthermore, let Q′′ be a process obtained by applying [σρ] to only for the
part related to the transition from Q. Then, Q′′ −→ Q′. This reduction is
possible if we suitably choose Q′.

This case is similar to case 1.

3. P [ρσ]
N(x)−→ E and Q[σρ]

νx.N〈x〉−→ F and R ≡ νx.(E|F ) for some E,F, x, and
ground N .

In this case, Amρ
N ′ρ(x)−→ [σρ]|E and Cmσ

νx.N ′σ〈x〉−→ [ρσ]|F for some N ′ where
(N ′ρ)[σρ] = N and r̃ ∩ n(N ′) = ∅ and (N ′σ)[ρσ] = N and s̃ ∩ n(N ′) = ∅.

By [1, Lemma B.10], there exist l̃, P ′ and P2 such that

P [ρσ] ≡ (νl̃.(N ′σ(x).P ′|P2))[ρσ] and E ≡ (νl̃.(P ′|P2))[ρσ].

Hence Amρ
N ′ρ(x)−→ (σ|νl̃.(P ′|P2))ρ.

We use again [1, Lemma B.10].

There exists m̃, t̃,M,Q′, and Q2 such that

Q[σρ] ≡ (νm̃t̃.(N ′ρ〈M〉.Q′|Q2))[σρ]

F ≡ (νm̃.({M/x}|νt̃.(Q′|Q2)))[ρσ]

where m̃ ⊆ n(M) and t̃∩ n(M) = ∅ and n(M)∩ s̃ = ∅ and M [σρ] is ground.

Hence,

Cmσ
νx.N ′σ〈x〉−→ (ρ|νm̃.({M/x}|νt̃.(Q′|Q2)))σ ≡ νm̃.(ρ ] {M/x}|νt̃.(Q′|Q2))σ.

Therefore,

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ)

→νr̃s̃.((σ ] ρ)|dom(σ]ρ)\x̃ỹ|νx.((νl̃.(P ′|P2))[ρσ]|νm̃.({M/x}|νt̃.(Q′|Q2))[ρσ]))

≡νr̃s̃.(νx̃.(σ|νl̃.(P ′|P2))(ρ ] {M/x})|νỹx.(ρ ] {M/x}|νt̃.(Q′|Q2))σ)

This is a desired form.
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4. P [ρσ]
νx.N〈x〉−→ E and Q[σρ]

N(x)−→ F and R ≡ νx.(E|F ) for some E,F, x, and
ground N .

This case is similar to case 3.

Second, we consider when µ is a labeled action α. Note that r̃s̃ ∩ n(α) = ∅ and
x̃ỹ ∩ v(α) = ∅.

By [1, Lemma B.19], P [ρσ]|Q[σρ]
α(σ]ρ)−→ E and D′ ≡ (σ ] ρ)|dom(σ]ρ)\x̃ỹ|E for

some E.
We consider two cases.

1. P [ρσ]
α(σ]ρ)−→ F and E ≡ F |Q[σρ] for some F .

Then, Amρ
α[ρσ]−→ [σρ]|F because of σ ] ρ = [σρ]|[ρσ] and Lemma 5.

In addition, we consider two cases.

(a) α = N(M)

There exists l̃, P ′ and P2 such that P [ρσ] ≡ (νl̃.(N [σρ](x).P ′|P2))[ρσ]

and F ≡ (νl̃.(P ′{M [σρ]/x}|P2))[ρσ].

Hence, Amρ
N(M)[ρσ]−→ (σ|νl̃.(P ′{M [σρ]/x}|P2))ρ.

νx̃.Amρ
N(M)[ρσ]−→ νx̃.(σ|νl̃.(P ′{M [σρ]/x}|P2))ρ.

By Lemma 5, νx̃.Amρ|[ρσ]
N(M)−→ νx̃.(σ|νl̃.(P ′{M [σρ]/x}|P2))ρ|[ρσ].

νx̃.Amρ|[ρσ]|Q[σρ]
N(M)−→ νx̃.(σ|νl̃.(P ′{M [σρ]/x}|P2))ρ|[ρσ]|Q[σρ].

By Lemma 14,

νx̃.Amρ|νỹ.(ρ|Q)σ
N(M)−→ νx̃.(σ|νl̃.(P ′{M [σρ]/x}|P2))ρ|νỹ.(ρ|Q)σ.

Therefore,

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ)

N(M)−→ νr̃s̃.(νx̃.(σ|νl̃.(P ′{M [σρ]/x}|P2))ρ|νỹ.Cmσ)

This is the desired form.

(b) α = νx.N〈x〉
There exists m̃, t̃,M, P ′ and P2 such that

P [ρσ] ≡ (νm̃t̃.(N [σρ]〈x〉).P ′|P2))[ρσ]

F ≡ (νm̃.({M/x}|νt̃.(P ′|P2)))[ρσ],

where m̃ ⊆ n(M) and t̃ ∩ n(M) = ∅ and M [ρσ] is ground.

[σρ]|F ≡ (σ|(νm̃.({M/x}|νt̃.(P ′|P2)))ρ ≡ νm̃.(σ ]{M/x}|νt̃.(P ′|P2))ρ.

Hence, Amρ
(νx.N〈x〉)[ρσ]−→ νm̃.(σ ] {M/x}|νt̃.(P ′|P2))ρ.

νx̃.Amρ
(νx.N〈x〉)[ρσ]−→ νx̃.νm̃.(σ ] {M/x}|νt̃.(P ′|P2))ρ.
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By Lemma 5, νx̃.Amρ|[ρσ]
(νx.N〈x〉)−→ νx̃.νm̃.(σ]{M/x}|νt̃.(P ′|P2))ρ|[ρσ].

νx̃.Amρ|[ρσ]|Q[σρ]
(νx.N〈x〉)−→ νx̃.νm̃.(σ ] {M/x}|νt̃.(P ′|P2))ρ|[ρσ]|Q[σρ].

By Lemma 14,

νx̃.Amρ|νỹ.(ρ|Q)σ
(νx.N〈x〉)−→ νx̃.νm̃.(σ ] {M/x}|νt̃.(P ′|P2))ρ|νỹ.(ρ|Q)σ.

Therefore,

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ)

(νx.N〈x〉)−→ νr̃s̃.(νx̃.νm̃.(σ ] {M/x}|νt̃.(P ′|P2))ρ|νỹ.Cmσ)

This is the desired form.

2. Q[σρ]
α(σ]ρ)−→ F and E ≡ P [σρ]|F for some F .

This case is similar to case 1.

A.4.3 Extracting a Trace of a Component Process from
Concurrent Normal Form

Given a concurrent normal trace of A|C, we construct traces of A and C which
are each process in them is of the form νs̃m.Amρm or νr̃m.Cmσm. Assuming that
we transformed the first m-th process.

We omit many subscripts and symmetric cases.

In case 3a in Definition 29, we get νs̃m.Amρm −→ νs̃m+1.Am+1ρm+1 .
In case 3c,

Amρ
N ′ρ(x)−→ Am+1ρ.

Amρ
N ′ρ(Mρ)−→ Am+1{M/x}ρ

Amρ
N ′ρ(Mρ)−→ Am+1(ρ ] {M/x})

We get νs̃m.Amρm
N ′ρm(Mρm)−→ νs̃m+1.Am+1ρm+1 .

Cmσ
νx.N ′σ〈x〉−→ νm̃.Cm+1σ.

We get νr̃m.Cmσm
νx.N ′σm〈x〉−→ νr̃m+1.Cm+1σm+1 .

In case 4a, Amρ
N(M)[ρσ]−→ Am+1ρ.

[σρ]|P [ρσ]
N(M)[ρσ]−→ Am+1ρ.

By Lemma 7, [σρ]|P [ρσ]
N(M)ρ−→ Am+1ρ.

Note that (N(M)[ρσ])[σρ] = (N(M)ρ)[σρ].

Amρ
N(M)ρ−→ Am+1ρ.

We get νs̃m.Amρm
N(M)ρm−→ νs̃m+1.Am+1ρm+1 .

Case 5a is similar to case 4a. We get νs̃m.Amρm
νx.N〈x〉ρm−→ νs̃m+1.Am+1ρm+1 .
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A.4.4 Composition of Traces

Given trace-equivalent processes A,B, an arbitrary process C, and a trace of A|C,
we construct a statically equivalent trace of B|C. By subsection A.4.2, we can
suppose that a given trace tr of A|C is a concurrent normal form without loss of
generality. We extract traces tr′ and tr′′′ of A and C as mentioned in subsection
A.4.3. There exists a safe trace tr′′ of B such that it satisfies the conditions below:

Each transition νs̃m.Amρm
µ−→ νs̃m+1.Am+1ρm+1 in tr′ corresponds to the tran-

sition νs̃′m.Bm
µ

=⇒ νs̃′m+1.Bm+1 in tr′′. Moreover, Bm is of the form ζm|Sm, it is
normal and dom(ζm) = dom(σm). Especially, Sm is closed.

Each process in a constructed trace is of the form νr̃ms̃′m.(νx̃m.Bm|νỹm.Cmζm).
We again omit many subscripts. Note that an internal reduction and a receive

action do not change a frame. In addition, s̃′m contains no names in other processes
because of bind-exclusiveness. Let z̃ = dom(σ).

1. Case 3a in Definition 29.

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ) −→νr̃s̃.(νx̃.Am+1ρ|νỹ.Cmσ). (1)

νs̃.Amρ −→νs̃.Am+1ρ. (2)

νs̃′.Bm =⇒νs̃′.Bm+1. (3)

(2) is in tr′ and corrsponds to (1). (3) is in tr′′ and corresponds to (2).

By Lemma 6, we can suppose that Bm =⇒ Bm+1. We get a desired transition

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ) =⇒ νr̃s̃′.(νx̃.Bm+1|νỹ.Cmζ).

2. Case 3b.

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ) −→νr̃s̃.(νx̃.Amρ|νỹ.Cm+1σ). (4)

νr̃.Cmσ −→νr̃.Cm+1σ (5)

(5) is in tr′′′ and corresponds to (4).

By Lemma 6, we can suppose that Cmσ −→ Cm+1σ.

Cmσ ≡ νz̃.(Cm|σ) ≡ νz̃.(ρ|Q|σ) ≡ νz̃.(ρ ] σ|Q) ≡ νz̃.(ρ ] σ|Q′).
Q′ is a process obtained from Q to substitute only for the part related to the
transition.

ρ|Q′ −→ Cm+1.

Similarly, Cmζ ≡ νz̃.(ρ ] ζ|Q′′).
Q′′ is a process obtained from Q to substitute similarly using ρ ] ζ.

νs̃.[σρ] ≈s νs̃′.ζ. Recall that νs̃.Amρ ≈s νs̃′.Bm

νs̃.ρ ] σ ≈s νs̃′.ρ ] ζ. Note that n(ρ) ∩ s̃ = ∅.
Thus, two terms affected by ρ ] σ at Cmσ −→ Cm+1σ are also equal in Q′′.

ρ|Q′′ −→ Cm+1.

Cmζ −→ Cm+1ζ.

We get a desired transition
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νr̃s̃′.(νx̃.Bm|νỹ.Cmζ) −→ νr̃s̃′.(νx̃.Bm|νỹ.Cm+1ζ).

3. Case 3c.

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ) −→νr̃m̃s̃.(νx̃.Am+1(ρ ] {M/x})|νỹx.Cm+1σ). (6)

νs̃.Amρ
N ′ρ(Mρ)−→ νs̃.Am+1(ρ ] {M/x}) (7)

νr̃.Cmσ
νx.N ′σ〈x〉−→ νr̃m̃.Cm+1σ (8)

νs̃′.Bm
N ′ρ(Mρ)

=⇒ νs̃′.Bm+1 (9)

(7) is in tr′. (8) is in tr′′′. Both correspond to (6). (9) is in tr′′ and
corresponds to (7).

By Lemma 6, we can suppose that Cmσ
νx.N ′σ〈x〉−→ νm̃.Cm+1σ.

Cmσ ≡ νz̃.(ρ ] σ|Q′).
Q′ is a process obtained from Q to substitute only for the part related to
transition.

ρ|Q′ νx.N〈x〉−→ νm̃.Cm+1, where N = N ′ρ[σρ] = N ′σ[ρσ].

Similarly, Cmζ ≡ νz̃.(ρ ] ζ|Q′′).
Q′′ is a process obtained from Q to substitute similarly using ρ ] ζ.

νs̃.[σρ] ≈s νs̃′.ζ.

νs̃.ρ ] σ ≈s νs̃′.ρ ] ζ.

Some channel in Q becomes equal to N = N ′σ[ρσ] = N ′(ρ ] σ) by ρ ] σ, so
this channel becomes equal to N ′(ρ ] ζ) by ρ ] ζ. Note that s̃ ∩ n(N ′) = ∅.

Thus, ρ|Q′′ νx.N
′(ρ]ζ)〈x〉−→ νm̃.Cm+1.

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ) ≡νr̃s̃′.(νx̃ỹ.(ζ|ρζ|S|Qζ))

νs̃′.Bm =⇒ νs̃′.B′
N ′ρ(Mρ)−→ νs̃′.B′′ =⇒ νs̃′.Bm+1 for some B′ and B′′ because

νs̃′.Bm
N ′ρ(Mρ)

=⇒ νs̃′.Bm+1.

We suppose that

� B′ ≡ ζ|Ŝ,

� Ŝ ≡ νp̃.(N ′(ρ ] ζ)(x).S ′|S2),

� S =⇒ Ŝ
N ′(ρ]ζ)(M(ρ]ζ))−→ D′ =⇒ D,

� Bm+1 = ζ|D,

� Qζ
νx.N ′(ρ]ζ)〈x〉−→ E, and

� νm̃.Cm+1ζ ≡ ρζ|E.
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Let Qζ ≡ (νm̃q̃.(N ′ρ〈M〉.Q′|Q2))ζ.

This is possible because of Qζ
νx.N ′(ρ]ζ)〈x〉−→ E.

By νs̃′.Bm =⇒ νs̃′.B′ and Ŝ
N ′(ρ]ζ)(M(ρ]ζ))

=⇒ D,

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ)

=⇒νr̃s̃′.(νx̃ỹ.(ζ|ρζ|νp̃.(N ′ρ(x).S ′|S2)|(νm̃q̃.(N ′ρ〈M〉.Q′|Q2))ζ)

=⇒νr̃s̃′.(νx̃ỹ.(ζ|ρζ|νx.(D|(νm̃q̃.(Q′|{M/x}|Q2))ζ)))

≡νr̃m̃s̃′.(νx̃.(ζ|D)|νỹx.(ρ ] {M/x}|νq̃.(Q′|Q2)))ζ).

We get the desired transition

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ) =⇒ νr̃m̃s̃′.(νx̃.Bm+1|νỹx.Cm+1ζ).

4. Case 3d.

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ) −→νr̃s̃m̃.(νx̃x.Am+1ρ|νỹ.Cm+1(σ ] {M/x}))(10)

νs̃.Amρ
νx.N ′ρ〈x〉−→ νs̃m̃.Am+1ρ (11)

νr̃.Cmσ
N ′σ(Mσ)−→ νr̃.Cm+1(σ ] {M/x}) (12)

νs̃′.Bm
νx.N ′ρ〈x〉

=⇒ νs̃′m̃′.Bm+1 (13)

(11) is in tr′. (12) is in tr′′′. Both correspond to (10). (13) is in tr′′ and
corresponds to (11). We suppose that ζm+1 = ζm ] {M ′/x}.

Cmσ
N ′σ(x)−→ Cm+1σ.

Cmσ ≡ νz̃.(ρ ] σ|Q′), where Q′ is a process obtained from Q to substitute
only for the input channel.

ρ|Q′ N(x)−→ Cm+1, where N = N ′ρ[σρ] = N ′σ[ρσ].

Similarly, Cmζ ≡ νz̃.(ρ ] ζ|Q′′).
Q′′ is a process obtained from Q to substitute similarly using ρ ] ζ.

νs̃.(ρ ] σ) ≈s νs̃′.(ρ ] ζ).

Some channel in Q is equal to N = N ′σ[ρσ] = N ′(ρ ] σ) by ρ ] σ, so this
channel becomes equal to N ′(ρ ] ζ) by ρ ] ζ. Note that s̃ ∩ n(N ′) = ∅.

Thus, ρ|Q′′ N
′(ρ]ζ)(x)−→ Cm+1.

νs̃′.Bm =⇒ νs̃′.B′
νx.N ′ρ〈x〉−→ νs̃′′.B′′ =⇒ νs̃′′.Bm+1 for some B′ and B′′.

We suppose that

� B′ ≡ ζ|Ŝ,

� Ŝ ≡ νm̃′p̃.(N ′(ρ ] ζ)〈M ′〉.S ′|S2),
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� S =⇒ Ŝ
νx.N ′(ρ]ζ)〈x〉−→ D′ =⇒ D,

� Bm+1 = ζ|D,

� Qζ
N ′(ρ]ζ)(x)−→ E, and

� Cm+1ζ ≡ ρζ|E.

Let Qζ ≡ (νq̃.(N ′ρ(x).Q′|Q2))ζ.

By S =⇒ Ŝ,

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ)

≡νr̃s̃′.(νx̃ỹ.(ζ|ρζ|S|Qζ))

=⇒νr̃s̃′.(νx̃ỹ.(ζ|ρζ|νm̃′p̃.(N ′ρ〈M ′〉.S ′|S2)|νq̃.(N ′ρ(x).Q′|Q2)ζ))

−→νr̃s̃′.(νx̃ỹ.(ζ|ρζ|νx.νm̃′.({M ′/x}|νp̃.(S ′|S2)|(νq̃.Q′|Q2))ζ))

≡νr̃s̃′m̃′.(νx̃x.(ζ ] {M ′/x}|νp̃.(S ′|S2))|νỹ.(ρ|νq̃.(Q′|Q2))(ζ ] {M ′/x}))
=⇒νr̃s̃′m̃′.(νx̃x.Bm+1|νỹ.Cm+1(ζ ] {M ′/x}))

We get a desired transition

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ) =⇒ νr̃s̃′m̃′.(νx̃x.Bm+1|νỹ.Cm+1(ζ ] {M ′/x})).

5. Case 4a.

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ)
N(M)−→ νr̃s̃.(νx̃.Am+1ρ|νỹ.Cmσ) (14)

νs̃.Amρ
N(M)ρ−→ νs̃.Am+1ρ (15)

νs̃′.Bm
N(M)ρ
=⇒ νs̃′.Bm+1 (16)

(15) is in tr′ and corresponds to (14). Recall subsection A.4.3. (16) is in tr′

and corresponds to (15).

By Lemma 6, we can suppose that Bm
N(M)ρ
=⇒ Bm+1.

By Lemma 5, ρ|Bm
N(M)
=⇒ ρ|Bm+1.

We get a desired transition

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ)
N(M)
=⇒ νr̃s̃′.(νx̃.Bm+1|νỹ.Cmζ).

6. Case 4b.

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ)
N(M)−→ νr̃s̃.(νx̃.Amρ|νỹ.Cm+1σ) (17)

νr̃.Cmσ
N(M)σ−→ νr̃.Cm+1σ (18)

(18) is in tr′′′ and corresponds to (17).
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Cmσ
N(M)σ−→ Cm+1σ.

Cmσ ≡ νz̃.(ρ ] σ|Q′) where Q′ is a process obtained from Q to substitute
only for the input channel.

ρ|Q′ N(ρ]σ)(M)−→ Cm+1.

Similarly, Cmζ ≡ νz̃.(ρ ] ζ|Q′′).
Q′′ is a process obtained from Q to substitute similarly using ρ ] ζ.

Some channel inQ is equal toN(ρ]ζ) by ρ]ζ because νs̃.(ρ]σ) ≈s νs̃′.(ρ]ζ).
Note that s̃ ∩ n(N) = ∅.

Thus, ρ|Q′′ N(ρ]ζ)(M)−→ Cm+1.

ρ ] ζ|Q′′ N(ρ]ζ)(M)−→ ζ|Cm+1.

By Lemma 7, ρ ] ζ|Q′′ N(M)ζ−→ ζ|Cm+1.

Cmζ
N(M)ζ−→ Cm+1ζ.

By Lemma 5, ζ|Cmζ
N(M)−→ ζ|Cm+1ζ. We get a desired transition

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ)
N(M)−→ νr̃s̃′.(νx̃.Bm|νỹ.Cm+1ζ).

7. Case 5a.

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ)
νx.N〈x〉−→ νr̃s̃m̃.(νx̃.Am+1ρ|νỹ.Cm(σ ] {M/x})) (19)

νs̃.Amρ
νx.Nρ〈x〉−→ νs̃m̃.Am+1ρ (20)

νs̃′.Bm
νx.Nρ〈x〉

=⇒ νs̃′m̃′.Bm+1 (21)

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ)
νx.Nρ〈x〉

=⇒ νr̃s̃′m̃′.(νx̃.Bm+1|νỹ.Cm(ζ ] {M ′/x})) (22)

(20) is in tr′ and corresponds to (19). Recall subsection A.4.3. (21) is in tr′′

and corresponds to (20). (22) is deriverd from (21). Note that x does not
appear in Cm.

(22) contains an output, so it changes a frame. We have to check that static
equivalence is preserved.

νs̃.[σρ] ≈s νs̃′.ζ because νs̃.Amρ ≈s νs̃′.Bm.

νs̃m̃.[(σ]{M/x})ρ] ≈s νs̃′m̃′.(ζ]{M ′/x}) since νs̃m̃.Am+1ρ ≈s νs̃′m̃′.Bm+1.

In addition, νr̃s̃.(νx̃.[σρ]|νỹ.[ρσ]) ≈s νr̃s̃′.(νx̃.ζ|νỹ.ρζ).

This is because νr̃s̃.(νx̃.Amρ|νỹ.Cmσ) ≈s νr̃s̃′.(νx̃.Bm|νỹ.Cmζ).

P [ρσ]
νx.(Nρ)[σρ]〈x〉−→ D and νm̃.Am+1ρ ≡ [σρ]|D for some D by Lemma 9.

Recall Definition 29.
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Let

P [ρσ] ≡ (νm̃l̃.(N〈M〉.P ′|P2))[ρσ]

D ≡ (νm̃.({M/x}|νl̃.(P ′|P2)))[ρσ]

Then, Am+1ρ ≡ (σ ] {M/x}|νl̃.(P ′|P2))ρ.

νr̃s̃m̃.(νx̃.[(σ ] {M/x})ρ]|νỹ.[ρ(σ ] {M/x})])
≡νr̃.(νx̃.νs̃m̃.[(σ ] {M/x})ρ]|νỹ.ρ)

≈sνr̃.(νx̃.νs̃′m̃′.(ζ ] {M ′/x})|νỹ.ρ)

≡νr̃s̃′m̃′.(νx̃.(ζ ] {M ′/x})|νỹ.ρ(ζ ] {M ′/x}))

Note that νs̃m̃.[(σ ] {M/x})ρ] ≈s νs̃′m̃′.(ζ ] {M ′/x}).
Therefore,

νr̃s̃m̃.(νx̃.Am+1ρ|νỹ.Cm(σ ] {M/x}))
≈s νr̃s̃′m̃′.(νx̃.Bm+1ρ|νỹ.Cm(ζ ] {M ′/x}))

Hence, the transition below is a desired one.

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ)
νx.N〈x〉
=⇒ νr̃s̃′m̃′.(νx̃.Bm+1ρ|νỹ.Cm(ζ ] {M/x})).

8. Case 5b.

νr̃s̃.(νx̃.Amρ|νỹ.Cmσ)
νx.N〈x〉−→ νr̃m̃s̃.(νx̃.Am(ρ ] {M/x})|νỹ.Cm+1σ) (23)

νr̃.Cmσ
νx.Nσ〈x〉−→ νr̃m̃.Cm+1σ (24)

(24) is in tr′′′ and corresponds to (23).

In the same way with Case 4b, Cmζ
νx.Nζ〈x〉−→ νm̃.Cm+1ζ.

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ)
νx.N〈x〉−→ νr̃m̃s̃′.(νx̃.Bm|νỹ.Cm+1ζ).

We have to check that static equivalence is preserved.

Now, νr̃s̃.(νx̃.[σρ]|νỹ.[ρσ]) ≈s νr̃s̃′.(νx̃.ζ|νỹ.ρζ).

This is because νr̃s̃.(νx̃.Amρ|νỹ.Cmσ) ≈s νr̃s̃′.(νx̃.Bm|νỹ.Cmζ).

νs̃.[σρ] ≈s νs̃′.ζ because νs̃.Amρ ≈s νs̃′.Bm.

νs̃.[σρ]|νỹ.(ρ ] {M/x}) ≈s νs̃′.ζ|νỹ.(ρ ] {M/x}).
Thus, νr̃m̃s̃.(νx̃.[σρ]|νỹ.(ρ ] {M/x})) ≈s νr̃m̃s̃′.(νx̃.ζ|νỹ.(σ ] {M/x})).
Hence, the transition below is a desired one.

νr̃s̃′.(νx̃.Bm|νỹ.Cmζ)
νx.N〈x〉−→ νr̃m̃s̃′.(νx̃.Bm|νỹ.Cm+1ζ).

Thus we have finished the proof of Proposition 3 and Theorem 1.
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Appendix B

Proofs for Chapter 4

B.1 Properties of Security Notions

Lemma 1. If sv(A) = sv(B), then

[∀ρ;Aρ ≈s Bρ]⇔ A ≡s B

Proof. ⇒) We prove A ≡s B by induction on the syntax of static formulas.
We arbitrarily take an assignment ρ . We suppose A, ρ,Aρ, 0 |= δ .

1. >.

Trivially, B, ρ,Bρ, 0 |= >.

2. M1 = M2.

By assumption, (M1ρρ
′
�fv(M1)\dom(A)

= M2ρρ
′
�fv(M2)\dom(A)

)fr(Aρ) for any ρ′.

By Aρ ≈s Bρ, (M1ρρ
′
�fv(M1)\dom(B)

= M2ρρ
′
�fv(M2)\dom(B)

)fr(Bρ).

This means that B, ρ,Bρ, 0 |= M1 = M2.

3. M ∈ dom.

M must be a variable x.

By definition, x ∈ dom(Aρ).

By Aρ ≈s Bρ, x ∈ dom(Bρ).

This means that B, ρ,Bρ, 0 |= x ∈ dom.

4. δ1 ∨ δ2
By assumption, A, ρ,Aρ, 0 |= δ1 ∨ δ2.
By definition, A, ρ,Aρ, 0 |= δ1 or A, ρ,Aρ, 0 |= δ2.

By induction hypothesis, B, ρ,Bρ, 0 |= δ1 or B, ρ,Bρ, 0 |= δ2.

This means that B, ρ,Bρ, 0 |= δ1 ∨ δ2.
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5. ¬δ.
By assumption, A, ρ,Aρ, 0 6|= δ.

By induction hypothesis, B, ρ,Bρ, 0 6|= δ.

This means that B, ρ,Bρ, 0 |= ¬δ.

The converses of these cases are similar. Thus, A vs B.

⇐) We arbitrarily take an assignment ρ .
We arbitrarily take x ∈ dom(Aρ). Then, A, ρ,Aρ, 0 |= x ∈ dom.
By assumption, B, ρ,Bρ, 0 |= x ∈ dom. That is, x ∈ dom(Bρ).
Thus, dom(Aρ) ⊆ dom(Bρ). The converse is similar.
We suppose that (M = N)fr(Aρ). This means that A, ρ,Aρ, 0 |= M = N . By

assumption, B, ρ,Bρ, 0 |= M = N . In other words, (M = N)fr(Bρ). Similarly,
(M = N)fr(Bρ)⇒ (M = N)fr(Aρ). Therefore, Aρ ≈s Bρ.

Theorem 2. If sv(A) = sv(B), then
1. A ≈t B ⇒ A vL B; 2. A vL B ⇒ A ⊆t B

Proof. 1) We prove

∀ρ∀tr ∈ tr(Aρ)∀tr′ ∈ tr(Bρ); tr ∼t tr′ ⇒ ∀i∀ϕ; [A, ρ, tr, i |= ϕ⇔ B, ρ, tr′, i |= ϕ].
(1)

We take an assignment ρ arbitrarily. We also arbitrarily take traces tr and tr′

of Aρ and Bρ respectively such as tr ∼t tr′. We arbitrarily take i.

1. δ.

We suppose that A, ρ, tr, i |= δ.

This means that tr[i], 0, tr[i], 0 |= δ.

By tr ∼t tr′, tr[i] ≈s tr′[i]. By Lemma 1, tr[i] ≡s tr′[i].

Thus, tr′[i], 0, tr′[i], 0 |= δ. This implies that B, ρ, tr′, i |= δ

The converse is similar.

2. ϕ1 ∨ ϕ2.

By induction hypothesis,

A, ρ, tr, i |= ϕ1 ⇔ B, ρ, tr′, i |= ϕ1, and A, ρ, tr, i |= ϕ2 ⇔ B, ρ, tr′, i |= ϕ2

Thus, A, ρ, tr, i |= ϕ1 ∨ ϕ2 ⇔ B, ρ, tr′, i |= ϕ1 ∨ ϕ2.

3. ¬ϕ.

By induction hypothesis, A, ρ, tr, i 6|= ϕ⇔ B, ρ, tr′, i 6|= ϕ.

Thus, A, ρ, tr, i |= ¬ϕ⇔ B, ρ, tr′, i |= ¬ϕ.
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4. 〈µ〉−ϕ.

We suppose that A, ρ, tr, i |= 〈µ〉−ϕ.

By definition, tr[i− 1]
µ

=⇒ tr[i] in tr and A, ρ, tr, i− 1 |= ϕ.

tr′[i− 1]
µ

=⇒ tr′[i] in tr′ because tr ∼t tr′.

By induction hypothesis, B, ρ, tr′, i− 1 |= ϕ.

Thus, B, ρ, tr′, i |= 〈µ〉−ϕ.

The converse is similar.

5. Fϕ.

We suppose that A, ρ, tr, i |= Fϕ.

By definition, ∃j ≥ i s.t. A, ρ, tr, j |= ϕ.

By induction hypothesis, B, ρ, tr′, j |= ϕ.

Thus, B, ρ, tr′, i |= Fϕ.

The converse is similar.

6. Kϕ.

We suppose that A, ρ, tr, i |= Kϕ.

By definition, ∀ρ′ ∀tr′′ ∈ tr(Aρ′); tr[0, i] ∼t tr′′[0, i]⇒ A, ρ′, tr′′, i |= ϕ.

We arbitrarily take ρ′ and tr′′′ ∈ tr(Bρ′) such as tr′[0, i] ∼t tr′′′[0, i]

By assumption, there exists a trace tr′′ of Aρ′ such as tr′′′ ∼t tr′′.

Now, tr[0, i] ∼t tr′[0, i] ∼t tr′′′[0, i] ∼t tr′′[0, i], so A, ρ′, tr′′, i |= ϕ.

By induction hypothesis, B, ρ′, tr′′′, i |= ϕ.

By arbitrariness of ρ′ and tr′′′, it follows that B, ρ, tr′, i |= Kϕ.

The converse is similar.

We complete proving (1). It immediately follows that A ≈t B ⇒ A vL B.

2) We arbitrarily take an assignment ρ. We also arbitrarily take a trace tr of
Aρ.

By assumption, ∃tr′ ∈ tr(Bρ)s.t.∀i∀ϕ; [A, ρ, tr, i |= ϕ⇔ B, ρ, tr′, i |= ϕ].
We prove tr ∼t tr′.
Let tr = A0 := Aρ

µ1
=⇒ A1

µ2
=⇒, ..., µn

=⇒ An. It holds that

A, ρ, tr, 0 |= F 〈µn〉−...〈µ1〉−>,

so it also holds that
B, ρ, tr′, 0 |= F 〈µn〉−...〈µ1〉−>.

Moreover,

∀µ;A, ρ, tr, 0 6|= F 〈µ〉−〈µn〉−...〈µ1〉−>
∀µ;A, ρ, tr, 0 6|= F 〈µn〉−...〈µ1〉−〈µ〉−>
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Thus,

∀µ;B, ρ, tr′, 0 6|= F 〈µ〉−〈µn〉−...〈µ1〉−>
∀µ;B, ρ, tr′, 0 6|= F 〈µn〉−...〈µ1〉−〈µ〉−>

Therefore, tr′ is of the form B0 := Bρ
µ1

=⇒ B1
µ2

=⇒, ..., µn
=⇒ Bn.

We arbitrarily take i. We suppose that (M = N)fr(Ai).
Now, A, ρ, tr, i |= M = N . Hence, B, ρ, tr′, i |= M = N .
That is, (M = N)fr(Bi). Thus (M = N)fr(Ai) ⇒ (M = N)fr(Bi) and the

converse similarly holds.
Similarly, x ∈ dom(Ai)⇔ x ∈ dom(Bi).
It follows that Ai ≈s Bi. Therefore, tr ∼t tr′.
By arbitrariness of tr, it immediately follows that A vL B ⇒ A ⊆t B.

Proposition 7.
∀M̃ ∀i ∀tr ∈ tr(A(M1, ...,Mp))

∃Ñ ∃tr′ ∈ tr(A(Mi, N2, ..., Ni−1,M1, Ni+1, ..., Np)) s.t. tr ∼t tr′

⇔ (x1, δk) is role interchangeable with respect to {δj} in A for all {δj} and k.

Proof. ⇒) We arbitrarily take M̃ and i.
Let ρ = [x1 7→M1, ..., xp 7→Mp].
We arbitrarily take tr ∈ tr(Aρ) and t.
We suppose that A, ρ, tr, t |= δk(x1, ỹk) ∧ δj(xi, ỹj).
By assumption, ∃Ñ∃tr′ ∈ tr(A(Mi, N2, ..., Ni−1,M1, Ni+1, ..., Np))s.t. tr ∼t tr′.
Let

ρ′ = [x1 7→Mi, x2 7→ N2, ..., xi−1 7→ Ni−1, xi 7→M1, xi+1 7→Mi+1, ..., xP 7→ Np].

By Lemma 1, tr[t] ≡s tr′[t] and tr′[t], 0, tr′[t], 0 |= δk(ρ(x1), ỹk) ∧ δj(ρ(xi), ỹj).
Thus, A, ρ′, tr′, t |= δk(xi, ỹk) ∧ δj(x1, ỹj).
Hence, A, ρ, tr, t |= P (δk(xi, ỹk) ∧ δj(x1, ỹj)).
That is, A |= G(δk(x1, ỹk)→

∧
i∈I

∧
j∈J(δj(xi, ỹj)→ P (δk(xi, ỹk)∧ δj(x1, ỹj)))).

⇐) We arbitrarily take M̃ and i.
Let ρ = [x1 7→M1, ..., xp 7→Mp].
We arbitrarily take tr ∈ tr(Aρ).
Let δ1(z) : z = M1 and δi(z) : z = Mi.
By assumption, (x1, δ1) is role interchangeable with respect to {δ1, δi}.
Hence, A |= G(δ1(x1)→ (δi(xi)→ P (δ1(xi) ∧ δi(x1)))).
Therefore, A, ρ, tr, |tr| |= δ1(x1)→ (δi(xi)→ P (δ1(xi) ∧ δi(x1))).
Because A, ρ, tr, |tr| |= δ1(x1) ∧ δi(xi), it holds that

A, ρ, tr, |tr| |= P (δ1(xi) ∧ δi(x1)).

That is, ∃ρ′∃tr′ ∈ tr(Aρ′) s.t. tr ∼t tr′ and A, ρ′, tr′, |tr′| |= δ1(xi) ∧ δi(x1).
This means that ρ′(x1) = Mi and ρ′(xi) = M1.
Let Nj = ρ′(xj)(j 6= 1, i).
Then, ∃tr′ ∈ tr(A(Mi, N2, ..., Ni−1,M1, Ni+1, ..., Np))s.t. tr ∼t tr′ holds.
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Proposition 8. A(x1, x2) ≈t A(x2, x1)
⇔ (x1, δk) is role interchangeable with respect to {δj}j∈J in A for all {δj}j∈J

and k.

Proof. We only have to prove ⇐.
For the sake of contradiction, we suppose that A(x1, x2) 6≈t A(x2, x1).
There exist M1 and M2 that are closed such that A(M1,M2) 6≈t A(M2,M1).
We suppose that A(M1,M2) 6⊆t A(M2,M1) without loss of generality.
There exists tr ∈ tr(A(M1,M2)) such that any trace of A(M2,M1) is not

statically equivalent to tr.
Let δ1(z) : z = M1 and δ2(z) : z = M2.
By assumption, A(x1, x2) |= G(δ1(x1)→ (δ2(x2)→ P (δ1(x2) ∧ δ2(x1)))).
Hence, A(x1, x2), [x1 7→M1, x2 7→M2], tr, |tr| |= P (δ1(x2) ∧ δ2(x1)).
However, this contradicts the fact that there exists tr ∈ tr(A(M1,M2)) such

that any trace of A(M2,M1) is not statically equivalent to tr.

Proposition 9. ∀ψ ∈ Sp;A(x1, ..., xp) ≈t A(xψ(1), ..., xψ(p))
⇔ {δj}j∈J is role permutable in A for all {δj}j∈J .

Proof. ⇒) We arbitrarily take M̃, n, ĩ and ψ′. We define ψ such that a permutation
on p and ψ(ik) = iψ′(k) and ψ(j) = j(j 6∈ {i1, ..., ik}).

Let ρ = [x1 7→M1, ..., xp 7→Mp].
We arbitrarily take tr ∈ tr(Aρ) and t.
We suppose that A, ρ, tr, t |=

∧
k≤n δik(xik , ỹk).

By assumption, ∃tr′ ∈ tr(A(Mψ−1(1), ...,Mψ−1(p))) s.t. tr ∼t tr′.
Let ρ′ = [x1 7→Mψ−1(1), ..., xp 7→Mψ−1(p)].
By Lemma 1, tr[t] ≡s tr′[t] and tr′[t], ρ, tr′[t], 0 |=

∧
k≤n δik(ρ(xik), ỹk).

Thus, A, ρ′, tr′, t |=
∧
k≤n δik(ρ(xiψ′(k)), ỹk).

Hence, A, ρ, tr, t |= P (
∧
k≤n δik(ρ(xiψ′(k)), ỹk)).

That is, A |= G(
∧
k≤n δik(xik , ỹk)→ P (

∧
k≤n δik(xiψ′(k) , ỹk))).

⇐) We arbitrarily take M̃ and i.
Let ρ = [x1 7→M1, ..., xp 7→Mp].
We arbitrarily take tr ∈ tr(Aρ).
Let δj(z) : z = Mj for each 1 ≤ j ≤ p. Let J = {1, ..., p}.
By assumption, {δj}j∈J is role permutable in A.
We arbitrarily take ψ ∈ Sp.
Hence, A |= G(

∧
k≤p δk(xk)→ P (

∧
k≤p δk(xψ(k)))).

Therefore, A, ρ, tr, |tr| |=
∧
k≤p δk(xk)→ P (

∧
k≤p δk(xψ(k))).

Because A, ρ, tr, |tr| |=
∧
k≤p δk(xk), it holds that

A, ρ, tr, |tr| |= P (
∧
k≤p

δk(xψ(k)))

That is, ∃ρ′∃tr′ ∈ tr(Aρ′)s.t. tr ∼t tr′ and A, ρ′, tr′, |tr′| |=
∧
k≤p δk(xψ(k)).

This means that ρ′(xψ(k)) = Mk for all k.
Let ψ′(k) = ψ−1(k).
Then, ∃tr′ ∈ tr(A(Mψ′(1), ...,Mψ′(p)))s.t. tr ∼t tr′ holds.
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Problem 2.
Input: An extended process A, an assignment ρ, a trace tr ∈ tr(A), an integer

0 ≤ i ≤ |tr|, and a formula ϕ.
Question: Does A, ρ, tr, i |= ϕ hold?

Proposition 10. Even if the word problem in Σ is decidable, Problem 2 can be
undecidable.

Proof. We again reduce the decision problem for static equivalence to Problem 2.
Let ϕ and ψ be frames. We assume that dom(ϕ) = dom(ψ).
Let ϕ = νñ.{M1/x1, ...,Ml/xl}, ψ = νm̃.{N1/x1, ...,Nl/xl}.
Let P = νñ.a〈M1〉...a〈Ml〉, Q = νm̃.a〈N1〉...a〈Nl〉, where a /∈ ñ ∪ m̃.
Let A = if x = b then P else Q and ρ : x 7→ b.
Let

tr = Aρ
νx1.a〈x1〉−→ νñ.(a〈M2〉...a〈Ml〉|{M1/x1})

νx2.a〈x2〉−→ ...

νxl.a〈xl〉−→ νñ.{M1/x1, ...,Ml/xl}

We prove that ϕ ≈s ψ ⇔ A, ρ, tr, i |= P (x 6= b).
tr is the only trace of Aρ which is statically equivalent to tr.
We arbitrarily take an assignment ρ′ which does not map x to b.
A trace tr′ ∈ tr(Aρ′) whose actions correspond to tr is the only below:

Aρ′
νx1.a〈x1〉

=⇒ νm̃.(a〈N2〉...a〈Nl〉|{N1/x1})
νx2.a〈x2〉−→ ...

νxl.a〈xl〉−→ νm̃.{N1/x1, ...,Nl/xl}.

Because A, ρ′, tr′, i |= x 6= b, it holds that A, ρ, tr, i |= P (x 6= b)⇒ ϕ ≈s ψ.
On the other hand, it holds that tr ∼t tr′ if ϕ ≈s ψ. The proof is similar to

the proof of Proposition 1.
Hence, it follows that ϕ ≈s ψ ⇒ A, ρ, tr, i |= P (x 6= b).

B.2 Proof of Proposition 11

Problem 3.
Input: An extended process A and a formula ϕ.
Question: Does A |= ϕ hold?

Proposition 11. If the equational theory on Σ is a convergent subterm theory and
the extended process A contains no replications, Problem 3 is decidable.

Proof of Proposition 11 needs several lemmas.

Lemma 16. Let A be an extended process and B a closed extended process.
Consider a modal formula ϕ, assignments ρ, ρ′ and an arbitrary tr ∈ tr(B),

together with a permutation π which does not alter names in A, tr[0, i] and ϕ for
some i ≤ |tr|.

We assume that ρ′ is obtained by π from ρ.
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Let Xi = {tr′ ∈ tr(Aρ)|tr′[0, i] ∼t tr[0, i]} and Yi = {tr′ ∈ tr(Aρ′)|tr′[0, i] ∼t
tr[0, i]}.

Then there exists a bijection fi : Xi → Yi such that

A, ρ, tr′, i |= ϕ⇔ A, ρ′, fi(tr
′), i |= ϕ.

Proof. We define fi as fi(tr
′) = π(tr′).

By assumption, ρ′ = π(ρ).

A, ρ, tr′, i |= ϕ⇔ A, π(ρ), π(tr′), i |= ϕ⇔ A, ρ′, fi(tr
′), i |= ϕ.

Lemma 17. Let T be a finite set of variables. Let S be a finite set of names.
We define an equivalence relation �S between assignments which is a map from

T to names.

�S= {(ρ, ρ′)|There exists a permutation π which does not change names in S

such that ρ′ is obtained by π from ρ.}

Then the quotient space by �S is finite.

Proof. Let T = {x1, ..., xl, y1, ..., ymn} and

ρ = [x1 7→ a1, ..., xl 7→ al,

y1 7→ b1, ..., ym1 7→ b1, ym1+1 7→ b2, ..., ym2 7→ b2, ..., ymn 7→ bn],

where a1, ..., al are names in S and b1, ..., bn are names which is not in S. In
addition, i 6= j ⇒ bi 6= bj, but we do not assume that i 6= j ⇒ ai 6= aj.

Then ρ �S ρ′ ⇔ [ρ(xi) = ρ′(xi) and ρ′(yi) = π(ρ(yi)) for some π].
Each equivalence class is determined by a division of variables such as described

above. The number of such divisions is finite, so the quotient space is finite.

Proposition 20. If static equivalence and word problem in Σ are decidable and ρ
is restricted to an assignment to names, then Problem 2 is decidable.

Proof. We prove by induction on ϕ.

1. >.

A, ρ, tr, i |= > always holds, so this is decidable.

2. M1 = M2.

By assumption, this is decidable.

3. M ∈ dom.

This relation is trivially decidable.
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4. δ1 ∨ δ2.
By induction hypothesis, δ1 and δ2 are decidable, so δ1 ∨ δ2 is so.

Moreover, ¬δ, ϕ1 ∨ ϕ2 and ¬ϕ are similar.

5. 〈µ〉−ϕ.

Whether tr[i− 1]
µ

=⇒ tr[i] holds in tr is clearly decidable.

By induction hypothesis, A, ρ, tr, i− 1 |= ϕ is decidable, so 〈µ〉−ϕ is so.

6. Fϕ.

By induction hypothesis, A, ρ, tr, i |= ϕ, ..., A, ρ, tr, |tr| |= ϕ are decidable,
so Fϕ is so.

7. Kϕ.

We consider a quotient space by �n(tr[0,i])∪n(A)∪n(ϕ). By Lemma 17, this space
is finite. Here, n(tr[0, i]) is a set of names which appear in tr[0, i].

A division of variables determines each equivalence class, so this is com-
putable.

We arbitrarily take a representative ρ′ of each equivalence class.

By Proposition 2, whether there exists tr′ ∈ tr(Aρ′) such that tr[0, i] ∼t
tr′[0, i] is decidable.

If such traces exist, the number of them is finite.

We arbitrarily take tr′ ∈ tr(Aρ′) such as tr′[0, i] ∼t tr[0, i].

By induction hypothesis, A, ρ′, tr′, i |= ϕ is decidable.

We arbitrarily take ρ′′ �n(tr[0,i])∪n(A)∪n(ϕ) ρ
′.

By Lemma 16,
A, ρ′, tr′, i |= ϕ⇔ A, ρ′′, fi(tr

′), i |= ϕ

for some π such that ρ′′ = π(ρ′). Moreover, tr′[0, i] ∼t fi(tr′)[0, i]. This is
because fi(tr

′[0, i]) ∼t tr[0, i].

This is why we only have to check whether a representative ρ′ of each equiv-
alence class satisfies that A, ρ′, tr′, i |= ϕ.

This procedure can always be completed because of the finiteness of the
quotient space.

In other words, A, ρ, tr, i |= Kϕ is decidable.

It is proved in [3, Theorem 1] that static equivalence on a convergent subterm
theory is decidable, so the corollary below immediately follows.

Corollary 4. If the equational theory on Σ is a convergent subterm theory and ρ
is restricted to an assignment to names, then Problem 2 is decidable.

Now, Proposition 11 immediately follows.
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