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Abstract

The theoretical discovery of topological insulators in 2005 has reaffirmed the importance
of band topology in condensed matter physics, which has been extended to superconduc-
tors, semimetals and developed into a major field. Furthermore, topological phases have
been discovered in strongly correlated systems and have attracted much attention. For
example, in the long-known heavy-fermion compounds SmB6 and YbB12, surface states
have been observed, and they have been established as topological insulators in strongly
correlated systems. In addition to the above topological Kondo insulators, various types
of correlation induced topological states have been studied, such as topological Mott in-
sulators, interaction-reduced classifications, topological spin liquids, and so on. Electron
correlation effects on topological states are particularly interesting because they have the
potential to induce nontrivial properties. Thus we can say that the interplay between
electron correlation and topology is one of the central subjects in modern condensed mat-
ter physics. One of the next steps in theoretical research is to investigate a variety of
correlation-induced topological phases. Based on the above background, in this thesis,
we analyze the correlation-induced topological states and their various phase transitions
by numerical calculation.

First, we explore topological states with magnetically ordered phases by taking ac-
count of crystalline symmetry, i.e. a mirror symmetry. In particular, we focus on heavy-
fermion systems, which have a nontrivial band topology due to the spin-orbit coupling and
the strong Coulomb interaction. The emergence of topological properties in the magnetic
phases has already been studied. Although in the absence of spatial symmetry, there is no
topological phase in the two-dimensional (2D) antiferromagnetic phases at half filling, we
demonstrate that a topological phase emerges in the presence of mirror symmetry. This is
explicitly shown for a 2D periodic Anderson model. Furthermore, around quarter filling,
our analysis shows that a half-metallic state emerges in the ferromagnetic phase, where a
spin-selective gap opens, resulting in nontrivial properties characterized by a Chern num-
ber. In contrast to the previously proposed models which can apply for spin-conserving
system, our scenario can even apply for a wider class of spin-nonconserving systems in
the presence of spin-orbit coupling.

Second, we explore the correlation-induced non-Hermitian topological semimetals. In
particular, we focus on the non-Hermitian band topology coming from the lifetime effects
on quasi-particles in an equilibrium system. The emergence of the non-Hermitian topo-
logical semimetals in strongly correlated system has already been studied. Despite inten-
sive studies, it remains unclear what physical properties are affected by the non-Hermitian
band structure. In particular, there are few studies elucidating the effects of the non-
Hermitian band structure on magnetic/electric responses. Based on the above background,
we analyze a diamond-lattice Hubbard model with the spatially modulated Hubbard in-
teraction. Our dynamical mean-field analysis with special emphasis on non-Hermitian
properties elucidates that the gapless nodal line changes into a symmetry-protected ex-
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ceptional torus (SPET) at the Fermi level enclosing the three-dimensional open Fermi
surface, which is unique to non-Hermitian physics with chiral symmetry. Furthermore,
we also elucidate the effects of the SPETs on the magnetic response; our results based on
the random-phase approximation combined with the dynamical mean-field theory show
that SPETs enhance the magnetic susceptibility at the weakly correlated sites, exemplify-
ing effects of non-Hermitian degeneracies on responses to external fields.

Finally, we focus on the electron-nematic phase transition, such as magic-angle twisted
bilayer graphene(MA-TBG) and doped-Bi2Se3, which are candidate materials of nematic
superconductors. The relationship between electron-nematic order and unconventional
superconductivity is a pressing question in present condensed matter physics. Moti-
vated by recent studies of three-state Potts nematic states in magic-angle twisted bilayer
graphene and doped-Bi2Se3, we analyze the impact of critical nematic fluctuations on
the low energy properties of phonons. In this study, we propose how to identify the
three-state Potts nematic fluctuations by ultrasound attenuation. The Gaussian fluctuation
analysis shows that the Landau damping term becomes isotropic due to fluctuations of the
C3-breaking bond-order, and the nemato-elastic coupling is also shown to be isotropic.
These two features lead to an isotropic divergence of the transverse sound attenuation
coefficient and an isotropic lattice softening, in contrast to the case of the C4-breaking
bond-order which shows the strong anisotropy. Moreover, we use a mean-field approx-
imation and discuss the impurity effects. The transition temperature takes its maximum
near the filling of the van-Hove singularity, and the large density of states favors the ne-
matic phase transition. It turns out that the phase transition is of weak first-order in the
wide range of filling and, with increasing the impurity scattering, the first order transi-
tion line at low temperatures gradually shifts towards the second-order line, rendering the
transition a weak first-order in a wider range of parameters. Furthermore, it is confirmed
that the enhancement of the ultrasound attenuation coefficient will be clearly observed in
experiments in the case of a weak first-order phase transition.

2



Contents

1 Introduction to topological materials in strongly correlated electron systems 6
1.1 Introduction to interacting topological phases . . . . . . . . . . . . . . . 7
1.2 Topological materials with strong electron correlation . . . . . . . . . . . 10

1.2.1 Heavy-fermion topological systems . . . . . . . . . . . . . . . . 10
1.2.2 Magnetic topological insulators . . . . . . . . . . . . . . . . . . 11
1.2.3 Electron-nematic phases . . . . . . . . . . . . . . . . . . . . . . 12

1.3 New theoretical perspective of non-Hermitian topology . . . . . . . . . . 14
1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Topological properties of magnetically ordered heavy-fermion systems in the
presence of mirror symmetry 17
2.1 Introduction to this chapter . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Mean-field theory of topological periodic Anderson model on the square

lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Numerical results of magnetically ordered topological states . . . . . . . 19

2.3.1 Antiferromagnetic topological insulator/semimetal . . . . . . . . 20
2.3.2 Ferromagnetic topological half-metal . . . . . . . . . . . . . . . 26
2.3.3 Electron correlation effect: beyond mean-field description . . . . 27

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Appendix for this chapter: Derivation of some models . . . . . . . . . . . 29

2.5.1 Three-dimensional effective model of SmB6 . . . . . . . . . . . 29
2.5.2 Effective spin model: Strong correlation limit . . . . . . . . . . . 30

3 Chiral-symmetry protected exceptional torus in correlated nodal-line semi-
metals 33
3.1 Introduction to this chapter . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Dynamical mean-field theory on the diamond lattice Hubbard model . . . 34

3.2.1 Hubbard model on the diamond lattice . . . . . . . . . . . . . . . 34
3.2.2 DMFT+IPT method for many-body chiral symmetric system . . . 35
3.2.3 Random phase approximation for the magneic susceptibility . . . 37

3.3 Overview of the symmetry protection of exceptional torus for chiral sym-
metry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Definition of the many-body chiral symmetry . . . . . . . . . . . 38
3.3.2 Green’s function formula of the many-body chiral symmetry . . . 38
3.3.3 Effective non-Hermitian Hamiltonian representation of the many-

body chiral symmetry . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 DMFT results for the interaction driven exceptional torus . . . . . . . . . 40

3.4.1 Emergence of the interaction-driven SPET: Energy spectrum and
spectral function . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3



3.4.2 LDOS structure in SPET . . . . . . . . . . . . . . . . . . . . . . 44
3.4.3 Effects of SPETs on the magnetic susceptibility . . . . . . . . . . 47

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Appendix for this chapter: Numerical data . . . . . . . . . . . . . . . . . 49

3.6.1 SPET of the anisotropic diamond lattice . . . . . . . . . . . . . . 49

4 Probing three-state Potts nematic fluctuations by ultrasound attenuation 50
4.1 Introduction to this chapter . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Phenomenological approach to the impact of critical nematic fluctuations

on phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Phenomenology of a C3-breaking bond-order fluctuation . . . . . 52
4.2.2 Probing the nematicity through acoustic phonons . . . . . . . . . 56

4.3 Model calculation of the electron-nematic phase transition . . . . . . . . 60
4.3.1 Extended Hubbard model on the honeycomb lattice . . . . . . . . 60
4.3.2 Effective action describing the three-state Potts nematic phase

transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Ginzburg-Landau expansion for the three-state Potts nematicity . 65
4.3.4 Numerical results (i): Mean-field phase diagram . . . . . . . . . 69
4.3.5 Numerical results (ii): Sound attenuation coefficients . . . . . . . 71

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6 Appendix for this chapter: Derivations of some formulas . . . . . . . . . 76

4.6.1 Hartree-Fock approximation of a bond-order . . . . . . . . . . . 76
4.6.2 Electron-phonon coupling from the bond-length change . . . . . 77

5 Conclusion 79

4



List of publications

Papers related to the thesis
1. Kazuhiro Kimura, Tsuneya Yoshida and Norio Kawakami

Topological Properties of Magnetically Ordered Heavy-Fermion Systems in the
Presence of Mirror Symmetry
Journal of the Physical Society of Japan 87, 084705 (2018).
©2018 The Physical Society of Japan

2. Kazuhiro Kimura, Tsuneya Yoshida and Norio Kawakami
Chiral-symmetry protected exceptional torus in correlated nodal-line semimetals
Physical Review B 100, 115124 (2019).
©2019 The American Physical Society

3. Kazuhiro Kimura, Manfred Sigrist and Norio Kawakami
Probing three-state Potts nematic fluctuations by ultrasound attenuation
Physical Review B 105, 035130 (2022).
©2022 The American Physical Society

Published papers not included in the thesis
1. Kazuhiro Kimura, Tsuneya Yoshida and Norio Kawakami

Reflection-Symmetry Protected Antiferromagnetic Topological Insulator in Three-
Dimensional Heavy-Fermion Systems
JPS Conf. Proc. 30, 011012 (2020).
©2020 The Physical Society of Japan

2. Robert Peters, Kazuhiro Kimura, Yoshihiro Michishita, Tsuneya Yoshida and Norio
Kawakami
Surface exceptional points in a topological Kondo insulator
Physical Review B 104, 235153 (2021).
©2021 The American Physical Society

5



Chapter 1

Introduction to topological materials in
strongly correlated electron systems

Since the theoretical discovery of Z2 topological insulators (TIs)[1–4], topological ma-
terials have been the subject of intense theoretical and experimental investigation. Fur-
thermore, the notion of band topology has been extended to strongly correlated systems,
where an interplay[5] between topology and Coulomb interaction hosts some exotic phe-
nomena, e.g. topological Kondo insulators[6–8], topological Mott insulators[9–13], and
the change of topological classification[14–31], etc. Electron correlation effects on topo-
logical states are particularly interesting because they have the potential to drastically
change the ground state properties. The interplay between Coulomb interaction and topol-
ogy is one of the central subjects in condensed matter physics and these two features are
important notions for understanding a variety of materials.

In recent years, their interplay has been studied from new perspectives. One direction
of researches has focused on material sciences, such as the development of functional ma-
terials and the search for new physical properties. Experimentally, in magnetic-impurity
doped topological insulators, e.g. (Cr, V)-doped (Bi,Sb)2Te3,[32, 33] have been found
to show the quantum anomalous Hall effect without external magnetic fields, e.g., Chern
insulators. Chiral edge modes carry a non-dissipative current, which can be applied to
spintronics devices. Furthermore, this observation provides a concrete platform for the
exploration of exotic quantum effects such as the topological magnetoelectric effect and
the formation of axion insulators. However, several problems remain, e.g., the anomalous
quantum Hall effects realized by doping are still limited to the low temperature region of
2K. One way to solve this problem is to search topological materials that have a magnetic
order in bulk, rather than a magnetic order formation by doping.

In addition to magnetic topological insulators, with the improvement of experimental
techniques for the van der Waals layered materials, experiments with the twisted bilayer
graphene have attracted much attention for the so-called first magic angle. Various exotic
phases emerge, including the appearance of Mott insulators and unconventional super-
conducting states, which are a reminiscent feature of cuprate superconductors, quantum
Hall ferromagnetic phases, and electron-nematic phases. Conventional graphene-based
materials are dominated by p-electrons of carbon atoms, and therefore the Coulomb in-
teraction is not very important. However, in the case of twisted bilayer graphene, the
formation of the long-period moiré structure drastically changes the band structure to a
quasi-flat band, thus the effect of Coulomb interaction becomes relatively large. In ad-
dition, one of the key advantages of this system is the electrical tunability of the charge
carrier density in a flat band. This tunability enables us to study the phase diagrams of
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unconventional superconductivity and correlated topological states. More experimental
and theoretical studies are needed to clarify the origin of intertwined orders.

Another direction in recent researches has focused on new theoretical interests, such as
the non-Hermitian topology inspired by the study of open or/and nonequilibrum systems,
where the interaction with environments cannot be neglected. A non-Hermitian Hamil-
tonian gives an effective description in various contexts such as open quantum systems,
photonic system[34–36]. Furthermore, as proposed by Kozii and Fu, even in equilibrium
systems, such non-Hermitian topological properties [37] can appear due to the lifetime ef-
fects originating from a single-particle self-energy [38–42]. Such a new way to describe
the quantum many-body systems is expected to provide a key to solve unsolved problems
in condensed matter physics, such as the origins for quantum oscillations in topological
Kondo insulators SmB6 and YbB12.

Inspired by the above experimental and theoretical progress, we investigate the physi-
cal properties of the correlation-induced topological states and these magnetic or electron-
nematic phase transitions in this thesis. We aim to find new topological phenomena,
clarify correlation effects, and discuss the stability of these phases in terms of numerical
calculations and symmetry. To begin with, we give a brief review of theoretical and ex-
perimental backgrounds related to this thesis in the following. In Sec. 1.1, we give an
overview of introduction to the interacting topological phases and show a general interest
of research. In Sec. 1.2, we show several topological materials. In Sec. 1.3, we give an-
other theoretical perspective of interacting topological phases, referred to as the lifetime
induced non-Hermitian topological semimetals. Finally, we mention the organization of
this thesis, in Sec. 1.4.

1.1 Introduction to interacting topological phases
Originally, topological materials[3, 4] such as insulators and superconductors are char-
acterized by their metallic surface (edge) states which are protected by local symmetries
of the systems. These results are summarized into a topological periodic table, so-called
Altrand-Zirnbauer classification table [43–45]. A significant number of TIs have been
found so far this decade, including an extension from local symmetry to crystalline sym-
metry, such as topological crystalline insulators [1, 2, 46–49]. Furthermore, the notion
of topology has been generalized to gapless phases [50–56] such as Weyl semimetals,
nodal-line semimetals, Weyl superconductor, and so on, where the relation between gap-
less points/lines and band topology is well understood from the view point of underlying
symmetry. These topological phases, whose characteristics are determined by the topo-
logical nature of the bulk wave function, are new phases of matter that are different from
the ordered phases characterized by symmetry breaking based on Landau theory. One
of the essential differences is that the topological properties do not change continuously
with external field, and disorder, etc, which is different from the symmetry-broken or-
dered phase where the order parameter changes continuously. In material science, an
important feature of such topological phases is the existence of edge/surface states that
is robust against impurities, thus the resulting nondissipative electric/spin current can be
applied to the development of new functional materials, such as spintronics. In addition,
the emergence of gapless Majorana fermions [57–62] and their non-Abelian statistics
in topological superconductors is expected to have applications in topological quantum
computation. Therefore, expanding a platform of designing such materials will be a very
important issue in condensed matter physics.
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The notion of topology has been extended to strongly correlated systems, where an
interplay between topology and Coulomb interaction hosts some exotic phenomena. The
study of strong Coulomb interaction has a long history since the discovery of high-Tc
cuprate superconductors. The difficulty of these many-body problems, such as Mott
insulator[63] that becomes insulating due to electron correlation and magnetic fluctua-
tions that become a driving force for unconventional superconductor[64], cannot be re-
solved by the band theory alone. The electron correlation is one of the most important
topics for understanding a variety of materials. With a long history of research, many the-
oretical concepts and treatments have been established, and interesting phenomena such
as heavy-fermion, Kondo effect, Mott transition, and quantum critical phenomena have
been studied. In such strongly correlated electron systems, many theoretical and experi-
mental researches have also been carried out from the viewpoint of topology.

To clarify the purpose of studying the topological phases in strongly correlated elec-
tron systems, we explain what are of importance and interest. They are summarized in
three points below.

• To elucidate unique topological phases in interacting systems: The ef-
fect of the interaction may cause a drastic change of electronic states,
and exotic states with no counterparts in weakly correlated systems may
be realized. An old example is the fractional quantum Hall state, which
is one of the topological ordered phases, known as a system with long-
range quantum entanglement. On the other hand, a topological Mott
insulating state has been proposed for symmetry protected topological
phase without long-range entanglement. The latter one can be under-
stood by studying the impact of electron correlation on topological in-
sulators.

• To analyze the stability against strong electron interaction: In con-
trast to the above, it is necessary to understand to what extent topolog-
ical properties can be guaranteed, and from where topological proper-
ties are broken, beyond the single particle picture. This understanding
will help to create physical platforms of topological phases that have
been difficult to realize with weakly correlated systems. For exam-
ple, in magnetic-impurity doped topological insulators have been found
to show the quantum anomalous Hall effect without external magnetic
fields.

• To unravel the mysteries of quantum states of matter: In strongly corre-
lated electron systems, the introduction of the concept of topology leads
to the solution of a long-standing mystery. To understand the origin
of a variety of materials, the notion of topology is also important. For
example, in heavy-fermion compounds SmB6 and YbB12, the topolog-
ically protected surface states have been pointed out as the origin of a
long-known mystery of a low-temperature saturation of resistivity.

To begin with, we introduce theoretical progress in electron correlation effects on
topological insulators for the last decade. In a band insulating system, the strong spin-
orbit coupling allows a non-trivial topology of the electron bands. In parallel, in Mott
insulating system, the strong spin-orbit coupling has attracted interest in the context of
many frustrated magnets[65, 66]. Motivated by the question “How these two classes
of phenomena are connected from weak to strong electron correlation with keeping on
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the strong spin-orbit coupling ?”, the interaction induced topological Mott insulator was
firstly proposed by D. Pesin and L. Balents in 2010[9]. It may be regarded as a quan-
tum spin-liquid state, where the topological Mott insulating phase is gapped in the bulk,
while gapless spinons appear on the surface. Inspired by these theoretical studies, at-
tention to interacting topological phases has increased. A number of numerical calcula-
tions were performed to investigate the interplay between strong spin-orbit coupling and
electron-electron interactions and how the interaction affects the topological insulating
phase[67–73]. In addition, an important result is the formulation of the topological num-
ber of interacting systems by V. Gurarie in 2011[74]. It was pointed out that topological
properties of a bulk wave-function adiabatically connect[74–78] to a non-interacting sys-
tem, even if the interactions are somewhat strong, as long as there is no Mott transition or
symmetry breaking.

For a better understanding, we will now introduce a concrete example of a topologi-
cal number in an interacting system with a many-body chiral symmetry discussed by V.
Gurarie[74, 79]. For interacting systems, the symmetry defined for the Bloch Hamiltonian
must be extended to a many-body Hamiltonian including the electron-electron interaction
term. A convenient way to introduce a many-body chiral symmetry is to use the electron
Green’s function, which is given by Γ†G(k, ω)Γ = −G(k, ω) with a wave number k, a
frequency ω, and a many-body chiral operator Γ, Γ2 = 1. For example one-dimensional
system, the winding number in terms of Green’s function can be defined as follows.

N = tr
∫ π

−π

dk
4πi

ΣG−1(k)
∂

∂k
G(k), (1.1)

where G(k) is defined as G(k) = G(k, ω)|ω=0 and a chiral matrix Σ for a Bloch Hamil-
tonian. If we set G−1(k) = Hk with a Bloch Hamiltonian Hk here, we have a well-known
formula of the winding number. We note that the Green’s function formula is given for
other topological numbers in similar manners[74–78]. The most important thing to un-
derstand here is how the topological phase transition occurs. From the above equation,
we can see that there are two ways to change the winding number N. One is the case
where G(k) has poles, i.e., G−1(k) = 0, corresponding to the gap closing of a single-
particle excitation, which appears in an ordinary non-interacting system. The other is the
case where G(k) has zeros, i.e., G(k) = 0, caused by the divergence of the self-energy at
ω = 0 and corresponding to the Mott transition, where the single-particle excitation gap
is closed by interactions.

The latter supports the possibility of a topological phase unique to Mott insulators, as
pointed out by D. Pesin and L. Balents[9]. But, since they used a rather special method, a
more generic treatment has been needed. Based on the understanding of topological band
theory in terms of Green’s function, the notion of topological Mott insulator has been
established by density matrix renormalization group analysis in one dimensional systems
by T. Yoshida, et. al., in 2014[10, 79]. Where the Mott transition of the topological
edge state has been pointed out. The edge Mott states arising here can be understood in
terms of the single-site Hubbard model HU = Un↑n↓, with number operators n↑,↓ for
each spins. In the noninteracting case, the edge states are four-fold degenerate in Fig.
1.1(a), which means that the single-particle excitations are gapless, namely both charge
excitation and spin excitation are gapless. On the other hand, in the interacting case, the
four-fold degeneracy of the ground state is lifted and reduced to two-fold degeneracy in
Fig. 1.1(b). This means the gap opening in the charge excitation, i.e., a Mott insulator,
while spin excitations remain gapless, which corresponds to the edge Mott state. In the
example of the single-site Hubbard model, a finite interaction results in a Mott insulator,
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but this does not necessarily mean that a finite interaction results in an edge/surface Mott
transition[10–13] in a general topological insulator. It is also an open problem whether
or not the surface Mott states appear in higher dimensions, as originally proposed in
frustrated magnets[9].

Fig. 1.1: Interaction effects on a topological edge state in a one dimensional system. (a) Gapless
single particle excitation in noninteracting or weakly correlated topological edge state.
(b) Charge gapped and spin gapless excitations in edge Mott state.

In this section, we have described how topological properties are changed by inter-
actions. As we have shown above, electron correlation effects on the topological band
structure are now well understood. While it is important that the interaction leads to
the appearance of properties that are not present in weakly correlated systems, it is also
important that the stability against the interaction is guaranteed. The latter one is also
important for the study of topological Kondo insulators[7, 8] in heavy fermion systems
and topological insulators coexisting or competing with long-range ordered phases[68,
69, 72, 73, 80, 81, 81, 82, 82–90]. In addition, what we have discussed here will be the
basics for the following chapters. In the next section, we show the topological phases in
strongly correlated electron systems from a materials science point of view.

1.2 Topological materials with strong electron correla-
tion

In this section, we exemplify some topological materials in strongly correlated systems.

1.2.1 Heavy-fermion topological systems
Heavy-fermion materials[91–94] are a class of strongly correlated electron systems con-
taining localized f -electrons which are surrounded by conducting d-electrons. In heavy-
fermion metals, the effective electron mass is about 1000 times larger than the original
one, resulting in magnetism, superconductivity, non-Fermi liquid, and quantum critical
phenomena. This variety is understood by the competitive phenomena between the Kondo
effect, where the conduction electrons screen the localized magnetic moment, and the
RKKY (Rudermann Kittel Kasuya Yoshida) interaction, where the interaction between
localized moments mediated by conduction electrons gives rise to magnetic phase transi-
tions. A characteristic feature of heavy-fermion systems is that the energy scale changes
to a small Kondo temperature TK ∼ 10 K instead of the Fermi temperature T ∼ 104 K
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of ordinary metals. This leads to dramatic changes in physical properties depending on
pressure and magnetic field at low temperature regions.

As mentioned in the previous section, nontrivial topology enriches quantum states of
matter to go beyond the classification into metals and insulators in terms of conventional
band theory. In many cases, to realize such a topological phase, strong spin-orbit cou-
pling is required. Heavier elements are preferred over lighter elements such as graphene
which was originally proposed as a quantum spin Hall insulator[1, 2]. Heavy-fermion
systems are also ideal platforms of exploring the non-trivial topological properties due to
the strong spin-orbit coupling. We now give typical examples for the interplay of heavy-
fermion and topology.

The topological Kondo insulator is a particularly simple type of topological materi-
als in heavy-fermion systems[6–8]. Originally, the Kondo insulators, first discovered 40
years ago[95], have been known as a narrow gap semiconductor. While these materials
have the strong electron-correlation, their low-energy properties can be regarded as adi-
abatically connected to non-interacting band insulators, where the hybridization between
highly renormalized f -electrons and conducting d-electrons forms the excitation gaps of
quasi-particles. It has been pointed out that the typical Kondo insulators can also be topo-
logically classified[6]. In particular, SmB6[96, 97] and YbB12[98] have attracted much
attention as a promising candidate for the topological Kondo insulator. The topologically
protected surface states have been pointed out as the origin of a long-known mystery of a
low-temperature saturation[99] of the electrical resistivity.

While the origin of the saturation has been revealed to be topologically protected sur-
face states, quantum oscillation in the bulk has been reported in many experiments[100–
104]. Namely, this means that electrically, it is a highly resistive insulator, but magnet-
ically, it behaves like a metal, making its origin a great mystery. Moreover, the specific
heat and thermal conductivity measurements[105, 106] suggest the existence of a charge
neutral fermion[106] in the bulk YbB12. Although many interesting theories have been
proposed, motivated by these interesting experiments, the origin of the metallic behavior
has not yet been understood.

In order to solve such difficult problems, a deeper understanding of the interplay be-
tween the electron correlation and topology is needed. For example, theory of lifetime-
induced non-Hermitian topological semimetalls may explain such in-gap state. About this
theory, we give more details later in Sec. 1.3. In addition to the topological Kondo in-
sulator, recent studies have revealed another kind of topological state called Weyl-Kondo
semimetals such as the noncentrosymmetric material Ce3Bi4Pd3[107, 108], and the cen-
trosymmetric material YbPtBi[109] under the magnetic field. Some of more interest-
ing points are the study of electron correlation on topological transport properties[110,
111] and the study of Weyl semimetals near the magnetic field-induced quantum criti-
cal point[112]. The strong electron-correlation enriches topological states of matter and
causes exotic phases with no counterpart of weakly correlated system.

1.2.2 Magnetic topological insulators
We have introduced correlation-induced topological states in the absence of long-range
ordered phase. On the other hand, the interplay of magnetism and topology is also an
important topic[68, 69, 72, 73, 80–90] from the perspective of materials science, such as
the development of functional materials and the search for new physical properties. The
magnetic topological insulators[32, 33] have attracted much attention to show the quan-
tum anomalous Hall effect, where a non-dissipative topological current can be applied
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to spintronics devices. Moreover, this observation provides a concrete platform for the
exploration of exotic quantum effects such as the topological magnetoelectric effect and
the formation of axion insulators. Experimentally, it has been realized as a ferromagnetic
(FM) topological insulator made by doping magnetic impurities into the topological in-
sulator, such as (Cr, V)-doped (Bi,Sb)2Te3 and Mn-doped Bi2Te3[32, 33]. The important
point is to open an exchange gap in the surface state by breaking the time-reversal sym-
metry, namely realizing a quantum anomalous Hall insulator. Two mechanisms have been
considered as a possible origin for ferromagnetism: the carrier-mediated RKKY mech-
anism and the local valence-electron-mediated Bloembergen-Rowland mechanism[33].
However, several problems remain, e.g., the anomalous quantum Hall effects realized by
doping are still limited to the low temperature region of 2K and the inhomogeneity of
the magnetism reduces the efficiency of realization and application. One way to solve
this problem is to search topological materials that have a magnetic order in bulk, rather
than a magnetic order formation by doping. How to design such an intrinsic magnetic
topological insulator is a very important issue in topological material science.

Concerning nontrivial properties in bulk FM phases, a spin-selective topological in-
sulator was proposed for heavy-fermion systems[88]. This is a half-metallic FM phase
[113–117] around quarter filling, where the minority spin sector acquires a gap while the
majority band remains gapless, which is called a spin-selective gap. If the insulating sec-
tor has a nontrivial topological number, we have an spin-selective topological insulator,
which is a unique topological insulator embedded in a metallic phase. Unfortunately,
however, it has been shown that this phase emerges only in spin-conserving systems and
is not generally compatible with the presence of spin-orbit coupling, which is necessary
for topological properties.

In the ferromagnetic phase, the problem has been how to realize a class A, namely
Chern insulator without time-reversal symmetry. On the other hand, magnetic topological
insulators based on magnetic symmetry have been proposed, and antiferromagnetic (AF)
topological insulators[80] are a typical example. In such AF topological insulators, the
primitive-lattice translation symmetry is broken by the collinear antiferromagnetic order,
where the unit cell is doubled. The AF order breaks time-reversal (Θ) and primitive-lattice
translational (T1/2) symmetries but preserves their combined symmetry Sk = ΘT1/2(k).
Under this symmetry, we can define a Z2 topological number[118], which is related to
the strong index of three-dimensional topological insulators[43–45]. Recently it is found
that the van der Waals layered compound MnBi2Te4[119] could be a possible candidate
for AF topological insulators. Note, however, that this Z2 number is allowed only for
three-dimensional systems, as confirmed by the periodic table[43–45, 118, 120, 121].

1.2.3 Electron-nematic phases
In this subsection, we show the electron-nematic phases in twisted bilayer graphene and
doped-Bi2Se3, which are also topological materials in strongly correlated systems. After
we first give an introduction about interests of electron-nematic states, we show these
materials.

The stability of Fermi surface to interactions is an important notion[122] to understand
the origin of a variety of quantum states of matter in strongly correlated systems. In
1958, based on Landau Fermi liquids theory, I. Pomeranchuk has firstly discussed the
stability condition of the isotropic Fermi surface against interactions and the possibility of
the spontaneous deformation of the Fermi surface, namely Pomeranchuk instability[123].
The electron-nematic states, specifically referred to as d-wave Pomeranchuk instability
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in the case of an isotropic Fermi surface, are a translationally invariant metallic state
with a spontaneously generated spatial anisotropy. Originally, the notion of the nematic
electron liquid [124] was proposed as a quantum counterpart of classical nematic liquid
crystals in a stripe charge ordered state in cuprate with the spontaneous C4 breaking of
the Fermi surface. This is a kind of charge order, and in terms of multipole, it belongs
to a class called electric quadrupoles. Generally, electron-nematic states are the state
which spontaneously breaks a certain point group symmetry, e.g., C4- or C3-rotational
symmetry.

One of the most interesting feature of electron-nematic states is that it is intertwined
with other ordered phases, including magnetic and superconducting ordered states. Re-
cent discoveries of electron-nematic phases have suggested that the superconducting pair-
ing mechanism may be closely related to nematicity in some correlated electron sys-
tems, such as cuprates, iron-based compounds, heavy-fermions, doped-Bi2Se3, magic-
angle twisted-bilayer graphene (MA-TBG), and so on. Obviously, the relation between
electron-nematic order and unconventional superconductivity[64] is a pressing question
in present condensed matter physics[125–127].

To highlight the purpose of studying electron-nematic phases, we explain what are of
importance and interest. They are summarized in three points below.

• To elucidate quantum criticality unique to electron-nematicity: To in-
vestigate the low energy properties of quantum phase transitions and
quantum criticality is interesting problem in itself, as exemplified by
bond orders, orbital orders. The electron-nematic quantum criticality
leads to an unusual non-Fermi liquid behavior[125, 128–130], beyond
the standard Hertz-Millis-Moriya description[129, 131–133]. Further-
more, because the nematic order parameter couples linearly to acoustic
phonon, phonon modes affect the thermodynamic and transport proper-
ties [134–136].

• To reveal the microscopic origins of unconventional superconductors:
Recent studies have elucidated that critical order parameter fluctuations
[137–140], namely charge-, orbital-, spin-, and multipole- fluctuations,
lead to various unconventional superconductors. As an important is-
sue to investigate the microscopic mechanism of unconventional super-
conductor, the electron-nematicity has attracted much attention in many
exotic superconductors. One of the great interests is why the electron-
nematic states emerge so ubiquitously in many unconventional super-
conductors.

• To clarify the notion of the order by fluctuation: Order parameter fluc-
tuation enriches quantum states of matter. The vestigial order[126, 127,
141–144], which is caused by symmetry breaking order parameter fluc-
tuation, is one of the theoretical concepts to understand the intertwined
ordered states. It is an important issue to clarify in which materials these
ordered phases are realized.

TBG is an interesting material whose topology and interaction can be varied by a
new control parameter, the twist angle. While ordinary graphene based materials are
composed of carbon, a light element, MATBG has strong electron-electron interaction due
to the quasi-flat band structure caused by the moiré interference pattern. Notably, some
exotic phenomena[145–158] are reported such as unconventional superconductors near

13



Mott insulating phases, quantum Hall ferromagnetism and electron-nematic phases, at the
first magic angle. The closer relationship[144, 159–163] between the electron correlation
and the topological properties is very important to understand physical properties of this
material.

In the case of MA-TBG, an electron-nematic state, which breaks the lattice C3z sym-
metry, has been detected by scanning tunneling microscopy[164–166] and transport mea-
surements [167]. This C3z-broken electron-nematic state, referred to as a three-state Potts
nematic state, is of interest for its competition with nematic superconductivity[167] and
for the mystery of the Landau level degeneracy[167–169] in different regions of its phase
diagram[165, 167]. From a theoretical point of view[162, 169–174], it has been pointed
out that unique properties of the moiré phonon, which reflect a non-rigid crystal[175, 176],
assist a nematic phase transition[171] and microscopic origin of this nematic state is at-
tributed to the interference of the valley+spin fluctuation[174].

Moreover, in the case of doped-Bi2Se3, which is a candidate material of nematic su-
perconductors and topological superconductors [177–185], a three-state Potts nematic
state has been reported[186–188] above the superconducting transition temperature. Al-
though this seems to contradict the nematic superconductivity for which an order param-
eter is accompanied with a breaking of the lattice point group symmetry, it is pointed out
that this nematic state is a vestige[126] of the nematic superconductivity[127, 143, 188]
caused by the strong superconducting fluctuation. Besides the relationship between ne-
maticity and superconductivity, it is also important to identify the critical behavior of
electron-nematic states and to distinguish whether it is intrinsic (i.e. induced sponta-
neously) or extrinsic (i.e. due to trivial strains or the structural distortion). Despite a lot
of research, the identification of such a three-state Potts nematic state and the clarification
of whether it is induced spontaneously or from trivial strains are not an easy task.

1.3 New theoretical perspective of non-Hermitian topol-
ogy

In this section, we give an brief introduction to non-Hermitian physics in equilibrium
strongly correlated electron systems.

Recent studies have revealed another kind of interesting topological phase described
by a non-Hermitian Hamiltonian [34–36, 189–195, 195–209]. In standard textbooks of
quantum mechanics, we learn that the Hamiltonian is represented by a Hermitian oper-
ator. The Hermiticity of the Hamiltonian ensures that the eigenvalues of a Hamiltonian
are real and bounded below in closed systems. This situation is also true when consid-
ering quantum many-body systems, but in open or/and nonequilibrium systems, where
the interaction with environments cannot be neglected, non-Hermitian operators give an
effective description[34–36].

Non-Hermitian phenomena have been studied and realized in various contexts (e.g.
photonic systems, open quantum systems, etc). Moreover, motivated by recent develop-
ment of topological band theory, the interplay between topology and non-Hermiticity
has also attracted much attention in a non-Hermitian extension of topological insula-
tors/semimetals.
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Non-Hermitian band theory in strongly correlated systems

A unique feature of non-Hermitian systems is that the energy spectrum becomes complex
number. When discussing topological natures of the energy band, the gap structure be-
comes important. Two types of gap structures[203, 209], i.e. point gap and line gap, are
defined in non-Hermitian systems. When the complex spectrum does not cross a refer-
ence point (line) in the complex-energy plane, a point (line) gap is open. While the point
gap is closed, the line gap is always closed, but conversely, when the point gap is open,
the line gap is not always open.

It is well known that the topological structure in gapped systems also plays an im-
portant role in gapless topological systems. A topologically protected gapless structure,
i.e. point or line, is caused by a change of some topological number. For example Weyl
points in three-dimensions are protected by the Chern number in embedded some two-
dimensional systems. In non-Hermitian systems, due to the gap structure on the com-
plex energy plane, such a gapless structure or a band degeneracy appears in two dis-
tinct situations: when the line gap is open and when it is closed[210]. While the for-
mer includes band degeneracies such as Dirac/Wely points in Hermitian systems, the
latter shows band degeneracies which have no Hermitian counterpart, e.g. exceptional
points[201, 210, 211].

A distinctive property of an exceptional point is swapping of eigenenergies and eigen-
states upon its encirclement, and it is characterized by the non-zero winding number on
the complex energy plane. It is also a topologically stable band degeneracy and is robust
to perturbations. Such emergent exceptional points of non-Hermitian effective Hamil-
tonian give rise to an open Fermi surface[210, 212–227] such as a “Fermi arc” in the
energy spectrum. More precisely, these exceptional points always appear in pairs, and
a Fermi arc appears in the bulk band structure to connect the exceptional points. This is
one of the unique properties of non-Hermitian systems. Experimentally, Weyl exceptional
ring[215] and a bulk Fermi arc accompanied with a pair of exceptional points[214] have
been observed in optical wavequide array or photonic crystal slab.

Furthermore, it has been pointed out that the symmetry enriches[210, 224–227] the
possible shapes of exceptional points and the Fermi arcs. To date, various non-Hermitian
topological semi-metals have been proposed [215–224]. For example, in two dimensions,
the exceptional points form symmetry-protected exceptional rings and they induce Fermi
planes, which have also been experimentally observed in a two-dimensional photonic
crystal slab[194] with PT symmetry. In three dimensions, they form symmetry-protected
exceptional surfaces enclosing the region where the band gap becomes pure-imaginary.

Even in equilibrium systems, as pointed out by V. Kozii and L. Fu[37], non-Hermitian
band structures are naturally formed by the quasi-particle lifetime originating from the
self-energy of electron Green’s functions. If we describe the energy spectrum of quasi-
particles having the complex self-energy in terms of an effective Hamiltonian defined
as Heff(k) = Hk + ΣR(ω + iδ, k) with the complex self-energy ΣR(ω + iδ, k), non-
Hermitian physics related to exceptional points and the bulk Fermi arc naturally show
up in strongly correlated systems, such as the Kondo lattice model, the periodic An-
derson model [38–42, 228–236]. One of the most important points is that the bulk
Fermi arc structure can be observed in the single-particle spectral function A(ω, k) =
− 1

π ImTrGR(ω + iδ, k) with the reterded Green’s function

GR(ω + iδ, k) =
[
(ω + iδ)1l − Heff(k)

]−1. (1.2)

The non-Hermitian perspective in equilibrium system has attracted much attention
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because of the potential to solve open questions in condensed matter physics, such as the
mystery of quantum oscillation in bulk Kondo insulators[236]. In spite of the intensive
studies, it remains unclear what physical properties are affected by the non-Hermitian
band structure. In particular, there are few studies elucidating effects of the non-Hermitian
band structure on magnetic/electric responses.

1.4 Overview of the thesis
In this thesis, we investigate physical properties of the correlation-induced topological
states and their various phase transitions. We first overview the contents of this thesis.

In Chapter 2, we explore the topological semimetallic states in 2D antiferromagneti-
cally/ferromagnetically ordered heavy-fermion systems to take into account crystal sym-
metries and demonstrate how they can emerge by using the Hartree-Fock approximation.
We show that antiferromagnetic topological insulating phases are stabilized at half-filling
of periodic Anderson model. We also show topological half-metallic ferromagnetic states
stabilized around quarter filling. Our scenario can even apply for spin-nonconserving
systems in the presence of spin-orbit coupling.

In Chapter 3, we investigate emergent non-Hermitian properties in strongly correlated
nodal-line semimetals with chiral symmetry, and discuss their impact on bulk quantities
such as the magnetic susceptibility. We elucidate the emergence of the Fermi volume
enclosed by a symmetry-protected exceptional torus for a diamond lattice model with
spatially modulated Hubbard interaction by employing the dynamical mean-field approx-
imation combined with iterated perturbation theory. Furthermore, in order to investigate
the effect of low energy states induced by non-Hermiticity on physical quantities, we cal-
culate a sublattice dependent magnetic susceptibility. Specifically, we find that, due to
the emergence of the Fermi volume, the magnetic susceptibility for B-sublattice becomes
larger than that for A-sublattice, although the interaction strength is opposite. For this
counterintuitive response to the homogeneous magnetic field, the chiral symmetry is es-
sential, leading to the enhancement of local density of state at the Fermi level only for
B-sublattice.

In Chapter 4, we investigate the impact of critical nematic fluctuations on acoustic
phonon, which in turn enables us to identify the nematic properties by ultrasound attenu-
ation experiments. We propose to detect the intrinsic three-state Potts nematic phase tran-
sition by measuring the ultrasound attenuation of the transverse acoustic phonon. Namely
ultrasound attenuation coefficient shows an isotropic divergence and the sound velocity
renormalization also shows an isotropic angle dependence. In addition, we determine the
phase diagram by an extended Hubbard model in a mean-field approximation to investi-
gate the critical properties. The order of phase transition is of weak first-order. Further-
more, it is confirmed that the enhancement of the ultrasound attenuation coefficient can
be observed in the case of a weak first-order phase transitions.

Finally, we conclude this thesis and explain our outlook in Chapter 5.
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Chapter 2

Topological properties of magnetically
ordered heavy-fermion systems in the
presence of mirror symmetry

2.1 Introduction to this chapter
In this chapter, we focus on the topological properties in long-range-ordered phases such
as ferromagnetic (FM) and antiferromagnetic (AFM) phases. The emergence of topo-
logical properties in the magnetic phases has already been studied. Magnetic topolog-
ical insulators have attracted much attention in terms of the emergence of chiral edge
modes and their applications to low-power electronics/spintronics devices. As we have
mentioned in Sec. 1.2.2, it has been observed that magnetic-impurity doped topological
insulators become ideal Chern insulators. However, there have been still some problems
to be solved, such as low transition temperatures and non-uniformity of the sample in the
case of magnetically doped insulators. One solution is to search for bulk-magnetic topo-
logical insulators. Therefore, epanding the platform of magnetic topological insulators
has been required. Here, we focus on heavy-fermion systems, which are expected to have
topological properties and various magnetic orders.

For example, an antiferromagnetic topological insulator (AFTI) [80], which is char-
acterized by the combined symmetry of time-reversal and lattice translation, has been
proposed for three-dimensional (3D) systems. However, this topological state is allowed
only for 3D systems[118, 120, 121]. We here attempt to solve this problem and demon-
strate that we can realize AFTIs even in two-dimensional (2D) systems by taking into
account a mirror symmetry. Moreover, in a bulk FM phase, a spin-selevtive topological
insulator (SSTI), which is a topological insulator in half-metallic states, was proposed for
heavy-fermion systems [88]. This half-metallic FM phase [113–117] is stabilized around
quarter filling, where one spin sector acquires a gap while the other remains gapless,
which is called a spin-selective gap. SSTI is characterized by a nontrivial topology in the
insulating sector. However, as pointed out in previous studies, spin conservation is im-
portant, and the problem is that it cannot be applied in the presence of general spin-orbit
coupling. Here, we will overcome this difficulty and propose a way to realize an SSTI for
a spin-nonconserving system in the presence of spin-orbit coupling.

We explore the above-mentioned topological states in 2D magnetically ordered phases
by using an effective model of the topological Kondo insulator for heavy-fermion systems,
and demonstrate how they can emerge by using the Hartree-Fock (HF) approximation.
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Our main idea for realizing such topological states in 2D magnetic phases is to take into
account crystal symmetries, in particular, a mirror symmetry. We address two kinds of
magnetic phases: a 2D AFM phase at half filling and a half-metallic FM phase around
quarter filling. By taking into account the mirror symmetry, we elucidate the remarkable
facts that a 2D AFM phase can have a topologically nontrivial structure specified by a
mirror Chern number and that a half-metallic FM phase can have a topologically non-
trivial structure specified by a Chern number. An important point is that these states can
appear for spin-nonconserving systems.

This chapter is organized as follows. In Sec. 2.2, we introduce the topological periodic
Anderson model and the method to calculate the Chern number. In Sec. 2.3, we show
the numerical results for magnetically ordered topological insulating/half-metallic states.
We then discuss the results for an AFTI at half filling in Sec. 2.3.1, and a half-metallic
FM topological state near quarter filling in Sec. 2.3.2. In Sec. 2.3.3, we briefly commnet
on the electron correlation effect on our topological phases. Sec. 2.4 is devoted to the
summary of this chapter. Finally, in Sec. 2.5, we note for some formulas.

2.2 Mean-field theory of topological periodic Anderson
model on the square lattice

We explore the topological properties of the heavy-fermion systems by employing a 2D
periodic Anderson model with nonlocal d- f hybridization 1[6, 8, 237, 238]. Specifically,
we analyze the following topological periodic Anderson model showing band inversion
at X points [239–242] due to next-nearest-neighbor (n.n.n.) hopping, which is important
for describing bulk SmB6. In addition to the strong interaction U f between f -electrons,
we also consider the interaction Ud between d-electrons. The Hamiltonian reads

Periodic Anderson model

H = ∑
k

(
d†

k f †
k

) ( ϵd
k Vk

V†
k ϵ

f
k

)(
dk
fk

)
+ ∑

j;α(=d, f )
Uαnα

j↑nα
j↓, (2.1a)

with

ϵd
k = [−2td(cos kx + cos ky)− 4t′d cos kx cos ky]σ0, (2.1b)

ϵ
f
k = [ϵ f − 2t f (cos kx + cos ky)− 4t′f cos kx cos ky]σ0, (2.1c)

Vk = −2[σx sin kx(V1 + V2 cos ky) + σy sin ky(V1 + V2 cos kx)], (2.1d)

where ϵd
k(ϵ f

k) is the dispersion of d-( f -) electrons, Vk is a Fourier component of the
nonlocal d- f hybridization, and k is a wave number.

The annihilation operators are defined as dk =
(
dk↑ dk↓

)T and fk =
(

fk↑ fk↓
)T.

The basis function for this model is (d↑, d↓, f↑, f↓)T, where σi(i = 0, x, y, z) are the Pauli
matrices for spins. Here, td, t f , t′d, and t′f are hopping parameters, V1 and V2 denote the
d- f hybridization, and ϵ f is the difference between the d- and f -electron energies. We
consider the above model on a 2D square lattice in the x-y plane, which is a 2D version of

1Spatial inversion symmetry prohibits a local hybridization between orbitals of different parity.
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the topological crystalline insulator with non-trivial mirror chern number[237, 238]. The
system has inversion symmetry, so that the hybridization has odd parity, Vk = −V−k.

In order to study the ground state of the model in Eq. (2.1), we employ the following
HF approximation for the Coulomb term:

nα
i↑nα

i↓ ∼ nα
i↑⟨nα

i↓⟩+ ⟨nα
i↑⟩nα

i↓ − ⟨nα
i↑⟩⟨nα

i↓⟩, (2.2)

where nα
iσ(α = d, f ) is the number operator. Here, ⟨· · · ⟩ denotes the expectation value at

zero temperature.
We introduce the mirror operation Mz, which inverts the z-axis,

Mz = i τz ⊗ σz, (2.3)

where τi(i = 0, x, y, z) are the Pauli matrices for two-orbitals, d- and f -electrons. In order
to consider the magnetically ordered topological insulating states with a mirror symmetry,
we introduce the corresponding topological number. First, recall that the Chern number
in multiband systems is given as

Chern number

C =
1

2π ∑
i

∫
S
[∇k ×Ai]zdkxdky, (2.4)

where Ai(k) = −i⟨ui(k)|∇k|ui(k)⟩ is the U(1) Berry connection, where |ui(k)⟩
is a Bloch state with occupied band index i, which is an eigenstate of H(k).

In the mirror-symmetric system, all the eigenstates are characterized by their mirror
parities and divided into two subspaces as

H(k) =
(
HMz=+i(k) 0

0 HMz=−i(k)

)
. (2.5)

The net Chern number C and the mirror Chern number Cm are defined by the Chern
numbers C±i obtained in each mirror subspace, namely,

C = CMz=+i + CMz=−i, (2.6a)
Cm = (CMz=+i − CMz=−i)/2. (2.6b)

2.3 Numerical results of magnetically ordered topologi-
cal states

We here discuss the obtained results for the magnetic phases at half filling and around
quarter filling separately. The values of the parameters we employ in the following are
td = 1 (energy unit), t′d = −0.5, t f = −td/5, t′f = −t′d/5, Ud = 2. Unless otherwise
noted we set (V1, V2) = (0.1,−0.4). The choice of these parameters will be explained
below. The magnetic properties of the system are studied by the HF method and the Chern
number is calculated by the Fukui-Hatsugai method[243], which is efficient for numerical
calculations.
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2.3.1 Antiferromagnetic topological insulator/semimetal
For a heavy-fermion system at half filling, there are some AFM phases and a Kondo
insulating phase in the ordinary Doniac phase diagram. In contrast to a previous study
[80], we here demonstrate that the AFTI can emerge in 2D mirror-symmetric systems.
The model we employ here is a topological mirror Kondo insulator introduced in Refs
[237, 238, 244], which is a mirror-symmetric extension of the topological Kondo insula-
tor. This model was previously used to address a nonmagnetic Kondo insulating phase.
The net Chern number is zero, C = 0, because of the time-reversal symmetry, but there is
still a possibility of having a non-zero mirror Chern number Cm ̸= 0. We elucidate below
that the system can change from a paramagnetic phase to an AFM phase without breaking
its mirror symmetry, thus leading to an AFTI. The AFM phase, where the magnetization
is along the z-axis in our case, breaks a space translation symmetry T1/2, and thus the
period of the unit cell is doubled. Time-reversal symmetry is also broken by the magneti-
zation, but we show that the net Chern number is zero by using the combined symmetry
S = ΘT1/2 of the time-reversal Θ and primitive-lattice translation T1/2.

We assume that the nesting vector is Q = (π, π) for the AFM phase, which is justified
for (t′d, t′f , V2) = (0, 0, 0), see below. The mean-field Hamiltonian is given by

Hm f
k =

(
ϵd

k + hd
int Vk

V†
k ϵ

f
k + h f

int

)
, (2.7a)

with

ϵd
k = [−2td(cos kx + cos ky)ηx − 4t′d cos kx cos kyη0]σ0, (2.7b)

ϵ
f
k = [ϵ f η0 − 2t f (cos kx + cos ky)ηx − 4t′f cos kx cos kyη0]σ0, (2.7c)

Vk = −2[sin kx · σx(V1ηx + V2η0 cos ky) + sin ky · σy(V1ηx + V2η0 cos kx)],
(2.7d)

hα
int = Uα


⟨nAα

0↓ ⟩ 0 0 0
0 ⟨nBα

0↓ ⟩ 0 0
0 0 ⟨nAα

0↑ ⟩
0 0 0 ⟨nBα

0↑ ⟩

 , (2.7e)

where α = d, f , and ηi(i = 0, x, y, z) are the Pauli matrices for sublattice indices. The
basis function is (dA

↑ , dB
↑ , dA

↓ , dB
↓ , f A

↑ , f B
↑ , f A

↓ , f B
↓ )

T. The mirror operation in the sublattice
is

Mz = i τz ⊗ σz ⊗ η0. (2.8)

Symplified model calculation: Case of (t′d, t′f , V2) = (0, 0, 0)

In order to see the essence of the results more clearly, we start with a simplified model hav-
ing only nearest-neighbor (n.n.) hopping and hybridization, i.e., (t′d, t′f , V2) = (0, 0, 0).
We first determine the easy axis of the magnetization by using second-order perturbation
theory in the strong correlation limit. As a result, we conclude that the z-direction is the
easy axis. The detail of the derivation is given in Sec. 2.5.2. It turns out that the magnetic
moments of f - and d-electrons align antiparallel at each site in the z-direction, as shown
in Fig. 2.1(a).
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Fig. 2.1: Magnetic and topological properties for a simplified model with only n.n. hopping and
interaction, (t′d, t′f , V2) = (0, 0, 0) and (Ud, V1) = (2.0, 0.1), obtained with the HF ap-
proximation: (a) spin configuration of the AFM phase, (b) staggered magnetic moments,
(c) indirect gap and direct gap, (d) Chern number for each sector. In (b), the red dashed
line denotes a spontaneous symmetry breaking (SSB) transition, the black dashed line
denotes a topological phase transition (TPT), and there is a small hysteresis loop because
of the first-order transition. In (c), the indirect gap is the band gap between the con-
duction and valence bands min(Econduction

k − Evalence
k′ ) (k is not necessarily equal to k′)

while the direct gap is the band gap at wave number k min(Econduction
k − Evalence

k ),
where indirect gap ≤ direct gap. We have a TI for U f < 1.42, an AFTI for
1.42 < U f < 2.72, and an AF trivial insulator (AFI) for 2.72 < U f . Except when
U f = 2.72, the system is an insulator because of the finite indirect gap. Reprinted figure
with premission from [245] Copyright 2018 by the Journal of the Physical Society of
Japan.

The mean-field results for (Ud, V1) = (2, 0.1) are summarized in Figs. 2.1 (b)- 2.1
(d). Note that the results are not sensitive to the value of V1. We obtain an AFTI phase
as shown in Fig. 2.1(b). At U f = 2.72, there is a first-order magnetic phase transition,
and the spin configuration for U f > 2.72 in Fig. 2.1(a), where d- and f -electrons align in
the opposite directions, is in accordance with the second-order perturbation analysis. We
show the direct and indirect gaps in Fig. 2.1(c). The former is important for determining
the topological structure, and we confirm that there is indeed a finite direct gap in the
AFM phase. Note that the phase transition in Fig. 2.1(c) is a Lifshitz transition, where gap
closing seems to occur at a single point. However, this is an accidental phenomenon due
to our choice of parameters. It is seen that the AFTI phase extends between U f = 1.42
and U f = 2.72, where the mirror Chern number takes a value of Cm = 1 in Fig. 2.1(d)
with the finite magnetization in Fig. 2.1(b). In the strong interaction region, there is a
topological phase transition to a trivial phase at U f = 2.72, where both the direct and
indirect gaps are closed. As seen from Fig. 2.1(d), the transition is accompanied by a
change in the mirror Chern number from Cm = 1 to Cm = 0 while the net Chern number
is zero. This topological phase transition is triggered by the competition between the two
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types of gap. Namely, in the weak interaction region, the topologically nontrivial gap
due to the nonlocal hybridization V1 is dominant, while in the strong interaction region,
the topologically trivial gap with the AFM order is dominant. The competition between
the two different states gives rise to a topological phase transition accompanied by gap
closing. We show details of competing behaviour in the next subsection.

Competition between two types of energy gap: Case of (t′d, t′f , V2) = (0, 0, 0)
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Fig. 2.2: U f dependences of gap structure for a simplified model with only n.n. hopping and
interaction, (t′d, t′f , V2) = (0, 0, 0) and (Ud, V1) = (2.0, 0.1), obtained with the HF
approximation. Energy spectra: (a) U f = 0, (b) U f = 2.5, (c) U f = 2.65, (d) U f =
3.0, (e) U f = 3.6. The red dashed line denotes the position of the chemical potential.
Corresponding wave number that brings about the lowest direct gap: (f) U f = 0, (g)
U f = 2.5, (h) U f = 2.65, (i) U f = 3.0, (j) U f = 3.6. Reprinted figure with premission
from [245] Copyright 2018 by the Journal of the Physical Society of Japan.

Here, we investigate the competition between two types of gap, topologically triv-
ial and nontrivial gaps, in a simplified model with only n.n. hopping and interaction,
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(t′d, t′f , V2) = (0, 0, 0) and (Ud, V1) = (2.0, 0.1). There are two origins of this competi-

tion, one is the shift of the f -band U f ⟨nAorBα
0σ ⟩ and the other is the change in the nonlocal

hybridization Vk.
We first note that the Hamiltonian [Eq. (2.7)] can be block-diagonalized for two mir-

ror sectors in the presence of mirror symmetry. We focus on one of the mirror sectors
because both have the same band structure. The sector Mz = +i is constructed from
(dA

↑ , dB
↑ , f A

↓ , f B
↓ ) while the sector Mz = −i is constructed from (dA

↓ , dB
↓ , f A

↑ , f B
↑ ). At

U f = 0, a band inversion occurs between the second and third bands from the bottom in
Fig. 2.2(a). Here, for simplicity, four bands are labeled as follows; the first and fourth
bands from the bottom originate from d-electrons, whereas the second and third bands
originate from f -electrons. The insulating phases are classified according to the band
structure; (i) a band inversion occurs between the second and third bands, and the chem-
ical potential lies between these d- and f -bands, (ii) a band inversion does not occur and
the chemical potential lies between the d- and f -bands, and (iii) the chemical potential
lies between different d-bands. The first type (i) has the nontrivial topological structure
shown in Figs. 2.2(a)- 2.2(c), whereas the second type (ii) in Fig. 2.2(d) and the third
type (iii) in Fig. 2.2(e) do not have nontrivial topological structures.

Next, we discuss the shift of the f -band, which is the Hartree shift due to the interac-
tion U f . To this end, it is sufficient to consider the Hartree shift in sublattices A and B
only for one of the mirror sectors. The linear dependence of the direct gap on U f after the
TPT in Fig. 2.1(c) can be understood by this Hartree shift, as described below. Before the
TPT, the chemical potential is between the inverted d- and f -bands but after the TPT, the
chemical potential is between the non-inverted d- and f -bands or between the d-bands.
In the region where the chemical potential lies between the inverted d- and f -bands, the
direct gap proportional to the Hartree shift for one of the f -bands causes the linear de-
pendence on U f as seen in Fig. 2.1(c). On the other hand, when the chemical potential
lies between different d-bands, the direct gap is not affected by the Hartree shift for the f -
band, leading to an almost unchanged gap size. Since the direct gap caused by the Hartree
shift does not have a topologically nontrivial structure, the system is topologically trivial.

The above explanation becomes much clearer if we take into account the effect of the
nonlocal hybridization Vk, which is an odd function of k. An important point is that Vk
vanishes at the X points (Vk=X = 0), which allows us to understand the characteristic
behavior, in particular, in the region before the TPT in Fig. 2.1(c). By calculating the
wave number dependence of the gap size, we determine the wave number that gives the
smallest direct gap in Figs. 2.2(f)-2.2(j). At U f = 0, this wave number is located in the
middle between the Γ and X points. With increasing U f , the band structure around the
Fermi level is changed by the Hartree shift as in Figs. 2.2(b), and 2.2(c) and the above-
mentioned wave number approaches the X point in Fig. 2.2, making the gap size smaller.
This is because around the X point the hybridization Vk becomes small, and therefore
the direct gap rapidly decreases around the TPT in Fig. 2.1(c). Just after the TPT, the
above wave number is still located around the X point in Figs. 2.2(i) and 2.2(j). Thus, the
direct gap is caused only by the Hartree shift, giving rise to a linear dependence on U f , as
already mentioned above.

2D effective model for SmB6: Case of (t′d, t′f , V2) = (−0.5, 0.1,−0.4)

We now investigate the model with a specific choice of the parameters, (t′d, t′f , V2) =

(−0.5, 0.1,−0.4). Importantly, these parameters can describe band inversions for the
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Fig. 2.3: Magnetic and topological properties for the effective model of SmB6, (t′d, t′f , V2) =

(−0.5, 0.1,−0.4) and (Ud, V1) = (2.0, 0.1) at half filling: (a) staggered magnetic mo-
ments, (b) indirect gap and direct gap, (c) Chern number for each sector, (d) spin config-
urations of the two AFM phases. In (a), there is a small hysteresis loop because of the
first-order transition. In (b), the region where the indirect gap is closed is semimetallic,
and the points where the direct gap is closed denote the topological phase transitions. In
(c), there are two Chern numbers for two mirror sectors, and the change in the Chern
numbers signals the topological phase transition. We have an AF topological semimetal
(AFSM) for 1.8 < U f < 3.25 and an AF trivial semimetal (AFS) for U f < 3.25.
Reprinted figure with premission from [245] Copyright 2018 by the Journal of the Phys-
ical Society of Japan.

X points in the 3D Brillouin zone (see Appendix 2.5.1), leading to a strong topological
insulator phase, as observed for SmB6 via angle-resolved photoemission spectroscopy
measurements [96, 97]. The results obtained for topological and magnetic properties
at half filling are shown in Fig. 2.3(a). A prominent feature in this model is that the
system becomes metallic where the indirect gap is closed in the AFM phase even at half
filling, as seen in Fig. 2.3(b). Note, however, that the topological properties still remain
intact in this region because the direct gap is not closed. Namely, the Chern number
is still well defined [Fig. 2.3(c)] in the region where the direct gap is open. Thus, the
topological properties remain even in a “metal”, and such a metal adiabatically connected
to a topological insulator is called a topological semimetal. Note that this definition of a
semimetal is standard in condensed matter but slightly different from that for Dirac/Weyl
semimetals, which are zero-gap semiconductors by definition. Finally, there are several
topological phase transitions between different Chern numbers, as seen in Fig. 2.3(c).
This spin configuration is of the AFM-II type in Fig. 2.3(d).

Summarizing all these results, we arrive at the phase diagram shown in Fig. 2.4(a).
The horizontal axis denotes the strength of the interaction U f and the vertical axis the
strength of hybridization V1. There are two AFM phases in Fig. 2.4(a). The above
analysis for the dashed blue line in Fig. 2.4(a) (V1 = 0.1, V2 = −0.4) also applies to the
region |V1| < |V2| where the spin configuration is of the AFM-II type. In the AFM phase
for these parameters, a semimetallic AFM topological phase is realized, which we refer
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(a) (b)

Fig. 2.4: Phase diagram of mirror-symmetric AFTI at half filling as a function of the interaction
U f and hybridization V1: (a) Ud = 2, (b) Ud = 0. The white (dashed) line denotes
the topological (insulator-metal) phase transition line and the black dashed line separates
two AFM phases, i.e., AFM-I and AFM-II. We set V2 = −0.4. In the metallic region,
the indirect gap is closed; thus, there is a Fermi surface. However, the direct gap at the
same wave number k is not closed; thus, the Chern number is still well defined. The
white numbers are mirror Chern numbers. The mirror Chern numbers are 4, 3, 2, 0, -1,
and -2 in two figures. The color plot shows the strength of the magnetization. Reprinted
figure with premission from [245] Copyright 2018 by the Journal of the Physical Society
of Japan.

to as an AFM topological semimetal. The mirror Chern number has various values in the
phase diagram, which is due to the presence of n.n.n. hopping and hybridization, and is
enriched by Ud. The changes in the mirror Chern number are driven by the shift of the
f -band. In general, a complex band structure brings about various topological numbers
(mirror Chern numbers), for example, see Refs. [30] and [244].

For reference, we show the phase diagram for Ud = 0. The obtained phase diagram
is shown in Fig. 2.4(b). In contrast to the case with finite Ud shown in Fig. 2.4(a),
the phase diagram is much simpler and we also find nontrivial topological states in a
wider region. Comparing the two phase diagrams, the both band structures have the
non-trivial topology in paramagnetic phases, but in the ordered phase, the situation is
different. When we change Ud, various topological phase transition occur even within the
antiferromagnetic phase. Thus we conclude that finite Ud is detrimental to topological
properties in AFM phases. The reason why these deferences occur that a finite value of
Ud contributes to opening the gap between the d-bands, which leads to the topologically
trivial band structure in the AFM phase, as shown in the simplified model (see Figs. 2.2).

Here some comments on the difference between the current results and the previous
ones are in order. So far, topological properties with the AFM order have been studied in
Refs. [73, 84–87], focusing on the systems with spin U(1) symmetry. The Hamiltonian
with spin U(1) symmetry can be block-diagonalized for two spin sectors. In such a case,
the topology of the AFM phase is characterized by the spin Chern number. In the presence
of spin-orbit coupling, however, such U(1) symmetry may disappear generally. Here, we
stress that the AFTI in our analysis is more generic in the sense that our scenario does
not require spin U(1) symmetry. AFM systems respecting mirror symmetry with strong
spin-orbit coupling are candidates for the AFTI proposed in this chapter.
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2.3.2 Ferromagnetic topological half-metal
We now move on to an intriguing topological half-metallic state. Around quarter filling in
the Kondo lattice system, it has been known that a half-metallic FM phase dubbed a spin-
selective Kondo insulator [113–117] appears, where a spin-selective gap opens, namely,
one spin sector is metallic while the other is insulating. This has been demonstrated for
spin-conserving systems and has been extended later to a topological version referred
to as a spin-selective topological insulator (SSTI) [88], where the insulating sector has
topologically nontrivial properties. A crucial problem in the previous proposals is that all
the results on the SSTI rely on spin U(1) symmetry, which will disappear in the presence
of spin-orbit coupling in general. Thus, one might naively think that the SSTI cannot
appear in reality. To overcome this difficulty, we here demonstrate that by using a mirror
symmetry, such a topological half-metallic state can indeed exist in the 2D FM phase.

Fig. 2.5: Magnetic and topological properties around quarter filling for (Ud, U f ) = (0, 4) and
filling of 0.335: (a) magnetization of f - (d-) electrons, where the Chern number for the
gapped sector is plotted in the inset. (b) DOS at U f = 0 and U f = 4, (c) gap of
insulating sector, (d) electron filling for each mirror sector, (e) spin configurations. In
(a), the red (blue) line represents d- ( f -) electron magnetization and the black line the
total magnetization. For all U f , the system has the same Chern number C−i = −3 in the
mirror sector Mz = −i. In (b), we show the DOS for the sector of Mz = +i (Mz = −i)
by the blue (red) line, where the chemical potential µ is indicated by the dashed black
line. In (c), the blue line is the gap of the mirror sector Mz = −i. In the region of
U f > 2.3, the sector Mz = −i is an insulator. We have a metallic state at U f = 0, while
at U f = 4, we have the SSTI, where the sector Mz = +i (Mz = −i) is a metal (an
insulator). Reprinted figure with premission from [245] Copyright 2018 by the Journal
of the Physical Society of Japan.

In Figs. 2.5 and 2.6(a), we show the results obtained around quarter filling. At a filling
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（a） （b）

Fig. 2.6: Phase diagram of mirror-selective topological insulator around quarter filling: (a) Ud =
0, (b) Ud = 2. The white (dashed) line denotes the topological (insulator-metal) phase
transition line and the black dashed line separates two FM phases, i.e., FM-I and FM-II.
In the half-metallic region, the sector Mz = −i has a finite gap and the sector Mz = +i
is metallic. The white numbers are mirror Chern numbers of the sector Mz = −i in
the whole region. The blue dashed line represents the filling of 0.335. The color plot
shows the strength of the magnetization. Reprinted figure with premission from [245]
Copyright 2018 by the Journal of the Physical Society of Japan.

of 0.335 and Ud = 0, a FM phase emerges, as seen in Fig. 2.5(a), where the magnetization
has a hysteresis loop. From the density of states (DOS) shown in Fig. 2.5(b), we find that
the system is metallic at U f = 0, whereas the system is half-metallic at U f = 4 with
the Mz = +i sector being metallic while the Mz = −i sector is insulating, as seen
in Fig. 2.5(c). This mirror-selective gap gives rise to the nontrivial topological number
C−i = −3 in Fig. 2.5(a), resulting in a mirror-selective topological insulator where the
filling of the insulating sector is always half, as seen in Fig. 2.5(d). This spin configuration
in Fig. 2.5(e) is of the FM-I type.

All these results are put together in the phase diagram of Fig. 2.6(a), shown as func-
tions of the strength of the interaction U f and the filling in the system. There are two
FM phases having different types of spin configuration in Fig. 2.5(e) and the system has
competition between two magnetic orders. We also study the case including the finite
interaction Ud, as shown in Fig. 2.6(b). At Ud = 2, there is no topological phase, in
contrast to the above-mentioned case of Ud = 0, which shows a nontrivial topological
phase in some parameter region. In both cases, the direct gap is open even in the metallic
phase and the band structure has a non-trivial topology, but in the ordered phase, the sit-
uation is different. Whereas the half-metallic FM phase is stabilized by the finite Ud, the
finite Ud deforms the band structure into a topologically trivial in this mean-field calcula-
tion. The topological properties have a strong dependence on the band structure and spin
configuration under the ferromagnetic ordered states. Summarizing, we find the mirror-
selective topological insulator in a half-metallic FM phase, which can emerge for spin
nonconserving systems, in contrast to the previous proposals.

2.3.3 Electron correlation effect: beyond mean-field description
So far, we have discussed the nontrivial topological states in the AFM phase and the half-
metallic FM phase in the HF approximation. One may ask what will happen if electron
correlations are taken into account beyond the HF treatment. Here, we argue that the
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topological properties obtained from the mean-field Hamiltonian can persist even if we
consider electron correlations by, for example, dynamical mean-field theory, provided the
Mott transition is absent according to Refs. [74, 77, 246–248]. Recall that the Chern
number of each mirror sector is given in terms of the Green’s function as

Cσ =
∫ dωd2k

24π2 Tr[ϵµνρ Gσ∂µG−1
σ Gσ∂νG−1

σ Gσ∂ρG−1
σ ], (2.9)

where ϵµνρ is a totally antisymmetric Levi-Civita tensor, and (∂0, ∂1, ∂2) = (∂ω, ∂kx , ∂ky),
k = (ω, k). Summation is assumed over repeated indices µ, ν, ρ = 0, 1, 2. σ specifies the
mirror parity and Gσ is the full single-particle Green’s function, which is related to the
free Green’s function Gσ0 via G−1

σ (iω, k) = G−1
σ0 (iω, k)− Σσ(iω, k), where Σσ(iω, k)

is the self-energy. In the present treatment, Gσ is a 4 × 4 (2 × 2) matrix in the AFM
(half-metallic FM) case. According to Refs.[77, 248], the Chern number is determined
by the topological Hamiltonian heff

σ (k) = −G−1
σ (0, k) = −G−1

σ0 (0, k) + Σσ(0, k). This
is because the Chern number does not change under the smooth deformation as

Gσ(iω, k, λ) = (1 − λ)Gσ(iω, k) + λ[iω + G−1
σ (0, k)]−1, (2.10)

where λ ∈ [0, 1], provided detGσ ̸= 0 and detG−1
σ ̸= 0 are satisfied. The cases of

detGσ = 0 and detG−1
σ = 0 respectively correspond to the gap closing or the emergence

of Mott insulators with Im[Σ(0, k)] → −∞. Therefore, provided the Mott transition does
not occur, the electron correlation effect on the AFM (half-metallic FM) phase can be
treated with the renormalized band insulator, and thus the HF results may not be changed
qualitatively, although the phase diagram should be modified quantitatively.

2.4 Summary
In this chapter, we have explored two topological states in the AFM/FM phases by taking
account of the mirror symmetry in heavy-fermion systems. Concretely, in reference to
topological crystalline insulators, we have proposed 2D topological crystalline insulat-
ing states in magnetically ordered phases for interacting systems. In particular, we have
shown that in the AFM phase at half filling there is a topological state characterized by
a mirror Chern number. In the case of a SmB6 film, an AFM topological semimetallic
phase is expected. We have also shown that in the half-metallic FM phase around quarter
filling, the spin-selective topological insulating state characterized by a Chern number is
realized.

In contrast to the previous studies, which assumed spin U(1) symmetry to obtain
such topological properties in the magnetic phases, our proposal is that these phases can
be realized even in the absence of spin U(1) symmetry by taking into account crystalline
symmetry in magnetic phases. Generally, spin U(1) symmetry is not preserved in the
presence of spin-orbit coupling; thus, the present scenario without respecting spin U(1)
symmetry will provide a feasible platform to realize magnetic topological insulators for
2D systems.

All numerical calculations have been done in the HF approximation. We also have
discussed the correlation effects qualitatively and shown that the topological properties
of these states may not change in the presence of correlation effects. Nevertheless, more
elaborate calculations should be carried out to confirm this conclusion. In addition, a 3D
version of the mirror-selective topological insulator has been discussed [249]. It might
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be interesting to study how our mirror-selective topological insulator extends to three
dimensions by increasing the thickness of the layers. Moreover, resent experiments have
shown a metallic AFM phase with pressurized SmB6[250–254]. From the first-principle
calculation[255], it has been pointed out that this metallic AFM phase would serve as a
better candidate for a AFTI with Z2 number and A-type AF configuration is proposed for
its ground state. Motivated by these studies, we have also discussed the possibility of the
realization of the mirror symmetric AFTI phase[256].

2.5 Appendix for this chapter: Derivation of some mod-
els

2.5.1 Three-dimensional effective model of SmB6

The 3D effective model Hamiltonian [237, 238, 244] reads

Hk = ∑
k

(
d†

k f †
k

) ( ϵd
k Vk

V†
k ϵ

f
k

)(
dk
fk

)
(2.11a)

with

ϵd
k = [−2td(cos kx + cos ky + cos kz)

−4t′d(cos kx cos ky + cos ky cos kz + cos kz cos kx)]σ0, (2.11b)

ϵ
f
k = [ϵ f − 2t f (cos kx + cos ky + cos kz)

−4t′f (cos kx cos ky + cos ky cos kz + cos kz cos kx)]σ0, (2.11c)

Vk = −2[σx sin kx(V1 + V2(cos ky + cos kz))

+σy sin ky(V1 + V2(cos kz + cos kx)) + σz sin kz(V1 + V2(cos kx + cos ky))],
(2.11d)

where ϵd
k(ϵ f

k) is the dispersion of d-( f -) electrons, Vk is the Fourier component of the
nonlocal d- f hybridization, and k is the wave number. The annihilation operators are
defined as dk =

(
dk↑ dk↓

)T , fk =
(

fk↑ fk↓
)T. The basis function for this model

is (d↑, d↓, f↑, f↓)T, where σi(i = 0, x, y, z) are the Pauli matrices for spins. The con-
crete values of the parameters we employ are td = 1 (energy unit), t′d = −0.5, t f =
−td/5, t′f = −t′d/5. Note that this model has three band inversions at X points [239–
242] as shown in Fig. 4.4. Our 2D effective model is introduced to properly take into
account this inversion property.
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Fig. 2.7: Energy spectrum of the model for 3D SmB6. The thick lines are the band structures of
d- and f -electrons, (V1, V2) = (0.1,−0.4). The thin lines show the bare energies of d-
and f -bands for the same parameters but with vanishing hybridization (V1, V2) = (0, 0).
The band inversion at the X point is realized. Reprinted figure with premission from
[245] Copyright 2018 by the Journal of the Physical Society of Japan.

2.5.2 Effective spin model: Strong correlation limit
Here, we determine the magnetization axis by using second-order perturbation theory to
clarify whether the magnetization is mirror-symmetric or not. For simplicity, we use the
model with V2 = 0, t′d = 0, t′f = 0 at half filling. Starting from the strong correlation
limit U f ≫ 1, we use the normalized hybridization V1/U f as a perturbation parameter.
We use the following relations between the spins Sα

i (α = d, f and i = x, y, z) of d-
/ f -electrons and the fermionic operators diσ and f jσ with spin indices σ =↑, ↓ and site
indices i, j:

Sd
xi · S f

xj =
1
2 ∑

σ=↑,↓

(
d†

iσdiσ̄ f †
jσ f jσ̄ + d†

iσdiσ̄ f †
jσ̄ f jσ

)
, (2.12a)

Sd
yi · S f

yj =
1
2 ∑

σ=↑,↓

(
−d†

iσdiσ̄ f †
jσ f jσ̄ + d†

iσdiσ̄ f †
jσ̄ f jσ

)
, (2.12b)

Sd
zi · S f

zj =
1
2 ∑

σ=↑,↓

(
d†

iσdiσ f †
jσ f jσ − d†

iσdiσ f †
jσ̄ f jσ̄

)
, (2.12c)

nd
i · n f

j = ∑
σ=↑,↓

(
d†

iσdiσ f †
jσ f jσ + d†

iσdiσ f †
jσ̄ f jσ̄

)
. (2.12d)

The hybridization term then results in the following exchange interaction via the second-
order perturbation:

H′ = ∑
i∈x

Jix
d f Sd

xi · S f
xi−1 + Jiy

d f Sd
yi · S f

yi−1 + Jiz
d f Sd

zi · S f
zi−1

+ ∑
i∈x

Jix
d f Sd

xi−1 · S f
xi + Jiy

d f Sd
yi−1 · S f

yi + Jiz
d f Sd

zi−1 · S f
zi

+ ∑
j∈y

J jx
d f Sd

xj · S f
xj−1 + J jy

d f Sd
yj · S f

yj−1 + J jz
d f Sd

zj · S f
zj−1

+ ∑
j∈y

J jx
d f Sd

xj−1 · S f
xj + J jy

d f Sd
yj−1 · S f

yj + J jz
d f Sd

zj−1 · S f
zj, (2.13)

30



where Ji,α
d f (i = x, y and α = x, y, z) are the coupling constants between d- and f -

electrons. For the spin configuration along the x-axis, the coupling constants satisfy
Jix
d f = Jd f > 0, Jiy

d f = −Jd f < 0, and Jiz
d f = −Jd f < 0, while for the y-axis, they

satisfy J jx
d f = −Jd f < 0, J jy

d f = Jd f > 0, J jz
d f = −Jd f < 0 (see Table. A·1), and

Jd f = 2V2
1 (

1
ϵ f

+ 1
U f −ϵ f

) > 0, where ϵ f is the chemical potential of f -electrons. From
only this constraint, we cannot yet determine the spin configuration at the ground state.
When tdd = t f f = 0, the spins can be polarized along the x- or y-direction without
energy loss.

We then consider another perturbation expansion in t f /U f for U f ≫ 1. It induces the

AFM interaction J f f S f
i · S f

j (J f f < 0), giving rise to frustration in these cases. As a result,
the easy axis of the magnetization is the z-axis, preserving the mirror symmetry, and the
ground state of this model prefers the configuration having the staggered AFM order in
Fig. 2.8, where all other magnetic configurations are frustrated. Those for d-electrons and
f -electrons align in the opposite directions at the same site.

Table 2.1: Exchange couplings obtained for the spin-half 2D periodic Anderson model with non-
local d- f hybridization using second-order perturbation theory from the strong cor-
relation limit. Jx

d f , Jy
d f , and Jz

d f are coupling constants for the effective spin model,
where superscripts x, y, and z specify the quantization axis for the spin. There are two
spin configurations along the x- and y-axes. + (−) means an antiferromagnetic (AF)
[ferromagnetic (F)] coupling.

Jx
d f Jy

d f Jz
d f

x-axis +(AF) −(F) −(F)
y-axis −(F) +(AF) −(AF)

Fig. 2.8: Spin configuration in real space, where all the spins align along the z-axis. The blue (red)
lines denote the d- ( f -) level and the bold black/gray arrows denote spins. The dashed
blue (orange) lines indicate the AF (F) coupling, where we consider the perturbation in
V1/U f and t f /U f . There is no frustration and a configuration having a staggered AFM
phase is realized, where f - and d-electrons align antiparallel at each site. Reprinted
figure with premission from [245] Copyright 2018 by the Journal of the Physical Society
of Japan.
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We further consider the perturbation expansion in td/Ud for Ud ≫ 1 because d-
electrons have reasonably strong correlation. It turns out that this term induces the AFM
interaction JddSd

i · Sd
j (Jdd < 0) with no frustration in this order if the easy axis of mag-

netization is the z-axis. In this situation, the coupling constants are modified as Jd f =

2V2
1 (

1
Ud+ϵ f

+ 1
U f −ϵ f

) > 0 but the sign is unchanged. We thus conclude that the easy axis
of the magnetization is the z-axis and a staggered AFM phase, where f - and d-electrons
align antiparallel at each site, is realized.

32



Chapter 3

Chiral-symmetry protected exceptional
torus in correlated nodal-line
semi-metals

3.1 Introduction to this chapter
In this chapter, we investigate emergent non-Hermitian properties in strongly correlated
nodal-line semimetals(NLSMs) with chiral symmetry. As we have mentioned in Sec.
1.3, non-Hermitian topological semimetals in strongly correlated electron systems have
attracted attention as a new type of correlation-induced topological states. Furthermore,
the notion of non-Hermiticity has a potential to solve the problem of quantum oscillations
in Kondo insulators, and further analysis is required. There have been many analyses
of the emergence of effective non-Hermitian band structures in conventional equilibrium
systems, especially in heavy-fermion systems. However, these analyses have been limited
to the calculation of the spectral function. Thus, in spite of the intensive studies, it remains
unclear what physical properties are affected by the non-Hermitian band structure. In
particular, there are few studies elucidating effects of the non-Hermitian band structure
on magnetic and/or electric responses.

Motivated by these situations, we investigate emergent non-Hermitian properties with
chiral symmetry protected NLSMs, and discuss their impact on bulk quantities such as
the magnetic susceptibility. The chiral-symmetric NLSMs provide a feasible platform to
study non-Hermiticity and symmetry-protected topological degeneracy. Specifically, em-
ploying the dynamical mean-field theory[257–261] combined with the iterated perturba-
tion theory[259–261] (DMFT+IPT), we elucidate the emergence of symmetry-protected
exceptional torus (SPETs) for a Hubbard model of the diamond lattice. These SPETs
induce a sharp peak of the local density of states at the Fermi energy only for one of the
sublattices having weak correlation, which results in the local magnetic susceptibility of
strong sublattice dependence. To our best knowledge, this is the first result exemplify-
ing how the non-Hermitian degeneracies affect magnetic responses. We stress that the
chiral symmetry is essential for the above behaviors. Recently, the emergence of SPETs
with PT (product of parity and time-reversal) symmetry has been reported by analyzing a
noninteracting non-Hermitian Hamiltonian[224]. In contrast to such a case, SPETs with
chiral symmetry are fixed to the Fermi level, which induces the Fermi volumes (i.e., low
energy excitations enclosed by SPETs) in the Brillouin zone 1.

1SPETs with CP (product of parity and particle-hole) symmetry are fixed to the Fermi level. However,
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This chapter is organized as follows. In Sec. 3.2, we describe our setup and give a
brief explanation of our approach. From Sec. 3.2.1 to Sec. 3.2.3, we derive DMFT formu-
lation on the diamond lattice Hubbard model. In Sec. 3.3, we show the phenomenology
of the chiral-symmetry protected non-Hermitian degeneracies. In Sec. 3.4, we show the
DMFT results for the interaction driven exceptional torus. We study the emergence of ex-
ceptional torus at the Fermi level and its impact on bulk properties thorough the magnetic
susceptibility. Sec. 3.5 is devoted to the summary of this chapter. Finally, in Sec. 3.6, we
note for some formulas.

3.2 Dynamical mean-field theory on the diamond lattice
Hubbard model

3.2.1 Hubbard model on the diamond lattice
We study the two-band Hubbard model with spatially modulated on-site Hubbard inter-
actions on the diamond lattice (see Fig.3.1);

Ĥ = ∑
⟨iα,jα′⟩σ

tij ĉ†
iασ ĉjα′σ + ∑

iα
Uα(n̂iα↑ −

1
2
)(n̂iα↓ −

1
2
), (3.1)

where ĉ†
iασ(ĉ

†
iασ) creates (annihilates) a fermion at the i-th site of sublattice α(= A, B)

with spin σ and n̂iασ = ĉ†
iασ ĉiασ. t ∈ R is a hopping parameter and Uα ∈ R is an on-

site interaction. The first term of the above Hamiltonian describes hopping of fermions
between neighboring sites in the diamond-lattice whose primitive vectors are ai, (i =
1, 2, 3): a1 = a

2(0, 1, 1), a2 = a
2(1, 0, 1), a3 = a

2(1, 1, 0). The noninteracting term
denotes the NLSM, which is protected by the chiral (sublattice) symmetry. Details are
given in later this section and it is summarized in Fig. 3.2. We note that the many-body
Hamiltonian Eq. (3.1) preserves the many-body chiral symmetry at half filling which is
defined by Eqs. (3.12) and (3.13). We expect that our toy model can be realized for cold
atoms because in such systems the spatially modulated interactions are fabricated by the
optical Feshbach resonance [262, 263]. As pointed out in Ref. [224], PT symmetry may
induce SPETs for the NLSMs with gain and loss, which indicates the presence of SPETs
for corresponding correlated systems. We stress, however, that the crucial difference
from the PT symmetric case is that for our system with many-body chiral symmetry, the
low energy excitations induced by the SPETs appear strictly at the Fermi level, which
enhances the magnetic susceptibility.

Topological characterization of nodal-line semimetal

Now we introduce the tight-binding model h(k) of Eq. (3.1), as follows

h(k) =

(
0 Dk

D∗
k 0

)
, Dk = t0 + ∑

j=1,2,3
tjeik·aj . (3.2)

Here, the Pauli matrices τ’s act on the sublattice space and ti with i = 0, 1, 2, 3 denotes
the nearest neighbor hopping indicated by silver (gold) bonds in Fig.3.1. The nodal-line

the system with CP symmetry is realized for superconductors.
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Fig. 3.1: Sketch of the diamond lattice. Blue (red) spheres denote the A- (B-) sublattice. ai (i =
1, 2, 3) denote primitive lattice vectors. Reprinted figure with premission from [264]
Copyright 2019 by the American Physical Society.

structure of the noninteracting Hamiltonian can be understood by stacking of the one-
dimensional topological insulators with chiral symmetry. The noninteracting Hamiltonian
h(k) has the chiral symmetry: {h(k), τ3} = 0, where τ3 is the chiral matrix which acts
on the sublattice degrees of freedom in two sublattice system. To see the topological
properties of the Dirac line node, we calculate the winding number along the blue line in
Fig. 3.2(a). The definition of the winding number is:

νkx,ky =
1

2πi

∫ 2π

−2π
dkz∂kz lnDk =

1
2π

[argDk|kz=2π − argDk|kz=−2π]. (3.3)

We note that the period in the kz direction is 4π. The structure of the argument of Dk
on ky = π plane is shown in Fig. 3.2(b) and the winding number is shown in Fig. 3.2(c).
The change of winding number signals the bulk gapless structure and the Dirac line node
structure appears in the three-dimensional BZ.

3.2.2 DMFT+IPT method for many-body chiral symmetric system
In the following, we demonstrate the correlation-induced SPETs by spatially modulated
interactions in three dimensional systems. We employ the DMFT+IPT method to analyze
correlation effects and clarify how SPETs affect low-energy properties. In order to treat
inhomogenity with the DMFT framework, we employ the sublattice method[261]. In the
DMFT framework, the lattice model is mapped to an effective impurity model described
by

Zα
eff =

∫
Dc̄0ασDc0ασe−Sα

eff , (3.4)

Sα
eff = −

∫ β

0
dτ
∫ β

0
dτ′ ∑

σ

c̄0ασ(τ)G−1
ασ (τ − τ′)c0ασ(τ

′)

+Uα

∫ β

0
dτ(n0α↑(τ)−

1
2
)(n0α↓(τ)−

1
2
), (3.5)
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Fig. 3.2: The topological properties of noninteracting Hamiltonian are shown here. (a): The Fermi
surface (the black line) at the noninteracting case in the three-dimensional BZ. (b): The
argument of the off-diagonal element Dk on ky = π plane and the blue arrow means the
path of integral. (c): The winding number νkx ,ky=π on the blue arrow of (a). In panel (b),
we plotted the Arg Dk, where Arg means the principal value of the argument within the
interval (−π, π]. Reprinted figure with premission from [264] Copyright 2019 by the
American Physical Society.

where Gασ(τ) is the noninteracting Green’s function of the effective impurity model for
the sublattice α, imaginary time τ, inverse temperature β and c̄0ασ is a Grassmannian vari-
able corresponding to the creation operator. Gασ(τ) is obtained by solving the following
self-consistent equation:

G−1
ασ (ω) =

[
1
N ∑

k

1
(ω + iδ + µ)1l − h(k)− ΣR

σ (ω)

]−1

αα

− ΣR
ασ(ω), (3.6)

where the Fourier representation of noninteracting Hamiltonian h(k) is given by a 2 × 2
matrix which is constructed from two sublattices and ΣR

σ (ω) := diag(ΣR
Aσ(ω), ΣR

Bσ(ω))
denotes the self-energy of the retarded Green’s function describing electrons on sublattice
α.

In order to solve the self-consistent equation in Eq. (3.6), we employ the IPT method
which is particularly efficient for a particle-hole symmetric system[261]. The second-
order self-energy is calculated as Σ(2)

ασ (τ) = −U2
αGασ(τ)Gα−σ(−τ)Gα−σ(−τ). Here,

we consider the spin symmetric case Gα↓ = Gα↑. Thus, the retarded self-energy is written
as

ΣR(2)
α (ω) = U2

∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dzρ0

α(x)ρ0
α(y)ρ

0
α(z)

× f (−x) f (−y) f (z) + f (x) f (y) f (−z)
ω − x − y + z + iδ

, (3.7)

where ρ0
α(ω) = − 1

π Im
[
trGασ(ω + iδ)

]
is the density of state (DOS) and δ = 0+. By

using the IPT solver we can provide real-frequency self-energies and Green’s function
without a numerical analytic-continuation.
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3.2.3 Random phase approximation for the magneic susceptibility
From obtained Green’s function with DMFT+IPT, we compute the magnetic suscep-
tibility as follows. Based on the random-phase approximation (RPA), we obtain the
site-resolved spin susceptibility χs

A := (χRPA
AA + χRPA

AB )/2, χs
B := (χRPA

BB + χRPA
BA )/2

(the factor 1/2 means the square of spin 1/2 times spin degrees of freedom 2) with
χRPA(q, iϵm) := (1 − χ0U)−1χ0, where 2×2 matrices χRPA (χ0) are the RPA sus-
ceptibility (susceptibility with bubble approximation). U denotes the interaction matrix,
U := diag(UA, UB). Matrix elements χ0

αβ are defined as

χ0
αβ(q, iϵm) = − T

N ∑
k,n

Gαβ(q + k, iωn + iϵm)Gβα(k, iωn), (3.8)

where ϵm = 2mπT, m ∈ Z and Gαβ(k, iωn) is lattice Green’s function obtained from

DMFT. Here, we have used the relation Gα(k, iωn) =
∫ ∞
−∞ dx Aα(k,x)

iωn−x . The magnetic
susceptibility is given by the q = 0 and ϵm = 0 component of χs

α(q, iϵm), α = A, B.

3.3 Overview of the symmetry protection of exceptional
torus for chiral symmetry

In this section, we give a short review of chiral symmetry-protected non-Hermitian degen-
eracies. Let us analyze a generic system with chiral symmetry which has two bands. The
non-Hermitian effective Hamiltonian, describing the single-particle excitations, is defined
as Heff(ω, k) := h(k) + ΣR(ω + iδ, k), where the Hermitian matrix h(k) denotes the
one-body part of the Hamiltonian, and ΣR(ω + iδ, k) denotes the self-energy with an
infinitesimal positive constant δ. For a non-Hermitian 2×2 Hamiltonian, we can write an
effective Hamiltonian of the form:

Effective non-Hermitian Hamiltonian

Heff = [b0(k) + id0(k)]τ0 + [b(k) + id(k)] · τ, (3.9)

with two real d-vectors b(k) := (b1(k), b2(k), b3(k)) and d(k) :=
(d1(k), d2(k), d3(k)) and real numbers b0(k), d0(k), where τ’s are Pauli matri-
ces.

We immediately find the eigenenergies of the form

E±(k) = b0(k) + id0(k)±
√

b2(k)− d2(k) + 2ib(k) · d(k). (3.10)

In order for the effective Hamiltonian to possess band touching points, two real d-vectors
need to satisfy

Band touching conditions

b2(k) = d2(k), b(k) · d(k) = 0. (3.11)
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If the solution has non-zero vectors, then these equations describe exceptional points
where the theory becomes defective, i.e., the Hamiltonian cannot be diagonalized and
lacks a complete basis of eigenvectors.

To highlight the symmetry protection in our case, we first introduce the definition of
the many-body chiral symmetry in Sec. 3.3.1. Second, we show the many-body chiral
symmetry in terms of the Green’s function in Sec. 3.3.2. Finally, we discuss the symmetry
protection of the many-body chiral symmetry in the strongly correlated system in Sec.
3.3.3.

3.3.1 Definition of the many-body chiral symmetry
The definition of many-body chiral symmetry [74, 79] for the many-body Hamiltonian Ĥ
is:

Û†
Γ Ĥ∗ÛΓ = Ĥ, (3.12)

where Ĥ is many-body Hamiltonian and ÛΓ is the chiral operator which is a unitary
operator Û2

Γ = 1. ÛΓ transforms a creation and annihilation operator ĉ†
in and ĉin (where i

labels the sites of a lattice and n labels the internal degrees of freedom such as sublattice
and spin, etc), as follows: Û†

Γ ĉ†
inÛΓ = ∑m UΓ,nm ĉim and Û†

Γ ĉinÛΓ = ∑m ĉ†
imU†

Γ,mn,

where the unitary matrix U(†)
Γ is the chiral matrix of the noninteracting Hamiltonian hij

satisfying U†
ΓhijUΓ = −hij with U2

Γ = 1l. Here 1l denotes the identity matrix. The explicit
form of the chiral operator ÛΓ is defined for systems composed of two sublattices, as
follows:

ÛΓ = ∏
js
(ĉ†

js↑ + sgn(s)ĉjs↑)(ĉ†
js↓ + sgn(s)ĉjs↓), (3.13)

where sgn(s) takes 1 and −1 for s = A and s = B, respectively. From the above chiral
transformation, it is straightforward to see that:

Û†
Γ ĉ†

isσÛΓ = sgn(s)ĉisσ, Û†
Γ ĉisσÛΓ = sgn(s)ĉ†

isσ. (3.14)

We note that the chiral matrix UΓ = τ3, where the Pauli matrix τ3 acts on the sublattice
space.

3.3.2 Green’s function formula of the many-body chiral symmetry
In terms of Green’s function, we obtain the following relation:

Many-body chiral symmetry in terms of Green ’s function

G(ω + iδ) = −U†
ΓG†(−ω + iδ)UΓ, (3.15)

where UΓ is the chiral matrix and G(ω + iδ) is the single-particle Green’s function.

To obtain above Eq. (3.15), we introduce the reterded and advanced Green’s functions
(GR(t), GA(t)):

GR
ab(t) = −iθ(t)[⟨ĉa(t)ĉ†

b(0)⟩+ ⟨ĉ†
b(0)ĉa(t)⟩], (3.16)

GA
ab(t) = iθ(−t)[⟨ĉa(t)ĉ†

b(0)⟩+ ⟨ĉ†
b(0)ĉa(t)⟩], (3.17)
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where a and b denote the set of indices, lattice site i and internal degrees of freedom n;
ĉa := ĉin and θ(t) is a step function. Now we assume that t > 0. Then we obtain the
following relation:

⟨ĉa(t)ĉ†
b(0)⟩ = Tr[e−βĤeiĤt ĉa(0)e−iĤt ĉ†

b(0)]

= Tr[e−βĤÛ†
ΓeiĤ∗tÛΓ ĉa(0)Û†

Γe−iĤ∗tÛΓ ĉ†
b(0)Û

†
ΓÛΓ],

= U†
Γ,aa′UΓ,b′bTr[e−βĤ∗

eiĤ∗t ĉ†
a′(0)e

−iĤ∗t ĉb′(0)],

= U†
Γ,aa′UΓ,b′bTr[ĉ†

b′(0)e
−iĤt ĉa′(0)eiĤte−βĤ],

= U†
Γ,aa′UΓ,b′b⟨ĉ†

b′(0)ĉa′(−t)⟩. (3.18)

Here, we have used the following relations:

eiĤt = Û†
ΓeiĤ∗tÛΓ, e−βĤ = Û†

Γe−βĤ∗
ÛΓ, (3.19)

ÛΓ ĉaÛ†
Γ = U†

Γ,aa′ ĉ
†
a′ , ÛΓ ĉ†

bÛ†
Γ = U†

Γ,b′b ĉb′ , (3.20)

⟨M∗|Â|N∗⟩ = ⟨N|ÂT|M⟩, (3.21)

where |M⟩ and |N⟩ denote general eigenstates of the many-body Hamiltonian. In a sim-
ilar way, we have

⟨ĉ†
b(0)ĉa(t)⟩ = U†

Γ,aa′UΓ,b′b⟨ĉa′(−t)ĉ†
b′(0)⟩. (3.22)

As a result, we obtain GR(t) = −U†
ΓGA(−t)UΓ and the Fourier representation is:

G(ω + iδ) = −U†
ΓG(−ω − iδ)UΓ, (3.23)

where G(ω + iδ) is Green’s function.
To go from Eq. (3.23) to Eq. (3.27), we have used the following relation:

G†
ab(ω + iδ) = Gab(ω − iδ). (3.24)

This relation is understood by the Lehmann representation of the Green’s function, as
follows:

Gab(z) = ∑
NM

eβ(Ω−EN) eβ(EN−EM) + 1
z + EN − EM

⟨N|ĉa|M⟩⟨M|ĉ†
b |N⟩, (3.25)

where z ∈ C, eβΩ = ∑N e−βEN , and EN(∈ R) is the energy for the many-body Hamil-
tonian. So the Hermitian conjugate of the Green’s function is obtained:

G†
ab(z) = ∑

NM
eβ(Ω−EN) eβ(EN−EM) + 1

(z + EN − EM)∗
⟨N|ĉb|M⟩∗⟨M|ĉ†

a |N⟩∗,

= ∑
NM

eβ(Ω−EN) eβ(EN−EM) + 1
z∗ + EN − EM

⟨N|ĉa|M⟩⟨M|ĉ†
b |N⟩,

= Gab(z), (3.26)

where we have used Eq. (3.18) to go from the first line to the second line. We thus obtain
Eq. (3.24).

Combining Eq. (3.24) and Eq. (3.23), we arrive at the many-body chiral symmetry in
terms of Green’s function:

G(ω + iδ) = −U†
ΓG†(ω − iδ)UΓ, (3.27)

as shown in Eq. (3.15).
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3.3.3 Effective non-Hermitian Hamiltonian representation of the many-
body chiral symmetry

The effective Hamiltonian Heff(ω, k) is defined by the single-particle Green’s function:
G−1(ω + iδ) = ω1l − hk − Σ(ω + iδ, k) = ω1l − Heff(ω, k). In terms of Heff(ω, k),
we can rewrite the constraint of the many-body chiral symmetry of the form:

Many-body chiral symmetry in terms of effective non-Hermitian Hamiltonian

Heff(ω, k) = −U†
Γ H†

eff(−ω, k)UΓ. (3.28)

In particular, at ω = 0, this constraint is reduced to

Heff(0, k) = −U†
Γ H†

eff(0, k)UΓ, (3.29)

which we refer to as extended chiral symmetry. In our model, the chiral matrix is written
as UΓ := τ3. From this constraint, each term of the effective Hamiltonian is divided into
symmetric or anti-symmetric sectors as,

U†
Γ[biτi]

†UΓ =

{
+biτi, (i = 0, 3)
−biτi, (i = 1, 2) , (3.30)

U†
Γ[idiτi]

†UΓ =

{
−idiτi, (i = 0, 3)
idiτi, (i = 1, 2) , (3.31)

where four parameters bi(i = 1, 2) and di(i = 0, 3) respect the chiral symmetry. We note
b0 = b3 = d1 = d2 = 0.

Finally, considering the many-body chiral symmetry, the effective Hamiltonian Heff(0, k)
is expanded by Pauli matrices τ’s as follows.

Emergence of the exceptional ring/torus

Heff(0, k) = b1(k)τ1 + b2(k)τ2 + i{d0(k)τ0 + d3(k)τ3}. (3.32)

Thus, the second condition (band touching condition) of Eq. (3.11) is satisfied au-
tomatically by the chiral symmetry. The manifold consisting of defective points is de-
termined by the single constraint b2(k) = d2(k). The number of conditions for band
degeneracy is reduced to one. As a result, a (d − 1)-dimensional exceptional manifold
emerges in the d-dimensional system when d ≥ 0 [226]. Thus, we can obtain an excep-
tional ring and torus in two- and three- dimensional systems with chiral symmetry.

Note that the Fermi surface emerges in the region surrounded by exceptional manifold,
called Femi volumes[225], which are open regions of vanishing real part of the energy gap
and have the same dimension as the system itself.

3.4 DMFT results for the interaction driven exceptional
torus

Having finished general arguments on chiral symmetric SPETs in the previous section,
we now present the DMFT results in this section. We first show that SPETs with chiral
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Fig. 3.3: Left panel: the Fermi surface (the black line) at the noninteracting case in the three-
dimensional BZ. Right panel: the SPET (the orange surface) for (UA/t, UB/t) = (8, 0)
and T/t = 0.8. In the left figure, the orange line (blue plane) represents the three-
dimensional BZ (kxy − kz plane). Reprinted figure with premission from [264] Copyright
2019 by the American Physical Society.

symmetry emerges from DMFT+IPT calculation. Secondly, based on the RPA approxi-
mation, we numerically elucidate that low energy excitations accompanying the SPETs
enhance the magnetic susceptibility.

The effective Hamiltonian Heff(0, k), which has the many-body chiral symmetry (Eq.
3.28), is expanded in terms of the Pauli matrices τ’s as follows:

Heff(0, k) = id0(k)τ0 + [b(k) + id(k)] · τ, (3.33)
b(k) = (b1(k), b2(k), 0), (3.34)
d(k) = (0, 0, d3(k)), (3.35)

as we have shown in Eq. (3.32). The above vectors b and d are given by

b1(k) + ib2(k) = t0 + ∑
j=1,2,3

tjeik·aj , (3.36)

d0(k)τ0 + d3(k)τ3 = ImΣR(0 + iδ, k). (3.37)

Intuitively, the origin of the non-Hermiticity is coming from the difference of the lifetime
of the quasi-particles. Here, the Pauli matrices τ’s act on the sublattice space and ti with
i = 0, 1, 2, 3 denotes the nearest neighbor hopping indicated by silver (gold) bonds in
Fig.3.1. In this case, by using the above effective Hamiltonian, the Green’s function is
written as

G(ω, k)−1 = (ω + iδ)τ0 − Heff(ω, k). (3.38)

3.4.1 Emergence of the interaction-driven SPET: Energy spectrum
and spectral function

We investigate the diamond lattice with isotropic hopping ti = t, i = 0, 1, 2, 3 for UB =
0. First, we show the noninteracting Fermi surface. In the left panel of Fig.3.3, we
can confirm that the diamond lattice shows nodal-line semi-metals. Introducing on the
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interaction, the nodal line changes to the SPET (see right panel of Fig. 3.3). The SPET
are given by the defective points of the effective non-Hermitian Hamiltonian. The real
and imaginary parts of energy dispersion are shown in Fig. 3.4. On the cutting plane
(kxy − kz), we confirm that the band touching region of the real part appears in Fig. 3.4(a)
and it is enclosed by the defective points, i.e. the real part [Fig. 3.4(b)] and the imaginary
part [Fig. 3.4(b)] of the energy dispersion has simultaneously the gapless structure on
its points. We note that the change of the energy dispersion with/without interaction are
shown in Fig. 3.4(c) and Fig. 3.4(d). At first glance, it looks like a modest change, but
at point X, for example, we can see how the cross section of the gapless line originally
becomes the cross section of the gapless volume. Thus we conclude that, inside of the
SPET, the gap becomes pure imaginary and the low energy excitations appear as a Fermi
volume inside of the SPET.

Fig. 3.4: The energy dispersion of non-Hermitian Hamiltonian Heff(0, k) = h(k) + Σ(0) with
(UA/t, UB/t, T/t) = (8, 0, 0.8). (a) and (b) [(c) and (d)] are the real and imaginary
part of Heff(0, k) on the kxy − kz plane [high symmetric line]. In panel (c), solid (dotted)
lines denote the dispersion with UA = 8t (UA = 0). Reprinted figure with premission
from [264] Copyright 2019 by the American Physical Society.

The emergence of Fermi volume which is surrounded by SPET can be seen via the
momentum-resolved spectral function A(k, ω) = − 1

π Im
[
trGR(k, ω)

]
[Fig. 3.5(a)].

Away from the Fermi level, these low energy excitations are smoothly connected with the
renormalized bands see [Fig. 3.5(b)]. Here is a brief comment on Fig. 3.5(b). Although
Fig. 3.5(b) seems to suggest that the region of high spectral weight between the X and
W points has finite width in energy, we have confirmed that this width hardly depends on
the interaction strength. This means that it is not originating from the interaction-driven
SPET. The emergent Fermi volume, which is formed mainly by the contribution of the
noninteracting B-sublattice, gives rise to a peak structure in the LDOS for the B-sublattice
at zero energy as seen in Fig. 3.5(c). Note that these characteristic features come from
largely different lifetimes for the two sublattices. The peak structure of LDOS is not
limited to the diamond lattice but generally applies for two-sublattice chiral symmetric
system. We discuss the relationship between the origin of the peak structure and the
many-body chiral symmetric system in Sec. 3.4.2. The appearance of SPET and the peak
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structure of LDOS originate from the sublattice-dependent Hubbard interaction.

Fig. 3.5: (a) [(b)]: Momentum-resolved spectral weight A(k, ω = 0) at kxy-kz plane [A(k, ω)
at high symmetric points] of NLSM with (UA/t, UB/t) = (8, 0) at temperature
T/t = 0.8. In panel (a), orange lines illustrate the BZ, the effective Hamiltonian be-
comes defective at the blue dots and the color plot indicates the strength of spectral
weight. In panel (b), the blue line denotes the energy spectrum of free diamond lat-
tice. (c): Density of states for each sublattice for (UA/t, UB/t) = (8, 0) at temperature
T/t = 0.8. (d): Color map of the zero-th Chern number for ImΣR

A(ω = 0) = −0.92
at kxy-kz plane. Here, the zero-th Chern number at each point is indicated by a number
enclosed with a box and SPETs are represented with black line. Reprinted figure with
premission from [264] Copyright 2019 by the American Physical Society.

Next, we check topological properties of the system. We show that a zero-th Chern
number can be introduced for the occupation number of the following Hermitian Hamil-
tonian [210, 226]

H̃(k) = −iH′(k)Γ, (3.39)
H′(k) = Heff(0, k)− [trHeff(0, k)/N]1l, (3.40)

with N = dimHeff(0, k). Exceptional points are consistent with the change of the Chern
number in Fig.3.5(d). The radius of SPETs is related to the difference in the imaginary
part of self-energy r = [ImΣR

B(ω)− ImΣR
A(ω)]/2 at ω = 0 between A- and B- sublat-

tices (see inset of Fig.3.5(c)). We show the size of SPET as functions of A-site interaction
UA/t and temperature T/t in Fig.4.3. We confirm that the radius of SPET is enhanced

43



Fig. 3.6: Left panel: Color plot of the imaginary part of the self-energy −ImΣR
A(ω = 0) as func-

tions of temperature T/t and interaction UA/t. Right panel: Color plot of the renormal-
ization factor zα = [1 − ∂ReΣR

α (ω)/∂ω]−1 as functions of temperature T/t and inter-
action UA/t. These data are obtained for the isotropic diamond lattice at UB/t = 0. We
note that the imaginary part of the self-energy determines the radius of SPETs; the ra-
dius is r = −ImΣR

A(ω = 0)/2. Reprinted figure with premission from [264] Copyright
2019 by the American Physical Society.

with increasing A-site interaction or temperature. However the renormalization factor of
the A-site Green’s function hardly depends on temperature in Fig.4.3.

SPET of anisotropic diamond lattice for UB = 0

We proceed to investigate the anisotropic diamond lattice with t0/ti ̸= 1, i = 1, 2, 3, ti =
t. With increasing the parameter of hopping with 1 < t0/ti < 3, the topological phase
transition occurs and we obtain various shapes of SPETs in Appendix 3.6.1. We show
the Fermi surface of nodal line semimetals with t0/ti = 2 in Fig.3.7 in the noninter-
acting case. Considering spatially modulated on-site Coulomb interactions, we obtain
SPETs and momentum-resolved spectral weight in Fig.3.7 with (UA/t, UB/t) = (12, 0)
at temperature T/t = 1.

We stress that in contrast to the PT symmetric case[224], the band touching region
inside of the SPETs emerges at ω = 0 (in this case it is called the Fermi volume) because
of the chiral symmetry. This is understood by the prohibition of real coefficients of Pauli
matrix τ0 in an effective Hamiltonian although the PT symmetric system does not prohibit
it. As discussed momentarily below, the Fermi volume inside of SPETs affects low-energy
physical properties of the system.

3.4.2 LDOS structure in SPET
As shown in the previous subsection, the emergent Fermi volume, forming by noninter-
acting B-sublattice, gives rise to a peak structure in the LDOS. Beyond the above limited
analysis with UB = 0, it is generally expected that the emergence of SPET and the Fermi
volume are not limited to the UB=0 case. Now we demonstrate what happens when the
UB is finite. We also use the isotropic diamond lattice for UB = UA/2. According to the
DMFT calculation, the LDOS structure and difference in the imaginary part of self-energy
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Fig. 3.7: The left (middle) panel: Noninteracting Fermi surface of NLSM (ET with
(UA/t, UB/t) = (12, 0) at temperature T/t = 1) in the case of anisotropic diamond
lattice t0/ti = 2, (i = 1, 2, 3). The right panel: Momentum-resolved spectral weight
A(k, ω = 0) on kz-kxy plane with (UA/t, UB/t) = (12, 0) at temperature T/t = 1.
The orange lines illustrate the BZ at kxy-kz plane and the effective Hamiltonian becomes
defective at the blue dots in the right panel. Reprinted figure with premission from [264]
Copyright 2019 by the American Physical Society.

ImΣR
B(ω = 0)− ImΣR

A(ω = 0) are shown in Figs. 3.8(a) and 3.8(b). Compared to Fig.
3.5(c), the divergent peak structure does not appear, but the situation where the LDOS is
higher in the weakly interacting B-sublattice than the strongly interacting A-sublattice.
Moreover a similar dependence of interaction and temperature is observed in difference
in the imaginary part of self-energy, which induces a non-Hermitian band structure.

In the following subsection, we discuss the origin of LDOS structure.

LDOS structure

ρA(ω = 0) < ρB(ω = 0), (3.41)

where ρα = ∑k∈BZ Aα(k, ω = 0), α = A, B. Although the on-site Hubbard
interactions UA is larger than UB, ρB(ω = 0) becomes larger than ρA(ω = 0) at
finite temperature

To obtain the above Eq. (3.41), we discuss the sublattice dependent LDOS structure.
Here, we consider the two-sublattice system with many-body chiral symmetry[226] and
spin U(1) symmetry. The full Green’s function is written in a 2 × 2 matrix which is
constructed from two sublattices, as follows,

G(k, ω) = [ω1l − h(k)− ΣR(k, ω)]−1,

=

(
ω − ΣR

A −Dk
−D∗

k ω − ΣR
B

)−1

, (3.42)

where h(k) and ΣR(k, ω) are Hamiltonian and self-energy,

h(k) =

(
0 Dk

D∗
k 0

)
, ΣR(k, ω) =

(
ΣR

A 0
0 ΣR

B

)
. (3.43)

Dk is the Fourier component of tight-binding model as shown in Eq. (3.36) for example,
and ΣR

α are self-energy of each sublattice, α = A, B. We obtain full Green’s functions of
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(a) (b)

Fig. 3.8: Density of states and difference in the imaginary part of self-energy with UB = UA/2.
(a) Density of states for each sublattice for (UA/t, UB/t) = (9, 4.5) at temperature
T/t = 0.5. The inset shows the self-energy ΣR

A(ω) and ΣR
B(ω) as a function of ω. (b)

Color plot of the difference in the imaginary part of the self-energy ImΣR
B(ω = 0) −

ImΣR
A(ω = 0) as functions of temperature T/t and interaction UA/t for the isotropic

diamond lattice at UB = UA/2.The imaginary part of the self-energy determines the
radius of SPETs. We note that the imaginary part of the self-energy determines the
radius of SPETs; the radius is r = [ImΣR

B(ω = 0) − ImΣR
A(ω = 0)]/2. Reprinted

figure with premission from [264] Copyright 2019 by the American Physical Society.

each subalttice,

GAA(k, ω) =
ω − ΣR

B
(ω − ΣR

A)(ω − ΣR
B)− |Dk|2

, (3.44)

GBB(k, ω) =
ω − ΣR

A
(ω − ΣR

A)(ω − ΣR
B)− |Dk|2

. (3.45)

To discuss the structure of LDOS, we consider the ω = 0 component of spectral function
for each sublattice,

AA(k, ω = 0) = − 1
π

ImGAA(k, ω = 0),

=
1
π

−ImΣR
B(0)

ImΣR
A(0)ImΣR

B(0) + |Dk|2
, (3.46)

AB(k, ω = 0) = − 1
π

ImGBB(k, ω = 0),

=
1
π

−ImΣR
A(0)

ImΣR
A(0)ImΣR

B(0) + |Dk|2
, (3.47)

where Aα(k, ω) is the spectral function of α sublattice, α = A, B. Now we consider the
imbalance of self-energy at the Fermi level such as

−ImΣR
A(ω = 0) > −ImΣR

B(ω = 0), (3.48)

|ImΣR
A(ω = 0)| > |ImΣR

B(ω = 0)|, (3.49)
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where, due to the positivity of the spectral function, ImΣα(ω = 0) is always negative,
α = A, B. The relation between spectral functions of two sublattices is obtained as,

AA(k, ω = 0) < AB(k, ω = 0). (3.50)

The above inequality is valid for all wave vectors in BZ. Finally, the LDOS is obtained
from the summation of spectral function for all wave vectors and we show the relationship
between LDOS of each sublattice, as follows,

ρA(ω = 0) < ρB(ω = 0), (3.51)

where ρα = ∑k∈BZ Aα(k, ω = 0), α = A, B. The inequality means the imbalance
of LDOS for each sublattice [see Figs. 3.5(c) and 3.8(a)]. In our case, the origin of
self-energy is only on-site Coulomb interaction and the relation for the imbalance of self-
energy Eq.(3.49) is the same as the imbalance of on-site Hubbard interactions UA > UB
at finite temperature. We show examples of the imbalance of self-energy in the inset
of Figs. 3.5(c) and 3.8(a). As a result, in the many-body chiral symmetric system with
spin U(1) symmetry, considering the spatially modulated on-site Hubbard interactions,
the peak structure or the imbalance of LDOS structure always appears at on the Fermi
level at finite temperatures.

3.4.3 Effects of SPETs on the magnetic susceptibility
We show that the SPETs induce a nontrivial response to the magnetic field; the low
energy excitations enclosed by the SPETs make the magnetic susceptibility of the B-
sublattice larger than that of the A-sublattice, although the interaction strength is opposite
(UA > UB). The mechanisms are as follows. As seen in Fig.3.5(c), at ω = 0, the
LDOS for B-sublattice becomes larger than that for A-sublattice because of SPETs as
shown in Eq. (3.41). This fact indicates that the response to the Zeeman splitting for
B-sublattice becomes larger than that for A-sublattice. Therefore, the magnetic moment
of B-sublattice can becomes larger than that of A-sublattice.

The numerical data supporting the above scenario are shown in Fig. 3.9(a) and (b).
The former (the latter) data are obtained at UB = UA/2 (UB = 0). In Fig. 3.9(a), we
can see that the magnetic susceptibility for B-sublattice becomes larger than that for A-
sublattice, corresponding to the emergence of the low energy excitations enclosed by the
SPETs (for the LDOS at UB = UA/2 and for the self-energy as shown in Figs. 3.8(a) and
3.8(b). We can also observe similar behaviors at UB = 0 although the region of χs

B > χs
A

is narrow in this extreme limit. We stress that essential ingredients are the difference in the
lifetime of the self-energy and the chiral symmetry. Therefore, the above enhancement is
generic and considered to be observed for any two-sublattice model where the self-energy
satisfies |ImΣR

A(ω = 0)| > |ImΣR
B(ω = 0)|.

3.5 Summary
In this chapter, we have studied chiral-symmetric correlated NLSMs in three dimensions
with special emphasis on non-Hermitian properties. Concretely, we have elucidated the
emergence of SPETs for a diamond lattice model with spatially modulated Hubbard in-
teraction. Essential difference from the case for NLSMs with PT symmetry studied so far
is that the present SPETs with chiral symmetry and the associated low energy excitations
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Fig. 3.9: The magnetic susceptibility for each sublattice χs
α(q = 0, iϵm = 0), α = A, B as

functions of temperature T/t and interaction UA/t. Panel (a) [(b)] are obtained at UB =
UA/2 (at UB = 0) with RPA. Reprinted figure with premission from [264] Copyright
2019 by the American Physical Society.

(i.e., Fermi volumes) are fixed to the Fermi level. Furthermore, we have elucidated that
these low energy excitations result in counterintuitive behaviors which are the first results
exemplifying the effects of SPETs on magnetic responses. Specifically, by employing
by DMFT and RPA, we have found that due to the Fermi volumes, magnetic suscepti-
bility for B-sublattice becomes larger than that for A-sublattice, although the interaction
strength is opposite (UA > UB). For this counterintuitive response to the homogeneous
magnetic field, the chiral symmetry is essential which leads to the enhancement of LDOS
at the Fermi level only for B-sublattice.

One may wonder whether SPETs persist when we go beyond the DMFT-IPT[259–
261]. We consider that they persist because of the following reasons. (i) It is well-known
that the IPT method gives qualitatively correct results for systems with particle-hole sym-
metry. Indeed, the DMFT combined with the numerical renormalization group method
elucidates the emergence of symmetry-protected exceptional rings for two-dimensional
systems with chiral symmetry[226] which can be regarded as a cross section of SPETs
in three dimensions. (ii) The chiral symmetry ensures that the spatial fluctuations do not
destroy the SPETs. The symmetry constraint in Eq. (3.28) for ω = 0 ensures that the
effective Hamiltonian can be written in the form of Eq. (3.32), indicating that the SPETs
persist even in the presence of spatial fluctuations. The details study on this point is left
for future work.

We finish this chapter with comments on future studies. Important open questions are
(i) finding experimental setups or candidate materials showing SPETs and (ii) elucidating
how to observe the unique magnetic response elucidated in this chapter. Concerning the
toy model analyzed in this chapter, we expect that it can be realized for cold atoms by
employing optical Feshbach resonance[262, 263]. In such systems, the unique magnetic
response might be observed by noise correlations or Bragg scattering of light which have
been employed to observe the spin correlation functions[265, 266]. In addition, eluci-
dating effects of non-Hermitian band structures on magnetic responses for other cases of
symmetry remains an important future work.
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3.6 Appendix for this chapter: Numerical data

3.6.1 SPET of the anisotropic diamond lattice
We show the results of anisotropic diamond lattices in Fig. 3.10. The shape of SPETs
is determined from the band touching point of Eqs. (3.10) and (3.37). The topological
phase transition occurs between t0/ti = 1.49 and t0/ti = 1.5, between t0/ti = 2.5 and
t0/ti = 3.0.

Fig. 3.10: SPETs for anisotropic diamond lattices with t0/ti ̸= 1, i = 1, 2, 3, ti = 1 and
ImΣR

A(ω = 0) = −1 in three-dimensional BZ. Reprinted figure with premission from
[264] Copyright 2019 by the American Physical Society.
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Chapter 4

Probing three-state Potts nematic
fluctuations by ultrasound attenuation

4.1 Introduction to this chapter
Electron-nematic states, which break a certain point group symmetry of the electronic sys-
tem, have attracted much attention because of the appearance in many unconventional su-
perconductors ubiquitously. To reveal the relationship between electron-nematic state and
unconventional superconductivity has been a central subject in present condensed matter
physics. For example, in iron-based superconductors, it has been shown that the lattice
C4-breaking electron nematic state originates from an orbital order and its orbital fluc-
tuation leads to unconventional superconductivity. In many materials, such as cuprates,
iron-based compounds, heavy-fermions, doped-Bi2Se3, and magic-angle twisted-bilayer
graphene (MA-TBG), various electron-nematic states have been reported. As we have
mentioned in Sec. 1.2.3, one of the most interesting features of electron-nematic states is
that these are intertwined with other ordered phases and topological phases.

Since the experimental discovery of unconventional superconducting states near Mott
insulating phases, MA-TBG has attracted much attention for the interplay[145–158] be-
tween band topology and strong Coulomb interaction caused by the moiré interference
pattern. In this material a lattice C3-breaking electron-nematic state[164–167], which is
referred to as a three-state Potts nematic states, has also been reported, and it is of in-
terest for its competition with nematic superconductivity[167] and for the mystery of the
Landau level degeneracy[167–169]. But, no clear evidence of intrinsic phase transition
has been found, and the phase diagram is still unclear. The three-state Potts nematic state
has also been reported in doped-Bi2Se3[186–188] above the superconducting transition
temperature, which is also a candidate material of nematic superconductors[177–185].
Theoretically, an exotic scenario has been proposed as the electron-nematic state caused
by the strong superconducting fluctuation, referred to as a vestigial nematic state[126,
127, 143, 188], but there is no strong evidence to support it. Besides revealing the micro-
scopic origin of nematicity and the relation with superconductivity, one of the important
problems is to identify the critical behavior of electron-nematic states and to distinguish
whether it is intrinsic (i.e. induced spontaneously) or extrinsic (i.e. due to trivial strains,
the structural distortion or an effect of the substrate).

In this chapter, we investigate the impact of critical nematic fluctuations on phonons,
which in turn enables us to identify the nematic properties by ultrasound attenuation ex-
periments. Despite a lot of research, the identification of such a three-state Potts nematic
state and the clarification of whether it is induced spontaneously or from trivial strains

50



are not an easy task. We analyze the influence of the nemato-elastic coupling on the
low energy properties of phonons by a phenomenological argument using a Ginzburg-
Landau-Wilson (GL) action[267] and a model calculation based on the Hubbard model. It
is shown that nematic fluctuations induce an isotropic divergence of the transverse sound
attenuation coefficient, which is defined as the inverse of the phonon mean free path.

This chapter is organized as follows. In Sec. 4.2, we present a phenomenological
argument to see how the critical nematic fluctuation affects the properties of phonon. First,
in Sec. 4.2.1, we discuss the Landau damping for the C3 -breaking bond-order fluctuation.
Second, in Sec. 4.2.2, we analyze the influence of the nemato-elastic coupling on the
acoustic phonons. In Sec. 4.3, we present a model calculation of nematicity and discuss a
mean-field phase diagram. First, from Sec. 4.3.1 to Sec. 4.3.3, we derive the mean-field
theory of the three-state Potts neamtic phase transtion. Second, in Sec. 4.3.4, we show
the phase diagrams and, in Sec. 4.3.5, we show the sound attenuation coefficients. In Sec.
4.4, we give a brief discussion on the application of our results. Sec. 4.5 is devoted to the
summary of this chapter. Finally, in Sec. 4.6, we note for some formulas.

4.2 Phenomenological approach to the impact of critical
nematic fluctuations on phonons

In this section, we present a phenomenological theory to show how the ultrasound atten-
uation detects the critical nematic fluctuations. In the following subsection, to consider
how to capture the signature of the intrinsic nematic phase transition, we focus on the
impact of critical nematic fluctuations on low-energy properties of acoustic phonons.

First, we deal with the nematic phase transition phenomenologically. In hexagonal
lattices, such as MA-TBG and doped-Bi2Se3, the nematic order is described by a two-
component order parameter Φ = (Φ1, Φ2), which belongs to a two-dimensional rep-
resentation of the point group D3[174], D6[171] and D3d[143], in the three-state Potts-
model class. The GL action for the nematic fluctuation[171] on the two-dimensional
system is given as follows:

GL action for the three-state Potts nematic phase transition

Snem[Φ] =
∫

d2rdτ
[1

2
rΦ+Φ− +

1
6

u3(Φ3
+ + Φ3

−) +
1
4

u4(Φ+Φ−)
2
]
,(4.1)

where Φ± = Φ1(x)± iΦ2(x), x = (r, τ) and GL coefficients r, u3, u4.

Φ is naturally parametrized as Φ = Φ(cos 2θ, sin 2θ), where the angle θ can be
identified with the orientation of the nemetic director n̂ = (cos θ, sin θ) with angle 2θ
reflecting the invariance of π rotation. The cubic term reflects the hexagonal anisotropy
and is expressed as

1
6

u3(Φ3
+ + Φ3

−) =
1
6

u3Φ3 cos 6θ, (4.2)

which is minimized at θ = 2nπ/6 = {0, π/3, 2π/3} for u3 < 0 and θ = (2n +
1)π/6 = {π/6, π/2, 5π/6} for u3 > 0. These solutions represent threefold degenerate
nematic directors.
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When we consider the Gaussian fluctuation region, the corresponding action for ne-
matic fluctuation is given by

SGauss[Φ] = ∑
q

Φq

[
χ̂−1

d (q, iϵm)
]
Φ∗

q , (4.3)

with q = (q, iϵm), the boson Matsubara frequency ϵm, and Φ∗
iq = Φi−q, because of

Φi(x) ∈ R. Here,

χ̂−1
d (q, iϵm) = (r + ξ2

0q2)1l + D̂
( |ϵm|

Γd(q)

)
, (4.4)

is the matrix of the d-wave density correlation function, where r ∝ Tc0 − T measures the
distance from the mean-field transition temperature Tc0, with the mean-field correlation
length ξ0 and the damping rate Γd(q). The Landau damping term1 D̂

(
|ϵm|

Γd(q)

)
depends on

the type of order parameter and the microscopic details of the system.
In the following subsection, we derive the functional form of D̂

(
|ϵm|

Γd(q)

)
coming from

the C3-breaking bond-order (see Eq. (4.5)), which is an example of the three-state Potts
nematic order. Remarkably, we find that the C3-breaking case has an isotropic angular
dependence of the Landau damping, in sharp contrast to the strong angle dependence of
the Landau damping in the case of the C4-breaking bond-order[135, 268] which is an
example of the Ising nematic order.

4.2.1 Phenomenology of a C3-breaking bond-order fluctuation
According to the standard Hertz-Millis-Moriya description[129, 131–133], the dynam-
ics of a ferroic order parameter which couples to an itinerant electron system is over-
damped at low frequency. This is based on the simplest treatment of the critical order
parameter fluctuation. On the other hand, the dynamics of electron-nematicity is more
complicated[125, 128, 129]. For example, in isotropic Fermi liquids, the order parameter
fluctuation of the d-wave Pomeranchuk instability is decomposed into a ballistic (z = 2)
transverse mode and an overdamped (z = 3) longitudinal mode, where z is a dynamical
critical exponent2. This nature leads to various intriguing properties unique to the nematic
quantum critical point such as an unusual non-Fermi liquid behavior[130, 269, 270] and
the multiscale quantum criticality[271]. Moreover, in lattice systems with C4-breaking
bond-order fluctuation, the appearance of a ballistic mode and its effect on the critical
properties have been discussed[135, 268].

In this subsection, we derive the functional form of the Landau damping D̂
(

|ϵm|
Γd(q)

)
,

as follows:

1The Landau damping term appears as a self-energy correction due to the coupling between the nematic
fluctuations to the itinerant electron system. The critical dynamics is generated by the excitation of particle-
hole pairs in the Fermi sea and the dynamical critical exponent is determined by this frequency dependent
term. We note that Landau damping requires electrons to scatter along the Fermi surface.

2A ballistic mode (an overdamped mode) shows D ∝ |ϵm |2
|q|2 (D ∝ |ϵm |

|q|3 ) with a dynamical exponent z = 2
(z = 3). The former is called as a ballistic mode without damping, while the latter involves overdamping
due to the particle-hole pair creation.
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Gaussian fluctuation theory

SGauss[Φ] = ∑
q

Φq

[
r + ξ2

0q2 − Dq

]
Φ∗

q , Dq = −ρ0

2
|ωm|
vF|q|

, (4.5)

with q = (q, iϵm), the boson Matsubara frequency ϵm, the density of states at
the Fermi level ρ0 and the Fermi velocity vF, where r ∝ Tc0 − T measures the
distance from the mean-field transition temperature Tc0, with the mean-field corre-
lation length ξ0.

The coupling term between the nematic fluctuation and the electrons

Let us begin by asking what happens for the dynamics of the nematic fluctuation for
the C3-breaking bond-order case which is one of the microscopic origins of electron-
nematicity. For simplicity, we assume a circular Fermi surface around the Γ point and
the single band system in a C3 symmetric lattice. The interaction between the nematic
fluctuation (Φ1q, Φ2q) and the electrons (c†

k, ck) resulting from the Hubbard-Stratonovich
transformation is given by

Hcoup ∝ ∑
q,k

[
d1kΦ1q + d2kΦ2q

]
c†

k+q/2ck−q/2, (4.6)

where form factors of a two-dimensional representation are d1k ∼ (k̂2
x − k̂2

y) = cos 2θk

and d2k ∼ 2(k̂x k̂y) = sin 2θk with the wave vector of electron k = |k|(k̂x, k̂y) =
|k|(cos θk, sin θk). It reflects a two-dimensional representation of a C3 symmetric lattice,
meaning that two waves, dx2−y2-wave and dxy-wave, cannot be treated separately. Fur-
thermore, the order parameter is parametrized as Φ = Φ(cos 2θ, sin 2θ) with the nematic
director n̂ = (cos θ, sin θ) and its angle θ. The coupling term is expressed in terms of the
relative angle between the wave vector and the nematic director (θk − θ) as follows,

Hcoup ∝ ∑
q,k

Φq cos 2(θk − θ)c†
k+q/2ck−q/2, (4.7)

where we have used Φ1q = Φq cos 2θ, Φ2q = Φq sin 2θ and the coupling term vanishes
at θk − θ = ±π/4.

Nematic polarization for a circular Fermi surface

The low-energy contribution of a nematic polarization matrix χ
ij
q = T

N ∑k dikdjkGkGk+q

with i, j = 1, 2 and an electron Green’s function G−1
k = iωn − ϵk − µ, the energy

dispersion ϵk = k2/2m and the electron mass m, determines the dynamical properties of
the nematic polarization

Dij
q,iϵm

= χ
ij
q,iϵm

− χ
ij
q,0 ∼ −iϵmρ0

∫
kFS

dikdjk

iϵm − vFk · q
,

= − iϵm

vF|q|
ρ0

∫ 2π

0

dθk

2π

dikdjk

iϵm/vF|q| − cos (θk − θq)
, (4.8)
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with ρ0 is the density of states at the Fermi level, the Fermi velocity vF and the boson
Matsubara frequency ϵm. Now we set ψ = (θk − θq) and rewrite each component of
dikdjk as,

d1kd1k = cos2 2θk = cos2 (2ψ + 2θq)

∼ cos2 2θq cos2 2ψ + sin2 2θq sin2 2ψ, (4.9)

d2kd2k = sin2 2θk = sin2 (2ψ + 2θq)

∼ cos2 2θq sin2 2ψ + sin2 2θq cos2 2ψ, (4.10)

d1kd2k =
1
2

sin 4θk =
1
2

sin (4ψ + 4θq)

∼ 1
2

cos 4θq sin 4ψ +
1
2

sin 4θq cos 4ψ =
1
2

sin 4θq
(
2 cos2 2ψ − 1

)
,(4.11)

where we have ignored terms proportional to sin 2ψ cos 2ψ, because they vanish after ψ
integral. Combined with the above equations, the dynamical part of nematic polarization
D̂q = χ̂q − χ̂q,0 is calculated as,

Dij
q = −iaρ0

∫ 2π

0

dψ

2π

dikdjk

ia − cos ψ
, (4.12)

with a = ϵm
vF|q|

, the shorthand notation q = (q, iϵm) and

D11
q = iaρ0

{
cos2 2θq

[
iSgn(a)− 2ia

]
+ sin2 2θq

[
2ia
]}

,

(4.13)

D22
q = iaρ0

{
cos2 2θq

[
2ia
]
+ sin2 2θq

[
iSgn(a)− 2ia

]}
,

(4.14)

D12
q = iaρ0

{
sin 4θq

[
iSgn(a)− 2ia

]
− 1

2
sin 4θq

[
iSgn(a)

]}
,

(4.15)

with D12
q = D21

q . We have used the following equations in the above calculations,

IC(a) = −
∫ 2π

0

dψ

2π

cos2 2ψ

ia − cos ψ
,

= i(1 + 2a2)
[ (1 + 2a2)√

1 + a2
Sgn(a)− 2a

]
|a→0 → iSgn(a)− 2ia, (4.16)

IS(a) = −
∫ 2π

0

dψ

2π

sin2 2ψ

ia − cos ψ
,

= 2ai
[
1 + 2a2 − 2|a|

√
1 + a2

]
|a→0 → 2ia. (4.17)

Here, a → 0 means the static limit (|ϵm| ≫ vF|q|) and we evaluate the leading order
component of a in the above integral. After using the above integration to Eq. (4.12), the
dynamical part of the nematic polarization matrix in the static region (|ϵm| ≫ vF|q|) is,

D̂q = − aρ0

2

(
1 0
0 1

)
− ρ0

[ a
2
− 2a2

] ( cos 4θq sin 4θq
sin 4θq − cos 4θq

)
. (4.18)
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At first glance, this would seemingly break the C3-symmetry, but later calculations show
that the C3-rotation symmetry is preserved when the angle of the nematic directors is
taken into account.

Next, we express the above function in terms of the angle of nematic director θ and
consider the dynamical part of Eq. (4.3),

ΦT
q D̂qΦ∗

q = Φq
(

cos 2θ sin 2θ
)

D̂q

(
cos 2θ
sin 2θ

)
Φ∗

q ,

= −Φqρ0

[ |ϵm|
vF|q|

cos2 (2θq − 2θ)− 2
|ϵm|2

(vF|q|)2 cos (4θq − 4θ)
]
Φ∗

q ,

(4.19)

where Φq = Φq(cos 2θ, sin 2θ) and Φq is the norm of Φq. Thus the Gaussian action
including the above discussion is rewritten as

SGauss[Φ] = ∑
q

ΦT
q

[(
r + ξ2

0q2)1l + D̂q

]
Φ∗

q , (4.20)

ΦT
q D̂qΦ∗

q = −Φ(q)ρ0

[ |ϵm|
vF|q|

cos2 (2θq − 2θ)− 2
|ϵm|2

(vF|q|)2 cos (4θq − 4θ)
]
Φ∗(q).

(4.21)

where r ∝ Tc0 − T measures the distance from the mean-field transition temperature Tc0,
where the mean-field correlation length is ξ0.

Result: Isotropic angular dependence of the Landau damping

The orientations of the nematic directors are restricted to three directions by the cubic term
in Eq. (4.1) as follows, θ = {0, 2π/3, 4π/3} for u3 < 0 and θ = {−π/6, π/2, 7π/6}
for u3 > 0. Precisely speaking, the damping term preserves this Z3 symmetry in disor-
dered state, thus we need to treat three angles equivalently in the above Eq. (4.21).

cos2 (2θq − 2θ)

→ 1
3

[
cos2 (2θq) + cos2 (2θq −

2π

3
) + cos2 (2θq −

4π

3
)
]
, (4.22)

=
1
3

[
cos2 (2θq) +

1
2

cos2 (2θq) +
3
2

sin2 (2θq)
]
=

1
2

. (4.23)

Eventually, within this treatment, there is no anisotropy of Landau damping in the three-
state Potts nematic case, and thus we arrive at the following action with the single com-
ponent scalar field Φ

SGauss[Φ] = ∑
q

Φ(q)
[
χ−1

d (q)
]
Φ∗(q), (4.24)

χ−1
d (q) = r + ξ2

0q2 +
|ϵm|

Γd(q)
, (4.25)

with Φ = Φ(cos 2θ, sin 2θ) and the damping rate Γ−1
d (q) = ρ0

2vF
|q|−1. We conclude

that the C3-breaking bond-order fluctuation leads to an isotropic angular dependence of
the Landau damping as shown in Eq. (4.5).
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Comparison with the Ising nematic order

The above results are quite contrasted to the Ising nematic case where the nematic director
is forced to be θ = {0, π/2} for dx2−y2-wave. In that case, the term D

(
|ϵm|

Γd(q)

)
in Eq.

(4.4) is expressed as the following anisotropic form[135, 268] as

D
( |ϵm|

Γd(q)

)
= ρ0

[ |ϵm|
vF|q|

cos2 2θq − 2
|ϵm|2

(vF|q|)2 cos 4θq

]
, (4.26)

which leads to the angle dependent dynamics of nematic fluctuation. It is possible to
understand from the coupling term in Eq. (4.7) what is responsible for these differences
between the three-state Potts nematicity and the Ising nematicity, as follows. The dy-
namics of nematic fluctuation is damped due to particle-hole pair excitations close the
Fermi surface, which is a source of the Landau damping. It requires electrons to scatter
along the Fermi surface. One of the unique properties of bond-orders is the presence of
the nodal structure in the form factor[135, 268]. This implies that a particle-hole pair
creation is prohibited at certain directions, leading to a large anisotropy in physical quan-
tities. For example, in the case of the Ising nematicity, the nematic director is forced to be
θ = {0, π/2} for dx2−y2-waves, so that the coupling term vanishes at θk = ±π/4 in Eq.
(4.7). On the contrary, the three-state Potts nematic case of our interest does not have such
a specific direction of vanishing coupling because nematic directors are not orthogonal to
each other, as we have discussed in this subsection.

4.2.2 Probing the nematicity through acoustic phonons

In addition to the angle dependence of the Landau damping D̂
(

|ϵm|
Γd(q)

)
in Eq. (4.4), there

is a unique character in the nematic order; the nematic order parameter couples linearly
to acoustic phonon modes[134–136, 143, 171, 272, 273]. This is essentially different
from the cases of other ferroic orders, e.g., ferromagnetism or superconductivity whose
order parameters only couple to the totally symmetric mode of phonon in quadratic order.
Because of this specific form of coupling, the unique properties are reflected in the trans-
verse acoustic phonon. As a result, through the linear nemato-elastic coupling, phonon
modes affect the thermodynamic and transport properties near the nematic quantum criti-
cal point.

Despite a lot of research, an identification of the electron-nematic phase transition
and clarifying whether it is induced spontaneously or from trivial strains is not an easy
task. The ultrasound attenuation of acoustic phonons is one of the good techniques of
identifying the electron-nematic phase transition and its critical behavior. It is also pointed
out that the selection rules of ultrasound attenuation coefficients can determine the Ising
nematic phase transition[134]. In this section, we focus on the impact of nemato-elastic
coupling on the acoustic phonons.

Acoustic phonon

First we consider the dynamical properties of two acoustic phonon modes, a transverse
(T) and a longitudinal (L) one with sound velocity vT(L). The displacement field u
is decomposed into two modes uµ=T,L = ũµêµ with êT = (− sin θq, cos θq), êL =

(cos θq, sin θq) and θq = tan −1(qy/qx). The elastic action for two acoustic phonon
modes reads[267],
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The elastic action for the acoustic phonon

Sph[u] =
ρ

2 ∑
µ=T,L

∑
q

ũµ(q)Kµ(q)ũ∗
µ(q), (4.27)

Kµ(q) = K(0)
µ (q)− δKµ(q), (4.28)

with q = (q, iϵm), the full (bare) inverse propagator Kµ(K(0)
µ ), the phonon self-

energy δKµ, the boson Matsubara frequency ϵm = 2πTm and the mass density
ρ.

The bare inverse propagator has the form

K(0)
µ = ϵ2

m + v2
µq2. (4.29)

The sound attenuation coefficient[274] αµ is defined as the inverse of the phonon mean-
free path, as follows

αµ(q) = − lim
ω→0

1
vµω

ImKR
µ (q, ω), (4.30)

where KR
µ (q, ω) is the retarded function of the full inverse propagator.

Nemato-elastic coupling

In general, the lowest order of the symmetry-allowed nemato-elastic coupling[143, 171]
in the free energy is

Fnem−ph[Φ, u] = −κ
∫

d2r
[
(ϵxx − ϵyy)Φ1 + 2ϵxyΦ2

]
, (4.31)

with the coupling constant κ and the strain tensor ϵij =
1
2(∂iuj + ∂jui). Considering the

nemato-elastic coupling Snem−ph =
∫ β

0 dτFnem−ph, we calculate the effective action for
phonons coupled with nematic fluctuation.

Nemato-elastic coupling

Snem−ph[Φ, u] = −κ ∑
q

i
|q|
2

[
ũL(q)− ũT(q)

]
Φ∗(q). (4.32)

Here, we derive the nemato-elastic coupling (see Eq. (4.37)). In terms of ũL(q) and
ũT(q), the nemato-elastic action reads

Snem−ph[Φ, u] = −κ ∑
q

(
ũL(q) ũT(q)

)
i|q|

(
cos 2θq sin 2θq
− sin 2θq cos 2θq

)(
Φ1(−q)
Φ2(−q)

)
,

= −κ ∑
q

(
ũL(q) ũT(q)

)
i|q|

(
cos (2θq − 2θ)
− sin (2θq − 2θ)

)
Φ∗(q),

(4.33)
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where θq shows the propagating direction of a wave vector q. In the second line, we have
used Φ = Φ(cos 2θ, sin 2θ) with the angle of nematic director θ.

In the case of the Ising nematicity, the nematic director is forced to be θ = {0, π/2}
for dx2−y2-wave. Even if we treat the two angles equally, the anisotropy of the nemato-
elastic coupling remains, as follows,

cos2 (2θq − 2θ) → cos2 (2θq), (4.34)

sin2 (2θq − 2θ) → sin2 (2θq). (4.35)

This form is the same as in Ref. [135]. However, in the case of the three-state Potts
nematicity, treating the three angles equally does not show any anisotropy. Thus we
conclude that Z3 symmetry leads to an isotropic angular dependence of the nemato-elastic
coupling.

cos2 (2θq − 2θ) → 1
2

, sin2 (2θq − 2θ) → 1
2

. (4.36)

Treating the three angles equally does not show anisotropy, with a similar argument as
before, and thus we obtain the following form

Snem−ph[Φ, u] = −κ ∑
q

i
|q|
2

[
ũL(q)− ũT(q)

]
Φ∗(q). (4.37)

Therefore we conclude that the nemato-elastic coupling has an isotropic angular depen-
dence.

Result: Phonon’s properties affected by the nematio-elastic coupling

After integrating out the nematic order parameter field in the total action Stot = SGauss[Φ]+
Sph[u] + Snem−ph[Φ, u], an additional contribution to the phonon Green’s function in Eq.
(4.28) is

δKµ(q) =
κ2q2

2ρ
χd(q). (4.38)

Indeed, up to the leading order correction, we can confirm that the self-energy has no
anisotropy.

As a consequence, we obtain the full inverse propagator for phonons in Eq. (4.28),
which gives rise to the renormalization of sound velocities as,

v∗µ = vµ

√
1 −

ReδKR
µ (q, ω → 0)

v2
µq2 ,

= vµ

√
1 − κ2

2v2
µρ

ReχR
d (q, ω → 0). (4.39)

Note that a sound velocity renormalization implies a lattice softening. They are tied to-
gether in the following equation vµ =

√
cµ/ρ, where the corresponding elastic constants
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are cµ. In the same way, sound attenuation coefficients are

αµ(q) = − lim
ω→0

1
v∗µω

ImδKR
µ (q, ω),

= lim
ω→0

κ2q2

2ρv∗µω
ImχR

d (q, ω → 0). (4.40)

∼ κ2

2ρv∗µ

1
r2
|q|
γd

, (4.41)

with γd = 2vF
ρ0

. Thus αν(q) ∝ r−2. The symmetry-allowed coupling term leads to the

isotropic divergence of transverse (longitudinal) sound attenuation αT(L) ∝ (Tc − T)−2

and an isotropic lattice softening.
In addition to the above equation, there is another relevant term[134, 275] which is

induced by the deformation potential,

F′
nem−ph[Φ, u] = κ′ ∑

q,q′
Φ∗

a(q + q′)Φa(q′)[i|q|uL(q)], (4.42)

where the longitudinal sound modes couple to the quadratic term of nematic fields. It
originates from a change in volume due to the effective nematic-nematic interaction.
This term also leads to the divergent contribution to the longitudinal sound attenua-
tion αL ∝ (Tc − T)−2. Note that the latter term is essentially the same as in weak
ferromagnetism[275] for sound attenuation near the ferromagnetic transition in metals.
3

Comparison with the Ising nematic case

Some comments are in order here on the comparison with the Ising nematic case. In the
case of the Ising nematicity, the nematic director is forced to be θ = {0, π/2}. Even if
we treat the two angles equally, the anisotropy of the nemato-elastic coupling remains, as
follows

SIsing[Φ, u] = −κ ∑
q

i|q|
[
ũL(q) cos (2θq)− ũT(q) sin (2θq)

]
Φ∗(q).

(4.44)

As pointed out in previous studies, this leads to the angle dependent damping properties of
acoustic phonons[134] or the mass term anisotropy of the Ising nematic fluctuation[135].

We conclude that the unique properties to observe the three-state Potts nematic or-
der: (i) the nematic fluctuation affects the transverse acoustic phonon, (ii) the ultrasound
attenuation coefficients show an isotropic divergence which is proportional to the mo-
mentum |q| and (iii) the sound velocity renormalization also shows an isotropic angle

3Paulson and Schrieffer considered that the deformation potential of the effective exchange interaction
J gives an interaction between a phonon and the electron spins of the form

Hel−spin[M, u] = −J
∫

V
∇ · u(r) M(r) · M(r), (4.43)

where M(r) = ψ†(r)σψ(r) is the electron spin density. They pointed out that αL ∝ ω2(T − Tc)−2γ above
Tc.
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dependence. We therefore propose to detect the three-state Potts nematic order by the
measurement of the isotropic divergence of transverse sound attenuation coefficient and
the isotropic sound velocity renormalization. The isotropic nature of these properties is
in contrast to the Ising nematic case where such quantities are anisotropic and subject to
selection rules[134]. Note that the vanishing anisotropy of the acoustic phonon velocity
is consistent with Cowley’s classification[276].

4.3 Model calculation of the electron-nematic phase tran-
sition

Let us move on to the model calculation of the nematic phase originating from a bond
order on the honeycomb lattice. In this section, we use the mean-field approximation
by taking into account the higher order terms up to the sixth order coefficients in Eq.
(4.1). Since the critical properties near the phase transition are evaluated in the mean-
field approximation, the power of divergence may be changed in the presence of strong
fluctuations, but the stability and the extent of the ordered phase are expected to remain
qualitatively unchanged even with the inclusion of such effects of the mode coupling.

4.3.1 Extended Hubbard model on the honeycomb lattice
We here consider the extended Hubbard model on the emergent honeycomb lattice in Eq.
(4.45). In a TBG, a slight mismatch in the lattice periods of two graphene layers gives
rise to a long-period moiré interference pattern. The regions that locally apear to be AB-
stacked bilayer grahene and BA-stacked bilayer graphene form the emergent honeycomb
lattice in Fig.4.1(a). Furthermore, it is pointed out that the Wannier state[154, 155, 157]
is centered at the AB or BA spot in the moiré pattern, while the maximum amplitude
is at three AA spots. Because of the three-peak form of Wannier state, the Coulomb
interaction between the neighboring sites is as important as the on-site interaction[155].
The extended Hubbard model on the emergent honeycomb lattice reads

Extended Hubbard model

H =
1
N ∑

kξσ

(
cAB†

kξσ cBA†
kξσ

)
Ĥξ

kσ

(
cAB

kξσ

cBA
kξσ

)
+ Hint + Himp,

Hint =
1
2 ∑

ab
∑
σσ′

Vabc†
aσcaσc†

bσ′cbσ′ , (4.45)

with creation and annihilation operators cα†
kξσ, cα

kξσ, the spin index σ, the sublattice
index α ∈ {AB, BA}, the valley index ξ ∈ {+,−}, the unit cell index i, and its
shorthand notation a = (i, α, ξ).

The long-range interaction comes from the three-peak structure of Wannier orbitals
in MA-TBG[154, 155, 157]. Here Hξ

kσ is a 2 × 2 Hamiltonian for each valley ξ and
σ. Since our mean-field analysis aims at showing the critical properties of the nematic
fluctuation and order of the metallic phase, we use a reduced tight-binding model with
only the nearest-neighbor hopping term on the honeycomb lattice and deal with all spin
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and valley degrees of freedom on an equal footing4. The tight-binding model on the
honeycomb lattice are written as

Ĥk =

(
0 t(1 + e−ik·a1 + e−ik·a2)

t(1 + eik·a1 + eik·a2) 0

)
, (4.46)

with the nearest-neighbor hopping strength t and the primitive lattice vectors on the hon-
eycomb lattice: a1, a2 in Fig.4.1(a). Although the band structure is somewhat different
from the Bistritzer-MacDonald model and other tight-binding models[152–158], our sim-
ple model captures the essential properties around VH filling, including the correlated
insulating phase near half-filling. Imposing valley-U(1) symmetry, we introduce two or-
bitals which do not hybridize with each other. Each valley for ξ = ±1 is independent in
the non-interacting Hamiltonian. Although the Coulomb interaction term may have both
contributions from the intra-valley and the inter-valley interaction, the obtained form fac-
tor from the DW-equation method[174] has no inter-valley component. In our mean-field
calculation, we analyze all spin and valley degrees of freedom on an equal footing in the
following section. As is known, in order to reproduce the correlated insulating phase near
VH filling5, which is not expected in ordinary single layer graphene, valley degrees of
freedom are needed. In this paper, however, we focus on the nematic metallic phase with
the C3-breaking Fermi surface, in line with the transport measurement in Ref. [167].

The third term Himp in Eq. (4.45) represents the spin-independent short-range isotropic
impurity scattering,

Himp = ∑
ξσαi

uimpξσα
i nξσα

i , (4.47)

where the random impurity potential uimp obeys the Gaussian ensemble

⟨uimp
i ⟩ = 0, ⟨uimp

i uimp
j ⟩ = nimp|u|2δi,j (4.48)

with nimp and u being the impurity concentration and the strength of the impurity po-
tential. We resort to the Born approximation, which results in the impurity-averaged
self-energy

Σ̂ξσα
imp(iωn) = ni|u|2

T
N ∑

k
Ĝ(k, iωn) = iΓsign(ωn)1l, (4.49)

where iωn is the Matsubara frequency and Γ is the strength of the impurity scattering. In
this calculation, we use Eq. (4.49) or its retarded representation. With this approximation,
the impurity-averaged Green’s function is solved as Ĝ−1(k) = Ĝ−1

0 (k)− Σ̂imp(k).

Derivation of forward-scattering interaction

Now we focus on the electron-nematic phase transition near the van-Hove (VH) filling
where the nematicity can be seen in the experiment, as claimed in a previous theoretical

4The valley degrees of freedom in some moiré materials are not the same as those used in semiconduc-
tors but a kind of orbital degree of freedom due to the folding of Brillouin zone and originating from the
K and K′ valleys of graphene before twisting. It has also been pointed out that these two orbitals do not
hybridize, because the hybridization of original K and K’ points requires a large momentum transfer which
greatly exceeds the scale of the moiré Brillouin zone after the folding. In the Bistritzer-MacDonald model
or some effective tight-binding models, it has been pointed out that the two orbital degrees of freedom
decouple from each other, referred to as a valley-U(1) symmetry.

5In many theoretical studies, it has been pointed out that one of the essential features to explain the cor-
related insulating phase is the emergence of additional degrees of freedom arising from the moiré structure,
namely valley degrees of freedom, compared to the case of single-layer graphene.
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Fig. 4.1: (a) The primitive lattice vectors on the honeycomb lattice: a1 = (
√

3
2 , 1

2 ), a2 = (0, 1)
with vectors of the nearest-neighbor bond τ1 = (− 1

2
√

3
,− 1

2 ),τ2 = ( 1√
3
, 0),τ3 =

(− 1
2
√

3
, 1

2 ). The basis function of E(or Eg) representation of form factor: (b) dx2−y2-
wave, (c) dxy-wave. Reprinted figure with premission from [277] Copyright 2022 by the
American Physical Society.

study[174]. These authors showed that the C3-breaking bond ordered state is stabilized
near VH filling by using the so-called DW equation method beyond our mean-field de-
scription. Based on this work[174], we restrict ourselves to the d-wave forward scattering
channel of electron-electron interactions only. Here, we derive the forward-scattering in-
teraction6[278–282] from an extended Hubbard model on the emergent honeycomb lattice
in Eq. (4.45). The microscopic forward-scattering interaction obtained is

Forward-scattering channel

Hint = −g ∑
ξσ

∑
i=1,2

∑
q

(
nABξσ

Ei
(q)nBAξσ

Ei
(−q)

)
, (4.50)

with creation and annihilation operators cα†
kξσ, cα

kξσ, the spin index σ, the sublattice
index α ∈ {AB, BA}, the valley index ξ ∈ {+,−}, and the coupling constant
g = 2VNN

3 (VNN: the nearest-neighbor repulsive interaction).

This is derived in the following way. The interaction term is shown in terms of the
di-wave density operator nABξσ

Ei
(q) = 1

N ∑k Ei∗
k cABξ†

k+q/2σcBAξ
k−q/2σ, where Ei∗

k are form
factors in a two-dimensional E representation. Considering the nearest-neighbor (NN)
direct channel on the multi-orbital Hubbard model, the interaction term is given by

Hint =
1
2 ∑

ab
∑
σσ′

Vabc†
aσcaσc†

bσ′cbσ′ , (4.51)

=
VNN

2N ∑
α ̸=β

∑
q

γNN
αβ (q)ρα(q)ρβ(−q), (4.52)

γNN
AB,BA(q) =

(
e−iq·τ1 + e−iq·τ2 + e−iq·τ3

)
, (4.53)

6The forward-scattering interaction means a scattering channel between quasiparticles whose initial and
final momenta are unchanged. So-called d-wave Pomeranchuk instability or bond ordered states are driven
by the forward scattering channel.
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where a = (i, α, ξ) denotes the unit cell index i, the sublattice index α ∈ {AB, BA}, the
valley index ξ ∈ {+,−} and the density operator ρα(q) = ∑α,ξ,σ ∑k cαξ†

k+qσcαξ
kσ.

We change the ordering of fermion operators in the NN direct channel as

∑
p1 p2 p3

γNN
AB,BA(p2)c

αξ†
p1+p2σcαξ

p1σcβξ ′†
p3−p2σ′c

βξ ′

p3σ′

∼ − ∑
kk′q

γNN
AB,BA(k − k′)cαξ†

k+q/2σcβξ
k−q/2σ′c

βξ†
k′−q/2σcαξ

k′+q/2σ′ , (4.54)

where we have ignored the inter-valley component and consider only σ = σ′. Now we
decouple γNN

AB,BA(k − k′) as γNN
AB,BA(k − k′) = 1

3 s∗ksk′ + 2
3 E1∗

k E1
k′ +

2
3 E2∗

k E2
k′ , where sk,

E1
k, E2

k are the form factors in Fig.4.1(b) and (c), such as

sk = eik·τ1 + eik·τ2 + eik·τ3 ,

E1
k = eik·τ1 − 1

2
eik·τ2 − 1

2
eik·τ3 ,

E2
k = −

√
3

2
eik·τ2 +

√
3

2
eik·τ3 . (4.55)

We can rewrite Eq. (4.54) in terms of the density operator, which is in the E-representation
of the point group D3,

HAB
int = −VNN

3N ∑
ξσ

∑
k,k′,q

(
nABξσ

E1
(q)[nABξσ

E1
(q)]† + nABξσ

E2
(q)[nABξσ

E2
(q)]†

)
,

with
nABξσ

Ei
(q) =

1
N ∑

k
Ei∗

k cABξ†
k+q/2σcBAξ

k−q/2σ. (4.56a)

Finally, we have Hint = HAB
int + HBA

int as shown in Eq. (4.50).

E C3z C2y linear quadratic
A1 1 1 -1 x2 + y2

A2 1 1 -1
E 2 -1 0 (x, y) (x2 − y2, xy)

Table 4.1: The character table of the D3 point group.

In the D3 point group case[155], form factors result from TABLE.4.1. The real part
of nABξσ

Ei
(q) corresponds to the d-wave components of the density operator, referred to

as nematic fields, whereas the imaginary part of nABξσ
Ei

(q) corresponds to the p-wave
components, referred to as loop-current fields[174]. We note that, if we consider the D6
point group case[158] which is another symmetry of MA-TBG, nematic fields appear
irrespective of loop-current fields.

4.3.2 Effective action describing the three-state Potts nematic phase
transition

To construct the mean-field theory, we introduce the two-component nematic order pa-
rameter field Φ(q), with Φ = (Φ1, Φ2) and we derive the following effective action in
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Eq. (4.57) from the extended Hubbard model in Eqs.(4.45) and (4.50).The effective action
is given by the two-component order parameter Φ = (Φ1, Φ2),

Effective action for the three-state Potts nematicity

Seff[Φ] = ∑
iξσq

1
g

Φi(−q)Φi(q)− Trln
[

M̂ξσ

k+ q
2 ,k− q

2

]
, (4.57)

M̂ξσ

k+ q
2 ,k− q

2
=

(
(−iωn − µ)1l + Ĥξ

kσ

)
δk+ q

2 ,k− q
2
− ∑

i

Φi(−q)√
βN

(
0 Ei∗

k
Ei

k 0

)
,

(4.58)

with the chemical potential µ, the spin index σ, the valley index ξ ∈ {+,−},
q = (q, iωn), k = (k, iωm) and the form factor Ei

k in Eqs.(4.55), where we
have neglected any loop-current order and only considered the (dx2−y2 , dxy)-wave
components for simplicity.

First, we rewrite the grand-canonical partition function Z in the functional-integral
form[267],

Z =
∫

D(c̄, c)e−S[c̄,c], (4.59)

D(c̄, c) = ∏
qαξσ

dc̄qαξσdcqαξσ, (4.60)

with the Grassmannian variables c̄, c, where the action S is defined as

S = S0[c̄, c] + Sint[c̄, c], (4.61)

= ∑
iξσqk

∑
αβ

c̄α
k+ q

2 ξσ

[(
(−iωn − µ)δαβ + Ĥξ

kσ,αβ

)
δq,0

]
cβ

k− q
2 ξσ

−g ∑
iξσq

nABξσ
Ei

(q)nBAξσ
Ei

(−q), (4.62)

with the chemical potential µ, the shorthand notation q = (q, iωn), k = (k, iωm) and the
di-wave density operator

nABξσ
Ei

(q) =
1
N ∑

k
Ei∗

k c̄ABξ
k+q/2σcBAξ

k−q/2σ, (4.63)

nBAξσ
Ei

(q) =
1
N ∑

k
Ei

k c̄BAξ
k−q/2σcBAξ

k+q/2σ. (4.64)

Next, we perform the Hubbard-Stratonovich transformation by using the two-component
complex field (Ψ, Ψ̄), with Ψ = (Ψ1, Ψ2), Ψi ∈ C, and Ψ̄ = Ψ∗, as follows

Sint = − ∑
iξσq

1√
βN

(
Ψ̄i(−q)nABξσ

Ei
(q) + Ψi(−q)nBAξσ

Ei
(q)
)
+

1
g ∑

iξσq
Ψi(−q)Ψ̄i(q),

= ∑
iξσqk

∑
αβ

c̄α
k+ q

2 ξσ

[
Vi

αβ(k, q)
]
cβ

k− q
2 ξσ

+
1
g ∑

iξσq
Ψi(−q)Ψ̄i(q), (4.65)
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where Vi
αβ(k, q) is an (α, β) component of the matrix V̂i(k, q). In terms of form factors

Ei
k in Eq. (4.55), it is expressed,

V̂i(k, q) = − 1√
βN

(
0 Ei∗

k Ψ̄i(−q)
Ei

kΨi(−q) 0

)
, (4.66)

with q = (q, iωn), k = (k, iωm), where σx, σy are Pauli matrices and c̄, c are Grassman-
nian variables corresponding to creation and annihilation operators.

We now divide Ψ into nematic fields Φi(q) and loop-current fields Φ′
i(q), where

Φi(q) = ReΨi(q) ∈ R and Φ′
i(q) = ImΨi(q) ∈ R. In the following calculation,

for simplicity, we only consider an electron-nematic order and in this case the matrix
V̂i(k, q) is written as

V̂i(k, q) = −Φi(−q)√
βN

(
0 Ei∗

k
Ei

k 0

)
. (4.67)

The total action in this system is given by the two-component real field Φ = (Φ1, Φ2),

Stot[c̄, c, Φ] = S0[c̄, c] + Sint[c̄, c, Φ], (4.68)

with

S0[c̄, c] = ∑
iξσqk

∑
αβ

c̄α
k+ q

2 ξσ

[(
(−iωn − µ)δαβ + Ĥξ

kσ,αβ

)
δq,0

]
cβ

k− q
2 ξσ

. (4.69)

After integrating out the electron degrees of freedom c, c̄, we have an effective action for
the nematic field Φ

Seff[Φ] =
1
g ∑

iξσq
Φi(−q)Φi(q)− Trln

[
M̂ξσ

k+ q
2 ,k− q

2

]
, (4.70)

M̂ξσ

k+ q
2 ,k− q

2
= −Ĝ−1

0 δk+q/2,k−q/2 − ∑
i=1,2

V̂i(k, q), (4.71)

where we have introduced the non-interacting Green’s function Ĝ−1
0 (k) = iωn1l − Ĥξ

kσ.
This leads to Eq. (4.57).

4.3.3 Ginzburg-Landau expansion for the three-state Potts nematic-
ity

In terms of the order parameter field Φ, the partition function is expressed in a functional
integral form,

Z = Z0

∫
DΦe−Seff[Φ], (4.72)

DΦ = ∏
qαξσ

dΦ1qαξσdΦ2qαξσ

π
, (4.73)

with Z0 =
∫
D(c̄, c)e−S0[c̄,c] = e−βΩ0 , the thermodynamic potential Ω0. The Landau

free energy is given by

exp (−Fnem/T) =
∫

DΦe−Seff[Φ]. (4.74)
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In terms of the order parameter field Φ, the Landau free energy is obtained from the GL
expansion up to the sixth order terms, as follows

Ginzburg-Landau expansion

Fnem[Φ0] =
1
2

rΦ+Φ− +
1
6

u3(Φ3
+ + Φ3

−) +
1
4

u4(Φ+Φ−)
2

+
1

10
u5(Φ4

+Φ− + Φ+Φ4
−) +

1
6

u6Φ3
+Φ3

−,

(4.75)

with Φ± = Φ1(0)± iΦ2(0), the uniform (q = 0) and static (iωn = 0) component
Φ0 = Φ(q = 0), and coefficients un and r = 1/g − u2 defined as

un+1 =
T
N ∑

k,iωn

tr
[

Ĝkv̂i(k, 0)
]n+1

, (4.76)

=
1
N ∑

k
(di

k)
n+1 1

n!

[ ∂n

∂nϵ
f (ϵ+k ) + (−1)n+1 ∂n

∂nϵ
f (ϵ−k )

]
, (4.77)

with the Fermi distribution function f (ϵ), where we have used the non-interacting
formula in Eqs. (4.80) and (4.83) with T ∑iωn [g

i(k)]n+1 = 1
n!

∂n

∂nϵ f (ϵi) at the
second line.

Here, we derive the GL expansion in Eq. (4.75). For simplicity, we approximate the
2 × 2 Dirac Hamiltonian with chiral symmetry on the honeycomb lattice,

Ĥk =

(
µ ϵ∗k
ϵk µ

)
, (4.78)

Ûk =
1√
2

(
1 1

eiθk −eiθk

)
, (4.79)

where a phase factor is introduced as θk = ϵk
|ϵk|

with ϵk = t(1 + e−ik·a1 + e−ik·a2),
the hopping parameter t and the chemical potential µ. The band representation of the
non-interacting Green’s function and the interaction vertex in Eq. (4.71) is given by

Ĝ0(k) = Ûk

(
g+k 0
0 g−k

)
Û†

k, (4.80)

V̂i(k, q) = − 1√
βN

Ûk

{( 1 0
0 −1

) [
di

kΦi(−q)− pi
kΦ′

i(−q)
]

+

(
0 −i
i 0

) [
−pi

kΦi(−q) + di
kΦ′

i(−q)
]}

Û†
k, (4.81)

where [g±k ]
−1 = iωn ∓ |ϵk| − µ is the electron Green’s function, ωn is the fermion

Matsubara frequency and we have introduced the d- and p- wave components of the form
factor Ei

k in Eqs.(4.55),

di
k = Re

[
Ei

ke−iθk
]
, pi

k = Im
[

Ei
ke−iθk

]
. (4.82)

If the system has space inversion symmetry, the p-wave component of the nematic field
vanishes. Now we focus on the d-wave component, for which the matrix V̂i(k, q) is
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obtained in a diagonal form

V̂i(k, q) = −
di

kΦi(−q)√
βN

Ûk

(
1 0
0 −1

)
Û†

k,

= v̂i(k, q)Φi(−q), (4.83)

where we have introduced the shorthand notation of the interaction vertex v̂i(k, q).
As described in Sec. 4.3.2, we have used the effective action in Eq. (4.71). In terms of

the order parameter field Φ = (Φ1, Φ2), the partition function is expressed in a functional
integral form,

Z = Z0

∫
DΦe−SGL[Φ], (4.84)

SGL[Φ] = ∑
n=1,··· ,6

S(n)
GL [Φ]. (4.85)

We expand the above GL action up to the sixth order terms in the nematic order parameter,
by using the following relation as

TrlnM̂ = Trln
(
−Ĝ−1

0
)
−

∞

∑
n=1

1
n

Tr
(
Ĝ0V̂

)n, (4.86)

where M̂ is shown in Eq.(4.71). The first order term of Φ is

Tr
(
Ĝ0V̂

)
=

1√
βN ∑

ikαβ

[
Ĝk

]
αβ

[
v̂i(k, q)

]
βα

Φi(−q), (4.87)

where this integration becomes zero because Ĝk has the C3 symmetry. The second order
term, which is shown in Figs. (4.2)(a), is

1
2

Tr
(
Ĝ0V̂

)2
=

1
2

T
N ∑

qij
χ

ij
q Φi(−q)Φj(q), (4.88)

χ
ij
q =

T
N ∑

k,iωn

tr
[

Ĝk+q/2v̂i(k, q)Ĝk−q/2v̂j(k,−q)
]
. (4.89)

Thus the Gaussian term is

S(2)
Gauss[Φ] = ∑

qij

[
χ−1

d (q)
]

ij
Φi(−q)Φj(q), (4.90)

[
χ−1

d (q)
]

ij
=

1
g

δij − χ
ij
q ,∼ (r + ξ2

0q2)δij + D̂ij
q , (4.91)

where g = 2VNN
3 is a coupling constant, the dynamical part of nematic fluctuation are

defined as

D̂q,iωn = χ̂q,iωn − χ̂q,0, (4.92)

where r = 1/g − χ11
q=0 ∝ Tc0 − T measures the distance from the mean-field transition

temperature Tc0 and the mean-field correlation length is ξ0.
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(a)

(b) (c)

Fig. 4.2: Diagramatic representation of GL coefficients for the second order term (a), the third
order term (b), and the fourth order term (c). The solid line means the electron Green’s
function and the broken line means the nematic interaction. The black circle means the
vertex v and its labels i, j, m, n.

In a similar way, we evaluate the coefficients up to the sixth order and it is graphically
shown in Figs. (4.2). GL coefficients un+1 comes from uniform contributions of the
(n + 1)-th order term in the non-interacting Dirac dispersion,

un+1 =
T
N ∑

k,iωn

tr
[

Ĝkv̂i(k, 0)
]n+1

, (4.93)

=
1
N ∑

k
(di

k)
n+1 1

n!

[ ∂n

∂nϵ
f (ϵ+k ) + (−1)n+1 ∂n

∂nϵ
f (ϵ−k )

]
. (4.94)

where we have used the non-interacting formula in Eqs. (4.80) and (4.83) with

T ∑
iωn

[gi(k)]n+1 =
1
n!

∂n

∂nϵ
f (ϵi), (4.95)

at the second line. If we treat the impurity effect in a Born approximation, the electron
Green’s function is evaluated as Ĝ−1(k) = Ĝ−1

0 (k) − Σ̂imp(k) and the self-energy is
obtained in Eq. (4.49).

As a consequence, we arrive at the following GL action up to the sixth order,

SGL[Φ±(q = 0, iωn = 0)] = (βN)
[1

2
rΦ+Φ− +

1
6

u3(Φ3
+ + Φ3

−) +
1
4

u4Φ2
+Φ2

−

+
1

10
u5(Φ4

+Φ− + Φ+Φ4
−) +

1
6

u6Φ3
+Φ3

−

]
, (4.96)

where x = (r, τ),Φ± = Φ1 ± iΦ2 and r = 1/g − u2. The Landau free energy is
obtained from exp (−Fnem/T) =

∫
DΦe−Seff[Φ] = e−Seff[Φ±(0)] as shown in Eq. (4.75).
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𝑢3 = 0

𝑢4 = 0

𝑇𝑐
1st

𝑇𝑐
2nd

Fig. 4.3: Phase diagram of a nematic bond-ordered state. We use VNN/t = 4.5. T1st
c (T2nd

c ) is
the first (second) order phase transition point, and u3 = 0 (u4 = 0) is zeros of u3 (u4).
The three arrowheads surrounded by the circle represent the set of the orientation of the
nematic director. The set of the orientation changes on the zeros of u3. We calculate this
by using a square mesh of 500× 500 in the Brillouin zone. The phase transition line T1st

c
is defined by Fnem[Φ1, Φ2] = 0 and ∂Fnem[Φ1, Φ2]/∂Φi = 0 with i = 1, 2. Reprinted
figure with premission from [277] Copyright 2022 by the American Physical Society.

4.3.4 Numerical results (i): Mean-field phase diagram
Parameters in the Landau free energy

Now we determine Landau free energy coefficients up to the sixth order (r, u2, · · · , u6)
numerically. 7 The electron-nematic phase transition shown here is described by a spon-
taneous distortion of the Fermi surface, caused by C3-breaking hopping anisotropy. In
addition, due to the symmetry of spin and valley, we perform a mean-field analysis deal-
ing with all spin and valley degrees of freedom on an equal footing. In the following
section, without loss of generality, we focus on one spin and one valley degrees of free-
dom. We summarize the mean-field phase diagram (T, N), with the temperature T and
the filling N, determined by the Landau free energy in Fig. 4.3. The transition is of purely
second order at the VH filling (NVH ∼ 1.25) because of u3 = 0 and u4 > 0. We note
that N = 2 corresponds to the full filling and N = 1 corresponds to the charge-neutral
point. The important feature is that the transition is of weak first-order in a wide range
of filling. “Weak first-order” means that the character of the phase transition is first order
but the transition temperature is close to the second order transition temperature which is
defined by u2 = 0. In general, first-order transitions are not accompanied by a divergence
of the susceptibility, but a remnant of critical fluctuations can nevertheless be observed
due to the vicinity of the second order instability, as we will show below.

In this analysis, we focus around VH filling as shown in Figs.4.4(a) (this is correspond

7In this calculation, we use the band representation of the non-interacting Green’s function. The (α, β)-

component is expressed as
[
Gk

]
αβ

= ∑γ

[
Uk

]
αγ

[
U†

k

]
γβ

gfl
k,i!m

, where the non-interacting Hamiltonian Hk

and the unitary matrix Uk as follows: HkUk = UkDk, a diagonal matrix Dk = diag{ϵ
γ
k}, γ-th component

of eigenvalue ϵ
γ
k and 1/gγ

k,iωm
= iωm − ϵ

γ
k .

69



Γ

K

M

kx

ky

FS𝑑𝑖𝑠

FS𝑛𝑒𝑚

0

0.4

2.0

0.8

1.2

1.6

DOS𝑑𝑖𝑠

DOS𝑛𝑒𝑚

𝐸/𝑡

𝑁𝑑𝑖𝑠

𝑁𝑛𝑒𝑚

DOS 𝑁

(a)

K Γ KM

band𝑑𝑖𝑠

band𝑛𝑒𝑚

𝐸/𝑡

(b) (c)

Fig. 4.4: The Hartree-Fock results in the disordered phase and the nematic phase; (a)The density
of states, and the particle number N. (b)The band structure along the high-symmetric
line of the Brillouin zone. (c)The Fermi surface. The data are plotted for the disordered
phase (Ψ = (0, 0), T/t = 0.15) and the nematic phase (Ψ = (0.12, 0), T/t = 0.05).
We use VNN/t = 4.5, N = 1.2. We note that N = 2 corresponds to the full filling and
N = 1 corresponds to the charge-neutral point. Reprinted figure with premission from
[277] Copyright 2022 by the American Physical Society.

to N = 1.2). We note the band structure in Figs.4.4(b). Introducing on the interaction, a
finite value of the order parameter yields a deformation of the Fermi surface which breaks
the C3z symmetry as shown in Figs.4.4(c). This is obtained from Hartree-Fock approx-
imation and the derivation is summarized in Appendix 4.6.1. We show the temperature
dependence of the order parameters in Fig. 4.5. Although, in the vicinity of VH filling,
the transition is of almost second order with a continuous change of the order parameter
in Fig. 4.5(a), for other fillings, the transition is of weak first-order with a small discon-
tinuous change of the order parameter in Fig. 4.5(b). In this weak first-order region, we
expect a nearly diverging behavior of the nematic susceptibility.

Impurity effects for the mean-field phase diagram

Next, we show how weak impurity scattering modifies the mean-field phase diagram. In
graphene-based materials, it is known that there are impurity effects due to the substrate
and disorder effects due to sample inhomogeneity. Here, for simplicity, we treat the im-
purity effect at the level of the Born approximation introduced in Eq. (4.49). In Fig. 4.6,
the mean-field phase diagrams for disordered cases (Γ = 0.05 and Γ = 0.09) are shown.
First, we observe that the transition temperature of the three-state Potts nematic state is
suppressed with increasing the impurity scattering. Second, the first order transition line
at low temperatures gradually approaches the second-order one, rendering the transition
a weak first-order. Thus we conclude that the transition becomes weakly first-order in the
presence of the weak impurity scattering.

As described above, we have used the mean-field approximation for the free energy
and the critical properties. In general, it is known that phase transitions and critical prop-
erties can be modified by introducing mode-coupling effects between fluctuations, such
as third- and fourth-order terms of GL action. In addition, due to the peculiarities of the
three-state Potts model, the classical phase transition at finite temperature is known to be
a second-order transition in two spatial dimensions[283, 284], and it is expected that the
first-order transition discussed here will be further close to the second-order transition if
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𝑁 = 1.25

𝑇𝑐
1st

𝑁 = 1.2

𝑇𝑐
1st

(b)(a)
Φ1

𝑟

Φ2

Φ1

𝑟

Φ2

Fig. 4.5: Nematic order parameters (Φ1, Φ2) and r ∝ Tc0 − T measures the distance from the
mean-field transition temperature T2nd

c . The three arrowheads surrounded by the circle
represent the set of the orientation of the nematic director. T1st

c (T2nd
c ) is the first (second)

order phase transition point. (a) N = 1.25 which is very close to the VHs. (b) N = 1.2
which clearly shows the first order phase transition. Reprinted figure with premission
from [277] Copyright 2022 by the American Physical Society.

we take into account the mode-coupling effect[129, 131–133]. Of course, in the case of
quantum phase transitions[285–287], the order of the phase transition is not well under-
stood, and it is an open question what happens for the order of the phase transition when
the nematic phase transition is accompanied by loop-current order or when the impurity
vertex corrections are applied. In our analysis, the critical properties near the phase tran-
sition point are due to the mean-field approximation, but the stability and the extent of the
ordered phase are expected to remain qualitatively unchanged even if the effects of such
fluctuations are included.

Before closing this subsection, we comment on the connection between the calculation
and experimental observations. In Ref. [167], the authors obtained the phase diagram by
changing the filling with a gate voltage, where the electron-nematic state is realized only
in a narrow filling range. This observation is consistent with the fact that the electron-
nematic state is stable only near the VHs in our mean-field calculations.

4.3.5 Numerical results (ii): Sound attenuation coefficients
Next, we show the sound attenuation coefficients and the sound wave velocity for the
transverse acoustic phonons, which are modified by the Fermi surface fluctuation. The
inverse propagator of acoustic phonon has the following form, as we have discussed in
Sec. 4.2.2,

Kµ(q) = K(0)
µ (q)− δKµ(q), (4.97)

K(0)
µ = ϵ2

m + v2
µq2, (4.98)

with q = (q, iϵm), the full (bare) inverse propagator Kµ(K(0)
µ ), the phonon self-energy

δKµ, the boson Matsubara frequency ϵm = 2πTm and the mass density ρ.
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Fig. 4.6: Phase diagrams of a bond-ordered phase with the impurity scattering (Γ = 0.05 and
Γ = 0.09). T1st

c (T2nd
c ) is the first (second) order phase transition point, and u3 = 0

(u4 = 0) is zeros of u3 (u4). The calculation is done by using a square mesh of 100× 100
in the Brillouin zone and a mesh of 1000 in the energy. The phase transition line T1st

c
is defined by Fnem[Φ1, Φ2] = 0 and ∂Fnem[Φ1, Φ2]/∂Φi = 0 with i = 1, 2. Reprinted
figure with premission from [277] Copyright 2022 by the American Physical Society.

The dominant contribution to the phonon self-energy in Eq. (4.28) is given by the
nematic fluctuation,

δKµ,nem(q) =
κ2q2

2ρ
χd(q) = −κ2q2

2ρ

[
r + ξ2

0q2 +
|ϵm|

Γd(q)

]−1
. (4.99)

An additional contribution to the phonon Green’s function is given by the bubble diagrams
with electron-phonon vertices,

δKµ,el−ph(q) = − 1
2ρ

∫
q

tr
[

Ĝk+q/2ŵµ
k,qĜk−q/2ŵµ

k,−q

]
, (4.100)

with

ŵµ
k,q = −

gph√
βN

(
0 ∆E∗

k,q · êµ(−q)
∆Ek,q · êµ(−q) 0

)
,

∆Ek,q =

(
−1

2
−

√
3

2

)
eik·a1(iq · a1) +

(
−1

2√
3

2

)
eik·a2(iq · a2), (4.101)

with êT = (− sin θq, cos θq) êL = (cos θq, sin θq), θq = tan −1(qy/qx). The derivation
of the above equations is in Appendix 4.6.2. The phonon self-energy (δKµ,el−ph(q) due
to the electron-phonon couplings and δKµ,nem(q) due to the nemato-elastic couplings
in Eq. (4.28)) are obtained numarically. The sound velocity and the sound attenuation
coefficient, which is defined as the inverse of the phonon mean-free path, are summarized
as follows

v∗µ = vµ

√
1 −

ReδKR
µ (q, ω → 0)

v2
µq2 , αµ(q) = − lim

ω→0

1
vµω

ImKR
µ (q, ω).

(4.102)
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Using these self-energies δK, we calculate the normalized sound velocities vnem/vel−ph
and the normalized sound attenuation coefficients αnem/αel−ph, which quantify the con-
tribution of the nematic fluctuation (vnem, αnem) to the electron-phonon coupling (vel−ph,
αel−ph). The temperature dependencies of the transverse sound velocity and the trans-
verse sound attenuation coefficient for several impurity scatterings are shown in Fig. 4.7.
The parameter region is in the weak first-order phase transition for N = 1.2. We note
that the ratio of the sound velocity vnem/vel−ph takes about 0.8 at T1st

c for the choice of
parameters.

It is confirmed that the ultrasound attenuation coefficient is enhanced by a factor of
about 100 around the first-order transition temperature T1st

c even if the impurity effect is
present in Fig. 4.7 (Γ = 0.05). Furthermore, in the region where the impurity scattering
is much stronger in Fig. 4.7 (Γ = 0.09), the ultrasound attenuation coefficient is still
enhanced by a factor of 10 for the same parameters as above. These results suggest that
the weak first-order phase transition occurs and that the effect of nematic fluctuations can
be observed in the phonon damping even in the presence of impurities.

𝛤 = 0.05

𝛤 = 0.05

𝛤 = 0.09

𝑣nem /𝑣el−ph

𝑣nem /𝑣el−ph

𝛼nem /𝛼el−ph

𝛼nem /𝛼el−ph

𝛤 = 0.09

Fig. 4.7: Temperature dependence of the sound velocities vnem/vep−ph and the sound attenuation
coefficients αnem/αep−ph for the transverse acoustic wave for N = 1.2. T1st

c (T2nd
c )

is the first (second) order phase transition point. The points make only sense above
the transition temperature for T > T1st

c . Reprinted figure with premission from [277]
Copyright 2022 by the American Physical Society.

4.4 Discussion
Here some additional comments are in order on the characteristic properties discussed in
the previous sections.
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Superlattice effects

In this chapter, we have focused on the long-wavelength limit of acoustic phonons with
linear dispersions. Here we comment on the phonon modes in MA-TBG, which are com-
plicated due to the superlattice structure. One of the unique properties of such moiré
phonon modes, which reflects a non-rigid crystal[175, 176], is the appearance of rota-
tion tensors in addition to the ordinary strain tensors in the elastic degrees of freedom.
While for a rigid crystal the velocity of longitudinal phonons is much larger than that of
transverse phonons, for twisted bilayer graphene having a non-rigid crystal property, the
velocity of transverse phonons may exceed that of longitudinal phonons due to the cou-
pling between the strain tensor and the rotation tensor[171, 175, 176]. Although there are
such quantitative differences, as far as the acoustic phonons in the long-wavelength limit
are concerned, there is no qualitative change in their linear-dispersion properties. Thus
we believe, even in the moiré materials, that our theory can be applied to the low-energy
properties of acoustic phonons with linear dispersions. It is also important to consider
the effect of the rotation tensor to the nematicity as discussed in Ref. [171]. Since the
electron-nematic order parameter does not couple to the rotation tensor in the leading or-
der correction, we have not considered it in this paper. Nevertheless, the detailed study
including the higher order corrections to phonons and nematicity is important, which is
left for future work.

Impurity effects

In MA-TBG, it is known that there are impurity effects due to the substrate and disorder
effects due to sample inhomogeneity and inhomogeneity of moiré structures. In this chap-
ter, we have treated the disorder effect at the level of the Born approximation. In addition
to the discussions in Sec. II. C and Sec. III. C, it is also important to consider sev-
eral scattering mechanisms. In this connection, we comment here on the impurity effects
beyond the Born approximation in Eq. (4.49). We expect that the impurity vertex correc-
tion changes the dynamical critical exponent, leading to the change of the wavenumber
dependence of the ultrasound attenuation coefficients from |q| to |q|2.

The damping rate Γd(q) in Eq. (4.5) depends on the dynamical critical exponent z as,

Γd(q) = γd|q|z−2 (4.103)

where z = 3 for a usual ferroic order in clean systems. One of the unique properties of
the electron-nematic state is that the sound attenuation coefficient in Eq. (4.41) reflects
the damping rate of nematic fluctuations, as follows,

αµ(q) ∼ κ2

2ρv∗µ

1
r2

q2

Γd(q)
=

κ2

2ρv∗µ

1
r2
|q|4−z

γd
. (4.104)

We discuss how the impurity effect would modify the above nematic fluctuations via
a possible change in the exponent z. It is known that for charge density fluctuations, a
diffusion pole appears from vertex corrections for the impurity scattering[129, 288–290]
, and the dynamical critical exponent becomes z = 48. This is related to the conservation
law of electric charge, and such a diffusive mode appears when there is charge U(1)-
gauge symmetry. On the other hand, in the present case of electric quadrupoles (the

8A leading order contribution from a diffusion pole has the form Dq ∝ |ϵn |
|q|2 in ordinary charge density

fluctuations.

74



electric quadrupole density is not a conserved quantity[268, 291]), it is expected that the
normal diffusion mode does not appear due to impurity effects[292], and we expect the
relaxation mode[293]9 with z = 2, etc. In this case, the dynamical critical exponent may
be changed to a value other than z = 3, unlike the usual charge density fluctuation and this
change will be probed through the wavenumber dependence of the ultrasound attenuation
coefficient. To identify the correct dynamical exponent is an open problem and a further
analysis will be required.

Candidate materials for experiments

Here are some comments on candidate materials. A three-state Potts nematic order has
been reported for doped-Bi2Se3[186–188]. Even in these materials, as the 2D nematic
ordered state which breaks the in-plane C3z-symmetry is stacked in the z-direction, the
formulation developed here can be applied to phonon modes propagating in the plane with
a slight modification. In these materials, it has been suggested that a vestigial nematic
order[143] is caused by nematic superconducting fluctuations, rather than the bond-order
discussed here. Nevertheless, a similar treatment can be applied, and thus we expect the
isotropic divergence of sound attenuation and the isotropic lattice softening for transverse
modes within the GL theory discussed here. The scenario presented here is useful to
probe the nematic fluctuation, predicting a weak first-order transition like behavior.

In the case of MA-TBG, an electron-nematic state has been reported at several fill-
ings by scanning tunneling microscopy[164–166], transport measurement[167] and the
quantum oscillation[167, 168]. Our mean-field analysis for the C3-breaking bond or-
der is based on Ref. [174]. It is shown that the C3-breaking intra-valley bond ordered
state is stabilized near the VH filling and the other magnetically ordered states are sup-
pressed by using the so-called DW equation method including the Aslamazov-Larkin ver-
tex correction[174]. Besides the weak-coupling approaches[162, 174], there are some
theoretical proposals such as an orbital order and a vestigial nematic order in the strong
coupling theory[294]. We think that our phenomenological theory can also be applied to
the above scenarios with a slight modification. The detailed study on this point is left for
future work.

Unfortunately, MA-TBG does not allow us to conduct usual sound attenuation exper-
iments due to its purely 2D character, but this does not change the fact that the mean-
free path l = α−1 of phonons becomes isotropically shorter. In this 2D case, experi-
ments using optical methods such as Brillouin scattering[295] and double resonant Ra-
man scattering[296] provide alternative probes to detect the nematic fluctuation. For these
experiments, the formulation developed here can be applied with a slight modification to
identify such a three-state Potts nematic state and figure out whether it is induced sponta-
neously or from trivial strain.

4.5 Summary
In this chapter, we have analyzed the impact of the nemato-elastic coupling on the low
energy properties of phonons by a phenomenological argument and a model calculation.
Phenomenological analysis has clarified that the Landau damping term becomes isotropic
due to fluctuations of the C3-breaking bond-order in the Gaussian fluctuation region, and

9The relaxation mode appears in a dirty ferromagnetic quantum critical point with the spin-orbit cou-
pling.
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the nemato-elastic coupling is also isotropic. As a result, we have proposed to detect the
intrinsic three-state Potts nematic phase transition by measuring the ultrasound attenu-
ation of the transverse acoustic phonon. Namely the ultrasound attenuation coefficient
shows an isotropic divergence which is proportional to the momentum |q| and the sound
velocity renormalization also show an isotropic angle dependence. Both features are quite
contrasted to the strong anisotropy in the case of the C4-breaking nematic case.

We have determined the phase diagram by an extended Hubbard model in a mean-field
approximation to investigate the critical properties. According to the mean-field approx-
imation, the transition temperature takes its maximum near VHs, and the large density
of states favors the nematic phase transition. The order of phase transition is of weak
first-order in a wide range of band filling and, with increasing the impurity scattering, the
first order transition line at low temperatures gets closer to the second-order line, making
the transition weakly first-order in a wider parameter region. Furthermore, it has been
confirmed that the enhancement of the ultrasound attenuation coefficient can be observed
in the case of a weak first-order phase transition. Even if the effect of mode coupling
between the nematic fluctuations is considered, the qualitative features of the isotropic
sound attenuation coefficients and the phase diagram are expected to be unchanged, but
the order of the transition could be changed to the second as expected for a classical phase
transition of three-state Potts nematicity in 2D.

4.6 Appendix for this chapter: Derivations of some for-
mulas

4.6.1 Hartree-Fock approximation of a bond-order
Here, we derive the mean-field theory of the three-state Potts nematic phase transition
following Ref. [282] and show the Fermi surface and DOS in Sec. 4.3.4. The effective
model containing the quadrupole-quadrupole interaction is shown in Eq. (4.50) and in
Appendix 4.3.1. After introducing the mean-field decoupling nαβ

kσ = nαβ
kσ − ⟨nαβ

kσ⟩ +
⟨nαβ

kσ⟩ and ignoring the second order correction (nαβ
kσ − ⟨nαβ

kσ⟩), we arrive at

HMF
int =

1
N ∑

k,k′

[
fk,k′⟨nBA

k′ ⟩nAB
k + f ∗k,k′⟨nAB

k′ ⟩nBA
k

]
− 1

N ∑
k,k′

fk,k′⟨nBA
k′ ⟩⟨nAB

k ⟩,

= ∑
k

(
cA†

k cB†
k

) ( 0 ∆AB
k

∆BA
k 0

)(
cA

k
cB

k

)
− ∑

k
∆AB

k ⟨nAB
k ⟩, (4.105)

with fk,k′ = g(E1∗
k E1

k′ + E2∗
k E2

k′), a coupling constant g = 2
3VNN, the mean-field ∆AB

k =
1
N ∑k′ fk,k′⟨nBA

k′ ⟩ and form factors Ei
k in Eq. (4.55). The two-component complex order

parameter (Ψ, Ψ̄) with Ψ = (Ψ1, Ψ2) contributes to the above mean-field as,

∆AB
k = − g

N ∑
k′

[
E1∗

k E1
k′⟨nBA

k′ ⟩+ E2∗
k E2

k′⟨nBA
k′ ⟩
]
,

=
[

E1∗
k Ψ1 + E2∗

k Ψ2

]
, (4.106)
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where the order parameters are defined as Ψ1(2) = − g
N ∑k E1(2)

k ⟨nBA
k ⟩. Moreover, the

energy shift resulting from the mean-field theory is

−∑
k

∆AB
k ⟨nAB

k ⟩ = −∑
k

[
E1∗

k Ψ1 + E2∗
k Ψ2

]
⟨nAB

k ⟩,

=
N
g

[
Ψ∗

1Ψ1 + Ψ∗
2Ψ2

]
. (4.107)

For example, for a tight-binding model on the honeycomb lattice

Ĥ0
k =

(
0 t(1 + e−ik·a1 + e−ik·a2)

t(1 + eik·a1 + eik·a2) 0

)
, (4.108)

the mean-field term induces the hopping anisotropy as

ĤMF
k =

(
0 E1∗

k Ψ1 + E2∗
k Ψ2

E1
kΨ∗

1 + E2
kΨ∗

2 0

)
. (4.109)

Finally, we obtain the mean-field Hamiltonian, ĤMF
k .

4.6.2 Electron-phonon coupling from the bond-length change
To calculate the sound attenuation coefficients and the sound wave renormalization, we
derive an electron-acoustic phonon coupling for arbitrary filling of the honeycomb lattice.
The electron-phonon coupling arises from the lattice modulation by phonons, which leads
to a change in the nearest neighbor hopping t, the so-called bond-length change[297–299].

Here, we derive the electron-phonon coupling in Eq. (4.100) from a change in the
bond length[297–299]. We assume that the electron-phonon coupling arises from the
lattice modulation by phonons, which leads to a change in the nearest neighbor hopping
t.

Hel−ph = ∑
δ

g(δ) ∑
ri,ξσ

[
uα(ri)− uβ(ri + δ)

]
∑
α

cα†
ξσcᾱ

ξσ, (4.110)

where uα(ri) is the lattice displacement vector at ri, δ is the nearest neighbor lattice
vector, g(δ) = ∇t(δ) = gnnδnn with the hopping amplitude t(δ) between sites ri and
ri + δ. The Fourier representation of the electron-phonon coupling is

Hel−ph = ∑
τi

τi
gph√

N
∑
pq

[
uAq − uBqeiq·τi

]
×

[
c†

Ak+q/2cBk−q/2eik·τi + c†
Bk+q/2cAk−q/2ei(k+q/2)·τi

]
,

=
gph√

N
∑
pq

[
uAq ·

(
E1

k−q/2
E2

k−q/2

)
− uBq ·
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E1
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E2
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)]
c†

Ak+q/2cBk−q/2

+
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where we have introduced displacement fields of an optical phonon uOP
q = 1√

2
(uAq −

uBq) and an acoustic phonon uAC
q = 1√

2
(uAq + uBq) in the long-wave length limit. The

vectors Ek and ∆Ek,q are obtained from the Taylor expansion for small q as follows,
Ek+q/2 − Ek−q/2 = Ek + ∆Ek,q · · · and Ek = (E1

k, E2
k),

∆Ek,q =

(
−1

2
−

√
3

2

)
eik·a1(iq · a1) +

(
−1

2√
3

2

)
eik·a2(iq · a2). (4.112)

Finally, the electron-phonon coupling term for acoustic phonons resulting from the
bond-length change is

Sel−ph[c̄, c, ũL, ũT]

= ∑
iξσ

∫
q

∫
k
∑
αβ

c̄α
k+ q

2 ξσ

[
ŵµ(k, q)

]
αβ

cβ

k− q
2 ξσ

ũµ(−q), (4.113)

with the displacement field of acoustic phonons uµ=T,L = ũµêµ where êT = (− sin θq, cos θq)

and êL = (cos θq, sin θq) with θq = tan −1(qy/qx) and

ŵµ
k,q = −

gph√
βN

(
0 ∆E∗

k,q · êµ(−q)
∆Ek,q · êµ(−q) 0

)
. (4.114)

After integrating out the electron degrees of freedom, we have a self-energy correction to
the phonon action in Eq. (4.28),

δKµ,el−ph(q) = − 1
2ρ

∫
q

tr
[

Ĝk+q/2ŵµ
k,qĜk−q/2ŵµ

k,−q

]
. (4.115)

This is shown in Eq. (4.100).
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Chapter 5

Conclusion

In this thesis, we have studied physical properties of the correlation-induced topological
states and their various phase transitions.

In Chapter 2, we have explored 2D topological crystalline insulating/half-metallic
states in magnetically ordered heavy-fermion systems. On the basis of the Hartree-Fock
calculation, we have shown the stability of the AFM topological phase at half filling,
which is characterized by a mirror Chern number. Moreover, we have revealed that an
AFM topological semimetallic phase is expected in an effective model of a SmB6 film.
We have also shown the stability of the spin-selective topological insulating state charac-
terized by a Chern number in the half-metallic FM phase around quarter filling. In con-
trast to the previous proposal of the spin-selective topological insulator, which assumed
spin U(1) symmetry to obtain such topological properties, we have proposed that these
phases can be realized even in the absence of spin U(1) symmetry by taking into account
crystalline symmetry. Generally, spin U(1) symmetry is not preserved in the presence
of spin-orbit coupling; thus, the present scenario without respecting spin U(1) symmetry
will provide a feasible platform to realize magnetic topological insulators for 2D systems.

In Chapter 3, we have elucidated the emergence of correlation-induced symmetry-
protected exceptional torus (SPET) for a diamond lattice model with spatially modulated
Hubbard interaction. The essential difference from the case for nodal-line semimetals
with PT symmetry is that the present chiral symmetry-protected exceptional torus and its
low energy excitations (i.e., Fermi volumes) are fixed to the Fermi level. Furthermore, we
have revealed that these low energy excitations result in counterintuitive behaviors, ex-
emplifying for the first time the effects of SPETs on magnetic responses. Specifically, by
employing the dynamical mean-field theory and random phase approximation, we have
found that the magnetic susceptibility for B-sublattice becomes larger than that for A-
sublattice, although the interaction strength is opposite (UA > UB). For this counter-
intuitive response to the homogeneous magnetic field, the chiral symmetry is essential,
leading to the enhancement of the local density of states at the Fermi level only for B-
sublattice.

In Chapter 4, we have analyzed the impact of the coupling between the nematic order
parameter and the elastic degrees of freedom on the low energy properties of phonons.
Phenomenological analysis based on the Ginzburg-Landau-Wilson action has clarified
an isotropic divergence of the transverse sound attenuation coefficient and the transverse
sound velocity renormalization. Both features are quite contrasted to the strong anisotropy
in the case of the C4-breaking nematic case. We have also determined the mean-field
phase diagram by a microscopic extended Hubbard model with impurity. The transition
temperature takes its maximum near VHs, and the large density of states favors the ne-
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matic phase transition. The order of phase transition is of weak first-order in a wide
range of band filling and, with increasing the impurity scattering, the first order transi-
tion line at low temperatures gets closer to the second-order line, making the transition
weakly first-order in a wider parameter region. Furthermore, it has been confirmed that
the enhancement of the ultrasound attenuation coefficient can be observed in the case of
a weak first-order phase transition. We have proposed to detect the intrinsic three-state
Potts nematic phase transition by measuring the ultrasound attenuation of the transverse
acoustic phonon. Namely the ultrasound attenuation coefficient shows an isotropic diver-
gence which is proportional to the momentum |q| and the sound velocity renormalization
also show an isotropic angle dependence.

In this thesis, we have contributed to a deeper understanding of correlation-induced
topological states in Chapter 3 and its magnetic phase transition in Chapter 2 or electron-
nematic phase transition in Chapter 4. Finally, we discuss our future prospects. In relation
to Chapter 2, it is important to investigate not only the ground state stability of the mag-
netic topological phase, but also its effects on transport properties and responses, and to
find alternatives to magnetic-impurity doped topological insulators. In realtion to Capter
3, in the case of chiral symmetry, a large Fermi volume has been realized, which may
have some influence on the physical properties, but it is a future issue to clarify the in-
fluence on physical quantities in the case of no symmetry and the relationship with the
mystery of quantum oscillation in bulk Kondo insulators. In relation to Chapter 4, it is
a future issue to clarify the relationship between non-Fermi liquid states, superconduct-
ing instability, which includes topological and/or nematic superconductivity, induced by
three-state Potts nematic fluctuations. The interplay between the Coulomb interaction
and the topological band structure leads to finding new physical phenomena and it will
become even more important to understand the origin of intertwined orders and a varietie
of quantum phases of matter.
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