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Abstract

Investigation of unconventional superconductivity has been one of the central topics in mod-
ern condensed matter physics. In unconventional superconductors, interesting phenomena have
been clarified owing to various kinds of symmetry breaking from the internal degrees of freedom
of Cooper pairs. In particular, the interplay between superconductivity and parity symmetry
breaking is attracting much attention since the discovery of noncentrosymmetric superconduc-
tors. Parity symmetry is one of the fundamental properties in quantum materials, and hence
the lack of parity symmetry significantly affects the superconducting properties and leads to
exotic superconducting phenomena. Although most of such phenomena have been elucidated
for noncentrosymmetric superconductors, we can consider other types of superconductors asso-
ciated with parity symmetry breaking; (i) superconductors coexistent with other parity-breaking
orders, (ii) locally noncentrosymmetric superconductors, and (iii) superconductors hosting mul-
tiple even- and odd-parity pairing instabilities. However, theoretical understanding for these
kinds of superconductors is still insufficient compared with that for noncentrosymmetric super-
conductors. In this thesis, we investigate such exotic superconductors and uncover the novel
interplay between superconductivity and parity symmetry breaking.

First, regarding the type (i), we study a coexistent phenomenon of superconductivity and
ferroelectric-like polar parity-breaking order, which we call the ferroelectric superconductivity.
In particular, we focus on SrTiO3 as a possible candidate of the ferroelectric superconductor
and demonstrate the impacts of the multiorbital/multiband effect on the ferroelectric supercon-
ductivity. By analyzing a multiorbital model for SrTiO3, we demonstrate that the ferroelectric
superconductivity is stabilized in a very low carrier density regime or high magnetic field
regime. The essential ingredient for stabilizing the ferroelectric superconductivity is Rashba-
type spin-orbit coupling dynamically induced by the ferroelectric ordering, which is significantly
affected by multiorbital/multiband effects. Furthermore, we predict that the ferroelectric su-
perconductivity in SrTiO3 leads to a topological Weyl superconducting state and generation of
odd-frequency pair correlations.

Second, regarding the type (ii), we clarify the novel interplay of ferromagnetic-fluctuation-
driven odd-parity superconductivity and locally noncentrosymmetric crystal structure. To this
end, we consider a bilayer triangular lattice Hubbard model, which is relevant to, e.g., bilayer
transition metal dichalcogenides. In this model, odd-parity spin-triplet superconductivity is
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realized in a wide range of parameter regimes owing to the ferromagnetic fluctuation. Specif-
ically, we demonstrate that competing multiple odd-parity pairing instabilities are induced by
the layer-dependent staggered antisymmetric spin-orbit coupling that originates from the locally
noncentrosymmetric crystal structure. Some of the odd-parity pairing states are identified as
topological superconductivity. The obtained results shed light on the possibility of odd-parity
superconductivity in various ferromagnetic van der Waals materials.

Lastly, regarding the type (iii), we explore time-reversal-symmetry-breaking mixed-parity
superconductivity in multiband systems. Recently, superconductivity with spontaneous time-
reversal or parity symmetry breaking is attracting much attention owing to its exotic properties,
such as nontrivial topology and nonreciprocal transport. Particularly fascinating phenom-
ena are expected when the time-reversal and parity symmetry are simultaneously broken by
the spontaneous ordering of time-reversal symmetry-breaking mixed-parity superconductivity,
which can be realized when the even- and odd-parity pairing instabilities are competing in one
system. This work shows that such time-reversal symmetry-breaking mixed-parity supercon-
ducting states generally exhibit an unusual asymmetric Bogoliubov spectrum due to nonunitary
interband pairing. For generic two-band models, we derive the necessary conditions for the
asymmetric Bogoliubov spectrum. We also demonstrate that the asymmetric Bogoliubov quasi-
particles lead to the effective anapole moment of the superconducting state, which stabilizes
a nonuniform Fulde-Ferrell-Larkin-Ovchinnikov state at zero magnetic fields. The concept of
anapole order employed in nuclear physics, magnetic materials science, strongly correlated
electron systems, and optoelectronics is extended to superconductors by this work. Our con-
clusions are relevant to any multiband superconductors with competing even- and odd-parity
pairing interactions. Especially, we apply our theory to UTe2, in which spontaneous ordering
of mixed-parity superconductivity is recently proposed.
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Chapter 1

Introduction: superconductivity and
parity symmetry breaking

Conventional superconductivity, which is described by the Bardeen-Cooper-Schrieffer (BCS)
theory [1], is caused by the quantum condensation of spin-singlet 𝑠-wave Cooper pairs. Since the
Cooper pairs in conventional superconducting states have no internal degrees of freedom, only
the U(1) gauge symmetry is spontaneously broken by the superconducting phase transition.
On the other hand, unconventional superconductivity has been intensively studied in recent
condensed matter physics. The ground state of unconventional superconductivity is a condensate
of Cooper pairs with internal degrees of freedom such as spin, orbital angular momentum, and
center-of-mass momentum. Therefore, unconventional superconductivity is accompanied by
an additional symmetry breaking other than U(1) gauge symmetry breaking. Such additional
symmetry breaking leads to various intriguing superconducting phenomena. For example,
chiral 𝑝-wave superconductivity with spontaneous time-reversal symmetry breaking realizes
topological superconductivity possessing Majorana fermions at the surface [2, 3], which is
currently attracting much attention as a possible platform of decoherence-free topological
quantum computation [4].

Especially, exotic superconducting phenomena have been clarified in the presence of
parity/space-inversion symmetry (P-symmetry) breaking. In noncentrosymmetric (NCS) su-
perconductors, the lack of the global parity symmetry in the crystal structure leads to a variety
of exotic superconducting phenomena. Similarly, local parity violation in the crystal structure
also induces exotic superconducting phenomena although the parity symmetry is globally main-
tained. The interplay of superconductivity and other parity-breaking orders, e.g., ferroelectric
order, is also an interesting topic that is not yet clarified so much. Furthermore, we can consider
spontaneous parity symmetry breaking induced by superconductivity itself. In the following,
we will uncover novel properties of superconductors associated with such various kinds of parity
symmetry breaking.

This chapter is dedicated to the introduction to the recent progress in the research field of
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Chapter 1. Introduction: superconductivity and parity symmetry breaking

exotic superconductivity associated with parity symmetry breaking. In Sec. 1.1, we introduce
basic properties of superconductivity in globally/locally NCS crystals. Especially, as a guiding
principle, we focus on the selection rule for globally/locally NCS superconductors in the presence
of spin-orbit coupling (SOC). In Sec. 1.2, we overview recent progress in the research field of
superconductors correlated with other parity-breaking orders. In Sec. 1.3, we discuss the parity
symmetry breaking induced by the spontaneous ordering of mixed-parity superconductivity.
Finally, the organization of this thesis is explained in Sec. 1.4.

1.1 Superconductivity in globally/locally noncentrosymmet-
ric crystals

The effects of the parity symmetry breaking in NCS crystals (Fig. 1.1) on the electronic
properties can be represented as the antisymmetric spin-orbit coupling

HASOC =
∑︁
𝒌,𝑠,𝑠′

(𝒈𝒌 · 𝝈)𝑠𝑠′𝑐†𝒌𝑠𝑐𝒌𝑠′, (1.1)

where 𝝈 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) is the vector of Pauli matrices, and 𝑐𝒌𝑠 is the annihilation operator
for an electron with momentum 𝒌 and spin 𝑠 =↑, ↓. 𝒈𝒌 is the so-called g-vector satisfying
𝒈−𝒌 = −𝒈𝒌 . The antisymmetric SOC affects the Cooper pairing in NCS superconductors and
causes various intriguing superconducting phenomena, e.g., parity-mixing of Cooper pairs [5],
topological superconductivity [6–8], upper critical fields exceeding the Pauli limit [9–11], helical
superconductivity [12–15], Edelstein effect [16–22], and superconducting diode effect [23–28].

Fig. 1.1. Example of NCS crystal structure. The crystal structure after the space-inversion P
does not coincide with the original crystal structure.

We here introduce the selection rule for superconductivity in NCS crystals. The selection
rule is a guiding principle when we consider Cooper pairing in NCS superconductors with
antisymmetric SOC. To see this, we consider the effective mean-field Hamiltonian in the matrix
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Chapter 1. Introduction: superconductivity and parity symmetry breaking

form:

H =
1
2

∑︁
𝒌

(𝑐†
𝒌
, 𝑐T

−𝒌)
(
𝐻0(𝒌) Δ(𝒌)
Δ†(𝒌) −𝐻∗

0 (−𝒌)

) (
𝑐𝒌

𝑐∗−𝒌

)
, (1.2)

where 𝑐
†
𝒌
≡ (𝑐†

𝒌↑, 𝑐
†
𝒌↓). In NCS crystals with antisymmetric SOC, the normal state part 𝐻0(𝒌)

is described as

𝐻0(𝒌) = 𝜖𝒌𝜎0 + 𝒈𝒌 · 𝝈, (1.3)

where 𝜎0 is the 2 × 2 unit matrix. On the other hand, the pairing potential Δ(𝒌) is generally
expressed as

Δ(𝒌) = (𝜓𝒌𝜎0 + 𝒅𝒌 · 𝝈)𝑖𝜎𝑦 . (1.4)

To derive the selection rule, we now introduce the concept of superconducting fitness [29, 30],
which quantifies the stability of superconducting states under symmetry-breaking fields. The
superconducting fitness 𝐹 (𝒌) is defined as

𝐹 (𝒌)𝑈𝑇 = 𝐻0(𝒌)Δ(𝒌) − Δ(𝒌)𝐻∗
0 (−𝒌), (1.5)

where 𝑈𝑇 is the unitary part of the time-reversal operator (i.e., 𝑈𝑇 = 𝑖𝜎𝑦 for spin-1/2 single-
orbital model). If 𝐻0(𝒌) and Δ(𝒌) satisfy 𝐹 (𝒌) ≠ 0, the system possesses finite interband
pairing which gives suppression of the superconducting transition temperature [29, 30]. Hence,
the presence of a finite value of 𝐹 (𝒌) is detrimental to the superconductivity. In this sense, the
superconducting fitness 𝐹 (𝒌) is a measure to quantify the incompatibility of arbitrary pairing
states with a given normal state Hamiltonian. Applying Eq. (1.5) to Eqs. (1.3) and (1.4), we
obtain

𝐹 (𝒌) = 2𝑖(𝒈𝒌 × 𝒅𝒌) · 𝝈. (1.6)

Equation (1.6) indicates that spin-triplet superconducting states are destabilized by the anti-
symmetric SOC except when 𝒅𝒌 is parallel to 𝒈𝒌 , while the spin-singlet superconducting states
are not affected by the antisymmetric SOC. These facts lead to the selection rule for NCS
superconductors summarized in Table 1.1 (a). Since parity is not a good quantum number
in NCS crystals, mixed-parity superconducting states with spin-singlet and spin-triplet pairing
components are generally realized. In such mixed-parity superconducting states, symmetry of
spin-triplet component is restricted so as to satisfy the above selection rule (i.e., 𝒅𝒌 ∥ 𝒈𝒌).

Next, we consider the impacts of locally NCS crystal structure on superconductivity. Fig-
ure 1.2 shows examples of locally NCS crystal structure. As shown in Fig. 1.2, locally NCS
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Chapter 1. Introduction: superconductivity and parity symmetry breaking

Table 1.1. Selection rule for superconductivity in globally/locally NCS crystals.

(a) Globally NCS crystal
SOC Selection rule

𝒈𝒌 · 𝝈
intrasublattice

singlet, triplet (𝒅𝒌 ∥ 𝒈𝒌)

(b) Locally NCS crystal
SOC Selection rule

(𝒈′𝒌 · 𝝈) ⊗ 𝜏𝑧
intrasublattice intersublattice

singlet, triplet (𝒅𝜇
𝒌
∥ 𝒈′𝒌) triplet (𝒅𝜇

𝒌
⊥ 𝒈′𝒌)

lattices possess non-equivalent sublattices and the inversion center is not located at the sub-
lattices. This indicates that the global parity symmetry is preserved by interchanging two
sublattices, while the local parity symmetry is broken at each sublattice. In such locally NCS
crystals, a sublattice-dependent antisymmetric SOC appears as

HsASOC =
∑︁
𝒌,𝑠,𝑠′

(𝒈′𝒌 · 𝝈)𝑠𝑠′ (𝑐
†
𝒌𝑎𝑠

𝑐𝒌𝑎𝑠′ − 𝑐
†
𝒌𝑏𝑠

𝑐𝒌𝑏𝑠′), (1.7)

where 𝑐𝒌𝑚𝑠 is the annihilation operator for an electron with withmomentum 𝒌 and spin 𝑠 =↑, ↓
on sublattice 𝑚 = 𝑎, 𝑏. The g-vector 𝒈′𝒌 satisfies 𝒈′−𝒌 = −𝒈′𝒌 . The sublattice-dependent
antisymmetric SOC plays a key role to realize various exotic phenomena in locally NCS
superconductors, e.g., singlet-triplet mixed pairing states [31], pair density wave states [32, 33],
complex stripe states [34], and topological superconductivity [35–37]. To see the selection
rule for locally NCS superconductors, we now consider the mean-field Hamiltonian given by
Eq. (1.2) with 𝑐

†
𝒌
≡ (𝑐†

𝒌𝑎↑, 𝑐
†
𝒌𝑎↓, 𝑐

†
𝒌𝑏↑, 𝑐

†
𝒌𝑏↓). The normal state part 𝐻0(𝒌) with the sublattice-

dependent staggered antisymmetric SOC is described as

𝐻0(𝒌) = 𝜖𝒌𝜎0 ⊗ 𝜏0 + 𝒈′𝒌 · 𝜎 ⊗ 𝜏𝑧, (1.8)

where 𝜏𝜇 (𝜇 = 0, 𝑥, 𝑦, 𝑧) denotes the Pauli matrix for the sublattice degrees of freedom. The
general form of the pairing potential Δ(𝒌) is written as

Δ(𝒌) =
∑︁

𝜇=0,𝑥,𝑦,𝑧
(𝜓𝜇

𝒌
𝜎0 + 𝒅𝜇

𝒌
· 𝝈)𝑖𝜎𝑦 ⊗ 𝜏𝜇 . (1.9)

Applying Eq. (1.5) to Eqs. (1.8) and (1.9), we can obtain the superconducting fitness 𝐹 (𝒌) in
locally NCS superconductors. Owing to the sublattice degrees of freedom, the superconducting
fitness is decomposed into intrasublattice and intersublattice components as 𝐹 (𝒌) = 𝐹intra(𝒌) +
𝐹inter(𝒌). The intrasublattice and intersublattice superconducting fitness 𝐹intra(𝒌) and 𝐹inter(𝒌)
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Chapter 1. Introduction: superconductivity and parity symmetry breaking

(a) (b)

Fig. 1.2. Examples of locally NCS crystal structure. Two non-equivalent sublattices are
described as blue and red spheres. (a) The crystal structure is formed by stacking inversion-
symmetry lacking blocks in a staggered way. (b) Top view of the honeycomb lattice structure.

are obtained as follows:

𝐹intra(𝒌) = 2𝑖
[
(𝒈′𝒌 × 𝒅0

𝒌) · 𝝈 ⊗ 𝜏𝑧 + (𝒈′𝒌 × 𝒅𝑧
𝒌
) · 𝝈 ⊗ 𝜏0

]
, (1.10)

𝐹inter(𝒌) = 2𝑖
[
(𝒈′𝒌 · 𝒅

𝑥
𝒌)𝜎0 ⊗ 𝜏𝑦 − (𝒈′𝒌 · 𝒅

𝑦

𝒌
)𝜎0 ⊗ 𝜏𝑥

]
+ 2𝑖

[
𝜓𝑥
𝒌 (𝒈

′
𝒌 · 𝝈) ⊗ 𝜏𝑦 − 𝜓

𝑦

𝒌
(𝒈′𝒌 · 𝝈) ⊗ 𝜏𝑥

]
. (1.11)

From Eqs. (1.10) and (1.11), we can derive the selection rule for locally NCS supercodncutors
summarized in Table 1.1 (b). For intrasublattice pairing, spin-triplet superconducting states
are destabilized by the antisymmetric SOC except when 𝒅0,𝑧

𝒌
is parallel to 𝒈′𝒌 , while the intra-

sublattice spin-singlet superconducting states are not affected by the antisymmetric SOC. This
result is same with that for globally NCS superconductors. On the other hand, for intersublattice
pairing, only the spin-triplet superconducting states are stabilized when 𝒅𝑥,𝑦

𝒌
is perpendicular to

𝒈′𝒌 . Superconductivity in locally NCS crystals obeys the above selection rule in general [31, 38].
However, since superconducting fitness is a concept based on the mean-field theory, the selec-
tion rule can be violated if the superconductivity is described by a theoretical framework beyond
the mean-field theory. We will indeed encounter such a situation in Chap. 3.

1.2 Superconductivity and parity-breaking order

The interplay between superconductivity and other electric/magnetic orders has attracted much
attention in the research field of unconventional superconductivity. In high-𝑇c cuprates and
heavy-fermion superconductors [39–41], 𝑑-wave superconductivity induced by antiferromag-
netic spin fluctuations has been elucidated. Spin-triplet superconductivity mediated by ferro-
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Chapter 1. Introduction: superconductivity and parity symmetry breaking

Fig. 1.3. Schematic phase diagram for superconductivity in the vicinity of a parity-breaking
quantum critical point. The quantum criticality of the parity-breaking order is controlled by
tuning a physical parameter such as pressure and carrier density. Superconductivity is driven
by Cooper pairing mediated by the quantum fluctuation of the parity-breaking order.

magnetic (FM) spin fluctuations has been studied in uranium-based FM superconductors such
as UGe2, URhGe, and UCoGe [42]. In iron-based superconductors, charge/orbital-fluctuation-
driven 𝑠++-wave superconductivity has been clarified [43, 44]. In recently discovered kagome
metals, the interplay between superconductivity and charge density waves is drawing atten-
tion [45–47].

In particular, recent theoretical studies have clarified exotic correlations between supercon-
ductivity and other parity-breaking orders. These theoretical works treat a system in which
superconductivity and parity-breaking order are adjacent as shown in Fig. 1.3. In the disordered
state of the parity-breaking order, superconductivity mediated by the quantum fluctuation of
the parity-breaking order, which we call parity-breaking fluctuation, has been elucidated. For
spin-orbit coupled isotropic systems, it has been clarified that the nonmagnetic parity-breaking
fluctuations (i.e., odd-parity electric multipole fluctuations) generate an odd-parity pairing inter-
action competing with the conventional 𝑠-wave pairing interaction [48]. Hence, the odd-parity
superconductivity can be stabilized by the nonmagnetic parity-breaking fluctuations when the
𝑠-wave pairing is suppressed by external Zeeman field or Coulomb repulsion. The essence of
this pioneering work is a direct coupling between the parity-breaking order parameter and the
electron’s spin texture on the Fermi surface, which appears in the presence of SOC [49]. This
theoretical framework was further extended to both crystalline systems and systems with mag-
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Chapter 1. Introduction: superconductivity and parity symmetry breaking

netic parity-breaking fluctuations [50]. The idea proposed in Ref. [48] was applied to explain
the pairing mechanism of superconductivity induced by ferroelectric soft modes [51–54]. In
addition, it has been clarified that odd-parity topological superconductivity is realized by an
antiferromagnetic spin fluctuation in locally NCS crystals, which effectively acts as a magnetic
parity-breaking fluctuation (i.e., odd-parity magnetic multipole fluctuation) [38]. On the other
hand, intriguing phenomena have also been clarified in the coexistent states of superconductivity
and parity-breaking order. In a coexistent phase of superconductivity and odd-parity magnetic
quadrupole order, the stabilization of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconduct-
ing state without external magnetic field has been proposed [55, 56]. For spin-orbit-coupled
superconductors in the vicinity of the ferroelectric critical point, it has been clarified that co-
existent state of superconductivity and ferroelectric-like parity-breaking order, which we call
ferroelectric superconducting state, is stabilized in a very low carrier density regime or high
magnetic field regime [57]. In Chap. 2, we show that the ferroelectric superconducting state
induces exotic phenomena such as topological superconductivity and odd-frequency pairing in
the presence of multiorbital/multiband effects.

At present, the above theoretical proposals are not yet established experimentally. One of
the reasons is that there are few candidate materials realizing superconductivity in the vicinity
of parity-breaking critical point (e.g., SrTiO3 [58, 59] and Cd2Re2O7 [60, 61]) like shown in
Fig. 1.3. Although such experimental difficulty is present, exploration of the correlation between
superconductivity and parity-breaking order should give valuable insights to the research field
of unconventional superconductivity.

1.3 Mixed-parity superconductivity

Now that we have reviewed the interplay of superconductivity and parity symmetry breaking
due to the crystal structure or other parity-breaking orders, we here consider spontaneous parity
symmetry breaking realized by superconductivity itself. Superconductivity gives stiffness
under the U(1) gauge transformation. Hence, we need to take into account combined operations
operations of usual symmetry operations and U(1) gauge transformation in order to consider
symmetry in superconducting states. This means that odd-parity superconductivity does not
break the parity symmetry because the combined P×U(1) symmetry is preserved. On the other
hand, if the superconductivity possesses a mixed-parity order parameter (e.g., 𝑠 + 𝑝-wave order
parameter), the parity symmetry is spontaneously broken by the superconducting transition.
Spontaneous ordering of such mixed-parity superconductivity can be realized when even- and
odd-parity pairing instabilities are competing in one system. Especially, it has been clarified that
time-reversal symmetry (T -symmetry) breaking mixed-parity superconductivity (e.g., 𝑠 + 𝑖𝑝-
wave superconductivity) is energetically favored in such situations [8, 62, 63]. Hereafter, we
refer to this kind of P- and T -breaking superconducting states as PT -symmetric mixed-parity
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Chapter 1. Introduction: superconductivity and parity symmetry breaking

superconductivity since it preserves the combined PT -symmetry.
To see this, we consider a simplified Hamiltonian for mixed-parity superconductivity as

follows:

𝐻0(𝒌) = (𝜖𝒌 − 𝜇)𝜎0, (1.12)

Δ(𝒌) = (𝑒𝑖𝜙Δ1𝜓̂𝒌𝜎0 + Δ2𝒅𝒌 · 𝝈)𝑖𝜎𝑦, (1.13)

where 𝜇 is the chemical potential and Δ1,2 represents the superconducting order parameter for
the even/odd-parity pairing channels. 𝜙 is the phase difference between the even- and odd-
parity pairing order parameters. Without loss of generality, we assume Δ1 and Δ2 are real. The
real-valued coefficients 𝜓̂𝒌 and 𝒅𝒌 express the momentum-dependence of even- and odd-parity
pairing channels. The above Hamiltonian can be diagonalized as(

𝐻0(𝒌) Δ(𝒌)
Δ†(𝒌) −𝐻∗

0 (−𝒌)

)
→ diag

(
𝐸+
𝒌 , 𝐸

−
𝒌 ,−𝐸

+
−𝒌 ,−𝐸

−
−𝒌

)
, (1.14)

where the energy spectrum 𝐸±
𝒌 is given by

𝐸±
𝒌 =

√︃
(𝜖𝒌 − 𝜇)2 + (Δ2

1𝜓̂
2
𝒌
± 2Δ1Δ2𝜓̂𝒌 |𝒅𝒌 | cos 𝜙 + Δ2

2 |𝒅𝒌 |2). (1.15)

From Eq. (1.15), we can derive the Landau free energy as follows:

F = 𝛼1Δ
2
1 + 𝛼2Δ

2
2 + 𝛽1Δ

4
1 + 𝛽2Δ

4
2 + 2𝛽(2 + cos 2𝜙)Δ2

1Δ
2
2. (1.16)

The coefficients are obtained as

𝛼1 = 𝜌0⟨𝜓̂2
𝒌⟩FS(𝑇 − 𝑇c1)/𝑇c1, (1.17)

𝛼2 = 𝜌0⟨|𝒅𝒌 |2⟩FS(𝑇 − 𝑇c2)/𝑇c2, (1.18)

𝛽1 = 𝜌0⟨𝜓̂4
𝒌⟩FS7𝜁 (3)/(16𝜋2𝑇2), (1.19)

𝛽2 = 𝜌0⟨|𝒅𝒌 |4⟩FS7𝜁 (3)/(16𝜋2𝑇2), (1.20)

𝛽 = 𝜌0⟨𝜓̂2
𝒌 |𝒅𝒌 |

2⟩FS7𝜁 (3)/(16𝜋2𝑇2), (1.21)

where 𝜌0 is the density of states (DOS) at the Fermi energy, ⟨· · · ⟩FS denotes the average over
the Fermi surface, 𝜁 (𝑥) is the Riemann zeta function, and 𝑇 is the temperature. 𝑇c1 and 𝑇c2

denote the superconducting transition temperature for even- and odd-parity pairing channels,
respectively. By assuming 𝛼1 ≃ 𝛼2, we consider the case when even- and odd-parity pairing
instabilities are comparable in strength, and hence tuning some physical parameters (e.g.,
pressure, chemical substitution) can drive multiple superconducting phase transitions. Now, we
consider the possibility of the coexistence of even- and odd-parity pairing orders. Since the last

8



Chapter 1. Introduction: superconductivity and parity symmetry breaking

term in Eq. (1.16) is minimized when 𝜙 = ±𝜋/2, spontaneous time-reversal symmetry breaking
is energetically favored if the coexistent mixed-parity phase is stable. For 𝜙 = ±𝜋/2, the free
energy (1.16) becomes

F = 𝛼1Δ
2
1 + 𝛼2Δ

2
2 + 𝛽1Δ

4
1 + 𝛽2Δ

4
2 + 2𝛽Δ2

1Δ
2
2. (1.22)

For this free energy, the thermodynamically stable states must satisfy the following relations:

𝜕Δ1F = 2Δ1
[
𝛼1 + 2𝛽1Δ

2
1 + 2𝛽Δ2

2
]
= 0, (1.23)

𝜕Δ2F = 2Δ2
[
𝛼2 + 2𝛽2Δ

2
2 + 2𝛽Δ2

1
]
= 0. (1.24)

Nonzero solutions of the above simultaneous equations are obtained as

(Δ1,Δ2) =



(√︂−𝛼1
2𝛽1

, 0
)
≡ (Δeven

1 , 0),(
0,

√︂−𝛼2
2𝛽2

)
≡ (0,Δodd

2 ),

©­«
√︄

𝛼1𝛽2 − 𝛼2𝛽

2(𝛽2 − 𝛽1𝛽2)
,

√︄
𝛼2𝛽1 − 𝛼1𝛽

2(𝛽2 − 𝛽1𝛽2)
ª®¬ ≡ (Δmix

1 ,Δmix
2 ).

(1.25)

From Eq. (1.25), we see that there are three possible superconducting states for the free en-
ergy (1.22); (i) even-parity superconducting state with (Δ1,Δ2) = (Δeven

1 , 0), (ii) odd-parity
superconducting state with (Δ1,Δ2) = (0,Δodd

2 ), and (iii) mixed-parity superconducting state
with (Δ1,Δ2) = (Δmix

1 ,Δmix
2 ). To determine the most stable state, we substitute the solutions

(1.25) into the free energy (1.22) and compare the results:

F [Δmix
1 ,Δmix

2 ] − F [Δeven
1 , 0] = (𝛼1𝛽 − 𝛼2𝛽1)2

4𝛽1(𝛽2 − 𝛽1𝛽2)
, (1.26)

F [Δmix
1 ,Δmix

2 ] − F [0,Δodd
2 ] = (𝛼2𝛽 − 𝛼1𝛽2)2

4𝛽2(𝛽2 − 𝛽1𝛽2)
. (1.27)

Equations (1.26) and (1.27) indicates that the coexistent mixed-parity phase with (Δ1,Δ2) =

(Δmix
1 ,Δmix

2 ) is most stable because we find 𝛽2 < 𝛽1𝛽2 holds from Eqs. (1.19)-(1.21). Note that
𝛽2 < 𝛽1𝛽2 also ensures that Δmix

1 and Δmix
2 are real. Therefore, the free energy (1.22) leads to the

stabilization of the PT -symmetric mixed-parity coexistent phase with 𝜙 = ±𝜋/2. In Chap. 4,
we will clarify exotic phenomena induced by the spontaneous ordering of such PT -symmetric
mixed-parity superconductivity.
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Chapter 1. Introduction: superconductivity and parity symmetry breaking

1.4 Organization of this thesis

In this thesis, we clarify a variety of exotic superconducting phenomena associated with parity
symmetry breaking. In Chap. 2, we study a coexistent phenomenon of superconductivity
and ferroelectric-like parity-breaking order, which we call the ferroelectric superconductivity
(FESC). Based on numerical calculations and symmetry analysis of a multiorbital model,
we clarify the unusual cooperating effect between superconductivity and ferroelectricity, which
leads to exotic properties such as topological Weyl superconductivity and odd-frequency pairing.
In Chap. 3, we investigate an interplay of unconventional superconductivity and locally NCS
crystal structure by using a bilayer triangular lattice Hubbard model. By performing numerical
calculations within the framework of the strong coupling theory of superconductivity, it is
shown that the combination of FM spin fluctuation and sublattice-dependent antisymmetric
SOC generates multiple odd-parity pairing instabilities. In Chap. 4, we demonstrate novel
properties of PT -symmetric mixed-parity superconductivity, which simultaneously breaks the
space-inversion and time-reversal symmetries. Focusing on the multiband effects, we clarify
that such superconducting states generally possess unusual asymmetric Bogoliubov spectrum,
which induces stabilization of FFLO-like nonuniform superconducting state at a zero magnetic
field. Finally, the obtained results are summarized in Chap. 5.
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Chapter 2

Ferroelectric superconductivity and
multiorbital/multiband effects:
application to SrTiO3

2.1 Introduction

For a long time, it has been widely believed that conductivity and ferroelectricity can not
coexist in one system because the static electric fields are screened by conduction electrons.
However, recent experiments revealed the existence of ferroelectric metals (e.g., LiOsO3 [64]
and WTe2 [65, 66]), in which a ferroelectric-like (polar-nonpolar) structural phase transition
occurs in the metallic state.

The discovery of the ferroelectric metals also generated a flurry of interests in the possibility
of the coexistence of ferroelectricity1 and superconductivity, namely FESC. At present, only
SrTiO3 (STO) is considered as a promising candidate realizing FESC. Superconductivity in
STO emerges in a very low carrier density regime on the order of 1017 cm−3 [67–69], where
the pairing mechanism cannot be captured by conventional Migdal-Eliashberg theory due to
extreme retardation effects. Although various pairing interactions (e.g., plasmons [70, 71],
localized longitudinal optical phonons [72, 73]) have been proposed to explain the persistence
of superconductivity in the dilute density limit, the issue of the pairing mechanism has not yet
been settled. On the other hand, STO is a quantum paraelectric [74] existing in the vicinity of
the ferroelectric quantum critical point [75]. The avoided ferroelectric ordering can be activated
by some chemical or physical operations, e.g., isovalent substitution of Sr with Ca [76], isotopic
substitution of 16O with 18O [77], and application of tensile strain [78] or electric field [79].

1In the following part of this thesis, we will use the terms "ferroelectricity" and "ferroelectric" to describe
the spontaneous inversion symmetry breaking accompanied by the appearance of a polar axis. Note that this
usage is different from conventional definition of ferroelectricity for insulating materials since the switchability of
polarization is not required. Indeed, at present, the electric-field-switchable ferroelectric metal is not discovered
other than WTe2 [65, 66].
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This ferroelectric instability of STO also motivated proposals of pairing scenarios related to
optical phonons mediating FE fluctuations [50, 51, 53, 54, 80–85]. Indeed, enhancement of
the superconducting transition temperature by a ferroelectric quantum fluctuation was proposed
theoretically [80], and later confirmed experimentally [58, 86–89]. Furthermore, a phase transi-
tion structurally indistinguishable from the ferroelectric phase transition was observed in dilute
superconducting Sr1−𝑥Ca𝑥TiO3−𝛿 [58] and strained STO thin films [59]. These experimental
observations suggested the existence of the ferroelectric superconducting states and stimulated
theoretical study for FESC [57, 90].

Another important aspect regarding the superconductivity in STO is its multiorbital/multiband
nature. The conduction bands in STO originate from three Ti 𝑡2𝑔 orbitals. Three-fold degeneracy
of the 𝑡2𝑔 orbitals is lifted by the SOC and the tetragonal crystal field due to antiferrodistortive
rotation of TiO6 octahedra below 105 K [91]. Thus, STO has three distinct bands all centered
at the Γ-point and constructed from multiple orbitals [see Fig. 2.3 for reference]. Therefore,
the multiorbital features may affect superconductivity even in the dilute carrier density regime
with single Fermi surface. Consequently, the superconductivity in doped STO has multiorbital
character regardless of the carrier density. The issue of multiple superconducting bands and
gaps in STO is also a subject of debate. Early tunneling measurements on doped STO observed
two peaks in the local DOS [92] which implies the multiple superconducting gaps. This result is
supported by recent quantum oscillation measurements [68] and thermal conductivity data [93].
Thus, it has been suggested that STO is a multiband superconductor with multiple nodeless gaps,
and the multiband effect has been theoretically discussed [94–96]. In contrast, recent tunneling
experiments [97] and optical conductivity data [98] indicate only single superconducting gap.

Considering all the unique aspects of the superconducting STO, in this chapter, we show
that STO can be a platform of the FESC through two different mechanisms that rely on the
SOC. The first mechanism originates from the ferroelectricity-induced Lifshitz transition in
dilute carrier density regimes. Another one is the magnetic-field-induced FESC caused by spin-
momentum locking in the ferroelectric phase. It is shown that, in both mechanisms, the FESC
is strongly influenced by the multiorbital/multiband nature of STO. In particular, we predict
that the combination of the FESC and multiorbital/multiband effects leads to topological Weyl
superconductivity and odd-frequency pairing.

The rest of this chapter is organized as follows. In Sec. 2.2, we summarize a basic idea to
describe FESC in theory. In Sec. 2.3, model and formulation for analyzing the FESC in STO
are provided. In Sec. 2.4, we demonstrate the multiorbital/multiband effect on the electronic
structure and superconductivity in STO. In Sec. 2.5, we show the magnetic field-temperature
phase diagrams for the FESC in three different carrier density regimes in STO. In Sec. 2.6, we
study the multiorbital odd-frequency pairing in the ferroelectric superconducting phase. Finally,
we summarize this chapter in Sec. 2.7.
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2.2 Theoretical approach to ferroelectric superconductivity

In insulators, ferroelectric instability is explained by the competition between long-range
Coulomb forces (which favor the polar ferroelectric phase) and short-range repulsions (which
favor the nonpolar paraelectric phase) [99]. However, in superconductors, the long-range
Coulomb forces are screened by the conduction electrons. Therefore, we need to find out an
alternative way to stabilize the ferroelectric order in the presence of superconductivity.

A possible coupling that favors the ferroelectric/polar superconducting phase originates
from the SOC. As explained in Sec. 1.1, the combination of inversion symmetry breaking and
SOC leads to the emergence of the antisymmetric SOC. Especially, a polar inversion symmetry
breaking induces the so-called Rashba-type antisymmetric SOC which is expressed as

HRSOC = 𝛼
∑︁
𝒌,𝑠,𝑠′

𝑐
†
𝒌,𝑠

[𝒆pol · (𝒌 × 𝝈)]𝑠𝑠′𝑐𝒌,𝑠′, (2.1)

where 𝒆pol denotes a unit vector along the polar axis. Therefore, the ferroelectric phase
transition (i.e., spontaneous polar inversion symmetry breaking) should be accompanied by the
appearance of Rashba-type SOC. This means that the Rashba-type SOC is dynamically induced
in the momentum space by a spontaneous polar lattice displacement in the real space as depicted
in Fig 2.1. Based on this idea, we rewrite Eq. (2.1) as

Hpol = 𝛼̃𝑃
∑︁
𝒌,𝑠,𝑠′

𝑐
†
𝒌,𝑠

[𝒆pol · (𝒌 × 𝝈)]𝑠𝑠′𝑐𝒌,𝑠′, (2.2)

where we replaced 𝛼 → 𝛼̃𝑃 with 𝑃 being the magnitude of the polar lattice displacement in
the ferroelectric phase. Thus, Eq. (2.2) expresses an effective coupling between conduction
electrons, which form Cooper pairs in the superconducting state, and polar lattice displacement
(i.e., ferroelectricity)2. In our previous work using a simplified single-orbital model [57], it has
been clarified that the FESC is indeed realized by the feedback effect of superconductivity on
the ferroelectricity induced by the Rashba-type coupling (2.2).

2In the same spirit, one can consider a direct coupling between conduction electrons and transverse optical
phonons in the presence of SOC as follows:

HTO
el-ph = 𝜆TO

∑︁
𝒌 ,𝒒,𝑠,𝑠′

𝑐
†
𝒌+𝒒,𝑠 [𝒖𝒒 · (𝒌 × 𝝈)]𝑠𝑠′𝑐𝒌 ,𝑠′ , (2.3)

where 𝒖 is a transverse displacement vector. Recently, the effective pairing interaction that arises from the cou-
pling (2.3) is expected to give significant impacts on the superconductivity in the vicinity of the ferroelectric
quantum critical point, which is characterized by a softening of the transverse optical modes. Indeed, some theo-
retical works clarified that such pairing interaction induces exotic superconducting phenomena such as anisotropic
superconductivity [51] and topological superconductivity [52]. The microscopic origin of the coupling (2.3) is
recently discussed based on multiorbital models [53, 54].
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P

Fig. 2.1. Schematic illustration for the relationship between the polar lattice displacement 𝑃 (left
figure) and the accompanied Rashba-type SOC (right figure). The polar lattice displacement
associated with the ferroelectric-like phase transition induces Rashba-type spin-orbit splitting
of the band structure (Fermi surface) in the momentum space.

2.3 Model and formulation

2.3.1 Three-orbital model for SrTiO3

In order to describe the three distinct band structure in tetragonal STO, we introduce a three-
orbital tight-binding model for 𝑡2𝑔 electrons as follows:

HSTO =
∑︁
𝒌,𝑙,𝑠

(𝜀𝑙 (𝒌) − 𝜇) 𝑐†
𝒌,𝑙𝑠

𝑐𝒌,𝑙𝑠 +
𝜆

2

∑︁
𝒌,𝑙,𝑙 ′,𝑠,𝑠′

(ℓ𝑙𝑙 ′ · 𝝈𝑠𝑠′)𝑐†𝒌,𝑙𝑠𝑐𝒌,𝑙 ′𝑠′, (2.4)

where 𝑐𝒌,𝑙𝑠 is the annihilation operator for an electron with momentum 𝒌, orbital 𝑙 = 1, 2, 3,
and spin 𝑠 =↑, ↓. 𝑑𝑦𝑧, 𝑑𝑥𝑧, 𝑑𝑥𝑦 orbitals are denoted by the orbital index 𝑙 = 1, 2, 3, respectively.
The first term is the kinetic-energy term of 𝑡2𝑔 orbitals including the chemical potential 𝜇. The
single electron kinetic energy 𝜀𝑙 (𝒌) are described as

𝜀1(𝒌) = −2𝑡1
(
cos 𝑘𝑦 + cos 𝑘𝑧

)
− 2𝑡2 cos 𝑘𝑥 − 4𝑡3 cos 𝑘𝑦 cos 𝑘𝑧, (2.5)

𝜀2(𝒌) = −2𝑡1 (cos 𝑘𝑥 + cos 𝑘𝑧) − 2𝑡2 cos 𝑘𝑦 − 4𝑡3 cos 𝑘𝑥 cos 𝑘𝑧, (2.6)

𝜀3(𝒌) = −2𝑡1
(
cos 𝑘𝑥 + cos 𝑘𝑦

)
− 2𝑡2 cos 𝑘𝑧 − 4𝑡3 cos 𝑘𝑥 cos 𝑘𝑦 + ΔT. (2.7)

Here, ΔT expresses the tetragonal crystal field for the antiferrodistortive transition, which lifts
the energy of the 𝑑𝑥𝑦 orbital. The second term of Eq. (2.4) represents the LS coupling of Ti
ions. Here, ℓ𝑎

𝑏𝑐
≡ 𝑖𝜖𝑎𝑏𝑐 is the completely antisymmetric tensor representing the projection of
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Table 2.1. Model parameters for bulk STO. We choose the unit of energy as 𝑡1 = 1. The
values of ΔT and 𝜆 are set to be larger than the literature values [101–103] for simplicity of the
numerical calculations. The value of 𝛾 at the SrTiO3/LaAlO3 interface [103] is also shown for
reference.

Literature values [101–103] This paper
𝑡1 277 meV 1
𝑡2 31 meV 0.11
𝑡3 76 meV 0.27
ΔT 3.2 meV 0.03
𝜆 12 meV 0.12
𝛾 20 meV (SrTiO3/LaAlO3) ≲ 0.20

the 𝐿 = 2 angular momentum operator onto the 𝑡2𝑔 orbital subspace3. The band structure of
tetragonal STO is reproduced by HSTO4 with the parameter set listed in Table 2.1, which is
determined based on the first principles calculations [101–103].

Then, we discuss effects of the ferroelectricity on the electronic structure. The ferroelectric
transition in STO is realized by opposite displacement of Sr/Ti cation and O anion, and thus the
crystal symmetry descends to one of polar space groups. Although STO has two ferroelectric
modes parallel and perpendicular to the antiferrodistortive rotation axis [104], we only consider
the former for simplicity. Thus, the crystallographic space group of tetragonal STO descends to
𝐼4𝑐𝑚 (𝐶10

4𝑣 ) from 𝐼4/𝑚𝑐𝑚 (𝐷18
4ℎ) as a consequence of the ferroelectric ordering along the [001]

axis [105]. In this mirror symmetry broken ferroelectric phase, a spin-independent odd-parity
orbital hybridization term

Hpol = 2𝛾
∑︁
𝒌,𝑙,𝑙 ′,𝑠

𝒆pol · (ℓ𝑙𝑙 ′ × 𝒘(𝒌))𝑐†
𝒌,𝑙𝑠

𝑐𝒌,𝑙 ′𝑠, (2.11)

is induced in addition to H0 [102]. Here, 𝒆pol ≡ (0, 0, 1) and 𝒘(𝒌) ≡ (sin 𝑘𝑥 , sin 𝑘𝑦, sin 𝑘𝑧).
As illustrated in Fig. 2.2, Equation (2.11) describes the intersite hybridization between 𝑑𝑥𝑦 and
𝑑𝑦𝑧,𝑥𝑧 orbitals, which have different mirror parity along the [001] axis. Combination of Hpol and

3In matrix form, the operator ℓ = (ℓ𝑥 , ℓ𝑦 , ℓ𝑧) is described as

ℓ𝑥 =
©­«
0 0 0
0 0 𝑖

0 −𝑖 0

ª®¬ , ℓ𝑦 =
©­«
0 0 −𝑖
0 0 0
𝑖 0 0

ª®¬ , ℓ𝑧 =
©­«

0 𝑖 0
−𝑖 0 0
0 0 0

ª®¬ , (2.8)

where the basis elements are |𝑑𝑦𝑧⟩, |𝑑𝑥𝑧⟩, and |𝑑𝑥𝑦⟩.
4In general, we should consider an intersite hybridization term

Hhyb =
∑︁

𝒌 ,𝑙,𝑙′,𝑠

𝑣𝑙𝑙′ (𝒌)𝑐†𝒌 ,𝑙𝑠𝑐𝒌 ,𝑙′𝑠 , (2.9)

𝑣𝑙𝑙′ (𝒌) = 𝑣𝑙′𝑙 (𝒌) = 4𝑡 ′ sin 𝑘𝑙 sin 𝑘 ′𝑙 , (2.10)

for perovskite oxides [100] in addition to the above two terms. However, first-principles band calculations have
shown that it is negligible in the bulk STO [101–103], and hence we neglect Hhyb in this study.
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x
y

z

−𝛾𝛾
+𝛾𝛾

𝑃𝑃
𝑃𝑃

Fig. 2.2. Illustration of the odd-parity orbital hybridization processes in the ferroelectric phase
of STO. A polar lattice displacement 𝑃 induces interorbital hopping 𝛾 between the 𝑡2𝑔 orbitals
of nearest neighbor Ti atoms. This orbital hybridization is mediated by the 𝑝 orbitals of the
bridging O atom and changes sign along the Ti-O-Ti bond. For example, a polar displacement 𝑃
along the crystalline 𝑧-axis couples the 𝑑𝑥𝑦 and 𝑑𝑥𝑧 orbitals along the 𝑦-axis via the 𝑝𝑥 orbitals.

the LS coupling leads to the Rashba SOC [103, 106], and thus spin-orbit splitting in the band
structure is induced in the ferroelectric phase [Fig. 2.3]. In addition, the magnitude of the Rashba
SOC is roughly proportional to the odd-parity hopping integral 𝛾 (see Appendix A). Therefore,
based on the discussion in Sec. 2.2, we consider that the odd-parity orbital hybridization (2.11)
is dynamically induced by the polar lattice displacement 𝑃 in the ferroelectric phase. Hence, we
assume 𝛾 ∝ 𝑃 and treat 𝛾 as an order parameter that characterizes the ferroelectricity in STO.
In Appendix C, we discuss possible experimental signatures of the ferroelectricity-induced
odd-parity orbital hybridization.

As explained in Sec. 2.1, the origin of superconductivity in STO is still under debate.
However, thermodynamic properties such as the specific heat jump are in good agreement with
the BCS theory [93] and the ratio of the superconducting gap Δ0 to the transition temperature 𝑇c

is close to the BCS value 2Δ0/𝑘B𝑇c ≃ 3.54 [97, 98, 107]. Therefore, we investigate an interplay
of superconductivity and ferroelectricity by adopting a simple BCS-type model, and focus on
the multiorbital effect on the FESC in STO. More precise studies including a realistic dynamical
electron-phonon coupling and Coulomb interactions are left for a future study. The BCS-type
static attractive interaction is introduced as follows:

Hpair = −𝑉𝑠

𝑁

∑︁
𝒌,𝒌 ′,𝒒,𝑙

𝑐
†
𝒌,𝑙↑𝑐

†
−𝒌+𝒒,𝑙↓𝑐−𝒌 ′+𝒒,𝑙↓𝑐𝒌 ′,𝑙↑, (2.12)

where 𝑁 is the number of Ti sites, and 𝒒 is the center-of-mass momentum of Cooper pairs.
Since the 𝑠-wave superconductivity in STO has been confirmed [93], we assume momentum-
independent intraorbital pairing interaction. The pairing interaction strength 𝑉𝑠 is determined
to satisfy 𝑇c ≪ 𝐸SO, where 𝐸SO is a typical energy of the spin-orbit splitting. This condition
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Fig. 2.3. Band structure of bulk STO around the Γ-point in the paraelectric phase (dashed line;
𝛾 = 0) and the ferroelectric phase (solid line; 𝛾 = 27.7 meV). The Lifshitz transitions occur
when the Fermi level crosses black dashed lines. Different colored areas show different carrier
density regimes which are distinguished by the topology of Fermi surfaces.

is reasonable in STO since the superconducting transition temperature is extremely small,
i.e., about 0.3 K. Then, the Rashba splitting in the ferroelectric phase significantly affects the
superconductivity. Here, we neglect the interorbital pairing because the interorbital interaction
is generally weak and does not alter qualitative results. Furthermore, we ignore the parity
mixing of Cooper pairs in the ferroelectric phase, since the stability of FESC is hardly affected
by an induced 𝑝-wave component.

The impact of the applied magnetic field is included as the Zeeman coupling term,

HZ = −𝜇B
∑︁

𝒌,𝑙,𝑠,𝑠′

𝑯 · 𝝈𝑠𝑠′𝑐
†
𝒌,𝑙𝑠

𝑐𝒌,𝑙𝑠′, (2.13)

where 𝜇B is the Bohr magneton. In the superconducting STO, the superfluid density 𝑛𝑠 is
small [108], and hence the penetration depth 𝜆L ∝ 𝑛

−1/2
𝑠 is large. Thus, STO is a superconductor

close to type-II limit with an extremely large Ginzburg-Landau parameter 𝜅GL ≫ 1. Therefore,
it is justified to assume a uniform magnetic field in the bulk superconducting STO. It would be
desirable to include the gauge interaction with the vector potential in addition to the Zeeman
coupling term HZ. The importance of the orbital depairing effect is represented by the Maki
parameter 𝛼M ∝ Δ/𝜖F, where Δ is the superconducting gap and 𝜖F is the Fermi energy. When
𝛼M > 1, the orbital depairing effect is suppressed and the superconducting state is destroyed
mainly due to the Pauli depairing effect. In the superconducting STO, 𝜖F is extremely small and
hence 𝛼M can be large. Thus, we assume that the orbital depairing effect is not qualitatively
important in the dilute superconducting STO. Indeed, the upper critical field exceeding the Pauli
limit in some doped STO [89, 109] indicates a strong impact of the Pauli depairing effect on the
superconductivity. In the following, we fix the magnetic field in a direction parallel to the polar
[001] axis, i.e., 𝑯 = (0, 0, 𝐻𝑧). Thus, an asymmetric deformation of the Rashba split Fermi
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surface, which is destructive for the FESC [57], is not induced under the magnetic field.

2.3.2 Mean-field theory for superconductivity

We investigate the superconductivity in STO by means of the mean-field theory. In the following
discussion, we fix 𝒒 = 0 since FFLO superconductivity with finite 𝒒 is not stabilized in our
model when the magnetic field is applied along the polar axis. The pairing interaction Hpair is
approximated as

Hpair = −𝑉𝑠

𝑁

∑︁
𝒌,𝒌 ′,𝑙

𝑐
†
𝒌,𝑙↑𝑐

†
−𝒌,𝑙↓𝑐−𝒌 ′,𝑙↓𝑐𝒌 ′,𝑙↑

≈
∑︁
𝒌,𝑙

(
Δ𝑙𝑐

†
𝒌,𝑙↑𝑐

†
−𝒌,𝑙↓ + H.c.

)
+ 𝑁

𝑉𝑠

∑︁
𝑙

|Δ𝑙 |2, (2.14)

by introducing the orbital-dependent superconducting order parameters,

Δ𝑙 = −𝑉𝑠

𝑁

∑︁
𝒌

⟨𝑐−𝒌,𝑙↓𝑐𝒌,𝑙↑⟩. (2.15)

To describe the total Hamiltonian H = HSTO + Hpol + HZ + Hpair in a matrix form, we define
the vector operator as follows:

𝑐
†
𝒌
= (𝑐†

𝒌,1↑, 𝑐
†
𝒌,1↓, 𝑐

†
𝒌,2↑, 𝑐

†
𝒌,2↓, 𝑐

†
𝒌,3↑, 𝑐

†
𝒌,3↓). (2.16)

Then, we obtain the mean-field Hamiltonian in the matrix form

H =
1
2

∑︁
𝒌

(𝑐†
𝒌
, 𝑐T

−𝒌)𝐻 (𝒌)
(
𝑐𝒌

𝑐∗−𝒌

)
+ 𝐸0 (2.17)

𝐸0 =
𝑁

𝑉𝑠

∑︁
𝑙

|Δ𝑙 |2 +
∑︁
𝒌,𝑙

(𝜀𝑙 (𝒌) − 𝜇) . (2.18)

The Bogoliubov-de Gennes (BdG) Hamiltonian 𝐻 (𝒌) is described as

𝐻 (𝒌) =
(
𝐻0(𝒌) Δ(𝒌)
Δ†(𝒌) −𝐻T

0 (−𝒌)

)
, (2.19)

by using the normal state part

𝐻0(𝒌) =
©­­«
𝜉1(𝒌)𝜎0 − ℎ𝑧𝜎𝑧

𝜆
2 𝑖𝜎𝑧 −𝜆

2 𝑖𝜎𝑦 + 𝛾𝑤𝑥 (𝒌)𝜎0

−𝜆
2 𝑖𝜎𝑧 𝜉2(𝒌)𝜎0 − ℎ𝑧𝜎𝑧

𝜆
2 𝑖𝜎𝑥 + 𝛾𝑤𝑦 (𝒌)𝜎0

𝜆
2 𝑖𝜎𝑦 + 𝛾𝑤∗

𝑥 (𝒌)𝜎0 −𝜆
2 𝑖𝜎𝑥 + 𝛾𝑤∗

𝑦 (𝒌)𝜎0 𝜉3(𝒌)𝜎0 − ℎ𝑧𝜎𝑧

ª®®¬ , (2.20)
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and the pairing part

Δ(𝒌) =
©­­«
Δ1𝑖𝜎𝑦 0 0

0 Δ2𝑖𝜎𝑦 0
0 0 Δ3𝑖𝜎𝑦

ª®®¬ . (2.21)

Here, we abbreviate as 𝜉𝑙 (𝒌) ≡ 𝜀𝑙 (𝒌) − 𝜇 and ℎ𝑧 ≡ 𝜇B𝐻𝑧.
Then, we carry out the Bogoliubov transformation

𝑐𝒌,𝑙𝑠 =
∑︁
𝜈,𝜏

(
𝑢
(𝜈𝜏)
𝒌,𝑙𝑠

𝛼𝒌,𝜈𝜏 − 𝑣
(𝜈𝜏)∗
−𝒌,𝑙𝑠𝛼

†
−𝒌,𝜈𝜏

)
, (2.22)

𝑐
†
−𝒌,𝑙𝑠 =

∑︁
𝜈,𝜏

(
𝑣
(𝜈𝜏)
𝒌,𝑙𝑠

𝛼𝒌,𝜈𝜏 + 𝑢
(𝜈𝜏)∗
−𝒌,𝑙𝑠𝛼

†
−𝒌,𝜈𝜏

)
, (2.23)

where 𝛼𝒌,𝜈𝜏 is the annihilation operator for a Bogoliubov quasiparticle with momentum 𝒌,
pseudoorbital 𝜈 = 1, 2, 3, and pseudospin 𝜏 =↑, ↓. Thus, Eq. (2.15) is rewritten as

Δ𝑙 = −𝑉𝑠

𝑁

∑︁
𝒌,𝜈,𝜏

(
𝑢
(𝜈𝜏)
𝒌,𝑙↑ 𝑣

(𝜈𝜏)∗
𝒌,𝑙↓ 𝑓 [𝐸𝜈𝜏 (𝒌)] − 𝑢

(𝜈𝜏)
𝒌,𝑙↓ 𝑣

(𝜈𝜏)∗
𝒌,𝑙↑ 𝑓 [−𝐸𝜈𝜏 (𝒌)]

)
, (2.24)

where 𝑓 [𝐸] is the Fermi-Dirac distribution function and 𝐸𝜈𝜏 (𝒌) is the energy of a Bogoliubov
quasiparticle. Equations (2.24) are the simultaneous gap equations to be solved numerically. In
the Bogoliubov quasiparticle picture, the total Hamiltonian is described as

H =
∑︁
𝒌,𝜈,𝜏

𝐸𝜈𝜏 (𝒌)
(
𝛼
†
𝒌,𝜈𝜏

𝛼𝒌,𝜈𝜏 −
1
2

)
+ 𝐸0. (2.25)

Therefore, the electronic free energy per Ti site is obtained as

Ωele [𝚫, 𝑃] = − 1
𝑁𝛽

∑︁
𝒌,𝜈,𝜏

[
ln

(
1 + 𝑒−𝛽𝐸𝜈𝜏 (𝒌)

)
+ 𝛽𝐸𝜈𝜏 (𝒌)

2

]
+ 𝜇𝑛 + 𝐸0

𝑁
, (2.26)

where 𝚫 = (Δ1,Δ2,Δ3) and 𝛽 = 1/𝑇 is the inverse temperature. The last term of Eq. (2.26)
is necessary since the carrier density per Ti site is fixed as 𝑛 instead of the chemical potential
𝜇. Using 𝚫 obtained by solving Eqs. (2.24), we calculate the electronic part of the free energy
Fele [𝚫, 𝑃] from Eq. (2.26).

2.3.3 Polar instability

In order to discuss the ferroelectric-like structural phase transition, we take into account the
Landau free energy arising form polar lattice distortion as follows:

Ωlat [𝑃] =
1
2
𝜅2𝑃

2 + 1
4
𝜅4𝑃

4 + 1
6
𝜅6𝑃

6, (2.27)
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where 𝜅2, 𝜅4, and 𝜅6 are the lattice parameters which describe the elasticity of the lattice. The
temperature dependence of the lattice parameters is ignored, consistent with the fact that the
dielectric constant is almost temperature-independent in the quantum paraelectric STO [74].

The total free energy including the contributions of both electrons and lattice is given by

Ω[𝚫, 𝑃] = Ωele [𝚫, 𝑃] +Ωlat [𝑃] . (2.28)

The thermodynamically stable state is determined by minimizing the free energy Ω[𝚫, 𝑃] with
respect to 𝚫 and 𝑃. The ferroelectric superconducting state is stabilized when both 𝚫 and 𝑃

have finite values. The values of the phenomenological lattice parameters 𝜅2, 𝜅4, and 𝜅6 are
determined as follows. The lattice parameters 𝜅4 and 𝜅6 are introduced to cut off the ferroelectric
order parameter 𝛾 ∝ 𝑃 in a realistic regime. In this study, we set 𝜅4 and 𝜅6 so as to satisfy
𝛾/𝑡1 ≲ 0.20 in agreement with the first-principles estimation of 𝛾 for the SrTiO3/LaAlO3

interface [103]. The choice of 𝜅4 and 𝜅6 hardly alters the results of this study. The value of 𝜅2

is determined so as to realize a paraelectric normal state near a ferroelectric phase transition
point. This condition expresses a situation of the paraelectric STO which is moved toward
the vicinity of the ferroelectric quantum critical point, for example, by Ca substitution [76] or
isotopic substitution of O[77]. Then, we investigate the feasibility of a ferroelectric transition
caused by the superconductivity.

The phenomenological parameters 𝜅2, 𝜅4, and 𝜅6 might be derived from the microscopic
Hamiltonian for the optical phonon excitations coupled to the conduction electrons, in which
the ferroelectric transition should be driven by the dipolar interaction [83, 110]. They are
phenomenologically introduced in this study, and more microscopic study for the ferroelectricity
in the superconducting STO is left for a future work.

2.4 Multiorbital/multiband effect

Before showing results for the FESC, we here clarify effects of the multiorbital/multiband
electronic structure in STO.

2.4.1 Unconventional Rashba spin-orbit coupling

First, we investigate the multiorbital effect on the Rashba spin-orbit splitting in the ferroelectric
STO. We elucidate the nature of the Rashba SOC by calculating the energy spectrum in the
normal state E±

𝛼 (𝒌) (𝛼 = 1, 2, 3) [E−
𝛼 (𝒌) ≤ E+

𝛼 (𝒌) and E±
𝛼 (𝒌) ≤ E±

𝛼′ (𝒌) for 𝛼 < 𝛼′] and wave
functions. In the presence of the inversion symmetry (𝛾 = 0), the two-fold Kramers degeneracy
holds as E−

𝛼 (𝒌) = E+
𝛼 (𝒌) at zero magnetic fields. On the other hand, Rashba-type spin-orbit

splitting is induced by the polar inversion symmetry breaking (𝛾 ≠ 0) as E−
𝛼 (𝒌) < E+

𝛼 (𝒌)
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Fig. 2.4. The magnitude of the spin-orbit splitting in the (a) upper band, (b) middle band, and
(c) lower band at 𝑘𝑧 = 0 with 𝛾/𝑡1 = 0.105. The arrows show the direction of the 𝑔-vector. (d)
𝒌 dependence of the conventional Rashba SOC given by Eq. (2.30) with 𝛾/𝑡1 = 0.105.
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except for at the time-reversal invariant momentum. Spin direction of each Rashba split
bands is calculated by taking the average 𝑺𝛼 (𝒌) = ⟨∑𝑙

∑
𝜎,𝜎′ 𝝈𝜎𝜎′𝑐

†
𝒌,𝑙𝜎

𝑐𝒌,𝑙𝜎′⟩𝛼 for the wave
function of the 𝛼-th band. Figures 2.4(a)-(c) show the magnitude of the spin-orbit splitting
𝛿E𝛼 (𝒌) = E+

𝛼 (𝒌) − E−
𝛼 (𝒌) and the direction of the 𝑔-vector defined as 𝒈𝛼 (𝒌) = 𝛿E𝛼 (𝒌)𝑺𝛼 (𝒌)

for each Rashba split bands. Note that the upper, middle, and lower bands are denoted by
𝛼 = 3, 2, and 1, respectively. We see that the 𝒌-dependence of the Rashba spin-orbit splitting
in STO is significantly different from that of the conventional Rashba SOC with 𝒈(𝒌) =(
sin 𝑘𝑦,− sin 𝑘𝑥 , 0

)
[Fig. 2.4(d)]. The spin-orbit splitting in the lower band is large at 𝒌 slightly

away from the Γ-M line, whereas that in the middle or upper band is large at 𝒌 slightly away
from the Γ-X line. In particular, the spin-orbit splitting in the lower band is maximized near
the Γ-point where the spin-orbit splitting of the conventional Rashba SOC is tiny. Moreover,
the 𝑔-vectors of the lower and middle bands are almost parallel to the [100] or [010] axis,
and rapidly rotates by 𝜋/2 at the Γ-M line. The origin of this unconventional Rashba SOC is
explained by combined analysis of the perturbation expansion for the LS coupling and the basis
transformation to the total angular momentum space [see Appendix A]. The unconventional
Rashba SOC characteristic of the multiorbital system gives impacts on superconductivity, as
we show below.

2.4.2 Enhanced upper critical field of dilute superconductivity

Next, we discuss an impact of the multiorbital electronic structure on the dilute superconductivity
in STO. As shown in Sec. 2.4.1, unconventional Rashba SOC is induced by ferroelectricity as
a consequence of the multiorbital effect. Unlike the conventional Rashba effect, the Rashba
splitting in the lower band is maximized near the Γ-point [Fig. 2.4(c)]. On the other hand, the
Pauli depairing effect of a Rashba superconductor is suppressed under a magnetic field parallel
to the polar axis [9, 10, 16, 111, 112]. This is because the BCS-type Cooper pairing is possible
even under the magnetic field thanks to the Rashba-type spin-momentum locking. Thus, it is
implied that the Pauli depairing effect in a dilute superconducting state with a tiny Fermi surface
should be strongly suppressed compared to the case of a conventional Rashba superconductor.

To test the above expectation, we introduce a simple Hamiltonian with conventional Rashba
SOC as follows:

H̃ = H̃0 + HZ + Hpair, (2.29)

H̃0 =
∑︁
𝒌,𝑙,𝑠

(𝜀𝑙 (𝒌) − 𝜇) 𝑐†
𝒌,𝑙𝑠

𝑐𝒌,𝑙𝑠 + 𝛼
∑︁

𝒌,𝑙,𝑠,𝑠′

𝒈(𝒌) · 𝝈𝑠𝑠′𝑐
†
𝒌,𝑙𝑠

𝑐𝒌,𝑙𝑠′, (2.30)

where the 𝑔-vector is assumed to be 𝒈(𝒌) =
(
sin 𝑘𝑦,− sin 𝑘𝑥 , 0

)
and diagonal in the orbital

space. Based on the perturbation analysis for the LS coupling [see Eq. (A.8) in Appendix A],
we assume 𝛼 = 2𝜆𝛾/𝑡1 in the following discussion. Here, we compare this model with our
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three-orbital model for STO to illuminate the multiorbital effect which is appropriately taken
into account in the latter. Figure 2.5(a) shows the temperature dependence of the upper critical

Fig. 2.5. (a) The temperature dependence of the upper critical field 𝜇B𝐻𝑐2. The magnetic
filed is applied along the [001] axis. The green solid line (purple dashed line) shows the upper
critical field calculated for the three-orbital model (simple Rashba model). The gray dotted line
shows the upper critical field of the three-orbital model with 𝛾 = 0. (b) and (c) Illustration of
the Fermi surface and the magnitude of the spin-orbit splitting of the lower band for the (b)
three-orbital model and (c) simple Rashba model. The carrier density and odd-parity hopping
integral are set to 𝑛 = 5.0 × 10−5 and 𝛾/𝑡1 = 0.105, respectively.

field 𝜇B𝐻𝑐2 in the dilute single-band regime (𝑛 = 5.0 × 10−5) where the Fermi surface is only
composed of the lower band. Since the lattice constant of STO ∼ 3.905 Å is chosen as the unit
of length, 𝑛 = 5.0 × 10−5 corresponds to 8.40 × 1017 cm−3. The paring interaction is chosen to
𝑉𝑠/𝑡1 = 0.28, hence the superconducting transition temperature is set to 𝑇c = 0.00098𝑡1 ∼ 3.0
K at 𝛾 = 0 and 𝐻𝑧 = 0. When we adopt 𝛾 = 0.105𝑡1, a typical energy of spin-orbit splitting
is 𝐸SO ∼ 𝜆𝛾/𝑡1 ∼ 0.01. Then, 𝑇c ≪ 𝐸SO is satisfied and the effect of the Rashba splitting
is reflected to the superconductivity. Note that the superconducting transition temperature
is set to be larger than the realistic value 𝑇c ∼ 0.3 K of doped STO to reduce the cost of
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numerical calculation. In both models, the upper critical field of the NCS superconductivity
with Rashba splitting (green solid line and purple dashed line) is enhanced compared to that of
the centrosymmetric superconductivity without SOC (gray dotted line). Furthermore, we see
that the upper critical field of the three-orbital model for STO [Eqs. (2.4) and (2.11)] is larger
than that of the simple Rashba model [Eq. (2.29)]. The origin of this enhanced upper critical
field can be attributed to the Fermi surface anisotropy and large spin-orbit splitting. As shown in
Figs. 2.5(b) and 2.5(c), the Fermi surfaces of the lower band show 𝑑𝑥2−𝑦2-wave like anisotropy.
The unconventional Rashba SOC in the three-orbital model induces a large spin-orbit splitting
particularly in the region near 𝒌 ∥ [100]. The DOS at the Fermi energy mainly comes from
this region. Furthermore, the magnitude of the spin-orbit splitting is maximized near the Γ-
point, where the Fermi surfaces in the dilute region are located [Fig. 2.5(b)]. Therefore, the
upper critical field is drastically enhanced thanks to the strong spin-momentum locking on the
Fermi surface. In contrast, the conventional Rashba SOC induces a small spin-orbit splitting
around the Γ-point as shown in Fig. 2.5(c). Thus, the enhancement of the upper critical field by
spin-orbit splitting is less pronounced than that in the three-orbital model.

2.4.3 Lifshitz transitions and superconductivity

In this section, we discuss the ferroelectricity-induced Lifshitz transition and its effect on
superconductivity. Upon decreasing the carrier density in the ferroelectric phase, the Fermi
energy becomes lower than the crossing point of the spin-orbit split bands at the Γ-point
[see Fig. 2.3], and thus the topology of Fermi surfaces is changed in stages. These Lifshitz
transitions enhance the DOS due to an effective reduction of dimensionality [113], and leads to
the stabilization of a ferroelectric superconducting state [57].
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Fig. 2.6. DOS at the Fermi energy 𝜌(0) as a function of the odd-parity hopping integral 𝛾.
The partial DOS for the Rashba split 𝑡2𝑔 bands are also shown. The black dashed vertical
lines represent the Lifshitz transition point. Different colored regions indicate different phases
which are distinguished by the Lifshitz transitions. The colors correspond to the background
colors in Fig. 2.3. The carrier density is set to (a) 𝑛 = 5.0 × 10−5, (b) 𝑛 = 2.0 × 10−4, and (c)
𝑛 = 1.0 × 10−2, respectively.
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Fig. 2.7. The free energy as a function of the odd-parity hopping integral 𝛾 for several values
of the cutoff lattice parameter 𝜅6. The carrier density is set to 𝑛 = 5.0× 10−5, i.e., a single-band
regime. The other lattice parameters are chosen as (𝜅2, 𝜅4) = (6.75×10−5, 0). The temperature
and magnetic field are set to 𝑇 = 1.0×10−10 and 𝑯 = 0, respectively. The black dashed vertical
line shows the Lifshitz transition point. (a) 𝛾 ∝ 𝑃 dependence of 𝛿Ω[0, 𝑃] = Ω[0, 𝑃] −Ω[0, 0].
Since 𝛿Ω[0, 𝑃] > 0 is satisfied in the whole range of 𝜅6, the paraelectric normal state is realized.
(b) 𝛾 ∝ 𝑃 dependence of 𝛿Ω[𝚫, 𝑃] = Ω[𝚫, 𝑃] − Ω[0, 0]. The stabilization condition of the
ferroelectric superconducting state, i.e., 𝛿Ω[𝚫, 𝑃] < 𝛿Ω[𝚫, 0] < 0, is satisfied under the red
horizontal line.

Figure 2.6 shows the DOS at the Fermi energy 𝜌(0) as a function of 𝛾. In the single-band
regime (𝑛 =5.0×10−5), 𝜌(0) is maximized at the Lifshitz transition point of the lowest band
𝛾 = 𝛾𝑐1 [Fig. 2.6(a)], thanks to the effective reduction of the dimensionality. Consequently,
the superconductivity is enhanced at the Lifshitz transition point 𝛾𝑐1. Figure 2.7(b) shows
the 𝛾 ∝ 𝑃 dependence of the ferroelectric superconducting condensation energy 𝛿Ω[𝚫, 𝑃] =

Ω[𝚫, 𝑃] − Ω[0, 0] for various values of the cutoff lattice parameter 𝜅6. Here, 𝚫 is optimized
under fixed 𝑃. We see that the stabilization condition of the ferroelectric superconducting sate,
i.e., 𝛿Ω[𝚫, 𝑃] < 𝛿Ω[𝚫, 0] < 0, is satisfied in a wide range of lattice parameters, although
the normal state is paraelectric [see Fig. 2.7(a)]. This means that the FESC is stable at zero
magnetic field in the dilute region.

Next, we discuss the effects of Lifshitz transitions of the middle and upper bands. When the
Fermi energy in the paraelectric phase is slightly higher than the bottom of the bands, the Lifshitz
transition is induced by the ferroelectricity. However, we see that these Lifshitz transitions are
not significantly reflected in the total DOS 𝜌(0) [Figs. 2.6(b) and 2.6(c)]. Although the partial
DOS for the middle or upper band is enhanced as approaching to the Lifshitz transitions, the
contribution of the partial DOS is very small compared to that of the lower band. Therefore,
the total DOS 𝜌(0) is not drastically enhanced by these Lifshitz transitions, and hence the
ferroelectric superconducting state is hardly stabilized at zero magnetic field in relatively high
carrier density two- or three-band regimes. The phase diagram of the FESC depends on what
band causes the Lifshitz transition.
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2.5 Magnetic field-temperature phase diagram
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Fig. 2.8. Phase diagrams in a (a) single-band regime (𝑛 = 5.0 × 10−5), (b) two-band regime
(𝑛 = 3.2 × 10−3), and (c) three-band regime (𝑛 = 1.8 × 10−2). Band structures corresponding
to these carrier densities are shown in Fig. 2.9. The yellow or red solid (dotted) line shows the
first-order (second-order) ferroelectric phase transition line. The black dashed line indicates
the paraelectric superconducting transition line obtained by assuming 𝛾 = 0. The red colored
region in (a) illustrates the Weyl superconducting phase. The pairing interaction and the lattice
parameters are set to (a) (𝑉s/𝑡1, 𝜅2, 𝜅4, 𝜅6) = (0.28, 6.75 × 10−5, 0, 0.50) (b) (𝑉s/𝑡1, 𝜅2, 𝜅4, 𝜅6) =
(0.51, 1.00 × 10−2, 0, 0) and (c) (𝑉s/𝑡1, 𝜅2, 𝜅4, 𝜅6) = (0.77, 5.30 × 10−2, 0, 0) respectively. The
temperature 𝑇 and the magnetic field 𝜇B𝐻𝑧 are normalized by the superconducting transition
temperature 𝑇c at zero magnetic field.

Figure 2.8 shows the magnetic field versus temperature phase diagrams in three different
carrier density regimes which are distinguished by the number of Fermi surfaces [see Fig. 2.9(a)].
In the single-band regime, the ferroelectric superconducting state is stabilized at zero magnetic
field [Fig. 2.8(a)]. This is a consequence of a Lifshitz transition induced by the ferroelectricity
as shown in Sec. 2.4.3. On the other hand, the zero field FESC is not realized in the two- or
three-band regime due to the small contribution of the middle or upper band to the total DOS.
Because of the multiband nature of STO, the zero field FESC is possible only in the dilute
region where the Lifhisitz transition of the lower band can be induced by the ferroelectricity.

Irrespective of the carrier density, the ferroelectric superconducting state is stabilized under
the magnetic field, despite an absence of the zero field ferroelectric superconducting phase in
the two- or three-band regime [Figs. 2.8(b) and 2.8(c)]. This magnetic-field-induced FESC
originates from the anomalous Pauli depairing effect in NCS superconductors [9, 10, 16, 111,
112]. To avoid the Pauli depairing effect, superconductivity induces the ferroelectric order
giving rise to the Rashba SOC. Then, the upper critical field is enhanced compared to the
paraelectric state.

In particular, the enhancement of the upper critical field is remarkable in the single-band
regime [Fig. 2.8(a)]; 𝜇B𝐻/𝑇𝑐 ∼ 5.5 far exceeds the Pauli limit ∼ 1.25. This is owing to the
Lifshitz transition and the multiorbital effect discussed in Sec. 2.4.2. For low carrier densities,
the free energy is minimized at a large value of 𝛾 so that the Lifshitz transition of the lower
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Fig. 2.9. (a) Band structure for 𝛾 = 0. The blue, green and yellow horizontal lines illustrate
the Fermi energy in a single-band regime (𝑛 = 5.0 × 10−5), two-band regime (𝑛 = 3.2 × 10−3),
and three-band regime (𝑛 = 1.8 × 10−2), respectively. (b) Illustration of the Rashba split
Fermi surfaces of the lower band (𝛾 = 29.1 meV) in the single-, two-, and three-band regime,
overwritten on the magnitude of spin-orbit splitting. Color of Fermi surfaces corresponds to
the colored lines in (a).

band occurs [Fig. 2.7(b)]. Consequently, the first-order ferroelectric transition occurs at the
same time as the superconducting transition. Furthermore, the Rashba spin-orbit splitting of
the lower band particularly becomes large around the Γ-point thanks to the multiorbital effect
[see Figs. 2.4(c) and 2.9(b)]. Therefore, the Pauli depairing effect is strongly suppressed and
the upper critical field is strongly enhanced as shown in Sec. 2.4.2. On the other hand, the 𝛾

and resulting spin-orbit splitting are small in a higher carrier density regime, and thus the upper
critical field is not significantly enhanced [Figs. 2.8(b) and 2.8(c)].

2.5.1 Weyl superconductivity

As a consequence of the drastically enhanced upper critical field, the dilute superconducting
state in STO may realize a topological Weyl superconductor. In a two-dimensional Rashba
superconductor, a gapped topological superconducting state in class 𝐷 can be realized under a
perpendicular magnetic field [6, 7]. In our three dimensional case, a Weyl superconducting state,
which is characterized by topologically-protected Weyl nodes, is realized in the ferroelectric
phase for a wide range of the magnetic field along the polar axis. We identify Weyl nodes by
calculating 𝑘𝑧-dependent Chern number,

𝜈(𝑘𝑧) =
1

2𝜋

∫
𝑑𝑘𝑥𝑑𝑘𝑦𝐹𝑧 (𝒌), (2.31)
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Fig. 2.10. (a) Weyl nodes (red points) on the Fermi surface. Parameters correspond to the point
(1) in Fig. 2.8(a). (b) 𝑘𝑧-dependent Chern number calculated at three magnetic fields (1), (2),
and (3) in Fig. 2.8(a). In the Weyl superconducting phase, 𝜈(𝑘𝑧) changes as −3 → 1 → 0.

on a two-dimensional 𝑘𝑥-𝑘𝑦 plane [114–116]. The Berry flux 𝐹𝑎 (𝒌) is defined as

𝐹𝑎 (𝒌) = −𝑖𝜖𝑎𝑏𝑐
∑︁

𝐸𝑚 (𝒌)<0
𝜕𝑘𝑏 ⟨𝑢𝑚 (𝒌) |𝜕𝑘𝑐𝑢𝑚 (𝒌)⟩ , (2.32)

where the wave function of a Bogoliubov quasiparticle with energy 𝐸𝑚 (𝒌) is denoted as
|𝑢𝑚 (𝒌)⟩. Since a jump in 𝜈(𝑘𝑧) is equivalent to the sum of Weyl charges at 𝑘𝑧, we can detect
Weyl charges by counting point nodes and comparing it with the jump. As shown in Fig. 2.10(b),
the Chern number jumps by +1 and −4. Thus, we identify five pairs of Weyl nodes and we
illustrate the distribution of Weyl charges in the momentum space in Fig. 2.10(a). One of them
is located at poles of the Fermi surface. The rest of Weyl nodes, which are protected by 𝐶4

symmetry, surrounds the above Weyl nodes with opposite Weyl charges. These four pairs of Weyl
nodes arise as a consequence of the anisotropic Fermi surfaces due to the multiorbital effect.
Therefore, a Weyl superconducting state with Chern number 𝜈(𝑘𝑧) = (+1) × 1 + (−1) × 4 = −3
is obtained. Thus, multiorbital nature of STO leads to topological property distinct from
the single-orbital topological Rashba superconductor with Chern number 𝜈 = ±1 [6, 7]. It
gives rise to three Majorana arcs in the surface state, and the zero-field thermal conductivity
𝜅′𝑥𝑦 ∼ 𝑇

∫
𝑑𝑘𝑧𝜈(𝑘𝑧) [117] in STO should be larger than that in the single-orbital Rashba model.

2.6 Ferroelectricity-induced odd-frequency pairing

In the previous sections, we have investigated the mechanism to stabilize the ferroelectric super-
conducting phase by analyzing a multiorbital model for STO. In this section, we demonstrate
that the combination of FESC and multiorbital/multiband nature leads to the generation of the
odd-frequency pair correlations.
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2.6.1 Berezinskii rule

We begin our discussion by classifying multiorbital superconducting states based on the
fermionic symmetry, namely the Berezinskii rule [118, 119]. The pair amplitude (anomalous
Green’s function) can be defined in a multiorbital system as

F𝑙𝑠,𝑙 ′𝑠′ (𝒌, 𝜏) = −⟨𝑇𝜏𝑐𝒌,𝑙𝑠 (𝜏)𝑐−𝒌,𝑙 ′𝑠′ (0)⟩, (2.33)

where 𝜏 is the imaginary time and 𝑐𝒌,𝑙𝑠 is the annihilation operator for an electron with mo-
mentum 𝒌, orbital index 𝑙, and spin 𝑠 =↑, ↓. 𝑇𝜏 denotes the time-ordering operator for 𝜏. The
Matsubara representation of Eq. (2.33) is given by

F𝑙𝑠,𝑙 ′𝑠′ (𝒌, 𝑖𝜔𝑚) =
∫ 𝛽

0
𝑑𝜏F𝑙𝑠,𝑙 ′𝑠′ (𝒌, 𝜏)𝑒𝑖𝜔𝑚𝜏, (2.34)

where 𝜔𝑚 = (2𝑚 + 1)𝜋𝛽 is a Matsubara frequency for the inverse temperature 𝛽 = 1/𝑇 and
𝑚 ∈ Z. We here consider the space, time, spin, and orbital parities of Cooper pairs in a
multiorbital system. The space permutation operation P∗ acting on the relative coordinate is
defined as

P∗F𝑙𝑠,𝑙 ′𝑠′ (𝒌, 𝑖𝜔𝑚) ≡ F𝑙𝑠,𝑙 ′𝑠′ (−𝒌, 𝑖𝜔𝑚). (2.35)

Note that P∗ is different from the full space inversion operation P, since this operation merely
permute the relative coordinate of two particles. The time permutation operation T ∗, which
changes sign of the relative time 𝜏, acts on the Matsubara anomalous Green’s function as

T ∗F𝑙𝑠,𝑙 ′𝑠′ (𝒌, 𝑖𝜔𝑚) ≡ F𝑙𝑠,𝑙 ′𝑠′ (𝒌,−𝑖𝜔𝑚). (2.36)

Note that T ∗ is not the full time reversal operation T , since this operation merely permute the
relative time of the pairing correlator. The fact that permuting 𝜏 → −𝜏 is different from the
time reversal can be seen from the fact that the true time reversal T converts F to F ∗. The
spin permutation operation S and the orbital permutation operation O, simple swap operators
permuting respective indices, are introduced as:

SF𝑙𝑠,𝑙 ′𝑠′ (𝒌, 𝑖𝜔𝑚) ≡ F𝑙𝑠′,𝑙 ′𝑠 (𝒌, 𝑖𝜔𝑚), (2.37)

OF𝑙𝑠,𝑙 ′𝑠′ (𝒌, 𝑖𝜔𝑚) ≡ F𝑙 ′𝑠,𝑙𝑠′ (𝒌, 𝑖𝜔𝑚). (2.38)

The Fermi-Dirac statistics gives the sign change of the anomalous Green’s function under the
combined action of the space, time, spin, and orbital permutation operations as

SP∗OT ∗F𝑙𝑠,𝑙 ′𝑠′ (𝒌, 𝑖𝜔𝑚) = −F𝑙𝑠,𝑙 ′𝑠′ (𝒌, 𝑖𝜔𝑚), (2.39)
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Table 2.2. Symmetry properties of the anomalous Green’s function under the space, time,
spin, and orbital permutation operations.

Pairing S P∗ O T ∗ SP∗OT ∗

− + ++ −1 +1 +1 +1 −1
− − −+ −1 −1 −1 +1 −1
+ + −+ +1 +1 −1 +1 −1
+ − ++ +1 −1 +1 +1 −1
− + −− −1 +1 −1 −1 −1
− − +− −1 −1 +1 −1 −1
+ + +− +1 +1 +1 −1 −1
+ − −− +1 −1 −1 −1 −1

which we write symbolically as SP∗OT ∗ = −1. The full symmetries of the Cooper pair that
satisfies Eq. (2.39) are summarized in Table 2.2.

Then, we perform the classification of the pair amplitude based on the results in Table 2.2.
First of all, the anomalous Green’s function can be decomposed as

F𝑙𝑠,𝑙 ′𝑠′ (𝑘) =
[(
𝜓𝑙𝑙 ′ (𝑘)𝜎0 + 𝒅𝑙𝑙 ′ (𝑘) · 𝝈

)
𝑖𝜎𝑦

]
𝑠𝑠′

, (2.40)

where 𝜎0 is a 2 × 2 identity matrix and 𝝈 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) are the Pauli matrices. We here used
the abbreviate notation 𝑘 = (𝒌, 𝑖𝜔𝑚). The spin-singlet (triplet) pair amplitude 𝜓𝑙𝑙 ′ (𝑘) (𝒅𝑙𝑙 ′ (𝑘))
is odd (even) under the spin permutation S. Furthermore, we define the orbital-singlet and
orbital-triplet pair amplitudes as

𝜓±
𝑙𝑙 ′ (𝑘) =

𝜓𝑙𝑙 ′ (𝑘) ± 𝜓𝑙 ′𝑙 (𝑘)
2

, (2.41)

𝒅±𝑙𝑙 ′ (𝑘) =
𝒅𝑙𝑙 ′ (𝑘) ± 𝒅𝑙 ′𝑙 (𝑘)

2
. (2.42)

The orbital-triplet pair amplitudes 𝜓+
𝑙𝑙 ′ (𝑘) and 𝒅+

𝑙𝑙 ′ (𝑘) are even under the orbital permutation
O. On the other hand, the orbital-singlet pair amplitudes 𝜓−

𝑙𝑙 ′ (𝑘) and 𝒅−
𝑙𝑙 ′ (𝑘) are odd under the

orbital permutation O.
Using Eqs. (2.41) and (2.42), the odd-frequency pair amplitudes, that are odd under the

30



Chapter 2. Ferroelectric superconductivity and multiorbital/multiband effects: application to
SrTiO3

time permutation T ∗, can be obtained as follows:

F −+−−
𝑙𝑙 ′ =

(𝜓−
𝑙𝑙 ′ + P∗𝜓−

𝑙𝑙 ′) − T ∗(𝜓−
𝑙𝑙 ′ + P∗𝜓−

𝑙𝑙 ′)
4

, (2.43)

F −−+−
𝑙𝑙 ′ =

(𝜓+
𝑙𝑙 ′ − P∗𝜓+

𝑙𝑙 ′) − T ∗(𝜓+
𝑙𝑙 ′ − P∗𝜓+

𝑙𝑙 ′)
4

, (2.44)

F
+++−
𝑙𝑙 ′ =

(𝒅+
𝑙𝑙 ′ + P∗𝒅+

𝑙𝑙 ′) − T ∗(𝒅+
𝑙𝑙 ′ + P∗𝒅+

𝑙𝑙 ′)
4

, (2.45)

F
+−−−
𝑙𝑙 ′ =

(𝒅−
𝑙𝑙 ′ − P∗𝒅−

𝑙𝑙 ′) − T ∗(𝒅−
𝑙𝑙 ′ − P∗𝒅−

𝑙𝑙 ′)
4

, (2.46)

where we suppressed the 𝑘-dependence for brevity. In the same manner, the even-frequency
pair amplitudes can be obtained as

F −+++
𝑙𝑙 ′ =

(𝜓+
𝑙𝑙 ′ + P∗𝜓+

𝑙𝑙 ′) + T ∗(𝜓+
𝑙𝑙 ′ + P∗𝜓+

𝑙𝑙 ′)
4

, (2.47)

F −−−+
𝑙𝑙 ′ =

(𝜓−
𝑙𝑙 ′ − P∗𝜓−

𝑙𝑙 ′) + T ∗(𝜓−
𝑙𝑙 ′ − P∗𝜓−

𝑙𝑙 ′)
4

, (2.48)

F
++−+
𝑙𝑙 ′ =

(𝒅−
𝑙𝑙 ′ + P∗𝒅−

𝑙𝑙 ′) + T ∗(𝒅−
𝑙𝑙 ′ + P∗𝒅−

𝑙𝑙 ′)
4

, (2.49)

F
+−++
𝑙𝑙 ′ =

(𝒅+
𝑙𝑙 ′ − P∗𝒅+

𝑙𝑙 ′) + T ∗(𝒅+
𝑙𝑙 ′ − P∗𝒅+

𝑙𝑙 ′)
4

. (2.50)

The spin-triplet pair amplitudes are described by using a vector notation F𝑙𝑙 ′ = F𝑙𝑙 ′,𝑥 𝒙̂+F𝑙𝑙 ′,𝑦 𝒚̂+
F𝑙𝑙 ′,𝑧𝒛, where 𝜎𝜇𝑖𝜎𝑦 is represented as 𝝁̂. The above odd/even-frequency pair amplitudes satisfy
the Berezinskii rule (i.e., SP∗OT ∗ = −1).

2.6.2 Symmetry analysis of odd-frequency pair amplitude in SrTiO3

Now, we perform the classification of the multiorbital odd-frequency pair amplitude based on
both fermionic and space group symmetries (see Appendix B for the classification method of the
pair amplitude based on the space group symmetry). As far as we know, we here provide a first
example of group theoretical classification for the multiorbital odd-frequency superconductivity,
although that for the multiorbital even-frequency superconductivity [120, 121] and single-orbital
odd-frequency superconductivity [122] has been done in previous works.

With STO in mind, we here consider a time-reversal symmetric 𝑡2𝑔 electron system in
tetragonal 𝐷4ℎ or 𝐶4𝑣 point group and assume 𝑠-wave superconducting states which belong
to trivial irreducible representation (IR) (i.e., DΓ (𝑔) = 1 in Eq. (B.7)). Then, according to
Eq. (B.7), it is sufficient to classify the pair amplitudes based on the point group symmetry,
not space group symmetry. Extension to anisotropic superconducting states that transform in
accordance with nontrivial IRs is straightforward. The basis functions for 𝒌-dependence of
the odd/even-frequency pair amplitudes, that are determined by using Eq. (B.7), are listed in
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Table 2.3. Basis functions for 𝒌-dependence of (a) odd-frequency pair amplitudes and (b)
even-frequency pair amplitudes in a 𝑡2𝑔 electron system under 𝐷4ℎ point group symmetry. Basis
functions of 𝐴1𝑔 and 𝐴2𝑢 IRs are listed, because the superconducting gap function is assumed
to belong the trivial IR of 𝐷4ℎ or 𝐶4𝑣.

(a) Odd-frequency
Basis functions IR

F −+−−
𝑙𝑙 ′ 𝑘𝑧 (𝑘𝑦𝜁−𝑥 + 𝑘𝑥𝜁

−
𝑦 ), 𝑘𝑥𝑘𝑦 (𝑘2

𝑥 − 𝑘2
𝑦)𝜁−𝑧 𝐴1𝑔

F −−+−
𝑙𝑙 ′ 𝑘𝑧 (𝜁0

𝑥 + 𝜁0
𝑦 ), 𝑘𝑧𝜁0

𝑧 , 𝑘𝑦𝜁+𝑥 + 𝑘𝑥𝜁
+
𝑦 , 𝑘𝑥𝑘𝑦𝑘𝑧𝜁+𝑧 𝐴2𝑢

F
+++−
𝑙𝑙 ′

𝑘𝑧 (𝑘𝑦𝜁0
𝑥 𝒙̂ − 𝑘𝑥𝜁

0
𝑦 𝒚̂), 𝑘𝑧 (𝑘𝑦𝜁0

𝑦 𝒙̂ − 𝑘𝑥𝜁
0
𝑥 𝒚̂), 𝑘𝑥𝑘𝑦 (𝜁0

𝑥 − 𝜁0
𝑦 )𝒛

𝐴1𝑔

𝑘𝑧 (𝑘𝑦𝜁0
𝑧 𝒙̂ − 𝑘𝑥𝜁

0
𝑧 𝒚̂), 𝑘𝑥𝑘𝑦 (𝑘2

𝑥 − 𝑘2
𝑦)𝜁0

𝑧 𝒛

𝑘𝑥𝑘𝑦 (𝜁+𝑦 𝒙̂ − 𝜁+𝑥 𝒚̂), 𝑘𝑧 (𝑘𝑦𝜁+𝑦 − 𝑘𝑥𝜁
+
𝑥 )𝒛, 𝜁+𝑥 𝒙̂ − 𝜁+𝑦 𝒚̂

𝑘2
𝑦𝜁

+
𝑥 𝒙̂ − 𝑘2

𝑥 𝜁
+
𝑦 𝒚̂, 𝑘2

𝑥 𝜁
+
𝑥 𝒙̂ − 𝑘2

𝑦𝜁
+
𝑦 𝒚̂, 𝑘2

𝑧 (𝜁+𝑥 𝒙̂ − 𝜁+𝑦 𝒚̂)
𝑘𝑧 (𝑘𝑥𝜁+𝑧 𝒙̂ − 𝑘𝑦𝜁

+
𝑧 𝒚̂), (𝑘2

𝑥 − 𝑘2
𝑦)𝜁+𝑧 𝒛

F
+−−−
𝑙𝑙 ′

𝑘𝑥𝑘𝑦𝑘𝑧 (𝜁−𝑦 𝒙̂ − 𝜁−𝑥 𝒚̂), 𝑘𝑧 (𝜁−𝑥 𝒙̂ − 𝜁−𝑦 𝒚̂), (𝑘𝑦𝜁−𝑦 − 𝑘𝑥𝜁
−
𝑥 )𝒛 𝐴2𝑢

𝑘𝑥𝜁
−
𝑧 𝒙̂ + 𝑘𝑦𝜁

−
𝑧 𝒚̂, 𝑘𝑧𝜁−𝑧 𝒛

(b) Even-frequency
Basis functions IR

F −+++
𝑙𝑙 ′

𝜁0
𝑥 + 𝜁0

𝑦 , 𝑘2
𝑥 𝜁

0
𝑥 + 𝑘2

𝑦𝜁
0
𝑦 , 𝑘2

𝑦𝜁
0
𝑥 + 𝑘2

𝑥 𝜁
0
𝑦 , 𝑘2

𝑧 (𝜁0
𝑥 + 𝜁0

𝑦 ) 𝐴1𝑔
𝜁0
𝑧 , (𝑘2

𝑥 + 𝑘2
𝑦)𝜁0

𝑧 , 𝑘2
𝑧 𝜁

0
𝑧 , 𝑘𝑧 (𝑘𝑦𝜁+𝑥 + 𝑘𝑥𝜁

+
𝑦 ), 𝑘𝑥𝑘𝑦𝜁+𝑧

F −−−+
𝑙𝑙 ′ 𝑘𝑦𝜁

−
𝑥 − 𝑘𝑥𝜁

−
𝑦 , 𝑘𝑥𝑘𝑦𝑘𝑧 (𝑘2

𝑥 − 𝑘2
𝑦)𝜁−𝑧 𝐴2𝑢

F
++−+
𝑙𝑙 ′

𝜁−𝑥 𝒙̂ + 𝜁−𝑦 𝒚̂, 𝑘2
𝑥 𝜁

−
𝑥 𝒙̂ + 𝑘2

𝑦𝜁
−
𝑦 𝒚̂, 𝑘2

𝑦𝜁
−
𝑥 𝒙̂ + 𝑘2

𝑥 𝜁
−
𝑦 𝒚̂, 𝑘2

𝑧 (𝜁−𝑥 𝒙̂ + 𝜁−𝑦 𝒚̂)
𝐴1𝑔𝑘𝑥𝑘𝑦 (𝜁−𝑦 𝒙̂ + 𝜁−𝑥 𝒚̂), 𝑘𝑧 (𝑘𝑥𝜁−𝑥 + 𝑘𝑦𝜁

−
𝑦 )𝒛

𝑘𝑧 (𝑘𝑥𝜁−𝑧 𝒙̂ + 𝑘𝑦𝜁
−
𝑧 𝒚̂), 𝜁−𝑧 𝒛, (𝑘2

𝑥 + 𝑘2
𝑦)𝜁−𝑧 𝒛, 𝑘2

𝑧 𝜁
−
𝑧 𝒛

F
+−++
𝑙𝑙 ′

𝑘𝑦𝜁
0
𝑥 𝒙̂ − 𝑘𝑥𝜁

0
𝑦 𝒚̂, 𝑘𝑦𝜁0

𝑦 𝒙̂ − 𝑘𝑥𝜁
0
𝑥 𝒚̂, 𝑘𝑥𝑘𝑦𝑘𝑧 (𝜁0

𝑥 − 𝜁0
𝑦 )𝒛

𝐴2𝑢
𝑘𝑦𝜁

0
𝑧 𝒙̂ − 𝑘𝑥𝜁

0
𝑧 𝒚̂, 𝑘𝑥𝑘𝑦𝑘𝑧 (𝑘2

𝑥 − 𝑘2
𝑦)𝜁0

𝑧 𝒛

𝑘𝑥𝑘𝑦𝑘𝑧 (𝜁+𝑦 𝒙̂ − 𝜁+𝑥 𝒚̂), 𝑘𝑧 (𝜁+𝑥 𝒙̂ − 𝜁+𝑦 𝒚̂), (𝑘𝑥𝜁+𝑥 − 𝑘𝑦𝜁
+
𝑦 )𝒛

𝑘𝑥𝜁
+
𝑧 𝒙̂ − 𝑘𝑦𝜁

+
𝑧 𝒚̂, 𝑘𝑧 (𝑘2

𝑥 − 𝑘2
𝑦)𝜁+𝑧 𝒛
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Tables 2.3. In the table, the symmetry of the basis functions in the orbital space is described by
using the following matrices:

𝜁0
𝑥 = |1⟩ ⟨1| , 𝜁0

𝑦 = |2⟩ ⟨2| , 𝜁0
𝑧 = |3⟩ ⟨3| , (2.51)

𝜁±𝑥 = |3⟩ ⟨2| ± |2⟩ ⟨3| , 𝜁±𝑦 = |1⟩ ⟨3| ± |3⟩ ⟨1| , 𝜁±𝑧 = |2⟩ ⟨1| ± |1⟩ ⟨2| , (2.52)

where |1⟩ ≡ |𝑑𝑦𝑧⟩, |2⟩ ≡ |𝑑𝑥𝑧⟩, and |3⟩ ≡ |𝑑𝑥𝑦⟩. When the anomalous Green’s functionF𝑙𝑠,𝑙 ′𝑠′ (𝑘)
belongs to the trivial IR of 𝐷4ℎ point group, that is 𝐴1𝑔 IR, only the even-parity (P∗ = +1) pair
amplitudes F −+−− and F

+++− in Table 2.3 (a) are allowed. Then, the odd-parity (P∗ = −1)
pair amplitudes should vanish because they do not belong to 𝐴1𝑔 IR due to the sign change
under space inversion operation P = P∗

5. On the other hand, the odd-parity pair amplitudes
can be trivial under all symmetry operations in 𝐶4𝑣 point group, since 𝐷4ℎ point group can be
decomposed as 𝐷4ℎ = {𝐼,P} ⊗ 𝐶4𝑣, where 𝐼 denotes the identity operation. Therefore, the
odd-parity pair amplitudes F −−+− and F

+−−− belonging to 𝐴2𝑢 IR in 𝐷4ℎ point group are listed
in Table 2.3 (a), because 𝐴2𝑢 is reduced to the trivial 𝐴1 IR in 𝐶4𝑣 point group. Note that the
same holds for the even-frequency pair amplitudes shwon in Table 2.3 (b).

The odd-parity 𝐴2𝑢 pair amplitudes are symmetrically forbidden in centrosymmetric 𝐷4ℎ

point group, when the superconductivity belongs to the trivial IR as expected in STO. In order
to induce the odd-parity 𝐴2𝑢 pair amplitudes, a space inversion symmetry breaking, which
descends the crystallographic point group from 𝐷4ℎ to 𝐶4𝑣, is necessary. This symmetry
lowering from 𝐷4ℎ to 𝐶4𝑣 can be realized by a ferroelectric phase transition (spontaneous polar
inversion symmetry breaking) that actually occurs in STO [76–79].

2.6.3 Odd-frequency pair amplitudes in SrTiO3

Now that we have obtained the classification table of the odd-frequency pair amplitudes in STO,
we here perform numerical calculations and compare the results with the classification table.
To study the interplay of odd-frequency pairing and ferroelectricity, we consider a dilute carrier
density regime of STO in which only the doubly-degenerated lowest energy band intersect the
Fermi level at 𝛾 = 0. As shown in the previous sections, in such a dilute density regime, the
ferroelectric superconducting phase is stabilized without external magnetic field [see Fig. 2.8
(a)] owing to the Lifshitz transition associated to the ferroelectricity-induced Rashba splitting
of the band structure.

The parameters are set to be 𝑛 = 5.0×10−5,𝑉s/𝑡1 = 0.28, and (𝜅4, 𝜅6) = (0, 0.5) in the same
way as the numerical calculations of the single-band regime in Sec. 2.5. Then, the ferroelectric
superconducting phase is stabilized at zero magnetic field when the lattice parameter 𝜅2 is set
to be smaller than a critical value. The value of 𝜅2 and obtained results of the superconducting

5Note that the action of the space permutation P∗ for the 𝑠-wave superconducting state in 𝑡2𝑔 electron system
is equivalent to that of the full space inversion P.
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Table 2.4. Model parameters for the numerical calculations. The superconducting order
parameter Δ𝑙 and odd-parity hoping integral 𝛾 are determined by minimizing the free energy at
𝑇/𝑡1 = 1.0 × 10−10.

paraelectric phase ferroelectric phase
𝜅2 8.00 × 10−5 6.75 × 10−5

𝛾 0 0.105
Δ1,2 0.00160 0.00277
Δ3 0.000268 0.00138

order parameters and 𝛾 are summarized in Table 2.4.
On the basis of numerical solution of the electron-lattice coupled three-orbital model in

Sec. 2.3, we elucidate odd-frequency pair amplitudes in bulk STO. Using the BdG Hamiltonian
matrix in Eqs. (2.20) and (2.21), we obtain the full Matsubara Green’s function matrix as

G(𝒌, 𝑖𝜔𝑚) = [𝑖𝜔𝑚112 − 𝐻 (𝒌)]−1 , (2.53)

where 112 is a 12 × 12 identity matrix. The matrix structure of G(𝑘) is described as

G(𝑘) =
(
G0(𝑘) F (𝑘)
F̄ (𝑘) Ḡ0(𝑘)

)
. (2.54)

The 6 × 6 submatrix G0(𝑘) and F (𝑘) are the normal and anomalous Green’s functions, re-
spectively. Ḡ0(𝑘) (F̄ (𝑘)) is the particle-hole counterpart of G0(𝑘) (F (𝑘)). By applying Eqs.
(2.43)-(2.46) to the matrix elements of F (𝑘), we calculate the odd-frequency pair amplitudes
in bulk STO.

In the following, we investigate the odd-frequency pair correlations in both paraelectric
(nonpolar) and ferroelectric (polar) phases of bulk STO. Note that we do not address the
property of the odd-frequency pairing on the border of the ferroelectric quantum critical point,
where the dynamical fluctuation of the ferroelectric order might have a significant impact on
the odd-frequency pair correlations. The physics of the odd-frequency superconductivity in the
ferroelectric quantum critical regime is an interesting topic which is left for future studies.

Paraelectric/nonpolar phase

First, we consider the odd-frequency pairing in the paraelectric phase with 𝐷4ℎ point group
symmetry. Since we assumed the 𝑠-wave (𝐴1𝑔) pairing [Eq. (2.12)], the odd-frequency
pair amplitudes should belong to 𝐴1𝑔 IR in the paraelectric phase. Then, the even-parity
𝐴1𝑔 odd-frequency pair amplitudes can be finite. The orbital hybridization due to the LS
coupling [the second term of Eq. (2.4)] is essential for the odd-frequency Cooper pairs because
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Fig. 2.11. 𝒌-dependence of the even-parity odd-frequency pair amplitudes (a) ImF −+−−
12 (𝑘),

(b) ReF +++−
12,𝑧 (𝑘), and (c) ReF +++−

13,𝑦 (𝑘) at 𝑘𝑧 = 0 in the paraelectric phase. The Matsubara
frequency 𝜔𝑚 is set to be 1 meV, and the values of the pair amplitudes are normalized by
F BCS

max (𝜔𝑚) = 0.237808 meV−1.

they disappear in the absence of the LS coupling. The representative components of even-
parity 𝐴1𝑔 odd-frequency pair amplitudes at 𝑘𝑧 = 0 are shown in Fig. 2.11. Because of the
time-reversal symmetry, the spin-singlet (spin-triplet) even-parity orbital-singlet (orbital-triplet)
odd-frequency pair amplitude F −+−−

𝑙𝑙 ′ (F+++−
𝑙𝑙 ′ ) is pure imaginary (real). The pair amplitude is

normalized by a maximum value of the BCS pair amplitude F BCS
max (𝜔𝑚) which is defined as

F BCS
max (𝜔𝑚) ≡ max

𝒌,𝑙,𝑙 ′

��F −+++
𝑙𝑙 ′ (𝒌, 𝑖𝜔𝑚)

�� , (2.55)

where F −+++
𝑙𝑙 ′ is given by Eq. (2.47). As shown in Fig. 2.11 (a), the spin-singlet even-parity

orbital-singlet odd-frequency pair amplitude F −+−−
𝑙𝑙 ′ is not generated in our model although

it is symmetrically allowed. On the other hand, some components of the spin-triplet even-
parity orbital-triplet odd-frequency pair amplitudes F

+++−
𝑙𝑙 ′ , that have 𝑑- or 𝑠 + 𝑑-wave like

𝒌-dependence, are generated although their value is small compared to the BCS pair amplitude
[Figs. 2.11 (b) and 2.11 (c)]. These results can be understood on the basis of the group theoretical
classification in Sec.2.6.2. Since we assumed an intraorbital spin-singlet 𝑠-wave even-frequency
superconducting order parameter (i.e., SP∗OT ∗ = − + ++), an orbital hybridization, which
invert the orbital parity O from O = +1 to O = −1, is necessary to induce finite F −+−−

𝑙𝑙 ′ .
In addition, Table 2.3 (a) shows that the 𝒌-dependence of F −+−−

𝑙𝑙 ′ is proportional to 𝑘𝜇𝑘𝜇′

(𝜇 = 𝑥, 𝑦, 𝑧 and 𝜇 ≠ 𝜇′) near the Γ point. This means that the generation of F −+−−
𝑙𝑙 ′ requires the

existence of orbital hybridization terms proportional to 𝑘𝜇𝑘𝜇′ in the model Hamiltonian. Indeed,
the even-parity orbital hybridizations proportional to sin 𝑘𝜇 sin 𝑘𝜇′ are allowed by symmetry,
and they may generate odd-frequency pair amplitudes F −+−−

𝑙𝑙 ′ . However, we omitted such
hybridizations since their amplitude is tiny in bulk STO [101–103]. Then, F −+−−

𝑙𝑙 ′ is not induced
in our model. On the other hand, a spin-dependent scattering, which invert the spin parity S
from S = −1 to S = +1, is necessary to induce finite F

+++−
𝑙𝑙 ′ . Besides, Table 2.3 (a) shows that
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𝒌-dependence of some components in F
+++−
𝑙𝑙 ′ are given by a linear combination of 𝑘2

𝜇, which
can be induced by the single electron kinetic energy 𝜀𝑙 (𝒌) given by Eqs. (2.5)-(2.7) [e.g.,
F +++−

12,𝑧 ∼ 𝑘2
𝑥 − 𝑘2

𝑦 ∼ 𝜀1(𝒌) − 𝜀2(𝒌)]. Thus, the generation of these components is guaranteed
in bulk STO owing to the existence of LS coupling, which is a spin-dependent local orbital
hybridization. We found finite F +++−

12,𝑧 , F +++−
13,𝑦 , and F +++−

23,𝑥 in the paraelectric phase as expected.
Intraorbital components F+++−

𝑙𝑙 vanish similarly to F −+−−
𝑙𝑙

.

Ferroelectric/polar phase

Fig. 2.12. 𝒌-dependence of the odd-parity odd-frequency pair amplitudes (a) ReF −−+−
13 (𝑘),

(b) ImF +−−−
13,𝑧 (𝑘), and (c) ImF +−−−

12,𝑥 (𝑘) at 𝑘𝑧 = 0 in the ferroelectric phase. The Matsubara
frequency 𝜔𝑚 is set to be 1 meV, and the values of the pair amplitudes are normalized by
F BCS

max (𝜔𝑚) = 0.251432 meV−1.

Next, we investigate the odd-frequency pairing in the ferroelectric phase with 𝐶4𝑣 point
group symmetry. In the ferroelectric phase, the odd-parity odd-frequency pair amplitudes, that
belong to 𝐴2𝑢 IR, can also be induced owing to the breakdown of the space inversion symmetry.
Figure 2.12 shows the 𝒌-dependence of the representative components of odd-parity 𝐴2𝑢 odd-
frequency pair amplitudes. Owing to the time-reversal symmetry, the spin-singlet (spin-triplet)
odd-parity orbital-triplet (orbital-singlet) odd-frequency pair amplitude F −−+−

𝑙𝑙 ′ (F+−−−
𝑙𝑙 ′ ) is real

(pure imaginary). They have 𝑝-wave like 𝒌-dependence in consistent with the group theoretical
classification in Table 2.3 (a). These ferroelectricity-induced odd-frequency pair amplitudes
originate from the odd-parity interorbital hybridization 𝑤𝑥,𝑦 (𝒌) ∝ sin 𝑘𝑥,𝑦 which appear in the
ferroelectric phase [Eq. (2.11)], and hence they should have 𝑝𝑥,𝑦-wave like 𝒌-dependence (e.g.,
𝑝𝑧-wave like pair amplitude F −−+−

𝑙𝑙
∼ 𝑘𝑧 is not driven by the ferroelectric order along the

[001] axis, although it is allowed by symmetry). We confirmed that F −−+−
13 , F −−+−

23 , F +−−−
13,𝑧 ,

F +−−−
23,𝑧 , F +−−−

12,𝑥 , and F +−−−
12,𝑦 are induced by the ferroelectric transition in bulk STO [Fig. 2.12]

in accordance with the group theoretical classification as well as above discussions. Note that
both the LS coupling and odd-parity orbital hybridization are responsible for finite F+−−−

𝑙𝑙 ′ , since
all of the spin, space, and orbital parities need to be inverted to induce this pair correlation.
In addition, the odd-parity interorbital hybridization also generates some components of the
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even-parity 𝐴1𝑔 odd-frequency pair amplitudes, whose 𝒌-dependences are proportional to 𝑘𝑎𝑥 𝑘
𝑏
𝑦

(𝑎, 𝑏 = 0, 1, 2, · · · ). For instance, F −+−−
12 ∼ 𝑘𝑥𝑘𝑦 (𝑘2

𝑥 − 𝑘2
𝑦) takes a finite value in the ferroelectric

phase [Fig. 2.13 (a)] although it is zero in the paraelectric phase [Fig. 2.11 (a)]. We found
that F −+−−

12 , F +++−
11,𝑧 , F +++−

22,𝑧 , F +++−
33,𝑧 , F +++−

12,𝑧 , F +++−
13,𝑥 , F +++−

13,𝑦 , F +++−
23,𝑥 , and F +++−

23,𝑦 are finite in the
ferroelectric phase [Fig. 2.13].

Fig. 2.13. 𝒌-dependence of the even-parity odd-frequency pair amplitudes (a) ReF −+−−
12 (𝑘), (b)

ImF +++−
11,𝑧 (𝑘), (c) ImF +++−

33,𝑧 (𝑘), (d) ImF +++−
12,𝑧 (𝑘), (e) ImF +++−

13,𝑥 (𝑘), (f) ImF +++−
13,𝑦 (𝑘) at 𝑘𝑧 = 0 in

the ferroelectric phase. The Matsubara frequency 𝜔𝑚 is set to be 1 meV, and the values of the
pair amplitudes are normalized by F BCS

max (𝜔𝑚) = 0.251432 meV−1.

2.7 Discussion and summary

In this chapter, we have studied an interplay of ferroelectric order and superconductivity in STO.
In particular, we have proposed that the FESC is realized in STO near a ferroelectric transition
point. The superconductivity triggers the coexisting ferroelectric order. A key ingredient is an
effective electron-lattice coupling through the Rashba SOC in the ferroelectric phase.

By analyzing the realistic three-orbital model for STO, we showed that the zero field FESC
is stabilized only in the dilute regime where the Lifshitz transition of the lower band can be
induced by the ferroelectricity. This result is consistent with the experimental observation
in Sr1−𝑥Ca𝑥TiO3−𝛿 [58], which indicates the ferroelectric superconducting phase only in a
dilute carrier density regime. We also revealed that the ferroelectric superconducting state is
stabilized under a magnetic field independent of the number of Fermi surfaces. This magnetic-
field-induced phase appears because of the suppression of the Pauli depairing effect thanks to
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the Rashba-type spin-momentum locking. Consequently, the upper critical field is enhanced
by the ferroelectric transition. The upper critical field is particularly large in the dilute carrier
density regime, because the multiorbital effect leads to a large spin-orbit splitting distinct
from the conventional Rashba model. Furthermore, the high magnetic field region of dilute
superconducting STO is identified as a Weyl superconducting state. This topological phase
transition is realized as a result of the multiorbital effect and Lifshitz transition, in sharp contrast
to the two-dimensional single-orbital model where the topological FESC is unstable [57].

In addition, we have studied the odd-frequency pair correlations in bulk STO near a ferro-
electric critical point, based on the group theoretical classification and microscopic numerical
calculations. First, by considering the fermionic and point group symmetries of a 𝑡2𝑔 electron
system, we have provided a classification table for the odd-frequency pair amplitudes. By
combining with the symmetry of terms of the normal state Hamiltonian, the classification table
enables us to predict which components of the odd-frequency pair correlations are generated.
Then, we have calculated the odd-frequency pair amplitudes in a dilute carrier density regime
of STO by using the three-orbital model. The obtained results are consistent with the group
theoretical classification. In the paraelectric phase, the spin-triplet even-parity orbital-triplet
odd-frequency pair correlations, that belong to 𝐴1𝑔 IR of 𝐷4ℎ point group, are generated owing
to the intrinsic LS coupling which leads to local spin-dependent orbital hybridization. In the
ferroelectric phase, additional odd-parity odd-frequency pair correlations, that belong to 𝐴2𝑢

IR of 𝐷4ℎ point group, are induced due to the odd-parity orbital mixing term proportional
to the ferroelectric order parameter. This odd-parity orbital hybridization also leads to the
generation of the spin-singlet even-parity orbital-singlet odd-frequency pair correlations. Since
we assumed an intraorbital superconducting order parameter, the essential ingredient for the
generation of the odd-frequency pair correlations is the orbital mixing in the normal state [119],
which comes from the intrinsic LS coupling and polar inversion symmetry breaking.

The results of this chapter suggest a tunable crystal symmetry through superconductivity,
in the presence of a coupling between spin, orbital, and lattice degrees of freedom. Most of the
novel interplay of ferroelectric-like polar inversion symmetry breaking and superconductivity
was uncovered in the dilute carrier density region. The dilute superconductivity in STO
provides an ideal platform for the FESC. Furthermore, we have presented a first proposal
of the multiorbital odd-frequency superconductivity in bulk STO. As far as we know, we
have demonstrated a first example of group theoretical classification for the odd-frequency
superconducting state in multiorbital systems. Our classification method is based on both
fermionic symmetry of the anmalous Green’s function (Berezinskii rule) and space group
symmetry of the system, and may provide a useful tool for searching the odd-frequency pair
correlations in multiorbital systems. Finally, it should be noticed that the results of this chapter
are based on a simple BCS-type pairing interaction, which may not be appropriate for the dilute
superconductivity in STO. Although we think that inclusion of dynamical electron-phonon
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couplings and Coulomb interactions will not dramatically alter the results, such calculation is
desired and left for a future study.
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Chapter 3

Multiple odd-parity superconducting
phases in bilayer transition metal
dichalcogenides

3.1 Introduction

Searching for odd-parity superconductors, which provide a platform for the intrinsic topological
superconductivity [123–125], has been one of central issues in research field of the unconven-
tional superconductivity. At present, several solid-state materials are proposed as possible
candidates for the odd-parity spin-triplet superconductor, e.g., Sr2RuO4 [126, 127], UPt3 [128–
130], UGe2 [131], URhGe [132], UCoGe [133], and UTe2 [134, 135]. Note that there are now
some results conflicting with the spin-triplet pairing in Sr2RuO4 [136–139]. Exploration of
spin-triplet superconductivity in systems other than heavy fermions is an important issue.

There are two important factors for realizing spin-triplet pairing states in solid-state materi-
als, i.e., the FM spin fluctuation and the Fermi surface structure. In the absence of notable Fermi
surface nesting, the FM fluctuation is enhanced when the Fermi energy lies near the van Hove
singularity (vHS). Specifically, the so-called type-II vHS [140–142], whose saddle points are not
located at the time-reversal invariant momenta, is preferable for the odd-parity superconductiv-
ity. On the other hand, a disconnected form of the Fermi surface is favorable for the odd-parity
pairing since generation of gap nodes is avoidable [143, 144]. Stabilization of odd-parity spin-
triplet pairing states has been theoretically proposed in a variety of systems with disconnected
Fermi surfaces, e.g., (TMTSF)2X (X = PF6,ClO4) [143, 145–148], Na𝑥CoO2 ·𝑦H2O [149–157],
SrPtAs [158, 159], and doped Kane-Mele model [160]. Note that some experimental results
suggest that Na𝑥CoO2 · 𝑦H2O is a spin-singlet superconductor [161, 162].

Another intriguing topic for the unconventional superconductivity is relation between crys-
talline symmetry and the pairing states [163]. Particularly, various exotic superconducting
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phenomena have been elucidated in locally NCS systems [31–38, 164, 165]. As explained in
Sec. 1.1, a key microscopic aspect of locally NCS systems is the sublattice-dependent antisym-
metric SOC, which leads to various exotic superconducting phenomena. Especially, it has been
clarified that odd-parity topological superconductivity is realized by a combination of antifer-
romagnetic spin fluctuations and the sublattice-dependent antisymmetric SOC [38]. Thus, it
is interesting to study interplay of FM-fluctuation-driven superconductivity and locally NCS
crystal structure, in the sense of comparison with the case of the antiferromagnetic-fluctuation-
driven superconductivity.

Considering the above-mentioned aspects, we provide a thorough microscopic investiga-
tion of unconventional superconductivity in a two-dimensional locally NCS triangular lattice
[Fig. 3.1] with disconnected Fermi surfaces. The model is relevant to bilayer transition metal
dichalcogenides (TMDs) with 2H𝑏 stacking structure, which is favored in group-VI TMDs such
as MX2 (M = Mo, W and X = S, Se) [166, 167]. In a few layer group-VI TMDs, disconnected
Fermi surfaces are formed around K and K′ points owing to the triangular lattice structure.
Assuming a strong electron correlation, we clarify dominant FM-like spin fluctuations assisted
by a type-II vHS. In fact, ferromagnetism has been recently observed in a few-layer VSe2 [168]
and MnSe2 [169]. Since the conduction electrons in TMDs have 𝑑-orbital character, correlation
effects are expected to have considerable impacts on the superconductivity [170–174]. We
show that odd-parity superconducting state with 𝑓 -wave symmetry is stabilized by the FM
fluctuation in the absence of the SOC. On the other hand, the local inversion symmetry breaking
in the crystal structure induces layer-dependent staggered Rashba and Zeeman SOC. The SOC
breaks the spin SU(2) symmetry and lifts the degeneracy of spin-triplet superconducting states.
Thus, the SOC controls the internal degree of freedom of odd-parity superconductivity and its
topological property. We elucidate that multiple odd-parity superconducting phases with either
𝑝-wave or 𝑓 -wave pairing, which belong to different IRs of the crystal point group, appear
by increasing magnitude of the staggered SOC. It is shown that the multiple superconducting
phase diagram is a consequence of the selection rule for locally NCS superconductors [31] and
SOC-induced magnetic anisotropy. In addition, topological properties of the stable odd-parity
superconducting states are studied. A chiral 𝑝-wave pairing state in a moderate Zeeman SOC
region is identified as a topological superconducting state in class D.

The rest of this chapter is organized as follows. In Sec. 3.2, we introduce a two-dimensional
bilayer triangular lattice Hubbard model including the layer-dependent staggered antisymmetric
SOC. The formulation for the microscopic calculations based on the random phase approxima-
tion (RPA) and linearized Eliashberg equation is provided. In Sec. 3.3, we study the magnetic
fluctuations. The dominance of the FM spin fluctuation and the magnetic anisotropy under
the SOC are discussed. Numerical results of the Eliashberg equation are shown in Sec. 3.4.
Topological properties of these superconducting states are also investigated. Finally, we present
a summary of this chapter in Sec. 3.5.
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Fig. 3.1. Crystal structure of the bilayer triangular lattice. (a) is the top view and (b) is the
side view. 𝒂1 and 𝒂2 are the lattice vectors. 𝑡 and 𝑡′ are the intralayer and interlayer hopping
integrals, respectively.

3.2 Model and formulation

We consider a two-dimensional bilayer triangular lattice with the lattice vectors 𝒂1 = (1, 0) and
𝒂2 = (−1/2,

√
3/2) [Fig. 3.1], which is classified into 𝐷3𝑑 point group. The crystal structure is

equivalent to that of bilayer TMDs with 2H𝑏 stacking. Recently, superconductivity in bilayer
MoS2 was realized by symmetric gating [175]. On this lattice, we introduce a single-orbital
Hubbard model H = H0 + Hint. Note that we do not address the multiorbital physics in this
study to perform material-independent general calculations and electron doped MoS2 is indeed
a single-orbital system. The single-particle Hamiltonian H0 with SOC is written as

H0 =
∑︁
𝒌,𝑚,𝑠

(𝜀(𝒌) − 𝜇) 𝑐†
𝒌,𝑚𝑠

𝑐𝒌,𝑚𝑠

+
∑︁
𝒌,𝑠

(
𝜂(𝒌)𝑐†

𝒌,𝑎𝑠
𝑐𝒌,𝑏𝑠 + H.c.

)
+

∑︁
𝒌,𝜁 ,𝜁 ′

∑︁
𝑗=1,2

𝛼 𝑗 𝒈 𝑗 (𝒌) · 𝝈𝑠𝑠′𝜏
𝑧
𝑚𝑚′𝑐

†
𝒌,𝑚𝑠

𝑐𝒌,𝑚𝑠′, (3.1)

where 𝑐𝒌,𝑚𝑠 is the annihilation operator for an electron with momentum 𝒌 and spin 𝑠 =↑, ↓ on
layer 𝑚 = 𝑎, 𝑏. 𝜁 = (𝑚, 𝑠) is the abbreviated notation, and 𝜎𝜇 (𝜏𝜈) is the Pauli matrix for spin
(layer) degrees of freedom. The first term is the kinetic energy term. The single-electron kinetic
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energy is described as

𝜀(𝒌) = 2𝑡 [cos 𝒌 · 𝒂1 + cos 𝒌 · 𝒂2 + cos 𝒌 · (𝒂1 + 𝒂2)] , (3.2)

by taking into account the nearest-neighbor hopping. We choose the hopping integral 𝑡 as a unit
of energy (𝑡 = 1). The chemical potential 𝜇 is determined to fix the carrier density as 𝑛. The
second term is the interlayer coupling. The interlayer hybridization function is given by

𝜂(𝒌) = 𝑡′
[
1 + 𝑒−𝑖𝒌·𝒂2 + 𝑒−𝑖𝒌·(𝒂1+𝒂2)

]
. (3.3)

In this study, we assume that the interlayer hopping integral 𝑡′ is smaller than the intralayer
hopping integral 𝑡 (i.e., 𝑡′ < 𝑡). The third term is the layer-dependent staggered SOC, which
is originated from the locally NCS crystal structure and a spin-dependent intralayer hopping.
Since the local site symmetry is 𝐶3𝑣, the 𝑔-vector 𝒈 𝑗 (𝒌) should belong to 𝐴2𝑢 IR of 𝐷3𝑑 which
becomes trivial 𝐴1 IR in 𝐶3𝑣 [see Table 3.1]. In this study, we consider two kinds of 𝑔-vectors
as

𝒈1(𝒌) =
1
Λ

[√
3

2
{sin 𝒌 · (𝒂1 + 𝒂2) + sin 𝒌 · 𝒂2} 𝒙̂

−
{
sin 𝒌 · 𝒂1 +

sin 𝒌 · (𝒂1 + 𝒂2) − sin 𝒌 · 𝒂2
2

}
𝒚̂

]
, (3.4)

𝒈2(𝒌) =
2

3
√

3
[sin 𝒌 · 𝒂1 + sin 𝒌 · 𝒂2 − sin 𝒌 · (𝒂1 + 𝒂2)] 𝒛, (3.5)

where Λ = 1.7602. Equations (3.4) and (3.5) are the Rashba and Zeeman SOC, respectively.
Both terms belong to 𝐴2𝑢 IR. The Rashba (Zeeman) SOC originates from the out-of-plane
(in-plane) local inversion symmetry breaking at each layers. The constant factors are chosen as
Max𝒌 |𝒈 𝑗 (𝒌) | = 1. Although the Rashba SOC is negligible compared to the Zeeman SOC in
some TMDs [11, 33], we treat both of them on equal footing to provide a general calculation
not limited to existing TMDs. The on-site Coulomb interaction is given by

Hint = 𝑈
∑︁
𝒊,𝑚

𝑛𝒊,𝑚↑𝑛𝒊,𝑚↓, (3.6)

where 𝑛𝒊,𝑚𝑠 = 𝑐
†
𝒊,𝑚𝑠

𝑐 𝒊,𝑚𝑠 is the electron density operator on site 𝒊. Strong repulsive electron-
electron interaction may be present owing to the 𝑑-orbital character of conduction carries in
TMDs. We treat Hint in the RPA.

We study the superconducting instability in this model by solving the linearized Eliashberg
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Fig. 3.2. Diagrammatic representation of the bare irreducible vertex Γ0.

equation

𝜆Δ𝜁 𝜁 ′ (𝑘) = −𝑇

𝑁

∑︁
𝑘 ′

∑︁
{𝜁 𝑗 }

𝑉𝜁 𝜁1,𝜁2𝜁 ′ (𝑘 − 𝑘′)G0
𝜁3𝜁1

(−𝑘′)Δ𝜁3𝜁4 (𝑘′)G0
𝜁4𝜁2

(𝑘′), (3.7)

where we used the abbreviated notation 𝑘 = (𝒌, 𝑖𝜔𝑝) and 𝜔𝑝 = (2𝑝 + 1)𝜋𝑇 is the fermionic
Matsubara frequency. The noninteracting temperature Green’s function is given by G0(𝑘) =

[𝑖𝜔𝑝1 − 𝐻0(𝒌)]−1. 𝜆 and Δ(𝑘) are the eigenvalue and gap function, respectively. In the RPA,
the effective pairing interaction 𝑉 (𝑞) can be described as

𝑉 (𝑞) = −Γ0𝜒(𝑞)Γ0 − Γ0, (3.8)

by using the RPA susceptibility

𝜒(𝑞) = 𝜒0(𝑞) [1 − Γ0𝜒0(𝑞)]−1. (3.9)

Here, the irreducible susceptibility is defined as

𝜒0
𝜁1𝜁2,𝜁3𝜁4

(𝑞) = −𝑇

𝑁

∑︁
𝑘

G0
𝜁3𝜁1

(𝑘)G0
𝜁2𝜁4

(𝑘 + 𝑞). (3.10)

The bare irreducible vertex in this model is obtained as

Γ0
𝜁1𝜁2,𝜁3𝜁4

=
𝑈

2
𝛿𝑚1𝑚2𝛿𝑚3𝑚4𝛿𝑚1𝑚3 (𝝈𝑠1𝑠2 · 𝝈𝑠4𝑠3 − 𝛿𝑠1𝑠2𝛿𝑠4𝑠3). (3.11)

The diagrammatic representation of Eq. (3.11) is shown in Fig. 3.2. In the following numerical
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calculations, we set 𝑇/𝑡 = 0.02, 64 × 64 𝒌-points, and 1024 Matsubara frequencies.

3.3 Magnetic fluctuation

In this section, we study the magnetic fluctuation by introducing magnetic susceptibilities as
follows:

𝜒
𝜇𝜈

𝑚𝑚′ (𝑞) =
∑︁
{𝑠 𝑗 }

𝜎
𝜇
𝑠1𝑠2 𝜒𝑚𝑠1𝑚𝑠2,𝑚′𝑠3𝑚′𝑠4 (𝑞)𝜎𝜈

𝑠4𝑠3 , (3.12)

where 𝜇, 𝜈 = 𝑥, 𝑦, 𝑧. The magnetic fluctuation parallel (perpendicular) to the 𝑐-axis is charac-
terized by 𝜒∥ ≡ 𝜒𝑧𝑧 (𝜒⊥ ≡ (𝜒𝑥𝑥 + 𝜒𝑦𝑦)/2). In the following, we consider low doping regimes, in
which small disconnected Fermi pockets are formed around the K and K’ points [see Fig. 3.3(a)].
This condition is relevant to electron-doped bilayer TMDs with 2H𝑏 stacking structure [175].

Fig. 3.3. (a) Fermi surfaces. (b) and (c) Momentum dependence of the intralayer magnetic
susceptibility 𝜒𝑆

𝑎𝑎(=𝑏𝑏) (𝒒, 0) for (b) 𝑈 = 0 and (c) 𝑈 = 5.0. We set 𝑡′/𝑡 = 0.2, 𝑛 = 0.1, and
𝛼 𝑗 = 0.

First, we investigate the magnetic fluctuations in the absence of the SOC. In this case, there
is no magnetic anisotropy, and hence 𝜒∥ = 𝜒⊥(≡ 𝜒𝑆). In Figs. 3.3 (b) and 3.3 (c), we show
momentum dependence of the intralayer magnetic susceptibility 𝜒𝑆

𝑎𝑎 (= 𝜒𝑆
𝑏𝑏
) for 𝑡′/𝑡 = 0.2,
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Fig. 3.4. Band structure and DOS for 𝛼 𝑗 = 0 and 𝜇 = 0.

𝑛 = 0.1 and 𝛼 𝑗 = 0. In the absence of the Coulomb interaction, the magnetic susceptibility
takes the maximum value at 𝒒 = 0 [see Fig. 3.3 (b)] which imply FM spin fluctuation in this
system. By introducing the Coulomb interaction, the peak at 𝒒 = 0 becomes sharper [see
Fig. 3.3 (c)], and the FM fluctuation is enhanced. The FM fluctuation is partially owing to the
smallness of the Fermi surface. Besides, the FM fluctuation is enhanced because the Fermi
level lies near the type-II vHS, which is associated to the saddle points located slightly away
from the K (K′) point. This type-II vHS originates from the band splitting at the band bottom
due to a finite interlayer coupling, and hence it is a fingerprint of the bilayer structure. In
the 2H𝑏 stacking, the interlayer hybridization vanishes at the K (K′) points as ensured by the
threefold rotational symmetry [167, 176, 177]. Therefore, Dirac-type linear dispersion appears
around the K (K′) point [see Fig. 3.4], and it gives rise to the type-II vHS similar to the Rashba
model [57]. Indeed, Fig. 3.4 reveals a large DOS near the band bottom.

Next, we show the magnetic fluctuations in the presence of the SOC. In locally NCS systems,
a sublattice-dependent staggered SOC gives a significant impact on the electronic structure when
the ratio of the SOC and the intersublattice coupling is large [165]. Since the interlayer coupling
𝜂(𝒌) vanishes at the K (K′) point [167, 176, 177], the ratio 𝜑 𝑗 (𝒌) ≡ |𝛼 𝑗 𝒈 𝑗 (𝒌) |/|𝑡′𝜂(𝒌) | can be
large on the Fermi surface. Hence, the magnetic fluctuation is strongly affected by the staggered
SOC. The SOC dependences of the magnetic susceptibilities are shown in Fig. 3.5. The sharp
peak of the magnetic susceptibility at the Γ point is gradually suppressed by increasing 𝛼 𝑗

[Figs. 3.5 (a) and 3.5 (c)], and the FM fluctuation is weakened. The suppression of the FM
fluctuation is significant in the case of the Zeeman SOC, since the ratio of the SOC and interlayer
coupling has a larger value than that in the case of the Rashba SOC [i.e., 𝜑2(𝒌F) > 𝜑1(𝒌F)].
Figures 3.5 (b) and 3.5 (d) reveal appearance of the magnetic anisotropy (𝜒∥ ≠ 𝜒⊥) owing to
the violation of the spin rotational symmetry. The Rashba SOC monotonically increases the
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Fig. 3.5. Momentum dependence of the magnetic susceptibilities along the symmetry axis for
several values of (a), (b) the Rashba SOC 𝛼1 and (c), (d) Zeeman SOC 𝛼2. Parameters are
set to be 𝑡′/𝑡 = 0.2, 𝑛 = 0.1, 𝑈 = 5.0, and 𝑇 = 0.02. (a), (c) An intralayer 𝑐-axis component
𝜒
∥
𝑎𝑎 (𝒒, 0), and (b), (d) the anisotropy 𝜒⊥

𝑎𝑎 (𝒒, 0) − 𝜒
∥
𝑎𝑎 (𝒒, 0).

magnetic anisotropy mainly at around the Γ point [Fig. 3.5 (b)]. On the other hand, the growth
of the magnetic anisotropy by the Zeeman SOC is nonmonotonic [Fig. 3.5 (d)]. Although the
SOC dependence of the magnetic anisotropy is complicated, we find that 𝜒⊥ > 𝜒∥ is always
realized at the Γ point. Thus, a FM-like magnetic structure with an in-plane spin-alignment is
favored in the presence of the SOC. It should be noticed that such an in-plane FM ordering has
been observed in atomically thin film of group-V TMD VSe2 [168]. The superconductivity is
significantly affected by this magnetic anisotropy as we demonstrate in Sec. 3.4.2.

3.4 Superconductivity

Here, we illustrate numerical results of the Eliashberg equation in the framework of the RPA.
We specify the momentum- and layer-dependence of the gap functions from the numerical
results of the eigenfunctions of the Eliashberg equation. The superconducting phase diagrams,
which illustrate the most stable superconducting states with the largest eigenvalue, are obtained
as a function of the Coulomb interaction, interlayer hopping, carrier density, and SOC. Then,
multiple odd-parity superconducting phases stabilized by FM fluctuations are demonstrated.
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3.4.1 Superconductivity without spin-orbit coupling

Fig. 3.6. (a) Phase diagram for the Coulomb interaction 𝑈 and interlayer hopping 𝑡′ at 𝑛 = 0.1
and 𝑇 = 0.02. (b) Phase diagram for the Coulomb interaction 𝑈 and carrier density 𝑛 at
𝑡′/𝑡 = 0.5 and 𝑇 = 0.02. The solid line is the phase boundary between FM-like ordered state
and paramagnetic state, at which the Stoner factor 𝑆 = max[Γ̂(0) 𝜒̂(𝑞)] becomes unity. In the
paramagnetic phase, the 𝑓𝑥(𝑥2−3𝑦2)-wave pairing state is stabilized.

First, we show the superconducting phases in the absence of the SOC. Figure 3.6 (a)
(Figure 3.6 (b)) shows phase diagrams as a function of the interlayer hopping 𝑡′ (carrier density
𝑛) and Coulomb interaction 𝑈 at 𝑛 = 0.1 (𝑡′/𝑡 = 0.5). Owing to the dominant FM spin
fluctuations, odd-parity spin-triplet 𝑓𝑥(𝑥2−3𝑦2)-wave superconducting states, which are classified
into 𝐴2𝑢 or 𝐸𝑢 IRs in the presence of the SOC, are stabilized in the whole parameter region.
This 𝑓𝑥(𝑥2−3𝑦2)-wave superconducting state is a full gap state and mainly caused by intralayer
Cooper pairing. The gap function for the 𝑓𝑥(𝑥2−3𝑦2)-wave superconducting state is almost the
same as Fig. 3.10 (a). Since the effective pairing interaction for spin-triplet superconductivity
is approximated as 𝑉 triplet ≃ −(𝑈2/2)𝜒𝑆 in the absence of SOC, the magnetic fluctuation favors
the gap function with the same sign on each pieces of the Fermi surface connected by a vector
𝑸. Here, 𝑸 is the wave vector at which the magnetic susceptibility is enhanced. As shown
in Fig. 3.3 (c), the magnetic susceptibility is sharply peaked at 𝒒 ≃ 0 (i.e., 𝑸 ≃ 0). Thus, the
𝑓𝑥(𝑥2−3𝑦2)-wave superconducting state is stabilized to avoid generation of gap nodes at the K and
K′ points [143, 144].

3.4.2 Superconductivity and spin-orbit coupling

Next, we investigate superconductivity in the presence of the layer-dependent staggered SOC.
In the following discussion, we describe the superconducting gap function as Δ𝑖

𝑚𝑠,𝑚′𝑠′ (𝑘) =∑
𝜇𝜈 𝑑

𝜇𝜈

𝑖
(𝑘)𝜎̄𝜇

𝑠𝑠′𝜏
𝜈
𝑚𝑚′, where 𝑖 = 1, 2 is the index for two-dimensional IRs and 𝜎̄

𝜇

𝑠𝑠′ = [𝜎𝜇𝑖𝜎𝑦]𝑠𝑠′
(𝜇 = 0, 𝑥, 𝑦, 𝑧). In the presence of the SOC, symmetry of superconducting states is classified
based on the crystallographic point group. Then, the gap function belongs to one of IRs of

48



Chapter 3. Multiple odd-parity superconducting phases in bilayer transition metal
dichalcogenides

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.04 0.08 0.12 0.16

λ

α1/t α2/t

A1u

A2u

Eu

A1g

Eg

Fig. 3.7. SOC dependence of eigenvalues of the Eliashberg equation 𝜆 at 𝑡′/𝑡 = 0.2, 𝑛 = 0.1,
𝑈 = 4.8, and𝑇 = 0.02. The eigenvalues for 𝐴1𝑢 (𝑝-wave), 𝐴2𝑢 ( 𝑓𝑥2 (𝑥2−3𝑦2)-wave), 𝐸𝑢 ( 𝑓𝑥2 (𝑥2−3𝑦2)-
wave or 𝑝-wave), 𝐴1𝑔 (𝑠-wave), and 𝐸𝑔 (𝑑-wave) pairing states are illustrated.

𝐷3𝑑 point group shown in Table 3.1. The superconducting instability is discussed by solving
the Eliashberg equation under symmetry constraints for each of the IRs (see Appendix B). Note
that the symmetry constraints are technically introduced to avoid numerical errors.

Table 3.1. Two-dimensional basis gap functions for the IRs of trigonal 𝐷3𝑑 point group without
sublattice degrees of freedom. The second column shows the compatibility relations between
𝐷3𝑑 and 𝐶3𝑣.

𝐷3𝑑 𝐷3𝑑 ↓ 𝐶3𝑣 Basis functions with 𝑘𝑧 = 0
𝐴1𝑔 𝐴1 𝜎̄0

𝐴2𝑔 𝐴2 𝑘𝑥𝑘𝑦 (𝑘2
𝑥 − 3𝑘2

𝑦) (3𝑘2
𝑥 − 𝑘2

𝑦)𝜎̄0

𝐸𝑔 𝐸 {𝑘𝑥𝑘𝑦, 𝑘2
𝑥 − 𝑘2

𝑦}𝜎̄0

𝐴1𝑢 𝐴2 𝑘𝑥𝜎̄
𝑥 + 𝑘𝑦𝜎̄

𝑦, 𝑘𝑦 (3𝑘2
𝑥 − 𝑘2

𝑦)𝜎̄𝑧

𝐴2𝑢 𝐴1 𝑘𝑥𝜎̄
𝑦 − 𝑘𝑦𝜎̄

𝑥 , 𝑘𝑥 (𝑘2
𝑥 − 3𝑘2

𝑦)𝜎̄𝑧

𝐸𝑢 𝐸
{𝑘𝑥𝜎̄𝑦 + 𝑘𝑦𝜎̄

𝑥 , 𝑘𝑥𝜎̄
𝑥 − 𝑘𝑦𝜎̄

𝑦}, {𝑘𝑥 , 𝑘𝑦}𝜎̄𝑧

𝑘𝑥 (𝑘2
𝑥 − 3𝑘2

𝑦){𝜎̄𝑥 , 𝜎̄𝑦}, 𝑘𝑦 (3𝑘2
𝑥 − 𝑘2

𝑦){𝜎̄𝑥 , 𝜎̄𝑦}

Figure 3.7 shows the SOC dependence of eigenvalues of the Eliashberg equation 𝜆 at
𝑡′/𝑡 = 0.2, 𝑛 = 0.1, and 𝑈 = 4.8. Owing to the dominant FM fluctuation, the intralayer
𝑓𝑥(𝑥2−3𝑦2)-wave (𝐴2𝑢 or 𝐸𝑢) pairing state is predominant and the 𝑝-wave (𝐴1𝑢, 𝐴2𝑢, or 𝐸𝑢)
pairing state is subdominant for 𝛼 𝑗 = 0. On the other hand, the eigenvalues of even-parity
𝑠-wave (𝐴1𝑔) and 𝑑-wave (𝐸𝑔) pairing states are smaller than those of odd-parity pairing states.
The eigenvalues of the 𝐴2𝑢 and 𝐸𝑢 superconducting states are equal at 𝛼 𝑗 = 0, since the spin
part of the gap function is threefold degenerated in the absence of the SOC. By turning on the
staggered Rashba (Zeeman) SOC, the degeneracy is lifted due to violation of the spin rotational
symmetry, and the 𝐸𝑢 (𝐴2𝑢) superconducting state is stabilized as 𝜆𝐴2𝑢 < 𝜆𝐸𝑢 (𝜆𝐴2𝑢 > 𝜆𝐸𝑢). For
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these parameters, the spin direction of the superconducting state is determined by the selection
rule for locally NCS superconductors [31, 38], which originates from a modulation of the one-
particle Green’s function by the staggered SOC. As explained in Sec. 1.1, the selection rule
determines the symmetry of the stable superconducting state depending on whether the leading
superconducting order parameter is intrasublattice component or intersublattice component [see
Fig. 3.8 for an illustration]. For intrasublattice pairing, the spin-singlet superconducting state
or spin-triplet superconducting state with 𝒅(𝒌) ∥ 𝒈(𝒌) are stabilized. On the other hand, only
the spin-triplet superconducting state with 𝒅(𝒌) ⊥ 𝒈(𝒌) is stable for intersublattice pairing. In
a small SOC region, the leading order parameter for the 𝐴2𝑢 (𝐸𝑢) pairing state possesses the
intralayer 𝑓𝑥(𝑥2−3𝑦2)-wave symmetry with 𝒅 ∥ 𝒛 (𝒅 ∥ 𝒙̂, 𝒚̂). Thus, the 𝐴2𝑢 (𝐸𝑢) superconducting
state is destabilized by the staggered Rashba (Zeeman) SOC, since the leading intralayer order
parameter with 𝒅 ⊥ 𝒈1 (𝒅 ⊥ 𝒈2) is incompatible with the selection rule. In addition, to be
compatible with the selection rule, the gap function is modified in a large SOC region. For
example, the leading order parameter of the 𝐸𝑢 pairing state exhibits 𝑝-wave symmetry for
𝛼2/𝑡 ≳ 0.04, while that shows 𝑓𝑥(𝑥2−3𝑦2)-wave symmetry for 𝛼2/𝑡 ≲ 0.04 [see right panel of
Fig. 3.7]. As demonstrated above, competition of various superconducting states with different
pairing symmetry can be controlled by the staggered SOC.

m  = a m  = b

(b) Intersublattice pairing(a) Intrasublattice pairing

m  = a m  = b

Fig. 3.8. Schematic figure of the Cooper pairing in a two-sublattice system with the staggered
Rashba SOC. The spin texture, which is opposite in each sublattice, can be defined in the
absence of intersublattice hybridization as shown in the figure. (a) By choosing the Rashba-
type 𝑔-vector 𝒈(𝒌) as the spin quantization axis at each momentum, an intrasublattice Cooper
pair wave function can be described as Ψintra

𝒌
= |𝒌, 𝜎; 𝑎⟩ |−𝒌, 𝜎̄; 𝑎⟩, where |𝒌, 𝜎;𝑚⟩ denotes

the wave function for an electron with momentum 𝒌 and spin 𝜎 on sublattice 𝑚 = 𝑎, 𝑏. Ψintra
𝒌

is decomposed to the spin-singlet state and spin-triplet state with 𝒅(𝒌) ∥ 𝒈(𝒌), and hence only
these pairing states are stabilized for intrasublattice pairing. (b) A Cooper pair wave function
for the intersublattice pairing state is described as Ψinter

𝒌
= |𝒌, 𝜎; 𝑎⟩ |−𝒌, 𝜎; 𝑏⟩. This means that

the spin-triplet pairing state with 𝒅(𝒌) ⊥ 𝒈(𝒌) is stable for intersublattice pairing.

As explained in Sec. 1.1, the selection rule is derived in the framework of the mean-field
theory with assuming a simple pairing interaction [31]. Therefore, it is uncertain whether
or not the selection rule holds in the presence of the modification of the effective pairing
interaction by the SOC and Coulomb interaction, although it looks to hold in Fig. 3.7. In
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order to clarify the applicability of the selection rule in this model, we investigate detailed
behaviors of the superconductivity against the staggered SOC and Coulomb interaction in the
following part. Figure 3.9 shows phase diagrams as a function of the staggered SOC 𝛼 𝑗 and
Coulomb interaction 𝑈. We found that an odd-parity superconducting state with either 𝐴2𝑢

or 𝐸𝑢 symmetry is stabilized and it is controlled by magnitude of the SOC and Coulomb
interaction. The gap functions for these odd-parity superconducting states are illustrated in
Table 3.2 and Figs. 3.10 and 3.11. It should be noticed that the Zeeman SOC significantly
affects the superconductivity compared to the Rashba SOC because the Zeeman SOC takes
a large magnitude near the K point. Therefore, superconductivity in a trigonal system with
in-plane inversion symmetry breaking is affected by a moderate SOC.
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Fig. 3.9. (a) and (b) Phase diagram for the Coulomb interaction 𝑈 and staggered Rashba SOC
𝛼1 at 𝛼2 = 0 and 𝑇 = 0.02. (c) and (d) Phase diagram for the Coulomb interaction 𝑈 and
staggered Zeeman SOC 𝛼2 at 𝛼1 = 0 and 𝑇 = 0.02. (a) and (c) 𝑡′/𝑡 = 0.2 and 𝑛 = 0.1, while
(b) and (d) 𝑡′/𝑡 = 0.5 and 𝑛 = 0.12. The solid line is the phase boundary between FM-like
ordered state and paramagnetic state. In the paramagnetic phase, the odd-parity 𝐴2𝑢 and 𝐸𝑢

superconducting states are illustrated.

In the presence of the Rashba SOC, the superconductivity exhibits different behaviors
depending on the magnitude of the interlayer hopping. In the case of a small interlayer hopping
𝑡′/𝑡 = 0.2, the staggered Rashba SOC stabilizes only the 𝐸𝑢 superconducting state [Fig. 3.9 (a)],
whose leading order parameters are intralayer spin-triplet components {𝑑𝑦0

1 , 𝑑𝑥0
2 }with 𝑓𝑥(𝑥2−3𝑦2)-

wave symmetry [Figs. 3.11 (a) and 3.11 (b)]. This 𝐸𝑢 𝑓𝑥(𝑥2−3𝑦2)-wave superconducting state
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Table 3.2. Leading order parameters and parity-mixing-induced components for the odd-
parity 𝐴2𝑢 and 𝐸𝑢 superconducting states. Δ𝑠, Δ𝑝𝑥 , Δ𝑝𝑦 , Δ𝑑

𝑥2−𝑦2 , Δ𝑑𝑥𝑦 , and Δ 𝑓 denote gap
functions which possess momentum dependence with 𝑠-wave, 𝑝𝑥-wave, 𝑝𝑦-wave, 𝑑𝑥2−𝑦2-wave,
𝑑𝑥𝑦-wave, and 𝑓𝑥(𝑥2−3𝑦2)-wave symmetry. The third column shows the phase diagram in which
the corresponding superconducting state is stabilized. The last column indicates figures which
illustrate the gap functions.

IR Leading component Parity mixing Phase diagram Gap function
𝐴2𝑢 Δ 𝑓 𝜎̄𝑧𝜏0 Δ𝑠𝜎̄0𝜏𝑧 Figs. 3.9 (b), (c), (d) Fig. 3.10

{Δ 𝑓 𝜎̄𝑦,Δ 𝑓 𝜎̄𝑥}𝜏0 Fig. 3.9 (a) Figs. 3.11 (a), (b)
𝐸𝑢 {Δ𝑝𝑥 ,Δ𝑝𝑦 }𝜎̄𝑧𝜏0 {Δ𝑑

𝑥2−𝑦2 ,Δ𝑑𝑥𝑦 }𝜎̄0𝜏𝑧 Figs. 3.9 (c), (d) Figs. 3.11 (c), (d)
{Δ 𝑓 𝜏𝑥 ,Δ𝑠𝜏𝑦}𝜎̄𝑧 Fig. 3.9 (b) Figs. 3.11 (e), (f)

is compatible with the selection rule as we already demonstrate for Fig. 3.7. On the other
hand, in the case of a large interlayer hopping 𝑡′/𝑡 = 0.5, the 𝐴2𝑢 or 𝐸𝑢 superconducting
states are stabilized depending on the magnitude of the Rashba SOC [Fig. 3.9 (b)]. The 𝐴2𝑢

superconducting state is favored for a small Rashba SOC region (0 ≲ 𝛼1/𝑡 ≲ 0.8), while
the 𝐸𝑢 superconducting state is favored for a large Rashba SOC region (𝛼1/𝑡 ≳ 0.8). This
multiple superconducting phase diagram is a consequence of competition between the selection
rule and magnetic anisotropy. The 𝐴2𝑢 superconducting state with the 𝑓𝑥(𝑥2−3𝑦2)-wave leading
order parameter 𝑑𝑧0 is incompatible with the selection rule because 𝒅 ⊥ 𝒈1 in the whole
Brillouin zone. The stabilization of the 𝐴2𝑢 superconducting state may be attributed to the
magnetic anisotropy. The magnetic anisotropy under the Rashba SOC is always 𝜒⊥ > 𝜒∥ near
the Γ point like that for 𝑡′/𝑡 = 0.2 [see Fig. 3.5 (b)]. Since the effective pairing interaction
for the spin-triplet pair amplitude 𝑑𝑧𝜈 can be approximated as 𝑉eff ≈ −(𝑈2/2) (2𝜒⊥ − 𝜒∥),
the magnetic anisotropy 𝜒⊥ > 𝜒∥ favors the spin-triplet pairing with 𝒅 ∥ 𝒛. Thus, the
𝐴2𝑢 superconducting state is stabilized contrary to the selection rule. Note that impacts of
a sublattice-dependent staggered SOC on the electronic structure are generally weakened by
increasing the intersublattice coupling [165]. Thus, the selection rule is less important for
larger 𝑡′/𝑡. Leading order parameter of the 𝐸𝑢 superconducting state for 𝛼1/𝑡 ≳ 0.8 is interlayer
spin-triplet components {𝑑𝑧𝑥1 , 𝑑

𝑧𝑦

2 } [Figs. 3.11 (e) and 3.11 (f)], which are compatible with the
selection rule. The enhancement of the interlayer order parameters {𝑑𝑧𝑥1 , 𝑑

𝑧𝑦

2 } is attributed to the
large interlayer coupling and magnetic anisotropy 𝜒⊥ > 𝜒∥ . Note that the interlayer component
of the effective interaction vertex 𝑉̂ (𝑞) [Eq. (3.8)] is induced by a finite interlayer hopping
contained in the RPA susceptibility 𝜒̂(𝑞), although the original electron-electron interaction
Hint [Eq. (3.6)] does not couple the layers.

We also investigated superconductivity based on the Kohn-Luttinger framework within the
second order perturbation theory [178]. In this approximation, the intrasublattice 𝐸𝑢 𝑓𝑥(𝑥2−3𝑦2)-
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wave state is always stable and we do not find violation of the selection rule. This is because
the magnetic anisotropy in the bare susceptibility is weak and its effect on superconductivity
is negligible. In other words, exchange enhancement of magnetic anisotropy, that is taken into
account in the RPA, plays an essential role to stabilize the 𝐴2𝑢 state violating the selection rule.

On the other hand, the superconducting phase diagram in the presence of the Zeeman SOC
is qualitatively the same irrespective of the magnitude of the interlayer hopping [Figs. 3.9 (c)
and 3.9 (d)]. The staggered Zeeman SOC stabilizes the 𝐴2𝑢 or 𝐸𝑢 superconducting states,
depending on magnitude of the Zeeman SOC. The 𝐴2𝑢 superconducting state is stabilized
in a small Zeeman SOC region, while the 𝐸𝑢 superconducting state is stabilized in a large
Zeeman SOC region. Both superconducting states are indeed compatible with the selection
rule. The leading order parameter for the 𝐴2𝑢 (𝐸𝑢) superconducting state is 𝑑𝑧0 ({𝑑𝑧01 , 𝑑𝑧02 })
with 𝑓𝑥(𝑥2−3𝑦2)-wave (𝑝-wave) symmetry [Fig. 3.10 (a)] ([Figs. 3.11 (c) and 3.11 (d)]). Note that
the leading order parameter for the 𝐸𝑢 superconducting state changes as {𝑑𝑦0

1 , 𝑑𝑥0
2 } ( 𝑓𝑥(𝑥2−3𝑦2)-

wave)→ {𝑑𝑧01 , 𝑑𝑧02 } (𝑝-wave) by increasing the SOC 𝛼2 so as to be compatible with the selection
rule. The stabilization of the 𝐸𝑢 superconducting state against the 𝐴2𝑢 superconducting state
may be attributed to the local parity-mixing effect for the intralayer pairing. In locally NCS
crystals, local parity-mixing effect induces an intrasublattice staggered spin-singlet (spin-triplet)
component for odd-parity (even-parity) superconducting states. The symmetry of the parity-
mixing-induced component is determined by the compatibility relation between the global
symmetry and the local site symmetry. In our model, the global and local site symmetries
are classified as 𝐷3𝑑 and 𝐶3𝑣, respectively. Then, the local parity-mixing occurs between 𝐴1𝑔

and 𝐴2𝑢, 𝐴2𝑔 and 𝐴1𝑢, and 𝐸𝑔 and 𝐸𝑢 [see second column of Table 3.1] at each layer. As
shown in Fig. 3.10, the local parity-mixing effect induces an 𝑠-wave component 𝑑0𝑧 in the 𝐴2𝑢

superconducting state, and it becomes comparable to the leading 𝑓𝑥(𝑥2−3𝑦2)-wave component
𝑑𝑧0 in the large Zeeman SOC region. On the other hand, an intrasublattice staggered 𝑑-wave
component [not shown] appears in the 𝐸𝑢 superconducting state as a consequence of the local
parity-mixing effect. Since the 𝑠-wave pairing is unfavorable in the presence of the Coulomb
interaction, the strongly parity-mixed 𝑓 + 𝑠-wave 𝐴2𝑢 superconducting state is overwhelmed by
the 𝑝 + 𝑑-wave 𝐸𝑢 superconducting state in the large Zeeman SOC region. The critical value
𝛼2 ∼ 0.1 corresponds to 𝛼2 = 20 meV when we adopt 𝑡 = 200 meV [167]. This value lies in the
realistic range of TMDs. Finally we note that the competition between the selection rule and
magnetic anisotropy does not occur in the case of the Zeeman SOC, in contrast to the case of
the Rashba SOC.

3.4.3 Topological superconductivity

Finally, we discuss topological superconductivity. The Z2 part of topological invariants for
the odd-parity superconducting states is determined by the occupation numbers at the time-
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Fig. 3.10. Gap functions for the 𝐴2𝑢 superconducting state at 𝑡′/𝑡 = 0.2, 𝑛 = 0.1, 𝛼2 = 0.1,
and 𝑈 = 5.2. (a) Leading intralayer 𝑓𝑥(𝑥2−3𝑦2)-wave component 𝑑𝑧0(𝒌, 𝑖𝜋𝑇) and (b) parity-
mixing-induced 𝑠-wave component 𝑑0𝑧 (𝒌, 𝑖𝜋𝑇). The gap functions are normalized so that
the maximum amplitude of the leading order parameter becomes unity. Corresponding Fermi
surface is illustrated in the left panel. Eigenvalues of the Eliashberg equation is 𝜆 = 2.83905.

reversal invariant momenta in the Brillouin zone [123–125]. In our model, the number of
disconnected Fermi surfaces enclosing the time-reversal invariant momenta (Γ and M points) is
even. Thus, the Z2 invariant for a time-reversal invariant odd-parity superconducting state (DII
I class) is trivial. The superconducting states that belong to one-dimensional IRs do not break
the time-reversal symmetry, and hence the 𝐴1𝑢 and 𝐴2𝑢 superconducting states are topologically
trivial.

On the other hand, the superconducting states classified into two-dimensional IRs may
realize spontaneous time-reversal symmetry breaking, depending on the superposition of two
gap functions. Then, the integer topological invariant (Chern number in class D) can be a
nonzero even number. For instance, the 𝐸𝑢 𝑝-wave superconducting state in a large Zeeman
SOC region [Figs. 3.9 (c) and 3.9 (d)] should be a chiral 𝑝𝑥 + 𝑖𝑝𝑦 paring state in order to fully
gap out the Fermi surface (i.e., the order parameter is written as ∼ (Δ𝑝𝑥 ± 𝑖Δ𝑝𝑦 )𝜎̄𝑧𝜏0). This 𝐸𝑢

𝑝𝑥 + 𝑖𝑝𝑦-wave pairing state is identified as a topological superconducting state in class D with
the Chern number 𝜈Ch = ±4 (see Appendix D). A similar topological superconducting state is
proposed in monolayer TMDs [173], while it is a parity-mixed chiral 𝑝 + 𝑑-wave pairing state
owing to violation of the global inversion symmetry.

In contrast, the 𝐸𝑢 𝑓 -wave superconducting states under the Rashba SOC do not break the
time-reversal symmetry, and therefore, they are topologically trivial. In order to fully gap out
the Fermi surface, indeed, the order parameter for the 𝐸𝑢 𝑓𝑥(𝑥2−3𝑦2)-wave pairing state [Fig. 3.9
(a)] should be ∼ Δ 𝑓 (𝜎𝑥 ± 𝜎𝑦)𝜏0, while that for the 𝐸𝑢 interlayer pairing state [Fig. 3.9 (b)]
should be ∼ (Δ 𝑓 𝜏𝑥 ± Δ𝑠𝜏𝑦)𝜎𝑧. Time-reversal symmetry is preserved, while these states may
realize nematic superconductivity with spontaneous rotation symmetry breaking. When we
assume superposition breaking the time-reversal symmetry, the non-unitary superconducting
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Fig. 3.11. Leading components of the gap function for the 𝐸𝑢 superconducting states. (a), (b)
𝑡′/𝑡 = 0.2, 𝑛 = 0.1, 𝛼1 = 0.35204, and 𝑈 = 5.0. (c), (d) 𝑡′/𝑡 = 0.2, 𝑛 = 0.1, 𝛼2 = 0.19,
and 𝑈 = 7.18. (e), (f) 𝑡′/𝑡 = 0.5, 𝑛 = 0.12, 𝛼1 = 0.8801, and 𝑈 = 3.8. The gap functions
are normalized so that the maximum amplitude of the leading order parameter becomes unity.
Corresponding Fermi surfaces are illustrated in the left panels. Eigenvalues of the Eliashberg
equation is 𝜆 = 2.1145, 1.04829, 2.32491 in (a,b), (c,d), and (e,f), respectively.
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state gains less condensation energy, and it is unstable.

3.5 Discussion and summary

In summary, we have studied unconventional superconductivity in a two-dimensional locally
NCS triangular lattice, which is relevant to the crystal structure of bilayer TMDs with 2H𝑏

stacking. By assuming disconnected Fermi surfaces and strong electron correlation, we have
clarified the dominant FM spin fluctuations on the basis of the RPA. The significant enhancement
of the FM fluctuation is assisted by the type-II vHS due to a finite interlayer coupling, and
hence it is a characteristic of the bilayer structure. The superconducting instability has been
discussed based on the analysis of the linearized Eliashberg equation. The odd-parity spin-
triplet superconductivity is favored by the FM fluctuation, and we found that fully gapped
𝑓 -wave pairing state is stabilized in a wide range of the interlayer coupling and carrier density.
Furthermore, impacts of the staggered Rashba or Zeeman antisymmetric SOC on the magnetic
fluctuation and superconductivity have been elucidated. The magnetic anisotropy is enhanced
by increasing the SOC, and a FM-like magnetic structure with in-plane spin alignment, such
as in a few-layer VSe2 [168], is favored by either Rashba or Zeeman SOC. We found that the
odd-parity 𝐴2𝑢 or 𝐸𝑢 superconducting states with either 𝑓 -wave or 𝑝-wave gap functions are
stabilized depending on magnitude of the SOC, interlayer hopping, and Coulomb interaction.
The stability of each odd-parity superconducting states is determined by a combination of the
selection rule for locally NCS superconductors [31, 38], magnetic anisotropy, and local parity-
mixing effect in the superconducting state. In addition, topological properties of the stable
odd-parity pairing states have been studied based on the Fermi surface formula [123–125] and
estimation of topological invariants. Then, the 𝐸𝑢 𝑝 + 𝑖𝑝-wave pairing state has been identified
as a topological superconducting state in class D with the Chern number 𝜈Ch = 4. This state is
stabilized by a moderate Zeeman SOC realistic in TMDs.

Our results suggest odd-parity superconductivity ubiquitous in 2H𝑏-stacked bilayer TMDs,
such as bilayer MoS2 in which gate-induced superconductivity is realized [175, 179]. An
essential ingredient for the odd-parity superconductivity is underlying FM fluctuations induced
by a strong electron correlation. Although dominance of the electron-phonon coupling for
the superconductivity in a few-layer TMDs is proposed by some theoretical studies [180–182],
the electron-electron interaction is also expected to affect the superconductivity owing to the
𝑑-orbital character of carriers in TMDs [170–173]. Indeed, a recent tunneling spectroscopy
measurement for monolayer MoS2 has revealed anisotropic superconducting gap, which suggests
that the microscopic origin of the superconductivity cannot be captured by a conventional
phonon-driven mechanism [183]. Evidence of topological superconductivity with topological
nodal-points is also obtained in 4H𝑏-TaS2 [174]. Thus, various bilayer TMDs have a potential for
hosting FM fluctuations and odd-parity superconductivity. This study clarifies a way to control
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odd-parity superconducting phases by SOC and carrier doping, and to realize topological
superconductivity in two-dimensional TMDs.

Our study also sheds light on a possibility of odd-parity superconductivity in a variety of
two-dimensional magnetic van der Waals materials [184] not only TMDs. In van der Waals
materials, strong enhancement of spin fluctuations, which potentially leads to unconventional
superconductivity, is expected owing to the two-dimensional nature. In fact, ferromagnetism has
been detected in atomically thin film of CrI3 [185], Cr2Ge2Te6 [186], VSe2 [168], V5Se8 [187],
and MnSe𝑥 [169]. Such FM van der Waals materials may offer a platform for multiple odd-parity
superconducting phases.
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Chapter 4

Anapole superconductivity from
PT -symmetric mixed-parity interband
pairing

4.1 Introduction

Parity symmetry (P-symmetry) and time-reversal symmetry (T -symmetry) are fundamental
properties of quantum materials, such as insulators, metals, magnets, and superconductors.
Superconductivity is caused by the quantum condensation of either even-parity or odd-parity
Cooper pairs corresponding to spin-singlet or spin-triplet superconductivity due to the fermion
antisymmetry [163]. The order parameter of conventional superconductors breaks neither
P-symmetry nor T -symmetry. However, competition and coexistence of multiple pairing in-
stabilities lead to exotic superconductivity, such as chiral superconductivity with spontaneous
T -symmetry breaking [188] related to the nontrivial topology [2, 3] and anomalous trans-
port [189]. In particular, mixed-parity superconductivity with coexistent even- and odd-parity
pairing channels has been widely discussed in NCS superconductors [5, 190], ultracold fermion
systems [191, 192], and spin-orbit-coupled systems in the vicinity of the P-symmetry break-
ing [48–50, 193, 194]. As discussed in Sec. 1.3, the P-symmetry is broken in such supercon-
ductors, and spontaneous T -symmetry breaking realized by the ±𝜋/2 phase difference between
even- and odd-parity pairing potentials is energetically favored [8, 62, 63] (Fig. 4.1a) when
the SOC due to NCS crystal structure is absent or weak. This class of superconducting states
spontaneously breaks both P- and T -symmetries but maintain the combined PT -symmetry.
There have been considerable interests in studying such PT -symmetric mixed-parity supercon-
ductivity. The three-dimensional 𝑠 + 𝑖𝑝-wave superconductivity has attracted much theoretical
attention as a superconducting analog of axion insulators [195–200]. TheT -symmetry breaking
mixed-parity pairing has also been theoretically proposed in Sr2RuO4 [201]. Furthermore, a
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Fig. 4.1. Schematics of PT -symmetric mixed-parity superconductivity. (a) Schematic phase
diagram in a superconductor with comparable strength of even- and odd-parity pairing interac-
tions. The transition between the even-parity superconducting phase (Γ𝑔) and the odd-parity
superconducting phase (Γ𝑢) is induced by tuning a control parameter 𝑥. For centrosymmetric
systems with T -symmetry, there is generally an intermediate mixed-parity superconducting
phase (Γ𝑔 + 𝑖Γ𝑢) where even- and odd-parity pairing components are coexistent with the relative
phase difference ±𝜋/2. (b) Schematic figure of the anapole superconducting states. In real
space, the phase of the superconducting order parameter becomes nonuniform along a direction
parallel to the effective anapole moment 𝑻 as Δ(𝒓) ∝ 𝑒𝑖𝒒·𝒓 with 𝒒 ∥ 𝑻. (c) Illustration for a
mechanism of the asymmetric Bogoliubov spectrum in PT -symmetric mixed-parity multiband
superconductors. P- and T -symmetry breaking interband pairing induces an asymmetric mod-
ulation of the Bogoliubov spectrum.
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mixed-parity superconducting state in UTe2 [202] has been predicted to explain experimentally-
observed multiple superconducting phases [203–206].

In previous works, the mixed-parity superconductivity has been theoretically studied mainly
in single-band models for spin-1/2 fermions [8, 63, 195–198, 200]. On the other hand, it has
recently been recognized that the multiband structure of the Cooper pair’s wave function aris-
ing from internal electronic degrees of freedom (DOF) (e.g., orbital and sublattice) induces
exotic superconducting phenomena. For instance, multiband superconductors have attracted
much attention as a platform realizing odd-frequency pairing [119]. In T -symmetry breaking
superconductors, an intrinsic anomalous Hall effect emerges owing to the multiband nature
of Cooper pairs [189, 207–210]. In particular, even-parity T -symmetry breaking supercon-
ductors host topologically protected Bogoliubov Fermi surfaces in the presence of interband
pairing [211, 212].

In this chapter, we show that PT -symmetric mixed-parity superconducting states generally
exhibit an asymmetric Bogoliubov spectrum in multiband systems, although it is overlooked
in single-band models. We demonstrate that such asymmetric deformation of the Bogoliubov
spectrum is induced by a nonunitary interband pairing (see Fig. 4.1c), and derive the necessary
conditions for generic two-band models. Although we consider two-band systems for simplicity
throughout this chapter, our theory is relevant for any multiband superconductors with multi-
ple bands near the Fermi level. In addition, we show that the Bogoliubov quasiparticles with
asymmetric Bogoliubov spectrum stabilize the FFLO superconductivity [213, 214], which is
evident from the Lifshitz invariants [215], namely linear gradient terms, in the GL free energy.
The Lifshitz invariants are nonzero only for the anapole superconducting states, whose order
parameters are equivalent to an anapole (magnetic toroidal) moment, namely a polar and time-
reversal odd multipole [216], from the viewpoint of symmetry. It is shown that the phase of
the superconducting order parameter is spatially modulated along the effective anapole moment
of the superconducting state (see Fig. 4.1b). The concept of anapole order has been employed
in nuclear physics [217], magnetic materials science [216], strongly correlated electron sys-
tems [218, 219], and optoelectronics [220, 221], and it is extended to superconductors by this
work. In previous works, the FFLO superconductivity has been proposed in the presence of an
external magnetic field [14, 213–215] or coexistent magnetic multipole order [55, 56]. How-
ever, the magnetic field causes superconducting vortices, prohibiting pure FFLO states, and the
proposed multipole superconducting state has not been established in condensed matters. In
contrast, the anapole superconductivity realizes the FFLO state without the aid of any other
perturbation or electronic order. Note that an intrinsic nonuniform superconducting state has
also been discussed in the Bogoliubov Fermi surface states [222], although its mechanism and
symmetry are different from those of the anapole FFLO state. Based on the obtained results, we
predict the possible asymmetric Bogoliubov spectrum and anapole superconductivity in UTe2,
a recently-discovered candidate of a spin-triplet superconductor [134]. The multiple pairing
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instabilities [203–206, 223–226] and T -symmetry breaking [227–230] were recently observed
there.

The rest of this chapter is organized as follows. In Sec. 4.2, we introduce a generic two-band
model for mixed-parity superconducting states. In Sec. 4.3, we study a microscopic mechanism
to realize the asymmetric Bogoliubov spectrum in mixed-parity superconducting states. In
Sec. 4.4, we show that the FFLO-like nonuniform superconducting state is stabilized by the
effective anapole moment based on the Ginzburg-Landau (GL) theory. In Sec. 4.5, we apply our
theory to possible mixed-parity superconducting states in UTe2. Finally, we present a discussion
and summary in Sec. 4.6.

4.2 Model

We begin our discussion by considering the general form of the BdG Hamiltonian for two-band
systems:

H =
1
2

∑︁
𝒌

(𝑐†
𝒌
, 𝑐T

−𝒌)
(
𝐻0(𝒌) Δ(𝒌)
Δ†(𝒌) −𝐻∗

0 (−𝒌)

) (
𝑐𝒌

𝑐∗−𝒌

)
, (4.1)

where 𝑐T
𝒌 = (𝑐𝒌1↑, 𝑐𝒌1↓, 𝑐𝒌2↑, 𝑐𝒌2↓) is a spinor encoding the four internal electronic DOF stem

from spin-1/2 and extra two-valued DOF, such as orbitals and sublattices. Then, the 4 × 4
matrices 𝐻0(𝒌) andΔ(𝒌) can be generally expressed as a linear combination of𝜎𝜇⊗𝜏𝜈 matrices,
where 𝜎𝜇 and 𝜏𝜈 (𝜇, 𝜈 = 0, 𝑥, 𝑦, 𝑧) are the Pauli matrices for the spin and extra DOF, respectively.
However, we here introduce a more convenient form of the two-band BdG Hamiltonian using the
Euclidean Dirac matrices 𝛾𝑛 (𝑛 = 1, 2, 3, 4, 5), which satisfy {𝛾𝑚, 𝛾𝑛} = 2𝛿𝑚𝑛. See Appendix E
for the correspondence between the 𝜎𝜇 ⊗ 𝜏𝜈 and Dirac matrices. Assuming that the normal state
preserves both P- and T -symmetries, the general form of the normal state Hamiltonian 𝐻0(𝒌)
can be expressed as

𝐻0(𝒌) = (𝜖0
𝒌 − 𝜇)14 + 𝝐𝒌 · 𝜸, (4.2)

where 14 is the 4×4 unit matrix, 𝜸 = (𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5) is the vector of the five Dirac matrices,
𝜖0
𝒌

and 𝝐𝒌 = (𝜖1
𝒌 , 𝜖

2
𝒌 , 𝜖

3
𝒌
, 𝜖4

𝒌 , 𝜖
5
𝒌
) are the real-valued coefficients of these matrices, and 𝜇 is the

chemical potential. Whereas 𝜖0
𝒌

is an even function of momentum, 𝒌-parity of other coefficients
𝜖𝑛
𝒌

(𝑛 > 0) depends on the details of the extra DOF. The superconducting state is assumed to
be a mixture of even- and odd-parity pairing components. The pairing potential Δ(𝒌) for such
mixed-parity superconducting states has the general form

Δ̂(𝒌) = Δ1(𝜂0
𝒌14 + 𝜼𝒌 · 𝜸) + Δ2

∑︁
𝑚<𝑛

𝜂𝑚𝑛
𝒌 𝑖𝛾𝑚𝛾𝑛, (4.3)
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where Δ̂(𝒌) ≡ Δ(𝒌)𝑈†
𝑇

and 𝑈𝑇 is the unitary part of the time-reversal operator. The complex-
valued constants Δ1 and Δ2 represent the superconducting order parameters for the even- and
odd-parity pairing channels, respectively. As a consequence of the fermionic antisymmetry
Δ(𝒌) = −ΔT(−𝒌), the even-parity (odd-parity) part of Δ̂(𝒌) is expressed by a linear combination
of 14 and 𝛾𝑛 (𝑖𝛾𝑚𝛾𝑛) as shown in Eq. (4.3) (see Appendix E). The real-valued functions 𝜂0

𝒌
,

𝜼𝒌 = (𝜂1
𝒌 , 𝜂

2
𝒌 , 𝜂

3
𝒌
, 𝜂4

𝒌 , 𝜂
5
𝒌
), and 𝜂𝑚𝑛

𝒌
(1 ≤ 𝑚 < 𝑛 ≤ 5) determines the details of order parameters.

Whereas 𝜂0
𝒌

is an even function of momentum, 𝒌-parity of others 𝜂𝑛
𝒌

and 𝜂𝑚𝑛
𝒌

depends on
the details of the extra DOF. Note that the 𝒌-parity of 𝜂𝑛

𝒌
must be the same as that of 𝜖𝑛

𝒌
.

Although we adopt a BCS-type description of superconductivity in this work, we consider that
our argument is hardly affected by enhanced quantum fluctuations in low-dimensional systems
when the long-range order occurs.

4.3 Asymmetric Bogoliubov spectrum

We here consider general BdG Hamiltonian including more than two band models, and later
focus on the two-band models. In the following, we assume that each band is weakly coupled
and the intraband pairing is dominant compared to the interband pairing. In such situations,
spontaneous T -symmetry breaking with maintaining the PT -symmetry is energetically favored
in the mixed-parity superconducting states [8, 63] (see Sec. 1.3 for details), and the symmetry
of the superconducting order parameter becomes equivalent to that of odd-parity magnetic
multipoles [216]. A characteristic feature of the odd-parity magnetic multipole ordered state
is the asymmetric modulation of the band structure [55, 56, 231, 232], which leads to pe-
culiar nonequilibrium responses such as nonreciprocal transport [233], magnetopiezoelectric
effect [234–236], and photocurrent generation [220, 221]. Therefore, the appearance of the
asymmetric Bogoliubov spectrum is naturally expected in the PT -symmetric mixed-parity su-
perconductors. However, the asymmetric Bogoliubov spectrum is not obtained in single-band
models (see later discussions).

4.3.1 P,T -odd bilinear product

To induce such asymmetric modulation in the Bogoliubov spectrum, effects of the P- and
T -symmetry breaking in the particle-particle superconducting channel should be transferred
into the particle-hole channel. This suggests that it is not sufficient to consider only the pairing
potentialΔ(𝒌), since it is not gauge invariant. Instead ofΔ(𝒌) alone, we need to consider gauge-
invariant bilinear products of Δ(𝒌) and Δ†(𝒌) [208] in order to reveal conditions for realizing
the asymmetric Bogoliubov spectrum. Here, we focus on the simplest bilinear products, that
is, Δ(𝒌)Δ†(𝒌). The parity-odd and time-reversal-odd (P,T -odd) part of this bilinear product
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is calculated as
𝑀 (1)

− (𝒌) = 1
2

(
[Δ̂𝑔 (𝒌), Δ̂𝑢†(𝒌)] + [Δ̂𝑢 (𝒌), Δ̂𝑔†(𝒌)]

)
, (4.4)

where Δ̂𝑔 (𝒌) and Δ̂𝑢 (𝒌) are the even- and odd-parity part of Δ̂(𝒌), respectively (see Appendix F
for the derivation of Eq. (4.4)). Owing to the gauge invariance and P,T -odd behavior of
𝑀 (1)

− (𝒌), a nonzero 𝑀 (1)
− (𝒌) can be a measure of the P- and T -symmetry breaking in the

particle-hole channel, which permits emergence of the asymmetric Bogoliubov spectrum. Note
that the pairing state must be nonunitary to induce a nonzero 𝑀 (1)

− (𝒌), since 𝑀 (1)
− (𝒌) = 0

when Δ(𝒌)Δ†(𝒌) is proportional to the unit matrix. In analogy with the spin polarization of
nonunitary spin-triplet superconducting states in spin-1/2 single-band models [163], the P,T -
odd bilinear product 𝑀 (1)

− (𝒌) can be interpreted as a polarization of an internal DOF in the
superconducting state.

4.3.2 Interband pairing

The emergence of a nonzero P,T -odd bilinear product 𝑀 (1)
− (𝒌) requires the interband pairing.

To see this, we consider the problem in the band basis. Since 𝐻0(𝒌) is assumed to preserve
the P- and T -symmetries, the energy eigenvalues are doubly degenerate and labelled by a
pseudospin index. Especially, we choose the so-called manifestly covariant Bloch basis [49], in
which the pseudospin index transforms like a true spin-1/2 under time-reversal and crystalline
symmetry operations. In this basis, the intraband pairing potential is generally expressed as

Δ𝒌 = (𝜓𝒌 + 𝒅𝒌 · 𝒔)𝑖𝑠𝑦, (4.5)

where 𝒔 = (𝑠𝑥 , 𝑠𝑦, 𝑠𝑧) are Pauli matrices in pseudospin space. The complex-valued functions
𝜓𝒌 and 𝒅𝒌 are even and odd functions of 𝒌, respectively. Then, in the absence of the interband
pairing, the multiband BdG Hamiltonian matrix reduces to a series of decoupled blocks de-
scribing spin-1/2 single-band superconductors. The bilinear product for this intraband pairing
potential is obtained as

Δ𝒌Δ
†
𝒌
= ( |𝜓𝒌 |2 + |𝒅𝒌 |2)12 + 2Re(𝜓𝒌 𝒅

∗
𝒌) · 𝒔 + 𝑖(𝒅𝒌 × 𝒅∗𝒌) · 𝒔. (4.6)

In Eq. (4.6), the second and third terms are nonunitary components that break P- and T -
symmetries, respectively. However, there appears no term breaking both P- and T -symmetries,
and hence the P,T -odd bilinear product for this Δ𝒌 must vanish. This indicates that the inter-
band pairing is necessary for a nonzero P,T -odd bilinear product 𝑀 (1)

− (𝒌), which is essential
for realizing the asymmetric Bogoliubov spectrum. This is also the reason the asymmetric
Bogoliubov spectrum is not obtained in single-band models.

As explained in Sec. 1.1, the presence of interband pairing can be characterized by the
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so-called superconducting fitness 𝐹 (𝒌) [29, 30], which is defined as

𝐹 (𝒌)𝑈𝑇 = 𝐻0(𝒌)Δ(𝒌) − Δ(𝒌)𝐻∗
0 (−𝒌). (4.7)

Since a nonvanishing 𝐹 (𝒌)𝐹†(𝒌) quantifies the strength of interband pairing by definition [29,
30], its P,T -odd part should be nonzero to realize a nonvanishing 𝑀 (1)

− (𝒌). The P,T -odd
part of 𝐹 (𝒌)𝐹†(𝒌) is obtained as

𝑀 (2)
− (𝒌) = 1

2

(
[𝐹𝑔 (𝒌), 𝐹𝑢†(𝒌)] + [𝐹𝑢 (𝒌), 𝐹𝑔†(𝒌)]

)
, (4.8)

where 𝐹𝑔 (𝒌) and 𝐹𝑢 (𝒌) are the even- and odd-parity part of 𝐹 (𝒌), respectively. If the normal
state preserves both P- and T -symmetries, they are obtained as 𝐹𝑔,𝑢 (𝒌) = [𝐻0(𝒌), Δ̂𝑔,𝑢 (𝒌)]
and 𝑀 (2)

− (𝒌) can be explicitly written as

𝑀 (2)
− (𝒌) = 1

2

( [
[𝐻0(𝒌), Δ̂𝑔 (𝒌)], [Δ̂†

𝑢 (𝒌), 𝐻0(𝒌)]
]
+

[
[𝐻0(𝒌), Δ̂𝑢 (𝒌)], [Δ̂†

𝑔 (𝒌), 𝐻0(𝒌)]
] )

.

(4.9)

Note that the P,T -odd part of 𝐹 (𝒌)𝐹†(𝒌) can be extracted in the same way as Δ(𝒌)Δ†(𝒌)
[compare Eq. (4.8) with Eq. (4.4)], since the transformation of 𝐹 (𝒌)𝐹†(𝒌) under space-inversion
P and time-reversal T can be described in the same way as that of Δ(𝒌)Δ†(𝒌). Based on
Eq. (4.8), not only the pair potential Δ(𝒌) but also the normal part 𝐻0(𝒌) must satisfy a proper
condition to realize 𝑀 (2)

− (𝒌) ≠ 0 and asymmetric Bogoliubov spectrum.

4.3.3 Application to two-band model

From the above discussions, we conclude that the necessary (but not sufficient) condition for
the asymmetric Bogoliubov spectrum can be written as 𝑀 (1)

− (𝒌) ≠ 0 ∩ 𝑀 (2)
− (𝒌) ≠ 0, which

implies the superconductivity-driven P- and T -symmetry breaking in the particle-hole channel.
We here write down this necessary condition for the general two-band BdG Hamiltonian. By
substituting Eqs. (4.2) and (4.3) to Eqs. (4.4) and (4.8), we obtain the P,T -odd bilinear products
𝑀 (1)

− (𝒌) and 𝑀 (2)
− (𝒌) as follows:

𝑀 (1)
− (𝒌) = 2Im(Δ1Δ

∗
2)

∑︁
𝑚<𝑛

𝜂𝑚𝑛
𝒌 (𝜂𝑛𝒌𝛾𝑚 − 𝜂𝑚𝒌 𝛾𝑛), (4.10)

𝑀 (2)
− (𝒌) = Tr[𝑀 (1)

− (𝒌)𝐻̃0(𝒌)]𝐻̃0(𝒌), (4.11)

where 𝐻̃0(𝒌) ≡ 𝐻0(𝒌) − (𝜖0
𝒌
− 𝜇)14. We see that 𝑀 (1)

− (𝒌) appears inside the expression of
𝑀 (2)

− (𝒌), and hence the necessary condition for the asymmetric Bogoliubov spectrum can be
simplified as Tr[𝑀 (1)

− (𝒌)𝐻̃0(𝒌)] ≠ 0 in two-band models. Note that it is not clear whether
𝑀 (2)

− (𝒌) can be written in terms of 𝑀 (1)
− (𝒌) in more than two band models since Equation (4.11)
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is derived for the general two-band model by using the properties of Dirac matrices. From
Eqs. (4.10) and (4.11), the necessary condition (i.e., Tr[𝑀 (1)

− (𝒌)𝐻̃0(𝒌)] ≠ 0) can be summarized
as following two criteria; (i) the relative phase difference between even- and odd-parity pairing
potentials must be nonzero so that Im(Δ1Δ

∗
2) ≠ 0, and (ii) the BdG Hamiltonian must satisfy

𝜖𝑚
𝒌
𝜂𝑛
𝒌
𝜂𝑚𝑛
𝒌

≠ 0 or 𝜖𝑛
𝒌
𝜂𝑚
𝒌
𝜂𝑚𝑛
𝒌

≠ 0 for 1 ≤ ∃𝑚 < ∃𝑛 ≤ 5. Interpretations of these requirements in
the 𝜎𝜇 ⊗ 𝜏𝜈 basis are shown in Appendix E.

We now confirm that the asymmetric Bogoliubov spectrum indeed appears when the above
two criteria are fulfilled. A minimal two-band model satisfying the criterion (ii) can be obtained
by substituting 𝝐𝒌 = 𝑟𝜖𝑎

𝒌
𝒆𝑎 + (1− 𝑟)𝜖𝑏

𝒌
𝒆𝑏, 𝜼𝒌 = (1− 𝑟)𝜂𝑎

𝒌
𝒆𝑎 + 𝑟𝜂𝑏𝒌𝒆𝑏, and 𝜂𝑚𝑛

𝒌
= 𝛿𝑚𝑎𝛿𝑛𝑏𝜂

𝑎𝑏
𝒌

into
Eqs. (4.2) and (4.3). Here, 𝑎 and 𝑏 are specific integers satisfying 1 ≤ 𝑎 < 𝑏 ≤ 5, 𝒆𝑛 is the
unit vector for the 𝑛-th component, and 𝑟 takes the value either 0 or 1. Under this setup, we can
analytically diagonalize the BdG Hamiltonian as(

𝐻0(𝒌) Δ(𝒌)
Δ†(𝒌) −𝐻∗

0 (−𝒌)

)
→ diag(𝐸+

𝒌12, 𝐸
−
𝒌12,−𝐸+

−𝒌12,−𝐸−
−𝒌12), (4.12)

where 12 is the 2× 2 unit matrix. Based on the correspondence between the Dirac matrices and
𝜎𝜇 ⊗ 𝜏𝜈 matrices (see Appendix E), the energy spectrum 𝐸±

𝒌 can be obtained as

𝐸±
𝒌 =

√√√
𝜉2
𝒌
+ 1

4

{
Tr[Δ(𝒌)Δ†(𝒌)] ± Tr[𝑀 (1)

− (𝒌)𝐻̃0(𝒌)]
𝑟𝜖𝑎

𝒌
+ (1 − 𝑟)𝜖𝑏

𝒌

}
± [𝑟𝜖𝑎𝒌 + (1 − 𝑟)𝜖𝑏𝒌 ], (4.13)

where 𝜉𝒌 ≡ 𝜖0
𝒌
−𝜇. By using the transformation properties of the BdG Hamiltonian under space-

inversion and time-reversal, we can confirm that Eq. (4.13) satisfies 𝐸+
−𝒌 ≠ 𝐸±

𝒌 and 𝐸−
−𝒌 ≠ 𝐸±

𝒌

(i.e., the Bogoliubov spectrum is asymmetric) when Tr[𝑀 (1)
− (𝒌)𝐻̃0(𝒌)] ≠ 0 as follows. For

𝑟 = 1, Eq. (4.13) leads to

𝐸±
𝒌 =

√︃
𝜉2
𝒌
+ |Δ1𝜂

𝑏
𝒌
|2 + |Δ2𝜂

𝑎𝑏
𝒌
|2 ± 2Im(Δ1Δ

∗
2)𝜂

𝑏
𝒌
𝜂𝑎𝑏
𝒌

± 𝜖𝑎𝒌 . (4.14)

Then, we need to specify the 𝒌-parity of 𝜖𝑎
𝒌
, 𝜂𝑏

𝒌
, and 𝜂𝑎𝑏

𝒌
, which depend on the details of the extra

DOF, to investigate the property of the Bogoliubov spectrum 𝐸±
−𝒌 . We here denote 𝜖𝑎−𝒌 = 𝑝𝑎𝜖

𝑎
𝒌
,

𝜂𝑏−𝒌 = 𝑝𝑏𝜂
𝑏
𝒌
, and 𝜂𝑎𝑏−𝒌 = 𝑝𝑎𝑏𝜂

𝑎𝑏
𝒌

(𝑝𝑎, 𝑝𝑏, 𝑝𝑎𝑏 = ±1). From P- and T -symmetric behavior of
𝐻0(𝒌) (see Eqs. (E.1) and (E.2)), we obtain 𝑝𝑎𝛾𝑎 = 𝑈

†
𝑇
𝛾∗𝑎𝑈𝑇 = 𝑈

†
𝑃
𝛾𝑎𝑈𝑃. On the other hand,

the P,T -odd behavior of 𝑀 (1)
− (𝒌) = 2Im(Δ1Δ

∗
2)𝜂

𝑏
𝒌
𝜂𝑎𝑏
𝒌
𝛾𝑎 leads to −𝑝𝑏𝑝𝑎𝑏𝛾𝑎 = 𝑈

†
𝑇
𝛾∗𝑎𝑈𝑇 =

𝑈
†
𝑃
𝛾𝑎𝑈𝑃. Thus, 𝑝𝑎 = −𝑝𝑏𝑝𝑎𝑏 holds in general. Using this relation, we obtain

𝐸±
−𝒌 =

√︃
𝜉2
𝒌
+ |Δ1𝜂

𝑏
𝒌
|2 + |Δ2𝜂

𝑎𝑏
𝒌
|2 ∓ 𝑝𝑎2Im(Δ1Δ

∗
2)𝜂

𝑏
𝒌
𝜂𝑎𝑏
𝒌

± 𝑝𝑎𝜖
𝑎
𝒌 (𝑝𝑎 = ±1). (4.15)

Comparing Eq. (4.15) with (4.14), we can safely say that 𝐸±
−𝒌 ≠ 𝐸+

𝒌 , 𝐸
−
𝒌 and the Bogoliubov
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spectrum is asymmetric. In the same manner, we can prove the asymmetry of Eq. (4.13) for
𝑟 = 0. This result implies that 𝑀 (1)

− (𝒌) ≠ 0 ∩ 𝑀 (2)
− (𝒌) ≠ 0 is indeed a necessary condition for

emergence of the asymmetric Bogoliubov spectrum.

4.4 Anapole superconductivity

To obtain further insight into the asymmetric Bogoliubov spectrum, we now investigate the free
energy of the above minimal model satisfying 𝑀 (1)

− (𝒌) ≠ 0 ∩ 𝑀 (2)
− (𝒌) ≠ 0. By differentiating

Eq. (4.13) with respect to Δ 𝑗 and Δ∗
𝑗

( 𝑗 = 1, 2), the GL free energy for superconductivity is
derived as follows (see Appendix G for the derivation):

F = 𝛼1 |Δ1 |2 + 𝛼2 |Δ2 |2 + 𝛽1 |Δ1 |4 + 𝛽2 |Δ2 |4

+ 4𝛽 |Δ1 |2 |Δ2 |2 − 𝛽(Δ2
1Δ

∗2
2 + Δ2

2Δ
∗2
1 )

+
∑︁

𝜈=𝑥,𝑦,𝑧

(𝜅1,𝜈 |Δ1 |2 + 𝜅2,𝜈 |Δ2 |2)𝑞2
𝜈 + 𝑻 · 𝒒, (4.16)

where 𝒒 = (𝑞𝑥 , 𝑞𝑦, 𝑞𝑧) is the center-of-mass momentum of Cooper pairs. The analytical
expressions of 𝛼 𝑗 , 𝛽 𝑗 (> 0), 𝛽(> 0), and 𝜅 𝑗 ,𝜈 (> 0) are shown in Appendix G. The last term
is the Lifshitz invariant [215] stabilizing the FFLO state with 𝒒 ∥ 𝑻. Since the Cooper pair
condensation occurs at a single 𝒒 in our model, the superconducting order parameter is expressed
as Δ(𝒓) ∝ 𝑒𝑖𝒒·𝒓 in real space (Fig. 4.1b). The coefficient vector 𝑻 = (𝑇𝑥 , 𝑇𝑦, 𝑇𝑧) is given by

𝑻 = 𝜌0⟨Tr[𝑀 (1)
− (𝒌)𝐻̃0(𝒌)]𝒗𝒌⟩FS

7𝜁 (3)
16𝜋2𝑇2 , (4.17)

where 𝜌0 is the DOS at the Fermi energy, ⟨· · · ⟩FS denotes the average over the Fermi surface,
𝒗𝒌 ≡ ∇𝒌𝜉𝒌 , 𝑇 is the temperature, and 𝜁 (𝑥) is the Riemann zeta function. 𝑻 can be interpreted
as the effective anapole moment of the superconducting state. To see this, we here consider
conditions for 𝑻 ≠ 0. Eq. (4.17) indicates that 𝑻 is nonzero only for P- and T -symmetry
breaking pairing states with 𝑀 (1)

− (𝒌) ≠ 0. In addition, ⟨Tr[𝑀 (1)
− (𝒌)𝐻̃0(𝒌)]𝒗𝒌⟩FS is nonzero

only when the superconducting order parameter belongs to a polar IR, since the velocity 𝒗𝒌 is
a polar vector and 𝐻̃0(𝒌) is assumed to be P-symmetric. Therefore, 𝑻 is a polar and time-
reversal-odd vector; the symmetry is equivalent to the anapole moment [216, 217]. Hereafter,
we refer to the superconductivity with 𝑻 ≠ 0 as the anapole superconductivity. The anapole
superconductivity realizes a nonuniform FFLO state with 𝒒 ∥ 𝑻 (see Fig. 4.1b) to compensate
a polar asymmetry in the Bogoliubov spectrum. The PT -symmetric mixed-parity pairing
is an origin of the anapole superconductivity. Although the stability of such pairing has been
revealed [8], a self-consistent calculation is desirable to justify the stability of the anapole FFLO
state and clarify the properties further. Such detailed analysis is left for future work.

Finally, we comment that the anapole moment must be aligned in the conducting direction
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Inversion center
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α
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a b
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Fig. 4.2. Schematic of local P-symmetry breaking in UTe2. U atoms form a ladder structure
along the 𝑎-axis. This locally NCS crystal structure leads to a sublattice-dependent staggered
form of Rashba-type SOC.

in low-dimensional systems. This restriction naturally appears through the above expression
(4.17) of the effective anapole moment 𝑻.

4.5 Application to UTe2

We now discuss the asymmetric Bogoliubov spectrum and anapole superconductivity in UTe2.
Intensive studies after the discovery of superconductivity evidenced odd-parity spin-triplet su-
perconductivity in UTe2 [134, 135, 227, 228, 237–249]. However, multiple superconducting
phases similar to Fig. 4.1a have been observed under pressure [203–206, 223–226], and the
antiferromagnetic quantum criticality implies the spin-singlet superconductivity there [225]. A
theoretical study based on the periodic Anderson model verified this naive expectation and pre-
dicted the parity-mixed superconducting state in the intermediate pressure region [202]. Note
that the interband pairing, which is an essential ingredient for the asymmetric Bogoliubov spec-
trum and anapole superconductivity, may have considerable impacts on the superconductivity
in UTe2 owing to multiple bands near the Fermi level [202, 250–256].

First, let us discuss the symmetry of superconductivity. Since the crystal structure of UTe2

preserves 𝐷2ℎ point group symmetry, the superconducting order parameter is classified based
on the IRs of 𝐷2ℎ. Below we consider all the odd-parity IRs, namely, 𝐴𝑢, 𝐵1𝑢, 𝐵2𝑢, and 𝐵3𝑢,
although the 𝐴𝑢 and 𝐵3𝑢 IRs may be promising candidates [202, 247, 248, 250, 257]. Moreover,
a recent calculation has shown that the even-parity 𝐴𝑔 superconducting state is favored by
antiferromagnetic fluctuation under pressure [202]. Therefore, we study a mixture of the even-
parity 𝐴𝑔 and odd-parity either 𝐴𝑢, 𝐵1𝑢, 𝐵2𝑢, or 𝐵3𝑢 states, while we particularly focus on the
𝐴𝑢 or 𝐵3𝑢 pairing.
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Table 4.1. Basis functions of 𝒅𝑔,𝑢
𝒌

and corresponding 𝒈𝒌 · (𝒅𝑔𝒌×𝒅𝑢
𝒌
) for possible PT -symmetric

mixed-parity pairing states in UTe2. The last column shows the form of the effective anapole
moment 𝑻 for each pairing state.

Pairing 𝒅𝑔
𝒌

𝒅𝑢
𝒌

𝒈𝒌 · (𝒅𝑔𝒌 × 𝒅𝑢
𝒌
) 𝑻

𝐴𝑔 + 𝑖𝐴𝑢 𝜙
𝑔
𝑥 𝑘𝑦 𝒙̂ + 𝜙

𝑔
𝑦𝑘𝑥 𝒚̂ 𝜙𝑢𝑥 𝑘𝑥 𝒙̂ + 𝜙𝑢𝑦𝑘𝑦 𝒚̂ + 𝜙𝑢𝑧 𝑘𝑧𝒛 𝛼(𝜙𝑔𝑥 + 𝜙

𝑔
𝑦)𝜙𝑢𝑧 𝑘𝑥𝑘𝑦𝑘𝑧 𝑻 = 0

𝐴𝑔 + 𝑖𝐵3𝑢 𝜙
𝑔
𝑥 𝑘𝑦 𝒙̂ + 𝜙

𝑔
𝑦𝑘𝑥 𝒚̂ 𝜙𝑢𝑦𝑘𝑧 𝒚̂ + 𝜙𝑢𝑧 𝑘𝑦𝒛 𝛼(𝜙𝑔𝑥 + 𝜙

𝑔
𝑦)𝜙𝑢𝑧 𝑘𝑥𝑘2

𝑦 𝑻 ∥ 𝒙̂
𝐴𝑔 + 𝑖𝐵2𝑢 𝜙

𝑔
𝑥 𝑘𝑦 𝒙̂ + 𝜙

𝑔
𝑦𝑘𝑥 𝒚̂ 𝜙𝑢𝑥 𝑘𝑧 𝒙̂ + 𝜙𝑢𝑧 𝑘𝑥 𝒛 𝛼(𝜙𝑔𝑥 + 𝜙

𝑔
𝑦)𝜙𝑢𝑧 𝑘2

𝑥 𝑘𝑦 𝑻 ∥ 𝒚̂

𝐴𝑔 + 𝑖𝐵1𝑢 𝜙
𝑔
𝑥 𝑘𝑦 𝒙̂ + 𝜙

𝑔
𝑦𝑘𝑥 𝒚̂ 𝜙𝑢𝑥 𝑘𝑦 𝒙̂ + 𝜙𝑢𝑦𝑘𝑥 𝒚̂ + 𝜙𝑢𝑧 𝑘𝑥𝑘𝑦𝑘𝑧𝒛 𝛼(𝜙𝑔𝑥 + 𝜙

𝑔
𝑦)𝜙𝑢𝑧 𝑘2

𝑥 𝑘
2
𝑦𝑘𝑧 𝑻 ∥ 𝒛

Based on the above facts, we introduce a minimal model for UTe2 as follows:

𝐻0(𝒌) = (𝜀𝒌 − 𝜇)𝜎0 ⊗ 𝜏0 + 𝒈𝒌 · 𝝈 ⊗ 𝜏𝑧, (4.18)

Δ̂(𝒌) = Δ1(𝜓𝑔

𝒌
𝜎0 ⊗ 𝜏0 + 𝒅𝑔

𝒌
· 𝝈 ⊗ 𝜏𝑧)

+ Δ2(𝒅𝑢𝒌 · 𝝈 ⊗ 𝜏0 + 𝜓𝑢
𝒌𝜎0 ⊗ 𝜏𝑧), (4.19)

where 𝜏𝜈 represents the Pauli matrix for a sublattice DOF originating from a ladder structure
of U atoms (Fig. 4.2). We assume a simple form of the single-particle kinetic energy as
𝜀𝒌 = −2

∑
𝜈=𝑥,𝑦,𝑧 𝑡𝜈 cos 𝑘𝜈. The second term of Equation (4.18) is a sublattice-dependent

staggered form of Rashba SOC with 𝒈𝒌 = 𝛼(sin 𝑘𝑦 𝒙̂ − sin 𝑘𝑥 𝒚̂), which originates from the
local P-symmetry breaking at U sites [202, 258]. Since the local site symmetry descends to
𝐶2𝑣 from 𝐷2ℎ owing to the ladder structure of U atoms, the existence of the Rashba-type SOC
with opposite coupling constants ±𝛼 at each sublattices is naturally expected (see Fig. 4.2).
The local P-symmetry breaking also leads to a sublattice-dependent parity mixing of the pair
potential [31]. Then, the even-parity (odd-parity) pair potential is assumed to be a mixture of
intrasublattice spin-singlet (spin-triplet) and staggered spin-triplet (spin-singlet) components as
shown in Eq. (4.19). We assume the form of the 𝒌-dependent coefficients 𝜓𝑔

𝒌
and 𝒅𝑔

𝒌
(𝒅𝑢

𝒌
and

𝜓𝑢
𝒌
) so as to be consistent with the basis functions of the 𝐴𝑔 IR (𝐴𝑢, 𝐵1𝑢, 𝐵2𝑢, or 𝐵3𝑢 IRs).
We now consider the necessary conditions for an asymmetric Bogoliubov spectrum in UTe2.

As discussed in the above sections, a nonzero Tr[𝑀 (1)
− (𝒌)𝐻̃0(𝒌)] is necessary for the asymmetric

Bogoliubov spectrum in a two-band model. For Eqs. (4.18) and (4.19), this quantity is obtained
as Tr[𝑀 (1)

− (𝒌)𝐻̃0(𝒌)] = −8Im(Δ1Δ
∗
2) [𝒈𝒌 · (𝒅𝑔

𝒌
× 𝒅𝑢

𝒌
)]. Therefore, 𝒈𝒌 · (𝒅𝑔

𝒌
× 𝒅𝑢

𝒌
) ≠ 0 must

be satisfied to realize the asymmetric Bogoliubov spectrum. This indicates that the sublattice-
dependent SOC and spin-triplet pairing components 𝒅𝑔,𝑢

𝒌
are essential for the appearance of

the asymmetric Bogoliubov spectrum. On the other hand, the spin-singlet pairing components
𝜓
𝑔,𝑢

𝒌
do not play an important role for realizing the asymmetric Bogoliubov spectrum in this

model. Hereafter, we assume 𝜓
𝑔

𝒌
= 1 and 𝜓𝑢

𝒌
= 0 for simplicity. The basis functions of 𝒅𝑔,𝑢

𝒌

and corresponding 𝒈𝒌 · (𝒅𝑔𝒌 × 𝒅𝑢
𝒌
) for possible mixed-parity superconducting states in UTe2 are

68



Chapter 4. Anapole superconductivity from PT -symmetric mixed-parity interband pairing

summarized in Table 4.1. As shown in Table 4.1, 𝒈𝒌 · (𝒅𝑔𝒌 × 𝒅𝑢
𝒌
) ∝ 𝛼(𝜙𝑔𝑥 + 𝜙𝑔𝑦)𝜙𝑢𝑧 for all patterns

of the superconducting state, where 𝜙
𝑔,𝑢
𝜈 is a real-valued coefficient of the 𝜈-th component of

𝒅𝑔,𝑢
𝒌

. Therefore, 𝜙𝑔𝑥 +𝜙𝑔𝑦 ≠ 0 and 𝜙𝑢𝑧 ≠ 0 are necessary for the asymmetric Bogoliubov spectrum.
According to a recent numerical calculation in Ref. [202], the magnetic anisotropy of UTe2 leads
to |𝜙𝑔𝑦 | ≫ |𝜙𝑔𝑥 | for the 𝐴𝑔 state. Then, we assume 𝒅𝑔

𝒌
= sin 𝑘𝑥 𝒚̂ (i.e., 𝜙𝑔𝑥 = 0 and 𝜙

𝑔
𝑦 = 1) in

the following calculations. On the other hand, we assume 𝜙𝑢𝜈 = 𝛿𝜈𝑧 for the odd-parity pairing
component to extract only the essential ingredient for the asymmetric Bogoliubov spectrum and
make a clear discussion.

The numerical results of the Bogoliubov spectrum for this UTe2 model are shown in Fig. 4.3.
We here consider only the 𝐴𝑔 + 𝑖𝐴𝑢 and 𝐴𝑔 + 𝑖𝐵3𝑢 states as promising candidates of the PT -
symmetric mixed-parity superconductivity in UTe2. It is shown that the Bogoliubov spectrum
of both 𝐴𝑔 + 𝑖𝐴𝑢 and 𝐴𝑔 + 𝑖𝐵3𝑢 states are indeed asymmetric along some directions in the
Brillouin zone (see Figs. 4.3a and 4.3c). The Bogoliubov spectrum in the 𝐴𝑔 + 𝑖𝐴𝑢 state exhibits
a 𝑘𝑥𝑘𝑦𝑘𝑧-type tetrahedral asymmetry as depicted in Fig. 4.3b, while the Bogoliubov spectrum
in the 𝐴𝑔 + 𝑖𝐵3𝑢 state shows a 𝑘𝑥𝑘

2
𝑦-type unidirectional asymmetry as depicted in Fig. 4.3d.

Consistent with these numerical results, Table 4.1 reveals that 𝒈𝒌 · (𝒅𝑔𝒌 × 𝒅𝑢
𝒌
) of the 𝐴𝑔 + 𝑖𝐴𝑢 and

𝐴𝑔 + 𝑖𝐵3𝑢 states are proportional to 𝑘𝑥𝑘𝑦𝑘𝑧 and 𝑘𝑥𝑘
2
𝑦, respectively. This implies that the type of

asymmetry in the Bogoliubov spectrum is determined by the symmetry of Tr[𝑀 (1)
− (𝒌)𝐻̃0(𝒌)],

which is an essential ingredient for realizing the asymmetric Bogoliubov spectrum.
Finally, we discuss the possible anapole superconductivity in UTe2. The 𝐴𝑔 + 𝑖𝐴𝑢 state

belongs to the nonpolar 𝐴−
𝑢 IR (IRs with odd time-reversal parity are denoted by Γ−), which cor-

responds to nonpolar odd-parity magnetic multipoles such as magnetic monopole, quadrupole,
and hexadecapole from the viewpoint of symmetry. On the other hand, the 𝐴𝑔 + 𝑖𝐵3𝑢 state
belongs to the polar 𝐵−

3𝑢 IR with the polar 𝑥-axis, which is symmetrically equivalent to the
anapole moment 𝑇𝑥 . Since the anapole superconducting states are allowed only when the su-
perconducting order parameter belongs to a polar IR, the 𝐴𝑔 + 𝑖𝐵3𝑢 state is a possible candidate
of the anapole superconductivity. Indeed, as discussed above, the Bogoliubov spectrum of the
𝐴𝑔 + 𝑖𝐵3𝑢 state exhibits a polar 𝑘𝑥𝑘2

𝑦-type asymmetry, while the Bogoliubov spectrum of the
𝐴𝑔 + 𝑖𝐴𝑢 state exhibits a nonpolar 𝑘𝑥𝑘𝑦𝑘𝑧-type asymmetry (see Fig. 4.3). It should also be noted
that the Bogoliubov spectrum in the 𝐴𝑔 + 𝑖𝐵3𝑢 state possesses the polarity along the 𝑘𝑥-axis,
which coincides with the polar axis of the 𝐵−

3𝑢 IR.
Based on the above classification and the GL free energy (4.16), the anapole FFLO state

with 𝒒 ∝ 𝑻 ∥ 𝒙̂ should be naturally realized in the 𝐴𝑔 + 𝑖𝐵3𝑢 state. In the same manner, we
expect the realization of anapole superconducting states with 𝑻 ∥ 𝒚̂ and 𝑻 ∥ 𝒛 in the 𝐴𝑔 + 𝑖𝐵2𝑢

and 𝐴𝑔 + 𝑖𝐵1𝑢 states, respectively. See Appendix H for a comprehensive symmetry analysis for
possible anapole superconductivity in UTe2.
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Fig. 4.3. Asymmetric Bogoliubov spectrum for the UTe2 model. (a) Bogoliubov spectrum in
the 𝐴𝑔 + 𝑖𝐴𝑢 state with (Δ1,Δ2) = (0.2, 0.2𝑖) and 𝒅𝑢

𝒌
= sin 𝑘𝑧𝒛. (b) Schematic of 𝑘𝑥𝑘𝑦𝑘𝑧-type

asymmetric modulation in the Brillouin zone. (c) Bogoliubov spectrum in the 𝐴𝑔 + 𝑖𝐵3𝑢 state
with (Δ1,Δ2) = (0.2, 0.2𝑖) and 𝒅𝑢

𝒌
= sin 𝑘𝑦𝒛. (d) Schematic of 𝑘𝑥-type asymmetric modulation.

The symbols of the horizontal axis in (a) and (c) denote the 𝒌-points in the Brillouin zone
of a primitive orthorhombic lattice; Γ = (0, 0, 0), X = −X̄ = (𝜋, 0, 0), S = −S̄ = (𝜋, 𝜋, 0),
T = −T̄ = (0, 𝜋, 𝜋), R = −R̄ = (𝜋, 𝜋, 𝜋), Γ𝑦 = (0, 𝜋/4, 0), and X𝑦 = −X̄𝑦 = (𝜋, 𝜋/4, 0). In
the numerical calculations, parameters are set to be 𝑡𝜈 = 1.0, 𝜇 = −4.0, and 𝛼 = 0.4. The
asymmetric Bogoliubov spectrum appears in (a) and (c) consistent with the symmetry analysis
of Tr[𝑀 (1)

− (𝒌)𝐻̃0(𝒌)] ∝ 𝒈𝒌 · (𝒅𝑔𝒌 × 𝒅𝑢
𝒌
).
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4.6 Discussion and summary

From the analogy with magnetic states, we can predict various exotic superconducting phenom-
ena closely related to the asymmetric Bogoliubov spectrum. For instance, the asymmetry of the
Bogoliubov spectrum will significantly affect the superconducting piezoelectric effect [236],
nonreciprocal optical responses [259], and nonreciprocal Meissner effect [260]. All of these
phenomena are caused by the absence of P- and T -symmetries in the superconducting state.
Hence, they will be useful probes to offer conclusive evidence for the P,T -symmetry breaking
and the Bogoliubov spectrum asymmetry in superconductors. Studies for the interplay of these
exotic superconducting phenomena and asymmetric Bogoliubov spectrum will be presented
elsewhere.

Experimental detection of the anapole superconductivity should be possible by observing
its domain structure. The anapole superconducting state effectively carries a supercurrent along
the anapole moment 𝑻, since the order parameter is spatially modulated with 𝑒𝑖𝒒·𝒓 ∼ 𝑒𝑖𝑻·𝒓 .
This indicates the emergence of superconducting vortices at the anapole domain boundaries
(see Fig. 4.4a) even though an external magnetic field is absent. The anapole domains can be
generally formed owing to the degeneracy between the Γ𝑔 + 𝑖Γ𝑢 pairing and Γ𝑔 − 𝑖Γ𝑢 pairing
states, which have the opposite anapole moment. Therefore, the observation of vortices at
a zero magnetic field can be solid evidence of the anapole superconductivity. In addition,
the anapole domain can be switched by the supercurrent in a similar way to the electrical
switching of antiferromagnets [261, 262]. In an anapole superconductor, the effective anapole
moment 𝑻 couples to the applied electric current 𝒋, which is a symmetry-adapted field of
the anapole moment. Then, the anapole superconducting domain should be switched to align
the effective anapole moments along the injected supercurrent 𝒋 (see Fig. 4.4b). It should
also be noticed that the anapole domain switching eliminates the internal magnetic field from
the vortices at the domain boundaries, since the domain structure disappears by applying the
supercurrent. Therefore, the anapole superconducting domain switching can be regarded as
a process of erasing magnetic information. These properties indicate potential applications
of anapole superconductivity as a novel quantum device for magnetic information storage and
processing.

In summary, we have established that the PT -symmetric mixed-parity superconducting
states generally possess asymmetry in the energy spectrum of the Bogoliubov quasiparticles. We
have clarified that the asymmetric Bogoliubov spectrum can be induced by P,T -odd nonunitary
part of the bilinear product ΔΔ† that originates from the interband pairing. This means that the
multiband effects on superconductivity, which have not been taken into account in the previous
works, are essential for realizing the asymmetric Bogoliubov spectrum. Based on the above
insights, we have explicitly derived the necessary conditions for the emergence of asymmetric
Bogoliubov spectrum in PT -symmetric superconductors. Especially, we have shown that an
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a b

Anapole moment

Vortex

j

T

Fig. 4.4. Anapole domain and domain switching through supercurrent. (a) Vortices at the
boundary of anapole superconducting domains. (b) The proposed domain switching in anapole
superconductors. The effective anapole moment 𝑻 is aligned along the injected supercurrent 𝒋.

FFLO-like state, which we call anapole superconducting state, is stabilized in the absence of an
external magnetic field when the superconducting state belongs to a polar and time-reversal-odd
IR. The stabilization of the anapole superconducting state is evidenced by the emergence of
Lifshitz invariants in the GL free energy due to the effective anapole moment. The physics of
asymmetric Bogoliubov spectrum appears in any multiband superconductors when even- and
odd-parity pairing interactions are comparable in strength. As a specific example, we considered
the mixed-parity pairing states in UTe2, which is caused by an accidental competition of
ferromagnetic and antiferromagnetic spin fluctuations under pressure [202]. We have shown that
the mixed-parity superconductivity in UTe2 can realize the asymmetric Bogoliubov spectrum
and anapole superconductivity owing to the sublattice-dependent staggered antisymmetric SOC
and locally parity-mixed Cooper pairing, which originates from the locally NCS ladder structure
of U atoms. The asymmetric Bogoliubov spectrum may be linked to the asymmetric spectrum in
the STM measurement [227], although it was interpreted based on the chiral superconductivity.
The vortex structure near the anapole domain boundary (Fig. 4.4a) may also cause the polar
Kerr effect, reported for UTe2 [230]. Spontaneous ordering of strongly parity-mixed pairing
state and resulting asymmetric Bogoliubov spectrum can also be expected in superconductivity
mediated by parity-breaking fluctuations [48]. To further broaden the scope of application of
our theory, it is important to find microscopic electronic interactions that induce competing
even- and odd-parity pairing instabilities.

We predicted various superconducting phenomena induced by the asymmetric Bogoliubov
spectrum, such as the superconducting piezoelectric effect, nonlinear optical responses, non-
reciprocal Meissner effect, and anapole domain switching from the analogy with magnetic
materials. Topological properties and collective modes associated with the asymmetric Bogoli-
ubov spectrum may also be intriguing issues. Exploration of such exotic phenomena will be a
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promising route for future research.
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Chapter 5

Summary

In this thesis, we have investigated various exotic superconductivity associated with parity-
symmetry breaking.

In Chap. 2, we have studied the interplay of superconductivity, ferroelectricity, and mul-
tiorbital/multiband effects by analyzing a three-orbital model for STO. We have clarified two
distinct stabilization mechanisms for the FESC that rely on the presence of SOC. First, we
demonstrated that the ferroelectricity-induced Lifshitz transition stabilizes the FESC in a very
low carrier density regime. This result is in good agreement with the experimental result
of FESC in STO. Second, we showed that the Rashba-type spin-momentum locking in the
ferroelectric ordered state triggers the stabilization of FESC under magnetic fields, which is
independent of the carrier density. Interestingly, the stability of the FESC based on the above
two mechanisms is enhanced by the multiorbital/multiband effects in STO. Furthermore, we
found exotic superconducting phenomena induced by the coexistent ferroelectric order. Under a
high magnetic field, the FESC realizes a topological Weyl superconducting state in a low carrier
density regime. On the other hand, at zero magnetic fields, the ferroelectric superconducting
state hosts the multiorbital odd-frequency pair correlations.

In Chap. 3, exotic correlations between FM-fluctuation-mediated odd-parity superconduc-
tivity and locally NCS crystal structure have been elucidated in a two-dimensional bilayer
triangular lattice Hubbard model. By analyzing this model within the RPA, we demonstrated
the dominance of the FM spin fluctuations in a broad range of parameter regimes, which is
caused by the disconnected Fermi surface structure and underlying type-II vHS. In addition,
by performing the numerical calculations of the linearized Eliashberg equation, we showed
that the odd-parity spin-triplet 𝑓 -wave superconductivity is stabilized by the FM fluctuations.
Then, we investigated the impacts of the layer-dependent staggered antisymmetric SOC on spin
fluctuations and superconductivity. We clarified that the multiple superconducting transitions
between distinct odd-parity pairing states including topologically nontrivial superconducting
states are induced by tuning the antisymmetric SOC. The appearance of the multiple odd-parity
superconducting instabilities is explained by the delicate balance between the selection rule for

74



Chapter 5. Summary

locally NCS superconductors, anisotropy of the magnetic susceptibility, and local parity-mixing
effect of superconductivity. Based on the obtained results, we have discussed the possibility of
odd-parity superconductivity in bilayer TMDs and van der Waals ferromagnets.

In Chap. 4, we have studied the spontaneously ordered PT -symmetric mixed-parity su-
perconductivity in multiband systems. By analyzing a generic two-band model, we have
demonstrated that the PT -symmetric mixed-parity multiband superconductors generally ex-
hibit unusual asymmetry in the Bogoliubov spectrum. From the analogy with parity-breaking
magnetic materials, the asymmetric Bogoliubov spectrum is expected to host various nonequi-
librium superconducting phenomena. The essential ingredient for the asymmetric Bogoliubov
spectrum is the P- and T -symmetry breaking nonunitary component of the gap function arising
from the interband pairing. Therefore, the multiband nature of superconductivity is essential.
Furthermore, by analyzing the free energy, we also demonstrated that the asymmetric Bogoli-
ubov spectrum leads to the stabilization of an FFLO-like nonuniform state, namely anapole
superconducting state, at zero magnetic fields. The anapole superconductivity is caused by an
effective anapole moment of the pairing state, which appears only when the superconducting or-
der parameter belongs to a polar IR and the Bogoliubov spectrum possesses a polar asymmetry.
Based on the obtained results, we discussed the possibility of asymmetric Bogoliubov spectrum
and anapole superconductivity in UTe2 owing to the locally NCS crystal structure. Finally, we
proposed the experimental detection of anapole superconductivity through the observation of
vortices at the anapole domain boundary.

We have uncovered the novel interplay of superconductivity and parity symmetry breaking
from fresh viewpoints. Since some of the obtained results are based on simplified assumptions
or methods, one of the important future issues is further developing the theories presented in this
thesis. On the other hand, at present, there are not so many candidate materials to experimentally
verify our theoretical findings. Therefore, searching for new candidate materials and establishing
new experimental methods are essential for the future development of this research field.
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Appendix A

Effective Rashba spin-orbit coupling

In the Appendix, we clarify the origin of the unconventional Rashba SOC in STO (Sec. 2.4) by
deriving the effective Hamiltonian from two approaches.

A.1 Perturbation analysis for LS coupling

First, we carry out the perturbation analysis for the LS coupling 𝜆 and the odd-parity hy-
bridization 𝛾. This analysis is valid when 𝜆 is much smaller than other energy scales such as
the band-width. As a result of the first-order perturbation expansion for 𝜆, we obtain a new
𝒌-dependent basis as follows:

|𝑑𝑦𝑧, 𝜎⟩𝒌,𝜆 = |𝑑𝑦𝑧, 𝜎⟩ +
𝜆S𝜎

2

( |𝑑𝑥𝑦, 𝜎⟩
𝛿3,1(𝒌)

+ 𝑖 |𝑑𝑥𝑧, 𝜎⟩
𝛿2,1(𝒌)

)
, (A.1)

|𝑑𝑥𝑧, 𝜎⟩𝒌,𝜆 = |𝑑𝑧𝑥 , 𝜎⟩ +
𝜆

2

(
𝑖 |𝑑𝑥𝑦, 𝜎⟩
𝛿3,2(𝒌)

+
𝑖S𝜎 |𝑑𝑦𝑧, 𝜎⟩

𝛿2,1(𝒌)

)
, (A.2)

|𝑑𝑥𝑦, 𝜎⟩𝒌,𝜆 = |𝑑𝑥𝑦, 𝜎⟩ +
𝜆

2

(S𝜎 |𝑑𝑦𝑧, 𝜎⟩
𝛿3,1(𝒌)

+ 𝑖 |𝑑𝑥𝑧, 𝜎⟩
𝛿3,2(𝒌)

)
, (A.3)

where |𝑡2𝑔, 𝜎⟩ (𝑡2𝑔 = 𝑑𝑦𝑧, 𝑑𝑥𝑧, 𝑑𝑥𝑦, 𝜎 =↑, ↓) is the wave function of the local 𝑡2𝑔 orbitals,
𝛿𝑙,𝑙 ′ (𝒌) ≡ 𝜀𝑙 (𝒌) − 𝜀𝑙 ′ (𝒌), and S𝜎 = ±1 for 𝜎 =↑, ↓. Then, we carry out the 𝒌-dependent
basis transformation for H0 + Hpol from the local 𝑡2𝑔 orbital space |𝑡2𝑔, 𝜎⟩ to the renormalized
𝑡2𝑔 orbital space |𝑡2𝑔, 𝜎⟩𝒌,𝜆. In addition, we perform a block diagonalization for up and down
pseudospin sectors to derive the effective SOC. Finally, we neglect the interorbital component
since the orbital hybridizations by 𝜆 and 𝛾 are assumed to be small. Thus, in the case of a weak
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spin-orbit coupling, the effective Hamiltonian is described as

H̃ 𝐿
0 =

∑︁
𝒌,𝛼,𝜎

(
𝜀𝐿𝛼 (𝒌) − 𝜇

)
𝑐
†
𝒌,𝛼𝜎

𝑐𝒌,𝛼𝜎

+
∑︁

𝒌,𝛼,𝜎,𝜎′

𝒈𝐿𝛼 (𝒌) · 𝝈𝜎𝜎′𝑐
†
𝒌,𝛼𝜎

𝑐𝒌,𝛼𝜎′, (A.4)

where the lower, middle, and upper bands are denoted by the band index 𝛼 = 1, 2, 3. The
renormalized single-particle energy 𝜀𝐿𝛼 (𝒌) are described as

𝜀𝐿1 (𝒌) =
1
2

(
𝜀1(𝒌) + 𝜀2(𝒌) − |𝛿2,1(𝒌) |

)
, (A.5)

𝜀𝐿2 (𝒌) =
1
2

(
𝜀1(𝒌) + 𝜀2(𝒌) + |𝛿2,1(𝒌) |

)
, (A.6)

𝜀𝐿3 (𝒌) = 𝜀3(𝒌), (A.7)

and the effective 𝑔-vector 𝒈𝐿𝛼 (𝒌) are obtained as

𝒈𝐿1 (𝒌) = 2𝜆𝛾

©­­­­­­­­­«

sin 𝑘𝑦
©­«

1 − sgn[𝛿2,1(𝒌)]
𝛿3,2(𝒌)

ª®¬
− sin 𝑘𝑥

©­«
1 + sgn[𝛿2,1(𝒌)]

𝛿3,1(𝒌)
ª®¬

0

ª®®®®®®®®®¬
, (A.8)

𝒈𝐿2 (𝒌) = 2𝜆𝛾

©­­­­­­­­­«

sin 𝑘𝑦
©­«

1 + sgn[𝛿2,1(𝒌)]
𝛿3,2(𝒌)

ª®¬
− sin 𝑘𝑥

©­«
1 − sgn[𝛿2,1(𝒌)]

𝛿3,1(𝒌)
ª®¬

0

ª®®®®®®®®®¬
, (A.9)

𝒈𝐿3 (𝒌) = −2𝜆𝛾

©­­­­­­­­­«

sin 𝑘𝑦
©­«

1
𝛿3,2(𝒌)

ª®¬
− sin 𝑘𝑥

©­«
1

𝛿3,1(𝒌)
ª®¬

0

ª®®®®®®®®®¬
. (A.10)

Figure A.1 shows the 𝒌-dependence of the effective 𝑔-vector 𝒈𝐿𝛼 (𝒌) for each Rashba split bands
at 𝑘𝑧 = 0. We see that the unconventional Rashba spin-orbit splitting in the bulk STO [Fig. 2.4]
is well reproduced by the above perturbation analysis.

According to Eqs. (A.8), (A.9), and (A.10), the multiorbital effect is reflected in the SOC
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Fig. A.1. The magnitude of the spin-orbit splitting, which is derived by the perturbation analysis
for 𝜆 and 𝛾, in the (a) lower band, (b) middle band, and (c) upper band at 𝑘𝑧 = 0. The odd-parity
hopping integral is set to 𝛾/𝑡1 = 0.105. The arrows show the direction of the effective 𝑔-vector
𝒈𝐿𝛼 (𝒌).

through the energy difference 𝛿𝑙𝑙 ′ (𝒌) in two ways. One is the denominators, i.e., 𝛿3,1(𝒌) and
𝛿3,2(𝒌), and the other is the numerator, i.e., 1 ± sgn[𝛿2,1(𝒌)]. The origin of the unconventional
Rashba splitting in the upper band 𝛿E3(𝒌) is explained by the former multiorbital effect in the
denominator of Eq. (A.10) [100]. The magnitude of 𝛿E3(𝒌) is small on the line 𝒌 ∥ [100]
[Fig. A.1(c)] since 𝛿3,1(𝒌) is large and the 𝑦 component of the 𝑔-vector 𝒈𝐿3 (𝒌) is small. On
the other hand, a large 𝑥 component of 𝒈𝐿3 (𝒌) appears upon moving slightly away from the Γ-X
line because of the small value of its denominator 𝛿3,2(𝒌). Thus, the spin-orbit splitting in the
upper band is large at 𝒌 slightly away from the Γ-X line as shown in Figs. 2.4(a) and A.1(c).

The unconventional Rashba splitting in the lower and middle bands are explained by the
combination of two multiorbital effects represented by the denominator and numerator of Eqs.
(A.8) and (A.9). Since the denominators of Eqs. (A.8) and (A.9) are the same as those of Eq.
(A.10), the Rashba splitting different from that of the upper band originates from the numerator
1 ± sgn[𝛿2,1(𝒌)]. The 𝒌-dependence of 1 ± sgn[𝛿2,1(𝒌)] at 𝑘𝑧 = 0 is described as follows:

𝜂±(𝑘𝑥 , 𝑘𝑦) ≡ 1 ± sgn[𝛿2,1(𝑘𝑥 , 𝑘𝑦, 𝑘𝑧 = 0)]

=


0 ( |𝑘𝑥 | ≶ |𝑘𝑦 |)

1 ( |𝑘𝑥 | = |𝑘𝑦 |)

2 ( |𝑘𝑥 | ≷ |𝑘𝑦 |)

. (A.11)

Since 𝜂−(𝑘𝑥 , 𝑘𝑦) = 0 (𝜂+(𝑘𝑥 , 𝑘𝑦) = 0) in |𝑘𝑥 | > |𝑘𝑦 | (|𝑘𝑥 | < |𝑘𝑦 |), the 𝑥 (𝑦) component of 𝒈𝐿1 (𝒌)
becomes zero. Thus, 𝒈𝐿1 (𝒌) is parallel to the [100] or [010] axis in the most region of Brillouin
zone, and rapidly rotates by 𝜋/2 when going across the line |𝑘𝑥 | = |𝑘𝑦 | as shown in Figs. 2.4(c)
and A.1(a). Figure A.1(a) also shows that the spin-orbit splitting is maximized near the Γ-point,
and rapidly decreases by increasing the distance from the Γ-point. From similar discussions we
understand that 𝒈𝐿2 (𝒌) is perpendicular to 𝒈𝐿1 (𝒌) except for the line |𝑘𝑥 | = |𝑘𝑦 |. Consequently,
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the Rashba splitting in the middle band becomes similar to that of the upper band, except the
rapid 𝜋/2-rotation of the 𝑔-vector at |𝑘𝑥 | = |𝑘𝑦 | [Figs. 2.4(b) and A.1(b)].

A.2 Total angular momentum description

Although the above perturbation analysis for the LS coupling reproduces many features of
unconventional Rashba spin-orbit splitting in STO, it is not valid in the vicinity of the Γ-point.
In particular, the disappearance of the spin-orbit splitting in the lower band near the Γ-point
[Fig. 2.4(c)] is not reproduced by the perturbation analysis [Fig. A.1(a)]. This is because
the wave function is appropriately labeled by the total angular momentum 𝐽 = 𝐿 + 𝑆 and the
perturbation analysis breaks down. Therefore, it is desirable to derive the effective SOC in the
total angular momentum description. Generally speaking, the following analysis is valid for the
strong spin-orbit coupling compared to other energy scales such as the band-width. Actually,
we will see that it is valid only near the Γ-point.

In the 𝑡2𝑔 orbital subspace, the orbital angular momentum can be treated as 𝐿 = 1. Thus,
the total angular momentum 𝐽 = 3/2 or 𝐽 = 1/2 are obtained as a composition of the angular
momentum 𝐿 = 1 and 𝑆 = 1/2. The basis wave functions in the total angular momentum space
|𝐽, 𝑀⟩ are obtained as follows:

|3
2
,

3
2
⟩ = − 1

√
2

(
|𝑑𝑦𝑧, ↑⟩ + 𝑖 |𝑑𝑥𝑧, ↑⟩

)
, (A.12)

|3
2
,

1
2
⟩ = 1

√
6

(
2 |𝑑𝑥𝑦, ↑⟩ − |𝑑𝑦𝑧, ↓⟩ − 𝑖 |𝑑𝑥𝑧, ↓⟩

)
, (A.13)

|3
2
,−1

2
⟩ = 1

√
6

(
|𝑑𝑦𝑧, ↑⟩ − 𝑖 |𝑑𝑥𝑧, ↑⟩ + 2 |𝑑𝑥𝑦, ↓⟩

)
, (A.14)

|3
2
,−3

2
⟩ = 1

√
2

(
|𝑑𝑦𝑧, ↓⟩ − 𝑖 |𝑑𝑥𝑧, ↓⟩

)
, (A.15)

|1
2
,

1
2
⟩ = 1

√
3

(
|𝑑𝑥𝑦, ↑⟩ + |𝑑𝑦𝑧, ↓⟩ + 𝑖 |𝑑𝑥𝑧, ↓⟩

)
, (A.16)

|1
2
,−1

2
⟩ = 1

√
3

(
|𝑑𝑦𝑧, ↑⟩ − 𝑖 |𝑑𝑥𝑧, ↑⟩ − |𝑑𝑥𝑦, ↓⟩

)
, (A.17)

where 𝑀 = ±3/2,±1/2 is the total magnetic quantum number. Then, we carry out the 𝒌-
independent basis transformation for H0 + Hpol from the local 𝑡2𝑔 orbital space |𝑡2𝑔, 𝜎⟩ to the
total angular momentum space |𝐽, 𝑀⟩. From the procedure similar to the previous subsection,
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Fig. A.2. The magnitude of the spin-orbit splitting, which is derived by the basis transformation
to the total angular momentum space, in the (a) lower band, (b) middle band, and (c) upper
band at 𝑘𝑧 = 0. The odd-parity hopping integral is set to 𝛾/𝑡1 = 0.105. The arrows show the
direction of the effective 𝑔-vector 𝒈𝐽𝛼 (𝒌).

the effective Hamiltonian is derived as

H̃ 𝐽
0 =

∑︁
𝒌,𝛼,𝜎

(
𝜀𝐽𝛼 (𝒌) − 𝜇

)
𝑐
†
𝒌,𝛼𝜎

𝑐𝒌,𝛼𝜎

+
∑︁

𝒌,𝛼,𝜎,𝜎′

𝒈𝐽𝛼 (𝒌) · 𝝈𝜎𝜎′𝑐
†
𝒌,𝛼𝜎

𝑐𝒌,𝛼𝜎′ . (A.18)

Here, the renormalized energy dispersion 𝜀𝐽𝛼 (𝒌) are obtained as follows:

𝜀𝐽1 (𝒌) =
1
2

(
𝜀1(𝒌) + 𝜀2(𝒌) − 𝜆

)
, (A.19)

𝜀𝐽2 (𝒌) =
1
4

(∑︁
𝑙

𝜀𝑙 (𝒌) + 𝜆

)
−

√︁
𝑓 𝐽 (𝒌), (A.20)

𝜀𝐽3 (𝒌) =
1
4

(∑︁
𝑙

𝜀𝑙 (𝒌) + 𝜆

)
+

√︁
𝑓 𝐽 (𝒌), (A.21)

where

𝑓 𝐽 (𝒌) = 2𝛾2
(
sin2 𝑘𝑦 + sin2 𝑘𝑥

)
+

(
𝛿3,1(𝒌) + 𝛿3,2(𝒌) − 𝜆

4

)2
. (A.22)

The effective 𝑔-vector 𝒈𝐽𝛼 (𝒌) are described as

𝒈𝐽1 (𝒌) = 0, (A.23)

𝒈𝐽2 (𝒌) = −𝒈𝐽3 (𝒌) =
𝜆𝛾√︁
𝑓 𝐽 (𝒌)

©­­«
sin 𝑘𝑦

− sin 𝑘𝑥

0

ª®®¬ . (A.24)
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Appendix A. Effective Rashba spin-orbit coupling

Interestingly, the spin-orbit spitting vanishes in the lower band, i.e., 𝒈𝐽1 (𝒌) = 0. The lower band
is labeled by 𝐽 = 3/2 and 𝑀 = ±3/2 in the total angular momentum picture, and |3/2,±3/2⟩
do not contain the 𝑑𝑥𝑦 orbital [see Eqs. (A.12) and (A.15)]. This means that the orbital parity
mixing effect [100], which is a necessary condition for the Rashba spin-orbit splitting, does
not occur in the lower band. Therefore, Rashba splitting does not occur in the lower band, and
indeed, the Rashba splitting in the full Hamiltonian disappears near the Γ-point [Fig. 2.4(c)]
where the total angular momentum description is valid. On the other hand, Eq. (A.24) shows
that the magnitude of Rashba splitting in the middle band is finite and same as that in the upper
band, although the sign of the 𝑔-vector is opposite. The 𝒌-dependence of 𝒈𝐽2 (𝒌) = −𝒈𝐽3 (𝒌) is
similar to that of the conventional Rashba SOC with 𝒈(𝒌) =

(
sin 𝑘𝑦,− sin 𝑘𝑥 , 0

)
, except that

the magnitude of the spin-orbit splitting is maximized around the Γ-point [Fig. A.2]. These
momentum dependences are different from the results of numerical diagonalization [Fig. 2.4].
This means that the perturbation analysis for the LS coupling is better at most 𝒌-points in the
Brillouin zone.
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Appendix B

Group theoretical classification of
superconducting states

In this appendix, we provide a classification method of multiorbital/multisublattice supercon-
ducting states based on the space group symmetry. First, we consider the transformation of the
Bloch wave function under space group operations. A creation operator of a general Bloch state
can defined as

𝑐
†
𝒌,𝑚𝑙𝑠

=
∑︁
𝑹

𝑐
†
𝑙𝑠
(𝑹 + 𝒓𝑚)𝑒−𝑖𝒌·𝑹, (B.1)

where 𝑚, 𝑙, and 𝑠 represent the index for sublattice/layer, local orbital, and spin degrees of
freedom, respectively. 𝑹 represents the position for the unit cell and 𝒓𝑚 is the relative position
of the layer 𝑚 in a unit cell. Using Eq. (B.1), the creation operator is transformed by a space
group operation 𝑔 = {𝑝 |𝒂} as follows:

𝑔𝑐
†
𝒌,𝑚𝑙𝑠

𝑔−1 =
∑︁
𝑹

𝑔𝑐
†
𝑙𝑠
(𝑹 + 𝒓𝑚)𝑔−1𝑒−𝑖𝒌·𝑹,

=
∑︁
𝑹

𝑒−𝑖𝒌·𝑹
∑︁
𝑙 ′,𝑠′

𝑐
†
𝑙 ′𝑠′ (𝑝(𝑹 + 𝒓𝑚) + 𝒂)𝐷 (orb)

𝑙 ′𝑙 (𝑝)𝐷 (1/2)
𝑠′𝑠 (𝑝), (B.2)

where 𝐷 (orb) (𝑝) and 𝐷 (1/2) (𝑝) are the representation matrices of the point group operation 𝑝

in the orbital and spin space, respectively. By defining 𝑹′ + 𝒓𝑝𝑚 ≡ 𝑝(𝑹 + 𝒓𝑚) + 𝒂, Eq. (B.2) is
rewritten as

𝑔𝑐
†
𝒌,𝑚𝑙𝑠

𝑔−1 =
∑︁
𝑹′

𝑒−𝑖𝒌·[𝑝
−1 (𝑹′+𝒓𝑝𝑚−𝑝𝒓𝑚−𝒂)]

∑︁
𝑙 ′,𝑠′

𝑐
†
𝑙 ′𝑠′ (𝑹

′ + 𝒓𝑝𝑚)𝐷 (orb)
𝑙 ′𝑙 (𝑝)𝐷 (1/2)

𝑠′𝑠 (𝑝),

= 𝑒𝑖𝑝𝒌·𝒂
∑︁

𝑚′,𝑙 ′,𝑠′
𝑐
†
𝑝𝒌,𝑚′𝑙 ′𝑠′𝐷

(perm)
𝑚′𝑚 (𝑝, 𝒌)𝐷 (orb)

𝑙 ′𝑙 (𝑝)𝐷 (1/2)
𝑠′𝑠 (𝑝). (B.3)
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Appendix B. Group theoretical classification of superconducting states

Here, we introduced a representation matrix for the permutation of layers as

𝐷
(perm)
𝑚′𝑚 (𝑝, 𝒌) = 𝑒−𝑖𝑝𝒌·(𝒓𝑝𝑚−𝑝𝒓𝑚)𝛿𝑚′,𝑝𝑚 . (B.4)

We investigate the symmetry of superconducting states based on the pair amplitude

F𝑚𝑙𝑠,𝑚′𝑙 ′𝑠′ (𝒌, 𝑖𝜔𝑛) = −
∫ 𝛽

0
𝑑𝜏𝑒𝑖𝜔𝑛𝜏⟨𝑇𝜏𝑐𝒌,𝑚𝑙𝑠 (𝜏)𝑐−𝒌,𝑚′𝑙 ′𝑠′ (0)⟩, (B.5)

where 𝜔𝑛 = (2𝑛 + 1)𝜋𝛽 with 𝑛 ∈ Z. This pair amplitude satisfies the fermionic antisymmetry
as

F𝑚𝑙𝑠,𝑚′𝑙 ′𝑠′ (𝒌, 𝑖𝜔𝑛) = −F𝑚′𝑙 ′𝑠′,𝑚𝑙𝑠 (−𝒌,−𝑖𝜔𝑛). (B.6)

From Eq. (B.3), the pair amplitude is transformed by a space group operation 𝑔 = {𝑝 |𝒂} as

𝑔F Γ
𝑚𝑠,𝑚′𝑠′ (𝒌, 𝑖𝜔𝑛)𝑔−1 =

∑︁
{𝑚 𝑗 ,𝑙 𝑗 ,𝑠 𝑗 }

F Γ
𝑚1𝑙1𝑠1,𝑚2𝑙2𝑠2

(𝑝𝒌, 𝑖𝜔𝑛)

× DΓ (𝑔)D (perm)
𝑚1𝑚2,𝑚𝑚′ (𝑝, 𝒌)D (orb)

𝑙1𝑙2,𝑙𝑙 ′
(𝑝)D (1/2)

𝑠1𝑠2,𝑠𝑠′
(𝑝), (B.7)

where the representation matrices are introduced as

D (perm)
𝑚1𝑚2,𝑚𝑚′ (𝑝, 𝒌) = 𝐷

(perm)
𝑚1𝑚 (𝑝, 𝒌)𝐷 (perm)

𝑚2𝑚′ (𝑝,−𝒌), (B.8)

D (orb)
𝑙1𝑙2,𝑙𝑙 ′

(𝑝) = 𝐷
(orb)
𝑙1𝑙

(𝑝)𝐷 (orb)
𝑙2𝑙 ′

(𝑝), (B.9)

D (1/2)
𝑠1𝑠2,𝑠𝑠′

(𝑝) = 𝐷
(1/2)
𝑠1𝑠 (𝑝)𝐷 (1/2)

𝑠2𝑠′
(𝑝), (B.10)

and DΓ (𝑔) is the representation matrix of the Γ irreducible representation (IR) for the gap
function. Equations (B.6) and (B.7) are the symmetry constraints for the superconducting
states. By using Eq. (B.7), we can classify the 𝒌-dependence of pair amplitudes under a given
space group symmetry. Note that the frequency dependence of the pair amplitude is not changed
by the space group operations.
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Appendix C

Spectroscopic signatures of odd-parity
orbital hybridization

In this appendix, we demonstrate possible experimental signatures of the ferroelectricity-induced
odd-parity orbital hybridization that leads to the FESC in STO.

C.1 Spectral function

Fig. C.1. Orbital-resolved spectral functions (a) A1(𝒌, 𝜔) +A2(𝒌, 𝜔) in the paraelectric phase,
(b) A1(𝒌, 𝜔) + A2(𝒌, 𝜔) in the ferroelectric phase, (c) A3(𝒌, 𝜔) in the paraelectric phase, and
(d) A3(𝒌, 𝜔) in the ferroelectric phase. Γ, X, and M refer to 𝒌 = (0, 0, 0), 𝒌 = (𝜋, 0, 0), and
𝒌 = (𝜋, 𝜋, 0), respectively.

First, we study the spectral function which can be directly measured by the angle-resolved
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Appendix C. Spectroscopic signatures of odd-parity orbital hybridization

photoemission spectroscopy. Using the Matsubara representation of the normal Green’s function
G0(𝑘) in Eq. (2.54), the spectral function is obtained as

𝐴(𝒌, 𝜔) = −1
𝜋

ImG0(𝒌, 𝜔 + 𝑖0+). (C.1)

Here, we define the orbital-resolved spectral function as

A𝑙 (𝒌, 𝜔) =
∑︁
𝑠=↑,↓

𝐴𝑙𝑠,𝑙𝑠 (𝒌, 𝜔), (C.2)

whose (𝒌, 𝜔)-dependences are shown in Fig. C.1. The electronic structure near the Fermi
level is mainly constructed from 𝑑𝑦𝑧 and 𝑑𝑥𝑧 orbitals in the paraelectric phase [Figs. C.1 (a)
and C.1 (c)]. Then, 𝑑𝑦𝑧 and 𝑑𝑥𝑧 orbitals are responsible for the superconductivity, and the
orbital-resolved spectral function A1(𝒌, 𝜔) +A2(𝒌, 𝜔) clearly shows a single superconducting
gap at zero energy. In the ferroelectric phase, the orbital-resolved spectral functions exhibit
the Rashba spin-orbit splitting due to the space inversion symmetry breaking [Figs. C.1 (b)
and C.1 (d)]. Since the odd-parity hybridization 𝑤𝑥,𝑦 (𝒌) induces the mixing between 𝑑𝑦𝑧,𝑥𝑧

and 𝑑𝑥𝑦 orbitals, the weight of 𝑑𝑥𝑦 orbital at the Fermi level is enhanced by the ferroelectric
transition [compare Fig. C.1 (d) with Fig. C.1 (c)]. Thus, the contribution of 𝑑𝑥𝑦 orbital to the
superconductivity is increased in the ferroelectric phase.

C.2 Density of states

To see the detail of the superconducting gap structure, we here investigate the DOS which can
be measured by tunneling spectroscopy. The DOS is obtained by taking the trace of the spectral
function as

N(𝜔) =
∑︁
𝒌

Tr𝐴(𝒌, 𝜔) ≡
∑︁
𝑙

N𝑙 (𝜔), (C.3)

where we defined the orbital-resolved DOS N𝑙 (𝜔) =
∑

𝒌 A𝑙 (𝒌, 𝜔). Figure C.2 shows the total
and orbital-resolved DOS in STO. Because of the 4-fold rotational symmetry of the system, the
orbital-resolved DOS for 𝑑𝑦𝑧 orbital N1(𝜔) and that for 𝑑𝑥𝑧 orbital N2(𝜔) are equivalent.

In the paraelectric phase, the DOS exhibits the BCS-like form with a single set of coherence
peaks [Fig. C.2 (a)]. The coherence peaks originate from N1,2(𝜔) since the electronic states
near the Fermi level are mainly constructed from 𝑑𝑦𝑧,𝑥𝑧 orbitals [see Figs. C.1 (a) and C.1 (c)].
In the ferroelectric phase, the orbital-resolved DOS for 𝑑𝑥𝑦 orbital N3(𝜔) becomes comparable
to N1,2(𝜔) owing to the odd-parity hybridization in the ferroelectric phase [Fig. C.2 (b)]. The
total DOS shows two sets of the coherence peaks in the ferroelectric phase. The lower energy
coherence peaks originate from both N1,2(𝜔) and N3(𝜔), and hence they are generated by all of
𝑡2𝑔 orbitals. On the other hand, the higher energy coherence peaks originate only from N1,2(𝜔).
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Appendix C. Spectroscopic signatures of odd-parity orbital hybridization

Fig. C.2. The total DOS N(𝜔) and orbital-resolved DOS N𝑙 (𝜔) in the (a) paraelectric phase
and (b) ferroelectric phase.

We also note that the DOS shows the ferroelectricity-induced enhancement of superconducting
gap which originates from the Lifshitz transition associated to the Rashba splitting of the band
structure (see Sec. 2.4.3).

C.3 Superconducting gap structure in band basis

To clarify the ferroelectricity-induced splitting of coherence peaks in the DOS, we here investi-
gate the superconducting gap structure in the band basis. We carry out the band diagonalization
for the BdG Hamiltonian as follows:

𝑈 (𝒌)𝐻 (𝒌)𝑈†(𝒌) =
(
Ê0(𝒌) Δ̂band(𝒌)

Δ̂
†
band(𝒌) −Ê0(−𝒌)

)
, (C.4)

where the unitary matrix 𝑈 (𝒌) is defined as

𝑈 (𝒌) =
(
𝑈0(𝒌)

𝑈∗
0 (−𝒌)

)
. (C.5)

The unitary matrix 𝑈0(𝒌) diagonalizes the normal state part of the BdG Hamiltonian 𝐻0(𝒌),
and then the 6 × 6 diagonal submatrix Ê0(𝒌) is obtained as

Ê0(𝒌) =
©­­«
Ê1(𝒌)

Ê2(𝒌)
Ê3(𝒌)

ª®®¬ , Ê𝛼 (𝒌) =
(
E−
𝛼 (𝒌)

E+
𝛼 (𝒌)

)
. (C.6)

Here, E±
𝛼 (𝒌) denotes the energy spectrum in the normal state [E±

𝛼 (𝒌) ≤ E±
𝛼′ (𝒌) (𝛼 ≤ 𝛼′) and

E−
𝛼 (𝒌) ≤ E+

𝛼 (𝒌)]. In the paraelectric phase, the energy spectrum is two-fold degenerate [i.e.,
E−
𝛼 (𝒌) = E+

𝛼 (𝒌)] owing to the space inversion and time-reversal symmetries. The pairing part
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of the BdG Hamiltonian in the band basis Δ̂band(𝒌) can be described as

Δ̂band(𝒌) =
©­­«
Δ̂11(𝒌) Δ̂12(𝒌) Δ̂13(𝒌)
Δ̂21(𝒌) Δ̂22(𝒌) Δ̂23(𝒌)
Δ̂31(𝒌) Δ̂32(𝒌) Δ̂33(𝒌)

ª®®¬ , Δ̂𝛼𝛼′ (𝒌) =
(
Δ−
𝛼𝛼′ (𝒌) Δ−+

𝛼𝛼′ (𝒌)
Δ+−
𝛼𝛼′ (𝒌) Δ+

𝛼𝛼′ (𝒌)

)
. (C.7)

In our calculations, the superconductivity is dominated by the two lowest energy bands that
construct the Fermi surfaces. Then, the effective two-band Hamiltonian for the two lowest
energy bands E±

1 (𝒌) can be obtained as

𝐻̂eff (𝒌) =
(
Ê1(𝒌) Δ̂11(𝒌)
Δ̂
†
11(𝒌) −Ê1(−𝒌)

)
, (C.8)

by neglecting the higher energy bands that do not give rise to the Fermi surface.

Fig. C.3. 𝒌-dependence of the superconducting gap on the Fermi surfaces. (a) |Δ−+
11 (𝒌) | (=

|Δ+−
11 (𝒌) |) in the paraelectric phase and (b) |Δ+

11(𝒌) | and |Δ−
11(𝒌) | in the ferroelectric phase.

In the paraelectric phase, the pseudospin-singlet superconducting state is stabilized [i.e.,
Δ±

11(𝒌) = 0 and Δ−+
11 (𝒌) = −Δ+−

11 (𝒌)]. Thus, the superconducting gap in the paraelectric phase
is given by 2|Δ−+

11 (𝒌) |. Figure C.3 (a) shows the superconducting gap amplitude |Δ−+
11 (𝒌) | on

the Fermi surfaces in the paraelectric phase. It is shown that the magnitude of |Δ−+
11 (𝒌) | is

consistent with the energy gap in the DOS [compare Fig. C.3 (a) with Fig. C.2 (a)].
On the other hand, in the ferroelectric phase, the intraband superconducting state is stabilized

as Δ±
11(𝒌) ≠ 0 and Δ∓±

11 (𝒌) ≃ 0. Then, the superconducting gaps for each Fermi surfaces are
given by 2|Δ±

11(𝒌) |. Fig. C.3 (b) shows the superconducting gap amplitudes on the Rashba-split
Fermi surfaces in the ferroelectric phase. The gap amplitude on the inner (outer) Fermi surface
is given by |Δ+

11(𝒌) | (|Δ−
11(𝒌) |). The difference between |Δ+

11(𝒌) | and |Δ−
11(𝒌) | leads to a two

gap structure shown in Fig. C.2 (b). Here, we estimate the splitting width of the coherence
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peaks in the ferroelectric phase as

𝛿 = max
𝒌F

|Δ+
11(𝒌F) | − max

𝒌F
|Δ−

11(𝒌F) |, (C.9)

where 𝒌F denotes the Fermi momentum. Then, we obtain 𝛿 ≃ 0.0697 meV in the ferroelectric
phase, which is indeed approximately equal to the splitting width of the coherence peaks shown
in Fig. C.2 (b) (i.e., ∼ 0.07 meV). The difference between |Δ+

11(𝒌) | and |Δ−
11(𝒌) | originates

from their different orbital character. The orbital-resolved spectral function A3(𝒌, 𝜔) reveals
that 𝑑𝑥𝑦 orbital does not contribute to the superconducting gap opening at Γ-point in the
ferroelectric phase [see Fig. C.1 (d)], since the odd-parity hybridization vanishes at 𝑘𝑥,𝑦 = 0 [i.e.,
𝑤𝑥 (0, 𝑘𝑦, 𝑘𝑧) = 𝑤𝑦 (𝑘𝑥 , 0, 𝑘𝑧) = 0]. On the other hand, the inner (outer) Fermi surface for the
higher (lower) energy band E+

1 (𝒌) (E−
1 (𝒌)) is located near the Γ-point (away from the Γ-point).

Then, Δ+
11(𝒌) is mainly constructed from 𝑑𝑦𝑧,𝑥𝑧 orbitals, while Δ−

11(𝒌) has contribution from
𝑑𝑥𝑦 orbital comparable to that from 𝑑𝑦𝑧,𝑥𝑧 orbitals. Therefore, |Δ+

11(𝒌) | > |Δ−
11(𝒌) | is realized

because the superconducting order parameter for 𝑑𝑦𝑧,𝑥𝑧 orbitals is larger than that for 𝑑𝑥𝑦 orbital
(i.e., Δ1,2 > Δ3) in our calculation [see Table 2.4]. Indeed, the higher energy coherence peaks
at ±Δ+

11(𝒌) for the inner Fermi surface are constructed only from 𝑑𝑦𝑧,𝑥𝑧 orbitals. Note that the
two gap structure does not appear in single-orbital 𝑠-wave Rashba superconductors1, and it is
indeed a fingerprint of multiorbital Rashba superconductors. Besides, it should be noticed that
the two gap structure discussed above is essentially different from that due to parity mixing in
Cooper pairs.

Finally, we investigate relationship between the value of 𝛾 and the ferroelectricity-induced

1Single-orbital Rashba superconductors can be described by the following model Hamiltonian:

H =
∑︁
𝒌 ,𝑠

𝜉 (𝒌)𝑐†
𝒌 ,𝑠

𝑐𝒌 ,𝑠 +
∑︁
𝒌 ,𝑠,𝑠′

𝛼𝒈(𝒌) · 𝝈𝑠𝑠′𝑐
†
𝒌 ,𝑠

𝑐𝒌 ,𝑠′ +
1
2

∑︁
𝒌 ,𝑠,𝑠′

Δ𝑠𝑠′ (𝒌)𝑐†𝒌 ,𝑠𝑐
†
−𝒌 ,𝑠′ + H.c., (C.10)

where 𝑐𝒌 ,𝑠 is the annihilation operator for an electron with momentum 𝒌 and spin 𝑠 =↑, ↓. 𝜉 (𝒌) is the single-
electron kinetic energy. The Rashba spin-orbit coupling takes the form 𝒈(𝒌) = sin 𝑘𝑦 𝒙̂ − sin 𝑘𝑥 𝒚̂. We assume the
superconducting gap function as

Δ𝑠𝑠′ (𝒌) =
[(
Δ𝑠𝜎0 + Δ𝑝𝒈(𝒌) · 𝝈

)
𝑖𝜎𝑦

]
𝑠𝑠′

, (C.11)

where Δ𝑠 is the spin-singlet 𝑠-wave component of the gap function, and Δ𝑝 is the spin-triplet 𝑝-wave component.
By diagonalizing the BdG Hamiltonian, we obtain the energy spectrum as follows:

𝐸 (𝒌) = ±
√︁
E± (𝒌)2 + |Δ± (𝒌) |2, (C.12)

where E± (𝒌) = 𝜉 (𝒌) ± 𝛼 |𝒈(𝒌) | and the superconducting gap functions in the band basis are given by

Δ± (𝒌) =
±𝑔𝑥 (𝒌) + 𝑖𝑔𝑦 (𝒌)

|𝒈(𝒌) | (Δ𝑠 ± Δ𝑝 |𝒈(𝒌) |) . (C.13)

In the absence of the parity-mixing-induced 𝑝-wave pairing interaction (Δ𝑝 = 0), the superconducting gaps for
each Rashba split bands are equal (|Δ− (𝒌) | = |Δ+ (𝒌) | = |Δ𝑠 |). Therefore, the multiple superconducting gap
structure such as in Fig. C.2 (b) is not realized in single-orbital 𝑠-wave Rashba superconductors.
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Fig. C.4. 𝛾-dependence of the splitting width of the coherence peaks estimated as 𝛿 =

max𝒌F |Δ+
11(𝒌F) | − max𝒌F |Δ−

11(𝒌F) |. The carrier density and superconducting order parame-
ters are set to be 𝑛 = 5.0 × 10−5, Δ1,2 = 0.00277, and Δ3 = 0.00138, respectively. In the gray
area (𝛾 > 0.105𝑡1 ≃ 29.1 meV), the superconducting gap Δ+

11(𝒌F) is not defined because of the
Lifshitz transition, which is associated with the disappearance of the inner Fermi surface.

splitting of the coherence peaks. It would give important insight for experimental determination
of the value of 𝛾 in the ferroelectric phase of bulk STO, which is so far unknown. Figure C.4
shows the 𝛾-dependence of the splitting width of the coherence peaks 𝛿 given by Eq. (C.9). The
superconducting order parameters 𝚫 = (Δ1,Δ2,Δ3) are set to be the values in the ferroelectric
phase [see the third column of Table 2.4], which are obtained by minimizing the free energy. In
this setting, we change 𝛾 and calculate 𝛿. Note that the true value of 𝛾, which minimizes the free
energy, is 𝛾0 = 0.105𝑡1 ≃ 29.1 meV in our numerical calculation. It is shown that the splitting
width 𝛿 gradually increases by increasing the value of 𝛾, and tends to saturate as the value of 𝛾
approaches to 𝛾0. The inner Fermi pocket disappears at slightly above 𝛾 = 𝛾0 due to the Lifshitz
transition associated to the Rashba splitting, and thus 𝛿 is not calculated for 𝛾 > 𝛾0 (gray area
in Fig. C.4). We note that the thermodynamically stable ferroelectric superconducting state
always exhibits a nearly largest value of 𝛿 at 𝛾 = 𝛾0, since the stabilization of the ferroelectric
superconducting state is owing to the enhancement of the condensation energy gain at the
Lifshitz transition point 𝛾 = 𝛾0 (see Sec. 2.4.3).
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Appendix D

Calculation of Chern number

In this appendix, we derive the Chern number for the 𝐸𝑢 𝑝𝑥 + 𝑖𝑝𝑦-wave pairing state in a large
Zeeman SOC region [Figs. 3.9 (c) and 3.9 (d) in Sec. 3.4]. Figure D.1 illustrates the band
structure near the Fermi level under a large Zeeman SOC. Since the fourfold degeneracy at
the K (K′) point is lifted by the Zeeman SOC, the band structure possesses a nearly parabolic
shape around the K (K′) point. In addition, the interlayer hybridization is negligible around the
K (K′) point owing to the threefold rotational symmetry [167, 176, 177]. Then, the effective
Hamiltonian for electrons near the Fermi level is derived as

H̃ =
∑︁
𝒒,𝑚,𝑠

(
𝜀𝒒 − 𝜇

)
𝜓
†
𝒒,𝑚𝑠𝜓𝒒,𝑚𝑠

+ 1
2

∑︁
𝒒,𝑚,𝑠,𝑠′

Δ̃𝒒𝜎̄
𝑧
𝑠𝑠′𝜓

†
𝒒,𝑚𝑠𝜓

†
−𝒒,𝑚𝑠′ + H.c., (D.1)

where 𝜀𝒒 = 𝒒2/(2𝑚) is the effective kinetic energy with a parabolic dispersion, Δ̃𝒒 = Δ̃𝑝 (𝑞𝑥 +
𝑖𝑞𝑦) is the effective chiral 𝑝-wave gap function, and the annihilation operators are defined as(

𝜓𝒒,𝑎↑, 𝜓𝒒,𝑎↓, 𝜓𝒒,𝑏↑, 𝜓𝒒,𝑏↓
)
≡

(
𝑐K+𝒒,𝑎↑, 𝑐−K+𝒒,𝑎↓, 𝑐−K+𝒒,𝑏↑, 𝑐K+𝒒,𝑏↓

)
. (D.2)

We assume that Δ̃𝑝 is a real number. By using the vector operator

Ψ̂
†
𝒒,𝑚 =

(
𝜓
†
𝒒,𝑚↑, 𝜓−𝒒,𝑚↑, 𝜓

†
𝒒,𝑚↓, 𝜓−𝒒,𝑚↓,

)
, (D.3)

we obtain the matrix representation of the effective Hamiltonian as follows:

H̃ =
1
2

∑︁
𝒒

(
Ψ̂

†
𝒒,𝑎, Ψ̂

†
𝒒,𝑏

)
𝐻̃𝒒

(
Ψ̂𝒒,𝑎

Ψ̂𝒒,𝑏

)
+ const., (D.4)
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Appendix D. Calculation of Chern number

a↑,            b↓

a↓,            b↑

K

EF

KK’

Fig. D.1. Schematic of the band structure near the K and K′ points in a large Zeeman SOC
region. The Fermi energy 𝐸F lies between the Zeeman gap.

where the Hamiltonian matrix 𝐻̃𝒒 is given by

𝐻̃𝒒 = 𝜏0 ⊗
(

(𝜀𝒒 − 𝜇)𝜎𝑧 Δ̃𝑝
(
𝑞𝑥𝜎

𝑥 − 𝑞𝑦𝜎
𝑦
)

Δ̃𝑝
(
𝑞𝑥𝜎

𝑥 − 𝑞𝑦𝜎
𝑦
)

(𝜀𝒒 − 𝜇)𝜎𝑧

)
. (D.5)

Here, we carry out an unitary transformation as

𝑈𝐻̃𝒒𝑈
† = 𝜏0 ⊗

(
𝐻̃+

𝒒 0
0 𝐻̃−

𝒒

)
, (D.6)

𝐻̃±
𝒒 =

(
𝜀𝒒 − 𝜇 ±Δ̃𝑝 (𝑞𝑥 + 𝑖𝑞𝑦)

±Δ̃𝑝 (𝑞𝑥 − 𝑖𝑞𝑦) −𝜀𝒒 + 𝜇

)
, (D.7)

where the unitary matrix 𝑈 is defined as

𝑈 =
1
√

2
𝜏0 ⊗

(
𝜎0 𝜎0

𝜎0 −𝜎0

)
. (D.8)

Equation (D.7) is the BdG Hamiltonian for the spinless chiral 𝑝-wave superconductivity. Thus,
the spin-full chiral 𝑝-wave superconducting state is converted to two pairs of the spinless chiral
𝑝-wave superconducting states [173]. Since a spinless chiral 𝑝-wave superconducting state
gives the Chern number 1, the total Chern number of the 𝐸𝑢 chiral 𝑝-wave superconducting
state is obtained as 𝜈Ch = 1 × 2 × 2 = 4.
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Appendix E

Correspondence between Pauli matrices
and Dirac matrices

In this appendix, we demonstrate that the general form of the BdG Hamiltonian with spin-1/2
and a two-valued extra DOF can be expressed by using the Euclidean Dirac matrices as shown
in Sec. 4.2.

Since we assume that the normal state preserves both P- and T -symmetries, 𝐻0(𝒌) trans-
forms under the space-inversion P and the time-reversal T as

𝐻0(𝒌)
P−→ 𝑈

†
𝑃
𝐻0(−𝒌)𝑈𝑃 = 𝐻0(𝒌), (E.1)

𝐻0(𝒌)
T−→ 𝑈

†
𝑇
𝐻∗

0 (−𝒌)𝑈𝑇 = 𝐻0(𝒌), (E.2)

where 𝑈𝑃 and 𝑈𝑇 are unitary matrices. In this paper, we consider a spin-1/2 system satisfying
𝑈𝑇𝑈

∗
𝑇
= −14. In addition, we require that the time-reversal commute with the space-inversion

(i.e., 𝑈𝑃𝑈𝑇 = 𝑈𝑇𝑈
∗
𝑃
), and the space-inversion operator is its own inverse (i.e., 𝑈2

𝑃
= 14). Under

the above assumptions, 𝐻0(𝒌) can be generally expressed as

𝐻0(𝒌) = (𝜖0
𝒌 − 𝜇)𝜎0 ⊗ 𝜏0 + 𝑓𝒌𝜎0 ⊗ 𝜏𝑥𝑖

+ 𝒈𝒌 · 𝝈 ⊗ 𝜏𝑦𝑖 + ℎ𝒌𝜎0 ⊗ 𝜏𝑧𝑖 , (E.3)

where 𝝈 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) and 𝜎0 ⊗ 𝜏0 = 14. Hermiticity requires all coefficients in Equation
(E.3) are real. The index 𝑖 specifies the extra DOF and (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is a permutation of (𝑥, 𝑦, 𝑧).
Since 𝑈𝑃 and 𝑈𝑇 vary depending on the extra DOF, the general models (E.3) are classified by
the index 𝑖. In this paper, we consider three representative examples shown in Table E.1. For
𝑖 = 1 (𝑖 = 2), the extra DOF is orbitals with the same (opposite) parity, and 𝑈𝑃 = 𝜎0 ⊗ 𝜏0

(𝑈𝑃 = 𝜎0 ⊗ 𝜏𝑧). For 𝑖 = 3, the extra DOF is sublattices in a locally noncentrosymmetric crystal
structure, and𝑈𝑃 = 𝜎0 ⊗ 𝜏𝑥 . In these cases,𝑈𝑇 = 𝑖𝜎𝑦 ⊗ 𝜏0. Although the extra DOF can be other
than the above three cases, Eq. (E.3) holds for all the cases unless 𝑈𝑃𝑈𝑇 ≠ 𝑈𝑇𝑈

∗
𝑃
, 𝑈𝑃𝑈𝑃 ≠ 14,
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Appendix E. Correspondence between Pauli matrices and Dirac matrices

Table E.1. Classification of two-band models based on the extra DOF. (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), 𝑈𝑃, and 𝑈𝑇

for 𝑖 = 1, 2, 3 are listed.

(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) 𝑈𝑃 𝑈𝑇 DOF
𝑖 = 1 (𝑥, 𝑦, 𝑧) 𝜎0 ⊗ 𝜏0 𝑖𝜎𝑦 ⊗ 𝜏0 orbitals (same parity)
𝑖 = 2 (𝑧, 𝑥, 𝑦) 𝜎0 ⊗ 𝜏𝑧 𝑖𝜎𝑦 ⊗ 𝜏0 orbitals (opposite parity)
𝑖 = 3 (𝑦, 𝑧, 𝑥) 𝜎0 ⊗ 𝜏𝑥 𝑖𝜎𝑦 ⊗ 𝜏0 sublattices

or 𝑈𝑇𝑈
∗
𝑇
≠ −14 [209]. Since the set of 𝜎𝜇 ⊗ 𝜏𝜈 matrices is completely anticommuting in

Eq. (E.3), we can substitute them by the five anticommuting Euclidean Dirac matrices. Then,
we can rewrite Eq. (E.3) as Eq. (4.2).

The pairing potential Δ(𝒌) transforms under the space-inversion and the time-reversal as
Δ(𝒌) P−→ 𝑈

†
𝑃
Δ(−𝒌)𝑈∗

𝑃
and Δ(𝒌) T−→ 𝑈

†
𝑇
Δ∗(−𝒌)𝑈∗

𝑇
, respectively. In terms of Δ̂(𝒌) = Δ(𝒌)𝑈†

𝑇
,

these relations can be rewritten as

Δ̂(𝒌) P−→ 𝑈
†
𝑃
Δ̂(−𝒌)𝑈𝑃, (E.4)

Δ̂(𝒌) T−→ Δ̂†(𝒌). (E.5)

We note that Eq. (E.4) is equivalent to the transformation property of 𝐻0(𝒌) under the space-
inversion [see Eq. (E.1)], while Eq. (E.5) corresponds to the Hermiticity condition. Whereas
𝐻0(𝒌) is assumed to preserve both P- and T -symmetries, we admit that Δ(𝒌) spontaneously
breaks the P- and T -symmetries. The only requirements for the pairing potential is satisfying
the fermionic antisymmetry Δ(𝒌) = −ΔT(−𝒌), which can be rewritten as

Δ̂(𝒌) = 𝑈
†
𝑇
Δ̂T(−𝒌)𝑈𝑇 , (E.6)

where we used the fact that 𝑈†
𝑇
= 𝑈T

𝑇
= −𝑈𝑇 by choosing 𝑈𝑇 as real (i.e., 𝑈𝑇 = 𝑈∗

𝑇
). It

should be noticed that Eq. (E.6) is formally equivalent to the time-reversal symmetry for 𝐻0(𝒌)
[see Eq. (E.2)]. Since the even-parity part of Δ̂(𝒌) obeys transformation properties completely
equivalent to those of 𝐻0(𝒌) under the time-reversal and the space-inversion, it can be expressed
as a linear combination of six 𝜎𝜇 ⊗ 𝜏𝜈 matrices allowed to appear in 𝐻0(𝒌). On the other hand,
the other ten 𝜎𝜇 ⊗ 𝜏𝜈 matrices, which correspond to 𝑖𝛾𝑚𝛾𝑛 (1 ≤ 𝑚 < 𝑛 ≤ 5), constitute the
odd-parity pairing potential. Then, we obtain a general form of Δ(𝒌) as

Δ̂(𝒌) = Δ1

[ ∑︁
𝜈=0,𝑥𝑖 ,𝑧𝑖

𝜓𝜈
𝒌𝜎0 ⊗ 𝜏𝜈 + 𝒅𝑦𝑖

𝒌
· 𝝈 ⊗ 𝜏𝑦𝑖

]
+ Δ2

[ ∑︁
𝜈=0,𝑥𝑖 ,𝑧𝑖

𝒅𝜈𝒌 · 𝝈 ⊗ 𝜏𝜈 + 𝜓
𝑦𝑖
𝒌
𝜎0 ⊗ 𝜏𝑦𝑖

]
, (E.7)
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Table E.2. Necessary conditions for the asymmetric Bogoliubov spectrum in two-band models
(𝜎𝜇 ⊗ 𝜏𝜈 basis).

Criterion (i) Criterion (ii)
(I) 𝜓

𝑧𝑖
𝒌
𝜓
𝑦𝑖
𝒌
𝑓𝒌 ≠ 0

(II) (𝒅𝑦𝑖
𝒌
· 𝒅𝑧𝑖

𝒌
) 𝑓𝒌 ≠ 0

(III) 𝜓
𝑥𝑖
𝒌
(𝒅𝑧𝑖

𝒌
· 𝒈𝒌) ≠ 0

(IV) Im(Δ1Δ
∗
2) ≠ 0 𝜓

𝑧𝑖
𝒌
(𝒅𝑥𝑖

𝒌
· 𝒈𝒌) ≠ 0

(V) (𝒅𝑦𝑖
𝒌
× 𝒅0

𝒌
) · 𝒈𝒌 ≠ 0

(VI) (𝒅𝑦𝑖
𝒌
· 𝒅𝑥𝑖

𝒌
)ℎ𝒌 ≠ 0

(VII) 𝜓
𝑥𝑖
𝒌
𝜓
𝑦𝑖
𝒌
ℎ𝒌 ≠ 0

where 𝜓𝜈
𝒌

and 𝒅𝜈
𝒌

are real-valued coefficients. Note that Δ1 and Δ2 are complex valued since
Δ̂(𝒌) ≠ Δ̂†(𝒌) in T -symmetry breaking superconducting phases. From Eq. (E.7), we obtain
Eq. (4.3) as a general form of Δ(𝒌) in two-band models.

From Eqs. (E.3) and (E.7), we obtain

Tr[𝑀 (1)
− (𝒌)𝐻̃0(𝒌)] = 8Im(Δ1Δ

∗
2)

[
(𝜓𝑧𝑖

𝒌
𝜓
𝑦𝑖
𝒌
− 𝒅𝑦𝑖

𝒌
· 𝒅𝑧𝑖

𝒌
) 𝑓𝒌

+ (𝜓𝑥𝑖
𝒌
𝒅𝑧𝑖
𝒌
− 𝜓

𝑧𝑖
𝒌
𝒅𝑥𝑖
𝒌
− 𝒅𝑦𝑖

𝒌
× 𝒅0

𝒌) · 𝒈𝒌
+ (𝒅𝑦𝑖

𝒌
· 𝒅𝑥𝑖

𝒌
− 𝜓

𝑥𝑖
𝒌
𝜓
𝑦𝑖
𝒌
)ℎ𝒌

]
. (E.8)

Then, in the 𝜎𝜇 ⊗ 𝜏𝜈 basis, the necessary conditions for the asymmetric Bogoliubov spectrum
(i.e., Tr[𝑀 (1)

− (𝒌)𝐻̃0(𝒌)] ≠ 0) can be summarized as shown in Table E.2. For example, the
condition (I) means that the asymmetric Bogoliubov spectrum appears when Im(Δ1Δ

∗
2) ≠ 0 and

𝜓
𝑧𝑖
𝒌
𝜓
𝑦𝑖
𝒌
𝑓𝒌 ≠ 0.
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Appendix F

Derivation of P,T -odd bilinear product

In this appendix, we derive a formula to calculate the P,T -odd bilinear product, which is used
in Chap. 4. To obtain the formula, we first consider the transformation property of the bilinear
product Δ(𝒌)Δ†(𝒌) under the time-reversal. Since the time-reversed counterpart of Δ̂(𝒌) =

Δ(𝒌)𝑈†
𝑇

is Δ̂†(𝒌), the transformation property of the bilinear product Δ(𝒌)Δ†(𝒌) = Δ̂(𝒌)Δ̂†(𝒌)
under the time-reversal T is obtained as

Δ(𝒌)Δ†(𝒌) = Δ̂(𝒌)Δ̂†(𝒌) T−→ Δ̂†(𝒌)Δ̂(𝒌). (F.1)

Then, we define the time-reversal-odd bilinear product 𝑀 (1) (𝒌) as

𝑀 (1) (𝒌) = 1
2

[
Δ̂(𝒌)Δ̂†(𝒌) − Δ̂†(𝒌)Δ̂(𝒌)

]
=

1
2
[Δ̂(𝒌), Δ̂†(𝒌)] . (F.2)

Equation (F.2) extracts the time-reversal-odd part of the bilinear product Δ(𝒌)Δ†(𝒌) [208, 209].
Here, we decompose the pairing potential Δ(𝒌) into the even-parity part Δ𝑔 (𝒌) and odd-parity
part Δ𝑢 (𝒌) as

Δ(𝒌) = Δ𝑔 (𝒌) + Δ𝑢 (𝒌). (F.3)

Then, Δ(𝒌) transforms under the space-inversion P as

Δ(𝒌) = Δ𝑔 (𝒌) + Δ𝑢 (𝒌) P−→ Δ𝑔 (𝒌) − Δ𝑢 (𝒌). (F.4)

From Eq. (F.4), 𝑀 (1) (𝒌) transforms under the space-inversion P as

𝑀 (1) (𝒌) = 𝑀
(1)
+ (𝒌) + 𝑀 (1)

− (𝒌) P−→ 𝑀
(1)
+ (𝒌) − 𝑀 (1)

− (𝒌), (F.5)
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where

𝑀
(1)
+ (𝒌) = 1

2

(
[Δ̂𝑔 (𝒌), Δ̂𝑔†(𝒌)] + [Δ̂𝑢 (𝒌), Δ̂𝑢†(𝒌)]

)
, (F.6)

𝑀 (1)
− (𝒌) = 1

2

(
[Δ̂𝑔 (𝒌), Δ̂𝑢†(𝒌)] + [Δ̂𝑢 (𝒌), Δ̂𝑔†(𝒌)]

)
. (F.7)

𝑀
(1)
+ (𝒌) and 𝑀 (1)

− (𝒌) are the even-parity and odd-parity part of the time-reversal-odd bilinear
product 𝑀 (1) (𝒌), respectively. Then, Eq. (F.7) represents the P,T -odd nonunitary part of
Δ(𝒌)Δ†(𝒌).
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Appendix G

Derivation of Ginzburg-Landau Free
energy

In this appendix, we perform the GL expansion of the free energy for the mixed-parity supercon-
ductivity. Then, we derive an analytical expression of the GL free energy for a model satisfying
one of the necessary conditions to realize the asymmetric Bogoliubov spectrum (Sec. 4.4).

We consider the Hamiltonian H = H0 +Hint, which is composed of the single-particle term
H0 and pairing interaction term Hint. The pairing interaction Hint is assumed to be a mixture
of even-parity and odd-parity channels as

Hint =
1
2

∑︁
𝑗=1,2

𝑉 𝑗𝐵
†
𝑗
(𝒒)𝐵 𝑗 (𝒒), (G.1)

where 𝒒 = (𝑞𝑥 , 𝑞𝑦, 𝑞𝑧) is the center-of-mass momentum of the Cooper pairs, 𝑉 𝑗 (< 0) is the
strength of the pairing interaction, and 𝑗 = 1 ( 𝑗 = 2) represents an index of the even-parity
(odd-parity) pairing channel. Note that we assume a single-𝒒 state in Eq. (G.1). The creation
operator of the Cooper pairs 𝐵†

𝑗
(𝒒) is given by

𝐵
†
𝑗
(𝒒) =

∑︁
𝒌

∑︁
𝑙𝑙 ′,𝑠𝑠′

𝜑
𝑗

𝑙𝑠,𝑙 ′𝑠′ (𝒌)𝑐
†
𝒌+𝒒/2,𝑙𝑠𝑐

†
−𝒌+𝒒/2,𝑙 ′𝑠′, (G.2)

where 𝑠, 𝑠′ =↑, ↓ and 𝑙, 𝑙′ = 1, 2 are indexes for the spin-1/2 and extra two-valued DOF,
respectively. Here, we apply the mean-field approximation to Hint as

Hint ≈
1
2

∑︁
𝑗=1,2

∑︁
𝒌

∑︁
𝑙𝑠,𝑙 ′𝑠′

[
Δ 𝑗𝜑

𝑗

𝑙𝑠,𝑙 ′𝑠′ (𝒌)𝑐
†
𝒌+𝒒/2,𝑙𝑠𝑐

†
−𝒌+𝒒/2,𝑙 ′𝑠′ + H.c.

]
−

∑︁
𝑗=1,2

|Δ 𝑗 |2

𝑉 𝑗

, (G.3)
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Appendix G. Derivation of Ginzburg-Landau Free energy

by introducing the superconducting order parameter

Δ 𝑗 = 𝑉 𝑗

∑︁
𝒌

∑︁
𝑙𝑙 ′,𝑠𝑠′

𝜑
𝑗†
𝑙𝑠,𝑙 ′𝑠′ (𝒌)⟨𝑐−𝒌+𝒒/2,𝑙𝑠𝑐𝒌+𝒒/2,𝑙 ′𝑠′⟩. (G.4)

Then, a matrix form of the total Hamiltonian H is obtained as

H =
1
2

∑︁
𝒌

(𝑐†
𝒌
, 𝑐T

−𝒌)
(
𝐻0(𝒌 + 𝒒/2) Δ(𝒌)

Δ†(𝒌) −𝐻T
0 (−𝒌 + 𝒒/2)

) (
𝑐𝒌

𝑐
†
−𝒌

)
−

∑︁
𝑗=1,2

|Δ 𝑗 |2

𝑉 𝑗

, (G.5)

where 𝑐T
𝒌 = (𝑐𝒌1↑, 𝑐𝒌1↓, 𝑐𝒌2↑, 𝑐𝒌2↓) and some constants are omitted in Eq. (G.5). The pairing

potential Δ(𝒌) is given by

Δ𝑙𝑠,𝑙 ′𝑠′ (𝒌) =
∑︁
𝑗=1,2

Δ 𝑗𝜑
𝑗

𝑙𝑠,𝑙 ′𝑠′ (𝒌). (G.6)

To obtain the GL free energy for the PT -symmetric mixed-parity superconducting states
with the asymmetric Bogoliubov spectrum, we here assume that the pairing potentials are
described as

𝜑1(𝒌) = [𝑟𝜂𝑏𝒌𝛾𝑏 + (1 − 𝑟)𝜂𝑎𝒌𝛾𝑎]𝑈𝑇 , (G.7)

𝜑2(𝒌) = 𝜂𝑎𝑏𝒌 𝑖𝛾𝑎𝛾𝑏𝑈𝑇 , (G.8)

where 𝑎 and 𝑏 are integers satisfying 1 ≤ 𝑎 < 𝑏 ≤ 5 and 𝑟 takes the value either 0 or 1. In
addition, we suppose that the normal state Hamiltonian 𝐻0(𝒌) is described as

𝐻0(𝒌) = 𝜉𝒌14 + 𝑟𝜖𝑎𝒌𝛾𝑎 + (1 − 𝑟)𝜖𝑏𝒌𝛾𝑏 . (G.9)

Then, the model satisfies one of the necessary conditions for the asymmetric Bogoliubov
spectrum, which is shown in Sec. 4.3. By assuming |𝜉𝒌 | ≫ max( |𝜖𝑎,𝑏

𝒌
|), we can approximate

Eq. (G.5) as

H ≈ 1
2

∑︁
𝒌

(𝑐†
𝒌
, 𝑐T

−𝒌)
(
𝐻0(𝒌) + 1

2𝒗𝒌 · 𝒒14 Δ(𝒌)
Δ†(𝒌) −𝐻T

0 (−𝒌) +
1
2𝒗𝒌 · 𝒒14

) (
𝑐𝒌

𝑐
†
−𝒌

)
−

∑︁
𝑗=1,2

|Δ 𝑗 |2

𝑉 𝑗

,

(G.10)

where 𝒗𝒌 = (𝑣𝑥
𝒌
, 𝑣

𝑦

𝒌
, 𝑣𝑧

𝒌
) ≡ ∇𝜉𝒌 is the Fermi velocity. By diagonalizing the BdG Hamiltonian

matrix in Eq. (G.10), we can obtain the free energy F as follows:

F = −2
𝛽

∑︁
𝒌

∑︁
𝜎=±

[
ln

(
1 + 𝑒−𝛽(𝐸

𝜎
𝒌
+𝒗𝒌 ·𝒒/2)

)
+ ln

(
1 + 𝑒−𝛽(−𝐸

𝜎
−𝒌+𝒗𝒌 ·𝒒/2)

)]
−

∑︁
𝑗=1,2

|Δ 𝑗 |2

𝑉 𝑗

, (G.11)
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where 𝛽 = 1/𝑇 is the inverse temperature. The quasiparticle energy 𝐸±
𝒌 is given by

𝐸±
𝒌 =

√√√
𝜉2
𝒌
+ 1

4
Tr

[
Δ(𝒌)Δ†(𝒌) ± 𝑀

(1)
− (𝒌)𝐻̃0(𝒌)

𝑟𝜖𝑎
𝒌
+ (1 − 𝑟)𝜖𝑏

𝒌

]
± [𝑟𝜖𝑎𝒌 + (1 − 𝑟)𝜖𝑏𝒌 ] . (G.12)

By differentiating Eq. (G.11) with respect to Δ 𝑗 and Δ∗
𝑗
, we obtain an analytical expression of

the GL free energy as

F = 𝛼1 |Δ1 |2 + 𝛼2 |Δ2 |2 + 𝛽1 |Δ1 |4 + 𝛽2 |Δ2 |4 + 4𝛽 |Δ1 |2 |Δ2 |2 − 𝛽(Δ2
1Δ

∗2
2 + Δ2

2Δ
∗2
1 )

+
∑︁

𝜈=𝑥,𝑦,𝑧

(𝜅1,𝜈 |Δ1 |2 + 𝜅2,𝜈 |Δ2 |2)𝑞2
𝜈 + 𝑻 · 𝒒. (G.13)

The coefficients of the quadratic terms are given by

𝛼1 =
1
|𝑉1 |

− 2
∑︁
𝒌

|𝜼𝒌 |2
1 − 2 𝑓 ( |𝜉𝒌 |)

|𝜉𝒌 |
≈ 𝜌0⟨|𝜼𝒌 |2⟩FS

𝑇 − 𝑇c,1

𝑇c,1
, (G.14)

𝛼2 =
1
|𝑉2 |

− 2
∑︁
𝒌

|𝜂𝑎𝑏𝒌 |2 1 − 2 𝑓 ( |𝜉𝒌 |)
|𝜉𝒌 |

≈ 𝜌0⟨|𝜂𝑎𝑏𝒌 |2⟩FS
𝑇 − 𝑇c,2

𝑇c,2
, (G.15)

where |𝜼𝒌 |2 ≡ [𝑟 |𝜂𝑏
𝒌
|2 + (1 − 𝑟) |𝜂𝑎

𝒌
|2], 𝑓 (𝑥) = 1/(𝑒𝛽𝑥 + 1) is the Fermi-Dirac distribution

function, 𝜌0 is the density of states at the Fermi energy, and ⟨· · · ⟩FS denotes the average over the
Fermi surface. The superconducting transition temperature for the even-parity and odd-parity
pairing channel 𝑇c,1 and 𝑇c,2 are defined as

𝑇c,1 =
2𝑒𝛾

𝜋
𝜖𝑐 exp

(
− 1
𝜌0⟨|𝜼𝒌 |2⟩FS |𝑉1 |

)
, (G.16)

𝑇c,2 =
2𝑒𝛾

𝜋
𝜖𝑐 exp

(
− 1
𝜌0⟨|𝜂𝑎𝑏𝒌 |2⟩FS |𝑉2 |

)
, (G.17)

where 𝛾 = 0.577 · · · is the Euler’s constant, and 𝜖𝑐 is a cutoff energy. In Eqs. (G.14) and (G.15),
the summation over 𝒌 is approximated as∑︁

𝒌

𝑋 (𝒌)𝑌 (𝜉𝒌) ≈
∫

FS

𝑑𝑘F
𝑣(𝒌F)

𝑋 (𝒌F)
∫ 𝜖𝑐

−𝜖𝑐
𝑑𝜉𝑌 (𝜉) ≈ 𝜌0

4
⟨𝑋 (𝒌F)⟩FS

∫ 𝜖𝑐

−𝜖𝑐
𝑑𝜉𝑌 (𝜉), (G.18)

where 𝑋 and 𝑌 are some functions, and 𝒌F is the Fermi wave vector. The coefficients of the
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quartic terms are given by

𝛽1 =
1
2

∑︁
𝒌

|𝜼𝒌 |4
[
1 − 2 𝑓 ( |𝜉𝒌 |)

|𝜉𝒌 |3
+ 2 𝑓 ′( |𝜉𝒌 |)

|𝜉𝒌 |2

]
≈ 𝜌0⟨|𝜼𝒌 |4⟩FS

7𝜁 (3)
16𝜋2𝑇2 , (G.19)

𝛽2 =
1
2

∑︁
𝒌

|𝜂𝑎𝑏𝒌 |4
[
1 − 2 𝑓 ( |𝜉𝒌 |)

|𝜉𝒌 |3
+ 2 𝑓 ′( |𝜉𝒌 |)

|𝜉𝒌 |2

]
≈ 𝜌0⟨|𝜂𝑎𝑏𝒌 |4⟩FS

7𝜁 (3)
16𝜋2𝑇2 , (G.20)

𝛽 =
1
2

∑︁
𝒌

|𝜼𝒌 |2 |𝜂𝑎𝑏𝒌 |2
[
1 − 2 𝑓 ( |𝜉𝒌 |)

|𝜉𝒌 |3
+ 2 𝑓 ′( |𝜉𝒌 |)

|𝜉𝒌 |2

]
≈ 𝜌0⟨|𝜼𝒌 |2 |𝜂𝑎𝑏𝒌 |2⟩FS

7𝜁 (3)
16𝜋2𝑇2 , (G.21)

where 𝑓 ′(𝑥) = 𝑑𝑓 (𝑥)/𝑑𝑥, and 𝜁 (𝑥) is the Riemann zeta function. In Eqs. (G.19)-(G.21), we
used the following integral formula;∫ ∞

−∞
𝑑𝜉

[
1 − 2 𝑓 (𝜉)

𝜉3 + 2 𝑓 ′(𝜉)
𝜉2

]
=

∫ ∞

−∞
𝑑𝜉

𝑓 ′′(𝜉)
𝜉

=
7𝜁 (3)

2(𝜋𝑇)2 , (G.22)

where 𝑓 ′′(𝑥) = 𝑑𝑓 ′(𝑥)/𝑑𝑥. The coefficients of the quadratic gradient term are obtained as

𝜅1,𝜈 =
1
2

∑︁
𝒌

|𝜼𝒌 |2 |𝑣𝜈𝒌 |
2 𝑓 ′′( |𝜉𝒌 |)

|𝜉𝒌 |
≈ 𝜌0⟨|𝜼𝒌 |2 |𝑣𝜈𝒌 |

2⟩FS
7𝜁 (3)

16𝜋2𝑇2 , (G.23)

𝜅2,𝜈 =
1
2

∑︁
𝒌

|𝜂𝑎𝑏𝒌 |2 |𝑣𝜈𝒌 |
2 𝑓 ′′( |𝜉𝒌 |)

|𝜉𝒌 |
≈ 𝜌0⟨|𝜂𝑎𝑏𝒌 |2 |𝑣𝜈𝒌 |

2⟩FS
7𝜁 (3)

16𝜋2𝑇2 . (G.24)

where we used Eq. (G.22). In the same manner, the effective anapole moment 𝑻 is given by

𝑻 =
1
2

∑︁
𝒌

Tr[𝑀 (1)
− (𝒌)𝐻̃0(𝒌)]𝒗𝒌

𝑓 ′′( |𝜉𝒌 |)
|𝜉𝒌 |

≈ 𝜌0⟨Tr[𝑀 (1)
− (𝒌)𝐻̃0(𝒌)]𝒗𝒌⟩FS

7𝜁 (3)
16𝜋2𝑇2 . (G.25)
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Appendix H

Symmetry analysis for UTe2

In this appendix, we present a comprehensive symmetry analysis for possible asymmetric
Bogoliubov spectrum and anapole superconductivity in UTe2. Although we considered only
the 𝐴𝑔 + 𝑖𝐴𝑢 and 𝐴𝑔 + 𝑖𝐵3𝑢 states in Sec. 4.4, we here consider all of possible PT -symmetric
mixed-parity pairing states in UTe2. The superconducting order parameter in UTe2 is classified
based on the eight IRs in 𝐷2ℎ point group. The basis functions for these pairing states are shown
in Table H.1. Since the local site symmetry at U site is 𝐶2𝑣 in UTe2 [202], the basis functions
for the staggered pairing components can be obtained as listed in the third column of Table H.1.
As shown in Sec. 4.4, the staggered pairing components and antisymmetric spin-orbit coupling
are essential for the asymmetric Bogoliubov spectrum.

Table H.1. Basis functions for possible superconducting states in UTe2. The second (third)
column shows the basis function for intrasublattice (staggered) pairing components, which is
proportional to 𝜏0 (𝜏𝑧). Here, 𝜏𝜈 is the Pauli matrices for intra-ladder sublattice DOF in UTe2
[202].

IR Intrasublattice components (∼ 𝜏0) Staggered components (∼ 𝜏𝑧)
𝐴𝑔 1 𝑘𝑦 𝒙̂, 𝑘𝑥 𝒚̂, 𝑘𝑥𝑘𝑦𝑘𝑧𝒛
𝐵1𝑔 𝑘𝑥𝑘𝑦 𝑘𝑥 𝒙̂, 𝑘𝑦 𝒚̂, 𝑘𝑧𝒛
𝐵2𝑔 𝑘𝑧𝑘𝑥 𝑘𝑥𝑘𝑦𝑘𝑧 𝒙̂, 𝑘𝑧 𝒚̂, 𝑘𝑦𝒛
𝐵3𝑔 𝑘𝑦𝑘𝑧 𝑘𝑧 𝒙̂, 𝑘𝑥𝑘𝑦𝑘𝑧 𝒚̂, 𝑘𝑥 𝒛
𝐴𝑢 𝑘𝑥 𝒙̂, 𝑘𝑦 𝒚̂, 𝑘𝑧𝒛 𝑘𝑥𝑘𝑦

𝐵1𝑢 𝑘𝑦 𝒙̂, 𝑘𝑥 𝒚̂, 𝑘𝑥𝑘𝑦𝑘𝑧𝒛 1
𝐵2𝑢 𝑘𝑧 𝒙̂, 𝑘𝑥𝑘𝑦𝑘𝑧 𝒚̂, 𝑘𝑥 𝒛 𝑘𝑦𝑘𝑧

𝐵3𝑢 𝑘𝑥𝑘𝑦𝑘𝑧 𝒙̂, 𝑘𝑧 𝒚̂, 𝑘𝑦𝒛 𝑘𝑧𝑘𝑥

There are 16 patterns of PT -symmetric mixed-parity pairing as shown in Table H.2. If
the pairing state belongs to the nonpolar 𝐴−

𝑢 IR, a nonpolar 𝑘𝑥𝑘𝑦𝑘𝑧-type asymmetry can be
induced in the Bogoliubov spectrum. The 𝐴−

𝑢 pairing states are equivalent to nonpolar odd-
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Table H.2. List of possible PT -symmetric mixed-parity pairing states in 𝐷2ℎ point group.
For each pairing state, IR of the order parameter, corresponding multipole moment, type
of asymmetric modulation in the Bogoliubov spectrum, and possible form of center-of-mass
momentum of Cooper pairs 𝒒 are shown. IRs with odd time-reversal parity are denoted by
Γ−. The anapole moment along the 𝜈-axis is expressed as 𝑇𝜈. On the other hand, 𝑀0, 𝑀2, 𝑀4,
... denote nonpolar magnetic multipole moment, namely, the magnetic monopole, magnetic
quadrupole, magnetic hexadecapole, ..., respectively.

Pairing state IR Multipole Asymmetry 𝒒

𝐴𝑔 + 𝑖𝐴𝑢, 𝐵1𝑔 + 𝑖𝐵1𝑢, 𝐵2𝑔 + 𝑖𝐵2𝑢, 𝐵3𝑔 + 𝑖𝐵3𝑢 𝐴−
𝑢 𝑀0, 𝑀2, 𝑀4, ... 𝑘𝑥𝑘𝑦𝑘𝑧 (0, 0, 0)

𝐴𝑔 + 𝑖𝐵1𝑢, 𝐵1𝑔 + 𝑖𝐴𝑢, 𝐵2𝑔 + 𝑖𝐵3𝑢, 𝐵3𝑔 + 𝑖𝐵2𝑢 𝐵−
1𝑢 𝑇𝑧 𝑘𝑧 (0, 0, 𝑞)

𝐴𝑔 + 𝑖𝐵2𝑢, 𝐵1𝑔 + 𝑖𝐵3𝑢, 𝐵2𝑔 + 𝑖𝐴𝑢, 𝐵3𝑔 + 𝑖𝐵1𝑢 𝐵−
2𝑢 𝑇𝑦 𝑘𝑦 (0, 𝑞, 0)

𝐴𝑔 + 𝑖𝐵3𝑢, 𝐵1𝑔 + 𝑖𝐵2𝑢, 𝐵2𝑔 + 𝑖𝐵1𝑢, 𝐵3𝑔 + 𝑖𝐴𝑢 𝐵−
3𝑢 𝑇𝑥 𝑘𝑥 (𝑞, 0, 0)

parity magnetic multipole states such as magnetic monopole, quadrupole, and hexadecapole,
from the viewpoint of symmetry. On the other hand, if the pairing state belongs to the polar
𝐵−

1𝑢,2𝑢,3𝑢 IRs, the Bogoliubov spectrum can exhibit a polar 𝑘𝑧,𝑦,𝑥-type asymmetry. Thus, the
𝐵−

1𝑢,2𝑢,3𝑢 pairing state carries the anapole (magnetic toroidal) moment. This 𝑘𝜈-type asymmetry
leads to stabilization of FFLO state with 𝑞𝜈 ≠ 0 (𝜈 = 𝑥, 𝑦, 𝑧), where 𝒒 = (𝑞𝑥 , 𝑞𝑦, 𝑞𝑧) is the
center-of-mass momentum of Cooper pairs.
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