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Abstract

Nonperturbative interactions between a strong mid-infrared laser field and electrons in
solid induces various coherent dynamics of electrons and creates novel electronic states
that cannot be understood within the framework of perturbation theory. The emergence
of such new electronic states in a strong laser field leads to the discovery of new func-
tionalities and ultrafast quantum control methods of materials that could be useful for
future electronic and optical devices. High harmonic generation (HHG), which converts
low-energy photons into visible and ultraviolet photons, is the simplest and most powerful
means to study the nonlinear electronic response in solids driven by strong light. HHG
was first studied in atomic gases for attosecond pulse sources, then extended to solids, and
has been observed in many semiconductors. A number of theoretical studies explain the
mechanism of HHG in semiconductors in terms of light-driven coherent electron dynam-
ics in momentum space. However, understanding the microscopic electronic structure is
still a subject of intense investigation. This is due to the complexity of the HHG mech-
anism. The understanding is extremely challenging since highly non-equilibrium states
are realized in a strong field, and their typical energy scales are much larger than the
fundamental excitations in solids, and they are accompanied by many-body interactions.
Furthermore, it has been experimentally shown that the properties of HHG strongly de-
pend on the material and its macroscopic structure, which makes microscopic physical
understanding difficult. Therefore, a key issue in this research field is to clarify the mi-
croscopic and general physics governing the properties of strongly light-driven systems.

In this thesis, we study dynamical symmetry (DS), a general concept for electronic
systems driven by a strong laser field in solids. The idea of DS was proposed in 1993,
and has successfully explained HHG selection rules in atomic gases. A recent study for-
mulated DS as a group theory and provided a general way to describe periodically driven
systems. However, the validity of DS in solids remains non-trivial because the electron-
electron scattering process and the accumulation of excited carriers during the application
of strong infrared pulses may break DS, such as the time-periodicity of electron dynamics.

Here, we performed two experiments to understand the validity of DS in solids. First,
we explored the DS by investigating the polarization selection rules of higher-order side-
band generation (HSG) in semiconductors, a phenomenon similar to HHG. HSG is a non-
perturbative higher-order sum-frequency generation process in solids that occurs when a
weak near-infrared and a strong mid-infrared light pulses overlap in time. Next, to un-
derstand the effect of incoherent electron-hole pairs accumulated in HHG process, we
performed an experiment in which incoherent photo-carriers were prepared by irradiating
near-infrared pulses before MIR pulses in the same setup as in HSG. We used atomically
thin layered semiconductors as experimental samples. High harmonics have been ob-
tained from bulk solids in many experimental studies. However, propagation effects, such
as phase matching and reabsorption, occur when light propagates through the sample and
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may obscure the harmonic spectrum generated by the microscopic mechanism. In this
study, we used monolayer semiconducting transition metal dichalcogenides to avoid such
effects.

In Chapter 1 of this thesis, we introduce nonperturbative optical phenomena and opti-
cal properties of transition metal dichalcogenides (TMDs). In Chapter 2, we present the
theoretical formulation of DS and its connection to HHG. In Chapter 3, we determine
the polarization selection rules of HSG in monolayer MoS2, a kind of TMDs. In the ex-
periments, we systematically determined the polarization selection rules for circular and
linear polarization by controlling the polarization of near-infrared and mid-infrared light
and measuring the spectra by resolving the sideband polarization. Figure 1 shows the
results for circularly polarized light. Clear polarization selection rules were obtained for
incident light of four different polarizations. A new physical picture of HSG as ”Raman
scattering in Floquet system” is proposed, which provides a comprehensive understand-
ing of the selection rules. We found a perfect agreement between the experimental and
theoretical selection rules. This result indicates that DS well describes the nature of in-
tense light-driven semiconductors. In Chapter 4, we studied the effect of photo-carrier
doping on HHG. We observed HHG in monolayer WSe2 and confirmed a weak enhance-
ment of the fifth harmonics (appearing at the lower energy side of the absorption edge)
and a strong suppression of the higher harmonics (at higher energy side of the absorp-
tion edge) following the photo-carrier doping. Numerical calculations showed that the
enhancement is due to the increase in the intraband current of photo-carriers, which is
relatively suppressed by momentum relaxation. In addition, we found that the incoherent
carriers generated by the mid-infrared light pulse promote the dephasing of the interband
polarization later in the MIR pulse duration. In addition, we discuss the validity of DS
and its relation to many-body effects. In Chapter 5, we summarize this thesis and discuss
future prospects.

Figure 1: Circular polarization-resolved high-order sideband generation (HSG) spectra.
Red and blue shaded areas indicate σ+-, σ−-polarized spectra. The polariza-
tions of near-infrared (NIR) and mid-infrared (MIR) are respectively a (σ+,
σ+), b (σ+, σ−), c (σ−, σ+), d (σ−, σ−). Reproduced from K. Nagai et al.,
Communications Physics 3, 137 (2020). ©2020 The authors. Distributed under
a Creative Commons Attribution 4.0 International license (CC BY 4.0) [1].



概要

強い中赤外レーザー電場と固体中との電子の非摂動的な相互作用は、様々な電子の
コヒーレントダイナミクスを誘起し、摂動論の枠組みで理解できない新しい電子状
態を作り出す。このような強い光電場中における新たな電子状態の出現は、将来の
電子・光デバイスや量子情報技術に役立ちうる物質の新しい機能性や超高速量子制
御法の発見につながる。低エネルギーの光子を可視光や紫外光に変換する高次高調
波発生（HHG）は、強く光で駆動された固体における非線形な電子応答を研究する
ための最も単純かつ強力な手段である。HHGは、原子ガス中のアト秒光源のために
研究された後、固体に拡張され、多くの半導体、絶縁体において現在観測がなされ
ている。様々な理論的研究が行われ、その多くは半導体における HHGのメカニズ
ムを、波数空間において光に駆動されるコヒーレントな電子と正孔のダイナミクス
の観点から説明してきた。しかし、微視的な電子状態の理解を目指した研究はいま
だに盛んに行われている。これは HHGのメカニズムの複雑性に起因する。高強度
光下においては非常に非平衡な状態が実現され、その典型的なエネルギースケール
は固体の基本的な励起に比べて大きく、さらに多体の相互作用などを伴うことなど
からその理解は極めて困難である。さらに、HHGの特性は材料やそのマクロな構造
に強く依存することが実験的に明らかになってきており、微視的な物理的理解が難
しい。そのため、この研究分野においては、強く光駆動された系の特性を支配する
微視的で一般的な物理を明らかにしていくことが重要な課題となっている。
本論文では、強い光電場で駆動された電子系の一般的な概念である動的対称性

（DS）を固体において研究する。DSのアイデアは 1993年に提案され、DSは原子気
体におけるHHGの選択則をうまく説明してきた。最近の研究はDSを群論として定
式化し、周期的に駆動する系を記述する一般的な方法を明らかにした。しかし、固
体中でのDSの有効性は依然として非自明であった。というのも、強い赤外パルス
を印加する際の電子-電子散乱過程や励起キャリアの蓄積が、電子ダイナミクスの時
間周期性などのDSを壊してしまう可能性があるからである。
ここでは固体におけるDSの有効性を理解するために、2つの実験を行った。ま

ず、HHGと似た現象である半導体中の高次サイドバンド発生（HSG）の偏光選択則
を調べることで、DSの有効性を探った。HSGは、弱い近赤外光パルスと強い中赤外
光パルスが時間的に重なったときに起こる、固体中の非摂動的な高次和周波発生過
程である。次に、光パルスを照射する時間中に蓄積されたインコヒーレントなキャ
リアがHHGに与える影響を調べ、その時間中におけるキャリアダイナミクスの動的
対称性の破れについて研究した。HHGにおけるインコヒーレントな電子正孔対がも
たらす影響について解明するために、HSGと同じ実験系で、MIRパルス照射前に近
赤外パルスを照射してインコヒーレントな光キャリアを用意する実験を行った。ま
た本研究では実験試料として原子層薄膜半導体を用いた。多くの実験的な研究にお
いては HHGを観測する対象の物質としてバルクの固体を用いていたが、これでは
光が試料中を伝播する際に生じる、位相整合や再吸収といった効果が微視的なダイ
ナミクスを反映した高調波スペクトルを変調してしまう可能性がある。そこで本研
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究においてはこれらの効果を避けるため層状半導体である遷移金属ダイカルコゲナ
イドの単原子層薄膜を用意し、実験を行った。
本論文の第 1章では、非摂動的な光学現象、高次高調波発生と遷移金属ダイカル

コゲナイドの光学特性について紹介する。第 2章では、DSの理論的な定式化と高次
高調波発生との関係について紹介する。第 3章では、TMDの一種であるMoS2の単
層膜におけるHSGの偏光選択則を実験、理論の両面から決定する。実験においては
近赤外光と中赤外光の偏光を制御し、サイドバンドの偏光を分解してスペクトルを
測定することで円偏光と直線偏光の偏光選択則を系統的に決定した。図１は円偏光
に対する結果を示しており、はっきりとした偏光の選択則が 4つの異なる偏光の入
射光に対して得られていることがわかる。この選択則を説明するために、DSを用
いた理論的枠組みを構築した。HSGを「フロケ系におけるラマン散乱」とみなす新
たな物理的描像を提案し、選択則を包括的に理解する方法を示した。実験と理論で
得られた選択則は完全に一致することが明らかになった。この結果はDSが高強度
光駆動された半導体をよく記述する概念であることを示している。第 4章では、光
キャリアドーピングの効果を調べることで、半導体に強い赤外パルスを照射した際
に蓄積されたインコヒーレント電子正孔対の影響を研究した。単層のWSe2におい
てHHGを観測し、光キャリアをドーピングした際に 5次高調波（吸収端より低エネ
ルギー側）の小さな増強と、高次高調波（吸収端より高エネルギー側）の大きな抑
制が確認された。実験結果を再現する数値計算を行った結果、５次高調波の増加は
光キャリアによるバンド内電流の増大に起因するが、これは運動量緩和によって相
対的に抑制されることがわかった。また、MIR光パルスによって生成されたインコ
ヒーレントなキャリアは、パルスの後半でバンド間分極に対する位相緩和を促進し
ていることがわかった。また、DSの有効性と多体効果との関係について議論する。
第 5章では、本論文のまとめと今後の展望を述べる。

図 1: 円偏光に分解した高次サイドバンド発生のスペクトル。赤と青の領域はそれ
ぞれ σ+、σ− 偏光のスペクトルを示す。それぞれ近赤外 (NIR)および中赤外
(MIR)光の偏光が a (σ+, σ+), b (σ+, σ−), c (σ−, σ+), d (σ−, σ−)の場合を示す。
Reproduced from K. Nagai et al., Communications Physics 3, 137 (2020). ©2020
The authors. Distributed under a Creative Commons Attribution 4.0 International
license (CC BY 4.0) [1].
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Chapter 1

Introduction

The study on nonperturbative interactions between ultrafast laser pulses and electrons in
solids opened a way for exploring novel material properties and developing an ultrafast
technique for quantum control of materials. A challenging issue has been how to generally
describe the electronic state under the strong laser field. This thesis focuses on elucidating
the validity of dynamical symmetry in solids, which is a promising concept for describing
the periodically driven system.

In this Chapter, we introduce nonperturbative nonlinear optics in solids in Section 1.1
In Section, 1.2, we focus on the explanation of nonperturbative high harmonic generation,
which is the most simple and powerful way to examine the strongly light-driven electronic
system. In Section, 1.3, we introduce dynamic symmetry, which is the core concept in
this thesis. In Section, 1.4, we introduce monolayer transition metal dichalcogenides that
are an ideal platform for high harmonic generation.

1.1 Nonperturbative nonlinear optics in solids
Nonperturbative nonlinear optics is initiated by the development of strong ultrashort laser
pulses. A broad review of the nonperturbative nonlinear optics in solids is provided in
this section.

1.1.1 Development of ultrashort pulse laser technique
In our daily life, light is used as a tool to see objects in a great variety of applications
such as industry, medicine, and science. Before the development of lasers, it was believed
that light could not change the state of matter. After the invention of the ruby laser in
1960, P. A. Franken et al. realized a nonlinear optical phenomenon, second harmonic
generation, in 1961, and the study of nonlinear optics began [2]. Since then, it has become
clear that light can be used not only to see objects, but also to change their states and to
control its physical properties. The first ruby laser had a focused intensity of about 107

W cm−2, followed by the development of Q-switched lasers, mode-locked lasers, and
laser amplification techniques, which led to short-pulse and high-power lasers. However,
the breakdown of the laser medium or reflector was the limit of the output power, and
it was difficult to increase the output power of the laser [3]. In 1985, the development
of chirped-pulse amplification (CPA) broke through this limitation [4]. In CPA, short
pulses are temporally stretched to reduce their peak power, and then amplified and shrunk
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2 CHAPTER 1. INTRODUCTION

again to produce high-intensity pulses. This technology has dramatically increased the
laser power and the highest focused intensity to about 1022 or 1023 W/cm−2 [5, 6]. The
development of nonperturbative nonlinear optics, which will be presented in the next
sections, was initiated by the development of such intense ultrashort pulsed lasers.

1.1.2 Nonperturbative light-matter interaction in solids
In this section, we describe nonperturbative light-matter interaction in solids. The devel-
opment of ultrashort pulsed laser generation technology has made it possible to induce
nonperturbative nonlinear optical phenomena that go beyond conventional nonlinear op-
tics [3,7]. The magnitude of the light-matter interaction is important for the manifestation
of such phenomena. The Hamiltonian H for a system in which light and matter interact is
generally written as

H = H0 +HI. (1.1)

H0 is the Hamiltonian of matter in the absence of external fields, and HI denotes the
Hamiltonian of the interaction between light and matter. In the case of H0 ≫ HI , the
interaction between light and matter can be treated within the framework of perturbation
theory, and the system lies almost in the ground state. However, in the case of H0 ≲ HI ,
i.e., when the magnitude of the interaction is equal to or larger than the typical energy
scale of matter, HI is no longer considered as a perturbation to matter, and the quantum
state undergoes such an extensive modulation that it deviates from the ground state. Such
an interaction energy regime is called nonperturbative. In such a nonperturbative regime,
light is no longer seen as a photon but rather as an electric field. There are various de-
grees of freedom in solids, such as electrons, spin, and lattice, but electrons interact most
strongly with light and determine the material response to intense light. How do electrons
in solids behave in intense light? This question has opened up a field of research that now
has a variety of attractions.

The variety of nonperturbative phenomena is attractive as a research subject in physics,
for example, Zener tunneling, Bloch oscillation, Wannier Stark localization, and dynam-
ical Franz-Keldysh effect in electronic systems in semiconductors [8]. These phenomena
are caused in significantly modulated electronic states from the ground state of matter,
which will lead to the emergence of novel quantum states and phenomena in solids.

In addition, lightwave electronics are also attracting increasing interest as electron-
ics that can ultimately be performed at high speed with low energy consumption [9, 10].
Standard electronics involves joule heating according to Ohm’s law by applying an exter-
nal voltage to a semiconductor. On the other hand, lightwave electronics can realize the
electronics with less dissipation and ultimately lower energy consumption. The electric
field of ultrashort pulse laser manipulates the movement of electrons ballistically or mod-
ulates the conductivity of matter. It may also lead to the realization of fast electronics at a
petahertz clock rate beyond the limit of terahertz in conventional electronics [11–14].

Moreover, solid-state electron systems in the intense laser external field have been
the subject of the study of Floquet theory, which can be applied for the nonperturbative
regime [15–20]. Floquet theory can treat the problem of time-periodic systems as an
eigenvalue problem and gives further insight into the dynamics of the system. According
to the formalism of the Floquet theorem, by manipulating the intensity and frequency of
the external field and its waveforms, we can give the Hamiltonian the desired properties.
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This is called Floquet engineering and is expected to lead to next-generation quantum
control technology. Floquet engineering is similar to the photo-induced phase transition,
which has been studied for many years to control materials for device applications [21],
but the target time scales are different [18, 22]. While the photo-induced phase transition
aims to switch the material properties before and after the passage of an ultrashort light
pulse, Floquet engineering aims to control the material during the pulse duration, which
remains a field to be developed in the future.

As described above, strong light-matter interactions in solids are a very attractive
research field from the viewpoint of fundamental physics and material science, high-speed
electronics, and ultrafast material control. The most straightforward and powerful tool for
studying such a system is the nonperturbative high harmonic generation (HHG), which
converts low-energy photons to higher energy photons. High harmonic generation (HHG)
has been studied in atomic gases and extended to solids in recent years. It has potential
applications as a compact extreme ultraviolet light source or as a spectroscopic method to
study electron dynamics in solids on the attosecond time scale. In the following, we will
introduce HHG and discuss the current status of the research.

1.2 High harmonic generation
In this section, we introduce HHG in atomic gases and solids. We start with a brief
introduction to nonlinear optics. We explain the mechanism of HHG and its historical
background in the following sections. We also discuss the current issue of the research on
HHG in solids.

1.2.1 Conventional nonlinear optics
Conventional nonlinear optics deals with a region where the perturbation theory can treat
the interaction, i.e., H0 ≫ HI . In this case, the optical polarization induced in the material
is given by the Taylor expansion for the laser electric field E(t).

P(t) = ε0(χ(1)E(t)+ χ(2)E2(t)+ χ(3)E3(t)+ · · ·) (1.2)

χ(1) is a linear susceptibility, χ(n)(n > 1) are nonlinear susceptibilities. This expansion is
useful when the laser light is weak and not resonant with the electronic transitions. Also,
we neglect the relativistic effect of the charge here.

For example, let us consider the second term of eq. (1.2). We consider the electric
field of

E(t) = Ẽ(t)cos(ωt +ϕ), (1.3)

where Ẽ(t) is envelop function and ϕ is a so-called carrier envelop offset. In this case,

χ(2)E2(t) = χ(2)Ẽ2(t)cos2(ωt +ϕ) (1.4)

= χ(2)Ẽ2(t)
1
2
(1+ cos2(2(ωt +ϕ))) (1.5)

Electromagnetic waves are radiated from such nonlinear polarization according to Maxwell’s
equations. The first term 1 in eq. (1.5) reflects so-called optical rectification or the photo-
galvanic effect. The second term has a carrier frequency of 2ω , which describes second
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harmonic generation. In the same way, the third term of eq. (1.2) describes third harmonic
generation and self-phase modulation.

Here, when the laser intensity E(t) becomes equal to or larger than the typical en-
ergy of matter, the Taylor expansion in eq. (1.2) breaks down due to the divergence of
the higher order terms. This leads to novel nonlinear optical phenomena that cannot be
explained by the conventional nonlinear optics, called nonperturbative nonlinear optical
phenomena.

1.2.2 High harmonic generation in atomic gases
The primary example of nonperturbative nonlinear optical phenomena is high harmonic
generation (HHG) in atomic gases, where light with integer multiples of the excitation
frequency is emitted, i.e.,

ωHHG = nω, (n: integer) (1.6)

where ωHHG is the angular frequency of high harmonic and ω is that of the excitation
laser. This phenomenon was discovered in 1987 by a group at the University of Illinois
by using femtosecond laser pulses [23] and then experimentally investigated by many re-
search. Later, the physical properties of HHG were semiclassically very well understood
by the model proposed by P. B. Corkum in 1993 [24]. Currently, HHG is used as X-ray
sources and attosecond pulse sources [25, 26].

The spectra of HHG in atomic gases show their nonperturbative features. The higher
harmonic spectrum from a typical atomic gas (Helium) is shown in Fig. 1.1 [27]. This
spectrum was generated when a Ti:sapphire laser was irradiated on gaseous helium at a
high intensity of 1015 W/cm2. The n-th order harmonic generation within the perturbative
nonlinear optics is generated by n times interactions of the photons with the atom. As
a result, the intensity of harmonic generation decays exponentially with increasing the
harmonic order. However, the obtained harmonic intensity does not decrease even up
to the wavelength of 11 nm, and the intensity suddenly starts to decrease exponentially.
These are nonperturbative features called plateau and cutoff, respectively.

It is known that the following relation is established for the cutoff energy Ec

Ec = 3.17Up + Ip, (1.7)

where

Up =
e2E2

0
4mω2 (1.8)

is the ponderomotive energy and Ip is the ionization energy of the target atom. The pon-
deromotive energy is the cycle-averaged kinetic energy of free electrons with the charge
of −e obtained from a laser field. E0 is the amplitude of the electric field, and ω is its
frequency. Note that this formula is independent of the detailed electronic structure of the
atom.

The three-step model proposed by P. B. Corkum succeeded in explaining this relation-
ship. This semiclassical model describes the electron dynamics in a strong field underly-
ing HHG. Figure1.2 is the schematics explaining the following three-step model [25],

1. Tunnel ionization of electron

2. Acceleration in the laser field



1.2. HIGH HARMONIC GENERATION 5

Figure 1.1: High harmonic generation in Helium gas [27]. Reprinted figures with per-
mission from Ref. [27]. Copyright 1993 by American Physical Society.

Figure 1.2: Three-step model for high harmonic generation in atomic gases [25].
Reprinted figures with permission from Ref. [25]. Copyright 2008 by Amer-
ican Physical Society.
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3. Recombination and emission of a high-energy photon

The first step in Fig. 1.2 describes the tunnel ionization of the electron. This phe-
nomenon is much different from the multi-photon absorption treated within the pertur-
bative theory. The laser works not as a photon but rather as an electric field and tilts
the Coulomb potential for the electron. Then, the electron wave function in the atom
penetrates the same energy in the continuous state, i.e. a tunneling process occurs. The
ionized electrons gain kinetic energy from acceleration by the laser electric field in free
space, as shown at the second step in Fig. 1.2. The electrons are approximated to be
free of Coulomb interaction from the parent ion in this process. When the direction of
the electric field reverses in the next half cycle of the laser, the electrons are accelerated
back to their original atomic site and recombine with the parent ion. The electrons then
release the kinetic energy gained from the acceleration and produce the harmonic emis-
sion. Since these processes are repeated twice for every laser cycle, the spectrum of light
has only frequencies that are integer multiples of the driving laser. This is nothing but the
HHG. The three-step model reproduces the relation in eq. (1.7), considering that the max-
imum kinetic energy that an electron can acquire from the laser electric field corresponds
to the cutoff energy. The higher harmonics in Fig. 1.2 have only odd-order peaks, which
is due to the inversion symmetry of atomic gases [28].

The three-step model is semiclassical and does not incorporate quantum mechanical
interference effects. However, M. Lewenstein et al. later vouched for the validity of this
three-step model using a quantum mechanical model [29]. They used the time-dependent
Schrödinger equation (TDSE) to consider the time evolution of the dipole moment created
by the electron. By applying the strong field approximations, they found that the saddle
point solution corresponds to the semiclassical three-step model.

According to eq. (1.7), the cut-off energy is proportional to the intensity of the laser
and the square of the wavelength (inverse square of the frequency). A stronger, longer
wavelength laser electric field can provide more kinetic energy to the electrons. Thus,
a driving electric field in the mid-infrared was used to obtain harmonics in the x-ray re-
gion [26]. Also, the generation of ultra-broadband light allows us to obtain light pulse
with attosecond time duration when the chirp of the bursts generated by the electron
recombination process is carefully compensated [25]. Thus, pump-probe spectroscopy
using the HHG source allows us to study electron dynamics with attosecond time resolu-
tion [25].

HHG has also been observed in molecular systems, where ionization and recombi-
nation processes occur in multiple atomic sites [30]. The molecular systems have richer
dynamics than atoms due to the presence of internal degrees of freedom. In this context,
there are many attempts to use harmonic generation itself as a spectroscopic tool, e.g.,
the imaging of molecular orbitals and the resolving charge migration in attosecond time
scale [31, 32]. Furthermore, HHG has also been observed in various solids and a few
liquids [33, 34]. In the next section, we will introduce the current status of the study on
solid-state HHG.

1.2.3 High harmonic generation in solids
The generation of higher harmonics has also been observed in solids. However, there is an
experimental difficulty that is different from that of atomic gases: damage to the sample
in a strong electric field. In particular, irradiation with intense visible or near-infrared
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light resonates with the electronic excitation of semiconductors, resulting in significant
absorption and destruction of the material by laser ablation [35].

Harmonics up to the seventh order were observed in a semiconductor ZnSe using
mid-infrared femtosecond pulses with central wavelengths between 3 µm and 6 µm in
the pioneering work by A. H. Chin et al. in 2001 (Fig. 1.3) [36]. The frequency of mid-
infrared light is so low for semiconductors that even intense light does not destroy them.
The intensity range realized in Fig. 1.3 was sufficient to reach the nonperturbative regime
although the nonperturbative nature was not confirmed in their study. Ten years later, S.
Ghimire et al. observed higher harmonics up to the 25th order in bulk ZnO by irradiating
it with mid-infrared pulses at a wavelength of 3.25 µm, confirming the nonperturbative
intensity dependence for the first time [37].

They reported a considerably different nature of HHG in solids from that of atoms due
to their high electron densities and periodic crystal structures. When the cutoff is defined
as the maximum order of the observed high harmonics, the cutoff increases linearly with
the electric field of the incident pulse. This is much different from the HHG of atomic
gases, where the cutoff energy increases in proportion to the square of the electric field (in
proportion to the ponderomotive energy). They also observed anisotropic HHG reflecting
the crystal structure and even-order harmonics due to the broken inversion symmetry.
The dependence of the HHG intensity on the ellipticity is also different from that of the
atomic case. When the ellipticity of the incident light increases, the harmonic generation
efficiency decreases rapidly in atomic gases. This is because the accelerated electrons
in free space cannot return to their parent ion under a circularly polarized laser field. In
ZnO, the decrease in HHG intensity is slight even when the ellipticity of the incident light
increases. These facts indicate that there is an HHG mechanism unique to solids.

Figure 1.3: High harmonic generation spectra obtained from ZnSe using mid-infrared
pulses with the wavelength of 3.9 µm and pulse width of 200 fs. Reprinted
figures with permission from Ref. [36]. Copyright 2001 by American Physi-
cal Society.
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HHG in solids has recently been observed in various semiconductors and insulators
such as GaSe, SiO2, glass, Si, GaAs, MgO, Sapphire, rare gas solids, and monolayer
MoS2. [12,36–55]。In recent years, it has also been observed in metals, graphene, three-
dimensional Dirac semimetals, Weyl semimetals, the surface of topological insulators,
and strongly correlated electron systems. [56–65] However, the origin of HHG in solids
remains a subject of debate.

Mechanism of high harmonic generation in solids

A number of theoretical studies have treated light-driven coherent electrons and holes to
describe the mechanism of HHG [33]. In semiconductors, two distinct sources of the
high harmonics are proposed, intraband and interband mechanisms. Figure 1.4 shows
the schematics of these mechanisms in the sub-cycle timescale of the laser field. The
mechanism of HHG in solids are described in both momentum (k) -space (Fig. 1.4 (a))
and real space (Fig. 1.4 (b)). This mechanism is understood in terms of the three-step
mechanism similar to that in atomic gases:

1. Electron-hole pair creation in conduction and valence bands through a tunneling
process

2. Intraband acceleration of the electron-hole pair

3. Recombination of the electron and hole

When a semiconductor is irradiated with an intense non-resonant driving field, a tunneling
process occurs and electron-hole pairs are generated efficiently near the band edge (Fig.
1.4(1)) [66]. The intense field then drives the electron-hole pairs into a higher energy
region (Fig. 1.4(2)). In this process, the wavevector of the generated electron-hole pairs
are written as

k̇(t) =
q
h̄

E(t), (1.9)

where q is the charge of electron or hole, and E(t) is the incident electric field. The
corresponding real space dynamics is written by

ṙn =
1
h̄

∇kεn(k), (1.10)

where n is the band index and εn(k) is the energy of the band structure [8]. The right-
hand side of eq. (1.10) represents the group velocity for electron wave packet in the
n-th band. When electrons and holes reach the high energy region in the band structure,
the effective mass changes due to the deviation from the parabolic band structure. As
a result, electron-hole pairs move nonlinearly in real space due to intra-band transitions
and emit light. This is the intraband mechanism, which is not present in atomic gases.
The oscillation of electron wave packet in a static external electric field is called Bloch
oscillation. In contrast, in the AC external field of a laser, it is called dynamical Bloch
oscillation (Fig. 1.4(2)) [8, 37, 38]. In addition, in real space, electrons and holes re-
collide and recombine. Thereby the kinetic energy of the electron-hole pair is emitted
(Fig. 1.4(3)). This is called the interband mechanism, and is analogous to the three-step
model for atomic gases [40, 67]. These emission processes produce sub-cycle bursts that
repeat at the same period as the laser field. This results in a spectrum with clear harmonic
peaks.
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G. Vampa et al. derived this picture in 1994 by developing a theory using saddle point
analysis similar to that of M. Lewenstein et al. for Bloch wave function in solids [29,67].
Figure 1.5 shows an example of harmonic spectra calculated by considering intraband and
interband mechanism by G. Vampa et al.. According to their study, harmonics above the
bandgap energy are mainly generated by the interband mechanism in an MIR field. On
the other hand, the intraband mechanism largely contributes to lower-order harmonics.
Note that the interband and intraband mechanisms interfere with each other. Higher-
order intraband harmonic spectra are attributed to interband transitions, as described in
Ref. [68].

The physical picture in a strong field depends on the gauge of the electromagnetic
field and the basis for the electronic state. The above picture of an electron-hole pair
moving through k-space is for the case where the Houston basis and the length gauge are
selected. [69–71]. Although the above picture focuses on the lowest two bands, we can
extend this interpretation to multi-band systems [39, 54].

There are several schemes for theoretically analyzing HHG in solids. Recent theoret-
ical works mainly focus on time domain approach, such as time dependent Schrödinger
equation [69], semiconductor Bloch equation（density matrix approach）[67, 72], and
time dependent density functional theory [73, 74]. On the other hand, a complementary
approach using Floquet theorem has long been attempted [75–77].
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Figure 1.4: Three-step mechanism of HHG in semiconductor. (a) The dynamics of elec-
tron wave packet in k-space and (b) the one in k-space. (1) Tunneling (2)
Intraband acceleration (3) Recombination.

Experimental studies of high harmonic generation in solids

Many experiments have observed HHG in semiconductors and insulators. There are
mainly two categories: those focusing on the harmonics in the infrared to visible range
and those focusing on the ultraviolet to high-frequency side. In all the experiments using
MIR excitation pulses, the peak intensity of the pulse was around 1 TW cm−2 and the
pulse duration was several tens of femtoseconds. O. Schubert et al. irradiated semicon-
ductor GaSe with mid-infrared light and observed HHG up to the 23rd order in the visible
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Figure 1.5: Example of calculated harmonic spectrum from interband (blue line) and in-
traband (red line) currents considering the lowest two bands of ZnO. The
driving laser field has a temporal Gaussian envelope with a FWHM equal to
10 cycles and cosine carrier with a laser period of T0. The dephasing time
of T2 = T0/4 is introduced to obtain clear spectral peaks. The dashed black
vertical lines represent the (minimum) band gap at the center of the Brillouin
zone. Reprinted figures with permission from Ref. [67]. Copyright 2014 by
American Physical Society.

region [38]. They reported that the frequency of HHG shifts when the carrier-envelope
phase (CEP) is changed, which is unrelated to HHG in perturbation theory. In addition,
they succeeded in reproducing the spectrum of HHG by full quantum numerical calcu-
lation. G. Vampa et al. controlled the real-space motion of electrons by simultaneously
irradiating a driving field with the frequency of ω and a weak field with the frequency of
2ω , and manipulating their relative phases. They found the resulting interferogram was
very similar to that obtained for gaseous atoms and revealed the recombination dynamics
of electron-hole pairs [40, 78]. T. T. Luu reported the appearance of HHG with a plateau
structure above 20 eV in the extreme ultraviolet region by applying ultrashort pulses of
1.5 cycles with frequencies ranging from near-infrared to visible range to SiO2 [39]. M.
Hohenleutner et al. experimentally performed real-time measurement of high harmonics
from GaSe using electric optical sampling. They observed a sequence of subcycle bursts
that coincides in time with the electric field crests of one polarity of the driving laser
waveform. In addition, their numerical calculation revealed the interference of electronic
transitions between multiple bands [41]. Garg et al. generated high harmonics up to the
extreme ultraviolet region and measured the photon energy of the emitted bursts in real
time using attosecond streaking and found that the intraband mechanism was the main
source [12, 51]. G. Ndabashimiye et al. observed HHG in van der Waals solids Ar and
Kr, and showed the multiple plateaus, which are not observed in atomic systems [42].
Later theoretical studies suggested that the starting energy of the second plateau corre-
sponds to the bandgap energy of the second conduction band [79]. Y. You et al. reported
that the excitation polarization dependence of HHG in MgO is clearly different between
the perturbative and nonperturbative regimes, and the dependence on the ellipticity of the
excitation light shows anisotropy reflecting the interatomic coupling with respect to the
crystal orientation. They also reported that the intensity of HHG in the case of circularly
polarized excitation is comparable to that in the case of linearly polarized excitation [43].
N. Yoshikawa et al. and A. Uzan et al. showed that the joint density of states can qualita-
tively explain the order dependence of the harmonic intensity [52, 54]. The above studies
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have mainly focused on single-electron dynamics to reveal the electronic state in a strong
field.

Application of high harmonic generation in solids

HHG can be used as a spectroscopic technique to reveal the electronic structure in solids
reflecting the abovementioned dynamics, which is called high harmonic spectroscopy.
For example, Luu et al. described HHG from SiO2 using the intraband model and showed
that within the scope of that model, the band structure can be extracted from the order
dependence of the spectrum [39]. Vampa et al. also claimed that the band structure can
be reconstructed by finding a trial band structure from a numerical simulation that repro-
duces the interferogram measured in a two-color laser field [80]. H. Liu et al. pointed
out that Berry curvature contributes to even-order HHG [44], and T. T. Luu et al. used
HHG to reconstruct the Berry curvature [34]. H. Lakhotia pointed out that valence elec-
tron density can be obtained with a picometer-scale spatial resolution by considering the
semiclassical motion of electrons in the valence electron potential in real space [43, 55].
As described above, HHG also attracts attention to probe electronic structures without an
external field. Furthermore, HHG in solids is also promising for compact extreme ultra-
violet light sources. Several researchers fabricated nanostructures on semiconductors to
give them functionality as light sources that cannot be realized in gases [48, 81–84].

Current subject of study on high harmonic generation in solids

As described in the above sections, HHG in solids has been studied intensively in recent
years, and the mechanism has been gradually clarified. However, the understanding of
HHG is not straightforward because the dynamics have a large energy scale compared to
the elementary excitations in typical solids. In addition, the nature of HHG is highly de-
pendent on the target solid. Moreover, although the physical picture based on the single-
active electrons approximation is often used to describe HHG, many-body effects also
affect the dynamics of single electrons. Although the many-body effect has been dis-
cussed phenomenologically, its influence on HHG has not yet been clarified [38, 41, 67].
Therefore, a comprehensive understanding of HHG in solids is a crucial and currently
challenging goal.

High order sideband generation in solids

There are studies to understand electron dynamics by preparing an additional laser pulse
to control the electron dynamics in a strong field. B. Zaks et al. performed an exper-
iment in which they irradiated a GaAs quantum well with intense terahertz (THz) light
and weak near-infrared (NIR) light with the photon energy of exciton resonance. Exci-
ton is a quasiparticle in solids, where electrons and holes are bound by the attraction of
Coulomb interactions to form a hydrogen atom-like state. They found that the radiation
occurs in the frequency interval of THz light around the frequency of NIR light [85].
This phenomenon is called high order sideband generation (HSG). It has been found that
HSG can be observed by using MIR light instead of THz light [86]. The frequency of the
sidebands can be written as

ωHSG = nω +ωNIR, (n: integer) (1.11)



12 CHAPTER 1. INTRODUCTION

where ωHSG is the angular frequency of the sidebands and ω is that of the strong MIR
or THz laser and ωNIR is that of the NIR light. In this material, the exciton binding
energy is large due to the quantum confinement in the quantum well structure. HSG
can also be observed in bulk GaAs where the exciton binding energy is not large [87].
Figure 1.6 shows an HSG spectrum obtained from a GaAs sample with a quantum well
structure under near-infrared and THz light field [88]. Since the sidebands with n < 0
are associated with perturbative nonlinear optical processes, the study of nonperturbative
optics has focused on the sidebands with (n > 0).

Figure 1.6: High order sideband generation spectrum spanning 106 orders from the 5-nm
GaAs sample with a quantum well structure. The red dashed line represents
the wavelength and photon energy of the near-infrared (NIR) light. The NIR
and THz laser polarizations are parallel to each other, and the [011] direction
of the lattice makes a 55◦ angle with the THz polarization. Reproduced from
H. B. Banks et al., Physical Review X 3, 137 (2017). ©2017 The authors.
Distributed under a Creative Commons Attribution 4.0 International license
(CC BY 4.0) [88].

The HSG mechanism is understood in terms of a similar mechanism to the three-step
model in HHG as shown in Fig. 1.7.

1. Resonant excitation of electron-hole pairs (excitons) by NIR light

2. Intraband acceleration of electron-hole pair by strong THz (or MIR) light

3. Recombination of the electron and hole

This model replaces the step of electron-hole pair creation by strong laser field in HHG
with a resonant interband transition induced by near-infrared light [13,85,86,88,89]. The
advantage of HSG is that separate light pulses can control the generation and acceleration
of the electron-hole pair, allowing us to understand the underlying dynamics of HHG. In
this model, since the interband polarization of electron-hole pairs encodes the information
of the NIR light frequency, the HSG mechanism corresponds to the interband mechanism
of HHG.

F. Langer et al. manipulated the generation time of electron-hole pairs for a strong
field on a sub-cycle time scale by using NIR light pulses that are short enough for one
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cycle of MIR light. They found the importance of the electron-hole recollision dynamics
by experimentally selecting the trajectory of the electrons and holes [86].

Similar to HHG, HSG can also be used as a spectroscopic tool. For example, it is
argued that it can probe the band structure, Berry curvature, and even the Bloch wave
function in semiconductors. [88, 90, 91]. Moreover, HSG was applied to demonstrate the
lightwave valleytronics [13].
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Figure 1.7: Three-step mechanism of high order sideband generation in semiconductor.
(a) The dynamics of electron wave packet in k-space and (b) the one in k-
space. (1) Tunneling (2) Intraband acceleration (3) Recombination.

1.3 Dynamical symmetry in Floquet system
In this section, we introduce the historical background of dynamical symmetry. Dynam-
ical symmetry (DS) is a symmetry class defined in the product space of real space and
time. It is a concept that has the potential to describe the symmetry of periodically driven
systems in general [28, 92–100]. The physical understanding of periodically driven sys-
tems has been developed recently using the Floquet theorem. The Hamiltonian of a time-
periodically driven system with the period of T satisfies

H(t) = H(t +T ). (1.12)

Here, the interacting laser fields are assumed to be completely periodic. The Floquet
theorem, a temporal analog of the Bloch theorem in solid-state physics, allows us to
analyze a dynamic problem as an eigenvalue problem. For example, its application to
transport problems, magnetic and other strongly correlated electron systems, and electron-
phonon systems have advanced our understanding of the non-equilibrium dynamics in
periodically driven systems [18]. Another interesting direction is the engineering of band
topology using periodic external fields and their classification [19, 20]. Experimental
studies have been carried out mainly on cold atoms but also photonics and solid-state
systems [20]. In particular, the generation of Floquet Bloch bands and the observation
of light-induced anomalous Hall effects in solids have been realized by sub-picosecond
MIR pulse lasers [101, 102]. The Floquet concept is currently receiving a great deal of
attention in both theoretical and experimental studies.
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Recently, DS (sometimes called space-time symmetry) has been formulated as a sym-
metry class unique to the Floquet state [98]. For example, the combinations of time
translation, time reversal, spatial rotation, mirroring, etc., are included in this symmetry
class. The first theoretical idea was proposed in 1993 by N. Ben-Tal et al. to describe
the polarization selection rule of HHG in atomic gases [28]. They described a selection
rule in which linear polarization in parallel with excitation polarization appears only at
odd orders. In 1997, Ofir E. Alon et al. showed that DS can derive a selection rule for
circularly polarized light in the system with discrete rotational symmetry [92]. After Tong
et al. theoretically proposed two-color laser field can generate circularly polarized har-
monics from atomic gases [103], O. E. Alon et al. explained its principle with the same
DS [93]. Circularly polarized HHG from atomic gases was experimentally confirmed in a
two-color laser field by A. Fleischer et al. in 2014 [104]. In the following year, its circular
polarization selection rule was confirmed and found to be consistent with that predicted
from DS [95]. In 2017, N. Saito et al. showed that circularly polarized harmonics can be
generated in a single MIR driving field in bulk GaSe, a crystalline solid with three-fold
rotational symmetry, and explained it with DS [105]. DS is useful for aspects other than
HHG. The Floquet Bloch band, which was experimentally observed in the surface state
of a topological insulator, was shown to be protected by DS [94, 101]. In addition, DS
is used for the classification of the topological phases [96, 97]. In 2019, O. Neufeld et
al. formulate DS as Floquet group theory [98]. O. Neufeld argued that DS can be ap-
plied to any periodic external field with any complex temporal profile and any system of
gases, molecules, or solids. This allows us to treat polarization selection rules of HHG in
a general way. Detailed theoretical formalism is explained in Section 2.1 and 2.2

Although DS is an extremely promising concept, it has not been fully verified exper-
imentally. In particular, the validity of DS is non-trivial in solids since the dissipative
processes, and the effects of carrier accumulation during strong field irradiation to semi-
conductors may break the DS. This is further explained by using a model of a two-level
system in Section 2.3. Here, we show how the temporal periodicity of the electron dy-
namics appears in HHG. In the case that the electron dynamics are periodic, the sub-cycle
burst emitted by the electron in the HHG process is repeated with the same period as that
of the driving laser field (orange line in Fig. 1.8(b)). Consequently, the emission forms
a harmonic spectrum with the same spacing between peaks, as shown in Fig. 1.8(c). On
the other hand, suppose that the electron dynamics in the second half of the MIR pulse is
changed due to the carrier accumulation, and the timing of the emission is shifted. In this
case, the spectral peak is also shifted, as shown is also shifted, as shown by the green line
in Fig. 1.8(c). This spectral shift has been confirmed in graphene, which indicates the
carrier accumulation can break the temporal periodicity of the electron dynamics under a
periodic light field.

To experimentally verify whether such symmetry holds in a strongly light-driven solid,
one should examine the polarization selection rule of HHG. For this purpose, it is desir-
able to remove the effect of the propagation effect described in the next section since the
propagation effect may obscure the selection rule [98].
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Figure 1.8: Time-periodic emission in the time domain and frequency domain. (a)
Schematic diagram of the time profile of the electric field of a mid-infrared
(MIR) pulse. (b) Example of a sub-cycle burst that repeats with the same pe-
riod as that of the laser electric field during the pulse duration (orange line).
The green line represents the aperiodic case. The timing of the bursts of the
green line is set to be earlier than the orange line in the second half of the
MIR pulse. (c) Spectral intensity of the burst calculated by the square of the
magnitude of the Fourier transformations for the orange and green lines in
(b).

1.4 High harmonic generation in monolayer transition
metal dichalcogenides

This section introduces monolayer transition metal dichalcogenides (TMDs), which are
ideal samples to avoid the propagation effect. First, we explain the propagation effect
and then explain the basic properties of monolayer TMDs. We also introduce several
experimental studies of HHG and HSG in monolayer TMDs.

1.4.1 Propagation effect on high harmonic generation in solids

In all experimental studies until 2018, HHG measurements in bulk crystals were per-
formed in the transmission configuration shown in Fig. 1.9. In this configuration, the
intensity of the harmonics is modulated according to Maxwell’s equations as they propa-
gate through the bulk samples. For example, it is necessary to consider the effect of re-
absorption of generated harmonics and the phase-matching condition, which has always
been considered in conventional nonlinear optics [106]. The phase-matching condition
defines the conditions for the constructive interference of harmonics that are gradually
generated within the thickness of the sample. It is essential for optimal generation of high
harmonics in gaseous media [25]. It has been investigated in previous studies that such
a propagation effect has a significant impact on HHG spectra in solids [50, 107, 108]. G.
Vampa et al. and P. Xia et al. compared the spectra of HHG emitted on the reflection side
with that emitted on the transmission side [50, 108]. They observed considerable spectral
broadening in the spectrum obtained on the transmission side, which was attributed to
the self-phase modulation. P. Xia et al. also showed that the efficiency and orientation
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dependence of HHG appearing on the transmission side depended on the sample thick-
ness [50]. It is desirable to remove the propagation effect for microscopic understanding,
which depends on the macroscopic shape of the crystal.

HHG
MIR

Sample Thickness

Spectrometer

Propagation effect

Figure 1.9: Schematic setup for HHG measurement in transmission geometry and prop-
agation effect

1.4.2 Basic properties of monolayer transition metal dichalcogenides

The study of atomically thin layer began with the successful exfoliation of graphene by
Nobel prize winners, Novoselov et al. [109]. Graphite is a kind of van der Waals layered
material, in which two-dimensional sheets are bound together by weak van der Waals
forces. In contrast to the semi-metallic property of graphene, the next monolayer thin
films discovered in van der Waals layered materials were semiconducting transition metal
dichalcogenides (TMDs) such as MoS2 [110–112].

This group is represented by the composition formula MX2 (M=Mo,W, X=S,Se).
Figs. 1.10(a) and (b) shows the crystal structure of monolayer transition metal dichalco-
genides. These materials have honeycomb lattice structures as shown in Fig. 1.10(a). The
crystal axis indicated by black arrows is called zigzag (M-M) and armchair (M-X) direc-
tion. Figure 1.10(b) shows the structure of the sample viewed from a direction parallel to
the layer, where the M atoms are sandwiched between the X atoms on the top and bottom.
The inversion symmetry of the crystal is broken, and the crystal point group belongs to
D3h. The K and K′ points in the corresponding hexagonal Brillouin zone are inequivalent
due to the broken inversion symmetry.

Since the optical properties of monolayer MoS2 were investigated in 2010 [113,114], a
considerable number of studies have been carried out, and their fundamental optical prop-
erties have been well understood in the last decade. One of the reasons why monolayers
have attracted so much attention is that they exhibit unique optical properties. Although
bilayer or more multi-layer TMDs are indirect-gap semiconductors, the monolayer TMDs
have direct gaps at the K and K′ points. According to first-principle calculations, the
electronic bands near the bandgap consist mainly of d-orbitals of M atoms, with a small
contribution of p-orbitals of X atoms [115]. The exciton dominates the optical properties
at the band edge in this material. In monolayer TMDs, the quantum confinement to two-
dimensional space and the reduced dielectric screenings cause strong Coulomb interaction
between electrons and holes [116]. That forms Wannier-Mott excitons with the exciton
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binding energy of several hundred meV that are stable at room temperature [112]. In addi-
tion, since the valleys at K and K′ points are not equivalent, there is a valley degree of free-
dom. This valley degree of freedom can be used as an information carrier in valleytronics,
which is expected to be the next generation of electronics. In addition, the presence of
large spin-orbit interaction causes the coupling of spin and valley degrees of freedom, and
the energy of the spin-up and spin-down states of the valence band is split by about 100
meV [110,117]. As a result, there are absorption peaks for excitons corresponding to each
band in the absorption spectrum. Figure 1.11(a) shows the band structure of monolayer
MoS2 [118]. Excitons in the lowest bandgap are called A excitons; excitons in the higher
energy side of the energy split are called B excitons. These exciton peaks appear in ab-
sorption spectra obtained from four monolayer TMDs (Fig. 1.12(b)). The energy position
of the peaks in each material is slightly different from other materials [52, 118]. The ab-
sorption peaks indicated by C, D are called the C, D band, respectively, which are the van
Hove singularity points where the conduction band and valence band are parallel (denoted
by blue arrows in Fig. 1.11). The K and K′ valleys have a valley-dependent circular polar-
ization selection rule for optical transitions: the K (K′) valley couples only to circularly
(counter-circularly) polarized light. Consequently, circularly polarized light irradiation
can induce valley polarization. It can cause characteristic phenomena such as circularly
polarized photoluminescence and valley hall effect [119–122]. Monolayer TMDs have
also been studied as a field where many-body effects occur due to strong Coulomb inter-
actions, e.g., formation of trion and biexciton [123], exciton-exciton annihilation [124],
and bandgap renormalization [125].

As shown above, a variety of optical properties of monolayer TMDs have attracted
attention and have been well investigated. Therefore, in addition to avoiding propagation
effects, this material provides an ideal platform to study the details of the HHG mecha-
nism.

Top Side
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Γ𝐾 𝐾′
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(a) (b)

(c)

X = S, Se
M = Mo, W

Figure 1.10: (a) Top view and (b) side view of the crystal structure and (c) Corresponding
first Brillouin zone of monolayer transition metal dichalcogenides.. The
black arrows represent the zigzag and armchair direction.
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C A B

Figure 1.11: Typical band structure for an MX2 monolayer (calculated using density
functional theory for MoS2). The valence-band maximum is split due to
spin-orbit coupling. Transitions between V2 and the conduction-band min-
imum at K lead to A-excitons in the absorption spectrum (red arrow), while
transitions between V1 and the conduction-band minimum at K lead to B-
excitons (green arrow). The blue arrows represent the band nesting region
called C band. Reprinted figures with permission from Ref. [126]. Copy-
right 2012 by the American Physical Society. Partially modified from the
original figure.

1.4.3 High order harmonic and sideband generation in monolayer
transition metal dichalcogenides

Monolayer transition metal dichalcogenides are studied as an experimental platform for
HHG and HSG. H. Liu et al. reported the first experimental observation of HHG from
monolayer TMDs [44]. The even-order harmonics were observed in monolayer TMDs
due to the broken inversion symmetry. They explained the harmonic spectra with the
intraband model considering Berry curvature [44]. On the other hand, N. Yoshikawa et
al. observed the C band resonance in the order dependence of the harmonic intensity and
explained it with the interband model [52].

F. Langer et al. observed HSG from monolayer WSe2 [13]. They create the electron-
hole pairs using a NIR pulse resonant with the A-exciton energy. They investigated part
of the linear polarization selection rules of HSG and explained it with three-step like dy-
namics of electron-hole pairs. They succeeded in understanding the polarization selection
rules in terms of the symmetry of the dynamics in k-space. However, the selection rules
have not been explained by a more general approach: DS.

1.5 Purpose and composition

As described in the previous sections, nonperturbative interaction of electrons in solids
with a strong mid-infrared laser electric field induces various coherent dynamics of elec-
trons and creates novel electronic states that cannot be understood in the framework of
perturbation theory. The emergence of such electronic states leads to the discovery of ex-
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(a) 
MoSe2

(b) 
WSe2

(c) 
MoS2

(d) 
WS2

Figure 1.12: Optical absorption spectra of the (a) MoSe2, (b) WSe2, (c) MoS2, and (d)
WS2 monolayers. monolayers at room temperature. The peaks of the A and
B excitons are labeled A and B, respectively. The peaks due to the band
nesting effects are labeled C and D. Reproduced from N. Yoshikawa et al.,
Nature Communications 3, 137 (2019). ©2019 The authors. Distributed
under a Creative Commons Attribution 4.0 International license (CC BY
4.0) [52]. Partially modified from the original figure.
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otic material functionalities, the development of ultrafast electronics, and ultrafast quan-
tum control for future electronic and optical devices. High harmonic generation (HHG),
which converts low-energy photons into visible and ultraviolet light, is the most straight-
forward and powerful way to study the nonlinear electronic response in strongly light-
driven solids. Most of the studies on HHG in solids have explained the mechanism in
terms of coherent electron and hole dynamics driven by light in k-space. However, re-
search to further our understanding of microscopic electronic states is still being vigor-
ously pursued. Under intense laser fields, highly non-equilibrium states are realized, and
their typical energy scales are much larger than the fundamental excitations in solids. and
they are accompanied by many-body interactions, which makes their understanding ex-
tremely difficult. Furthermore, it has been experimentally shown that the properties of
HHG strongly depend on the material and its macroscopic structure, which causes micro-
scopic physical understanding challenging. Therefore, in this research field, it is crucial
to clarify the microscopic and general physics governing the properties of strongly light-
driven systems.

This thesis studies dynamical symmetry (DS), a general concept for strongly light-
driven electronic systems, in solids. DS has been formulated as a group theory and applied
for polarization selection rules for HHG. However, the validity of DS in solids remains
non-trivial since many-body processes or accumulation of excited carriers during the ap-
plication of strong infrared pulses can break the time-periodicity of electron dynamics.
Two experiments were carried out to understand the validity of DS in solids. Atomically
thin semiconductors were used for the experimental samples to remove the influence of
propagation effects. In both experiments, information on the electronic state under strong
laser fields was obtained by further irradiating the system with a relatively weak near-
infrared pulse. First, we explored the validity of DS in the polarization selection rules
of higher-order sideband generation (HSG) in semiconductors. This is a nonperturbative
higher-order sum-frequency generation process in solids that occurs when weak near-
infrared light pulses and strong mid-infrared light pulses overlap in time (Fig. 1.13(a)).
Next, to understand the effect of accumulated incoherent electron-hole pairs and many-
body interaction in HHG, we performed an experiment in which incoherent photo-carriers
were prepared by irradiating near-infrared pulses before the MIR pulse irradiation (Fig.
1.13(b)). The composition of this thesis is summarized in Fig. 1.14.

In Chapter 2, we introduce the recently formulated theory of DS. In Chapter 3, we de-
termine the polarization selection rules of HSG in a monolayer of MoS2, a kind of TMD,
both experimentally and theoretically. In the experiments, we systematically determined
the polarization selection rules for circular and linear polarization by controlling the polar-
ization of near-infrared and mid-infrared pulse and measuring the spectra with resolving
the sideband polarization. To explain these selection rules, we constructed a theoretical
framework using DS. In Chapter 4, we studied the effect of incoherent electron-hole pairs
accumulated when a semiconductor is irradiated with intense infrared pulses. Specifically,
we investigated the effect of photo-carrier doping on HHG in monolayer WSe2. Numeri-
cal simulations were performed to clarify the mechanism underlying HHG. In Chapter 5,
we summarize this thesis and discuss future prospects.
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Figure 1.13: Schematics of experimental configuration in this thesis. (a) Schematics of
setup for high order sideband generation. The time delay between near-
infrared (NIR) and mid-infrared (MIR) pulses are set to 0. (b) Schematics
of setup for incoherent photo-carrier doping for high harmonic generation.
The time delay is set to be long enough for photo-carriers doped by the NIR
pulse to lose their interband coherence due to dephasing process before the
MIR pulse arrives.
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Figure 1.14: Composition of this thesis.





Chapter 2

Dynamical symmetry and high
harmonic generation

In this Chapter, we introduce the theoretical formalism of DS and explain its connection
to HHG selection rules and electron dynamics under strong fields with some examples.
In Section 2.1, we introduce the basics of the Floquet theorem. In Section 2.2, we explain
the theoretical formalism of DS and its application for HHG selection rules. In Section
2.3, we discuss the electron dynamics under a strong light field with calculation examples
in a two-level system.

2.1 Floquet theorem
In this section, we introduce the basics of Floquet theorem [16,17,127,128]. The Hamil-
tonian of a time-periodically driven system with period T satisfies

H(t) = H(t +T ). (2.1)

The Schrödinger equation is given by(
H(t)− ih̄

∂
∂ t

)
|Ψ(t)⟩= 0, (2.2)

where |Ψ(t)⟩ is the wave function. According to the Floquet theorem, the solution of eq.
(2.2) is generally given by

|Ψα(t)⟩= exp(−iεαt/h̄) |Φα(t)⟩ (2.3)

|Φα(t)⟩= |Φα(t +T )⟩ , (2.4)

where εα is quasienergy (a real number) and Φα(t) is a Floquet state. The operator in the
left-hand side of eq. (2.2) is a Hermitian operator defined as Floquet Hamiltonian

HF = H(t)− ih̄
∂
∂ t

. (2.5)

One finds the following equation:

HF |Φα(t)⟩= εα |Φα(t)⟩ . (2.6)

23
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The Floquet state can be represented in terms of a discrete Fourier series with frequency
ω = 2π

T :
|Φα(t)⟩= ∑

m
exp(−imωt) |Φm

α⟩ . (2.7)

Hamiltonian is also expanded to discrete Fourier series

H(t) = ∑
m

exp(−imωt)Hm. (2.8)

By using these equations, eq. (2.6) can be transformed into

∑
m

(
H(n−m)−mωδmn

)
|Φm

α⟩= εα |Φn
α⟩ . (2.9)

Note that the periodic dynamics can be treated by solving the diagonalization problem eq.
(2.9), which does not explicitly include time. The definition of quasienergy is one that
needs attention. When Φα(t) is an eigenfunction of eq. (2.6), the following function is
also the eigenfunction:

|Φα ′(t)⟩= exp(inωt) |Φα(t)⟩ ≡ |Φα,n(t)⟩ (2.10)

where n is an arbitrary integer. The corresponding quasienergy is

εα ′ = εα +nh̄ω ≡ εα,n. (2.11)

Here, the Floquet state indicated by α represents the same state physically as all solutions
specified by α ′ = (α,n). This is a redundancy encoded in the Floquet formulation. Thus,
distinct Floquet state solutions are indexed with quasienergy that falls within the Floquet-
Brillouin zone, analogous to the Brillouin zone in solid-state physics,

− h̄ω
2

≤ εα <
h̄ω
2

(2.12)

Furthermore, there are several formulated theories for describing the perturbation to the
periodically driven systems. The transition between Floquet states induced by a weak
perturbation is formulated as Floquet Fermi’s golden rule, and the linear response theory
of the Floquet state is formulated as Floquet Kubo formula [128–131].

2.2 Theoretical formulation of dynamical symmetry and
selection rule of high harmonic generation

2.2.1 Theoretical formalism
Symmetry is the most general concept in physics and also a general tool to describe the
optical selection rules in materials. Optical selection rules in solids based on the per-
turbation theory are fully understood with the crystallographic point group. Here, we
introduce the formulation of dynamical symmetry (DS), a concept that can also be used
in the non-perturbation regime [98].

In conventional perturbative nonlinear optics, the HHG selection rules are derived by
requiring the nonlinear susceptibility tensor χ in eq. (1.2) to be invariant under the sym-
metry operation. For example, inversion symmetry leads to χ(2n) = 0 (n: integer), which
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means the disappearance of the even order harmonics. However, the Taylor expansion of
polarization does not hold for nonperturbative nonlinear optics.

On the other hand, DS can be applied for the selection rules in a nonperturbative
regime. DS was formulated as a group theory by O. Neufeld et al. [98]. The DS operations
are defined by the products of spatial and temporal operations. O. Neufeld et al. derived
the DS operations for (2+1)D and (3+1)D (product space of space and time) systems.
Here, we focus on the DS group in (2+1)D system. In the following, we list all generators
of the DS group for (2+1)D.

D̂ = T̂ · σ̂ (2.13)
Ẑ = τ̂2 · σ̂ (2.14)
Ĥ = T̂ · τ̂2 · σ̂ (2.15)

Ĉ2 = τ̂2 · R̂2 (2.16)
Q̂ = T̂ · R̂2 (2.17)
Ĝ = T̂ · τ̂2 · R̂2 (2.18)

Ĉn = τ̂n · R̂n (2.19)
Ĉn,m = τ̂n · (R̂n)

m ≡ τ̂n · R̂n,m (2.20)
ên,m = τ̂n · L̂b · R̂n,m · L̂1/b (2.21)

where

L̂b =

(
1 0
0 b

)
(2.22)

Here, purely spatial transformations are excluded for simplicity though they give HHG se-
lection rules. In the above operations, spatial symmetry elements include two operations:
R̂n (R̂n stands for rotation by an angle 2π/n, and reflections, denoted by the operator σ̂ .
Temporal symmetry elements include time-reversal, denoted by T̂ , and time-translations,
where translations by time T/n are denoted by τ̂n. Ĉn,m is the generalized version of
Ĉn. For m = 1, Ĉn,m reduces to Ĉn. ên,m denotes discrete elliptical symmetry scaled by
the transformation L̂b that generalizes Ĉn,m. This symmetry has no analog in molecular
groups [98]. Figures 2.1-2.3 shows the examples of driving electric fields that is invari-
ant under each dynamical symmetry operation. DS is an excellent concept to discuss the
symmetry and HHG selection rule for complex electric field waveforms as shown in these
figures.

When the Hamiltonian Ĥ conforms to a DS group G, the Floquet Hamiltonian com-
mutes with all symmetry operation X̂q in G:

[X̂q,HF ] = 0, X̂q ∈ G, (2.23)

where X̂q is the corresponding unitary or anti-unitary operator to the above DS operators
(X̂) defined in (2+1)D system. In this case, the Floquet states are simultaneous eigen-
modes of the Floquet Hamiltonian, and of X̂ . Since X̂q is unitary or anti-unitary, its
eigenvalues are

X̂q |Φα(t)⟩= eIθ |Φα(t)⟩ , (2.24)

When the wave function is described by a single Floquet state, the observables satisfy the
following relation

o(t) = ⟨Φα(t)|X̂qÔX̂†
q |Φα(t)⟩= X̂ ·o(t), (2.25)



26 CHAPTER 2. DYNAMICAL SYMMETRY AND HHG

Since the electric field EHHG(t) of the high harmonics are radiated from the current J(t)
in the Floquet system,

J(t) = X̂ ·J(t) (2.26)

gives the selection rules of HHG. If we consider a simple case where current flows uni-
formly in xy plane at z=0, the electric field induced by the current is given by

E(z, t) =
1
2

µ0cJ
(

t − z
c

)
(2.27)

where µ0 is magnetic permeability in a vacuum and c is the speed of light [38, 58]. Thus,
we can require

E(t) = X̂ ·E(t) (2.28)

to derive the selection rule of HHG.
Table 2.1 shows the HHG selection rules [98]. When we derive the dynamical sym-

metry of laser-driven atomic gases, it is enough to consider the symmetry of the driving
electric field since the atomic gases are isotropic. However, in the case of solids, we also
have to consider the discrete spatial symmetry of solids to derive the DS.

Figure 2.1: Order-2 spatiotemporal DSs in (2+1)D involving spatial reflection with ex-
amples for each symmetry. (a) D̂x symmetry for the example field E(t) =
(cos(ωt)+ cos(2ωt))x̂+ sin(2ωt)ŷ, (b) Ẑy symmetry for the example field
E(t) = sin(ωt)x̂+ sin(2ωt + π/5)ŷ, and (c) Ĥx symmetry for the example
field E(t) = sin(ωt)x̂+ cos(3ωt)ŷ. The fields are represented on Lissajou
plots. The spatial parts of the operators is indicated by dashed lines, col-
ored arrows in the plots indicate the direction of time. Reproduced from
O. Neufeld, D. Podolsky, and O. Cohen, Nature Communications 10, 405
(2019). ©2019 The authors. Distributed under a Creative Commons Attribu-
tion 4.0 International license (CC BY 4.0) [98].

2.2.2 Example for selection rule of HHG
The even-order harmonics are forbidden in the system with inversion symmetry, such as
atomic gases. This can be explained in terms of DS. The system with inversion symmetry
driven by linearly polarized laser field has the symmetry denoted by Ẑ = τ̂2 · σ̂ with a
reflection symmetry with respect to the plane perpendicular to the direction of laser polar-
ization. Figure 2.4 shows the consequent operation of τ̂2 and σ̂ for this system. τ̂2 shifts
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Figure 2.2: Order-2 spatiotemporal DSs in (2 + 1)D involving spatial rotations by 180◦

with examples for each symmetry. (a) Ĉ2 symmetry for the example field
E(t) = sin(ωt)x + sin(3ωt + π/7)ŷ, (b) Q̂ symmetry for the example field
E(t) = sin(ωt)x̂ + (sin(ωt) + sin(4ωt))ŷ, and (c) Ĝ symmetry for the ex-
ample field E(t) = (sin(2ωt)+ cos(3ωt))x̂+ cos(ωt)ŷ. The fields are rep-
resented on Lissajou plots. The spatial parts of the operators is indicated
by dashed arrows, colored arrows in the plots indicate the direction of time.
Reproduced from O. Neufeld, D. Podolsky, and O. Cohen, Nature Commu-
nications 10, 405 (2019). ©2019 The authors. Distributed under a Creative
Commons Attribution 4.0 International license (CC BY 4.0) [98]

Figure 2.3: High-order spatiotemporal DSs in (2+1)D with examples of each symme-
try. (a) Ĉ3 symmetry for the example field E(t) = (cos(ωt) + cos(2ωt) +
sin(4ωt))x + (sin(ωt)− sin(2ωt)− cos(4ωt))ŷ, (b) Ĉ5,3 symmetry for the
example field E(t) = (cos(3ωt)+ cos(2ωt))x̂+(sin(3ωt)− sin(2ωt))y, and
(c) ê3 symmetry for the example field E(t) = (cos(ωt) + cos(2ωt))x̂ +
b(sin(ωt)− sin(2ωt))ŷ. The fields are represented on Lissajou plots. The
spatial parts of the operators is indicated by dashed arrows, colored arrows
in the plots indicate the direction of time Reproduced from O. Neufeld, D.
Podolsky, and O. Cohen, Nature Communications 10, 405 (2019). ©2019
The authors. Distributed under a Creative Commons Attribution 4.0 Interna-
tional license (CC BY 4.0) [98].
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Table 2.1: (2+1)D DSs and their associated selection rules for collinear atomic/molecular
HHG [98]

Symmetry Order 　Harmonic generation selection rule
D̂, Ĥ 2 Elliptically polarized harmonics with major/minor axis corresponding

to the reflection axis.
T̂ , Q̂, Ĝ 2 Linearly polarized only harmonics.
Ẑ 2 Linearly polarized only harmonics, even harmonics are polarized along

the reflection axis, and odd harmonics are polarized orthogonal to the
reflection axis.

Ĉ2 2 Odd-only harmonics, any polarization is possible.
Ĉn,m n > 2 (±) circularly polarized (nq∓m) harmonics, q ∈ N, all other orders for-

bidden.
ên,m n > 2 (±) elliptically polarized (nq∓m) harmonics, q ∈ N, with an ellipticity

b, all other orders forbidden.

the temporal profile from the solid line to the dashed line and σ̂ reverses the direction
of the electric field. According to Table 2.1, this symmetry operation gives the linearly
polarized harmonics, where even harmonics are polarized along the reflection axis, and
odd harmonics are polarized orthogonal to the reflection axis. In addition, this system has
a reflection symmetry with respect to the plane that contains the direction of oscillation
of the laser electric field. The perpendicular component of high harmonics is forbidden
due to this reflection symmetry. Therefore, in systems with inversion symmetry, the only
odd-order harmonics with polarization parallel to the driving field are observed.
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Figure 2.4: Dynamical symmetry operation Ẑ for a monochromatic laser electric field
along x-direction. T is the period of the laser electric field. τ̂2 shifts the blue
solid line to blue dashed line. σ̂ reverses the direction of the electric field.

The selection rules associated with the operation Ẑ can be explained by the difference
of the symmetry of the electric field with the odd and even order harmonic frequency. As
shown in Fig. 2.5, the odd order field (e.g. ω , 3ω) has the symmetry of Eodd(t +T/2) =
−Eodd(t), where T is the period of the driving field. On the other hand, the even order
field (e.g. ω , 3ω) has the symmetry of Eeven(t +T/2) = Eeven(t). Thus, when the system
has the symmetry of Ẑ, only odd-order harmonics are allowed in the parallel polarization
with the driving field.

The operators Ĉn give the circular polarization selection rules. In particular, Ĉ3 de-
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Figure 2.5: Difference of DS between odd and even order harmonics. T = 2π/ω denotes
the period of the driving laser frequency. The blue, red, and green curves
represent the monochromatic electric field with the frequency of ω , 2ω , and
3ω , respectively.

scribes the circular polarization selection rule of HHG experimentally obtained in a crys-
talline solid with three-fold rotational symmetry and in atomic gases under a bi-circular
laser field [95, 105]. This operation leads to the selection rule in which only (±) circu-
larly polarized (3q∓ 1) harmonics (q ∈ N) is allowed. These selection rules lead to the
angular momentum conservation rule of light. The left- and right-circular polarization
corresponds to the spin degree of freedom of light. Figure 2.6 shows the energy diagram
of the angular momentum conservation rule of HHG. n photons with frequency ω are con-
verted to one photon with frequency nω . In the case of isotropic media (atomic gases),
the system is invariant under infinitesimal rotation symmetry operation. Thus, the total
spin of the incident photon and emitted photon should be conserved. As a result, high
harmonics are forbidden under circularly polarized driving fields in atomic gases since a
photon cannot have the angular momentum of nh̄ (n > 2). This corresponds to the case
for Ĉ∞. However, in solids, the continuous rotational symmetry is broken and only the
discrete rotational symmetry remains. Thus, the Umclapp process for angular momentum
occurs. In this case, the angular momentum of nh̄ can be regarded as equal to 0. There-
fore, HHG with a single circular polarization driving field is partly allowed in solids.
Similar to the nonperturbative HHG in solids, perturbative second harmonic generation
has been observed under circularly polarized light in a metal structure and monolayer
MoS2, which have three-fold rotational symmetry [105, 132, 133]. Their selection rule
follows a selection rule based on angular momentum conservation. It is worth noting that
the photon picture does not hold in nonperturbative light-matter interactions. From this
point of view, DS is a powerful concept that can extend our understanding of the selection
rule to the non-perturbative regime.

2.3 Light-matter interaction in two level system

The above selection rules can be derived if the system can be written with a single Flo-
quet state. However, in an actual system, the laser fields used for HHG have no perfect
periodicity because the ultrashort pulse durations contain only several cycles. Since the
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system is not in equilibrium during ultrashort laser pulses, the electronic state can change
in time with each laser cycle. For example, the accumulation of excited carriers during the
strong laser field irradiation may break the time-translational symmetry of the electronic
dynamics in semiconductors.

Here, we show the example of the dynamics of carrier excitation under light field by
using a simple two-level system. In second quantization, the Hamiltonian of a two level
system interacting with light within the dipole approximation is given by

H = E1a†
1a1 +E2a†

2a2 −dE(t)(a†
1a2 +a†

2a1) (2.29)

where the dipole moment is defined as

d =
∫ ∞

−∞
ψ∗

2 (x)(−ex)ψ1(x)dx. (2.30)

E1,E2 are eigenenergies of the level 1 and 2 and ψ1,ψ1 are corresponding eigenfunctions.
The creation a† and annihilation a operators create and annihilate electrons in states num-
ber 1 or 2, respectively. Here, we neglect the degree of freedom for the polarization of the
electric field E(t). The expectation values ⟨a†

1a1⟩ = N1 and ⟨a†
2a2⟩ = N2 are the occupa-

tion numbers of level 1 and level 2 and satisfy f1 + f2 = 1. ⟨a†
1a2⟩ = P is the coherence

between the level 1 and 2, which is relevant to the optical polarization.
The time evolution of the occupation and the coherence is calculated by Heisenberg

equation:

ih̄
∂
∂ t

O = [O,H] (2.31)

and the anticommutation rules for fermions, i.e.,

[a1,a
†
1] = 1, [a2,a

†
2] = 1 (2.32)



2.3. LIGHT-MATTER INTERACTION IN TWO LEVEL SYSTEM 31

and all other anticommutators are zero. The derived equation is so-called optical Bloch
equation [134]

d
dt

P = −iω0P− i
h̄

dE(t)(N1 −N2) (2.33)

d
dt

N1 =
i
h̄

2Im[dE(t)P] (2.34)

d
dt

N2 = − i
h̄

2Im[dE(t)P] (2.35)

where ω0 = (E1−E2)/h̄. This set of equations is an analogue of the Bloch equations that
describe the time evolution of spins in a magnetic field. Here, we define the Bloch vector u

v
w

=

 ⟨a†
1a2⟩+ ⟨a†

2a1⟩
−i(⟨a†

1a2⟩−⟨a†
2a1⟩)

⟨a†
1a1⟩−⟨a†

2a2⟩

=

 2Re[P]
2Im[P]
N1 −N2

 (2.36)

The length of the Bloch vector satisfies u2 + v2 +w2 = 1 within the time evolution ac-
cording to the optical Bloch equations (2.33)-(2.35). The Rabi frequency Ω(t) = dE(t)/h̄
determines the magnitude of the light-matter interaction in this system.

The solution for the resonant excitation shows a well-known phenomenon, Rabi os-
cillation. Figure 2.7 shows the solution calculated with boxed shape electric field with the
peak Rabi frequency of Ω = 0.04. Figure 2.7(a) shows the electric field and Fig. 2.7(b)
shows the occupation number in level 1. We calculated it with no initial population in
the excited state (level 1). The angular frequency of electric field ω is set to be equal to
ω0. In this case, electrons absorb the photons and in turn, are excited from the ground
state into the excited state (level 1). This corresponds to the well-known optical transition
described by Fermi’s golden rule. In this calculation, the electron behaves full quantum
mechanically, thus the N1 exceeds 0.5 and makes population inversion. Then, due to the
stimulated emission, electrons relax back to their ground state. These phenomena repeat
with the frequency of Rabi frequency (Ω). The slow oscillating component in Fig. 2.7(b)
is so-called Rabi oscillation (only 5/4 cycle of the oscillation is shown in Fig. 2.7(b) ).
In addition, small and rapid oscillation can be seen in Fig. 2.7(b). This is called Bloch-
Siegert oscillation, which is often neglected in the resonant case by applying the rotating
wave approximation [3].

On the other hand, if the electrons are excited by a non-resonant electric field, the
electrons do not show Rabi oscillation. Since this corresponds to the light irradiation
to a transparent media, one may imagine that the electrons cannot absorb the photons.
However, during the application of the strong light, electrons can be excited into an upper
level. This is called virtual excitation, which is closely related to the tunneling process.

Let us consider the two-level system for electrons in a solid is excited by a non-
resonant strong mid-infrared light pulse. Figure 2.8(a) shows the electric field E(t) =
cos(ωt)exp(−t2/τ2) used for the calculation, which has the pulse duration of 60 fs (full
width at half maxima). The resultant solution of eqs. (2.33)-(2.35) is shown in Fig.
2.7(b). We set calculation parameters to be similar to the experiments shown later. The
center frequency of the electric field is set to 0.3 eV, which is non-resonant with the energy
gap of 1 eV of the two-level system. The maximum of the Rabi frequency is set to 0.3
eV. In this case, the orbit of the Bloch vector has the shape of an ellipse extending along
the X-axis (u), which is different from the resonant case (Fig. 2.7). In this case, N1 only
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Figure 2.7: Ilustration of Rabi oscillation calculated by using eqs. (2.33)-(2.35). (a) Time
profile of the Rabi frequency (electric field) used for the calculation. (b) Time
evolution of N1. The bottom axis corresponds to the number of the cycle of
the electric field. (c) Orbital of Bloch vector in Bloch sphere. The axes X,Y
and Z correspond to u, v, and w in eq. (2.36), respectively. The color of
the orbital represents the value of w = N1 −N2. The calculation parameters
are ω0 = 1, Ω0 = 0.04, ω = 1 for gap frequency, peak Rabi frequency, and
driving frequency, respectively.

appears near the peak of the applied electric field and suddenly vanishes in each cycle.
This behavior corresponds to the fact that the Bloch-Siegert term becomes significant in a
non-resonant electric field [3, 135]. The upper-level occupation does not remain after the
pulse has passed. This is consistent with the energy conservation rule between the photons
and electrons. The electrons cannot be excited into the upper energy state by absorbing
the photons. In the limit of high Rabi frequency (Ω ≫ ω), the electrons are highly excited
by the carrier wave of the light field. This is called carrier-wave Rabi oscillation [3].

Next, we consider the effect of dephasing in the two-level system under the condition
of non-resonant electric field. When the two-level system is not isolated but interacting
with an external bath, the phase of the coherence is randomized due to the interaction.
Such effect is phenomenologically included as a dephasing rate γ in the optical Bloch
equations

d
dt

P = −iω0P− γ
h̄

P+
i
h̄

dE(t)(N1 −N2) (2.37)

d
dt

N1 =
i
h̄

2Im[dE(t)P] (2.38)

d
dt

N2 = − i
h̄

2Im[dE(t)P] (2.39)

where the transverse relaxation is set to 0 by assuming the relaxation is slow enough
compared with the pulse duration. The dephasing reduces the magnitude of the coherence
P. When there is a dephasing process in the two-level system, the electrons can absorb
even the non-resonant photons.

Figure 2.8(d) shows the dephasing dependence of the length of the Bloch vector. The
length of the Bloch vector is conserved if there is no dephasing (depicted with a red line
in Fig. 2.8(d)). If there is a finite dephasing, the length of the Bloch vector is no longer
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conserved and shortened in the electric field. Figure 2.8(e) shows the time evolution of the
Bloch vector in the Bloch sphere. The shortening of the Bloch vector displaces it towards
the w direction under the driving field. Accordingly, N1 increases up to 0.5 in an electric
field as shown in Fig. 2.8(f). The efficiency of the tunneling process that is dependent on
the dephasing rate has already been studied in GaAs under strong THz field [136]. Around
N1 = 0.5 with large damping, electrons cannot be excited by the electric field since the
source term (the third term of eq. (2.37)) becomes 0 at N1 = 0.5, i.e., (N1 −N2) = 0.
This is called phase-space filling effect, which is attributed to the Fermi-Dirac statistics
of electrons.

The above example calculated in a two-level system also explains the time evolution
of interband transition of Bloch electrons in a strong non-resonant driving field. In the
case of Bloch electrons in solids, interband transitions are accompanied by their tran-
sitions in k-space. Due to the existence of the dephasing process, the fully quantum
mechanical (coherent) time evolution of electrons is disturbed. Thus, incoherent elec-
trons are accumulated in the upper energy state during a strong electric field driving. This
carrier accumulation may break the time translational symmetry during the MIR field
driving through many-body processes, such as phase-space filling and excitation-induced
dephasing discussed in Chapter 4.

2.4 Summary
In this Chapter, we explained the theoretical formalisms of the Floquet theorem and DS.
The application for the DS operation of the periodically driven system to radiated har-
monic gives the polarization selection rules of HHG. Although a perfect time periodicity
is assumed for the DS, the actual time evolution of the electronic state is not perfectly
periodic. We showed examples of electron dynamics by using optical Bloch equations
in a two-level system. Accumulation of the incoherent carriers and many-body effects
may break the DS of the system driven by strong infrared ultrafast laser pulses. Chapter 4
shows how these accumulated incoherent electron-hole pairs affect the HHG in atomically
thin semiconductors.
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Figure 2.8: Example of solution for eqs. (2.33)-(2.35). (a) Time profile of the electric
field used for the calculation. (b) Orbital of Bloch vector in Bloch sphere
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N1 −N2. (c) Time evolution of N1 corresponding to (b). (d) Dependence
of the length of the Bloch vector on dephasing rate. (e) Orbital of Bloch
vector in Bloch sphere at dephasing rate of 0.1 eV. (f) Time evolution of N1
corresponding to (e). The calculation parameters are ω0 = 1 eV, Ω0 = 0.3 eV,
ω = 0.26 eV, for gap frequency, peak Rabi frequency, and driving frequency,
respectively.



Chapter 3

Polarization selection rules of high
order sideband generation

3.1 Introduction

Floquet engineering is a potential concept for coherent control of electronic states under
a strong light field [101, 102, 129, 137–140]. The Floquet theoretical approach is useful
for describing strong light-matter interactions at energy scales beyond which perturbation
theory works [16]. In this nonperturbative regime, intense light is predicted to change
the symmetry and topology of the states and in turn the electronic properties of solids
[129,137]. The Floquet state in solids has been verified through time and, angle-resolved
photoemission spectroscopy [101,138], time-resolved absorption spectroscopy [139,140],
and time-resolved transport measurements [102]. Its properties, such as nonperturbative
electron dynamics during the period of the driving laser, can also be explored by using
high-order harmonic generation (HHG) [36, 37, 52, 56], which is a coherent emission
process from a Floquet system [28, 75, 92, 98, 105]. Here, we examine light scattering in
a Floquet system by injecting an additional probe pulse. Compared with HHG, tuning of
the polarization and frequency of the probe light may provide more detailed information
about the symmetries and electronic structures. This process is nothing but high-order
sideband generation (HSG) [13, 85, 86, 88].

In the following, we systematically present polarization selection rules, which is fun-
damental to probe the symmetry of the electronic states, for HSG in monolayer MoS2
under a mid-infrared (MIR) driving field. In a Floquet system, the electronic proper-
ties are described by a unique class of symmetries, called dynamical symmetries (DSs),
which unify the symmetries of the spatio-temporal profiles of the laser field and mate-
rial [28, 92, 96, 98, 101, 105, 138]. It has been experimentally confirmed that DSs govern
the band crossings of surface electrons in a light-driven topological insulator [94,101] and
determines the polarization selection rules for HHG in a circularly polarized light-driven
crystalline solid [105]. Here, we introduce a new interpretation, i.e., HSG as“ Raman
scattering”of the MIR-driven Floquet state, and use the DS concept to achieve a full
understanding of the polarization selection rules.

35
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3.2 Sample
We have two ways to obtain monolayer TMDs: exfoliation or chemical vapor deposition.
In this experiment, we prepared monolayer MoS2 and MoSe2 grown with the chemical
vapor deposition (CVD) method on sapphire substrates. These atomically thin semicon-
ductors allow us to avoid propagation effects in the HSG experiment. The monolayer
flake size of MoS2 was typically one hundred micrometers and MoSe2 was typically tens
of micrometers. HHG and HSG experiments are performed with strong laser power just
below the damage threshold. Thus, in the experimental procedure, we have to check the
damage threshold of the sample first, and then complete all experiments with carefully
checking the damage. Therefore, in the experimental procedure, we need a large area of
the sample or a number of samples. For this reason, CVD samples are better than exfoli-
ated samples. Figure 3.1 shows the typical photograph of the sample of monolayer MoS2.
This sample was provided by Prof. Yasumitsu Miyata and Mr. Takahiko Endo at Tokyo
Metropolitan University. The MoS2 monolayers were prepared by using the method re-
ported by Kojima, K. et al. [141]. The sample size is larger than the spot size of the MIR
light at the focal plane. The side of the triangle grain is along the zigzag direction of the
monolayer TMDs. The monolayer MoSe2 was purchased from 2D Semiconductors, Inc.

Figure 3.1: Photograph of monolayer MoS2 used for the experiment provided by Prof.
Yasumitsu Miyata and Mr. Takahiko Endo in Tokyo Metropolitan University.
The monolayer MoS2 is fabricated with chemical vapor deposition method on
a sapphire substrate.

3.3 Experimental setup
Figure 3.2 shows a schematic diagram of the HSG measurement. We used intense MIR
pulses (photon energy: h̄ωMIR = 0.26 eV, pulse duration: 60 fs) to create a Floquet state in
monolayer MoS2. To achieve a nonperturbative regime without damaging the monolayer,
we set the photon energy of the pulses to a much lower energy than the exciton energy
of the monolayer (1.8 eV) [52]. In addition, we injected weak near-infrared (NIR) pulses
nearly resonant with the bandgap energy (photon energy: h̄ωNIR = 1.55 eV, pulse dura-
tion: 110 fs) into the MIR-driven system. We controlled the polarizations of the MIR and
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NIR pulses by using liquid crystal retarders and resolved the polarization of the sidebands
by using wave plates and polarizers. The sideband spectra were detected by a spectrome-
ter equipped with a CCD camera. Throughout this paper, we denote the zigzag direction
of monolayer MoS2 as X and armchair direction as Y.

Figure 3.2: Schematic of high-order sideband generation (HSG) measurement. a Exper-
imental setup (LCR liquid crystal retarder, QWP quarter wave plate, WGP
wire grid polarizer). b The definition of the polarization. The X and Y direc-
tions correspond to the zigzag and armchair directions of monolayer MoS2.
Reproduced from K. Nagai et al., Communications Physics 3, 137 (2020).
©2020 The authors. Distributed under a Creative Commons Attribution 4.0
International license (CC BY 4.0) [1].

The detail of the experimental setup for the HSG measurements is shown in Fig. 3.3.
Ultrafast laser pulses (photon energy 1.55 eV, 35 fs pulse duration, 1 kHz repetition rate,
7 mJ pulse energy) were derived from a Ti:sapphire based regenerative amplifier. Some
of the total pulse energy (1 mJ) was used to generate signal and idler beams by an opti-
cal parametric amplifier (OPA, TOPAS-C, Light Conversion). The MIR pulses (photon
energy 0.26 eV) were obtained by difference frequency generation (DFG) of the signal
and idler beams in an AgGaS2 crystal. After the DFG, the signal and idler beams were
blocked by a long-pass filter (LPF) with a cutoff wavelength of 4 µm. The total MIR
pulse energy measured just behind the LPF was 3-3.5µJ. Another part of the ultrafast
laser pulses was passed through a bandpass filter (BPF) centered at 800 nm (bandwidth
10 nm) and used as the NIR probe pulses. The polarizations of the NIR and MIR pulses
were controlled by a wire grid polarizer (WGP), a Glan laser polarizer (GLP), and liquid
crystal variable retarders (LCR). The MIR pulses were focused by a ZnSe lens to a spot
60 µm in diameter (full width at half maximum). The spot size of the MIR pulse was
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measured by the knife-edge method by assuming the gaussian profile. This spot size is
smaller than the sample size of CVD grown monolayer MoS2 shown in Fig. 3.1. Thus,
our measurements were conducted for a single monolayer MoS2. On the other hand, in
the case of MoSe2, multiple grains were contained in the spot size. The spot size of the
NIR pulse was determined from the image on the camera in Fig. 3.4 that was built into
the setup drawn in Fig. 3.3. The NIR pulses were passed through a fused-silica lens
and reflected by a D-shaped mirror placed below the MIR beam. The NIR pulses were
focused onto the sample almost coaxially with the MIR beams (approximately 4 degrees
between the two beams). The pulse durations of NIR and MIR pulses were estimated to
be 110 fs and 60 fs (full width at half maximum), respectively. The generated harmonics
and sidebands were collected by a fused-silica lens and their spectra were analyzed by a
grating spectrometer (iHR320, Horiba) equipped with a Peltier-cooled Si charge-coupled
device camera (Syncerity CCD, Horiba). The NIR light was blocked by 750 nm and 550
nm short-pass filter (SPF) in front of the spectrometer. The polarization of the sidebands
was resolved by a quarter-wave plate (Berek variable waveplate) and a wire grid polar-
izer. The retardance in the Berek variable waveplate is determined so that the linearly
polarized second-order sideband becomes circularly polarized after passing through the
waveplate. The relative angle between the crystal axis of the MoS2 and laser polarization
was roughly determined from the sample image obtained by the setup drawn in Fig. 3.3
and confirmed by the polarization selection rule of HHG [44, 52]. On the other hand, the
angle of the MoSe2 crystal was not determined. Thus, we only measured HSG for cir-
cularly polarized light in monolayer MoSe2. The obtained spectra were corrected for the
total efficiency including mirrors, a spectrometer, and a CCD camera. All the experiments
were performed in the air at room temperature.

Experimental procedure to observe HHG and HSG

Below, we write down the experimental procedure to optimize the setup for HSG.

(1). The position of the sample in its depth direction was determined by maximizing the
harmonic intensity from the sample. A bulk GaSe sample was used for the reference
sample since it has high efficiency for HHG.
(2). The position of the GaSe sample was monitored by using the microscope system in
Fig. 3.4 that was built into the setup drawn in Fig. 3.3.
(3). The position in the depth direction of the objective lens mounted on a manual stage
was adjusted to make the sample image on the scientific camera.
(4). The position of the MIR beam spot in the plane parallel to the sample was adjusted
by monitoring the HHG and luminescence with the camera.
(5). The bulk GaSe was replaced by the monolayer sample and its position in the sample
plane is adjusted by the manual stage for the sample mount.
(6). Maximize the HHG in the sample.
(7). The NIR beam is focused onto the sample so that it overlaps with the MIR beam spot.
(8). The temporal overlap was determined by moving the delay stage so that the second-
order sideband was generated. (not to set the position to the satellite peak due to multi-
reflection from the optical system.)
(9). The time origin was precisely determined by maximizing the first-order sideband
intensity. (Although the intensity of the second-order sideband is larger than that of the
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first order, it contains the third-order nonlinear optical signal from the sapphire substrate.
Its time-delay dependence shows a different maximum position from that of the first-order
sideband. We confirmed that the intensity of the second-order sideband from the substrate
under linearly polarized excitation was one order of magnitude smaller than that from the
monolayer sample when the time-delay is adjusted for the first-order sideband.)

Sample

D shaped mirror

QWP WGPWGP
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NIR

MIR HSG

BPF
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Spectrometer
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Regenerative 
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Figure 3.3: Experimental Setup. (BS: beam splitter, BPF: band pass filter, GLP: Glan
laser polarizer, LCR: liquid crystal retarder, OPA: optical parametric ampli-
fier, DFG: difference frequency generation, LPF: long pass filter, WGP：wire
grid polarizer, QWP : quarter wave plate, SPF : short pass filter). Reproduced
from the supplemental document of K. Nagai et al., Communications Physics
3, 137 (2020). ©2020 The authors. Distributed under a Creative Commons
Attribution 4.0 International license (CC BY 4.0) [1].

Compensation of chirp of MIR pulse duration

The efficiency of the high harmonics is highly dependent on the time profile of the MIR
pulse since HHG is a highly nonlinear process. The time profile is modulated when the
MIR pulse passes through the filters and LCR due to the group velocity dispersion in the
media. Thus, the dispersion of the MIR pulse was compensated by inserting CaF2 plates
into the optical path of the MIR pulse. The total thickness of the CaF2 was determined to
maximize the efficiency of HHG from the monolayer sample.

Correction of measured spectra

The spectra shown in this thesis are corrected from the spectra measured by a CCD cam-
era. The corrections are summarized here.
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Figure 3.4: Experimental Setup for sample monitoring (BS: beam splitter). The objective
lens is placed on a flipper mount and can be switched with the fused silica
collection lens in Fig. 3.3.

(1). Correction of the diffraction efficiency of the grating in the spectrometer and correc-
tion of the quantum efficiency of the CCD camera.
(2). Correction of the reflection efficiency of the two aluminum mirrors on the detection
side (S and P polarization, respectively).

The data for the correction (1) is obtained by directly measuring the spectra of a
Halogen lamp for calibration. The reflection efficiency of the mirrors are obtained from
the specification sheet of the aluminum mirrors.

Estimation of pulse intensity at the sample surface

The method of estimating the peak intensity of the incident MIR and NIR pulses is de-
scribed here.
(1). The laser pulse energy was obtained by dividing the power measured using a photo
sensor (for NIR) and a thermal sensor (for MIR) purchased from Thorlabs, Inc. by the
repetition rate of the regenerative amplifier, 1 kHz.
(2). The peak intensity of incident laser pulse in vacuum was calculated by assuming the
Gaussian spatial and temporal profiles.
(3). The peak intensity inside the sample was calculated by multiplying it by the trans-
mittance |t|2 at the interface between the air and the substrate: [142]

|t|2 = | 2
nS +1

|2 (3.1)

where nS is the refractive index of the substrate. The procedure (3) was not applied for
the results for Chapter 3, but Chapter 4.
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3.4 Experimental results

3.4.1 Extraction of HSG spectra

We observed HHG spectra at photon energies of mh̄ωMIR (m : integer) by irradiating
the monolayer with MIR pulses and observed the HSG spectra at photon energies of
h̄ωNIR +mh̄ωMIR (m: integer) by simultaneously applying NIR pulses. Therefore, we
obtained the HSG contribution by subtracting the HHG component from the spectra.

Figure 3.5a shows total spectra of HSG and HHG (green) and HHG spectra (black)
under linearly polarized excitation pulses observed from monolayer MoS2. The polar-
ization was along the X-direction. The HHG spectra were obtained in the condition that
NIR pulses were 10 ps delayed from the MIR pulses. In our experiment, NIR photon
energy is about six times larger than the MIR photon energy. Thus, we observed seventh
order harmonics at the frequency close to that of the first order sideband. We obtained
HSG spectra clearly by subtracting HHG spectra. Figure 3.5b shows the spectra under
circularly polarized excitation pulses with the same excitation power. In this case, we did
not observe HHG. This result is consistent with the previous paper [52]. The HHG from
the sapphire substrate was not detectable in our experiment. This may be due to the large
difference of the bandgap energy between the TMDs and sapphire. On the other hand, the
second-order sideband from the substrate was observed to be typically an order of mag-
nitude smaller than that from the monolayer. This contribution is not subtracted from the
displayed spectra. For example, the double peak structure in the second order sideband in
Fig. 3.5b is due to the signal from the substrate.
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Figure 3.5: Extraction of high-order sideband generation (HSG) spectra. a Total spectra
of HSG and high-order harmonic generation (HHG) (color) and HHG spec-
tra (black) under linear polarization excitation. b Same as a under circular
polarization excitation. Reproduced from the supplemental document of K.
Nagai et al., Communications Physics 3, 137 (2020). ©2020 The authors.
Distributed under a Creative Commons Attribution 4.0 International license
(CC BY 4.0) [1].
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3.4.2 HSG spectra obtained from monolayer MoS2

Figure 3.6 shows polarization-unresolved HSG spectra under linearly and circularly po-
larized excitation with a MIR-pulse peak intensity of 0.5 TW cm−2 and NIR-pulse peak
intensity of 0.5 GW cm−2. Here, sidebands up to the seventh order appear under linearly
polarized excitations. In contrast, sidebands only up to third order appear under circularly
polarized excitation. This difference may arise from the different resultant kinetic ener-
gies that coherent electron-hole pairs obtain from linearly and circularly polarized laser
fields [13, 86]. On the other hand, we could not observe the lower energy sidebands than
NIR photon energy. This may be because the lower energy side is far from the interband
resonance of the monolayer MoS2.
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Figure 3.6: High-order sideband generation (HSG) spectra from monolayer MoS2.
Polarization-unresolved HSG spectra measured under linearly polarized
(cyan, X-polarized near-infrared (NIR) and mid-infrared (MIR) pulses) and
circularly polarized excitation (red, σ+-polarized NIR and MIR pulses). The
intensity of the cyan spectrum is multiplied by 100 for clarity. The black ar-
row shows the photon energy of the NIR pulses. Reproduced from K. Nagai
et al., Communications Physics 3, 137 (2020). ©2020 The authors. Dis-
tributed under a Creative Commons Attribution 4.0 International license (CC
BY 4.0) [1].

Nonperturbative aspects induced by MIR light appear in both the spectral shape and
excitation power dependence. One such aspect is the non-exponential decay with increas-
ing order in the spectra. Moreover, another aspect appears in the excitation power depen-
dence shown in Fig. 3.7. According to the perturbation theory, the n-th order harmonic
intensity is proportional to the n-th power of the incident MIR intensity since the n-th or-
der nonlinear polarization radiates the harmonics. However, the MIR power dependence
deviates from the power-law derived from perturbation theory under both linearly and cir-
cularly polarized excitations (as shown in Figure 3.7a,b). On the other hand, the intensity
of the sideband is proportional to the NIR probe power (Fig. 3.7c,d). This indicates the
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NIR pulses can be treated as a perturbation.
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Figure 3.7: Excitation power dependence of high-order sideband generation (HSG) in
monolayer MoS2. a,b Mid-infrared (MIR) power dependence of HSG under
linearly and circularly polarized light. c,d Near-infrared (NIR) power depen-
dence of HSG under linearly and circularly polarized light. The power shown
in the bottom axis is the peak power of the incident pulse at the focal point in
vacuum. The solid lines are eye guides that show the power law. Reproduced
from the supplemental document of K. Nagai et al., Communications Physics
3, 137 (2020). ©2020 The authors. Distributed under a Creative Commons
Attribution 4.0 International license (CC BY 4.0) [1].

3.4.3 Polarization selection rule of HSG

Figures 3.8a-d shows circular (σ+, σ−) polarization-resolved sideband spectra obtained
from different combinations of σ+- and σ−-polarized excitations. The polarization of
the sideband depends on the order and the polarization of the excitation pulses. Since we
obtained the same result from monolayer MoSe2, which has the same crystal structure,
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the selection rules are determined only by the symmetry of the crystal and polarization of
the light (Fig. 3.9).
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Figure 3.8: Circular polarization-resolved high-order sideband generation (HSG) spectra
from monolayer MoS2. Red and blue shaded areas indicate σ+-polarized and
σ−-polarized spectra, respectively. The sidebands are generated by a σ+-
polarized near- infrared and σ+-polarized mid-infrared pulses (σ+,σσ+), b
(σ+, σ−), c (σ−, σ+), d (σ−, σ−). Each order of the sideband is scaled with
the indicated number. Reproduced from K. Nagai et al., Communications
Physics 3, 137 (2020). ©2020 The authors. Distributed under a Creative
Commons Attribution 4.0 International license (CC BY 4.0) [1].

Furthermore, we systematically examined the linear polarization selection rules. Fig-
ures 3.10a-d show linear polarization-resolved sideband spectra obtained from different
combinations of X and Y-polarized excitations. In particular, when MIR driving pulses
are X-polarized (Figs. 3.10a,b), odd-order sidebands are emitted with a perpendicular
polarization to that of NIR pulses and even-order sidebands are emitted with a parallel
polarization. On the other hand, when the MIR driving pulses are Y-polarized (Figs.
3.10c, d), the polarization of the sideband is parallel to that of NIR pulses for all orders.
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Figure 3.9: Circular polarization-resolved high-order sideband generation (HSG) spectra
from monolayer MoSe2. Red and blue shaded areas indicate σ+-polarized
and σ−-polarized spectra, respectively. The sidebands are generated by a
σ+-polarized near- infrared and σ+-polarized mid-infrared pulses (σ+, σ+),
b (σ+, σ−), c (σ−, σ+), d (σ−, σ−). Each order of the sideband is scaled
with the indicated number. Reproduced from the supplemental document of
K. Nagai et al., Communications Physics 3, 137 (2020). ©2020 The authors.
Distributed under a Creative Commons Attribution 4.0 International license
(CC BY 4.0) [1].
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Figure 3.10: Linear polarization-resolved high-order sideband generation (HSG) spectra
from monolayer MoS2. Cyan and yellow areas indicate X-polarized and Y-
polarized spectra, respectively. The sidebands are generated by e (X, X), f
(X, Y), g (Y, X), h (Y, Y). Each order of the sideband is scaled with the indi-
cated number. Reproduced from K. Nagai et al., Communications Physics
3, 137 (2020). ©2020 The authors. Distributed under a Creative Commons
Attribution 4.0 International license (CC BY 4.0) [1].
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3.5 Theory

3.5.1 Microscopic description of HSG using Floquet theorem
To explain these selection rules, we propose a simple scheme for symmetry analysis of
HSG using the“Raman tensor”and DSs. The conceptual figure of the ”Raman scattering”
description is depicted in Fig. 3.11. The MIR-light driven electronic state in solids is the
scattering center. The NIR light is treated as an incident light, and sidebands are treated
as a scattered light from the center.

SidebandMIR

Floquet system

NIR 

𝜔!"# 𝜔!"# +𝑚𝜔$"#

𝜔$"#𝑬!"# 𝑬$,&

Figure 3.11: Conceptual figure for Raman scattering process in mid-infrared (MIR)-
driven Floquet state. The electric fields of the incident near-infrared (NIR)
and scattered sidebands are denoted by ENIR, ES,m. The angular frequency
of the MIR and NIR, and sidebands are denoted by ωMIR, ωNIR, and
ωNIR +mωMIR, respectively

In the previous report, HSG selection rules were explained in terms of the symme-
try of microscopic intraband dynamics of electron-hole pairs in momentum space [13].
However, it is difficult to extend this microscopic explanation to the circular polariza-
tion case or to polarization selection rules in other materials. Below, we show that DS
gives us a general tool for symmetry analysis of HSG. To justify the“Raman-scattering”
description, we consider a microscopic model of HSG.

We start with a general Hamiltonian of a single electron interacting with an electric
field in a solid. Then, we apply the Floquet theorem by assuming periodicity of the MIR
driving field and fully coherent time evolution of the system, and by using the perturba-
tion theory for the weak NIR pulses. This assumptions lead to the“ Raman-scattering”
description.

A single electron Hamiltonian with mass me in a crystalline solid interacting with a
MIR electric field is given by

Ĥ0 (t) =
1

2me
(p̂− eA(t))2 +U (r̂) , (3.2)

where e is the electron charge, A(t) is the vector potential of the external MIR field and
U (r̂) is periodic potential in the crystalline solid. Here the spatial distribution of A(t)
is neglected by applying long wavelength approximation. Let us consider the additional
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weak NIR electric field, which perturbs the above system. The total Hamiltonian is given
by

Ĥ0 (t) =
1

2me
(p̂− eA(t)− eδANIR (t))

2 +U (r̂) , (3.3)

where δANIR (t) is the vector potential of the weak NIR field. By using Coulomb gauge
∇ ·δANIR = 0 and neglecting the second order of δANIR (t), the total Hamiltonian is given
by

Ĥ (t) =
1

2me
(p̂− eA(t)− eδANIR (t))

2 +U (r̂) ,

= Ĥ0 (t)+δANIR (t) · Ĵ, (3.4)

where

Ĵ =− e
me

(p̂− eA(t)) =
e

me
(ih̄∇+ eA(t)) =

∂ Ĥ0 (t)
∂A(t)

(3.5)

is defined as the current operator in the velocity gauge. We regard δH = δANIR (t) · Ĵ
as the perturbation Hamiltonian. First, we consider MIR-driven system Ĥ0 (t). In our
experimental condition, the MIR pulses are intense, coherent laser pulses and have several
cycles within their pulse durations. Thus, to simplify the description of HSG, we assume
the time periodicity of the MIR field and apply the Floquet theorem explained in Chapter
2 [127]. Note that the Floquet concept is valid in both perturbative and nonperturbative
regime. With this assumption, the Hamiltonian Ĥ0 (t ′) satisfies the periodicity of the MIR
field

Ĥ0 (t) = Ĥ0 (t +2π/ωMIR) (3.6)

with angular frequency of the MIR light ωMIR. We assume that the electronic system lies
in a Floquet eigenstate |iF (t)⟩ at t = −∞. Next, we consider the temporal evolution of
the total system perturbed by the NIR field. Schrödinger equation under the Hamiltonian
H (t) is given by

ih̄
∂
∂ t

|Ψ(t)⟩=
(
Ĥ0 (t)+δ Ĥ (t)

)
|Ψ(t) .⟩ (3.7)

We assume the following ansatz for the wave function:

|Ψ(t)⟩= e−i
εiF

h̄ t |iF (t)⟩+ ∑
eF ̸=iF

CeF (t)e−i
εeF

h̄ t |eF (t)⟩, (3.8)

where |eF (t)⟩ denotes other Floquet eigenstates than |iF(t)⟩. Here, the coefficient CeF (t)
is small because the NIR light is weak. By considering the first order perturbation, we
obtain

CeF (t) =− i
h̄

∫ t

−∞
dt ′eiωeit ′

〈
eF
(
t ′
)∣∣ ∂ Ĥ0 (t ′)

∂A(t ′)

∣∣iF (t ′)〉δANIR
(
t ′
)

(3.9)
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with h̄ωei = εeF − εiF . Here we used the orthogonality of the Floquet eigenstates (that is
non-trivial but can be proved). We calculate HSG by considering current induced in the
perturbed state |Ψ(t)⟩. The expectation value of the current is given by

J(t) =
〈
Ψ(t) |Ĵ|Ψ(t)

〉
≃
〈
iF (t) |Ĵ|iF (t)

〉
+ ∑

eF ̸=iF

(
CeF (t)e−iωeit

〈
iF (t)

∣∣Ĵ∣∣eF (t)
〉
+ c.c.

)
, (3.10)

where the second order term of CeF (t) is neglected. The first term, which is independent
of the NIR light field, contributes to HHG [75]. HSG is induced by the second term
(JSG (t)) that is proportional to the NIR light field. By substituting eq. (3.9) into eq.
(3.10), µ-th component of the polarization current JSG (t) is given by

JSG,µ (t) =− i
h̄ ∑

ν
∑

eF ̸=iF

∫ t

−∞
dt ′e−iωei(t−t ′)χeF

µ,ν
(
t, t ′
)

δANIR,ν
(
t ′
)
+ c.c. (3.11)

with

χeF
µ,ν
(
t, t ′
)
=

〈
iF (t)

∣∣∣∣∂ Ĥ0 (t)
∂Aµ (t)

∣∣∣∣eF (t)
〉〈

eF
(
t ′
)∣∣∣∣∂ Ĥ0 (t ′)

∂Aν (t ′)

∣∣∣∣ iF (t ′)〉 . (3.12)

It can be shown that the JSG (t) emits the electric field that has the sideband frequency
components (see Appendix A.2).

Equation (3.11) justifies the“ Raman scattering” process description depicted in
Fig. 3.12. Figure 3.12(a) shows the energy diagram of the conventional Raman scatter-
ing process. In conventional Raman scattering (inelastic scattering) in solids, incident
light coherently excites an electron from the initial state to an excited state and the elec-
tron simultaneously relaxes back to the final state by emitting lower-frequency or higher-
frequency light (so-called Stokes and anti-Stokes Raman scattering, respectively). The
energy difference between the incident and emitted light is transferred into the solids as
the energy of phonons or electrons etc. Figure 3.12(b) shows the energy diagram of the
“ Raman scattering”process in Floquet systems. In this picture, a NIR photon coher-
ently excites an electron from the initial to an intermediate Floquet state, and the electron
simultaneously relaxes back to the initial state by emitting a sideband photon. In this
interpretation, the high-order sideband corresponds to“multi-photon anti-Stokes Raman
scattering”.

3.5.2 Symmetry constraint on“ Raman tensor”
The second rank tensor χeF

µ,ν (t, t ′) corresponds to the response function of the Floquet
system, which gives the relation between JSG (t) and δANIR (t). It should be noticed
that not the polarization current JSG (t) but χeF

µ,ν (t, t ′) follows the DS of the MIR-driven
Floquet system in the case of HSG selection rule. This is in contrast with the case of HHG
selection rules shown in Chapter 2 [98], where the current has the same DS as the Floquet
system. One simple way to describe the symmetry restriction on JSG (t) and δANIR (t) is
to consider a second rank tensor JSG (t)δA†

NIR (t). One can derive the invariance of this
tensor under the DS operation when δANIR (t) is an“ eigenvector”of the DS operation
(see Appendix A.3).
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(a) (b)

Figure 3.12: Energy level diagram of conventional Raman scattering process. (a) conven-
tional Raman scattering. The energies of the incident photon and scattered
photon are written as h̄ω and h̄ω + h̄ωp, respectively. The vertical arrows
represent electronic transitions between the initial |i⟩, excited |e⟩ and final
state | f ⟩ state. (b) Raman scattering process in mid-infrared (MIR)-driven
Floquet state. The energies of the near-infrared (NIR) photon and scattered
m-th order sideband photon are written as h̄ωNIR and h̄ωNIR +mh̄ωMIR, re-
spectively. The vertical arrows represent electronic transitions between the
initial Floquet state |iF⟩ and intermediate Floquet state |eF⟩. Ladder-like
levels with spacing of the MIR photon energy (h̄ωMIR) denote the quasi-
energy levels of the Floquet states. Reproduced from K. Nagai et al., Com-
munications Physics 3, 137 (2020). ©2020 The authors. Distributed under
a Creative Commons Attribution 4.0 International license (CC BY 4.0) [1].
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JSG (t) and δANIR (t) are directly related to the electric fields of the m-th order side-
band ESG,m(t) and the NIR light ENIR (t). Therefore, the symmetry restriction can be
written in terms of a“ Raman tensor”as follows:

Rm (t) = ESG,m (t)E†
NIR (t) =

(
ESG,m,x (t)E∗

NIR,x (t) ESG,m,x(t)E∗
NIR,y (t)

ESG,m,y (t)E∗
NIR,x (t) ESG,m,y(t)E∗

NIR,y (t)

)
, (3.13)

where ESG,m,x and ENIR,x (ESG,m,y and ENIR,y) denote the X (Y) component of the electric
fields of the m-th order sideband and NIR light, respectively. Here, the direction of the
electric field is restricted to being in a two-dimensional space parallel to the monolayer
sample in our experimental setup. The“ Raman tensor”satisfies the DS of the Floquet
system:

X̂Rm (t) = Rm (t) , (3.14)

where X̂ is a DS operation. Equation (3.14) determines the polarization selection rules of
HSG. This equation also supplies a physical insight of HSG selection rules, where the DS
of the Floquet system determines the relation between incident and scattered lights. This
is similar to the conventional Raman scattering in crystalline solids, where the tensor has
the symmetry of the solid and determines the selection rules [143].

3.5.3 Dynamical symmetry operation for the Floquet system

The DS operation of the Floquet system is determined by the symmetry of the monolayer
TMDs and the MIR-driving field. Thus, the DS of the system under circularly polarized
MIR light is different from that under linearly polarized MIR light.

In this section, DSs under linearly and circularly polarized light in TMDs are derived.
To derive all selection rules, all symmetry operations should be considered. The DS oper-
ations of the MIR-driven Floquet system in solids are derived as the following procedure:

1. Identify the symmetry of crystal only
2. Identify the symmetry of MIR light only
3. Identify the intersection of the DS groups of the crystal and MIR field

Crystal symmetry of monolayer TMDs

The symmetry operations of crystalline solids are well classified by the crystallographic
point group. Monolayer MoS2 and MoSe2 belong to D3h point group. In our experi-
mental condition, the symmetry in the 2D space parallel to the sample plane is enough to
describe the selection rules. The point group to describe the symmetry in the 2D space is
generated by two operations R̂3 and σ̂v, where R̂3 is a rotation by 2π/3 and σ̂v is a mir-
ror operation for the Mo-S direction in the crystal. Since the symmetry of the crystal is
time-independent, the DS groups of the monolayers are generated by R̂3, σ̂v, infinitesimal
temporal translation, and time-reversal operation.
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Dynamical symmetry of MIR light

We describe DS in the product space of time and the 2D space where the polarization
is defined. In the following, we determine the DS of the MIR field by checking the
invariance under all DS operations given by Neufeld, O. et al. [98].

Case 1— Circularly polarized MIR light We write the electric field of circularly po-
larized light as follows:

E(t) =
(

sin(ωMIRt)
−σM cos(ωMIRt)

)
. (3.15)

In this representation, DS group of the MIR light is generated by

D̂y = T̂ · σ̂y (3.16)

Ĉn,σM = τ̂−nσM · R̂n (n → ∞) , (3.17)

where T̂ is time-reversal symmetry operation, σ̂y is mirror symmetry operation with re-
spect to y axis, R̂n is the spatial rotation by 2π/n, τ̂n is the temporal translation by T/n
（T = 2π/ωMIR）, and σM =±1 represent left and right circular polarization of the MIR
light respectively. Ĉn,σM (n → ∞) denotes a DS operation with the infinitesimal spatial
rotation and infinitesimal temporal translation.

Case 2— Linearly polarized MIR light We write the electric field of x-polarized light
as follows:

E(t) =
(

1
0

)
sin(ωMIRt) . (3.18)

In this representation, DS group of the MIR light is generated by the following operations

σ̂x (3.19)

Ĉ2 (3.20)

D̂y (3.21)

Ẑy = τ̂2 · σ̂y (3.22)

Ĥx = T̂ · τ̂2 · σ̂x (3.23)

Q̂ = T̂ · R̂2 (3.24)

Similarly, the DS group of the y-polarized light MIR light can be written by substituting
x and y.

Dynamical symmetry of MIR driven Floquet state in monolayer TMDs

The DS group of the MIR-driven Floquet state in monolayer TMDs is the intersection
of the DS groups of the crystal and MIR field. By comparing the DS groups discussed
above, the generators of the DS group of the MIR-driven Floquet state are the followings:

Case 1— Circularly polarized MIR light

Ĉ3,σM , D̂y (3.25)
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Case 2-1— x-polarized MIR light

D̂y, Ẑy (3.26)

Case 2-2— y-polarized MIR light

σ̂y, Ĥy (3.27)

Here, we show the examples of above operations about Ĉ3,σM , Ẑy and σ̂y through
schematic figures. Figure 3.13(a) shows how the spatial rotation R̂3 changes the com-
bined system of monolayer TMDs and circularly polarized light. Although the crystal
of monolayer TMDs is unchanged under R̂3, the phase of the electric field is shifted by
2π/3. Thus, consequent operation of the temporal translation τ̂−nσM restores the system to
its original state. Therefore, Ĉ3,σM is the DS operation for this case. Figure 3.13(b) shows
how the mirror operation σ̂y changes the system under X- or Y-polarized MIR light. The
crystal is unchanged under σ̂y. The electric field of the X- and Y-polarized light is respec-
tively reversed and unchanged. Thus, the consequent operation of the temporal translation
τ̂2 for X-polarized case restores the system to its original state. Therefore, Ẑy and σ̂y is
the DS operation in X- and Y-polarized cases, respectively.

𝐸!"#
X

Y
𝜎#$R%%

𝐸!"#

(a) Spatial Rotation R%% (b) Mirror operation 𝜎#$

Figure 3.13: Example of DS operation for combined system of mid-infrared (MIR) elec-
tric field and monolayer TMDs. (a) Spatial rotation R̂3 for σ+ circularly
polarized case. (b) Mirror operation σ̂y for X- or Y-polarized case. The
light blue arrows represents the direction of temporal oscillation of the MIR
electric field. The red lines represents the mirror plane.

3.5.4 Dynamical symmetry operation and selection rule of HSG
As shown above, each Floquet system under circularly or linearly polarized field has
two DS operations. We derived the symmetry constraint on the selection rules for all
symmetry operations, which are summarized in Table 3.1. The detailed derivation of the
selection rules is shown in Appendix A.4.

In all cases, one operator more strictly restricts the selection rules than the other oper-
ator does. Under circularly polarized light, the DS operator that determines the selection
rule is

Ĉ3,σM = τ̂−3σM · R̂3, (3.28)
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Table 3.1: DS operation and selection rule of high-order sideband generation. Repro-
duced from the supplemental document of K. Nagai et al., Communications
Physics 3, 137 (2020). ©2020 The authors. Distributed under a Creative Com-
mons Attribution 4.0 International license (CC BY 4.0) [1].

Dynamical symmetry 
operation Selection rule of HSG

!"!
x or y- polarized NIR light

↓
Elliptically polarized sideband light with major or minor axis parallel to the x-axis

#$",$!
Circularly polarized NIR light with helicity %%

↓
Circularly polarized (%&(−%% ± 1) +,-) –th (N : integer) order sideband light 
with helicity (±1) 

.$!
x or y- polarized NIR light

↓
Odd order sideband light polarized perpendicularly to NIR light
Even order sideband light polarized in parallel with NIR light

%/!
x or y- polarized NIR light

↓
Sideband light polarized in parallel with NIR light

0"!
x or y- polarized NIR light

↓
Elliptically polarized sideband light with major or minor axis parallel to the x-axis
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where σM =±1 is the polarization of the MIR driving pulses,τ̂n is a temporal translation
by T/n (T : the period of the MIR light field) and R̂3 is a spatial rotation by 2π/3. The
angle of 2π/3 reflects the three-fold rotational symmetry of the crystal. From equation
(3.14) and (3.28), the circular polarization selection rule of the m-th order sideband is
derived as

mσM +σN −σm
S = 3N, (3.29)

where σN ,σm
S =±1 denotes the polarization of the NIR and m-th order sideband, respec-

tively, and N is an integer (see Appendix A.4). Equation (3.29) is consistent with all
experimental results in Fig. 3.8.

Equation (3.29) represents the angular momentum conservation rule of light modified
in crystalline solids [105, 132, 133]. The σ+(σ−)-polarized light can be considered to
have spin +h̄(−h̄). The left-hand side of equation (3.29) shows the difference between
the total spin of the incident photons and the spin of the emitted m-th order sideband
photon. Although the right-hand side should be zero in isotropic media, 3Nh̄ is allowed in
monolayer MoS2, which has three-fold rotational symmetry, due to the rotational analog
of the Umklapp process.

The linear polarization selection rule can be derived similarly. The DS of the Floquet
system depends on whether the polarization of the MIR pulses is in the X or Y direction,
reflecting the mirror symmetry with respect to the Y direction of monolayer MoS2. The
following DS operations determine the selection rules, respectively:

Ẑy = τ̂2 · σ̂y (3.30)
σ̂y, (3.31)

where σ̂y means reflection with respect to the Y-direction. Because of the temporal term
in equation (3.31), the polarizations of the odd- and even-order sidebands are perpendic-
ular to each other in the X-polarized case. On the other hand, all sidebands have the same
polarization in the Y-polarized case (see Appendix A.4). This is consistent with the ex-
perimental results in Fig. 3.10. Table 3.2 summarizes the polarization selection rules in
each configuration.

3.6 Discussion

3.6.1 Comparison with previous report
Odd-order sidebands in monolayer WSe2 with Y-polarized MIR pulses were not observed
in the previous report, although they were observed in our experiment [13]. This fact does
not contradict our selection rules. The difference in the intensity of odd-order sidebands
may be attributed to the microscopic electron dynamics depending on the frequency of
the excitation pulses. In previous works, the driving field is considered only to induce
intraband acceleration of electron-hole pairs. In this work, due to the relatively higher
frequency of the MIR pulse, the driving field may also contribute to coherent electron-
hole-pair creation, i.e., interband transition, giving rise to the increase of the intensity of
the odd-order sidebands. In terms of the“ Raman scattering”description, the driving
field may create a different Floquet state depending on its frequency and determine the
efficiency of the scattering process.
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Table 3.2: Polarization selection rule of high-order sideband generation in monolayer
MoS2. Allowed polarizations of the sideband are presented for each com-
bination of near-infrared (NIR) and mid-infrared (MIR) polarization. “－
“ indicates the forbidden sideband order. Reproduced from K. Nagai et al.,
Communications Physics 3, 137 (2020). ©2020 The authors. Distributed un-
der a Creative Commons Attribution 4.0 International license (CC BY 4.0) [1].

Therefore, our results are fully consistent with our work and the previous work in
monolayer TMDs [13]. This strongly supports the validity of the DS in strongly light-
driven electronic systems in semiconductors.

3.6.2 Application of dynamical symmetry analysis of high harmonic
generation

It is noteworthy that equation (3.29) cannot be derived from the DS of the MIR- and
NIR-driven crystal using the same analysis as that in the HHG selection rule [98]. The
application of such a DS analysis gives few symmetry restrictions on HSG selection rules.
Similar to the DS analysis of HHG under two-color laser field [95], one can consider the
DS of the crystal under the sum of the MIR and NIR laser field. However, except the case
where the frequency of the two-color laser has a simple integer ratio (or a rational ratio),
it is hard to find a DS operation that governs the light-driven system, giving rise to no
restriction for the polarization selection rule.

To demonstrate this issue, we will show the selection rule in the special case where
frequencies of the two-color laser have a simple integer ratio. Even in such a case, the DS
of the MIR- and NIR-driven system provides only looser selection rules than that given
by the DS analysis on the“Raman tensor”shown in this study. Let us take the frequency
of the NIR field to have a six times larger value than that of the MIR field and both fields
to have circular polarizations. We write the two-color field as

E(t) =
(

sin(ωMIRt)+ sin(6ωMIRt)
−σM cos(ωMIRt)−σN cos(6ωMIRt)

)
. (3.32)

The DS group of the two-color field is generated by

D̂y, Ĉ5,σM (σN = σM) (3.33)

D̂y, Ĉ7,σM (σN =−σM) (3.34)
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Thus, the intersection of the DS group with that of the crystal is only generated by D̂y. Ac-
cording to Table 3.1, D̂y does not restrict the circular polarization selection rule observed
in this work. In this study, the intensity of the NIR field is restricted to the perturbative
regime, and HSG is treated as a light scattering process in a MIR-driven Floquet system,
which allows us to describe the HSG selection rules.

3.6.3 Validity of dynamical symmetry in solids
In our theoretical formalism, dephasing and relaxation are not included, which may affect
the time-translation symmetries [58]. However, the effect of the dephasing on DS should
be negligible as the selection rules are well explained by the DS without dephasing in
this study. The dephasing effect should be more important and relevant for HHG and
HSG in the metallic or strongly correlated electronic system where the electron-electron
scattering takes place much faster than that in semiconductors.

In addition, it is noteworthy that the DS operations that govern the selection rules
do not include the time-reversal operation but include the time-translational symmetry.
In this study, it is unclear whether the time-reversal operation is valid in the strongly
MIR-light-driven system, e.g., D̂y and Ĥy. The HSG selection rules derived from these
operations are looser than that derived from Ĉ3,σM , Ẑy and σ̂y as shown in Appendix A.4.
Further study should explore whether such DS holds for solids, considering the relation-
ship with pulse duration and material properties.

3.6.4 Raman scattering description and sideband intensity
The physical picture of HSG as a Raman scattering in Floquet systems is also related
to understanding the intensity distribution of the sidebands. In the case of conventional
Raman scattering by phonons, the intensity of the Stokes and anti-Stokes lines can be ex-
plained by the thermal distribution of the phonon. However, in the case of HSG, we have
to consider ladder-like structures of the Floquet states depicted in Fig. 3.12 and the transi-
tion between the states. In addition, we have to consider all the electronic band structures
related to the transitions around the sideband peak energy. Thus, our physical picture of
HSG does not offer a simple understanding of sideband intensity in HSG. However, this
picture provides an intuitive understanding of the polarization selection rule.

3.7 Summary
In conclusion, we have systematically determined the circular and linear polarization se-
lection rules of HSG in monolayer MoS2. By combining the concepts of Floquet and
perturbation theory, we devised a new description of HSG as a“ Raman scattering”in
the MIR-driven Floquet state and revealed that the selection rules of HSG can be compre-
hensively understood in terms of DS. DS has the potential to describe topological phases
and classify Floquet systems such as Floquet topological insulators [96, 137]. Thus, our
results pave the way for experimental studies of electronic structures and their topological
properties of Floquet systems through light-scattering experiments and DS analyses.



Chapter 4

Effect of incoherent electron-hole pair
on HHG

4.1 introduction

Nonperturbative light-matter interactions of electrons in solids reveal a variety of coherent
dynamics that cannot be understood within the framework of perturbation theory [8, 33].
A basic understanding of the mechanism underlying HHG is crucial for the study of non-
perturbative light-matter interaction in solids. A number of theoretical studies have treated
light-driven coherent electrons and holes to describe the mechanism in terms of intraband
and intraband mechanisms [38, 40]. Theoretically, harmonics above the band gap energy
are mainly generated by the interband mechanism in an MIR field [68]. On the other hand,
the intraband mechanism mainly contributes to lower order harmonics [68]. In solids,
many-body effects beyond the above single-active electron picture, such as electron-
electron scattering, may strongly affect the properties of HHG [38, 41, 68]. However,
achieving a deeper understanding of the HHG mechanism, such as one disentangling the
contributions of the different processes, remains a challenge because of the inseparable
carrier generation and acceleration processes due to a single MIR pulse.

4.1.1 Many-body effects in HHG

Many-body effects are one of the current research targets of solid-state HHG. In atomic
gases, the electron-electron correlation is a minor effect and almost all characteristics can
be explained by single-electron dynamics based on the three-step model [24] except for
the case in xenon gases [144, 145]. In contrast, in solids, many-body effects become
remarkable due to a large number of electrons simultaneously excited in a solid.

The importance of many-body effects has been pointed out by theoretical studies at
various levels [74, 86, 90, 146–152]. For example, the scattering of electron-hole pairs
randomizes the phase of the interband polarization and the carrier distributions in k-space.
These processes create incoherent carriers, as has been confirmed by the appearance of
photoluminescence in HHG measurements [37, 38]. Such scattering processes have been
discussed phenomenologically by using numerical calculations [38, 41, 68]. Especially,
the dephasing process that occurs in a sub-cycle timescale of the driving field is usually
used to obtain clean harmonic spectra [67, 153].

57
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4.1.2 Photo-carrier doping experiment
Here, a photo-carrier-doping experiment would be particularly useful for clarifying the
HHG mechanism [154]. Photo-carrier doping can be used to separately control the ex-
tent of carrier generation and thereby clarify the roles of the excited carriers. Figure 4.1
schematically shows a photo-carrier doping experiment. A near-infrared (NIR) pulse is
applied to a sample to create electron-hole pairs. After a long enough time passes for the
electron-hole pairs to become incoherent, a strong MIR pulse is applied to the sample to
generate high harmonics. These photo-carriers add to the incoherent carriers excited by
the MIR pulse, and they enhance or suppress the harmonic intensity (Fig. 4.2).

The photo-carrier doping may enhance the intraband current by increasing the total
number of incoherent carriers driven by the strong field as suggested by a gating exper-
iment [84]. The magnitude of the intraband contribution in the HHG process can be
estimated from the extent of harmonic intensity enhancement. In contrast, the photo-
carriers may suppress the interband polarization since they disturb the carrier generation
process in the MIR field (through the phase-space filling effect explained in Chapter 2).
This effect is deemed to be a major factor in the experimentally observed reduction of
harmonics [154]. Photo-carrier doping may also promote excitation-induced dephasing
(EID), which is a carrier density-dependent electron-electron scattering effect, and also
suppress the interband polarization [155]. This effect has been used to explain the broad-
ening of the homogeneous linewidth of excitons in semiconductors [156–158]. We thus
should be able to address the mechanism on HHG by experimentally evaluating changes
in harmonic intensity due to photo-carrier doping and systematically examining the above
effects in a theoretical calculation. Such a systematic study has not been performed until
now.

① Pump (NIR)

② Driving field 
(MIR)

Figure 4.1: Schematic configuration for measurement of effect of photo-carrier doping
on HHG. First, photo-carriers are generated by a near-infrared (NIR) pulse.
After a long enough time passes for the photo-carriers to become incoherent,
high harmonics are generated by a strong mid-infrared (MIR) driving field.

4.1.3 Purpose and composition
In this study, we conducted pump-probe experiments and numerical simulations to ex-
plore the effect of incoherent electron-hole pairs on HHG. The photo-carrier-doping ex-
periment indicated an enhancement of harmonics at fifth order and reductions at seventh



4.2. SAMPLE 59

excitation-
induced
dephasing 

acceleration of photo-carriers

phase
space
filling 

k
En

er
gy

 
photo-carriers 

Figure 4.2: Schematic diagram of photo-carrier doping effect. Intraband current may be
enhanced due to acceleration of the photo-carriers in the MIR field. Interband
polarization may be suppressed due to phase-space filling and excitation-
induced dephasing.

and higher orders. The numerical calculations incorporating the distribution of the photo-
carriers and electron-electron scattering systematically explored the effect of incoherent
carrier doping. We found that the lower order harmonics below the bandgap are enhanced
by intraband acceleration of the incoherent photo-carriers, whereas the enhancement is
dampened by a momentum relaxation process. We also found that the origin of the sup-
pression of interband polarization above the bandgap is EID rather than the phase-space
filling effect. Our numerical calculations suggest that incoherent carriers generated by
a strong driving field should strongly suppress the efficiency of generating higher-order
interband harmonics.

This chapter is organized as follows. Section 4.2 and 4.3 describes our samples and
the experimental setup. Section 4.4.1 presents the results of pump-probe spectroscopy
experiments to estimate the photo-carrier density inside the sample against the pump flu-
ence and pump-probe time delay. Section 4.4.2 describes the experimental investigation
of the photo-carrier doping effect of the photo-carriers on the harmonic generation. The
method of the numerical simulation is presented in Section 4.5, and the results of the
full calculation are shown in Section 4.6.1. The effects of the initial carriers, momentum
relaxation, EID, and excitons on the photo-carrier doping are systematically discussed
by using switch-off analyses in Section 4.6.2. Section 4.6.3 discusses contributions of
incoherent carriers generated by the MIR driving field.

4.2 Sample
We purchased a bulk WSe2 crystal from 2D Semiconductors Inc.. We fabricated an iso-
lated monolayer WSe2 sample on a sapphire substrate by using the mechanical exfoliation
and dry transfer method (Fig. 4.3). The sample preparation was performed by Dr. Satoshi
Kusaba by the following procedure.
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1. Prepare a bulk sample and exfoliate it with adhesive tape in air.
2. Peel back and forth between the tapes until the monolayer appears on the tape. Mono-
layer samples were determined from the optical image of the microscope on the tape.
3. Transfer the monolayer onto a sapphire substrate.
4. With the tape stuck to the substrate, place the substrate on a hot plate and heat it at
60◦C for about 10 minutes. This weakens the adhesion between the sample and the tape.
5. Slowly remove the tape from the substrate on the hot plate.

Al2O3 substrateMonolayer 

(a)

30 µm

(b)
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Figure 4.3: Sample and experimental setup. (a) Photograph of WSe2 monolayer sample
on sapphire substrate. (b) Photoluminescence spectrum of monolayer WSe2
and mid-infrared and near-infrared pulse spectra.

The photoluminescence (PL) spectra were taken by a commercial micro PL spectrom-
eter (NanoFinder30, Tokyo Instruments Inc.) at room temperature. The wavelength of the
excitation laser was 532 nm. The PL spectra were used to determine the photon energy for
the photo-carrier doping. A typical PL spectrum of the monolayer WSe2 sample is shown
in Fig. 4.3(b), which was obtained after the HHG measurement. The PL peak is located
at 1.63 eV, which corresponds to the A-exciton energy of the monolayer WSe2 [112].
The position of the A-exciton energy of monolayer WSe2 is lower than that of monolayer
MoS2 as shown in Fig. 1.12. Thus, we can excite this A exciton, with the frequency of
the fundamental light from our Ti:sapphire regenerative amplifier. This is the reason why
monolayer WSe2 was used for this experiment. In the following, the A-exciton energy is
defined as the absorption edge.

To evaluate the sample degradation under the strong MIR irradiation, we confirmed
the PL spectra at 293 K and 6 K before and after HHG measurements as shown in Figs.
4.4(a) and 4.4(b). At both temperatures, we observed a clear decrease in the PL intensity
due to the MIR irradiation. Before the MIR irradiation (red), PL peaks, including the
exciton (X0), charged exciton (X*), and possibly the intervalley exciton or dark exciton
phonon replica peaks (Xi), are obtained at 6 K [159]. After finishing all experimental
procedures (blue), only the broad PL peak of the localized excitons (Loc.) is observed at
6 K and intensity of the localized exciton luminescence decreases drastically at 293 K.
These results indicate that defect formation should take place extensively by the strong
MIR pulses. However, it is noteworthy that we found no clear decrease in HHG efficiency
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throughout our HHG measurement. This is because the efficiency of PL, which is accom-
panied by the diffusion process, is more sensitive to the defect density than the efficiency
of HHG.
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Figure 4.4: Photoluminescence (PL) spectra of monolayer WSe2 before (blue) and after
(red) the irradiation of strong mid-infrared (MIR) pulses at (a) 293K and (b)
6K. The sample was loaded in a flow liquid helium cryostat and the spectra
are obtained by a commercial micro-PL spectrometer (NanoFinder30, Tokyo
Instruments Inc.). The PL intensity decreases from before to after the MIR
irradiation at both temperatures. The PL spectrum at 6K before the MIR ir-
radiation exhibits sharper peaks than that after the MIR irradiation, including
free exciton (X0), charged exciton (X*) and possibly intervalley exciton or
dark exciton phonon replica (Xi). The PL spectrum after the MIR irradiation
is dominated by the broad peak of the localized excitons (Loc.).

4.3 Experimental setup
Figure 4.3(a) shows the optical setup for degenerate NIR pump-probe spectroscopy of the
photo-carrier dynamics. Part of the output from a Ti:sapphire based regenerative amplifier
(photon energy 1.55 eV, 35 fs pulse duration, 1 kHz repetition rate, 7 mJ pulse energy)
was passed through a bandpass filter to choose the resonant photon energy with the A-
exciton energy (1.63 eV, bandwidth: 10 nm). The spectrum of the NIR pulse is shown
in Fig. 4.3(b). This bandwidth corresponds to a pulse duration of 100 fs. The pump and
probe beams were set to have linear polarizations perpendicular to each other. The spot
sizes of the pump and probe NIR pulses in the focal plane were respectively 60 µm and
30 µm, full width at half maxima (FWHM) assuming a Gaussian profile. The pump beam
was dumped by an iris and a polarizer after it went through the sample. The transmitted
probe beam was detected by a photo-detector and read out by a lock-in amplifier tuned at
a chopper frequency of 500 Hz.

Figure 4.5(b) shows the setup for the optical pump and HHG-probe measurement to
examine the effect of photo-carrier doping on the HHG. The setup is basically the same
as the one in Chapter 3. The same regenerative amplifier was used to pump an optical
parametric amplifier (TOPAS-C, Light Conversion). Strong MIR pulses (photon energy
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0.26 eV) were obtained by difference frequency generation (DFG) of the signal and idler
beams in an AgGaS2 crystal. The signal and idler beams were blocked by a long-pass
filter (LPF) with a cutoff wavelength of 4 µm. The spectrum of the MIR pulse is shown
in Fig. 4.2(b). The photon energy far below the resonance with the absorption edge of
the monolayer WSe2 was chosen to avoid damaging the sample in the strong field. The
pulse duration was estimated to be 60 fs in a cross-correlation measurement as shown in
Appendix A.1. The same NIR pump pulses as in Fig. 4.5(a) were used for the photo-
carrier doping. The NIR and MIR pulses had a linear polarization parallel to each other.
The NIR light was spatially separated and blocked by an iris placed behind the sample.
The NIR and MIR pulse spot sizes were 60 µm and 30 µm (FWHM), respectively. High
harmonics were spectrally resolved by a grating spectrometer (Kymera 193i, Andor) and
measured by a Si charge-coupled device camera (DU920P-OE, Newton). The scattered
component of the NIR light was blocked by a 750-nm short-pass filter (SPF) when mea-
suring the seventh and higher order harmonics or by an 850-nm LPF when measuring
the fifth-order harmonics. The efficiency of the spectrometer is corrected by the same
procedure as that in Chapter 3. All the degenerate pump-probe measurements and HHG
measurements were performed in air at room temperature.

4.4 Experimental results

4.4.1 Degenerate NIR pump-probe measurement

We performed a degenerate NIR pump-probe experiment to estimate the photo-carrier
density for the excitation condition resonant with the A-exciton energy. Figure 4.6 shows
the dependence of the differential transmission signal on the time delay. The differential
transmission (∆T ) is normalized by the transmission of the probe pulse without the pump
pulse (T ). The inset in Fig. 4.6 shows the overall measured data at four excitation fluences
at 40, 80, 160, 320 µJ cm−2. Increases in transmission (∆T/T > 0) were obtained in
all experiments. This indicates the absorption saturation of the probe pulse was due to
the phase-space filling effect. The spike-like signal observed near the time origin may
reflect a coherent nonlinear process caused by the pump and probe pulses. Thus, we only
evaluated the decay curves after the spikes shown in the main panel of Fig. 4.6.

The decay rate of ∆T/T increases with increasing pump fluence. This indicates that
the relaxation process becomes faster nonlinearly with respect to the carrier density. The
exciton-exciton annihilation (EEA) process occurs in TMDs around an excitation fluence
40 µJ cm−2, as reported by Refs. [124,160]. The EEA process is the carrier decay mecha-
nism different from the ordinary recombination of electron-hole pair. When two excitons
collide, the energy of the one exciton is transferred into the other exciton with conserving
total energy and momentum of the excitons. Thus, the probability of the EEA process
is proportional to the square of the exciton density. In addition, ∆T/T does not increase
proportionally to the pump fluence, which indicates saturation of the carrier generation
by the pump pulse. This saturation arises from the phase-space filling effect for the NIR
pump pulse.

By considering these two effects, we fitted the data with the following function:

∆T
T

=
h̄ωN

FS

2
nS +1

N(t) (4.1)
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Figure 4.5: Experimental setup. (a) Experimental setup of degenerate near-infrared
pump-probe measurement. The laser source is a Ti:sapphire regenerative am-
plifier (photon energy 1.55 eV, 35 fs pulse duration, 1 kHz repetition rate, 7
mJ pulse energy). The near-infrared (NIR) pump and probe beams passed
through bandpass filters (1.63 eV) and are incident on the sample with per-
pendicular polarizations to each other. The transmittance of the probe beam
is measured by a photo diode and read out by a lock-in amplifier. (b) Exper-
imental setup for measuring the effect of photo-carrier doping on high har-
monic generation (HHG). The NIR pump (1.63 eV) and strong mid-infrared
(MIR) beams (0.26 eV) are incident on the sample with parallel polariza-
tions to each other. The harmonic spectra are resolved by a spectrometer and
measured by a Si-CCD camera (OPA: optical parametric amplifier, DFG: dif-
ference frequency generation).
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Figure 4.6: Photo-carrier relaxation dynamics at room temperature. (a) Dependence of
normalized differential transmission on time delay for four excitation flu-
ences (40, 80, 160, 320 µJ cm−2). Black solid lines are fitting curves as-
suming the exciton-exciton annihilation (EEA) process and absorption sat-
uration of the pump pulse. Inset : full range data. The fitting result of the
EEA rate is kA = (2.46±0.10)× 10−2 cm2 s−1 and the saturation fluence
is FS = (1.014±0.039)×102 µJ cm−2. The right axis represents the corre-
sponding carrier density. The carrier density of 1.1× 1013 cm−2 is close to
the carrier number of 0.01 per unit cell.

where

N (t) =
N0

1+ kAN0t
, (4.2)

is the carrier (exciton) density in the 2D sample plane at the time delay t assuming the
EEA process and

N0 =
AFS

h̄ωN

(
1− exp

(
−FN

FS

))
(4.3)

is the carrier density at the time origin considering the saturation of the carrier generation
by the pump pulse (a detailed derivation is given in Appendix A.1). h̄ωN = 1.63 eV is
the photon energy of the NIR pulse, FS is the saturation fluence, FN is the pump fluence,
kA is the EEA rate, A is the absorbance of the monolayer WSe2, and nS = 1.76 is the
refractive index of the sapphire substrate [161]. A global fitting using eqs. (4.1)-(4.3)
was performed on the four measured data with FS,kA,A as common free parameters. The
fitting results are summarized in the Table 4.1.

Table 4.1: Fitting results for Figure 4.6

parameter fitting result
A 0.03220 ± 0.00070
kA (2.46 ± 0.10) × 10−2 cm2 s−1

FS (1.014 ± 0.039) × 102 µJ cm−2
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The fitting results are displayed in Fig. 4.6 by black curves. The fitting curves success-
fully explain the all decay curves. The fitting results are summarized in Table 4.1. The rate
kA = (2.46±0.10)×10−2 cm2 s−1 matches well with that reported in Refs. [124,160]. In
general, the EEA is dependent on the surrounding environment for the monolayer [162].
Our result is in particular consistent with the value reported for monolayer WSe2 on a
sapphire substrate. Furthermore, this result validates the estimation of the photo-carrier
density. The right axis in Fig. 4.6 shows the carrier density estimated using eq. (4.1)
and the fitting result of FS = (1.014±0.039)×102 µJ cm−2. The estimated carrier den-
sity in Fig. 4.6 is smaller than the value at which the bandgap renormalization becomes
remarkable in monolayer TMDs (N > 1013-1014 cm −2) [125]. In the next section, we
will mainly examine the results on photo-carrier doping at a pump fluence of 40 µJ cm−2

(corresponding to the red circle in Fig. 4.6) to avoid dealing with the bandgap renormal-
ization.

4.4.2 Measurement for photo-carrier doping effect on HHG

Figure 4.7(a) shows the fifth to twelfth HHG spectra with and without photo-carrier dop-
ing. The polarization of the driving MIR pulses was along the zigzag direction (inset
of Fig. 4.7(a)). The crystal axis was determined by the polarization selection rules of
HHG [44, 52]. The peak intensity of the MIR pulse was 0.092 TW cm−2 inside the sam-
ple, which was calculated by considering the incident pulse intensity, spot sizes, pulse
duration and refractive index of the sapphire substrate [161]. Even-order harmonics ap-
peared because of the broken inversion symmetry of the monolayer [44, 52]. The time
delay was set at 1 ps to prevent consecutive pulses from overlapping, and the pump flu-
ence was set to 40 µJ cm−2, which corresponds to a photo-carrier density of 3.7× 1012

cm−2. We observed a clear difference in harmonic intensity induced by the pump pulse.
Figure 4.7(b) shows the differential harmonic intensity normalized by the each order of
harmonic intensity (∆I/I). The intensity I is calculated by averaging the harmonic spec-
tra over their spectral widths (FWHM). In the energy region lower than the absorption
edge (1.63 eV), we observed a small increase in the intensity of the fifth order harmon-
ics. A previous experiment using a bulk crystal did not find any enhancement due to
photo-carrier doping; instead, a suppression was observed [154]. In our case, the en-
hancement may be due to our use of an ideally thin sample. In contrast, the higher order
harmonics are clearly suppressed, and the degree of suppression becomes larger as the
order increases. We found no clear difference between odd and even harmonics. Figures
4.7(c) and 4.7(d) show results for measurement in the armchair direction (see Fig. 4.7(d)
inset). The differential harmonic intensity in Fig. 4.7(d) shows a similar trend to the one
for the zigzag direction. These results suggest that the differential harmonic intensity is
determined solely by the energy of the harmonics relative to that of the absorption edge.

To confirm the relation between the HHG and photo-carrier dynamics, we measured
the differential harmonic intensity as a function of the time delay using zigzag and arm-
chair polarized pulses at 40 µJ cm−2 (Figs. 4.8(a) and 4.8(b)). A positive time delay
means that the NIR pump pulse arrives at the sample before the MIR pulses. In both
experiments, the signal appeared as a staircase around the time origin, and it decreased
on a timescale of about 10 ps. This timescale well matches the one of the photo-carrier
dynamics in Fig. 4.6.

To evaluate the dependence of the differential harmonic intensity on the photo-carrier
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Figure 4.7: Effect of photo-carrier doping on high harmonic generation in monolayer
WSe2 at room temperature. (a,d) Harmonic spectra induced by intense mid-
infrared (MIR) pulse polarized along (a) zigzag and (d) armchair direction.
Green dotted and yellow solid spectra were respectively obtained without and
with near-infrared (NIR) pump pulses. The inset is a top view of the crystal
structure of monolayer WSe2 and the light blue arrow represents the polar-
ization of the MIR pulses. (b,d) NIR-pump-induced differential harmonic
intensity under (b) zigzag and (d) armchair polarized MIR pulses. The time
delay and the NIR pump fluence were set to 1 ps and 40 µJ cm−2, respec-
tively. The error bars represent standard deviations. The indicated numbers
in (a) and (c) represent the order of the harmonics. The gray lines in (b) and
(e) show the A-exciton energy where the photo-carriers are excited by the
NIR pulses.
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Figure 4.8: Dependence of the differential harmonic intensity on time delay under (a)
zigzag and (b) armchair polarized mid-infrared pulses with pump fluence of
40 µJ cm−2. The error bars represent standard deviations calculated by as-
suming that the deviations are independent of the time delay.

density, we converted the NIR fluence dependence and the time delay dependence by us-
ing the fitting results of eqs. (4.1)-(4.3). The dependences in Figs. 4.9(a) and 4.9(b).were
obtained at a delay of 1 ps and at an NIR pump fluence of 320 µJ cm−2, respectively. The
figures show good agreement between the data and indicate that the observed differential
HHG signal is determined only by the carrier density at the time when the MIR pulses
arrive, and other photo-excitation effects on HHG are negligible. We observed a mono-
tonic decrease for higher order harmonics but a non-monotonic trend for the fifth-order
harmonics at higher pump fluences. For the carrier density estimation, we neglected the
effect of the multiple reflections from our optical system that cause the small dip near 7
ps in Fig. 4.9(b).

Since the MIR field itself creates electron-hole pairs, the effects of the photo-carriers
generally depends on the MIR intensity and underlying HHG mechanism. We measured
the MIR intensity dependence of the differential harmonic intensity using zigzag polarized
pulses, as shown in Fig. 4.10. The photo-carrier density was estimated to be 3.7× 1012

cm−2 under a pump fluence of 40 µJ cm−2 and delay of 1 ps. There was no significant
change in differential harmonic intensity with respect to the MIR intensity, especially for
the seventh and higher harmonics. The increase in the fifth order was relatively large at
lower MIR intensities. The signal-to-noise ratio became worse at intensities below 0.04
TW cm−2. These experimental data will be compared with the numerical simulations in
Sections 4.6.1 and 4.6.3.

We concluded that the observed decreases in harmonic intensity were not due to
screening of the MIR field by the photo-carriers. We measured the transmittance of the
MIR pulses under the same conditions as those of the experiment in Fig. 4.7(b). The
transmission loss due to the photo-carrier doping was less than 1%. This effect is not
large enough to reduce HHG, given that the HHG is proportional to the cube of the MIR
intensity [44, 52].
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Figure 4.9: Photo-carrier density dependence of differential harmonic intensity. (a) The
dependence of the near-infrared (NIR) pump fluence at a time delay of 1 ps
and (b) the dependence on the time delay at pump fluence of 320 µJ cm−2 are
converted into carrier density dependences. The carrier density was estimated
from the fitting results in Fig. 4.6. The mid-infrared polarization is along the
zigzag direction. The error bars represent standard deviations calculated by
assuming that the deviations are independent of the time delay and NIR pump
fluence.
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under photo-carrier doping. The polarization of the MIR pulse is along the
zigzag direction. The error bars represent standard deviations of the mean
value from five measurements under identical conditions.
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The same experiments were also performed for a multilayer sample and we found a
similar result to the monolayer shown in Appendix B.2.
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4.5 Method of numerical calculation
Here, we analyze the photo-carrier doping effect on HHG by numerical simulation. Sev-
eral numerical methods have been proposed to calculate HHG spectra, such as time depen-
dent Schrödinger equation (TDSE) [69], semiconductor Bloch equation (SBE) [67, 72],
and time-dependent density functional theory [73, 74]. In this work, we focus on the
analysis with SBE. The TDSE is based on the single active electron approximation and
in turn, neglects the effect of many body interactions in solids. On the other hand, the
TDDFT can include the effect of electronic correlations. However, it requires a high cal-
culation cost. The SBE can include two-particle correlations, e.g. excitonic effect, and
phenomenologically treat other many body effects.

4.5.1 Derivation of Semiconductor Bloch equation
In this section, we drive the semiconductor Bloch equation (SBE) [163]. The Hartree-
Fock approximation is used to obtain the single-electron approximation [164]. We con-
sider the electronic state when all the bands below the valence band are fully occupied by
electrons as the ground state of the system. Interacting electron Hamiltonian is generally
written as

H =
∫

d3rψ̂†(r)H1ψ̂(r) (4.4)

+
1
2

∫
d3r

∫
d3r′ψ̂†(r)ψ̂†(r′)H2ψ̂(r′)ψ̂(r) (4.5)

The field operator is written as

ψ̂(r, t) = ∑
ν

âν(t)ϕν(r), (4.6)

where ϕν(r) is the complete set of Bloch wave function written by

ϕn,k(r) = un,k(r)eik·r, (4.7)

where un,k(r) is a periodic function in real space. For simplicity, we ignore the spin
degrees of freedom and denote the band number n and Bloch wavenumber k collectively
as ν .

H = ∑
ν
⟨ν |H1 |ν⟩a†

νaν +
1
2 ∑

ν1,ν2,ν3,ν4

⟨ν1,ν2|H2 |ν4,ν3⟩a†
ν1

a†
ν2

aν3aν4 ,

(4.8)

where H1 is the operator that represents the electron kinetic energy and the potential from
the lattice, H2 represents the Coulomb interaction between two electrons. a†

ν and aν are
creation and annihilation operator of electron suffixed by ν , respectively. The matrix
element of H2 is written by

⟨ν1,ν2|H2 |ν4,ν3⟩ = ⟨n1,k1|1 ⊗⟨n2,k2|2V (r̂1 − r̂2) |n4,k4⟩1 ⊗|n3,k3⟩2

= ∑
q

Vq ⟨n1,k1|eiq·r̂ |n4,k4⟩⟨n2,k2|e−iq·r̂ |n3,k3⟩ , (4.9)
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where

V (r) =
e2

4πε0r
(4.10)

V (r) = ∑
q

Vqeiq·r = ∑
G

∑
q∈BZ

Vq+Gei(q+G)·r, (4.11)

e > 0 is the elemental charge and G is the reciprocal vector. To consider two-dimensional
materials in this work, we evaluate the Coulomb interaction by integrating eq. (4.10) in
2D space

Vq =
1
L2

∫
V (r)e−iq·rdr =

e2

2ε0L2q
, (4.12)

where ε0 is the permittivity in the 2D space. The component in eq. (4.9) is calculated as
follows:

⟨n,k|eiq·r̂ |n′,k′⟩ =
∫

u∗n,k(r)un′,k′(r)ei(q−k+k′)·rdr (4.13)

=
∫

unitcell
∑
R

u∗n,k(r)un′,k′(r)ei(q−k+k′)·(r+R)dr (4.14)

= ∑
G

δq+G,k−k′ ⟨un,k|un′,k′⟩ . (4.15)

Thus, we obtain

H = ∑
n,k

εn(k)a†
n,kan,k +

1
2 ∑

n,n′,m,m′
∑

k,k′,q∈BZ
V n,n′,m,m′

k,k′,q a†
n,k+qa†

m,k′−qam′,k′an′,k

(4.16)

V n,n′,m,m′

k,k′,q = ∑
G

Vq+G ⟨un,k+q|un′,k⟩⟨um,k′−q|um′,k′⟩ , (4.17)

where εe(h)(k) is the energy of the n-th band for single electron. In semiconductor optics,
the sum over the G has often been neglected to describe the excitonic response near Γ
point [165].

Semiconductor Bloch equation near bandgap

Here, we derive the Semiconductor Bloch equation historically used for the electrons
around the Γ point near the bandgap of typical semiconductors. The periodic part of the
Bloch function contains the information of the atomic wave functions. We neglect its
wavenumber dependence around the bandgap:

⟨un,k+q|un′,k⟩ ≈ ⟨un,k|un′,k⟩= δn,n′ . (4.18)

Accordingly, we obtain a simplier form of eq. (4.16).

H = ∑
n,k

εn(k)a†
n,kan,k +

1
2 ∑

n,n′
∑
G

∑
k,k′,q∈BZ

Vq+Ga†
n,k+qa†

m,k′−qam,k′an,k (4.19)
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Below, we focus on a two-band system and use the electron-hole picture. We define
the creation operators of the electron in conduction band and hole in valence band by

α†
k = a†

c,k (4.20)

β †
−k = av,k (4.21)

, respectively. By using the anti-commutation relation,

[aµ ,a†
ν ]+ = δµ,ν (4.22)

[aµ ,aν ]+ = 0 (4.23)

[a†
µ ,a

†
ν ]+ = 0 (4.24)

the Hamiltonian eq. (4.16) becomes the following form:

H0 = ∑
k

(
εe(k)α†

kαk + εh(k)β †
−kβ−k

)
+

1
2 ∑

G
∑

k,k′,q∈BZ
Vq+G

[
α†

k+qα†
k′−qαk′αk

+β †
k+qβ †

k′−qβk′βk −2α†
k+qβ †

k′−qβk′αk

]
. (4.25)

where εe(h)(k) is the energy of electron (hole) band.
Next, we consider the interaction Hamiltonian between single electron and classical

electric field. By using the length gauge assuming the long wavelength approximation
and Houston basis [33, 166], we obtain

HI(t) =
∫

drψ̂†(r)er ·E(t)ψ̂(r) (4.26)

= −E(t) ·∑
k

[
α†

kXcc(k)αk +β−kXvv(k)β †
−k

+α†
kβ †

−kXcv(k)+β−kαkXvc(k)
]

(4.27)

Xnm(k) = −e⟨n,k| r̂ |m,k⟩ (4.28)

= −ieδnm
∂

∂k
+dnm(k). (4.29)

Here, the eq. (4.29) is calculated by the following procedure.

⟨n,k| r̂ |m,k′⟩

=
∫

d3rϕ∗
n,k(r)rϕm,k′(r)

=
∫

d3re−ik·ru∗n,k(r)um,k′(r)
(
−i

∂
∂k′ e

ik′·r
)

= −i
∂

∂k

∫
d3rϕ∗

n,k(r)ϕm,k′(r)+ i
∫

d3re−i(k−k′)·ru∗n,k(r)
∂

∂k′um,k′(r)

= iδnmδ (k−k′)
∂

∂k
+ i∑

R
e−i(k−k′)·R

∫
unitcell

d3re−i(k−k′)·ru∗n,k(r)
∂

∂k′um,k′(r)

= δ (k−k′)

(
iδnm

∂
∂k

+ i
∫

unitcell
d3ru∗n,k(r)

∂
∂k

um,k(r)
)

= δ (k−k′)

(
iδnm

∂
∂k

−dnm(k)/e
)
, (4.30)
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where the R is the primitive vector in a crystalline solid, and the delta function is defined in
the first Brillouin zone. The transformation between the fourth and fifth lines is obtained
by integrating by parts and considering the surface term to be zero due to the periodicity
in k-space. The diagonal and off-diagonal terms of

dnm(k) =−ie
∫

unitcell
d3ru∗n,k(r)

∂
∂k

um,k(r). (4.31)

are the Berry connection and interband dipole moment, respectively.
Below we neglect the dependence of the dipole moment in k-space. We also neglect

the Berry connection, which vanishes around the Γ due to the symmetry, i.e., dnn(k) =
−d∗

nn(−k). Around the bandgap at K point in TMDs, the Berry curvature may have a non-
negligible effect. These assumptions break the gauge invariance of SBE [167]. However,
a recent calculation considering monolayer WSe2 showed that the Berry connection is
negligible for HSG.

We now want to derive the coupled equation of motion for the following elements.

Pk(t) = ⟨β−kαk(t)⟩ (4.32)

ne,k(t) = ⟨α†
kαk(t)⟩ (4.33)

nh,k(t) = ⟨β †
−kβ−k(t)⟩ (4.34)

The time evolution is calculated by the Heisenberg equation:

ih̄
∂ ⟨O⟩

∂ t
= ⟨[O,H]⟩ (4.35)

where O is an operator.
The time evolution of above elements are written as

∂
∂ t

(β−kαk) =
i
h̄
[H0 +HI(t),β−kαk]

= − i
h̄
(εe(k)+ εh(k)+ ieE(t) · ∂

∂k
)(β−kαk)

− i
h̄

dcv ·E(t)
(

α†
kαk +β †

−kβ−k −1
)

− i
h̄ ∑

k′,q∈BZ
Ṽq

(
α†

k′+qβ−k+qαk′αk −β †
k′+qβ−k+qβk′αk

+ β−kα†
k′−qαk′αk−q −β−kβ †

k′−qβk′αk−q

)
(4.36)

∂
∂ t

(
α†

kαk

)
=

i
h̄

[
H0 +HI(t),α†

kαk

]
= −2Im[

dcv ·E(t)
h̄

α†
kβ †

−k]+
eE(t)

h̄
· ∂

∂k
α†

kαk

+
i
h̄ ∑

k′,q∈BZ
Ṽq

(
α†

kα†
k′−qαk−qαk′ −α†

k+qα†
k′−qαkαk′

+ α†
kαk−qβ †

k′−qβk′ −α†
k+qαkβ †

k′−qβk′

)
(4.37)
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∂
∂ t

(
β †
−kβ−k

)
=

i
h̄

[
H0 +HI(t),β †

−kβ−k

]
= −2Im[

dcv ·E(t)
h̄

α†
kβ †

−k]+
eE(t)

h̄
· ∂

∂k
β †
−kβ−k

+
i
h̄ ∑

k′,q∈BZ
Ṽq

(
β †
−kβ †

k′−qβ−k−qβk′ −β †
−k+qβ †

k′−qβ−kβk′

+ α†
k′+qαk′β †

−kβ−k+q −α†
k′+qαk′β †

−k−qβ−k

)
, (4.38)

where Ṽq = ∑GVq+G is used. The right-hand sides of the above equations contain the
products of four creation and annihilation operators. The time evolutions of the expecta-
tion values of these products also follow higher correlation terms according to the Heisen-
berg equation. This problem is dealt with as a hierarchy problem using a cluster expansion
approach [163, 165]. By neglecting the higher order term of the hierarchy, we obtain

∂
∂ t

Pk = − i
h̄
(ee(k)+ eh(k)+ ieE(t) · ∂

∂k
)Pk − iωR,k

(
ne,k +nh,k −1

)
(4.39)

∂
∂ t

ne,k = −2Im[ωR,kP∗
k ]+

eE(t)
h̄

· ∂
∂k

ne,k (4.40)

∂
∂ t

nh,k = −2Im[ωR,kP∗
k ]+

eE(t)
h̄

· ∂
∂k

nh,k (4.41)

ei(k) = εi(k)− ∑
q̸=k

Ṽk−qni,q (4.42)

ωR,k =
1
h̄

[
dcv ·E(t)+ ∑

q̸=k
Ṽk−qPq

]
(4.43)

where ei(k) is the single particle energy and h̄ωR,k is the generalized Rabi frequency. The
equation (4.39-4.43) is called SBE. Note that the representation of SBE derived here are
different from those considering the Berry connection [167].

The intra- and inter-band current is calculated by the expectation values of current
operator. We define the current operator from the velocity operator using the Heisenberg
equation (4.35) as

Ĵ(r) =
ie
h̄
[r̂,H] (4.44)

using eq. (4.19). By taking only single-particle Hamiltonian into account, we obtain the
expectation values of total current as follows

⟨Ĵ⟩ =
ie
h̄ ∑

k,k′
∑
i, j

∫
d3r⟨n,k| [r̂,H1] |m,k′⟩⟨a†

n,kam,k′⟩ . (4.45)

When we focus on the two-band system, we can separate the current into two terms:
intraband (diagonal term) and interband (off-diagonal) current

J(t) = Jra(t)+Jer(t) (4.46)

Jra(t) =
e
h̄ ∑

k,i=e,h

∂
∂k

εi(k)ni,k (4.47)

Jer(t) =
2
h̄ ∑

k
εg(k)Im [d∗

cvPk] . (4.48)

with εg(k) = εc(k)− εv(k)
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Transformation of SBE into ordinary differential equation

By transforming the frame of eq. (4.43), we can rewrite the SBE as ordinary differential
equation [67, 167]. We replace the parameter (t,k) by (t,K) with K(t) = k+ e

h̄A(t). The
transformed equations are given as follows:

d
dt

P̃K = − i
h̄
(ee(K− e

h̄
A(t))+ eh(K− e

h̄
A(t)))P̃K − iωR,k

(
ñe,K + ñh,K −1

)
(4.49)

d
dt

ñe,K = −2Im[ωR,K− e
h̄ A(t)P̃

∗
K] (4.50)

d
dt

ñh,K = −2Im[ωR,K− e
h̄ A(t)P̃

∗
K] (4.51)

with Pk = P̃K and nk = ñe,K. In this frame, the parameter K follows the motion of elec-
tron wave packet in k-space written by the acceleration theorem ∂ h̄K

∂ t = −eF(t). The
corresponding intraband and interband current is written by

J(t) = Jra(t)+Jer(t) (4.52)

Jra(t) =
e
h̄ ∑

K,i=e,h

∂
∂K

εi(K− e
h̄

A(t))ñi,K (4.53)

Jer(t) =
2
h̄ ∑

K
εg(K− e

h̄
A(t))Im

[
d∗

cvP̃K
]
. (4.54)

Exciton wave function

The homogeneous part of eq. (4.39) leads to the linear optical response of exciton [163,
165].

d
dt

Pk(t) = − i
h̄
(εe(k)+ εh(k))Pk(t)+

i
h̄

[
dcv ·E(t)+ ∑

q̸=k
Ṽk−qPq

]
, (4.55)

where (ni,k ∼ 0) is assumed. By Fourier transforming the eq. (4.55), we obtain

(εe(k)+ εh(k)− h̄ω)Pk(ω) = dcv ·E(ω)+ ∑
q ̸=k

Ṽk−qPq(ω). (4.56)

When E(ω) = 0, eq. (4.56) leads to the generalized Wannier equation represented in k-
space [163,165]. The exciton energy and wave function in k-space are the eigenvalue and
the eigenfunction of the following equation, respectively:

(εe(k)+ εh(k)− εν)ψν(k) = ∑
q̸=k

Ṽk−qψν(q). (4.57)

If we reduce the energy dispersion to a parabolic structure and transform them into real
space representation, we can obtain the Wannier equation used for the calculation of
Wannier-Mott exciton [165].
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Linear absorption of exciton

To understand the linear optical response of the exciton, we expand the Pk with the set of
ψν(k)

Pk(ω) = ∑
ν

bν(ω)ψν(k). (4.58)

By substituting this into eq. (4.56), we obtain

∑
ν
(εν − h̄ω)bν(ω)ψν(k) = dcv(k) ·E(ω). (4.59)

Multiplying by ψ∗
µ(k) from the left and summing over k, we get

∑
ν
(εν − h̄ω)bν(ω)∑

k
ψ∗

µ(k)ψν(k) = ∑
k

dcv ·E(ω)ψ∗
µ(k)

(4.60)

bµ(ω) =
dcv ·E(ω)

εµ − h̄ω ∑
k

ψ∗
µ(k)

=
dcv ·E(ω)ψ∗

µ(r = 0)
εµ − h̄ω

(4.61)

Thus, Pk(ω) is given by

Pk(ω) = ∑
ν

dcv ·E(ω)ψ∗
ν(r = 0)

εν − h̄ω
ψν(k) (4.62)

Considering the phenomenological damping γ , one finds the polarization given as follows:

P(ω) = ∑
k
(d∗

cvPk(−ω)+dcvP∗
k (ω))

= −LD ∑
ν
|dcv|2E(ω)|ψν(r = 0)|2

[
1

h̄ω − εν + iγ
− 1

h̄ω + εν + iγ

]
, (4.63)

where D is the dimension of the system. By considering only the resonant part of eq.
(4.63), absorption spectrum can be calculated as

α(ω) ∝ Im
[

P(ω)

E(ω)

]
=−LD ∑

ν
|dcv|2|ψν(r = 0)|2Im

[
1

h̄ω − εν + iγ

]
(4.64)

Excitonic optical stark shift

We estimated the magnitude of dipole moment by evaluating the excitonic optical stark
effect. The excitonic optical stark effect is the phenomenon where the exciton energy is
shifted by a perturbation of an AC light field. Here, we derive the relation between the
dipole moment in single electron-hole picture and the dipole of the exciton in two-level
system.

We consider a situation where a non-resonant light pulse is irradiated to an exciton
and its envelope is sufficiently smooth with respect to the carrier frequency. The exciton
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resonance energy in the light pulse can be obtained by calculating the linear response to
the probe light (test light) using the SBE about the microscopic polarization with E(ω) =
0 (eq. (4.55)). We write the electric field of the pump light as E(t) = Ep exp(−iωt). The
energy shift of the exciton is written by

∆Hλλ ′ = Πλλ ′ +∆λλ ′ (4.65)
Πλλ ′ = 2Ep ·∑

k
ψ∗

λ (k)dcv p∗kψλ ′(k) (4.66)

∆λλ ′ = 2∑
kk′

Vk−k′ψ∗
λ (k)(p∗k − p∗k′)(pkψλ ′(k′)+ pk′ψλ ′(k)) (4.67)

where The pk is defined by Pk = pk exp(−iωt) for the polarization Pk induced by the
pump light [165]. Πλλ ′ is the exciton photon interaction and ∆λλ ′ is the exciton exciton
interaction.

The exciton polarization induced by the pump field is obtained from eq. (4.62),

pk(ωp) = b∗µ(ω) = dcv ·Ecv ∑
λ

ψ∗
λ (k)ψλ (r = 0)

h̄(ωλ −ωp − iδ )
(4.68)

Under conditions where the frequency of the pump light is close enough to the 1s exciton
resonance, the 1s term becomes dominant. Thus,

pk(ωp)≈ dcv ·Ecv
ψ∗

1s(k)ψ1s(r = 0)
h̄(ωλ −ωp − iδ )

(4.69)

Therefore, the exciton energy shift is given by

Π1s1s = ψ1s(r = 0)∑
k

ψ1s(k)|ψ1s(k)|2
2|dcv ·Ecv|2

h̄(ω1s −ωp)
(4.70)

∆1s1s = |ψ1s(r = 0)|2

× ∑
kk′

Vk−k′ψ∗
1s(k)(ψ

∗
1s(k)−ψ∗

1s(k
′))(2ψ1s(k)ψ1s(k′))

h̄(ω1s −ωp)

2|dcv ·Ecv|2

h̄(ω1s −ωp)
.(4.71)

The equation (4.70) is equal to the usual two-level stark shift 2|dcv ·Ecv|2/h̄(ω1s −ωp)
times an enhancement factor. The enhancement factor can be calculated analytically from
the wave functions of the excitons in 2D and 3D.

ρ1S = ψ1s(r = 0)∑
k

ψ1s(k)|ψ1s(k)|2 =
(

16/7 (2D)
7/2 (3D).

)
(4.72)

Equation (4.71) is a term that has a different dependence on the pump optical wavelength
of the shift and is particularly important near exciton resonance. In the experiment re-
ported by Ref. [168], the stark shift is proportional to the inverse of the detuning. Thus,
this term can be neglected in Ref. [168].

4.5.2 Model for numerical calculation
To better understand the effect of photo-carrier doping, we theoretically calculated har-
monic spectra by using the linearized semiconductor Bloch equation (SBE) [165]. This
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equation is based on the single-particle picture within the Hartree-Fock approximation,
and the Coulomb interaction is introduced between the individual electrons and holes as
described above. To solve the SBE, we used the band structure of gapped graphene [169].
This model describes the band structure near the band edge of monolayer TMDs at the K
and K′ points [117].

εg (k) =

√
∆2 +4t2

r | f (k)|
2 (4.73)

f (k) =

√
1+4cos

√
3kxa
2

cos
kxa
2

+4cos2 kxa
2

(4.74)

Here ∆ = 1.89 eV is the band gap and a = 3.28Å is the lattice constant of monolayer
WSe2 taken from experimental results [170, 171]. tr is determined so that the effec-
tive mass matches the value estimated from a first principles calculation [115]. εg (k)
is defined as the energy difference between the conduction and valence bands. The band
structure is shown in Fig. 4.11(a). In our calculation, the dipole moment between the
conduction and valence band dcv (k) is assumed to be constant in k-space for simplicity.
The Berry curvature is also neglected for simplicity. The Coulomb interaction matrix VK,
which is in general dependent on the wavenumber of single electrons [172], is assumed to
be only dependent on the relative wavevector of the electrons. Under these conditions, the
system recovers inversion symmetry, which results in the disappearance of the even-order
harmonics in the simulation. This is not an issue in our simulation as there is little differ-
ence between the odd and even order harmonics. We use the following SBE considering
phenomenological scattering processes.

d
dt

PK =− i
h̄

[
εg

(
K− e

h̄
A(t)

)
− iγ − iγe ∑

q
nq

]
PK

− i
h̄
(2nK −1)dcv ·E(t)+

i
h̄ ∑

q̸=K
ṼK−qPq (4.75)

d
dt

nK =−2
h̄

Im [dcv ·E(t)PK∗ ]− 1
h̄

γm

[
nK −nK− e

h̄ A(t),eq

]
(4.76)

Here, a symmetric population in the conduction and valence bands nK = nc,K = 1−nv,K
is assumed. E(t) is the electric field of MIR driving field with a pulse width of 60 fs
and peak field of 8.3 MV cm−1 corresponding to the intensity in our experiment, 0.092
TW cm−2. The excursion scale of the electron-hole pairs in k-space is about a quarter
of the distance between the K and K′ points at this electric field. The polarization is
only in the zigzag direction in Fig. 4.11(b), because our experiment showed no clear
difference between the zigzag and armchair polarizations. γ is the phenomenological
dephasing rate of the interband polarization without excited carriers. The spontaneous
recombination and Auger recombination process of the electron-hole pairs are assumed
to be slow enough to be neglected in the HHG process. γe is the rate of EID, which is
assumed to increase linearly with the total population [155–158]. The total dephasing
rate is defined by Γ = γ + γe ∑q nq. The nonlinear terms of the interband coherence and
population in SBE are neglected for simplicity [165]. This equation does not include the
effect screening of the Coulomb interaction between electrons at high density of carriers,
which is responsible for the bandgap renormalization observed in Ref. [125].
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The photo-carriers are included in our simulation as initial carriers before the MIR
irradiation. In our experiment, the NIR pulses were resonant with the A-exciton peak.
Thus, the photo-carrier distribution is broadened in k-space according to the exciton wave
function in k-space [112]. The exciton wave function is calculated by diagonalizing the
following eigenvalue problem:

(εg (k)− εν)ψν (k) = ∑
q ̸=k

Ṽk−qψν (q) , (4.77)

where, ψν (k) is the exciton wave function in k-space in the single-particle picture and εν
is the corresponding exciton energy [112,165]. This wave function describes how the ex-
citonic state is written by a linear superposition on the basis of Bloch wave function [112].
The diagonalization of eq. (4.77) is calculated using a 75× 75 k-mech in the first Bril-
louin zone shown by a black area in Fig. 4.11. This area is equivalent to the first Brillouin
zone enclosed by the red lines. The Coulomb interaction is modeled as being confined in
2D space as Vq ∝ ∑G 1/ |q+G| using eq. (4.12). The sum over the reciprocal vectors is
calculated up to the ninth-nearest Brillouin zone to ensure translational symmetry of Vq.
The coefficients that define the magnitude of the Coulomb interaction are determined so
that the lowest exciton energy matches the A-exciton of monolayer WSe2 in our experi-
ment (1.63 eV). The resultant absorption spectrum calculated using eq. (4.64) is shown in
Appendix B.3. The photo-carrier distribution in k-space is assumed to be proportional to
the lowest exciton wave function |ψ0 (k)| (Fig. 4.11(c) ). We prepared |ψ0 (k)| by using a
fitting with the following trial function:

|ψ0 (k) |=

 c0(
c1 + | f (k)|2

)c2 + c3

exp

(
−| f (k)|2

σ2

)
(4.78)

The fitting parameters are shown in Table 3.9. The maximum residual of the fitting was
1.6% of the diagonalization result, indicating that the trial function reproduced the numer-
ically obtained wave function. The assumed distribution is further evaluated in Appendix
B.3. The total fraction of the population ∑q nq that corresponds to the carrier density in
the experiment is calculated by multiplying the carrier density by the area of the unit cell
of monolayer WSe2.

Table 4.2: Fitting results for the excitonic wave function

We phenomenologically treat the momentum relaxation as a relaxation into the equi-
librium distribution [14]. γm describes the rate of the momentum relaxation. We use the
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Figure 4.11: Method of numerical calculation (a) Band structure of gapped graphene
model (red: conduction band, blue: valence band). (b) Calculated area
(black) in k-space that corresponds to the first Brillouin zone. The light blue
arrow represents the mid-infrared polarization (zigzag) used in the calcula-
tion. (c) Lowest energy exciton wavefunction ψ0 (k) distributed in k-space
in the single electron-hole picture. The black rhombic region in (c) corre-
sponds to that in (b). The exciton binding energy was set to 0.26 eV.

equilibrium carrier distribution nk,eq defined by the exciton wave function and total carrier
density:

nk,eq =
|ψ0 (k)|

∑q |ψ0 (q)|∑q
nq (4.79)

so that the total carrier density is conserved when the interband transition is zero. The
magnitude of the dipole moment of the lowest energy exciton is estimated from the ex-
perimental results of the optical Stark effect for 1s excitons [173]. Reference [173] gives
the dipole moment in the two-level system of the exciton. Thus, the dipole moment for
single electrons dcv is calculated by dividing the dipole moment of the exciton by an en-
hancement factor 16/7 in the 2D case under the effective mass approximation [165]. The
estimated value is dcv = 1.5×10−29 [C· m].

Equations (6-8) are calculated using a 75× 75 k-mech in the first Brillouin zone. To
calculate the harmonic spectra, we evaluated the harmonic intensity from the intra- and
inter-band current defined as

J(t) = Jra (t)+Jer (t) (4.80)

Jra (t) =
2e
h̄ ∑

K

∂
∂K

εg

(
K− e

h̄
A(t)

)
nK (4.81)

Jer (t) =
2
h̄ ∑

K
εg

(
K− e

h̄
A(t)

)
Im [d∗

cvPK] (4.82)

The harmonic spectra are obtained as I (ω) ∝ |J(ω)|2. Below, the harmonic intensity at
each order is calculated by summing the spectra over the full harmonic spectral width.
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4.6 Results of numerical calculations

4.6.1 Full numerical calculations
We solved the SBE in eqs. (4.76) and (4.76), and calculated the intraband and interband
currents. h̄/γ was set to 8 fs (a half cycle of the MIR field), which is similar to the value
in Ref. [153]. The momentum relaxation time h̄/ γm was set to 16 fs, i.e., slower than
the dephasing constant and the EID rate h̄/γe was set to 1.8×1014 fs cm−2 to reproduce
the experimental results. The time profiles of the mid-infrared field and intraband and
interband current without initial carriers are shown in Figs. 4.12(a) and 4.12(c). The time
evolution of the carrier density is shown in Fig. 4.12(c). The carriers are generated by the
tunneling process most efficiently when the electric field takes its peak value. This process
is repeated for half the period of the MIR electric field. Without dephasing, no real carrier
excitation occurs under the non-resonant driver due to the energy conservation. However,
excited carriers accumulate when fast dephasing processes are present during the period
of the MIR field [136]. Such incoherent carriers contribute to the intraband current, thus,
the peak of its amplitude appears later in the pulse duration, as shown in Fig. 4.12(b).

The calculated intraband and interband harmonic spectra without initial carriers are
shown in Fig. 4.13(a). Here, only odd-order harmonics appear because the calculated
two-band system has inversion symmetry. In this calculation, the interband harmonics are
dominant in the energy region above the absorption edge (1.63 eV), whereas the intraband
harmonics are relevant in the lower energy region, as several studies have indicated [68,
84]. Next, we calculated the harmonic generation with a finite number of initial carriers.
Figure 4.13(b) represents the total harmonic spectra for various photo-carrier densities.

Figures 4.14(a) and 4.14(b) compare the experimental result with the numerical cal-
culation at an initial carrier density of 3.7×1012 cm−2. The numerical calculation repro-
duced the behavior of the positive and negative changes below and above the absorption
edge. There was also good agreement on the larger reduction of the higher-order harmon-
ics.

Initial carrier density dependence of differential total harmonic intensity was calcu-
lated as shown in Fig. 4.15(a). The corresponding result in the experiment is in Fig.
4.15(b). The photo-carrier density dependences are in good agreement especially for the
higher-order harmonics, as is the magnitude of the increase at fifth order for lower ini-
tial carrier density. At higher carrier density, the calculated fifth-order harmonics deviate
from the dependence obtained from the experiment. In addition, we compared the MIR
intensity dependence between the calculation and experiment at an initial carrier density
of 3.7×1012 cm−2.

The calculated differential harmonic intensity at seventh and higher order harmonics
in Fig. 4.16(a) is not significantly dependent on the MIR intensity, which is consistent
with the experimental results in Fig. 4.16(b). Although the absolute value of the cal-
culated differential fifth-order harmonics is typically larger than the experimental result,
the trend, where the value increases as the MIR intensity decreases, is the same as in the
experiment. These results are discussed in sections 4.6.2 and 4.6.3.

To understand the mechanism underlying the observed changes in harmonic intensity
due to photo-carrier doping, we calculated the initial carrier density dependence of the
intraband and interband currents. In Figs. 4.17, the differential harmonic intensity is
normalized by the total harmonic intensity. These results indicate that the increase in the
fifth order harmonics is caused by an increase in the intraband contribution (Fig. 4.17(a)).
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Figure 4.12: Calculated intraband and interband current and evolution of carrier density
in the time domain. (a) Time profile of the mid-infrared (MIR) field used
in the calculation. (b) Intraband and interband current calculated without
initial carriers. (c) Time evolution of carrier density and corresponding de-
phasing time h̄/Γ. The dotted black line represents the photo-carrier density
of 3.7× 1012 cm−2 excited by the near-infrared (NIR) pump pulse, corre-
sponding to the experimental condition in Fig. 4.7. The calculation param-
eters are h̄/γ = 8 fs, h̄/γm = 16 fs, and h̄/γe = 1.8× 1014 fs cm−2. The
dephasing time is h̄/Γ = 4.5 fs after the MIR pulse passes.
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Figure 4.13: Numerical calculation of high harmonic generation spectra with photo-
carrier doping effects. The calculation parameters are h̄/γ = 8 fs, h̄/γm = 16
fs, and h̄/γe = 1.8× 1014 fs cm−2. (a) Intraband and interband harmonic
spectrum without initial carriers. (b) Total harmonic spectra for various
photo-carrier densities. The gray lines represents the lowest exciton energy.
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between (a) calculation at the initial carrier density of 3.7×1012 cm−2 and
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multiplied by 0.1 for visibility. The calculation parameters are h̄/γ = 8 fs,
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On the other hand, the reductions in the harmonics higher than the absorption edge can
be attributed to the reduction in the interband contribution (Fig. 4.17(b)).
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Figure 4.17: Numerical calculation of photo-carrier density dependence of (a) intraband
and (b) interband differential harmonic intensity. The calculation parame-
ters are h̄/γ = 8 fs, h̄/γm = 16 fs, and h̄/γe = 1.8× 1014 fs cm−2. Differen-
tial intraband and interband harmonic intensity are normalized by the total
harmonic intensity calculated without initial carriers.

4.6.2 Switch-off analysis of the photo-carrier doping effects
To clarify the many-body effects included in our calculation, we performed switch-off
analyses based on the full numerical simulations described in the previous section. Figure
4.18(a) is a schematic diagram of the four effects included in our calculation: (ε1) initial
carrier distribution, (ε2) momentum relaxation, (ε3) excitation-induced dephasing (EID),
and (ε4) excitonic effect. Here, we discuss the initial carrier density dependence of the
differential harmonic intensity on the four effects by removing their contributions one at
a time.

The initial carriers may enhance the intraband harmonics due to the acceleration of the
photo-carriers and also suppress the interband harmonics through the phase-space filling
effect. Figure 4.19(a) compares the full calculation (ON, filled markers) and a calcula-
tion without the initial carrier distribution nq (t = 0) = 0 (OFF, unfilled markers), which
is a similar condition to the previous work where the initial carrier density dependence
is effectively included in the increased dephasing rate at t = 0 through the EID [155].
Here, we could not reproduce the increase in the fifth-order harmonics, as shown by the
unfilled circles in Fig. 4.19(a). This indicates that intraband acceleration of the incoher-
ent initial carriers should be relevant to the increase in the fifth-order harmonics, which
is consistent with the result in Fig. 4.17(a). On the other hand, intraband acceleration of
the incoherent carriers does not affect the harmonics above the absorption edge where the
interband mechanism is dominant. Note that the increase in the EID rate in turn increases
the incoherent carriers excited by the strong MIR field, and it might lead to an increase
in the fifth-order intraband current. However, this effect is not significant enough in the
calculation to explain the increase in the fifth-order harmonics. We also found little dif-
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ferences in the seventh- and ninth-order harmonics. This indicates the phase-space filling
effect is negligible in this calculation.

Figure 4.19(b) shows the results for the momentum relaxation. Without momentum
relaxation (h̄/γm = ∞), the fifth-order harmonics increase by one order of the magnitude
and clearly deviate from our experimental observations, where the enhancement was only
about 10%. This is because the intraband current is suppressed by the momentum relax-
ation as shown Fig. B.4. This indicates the significance of the momentum relaxation to
the HHG process.

Figure 4.19(c) shows the results for the EID. Without EID (h̄/γe = ∞), we could not
reproduce the large suppression of higher order harmonics above the absorption edge,
where the interband mechanism is the dominant. Given the result in Fig. 4.19(a), this
result indicates that the EID should be the main cause of the reduction in HHG, not the
phase-space filling effect.

Figure 4.19(d) shows results for the excitonic effect derived from the strong Coulomb
interaction in monolayer WSe2. Without the excitonic effect (Vq = 0), there are large
increases in the fifth- and seventh-order harmonics. If exciton effects were absent, the
bandgap of the single electron would be between the energies of the seventh and ninth
harmonics (1.89 eV). Thus, the intraband contribution would be remarkable even as the
seventh order harmonic intensity increases with the initial carrier density (yellow unfilled
squares in Fig. 4.19(d)). This indicates that the excitonic absorption edge and not the
single-electron bandgap energy determines the HHG mechanism near the edge. Sum-
marizing above discussions, it is clear that we need to include all four contributions, i.e.,
the initial carrier distribution, momentum relaxation, excitation-induced dephasing (EID),
and excitonic effect, to reproduce the experimental effects of photo-doping on HHG.

Note that the rate of EID h̄/γe = 1.8×1014 fs cm−2, i.e.,γe = 3.7×10−12 meV cm2,
which is determined to reproduce the experimental results in our calculation, is very sim-
ilar to the value γe = 2.7× 10−12 meV cm2 estimated from the homogeneous linewidth
of the exciton in monolayer WSe2 at low temperature [158]. The rate of EID for exci-
tons in GaAs divided by the thickness of monolayer WSe2 (6.5 Å) is γe = 2.5×10−12 or
2.5× 10−11 meV cm2 [158, 170]. These results point to the validity of including EID in
our calculation.

4.6.3 Contributions of incoherent electron-hole pairs generated by
MIR driving field for HHG

The calculations in sections 4.6.1 and 4.6.2 revealed the significance of EID in the HHG
process. Here, we evaluate the impact of incoherent carriers generated by a strong MIR
pulse itself on HHG through EID. Figure 4.12(a) shows the total carrier density without
initial carriers and the corresponding evolution of the dephasing time h̄/Γ. According to
our simulation, an MIR pulse with a peak electric field of 8.3 MV cm−1 creates carriers
with a density of approximately 1013 cm−2 at the center of the pulse duration. This
carrier density is comparable to or higher than the density of the doped photo-carriers in
the experiment in Fig. 4.7 (the black dotted line in Fig. 4.12(a)). These incoherent carriers
created by the MIR pulse promote the dephasing process. The calculated dephasing time
decreases from 8 fs to 6 fs at the center of the mid-infrared field. This suggests the
importance of EID during the MIR pulse irradiation. An MIR driving field with a longer
pulse duration may create more incoherent carriers and suppress the high harmonics in
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Figure 4.18: Schematics of the four effects: (ε1) initial carrier distribution, (ε2) momen-
tum relaxation, (ε3) excitation-induced dephasing (EID), and (ε4) excitonic
effect.

the ultraviolet or higher energy region.
The previous sections assumed that EID increases linearly with respect to the carrier

density. The validity of this assumption is supported by the experimentally observed MIR
intensity dependence, which can be explained as follows. We generally write the carrier
density dependent dephasing rate as Γ(NMIR (IMIR)+NNIR), where NNIR is the incoherent
photo-carrier density and NMIR (IMIR) is the incoherent carrier density generated by the
MIR pulse depending on the intensity IMIR. Since the interband harmonics is exponen-
tially dependent on the dephasing rate as shown in Fig. B.5 [155], the ratio between the
n-th order interband harmonic intensity with (In

Inter (IMIR)) and without (In
Inter,0 (IMIR))

photo-carrier doping is expressed as

In
Inter (IMIR) = In

Inter, 0 (IMIR)exp
[
−Γ(NMIR (IMIR)+NNIR)−Γ(NMIR (IMIR))

Γn

]
(4.83)

where Γn is a normalization parameter for the n-th order harmonics. The normalized
differential harmonic intensity is given by

∆In
Inter (IMIR)

InInter, 0 (IMIR)
= exp

[
−Γ(NMIR (IMIR)+NNIR)−Γ(NMIR (IMIR))

Γn

]
−1. (4.84)

On the other hand, the experiment showed no significant change for the seventh and higher
order harmonics in Fig. 4.15(b). This can only be explained when the right hand side
of eq. (4.84) is independent of the MIR intensity, i.e., the dephasing rate is linearly
dependent on the carrier density.

In Fig. 4.15(a), the fifth-order differential harmonic intensity increases by lowering
the MIR intensity. This is because NNIR becomes relatively larger than NMIR (IMIR) at
lower MIR intensity and results in a relatively large enhancement in the intraband har-
monics that is significant at fifth order. This is similar in trend to the experimental results
in Fig. 4.15(b) and supports the idea of including the initial carrier distribution in the
simulation. On the other hand, our calculation overestimates the increase in the fifth-
order harmonics. This may be due to the effect of electron-electron scattering that are not
included in our calculation.
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Figure 4.19: Switch-off analysis of four effects: (ε1) initial carrier distribution, (ε2) mo-
mentum relaxation (ε3) excitation-induced dephasing (EID) and (ε4) ex-
citonic effect. Calculated initial carrier density dependence of differential
total harmonic intensity normalized by the total harmonic intensity without
initial carriers. Filled and unfilled markers represent the results of full and
switched-off calculations, respectively. The switched-off results were calcu-
lated by respectively setting (a) nq (t = 0) = 0, (b) h̄/γm = ∞, (c) h̄/γe = ∞,
and (d) Vq = 0. For the calculation in (a), the initial carrier density depen-
dence is effectively included in the increased dephasing rate at t=0 through
the EID. The fifth-order harmonic intensity in (a) is multiplied by 0.1 for
visibility.
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The calculated initial carrier density dependence for the fifth-order harmonics in Fig.
4.15(a) deviates from the observed dependence in Fig. 4.15(b) at high photo-carrier den-
sities. The calculated dependence monotonically increases with increasing the carrier
density but the experimental result reaches the maximum value at a certain density and
starts to decrease after that. This experimental result may be reproduced by considering
the temperature rise due to the strong electron-electron scattering at higher carrier density,
which reduces the intraband harmonics (see Fig. B.6). The above considerations point to
the necessity of including the photo-carrier doping effects discussed in section 4.6.2 and
suggest the crucial role in HHG of incoherent carriers generated by the MIR pulse itself
through EID.

4.7 Effect of carrier dynamics on dynamical symmetry
in ultrashort laser pulse

In this section we discuss how much DS is broken in strongly MIR light-driven semicon-
ductors.

4.7.1 Effect on excitation-induced dephasing on dynamical symme-
try

In many numerical calculations for HHG, the dephasing time is assumed to be constant,
and the effect of time-varying dephasing due to EID has not been explored. The time-
varying dephasing may disrupt the time translational symmetry of the electronic system
in the periodically driven semiconductor. Here, we evaluate the effect of EID on HHG
and DS by using the EID rate estimated from our experiment and calculation. Figure
4.20 compares the harmonic spectra in the case where EID is taken into account and
the case where the dephasing rate at the center of the pulse is kept constant from the
beginning. Figures 4.20 (a,b) displays the temporal profile of the MIR pulse and the
computed dephasing time. The red and yellow-green curves in Fig. 4.20 respectively
represent the case with and without time-varying dephasing. The corresponding spectra
are shown in Fig. 4.20 (c). The spectra are calculated via the same condition as that in
Fig. 4.13 without initial carriers. In the comparison between the red and yellow-green
spectra, we found no significant change, such as peak shift of the harmonics observed in
HHG from graphene [58]. This indicates that the effect of its temporal variation within
the pulse width is not significant on the shape of the resulting spectrum. Also, this shows
that the time-varying dephasing in the driving pulse duration does not significantly disturb
the DS.

In our study for semiconductors, the total number of excited carriers is estimated to
be several percent after the strong MIR pulse passes. Thus, our calculation showed this
amount of the carriers is not enough to cause phase-space filling in the HHG process.
However, the application of the strong pulse to a narrow gap semiconductor may make
the phase-space filling effect more obvious because a number of carriers are generated.
This may break the time translational symmetry of the periodically driven system.
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Figure 4.20: Effect of time-varying dephasing in the driving pulse duration on high har-
monic generation (HHG). (a) Temporal profile of the MIR electric field.
(b) Temporal profile of the dephasing time in the case where EID is taken
into account (red curve) and the case where the dephasing rate at the center
of the pulse is kept constant from the beginning (yellow-green curve). (c)
Comparison of the harmonic spectra corresponding to the dephasing time in
(b). The spectra were calculated using the method explained in Fig. 4.13.
The initial carriers are set to 0. The calculation parameters are h̄/γ = 8
fs, h̄/γm = 16 fs, and h̄/γe = 1.8× 1014 fs cm−2 for the red curve, and
h̄/γ = 5.8 fs, h̄/γm = 16 fs, and h̄/γe = ∞ for the green curve, respectively.

4.7.2 Time-translational symmetry in ultrashort laser pulse
In previous research, clear evidence of time-translational symmetry breaking was ob-
served in semiconductors in ultrashort laser pulses, where the frequency of the harmonic
peak deviates from the integer multiples of the fundamental pulse frequency [55,64]. Both
experiments used few-cycle driving pulses whose temporal profiles of driving laser fields
were far from the periodic ones. Our experiments used the MIR pulse with a duration
of 60 fs, which includes approximately six laser cycles in its duration. This resulted in
the harmonic peaks at the integer multiples of the fundamental frequency throughout our
study. This contributes to the description of Floquet’s picture used in the HSG analysis
working well.

4.8 Summery
We studied the effects of incoherent electron-hole pairs on high harmonic generation in
an ideally thin semiconductor under a strong MIR field. We found that, due to the photo-
carrier doping, the harmonic intensity changes positively and negatively below and above
the absorption edge. To describe the photo-carrier doping effect, we performed numerical
simulations phenomenologically considering both the electron-electron scattering process
and the photo-doped carrier distributions. They showed that photo-carriers enhance the
intraband current relevant to lower-order harmonics, which is relatively suppressed by
momentum relaxation. We also showed that photo-carriers significantly suppress the in-
terband current that contributes to higher-order harmonics above the absorption edge. We
clarified that the main suppressive effect is not the phase-space filling but rather the EID.
Our work revealed that many-body effects such as the electron-electron scattering beyond
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the single-active electron picture play a crucial role in the solid-state HHG, although they
do not break the symmetry of the periodically driven system. These findings provide a
basic understanding of high harmonic spectroscopy in solids and the generation of broad-
band light from solids.





Chapter 5

Conclusion and outlook

5.1 Conclusion

In this study, we focused on the dynamical symmetry (DS), which is promising for gen-
erally describing the nature of strongly light-driven electronic systems. We investigated
the validity of DS in solids, which has been still unclear, by performing two experiments.
Throughout this thesis, we used monolayer transition metal dichalcogenides. These ma-
terials allow us to discuss high harmonic generation (HHG) and high order sideband gen-
eration (HSG) without considering propagation effects, such as reabsorption and phase
matching. In addition, these materials facilitate the theoretical analysis since they can be
treated as a two-dimensional system rather than a three-dimensional system.

Since HSG is a phenomenon induced by two light pulses of different frequencies, the
polarization selection rule for HSG provides more information about the symmetry than
the one for HHG. In our experiments, we generated high order sidebands by applying in-
tense mid-infrared light and weak near-infrared light nearly resonant with the absorption
edge of the material. We obtained clear polarization selection rules for linear and circular
polarizations. We proposed a physical picture of HSG as ”Raman scattering in the Flo-
quet system”, which comprehensively explains the selection rules. As a result, we found
perfect agreement in the experimentally and theoretically obtained selection rules. This
indicates that DS, which describes the coherent time evolution of a single electron, well
illustrates the strong light-driven electronic system in semiconductors.

Meanwhile, one remarkable effect that can break DS in solids is the accumulation
of incoherent carriers during the application of a strong infrared pulse. To investigate
this effect, we studied incoherent photo-carrier doping on HHG. We observed HHG in
monolayer WSe2 and confirmed a weak enhancement of the fifth harmonic (appearing
at the lower energy side of the absorption edge) and a strong suppression of the higher
harmonics (at higher energy side of the absorption edge) following the photo-carrier dop-
ing. Numerical calculations reproducing the experimental results showed that the en-
hancement of the fifth order harmonics is owing to increased intraband current by the
photo-carriers, which is suppressed by the momentum relaxation. We also found that the
decrease in the high order interband harmonics is not due to phase-space filling but the
effect of excitation-induced dephasing. The numerical results suggest that the incoherent
carriers generated by the mid-infrared light pulse promote the dephasing of the interband
polarization in the latter half of the MIR pulse duration.

We summarize these two studies. The first study showed that the electronic state in
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an intense mid-infrared pulse can be well described by DS based on the coherent time
evolution of a single electron. However, the second study showed that the fast scattering
phenomena on a timescale comparable to the mid-infrared electric field period is pro-
moted by the accumulation of incoherent carriers, which inhibits the coherent motion of
a single electron. This indicates that it is necessary to consider the many-body effects
for a detailed understanding of HHG. Due to the many-body effect, one may intuitively
expect that the accumulation of incoherent carriers in the pulse duration disrupts the time
periodicity. However, we showed that these effects are not significant enough to interfere
with the DS of the system and the resulting polarization selection rules. Therefore, we
concluded that DS symmetry is useful for describing nonperturbative light-matter interac-
tions in semiconductors under strong MIR light field. This provides a general insight for
further nonperturbative optical phenomena and Floquet engineering of semiconductors.

5.2 Outlook
Regarding the DS, in Chapter 3, the symmetry mainly used to understand the polarization
selection rule is the operator accompanied by time-translational symmetry. The validity
of time-reversal symmetry is still unclear. Dissipative processes may hinder these sym-
metries in solids. In fast, our study for black phosphorous revealed the breaking of the
time-reversal symmetry by observing the elliptically polarized high harmonics under lin-
early polarized field [174]. It remains to be verified in what cases this symmetry is valid
in solids. In Chapter 4, we performed numerical calculations of higher harmonics using a
simplified model to more comprehensively understand the underlying physics. The repro-
duction of the experimentally obtained HHG spectra has yet to be done within this work.
Future theoretical studies on the mechanism of HHG should take account of an ab-initio
band structure, dipole moment structure, and Berry curvature, which are simplified or
neglected in our study.

This thesis has focused on the generation of higher harmonics in semiconductors.
However, in metals and strongly correlated electron systems in strong light fields, the
DS may be broken due to the strong effects of many-body interaction. It will be inter-
esting to understand how DS works in such strongly correlated systems using the more
sophisticated formalism of DS in many-body Floquet systems. It is also essential to sys-
tematically clarify how the many-body effect affects the DS when a field-effect transistor
structure largely controls the Fermi level in semiconductors. A high doping density of
carriers may cause screening of the Coulomb interaction between electrons, and they al-
low studying its role for HHG. Furthermore, it will also be an interesting research subject
to clarify how the interactions of electrons with spins and phonons modify the electronic
dynamics in a strong field.

Although our experiment focused on monolayer TMDs in this thesis, we also investi-
gated HHG from nano-size materials such as black phosphorous and carbon nanotubes in
recent works [84,174]. In principle, we can generate high harmonics in any material. The
fact that a wide variety of materials show characteristic responses to a strong light field
indicates another direction for strong-field physics in solids as material science.

The strong field physics in solid-state systems leaves many aspects to be developed in
the future. Vigorous experimental and theoretical research will lead to discovering novel
physical phenomena and point the way to further directions in this research field.



95





Appendix A

A.1 Estimation of pulse durations
Here, we show how to estimate the pulse duration of the NIR and MIR pulses used in
HSG measurement. We consider gaussian envelops for the MIR and NIR electric field

EMIR (t) = E(0)
M exp

(
− t2

2τ2
M

)
(A.1)

ENIR (t) = E(0)
N exp

(
− t2

2τ2
N

)
, (A.2)

where EMIR (t) and ENIR (t) are the envelops of the MIR and NIR electric field respec-
tively. τM and τN are related to the full width at half maximum of MIR (FWHMM) and
NIR (FWHMN) pulses as follows:

FWHMM = 2τM
√

ln(2) (A.3)

FWHMN = 2τN
√

ln(2). (A.4)

The pulse duration of NIR pulses after passing through the bandpass filter and liquid crys-
tal retarder was measured as 110 fs (FWHM) by SPIDER (Spectral Phase Interferometry
for Direct Electric-field Reconstruction). We estimated the pulse duration of the MIR
pulses from the time delay dependence of the first-order sideband intensity.

One of the conventional methods to examine an unknown pulse duration is the cross-
correlation method, where an unknown pulse duration is estimated from the time delay
dependence of the sum-frequency generation (SFG) in a nonlinear optical media with
another known pulse. According to the perturbation theory, the electric field generated by
SFG of the NIR and MIR pulses at each time t ′ is given by

ESFG
(
t, t ′
)

∝ EMIR
(
t − t ′

)
ENIR

(
t ′
)
, (A.5)

where the optical response of the media is assumed to be instantaneous. t is the time delay
of the NIR and MIR pulses. When the intensity of SFG is measured by a detector that has
no time resolution, the integrated intensity ISFG (t) is given by

ISFG (t) ∝
∫

dt ′
∣∣EMIR

(
t − t ′

)
ENIR

(
t ′
)∣∣2 ∝

∫
dt ′IMIR

(
t − t ′

)
INIR

(
t ′
)
. (A.6)

The MIR pulse duration can be derived from this expression. However, the sideband
generation is a non-perturbative phenomenon; excitation power dependence does not fol-
low the power law. Thus, we modify the analysis of the cross-correlation method. We
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approximate the instantaneous response of sideband generation and write the first-order
sideband intensity as

IS (t) ∝
∫

dt ′ f
(
IMIR

(
t − t ′

))
INIR

(
t ′
)

(A.7)

with a nonlinear function f . The function f is determined by fitting the obtained the MIR
excitation power dependence of the sideband intensity F (IMIR,0), where IMIR,0 is the peak
power of the MIR pulses written as

IMIR,0 =
1
2

cε0E(0)
M

2
, (A.8)

c is the speed of light and ε0 is the permittivity in a vacuum. We assume that the function
f can be approximately written as

f (I) = 1− exp
(
− I

w1

)
, (A.9)

which is convex and satisfies f (0) = 0. The function f works so that the time duration
of f (IMIR (t)) becomes longer than that of IMIR (t). The excitation power dependence
F (IMIR,0) is measured at time delay 0, therefore that is given by

F (IMIR,0) =C
∫

dt ′ f
(
IMIR

(
−t ′
))

INIR
(
t ′
)

=C′
∫

dt ′
(

1− exp
(
−

IMIR,0

w1
exp
(
− t ′2

τ2
M

)))
exp
(
− t ′2

τ2
N

)
, (A.10)

where C and C′ are constants. Furthermore, the time delay dependence G(t) is give by

G(t) =C
∫

dt ′ f
(
IMIR

(
t − t ′

))
INIR

(
t ′
)

=C′
∫

dt ′
(

1− exp

(
−

IMIR,0,max

w1
exp

(
−(t − t ′)2

τ2
M

)))
exp
(
− t ′2

τ2
N

)
. (A.11)

IMIR,0,max is the maximum MIR power, which was used for the measurement of the time
delay dependence. The parameters C′,τM, and w1 are determined through the global
fitting of the experimental results. As a result, FWHMM was estimated to be 60 fs from
τM. The fitting curves by eqs. (A.10) and (A.11) are shown by solid lines in Fig. A.1.

A.2 Frequency component of JSG (t)

We show JSG (t) emits the electric field that has the sideband frequency components.
According to eqs. (3.6), the tensor χeF

µ,ν (t, t ′) satisfies the following temporal periodicity:

χeF
µ,ν
(
t, t ′
)
= χeF

µ,ν
(
t +2πl/ωMIR, t ′+2πl′/ωMIR

)
, (A.12)

where l, l′ are integers. Thus, χeF
µ,ν (t, t ′) can be expanded in a Fourier series as follows:

χeF
µ,ν
(
t, t ′
)
= ∑

l,l′
aeF

µ,ν ,l,l′e
ilωMIRte−il′ωMIRt′. (A.13)
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Figure A.1: Estimation of MIR pulse duration. a, b MIR power dependence (a) and
time delay dependence (b) of the first order sideband intensity under σ+-
polarized NIR and MIR pulses. The blue solid lines in (a) and (b) are the
fitting result with F (IMIR,0) and G(t), respectively.

Note that χeF
µ,ν (t, t ′) can also be expanded on the basis of the Floquet modes [127], how-

ever, the representation of eq. (A.13) would become lengthy. When the NIR light is a
continuous wave, the Fourier component of JSG (t) can be written explicitly. We write
the NIR light as δANIR,ν (t ′) = δA0,νe−iωNIRt ′ by applying the rotating wave approxima-
tion. To simplify the discussion, we only consider the first term of eq. (3.11) because the
complex conjugate term just gives the time-reversal pair of the current. We consider the
damping Γ and then obtain

JSG,µ (ω) =− i
h̄ ∑

ν ,l,l′
∑

eF ̸=iF

aeF
µ,ν ,l,l′δA0,ν

∫ ∞

−∞
dt
∫ t

−∞
dt ′e−(iωei+Γ)(t−t ′)

×eilωMIRte−il′ωMIRt ′e−iωNIRt ′eiωt . (A.14)

By calculating the integral with respect to t ′ and taking the limit of Γ →+0, we get

JSG,µ (ω) =− i
h̄ ∑

ν ,l,l′
∑

eF ̸=iF

aeF
µ,ν ,l,l′δA0,ν

∫ ∞

−∞
dt

ei(l−l′)ωMIR−ωNIR+ω)t

−l′ωMIR −ωNIR +ωei − i0

=− 2πi
h̄ ∑

ν ,l,l′
∑

eF ̸=iF

aeF
µ,ν ,l,l′δA0,ν

1
−l′ωMIR −ωNIR +ωei − i0

×δ (
(
l − l′

)
ωMIR −ωNIR +ω)) (A.15)

Therefore, the current JSG (t) is the sum of the m-th order frequency component written
as

JSG,µ (t) = ∑
m

JSG, m,µ (t)

=− i
h̄ ∑

m
∑
ν ,l

∑
eF ̸=iF

aeF
µ,ν ,l,l′δA0,ν

1
−(m+ l)ωMIR −ωNIR +ωei − i0

e−i(ωNIR+mωMIR)t .

(A.16)
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A.3 Derivation of“ Raman tensor”
In this section, we derive the symmetry constraint on“ Raman tensor” discussed in
Section 3.5.2

A.3.1 Definition of dynamical symmetry
Here, we show the definition of the DS operation n this thesis. We basically follow the
definition and the notation of DS operations studied by Neufeld, O. et al. [98]. Accord-
ingly, the time-reversal operation is included in our discussion of DS. We regard a ”static”
symmetry (i.e., pure spatial symmetry) operation as one of the DS operations [99]. Note
that we distinguish the following two different definitions of the DS operations.

1. Operations for the vector component and temporal part of the electric fields (denoted
as X̂)
2. Corresponding unitary and anti-unitary operations in quantum mechanics for the posi-
tion of the electron and time (r,t) (denoted as X̂q)

A.3.2 Symmetry constraint on microscopic model
We derive the DS constraint on the microscopic model introduced in Section 3.5.1. We
show only the example for the DS operations that are accompanied by the temporal trans-
lation. Note that the microscopic model is also restricted by the DS operations accompa-
nied by the time-reversal operation. In the following, to simplify the discussion, we only
consider the first term of eq. (3.11). We consider the DS operation X̂ t = X̂s · τ̂ t for the
MIR driven system, where X̂s is an operation for the spatial component of the vectors and
τ̂ t is a time-translation operation for the time t by ∆t. By applying this operation for the
current JSG (t) in eq. (3.11), we obtain

X̂ tJSG (t) =− i
h̄ ∑

eF ̸=iF

X̂ t
∫ t

−∞
dt ′e−iωei(t−t ′)χeF

(
t, t ′
)

δANIR
(
t ′
)

=− i
h̄ ∑

eF ̸=iF

∫ t+∆t

−∞
dt ′′e−iωei(t+∆t−t ′)X̂sχeF

(
t +∆t, t ′

)
X̂−1

s X̂sδANIR
(
t ′
)

=− i
h̄ ∑

eF ̸=iF

∫ t

−∞
dt ′′e−iωei(t−t ′′)X̂sχeF

(
t +∆t, t ′′+∆t

)
X̂−1

s X̂sδANIR
(
t ′′+∆t

)
=− i

h̄ ∑
eF ̸=iF

∫ t

−∞
dt ′′e−iωei(t−t ′′)X̂ t χeF

(
t, t ′′
)(

X̂ t′′)−1 X̂ t ′′δANIR
(
t ′′
)
, (A.17)

where X̂ t ′′ operates on time t ′′.
In the following, we prove the equation

X̂ t χeF
(
t, t ′′
)(

X̂ t′′)−1
= χeF

(
t, t ′′
)
. (A.18)

For preparation, we discuss the symmetry of the Hamiltonian and wave functions. When
X̂ t is a DS operator of the MIR driven system, the corresponding operator commutes with
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the Hamiltonian (eq. (3.2)) as following :

X̂ t
qĤ0 (t) = Ĥ0 (t) X̂ t

q. (A.19)

The same should hold for the Floquet Hamiltonian

X̂ t
qĤF (t) = ĤF (t) X̂ t

q. (A.20)

We consider the simplest case where the eigenstates of ĤF (t) are nondegenerate. In this
case, the eigenstates are simultaneous eigenstates of ĤF (t) and X̂ t . Hence, for eigenstate
|Φα(t)⟩ of ĤF (t),

X̂ t
q |ΦF (t)⟩= eiδ |ΦF (t)⟩ (A.21)

holds, where the phase δ is a real number. As a result, we get

X̂ t
〈

iF (t)
∣∣∣∣∂ Ĥ0 (t)

∂A(t)

∣∣∣∣eF (t)
〉

≡
〈

iF (t)
∣∣∣∣(X̂ t

q
)† ∂ Ĥ0 (t)

∂A(t)
X̂ t

q

∣∣∣∣eF (t)
〉

=

〈
iF (t)

∣∣∣∣∂ Ĥ0 (t)
∂ A(t)

∣∣∣∣eF (t)
〉

ei(δi−δe), (A.22)

where δi and δe are the phases in eq. (A.21) corresponding to |iF⟩ and |eF⟩, respectively.
Through the same discussion for X̂ t′′, eq. (A.18) can be demonstrated. By combining eq.
(A.18) with eq. (A.17), we obtain

X̂ tJSG (t) =− i
h̄ ∑

eF ̸=iF

∫ t

−∞
dt ′′e−iωei(t−t ′′)χeF

(
t, t ′′
)

X̂ t′′δANIR
(
t ′′
)
+ c.c.. (A.23)

This equation gives a relation between the polarization of the NIR and the sideband. Note
that this discussion is valid even in the case that the eigenstates are degenerate through
the same discussion for the degeneracy studied by Neufeld, O. et al. [98].

A.3.3 Derivation of symmetry constraint on“ Raman tensor”
The relation in eq. (A.23) can be transformed into a simpler form as the invariance of
“ Raman tensor”under DS operation. When the NIR light is a continuous wave, any
vector potential δANIR (t ′′) can be written as a linear combination of“ eigenvectors”of
DS operator, which are summarized in Table A.1. For example, if Ĉ3,σM is a DS operator
of the system, δANIR (t) = δANIR (1,−i)T eiωNIRt is an eigenvector satisfying

Ĉ3,σM

(
1
−i

)
eiωNIRt = ei 2π

3 e−i 2πωNIR
3ωMIR

σM

(
1
−i

)
eiωNIRt , (A.24)

where ωNIR is angular frequency of the NIR light. When δANIR (t) satisfies

X̂ tδANIR (t) = eiθ δANIR (t) , (A.25)
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the tensor product of X̂ tJSG (t) and X̂ tδANIR (t) is given by

X̂ tJSG (t)
(
X̂ tANIR (t)

)†

=− i
h̄ ∑

eF ̸=iF

∫ t

−∞
dt ′′e−iωei(t−t ′′)χeF

(
t, t ′
)

X̂ t ′′δANIR
(
t ′′
)(

X̂ tANIR (t)
)†

=− i
h̄ ∑

eF ̸=iF

∫ t

−∞
dt ′′e−iωei(t−t ′′)χeF

(
t, t ′
)

δANIR
(
t ′′
)

eiθ δA†
NIR (t)e−iθ

=− i
h̄ ∑

eF ̸=iF

∫ t

−∞
dt ′′e−iωei(t−t ′′)χeF

(
t, t ′
)

δANIR
(
t ′′
)

δA†
NIR (t)

= JSG (t)δA†
NIR (t) . (A.26)

According to eq.(A.23), the symmetry constraint can be reduced into

X̂ tJSG,m (t)
(
X̂ tδANIR (t)

)†
= JSG,m (t)δA†

NIR (t) (A.27)

by comparing the m-th order frequency component of both sides in eq. (A.26). When the
electric field of the sideband is given by eq. (2.27), by considering ENIR (t)=−∂ (δANIR(t))

∂ t ,
we get

X̂ tESG,m (t)
(
X̂ tENIR (t)

)†
= ESG,m (t)ENIR (t)

† (A.28)

This equation indicates the invariance of ”Raman tensor” under the DS operation :

X̂ tRm (t) = Rm (t) (A.29)

Rm (t) = ESG,m (t)E†
NIR (t) . (A.30)

A.4 Derivation of HSG selection rules from dynamical
symmetry

We require the invariance of“ Raman tensor”under DS operations to derive selection
rules. In the following, we show examples of the derivations of the selection rules on HSG
in monolayer TMDs. All symmetry constraints under the circularly and linearly polarized
MIR field are summarized in Table 3.1.

A.4.1 Case 1— Circularly polarized MIR light
Invariance under D̂y

We write the“ Raman tensor” by using an electric field of the NIR and m-th order
sideband light as follows:

Rm (t) = ESG,m (t)E†
NIR (t) (A.31)
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Table A.1: Dynamical symmetry operation and eigenvector. Reproduced from the sup-
plemental document of K. Nagai et al., Communications Physics 3, 137
(2020). ©2020 The authors. Distributed under a Creative Commons Attri-
bution 4.0 International license (CC BY 4.0) [1].

Dynamical symmetry operation Eigenvector Eigenvalue

Spatial 
operation

!"!
Spatial part

1
0 , 01 +1,−1

()"	
1
−* , 1* + $

%&
" ,+'$

%&
"

Temporal 
operation

,̂"

Temporal 
part (NIR)

+ $(!"#) +'$
$%&!"#
'&("#

.) cos 2*+,3 ,sin 2*+,3 +1,−1

.) ⋅ ,̂%
cos 2*+,3 −

2*+,7
22-+,

,

sin 2*+,3 −
2*+,7
22-+,

+1,−1

where ESG,m(t) = sin((ωNIR +mωMIR) t +ϕS)
(
ESG,m,x,ESG,m,y

)T and
ENIR(t) = sin(ωNIRt +ϕN)(ENIR,x,ENIR,y)

T denote the electric field of the sideband and
NIR light, respectively. Note that (ENIR,x,ENIR,y)

T must be (1,0)T or (0,1)T , and ϕN must
be 0 or π/2 under D̂y since the electric field of the NIR and sideband light must be eigen-
vectors of D̂y. ϕN can be set to 0 without loss of generality. By requiring D̂yRm = Rm,
the relation between the electric field of the NIR and sideband light can be obtained. For
example, under y-polarized NIR field (i.e., ENIR,x = 0), the electric field of the sideband
light is constrained as

ESG,m,x = 0 and ϕS = 0 (A.32)

or

ESG,m,y = 0 and ϕ S = π/2. (A.33)

The sideband can be a linear combination of allowed two cases:

ESG,m (t) =
(

cos((ωNIR +mωMIR) t)
bsin((ωNIR +mωMIR) t)

)
, (A.34)

where b is a real number. This demonstrates that the sideband light can be elliptical
polarization with a major or minor axis parallel to the x-axis. In the same way, we can
also determine constraints on the sideband light under x- polarized NIR field. Thus, the
selection rule for D̂y in Table 3.1 is obtained, which is similar to the result of the selection
rules of HHG shown in Chapter 2 [98].



104 APPENDIX A.

Invariance under Ĉn,σM

Here, we discuss the invariance of“ Raman tensor”under Ĉn,σM (n : integer). We write
the“Raman tensor”by using the electric field of the NIR and m-th order sideband light
as follows:

Rm (t) = ES,m (t)E†
NIR (t) = exp(imωMIRt)

(
1 iσN

−iσm
S σm

S σN

)
, (A.35)

where ES,m = exp(i(ωNIR +mωMIR) t)
(
1,−iσm

S

)T ,ENIR = exp(iωNIRt)(1,−iσN)
T . By

requiring Ĉn,σMRm = Rm, we obtain

(τ̂−nσM exp(imωMIRt))(R̂n

(
1 iσN

−iσm
S σNσm

S

)
) = exp(imωMIRt)

(
1 iσN

−iσm
S σNσm

S

)
(A.36)

exp
(

i
(

mωMIRt −m
2πσM

n

))
exp
(

i(σm
S −σN)

2π
n

)(
1 iσN

−iσm
S σNσm

S

)
= exp(imωMIRt)

(
1 iσN

−iσm
S σNσm

S

)
,

(A.37)

where the operation of the rotation R̂n to the matrix part is represented by

R̂n

(
1 iσN

−iσm
S σNσm

S

)
(A.38)

=

(
cos(2π/n) −sin(2π/n)
sin(2π/n) cos(2π/n)

)(
1 iσN

−iσm
S σNσm

S

)(
cos(2π/n) sin(2π/n)
−sin(2π/n) cos(2π/n)

)
.

(A.39)

Thus, the symmetry constraint can be written by

mσM +σN −σm
S = nN. (A.40)

where N is an integer. Note that D̂y gives no further restrictions for the sideband under
circularly polarized NIR field. We show an example of the circular polarization selection
rules given in Table 3.2. Since monolayer TMDs have three-fold rotational symmetry, n is
3 in our experiment. When the MIR and NIR light is left circular polarized (σM,σN = 1),
σm

S must be equal to m+1−3N according to the eq. (A.40). Thus, σ1
S =−1 with N = 1,

and σ3
S = 1 with N = 0 are allowed, but there is no solution for σ2

S , which indicates that the
second-order sideband is forbidden. The other cases of the circular polarization selection
rules shown in Table 3.2 are also derived similarly.

A.4.2 Case 2-1— x-polarized MIR light

We have discussed the operation D̂y, thus, we only deal with the Ẑy.
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Invariance under Ẑy

We write the“ Raman tensor”by using the electric field of the NIR and m-th order
sideband light as follows:

Rm (t) = ES,m (t)E†
NIR (t) = exp(imωMIRt)

(
ES,m,xE∗

NIR,x ES,m,xE∗
NIR,y

ES,m,yE∗
NIR,x ES,m,yE∗

NIR,y

)
, (A.41)

where (ENIR,x,ENIR,y)
T is (1,0)T or (0,1)T . By requiring ẐyRm = Rm, we obtain

(−1)m
(

ES,m,xE∗
NIR,x ES,m,xE∗

NIR,y
ES,m,yE∗

NIR,x ES,m,yE∗
NIR,y

)
=

(
ES,m,xE∗

NIR,x −ES,m,xE∗
NIR,y

−ES,m,yE∗
NIR,x ES,m,yE∗

NIR,y

)
. (A.42)

Here, the term (−1)m is attributed to the half-period temporal translation in Ẑy. The
electric field of the sideband light is constrained as

ES,m,x = 0 (m : even) and ES,m,y = 0 (m : odd) (A.43)

under y-polarized NIR field (i.e., ENIR,x = 0) and

ES,m,y = 0 (m : even) and ES,m,x = 0 (m : odd) (A.44)

under x-polarized NIR field (i.e., ENIR,y = 0). As a result, the polarizations of the odd-
order sidebands are perpendicular to the NIR field and even-order sidebands are parallel.
Note that this selection rule is stricter than that derived from D̂y. We also note that Langer
et al. observed elliptically polarized sidebands in monolayer WSe2 under a circularly
polarized NIR field [13]. This experimental result is consistent with our theory since both
D̂y and Ẑy do not restrict the polarization of the sideband under circularly polarized NIR
field.

A.4.3 Case 2-2— y-polarized MIR light
Invariance under σ̂y

We write the“ Raman tensor”by using the electric field of the NIR and m-th order
sideband light as follows:

Rm (t) = ES,m (t)E†
NIR (t) = exp(imωMIRt)

(
ES,m,xE∗

NIR,x ES,m,xE∗
NIR,y

ES,m,yE∗
NIR,x ES,m,yE∗

NIR,y

)
, (A.45)

where (ENIR,x,ENIR,y)
T is (1,0)T or (0,1)T . By requiring σ̂yRm = Rm, we obtain

ES,m,x = 0 (A.46)

under y-polarized NIR field (i.e., ENIR,x = 0) and

ES,m,y = 0 (A.47)

under x-polarized NIR field (i.e., ENIR,y = 0). This indicates that all sidebands have the
same polarization as that of the NIR field.
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Invariance under Ĥy

We write the“ Raman tensor”by using the electric field of the NIR and m-th order
sideband light as follows:

Rm (t) = ESG,m (t)E†
NIR (t)

= sin
(
(ωNIR +mωMIR) t − (ωNIR +mωMIR)π

2ωMIR
+ϕS

)
sin
(

ωNIRt − ωNIRπ
2ωMIR

+ϕN

)
×
(

ES,m,xE∗
NIR,x ES,m,xE∗

NIR,y
ES,m,yE∗

NIR,x ES,m,yE∗
NIR,y

)
, (A.48)

where (ENIR,x,ENIR,y)
T is (1,0)T or (0,1)T , and ϕN must be 0 or π/2 under D̂y since the

electric field of the NIR and sideband light must be eigenvectors of D̂y. ϕN can be set to
0 without loss of generality. Under y-polarized NIR field (i.e., ENIR,x = 0), by requiring
D̂yRm = Rm, the electric field of the sideband light is constrained as

ESG,m,x = 0 and ϕS = 0 (A.49)

or

ESG,m,y = 0 and ϕ S = π/2. (A.50)

The sideband can be a linear combination of allowed two cases:

ESG,m (t) =
( cos

(
(ωNIR +mωMIR) t − (ωNIR+mωMIR)π

2ωMIR

)
bsin

(
(ωNIR +mωMIR) t − (ωNIR+mωMIR)π

2ωMIR

)), (A.51)

where b is a real number. This demonstrates that the sideband light can be elliptical
polarization with a major or minor axis parallel to the x-axis. In the same way, we can
also determine constraints on the sideband light under x-polarized NIR field. Thus, the
selection rule for Ĥy in Table 3.1 is obtained, which is similar to the selection rules of
HHG [98]. Note that the selection rule derived from σ̂y is stricter than that derived from
Ĥy.
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B.1 Derivation of the fitting function
We derive the equation for the fitting considering exciton-exciton annihilation (EEA) and
absorption saturation. First, we consider a rate equation for two-level systems. The rate
equation used for the modeling is

dN1

dt
=−kAN2

1 −α
Ip (t)
h̄ωN

(N1 −N2) (B.1)

where kA is the EEA rate and N1,N2 are the population per unit area in level 1 and 2,
respectively. N1 corresponds to the population of the exciton. Ip (t) is the intensity of the
near-infrared (NIR) pulse, and α is the optical cross section of the NIR photon on the
monolayer. The photon energy of the NIR pulse is assumed to be resonant with the two-
level systems. First, we calculate the absorbance of the NIR probe beam with the initial
population N1 = Ni. The absorbance is defined by the change between the population
before and after the probe pulse irradiation. Since the EEA is typically slower than the
NIR pulse width (∼ 100 fs), we will neglect the first term in the eq. (B.1) and solve

dN1

dt
=−α

Ip (t)
h̄ω

(N1 −N2) (B.2)

to calculate N1 just after the probe pulse irradiation. We assume N1+N2 = NT , where the
NT is the total number of the two-level system. By defining ∆N (t) = N2 −N1, we get

∆N (t) = ∆N (0)exp
(
−

Fp

FS

)
(B.3)

where

Fp =
∫ t

−∞
dtIp (t) (B.4)

is the NIR probe fluence and FS = h̄ω/α is the saturation fluence. The absorbance (optical
density) is calculated by

A(Ni) =
dN1h̄ωN

dFp

∣∣∣∣
Fp=0

=− 1
2

d∆Nh̄ωN

dFp

∣∣∣∣
Fp=0

=
∆Nh̄ωN

2FS
(B.5)

Here, A = A(0) = NT h̄ω/2FS corresponds to the absorbance without the pump pulse. On
the other hand, in the case of the transparent substrate, the difference of the transmission
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signal between for the monolayer on the substrate and for bare substrate is proportional
to absorbance of the monolayer [142],

T −Ts

Ts
=− 2

nS +1
A (B.6)

Here, T (Ts) is the transmittance for the monolayer WSe2 on the substrate (bare substrate)
and nS = 1.76 is the refractive index of the sapphire substrate at 1.63eV [161]. When
the absorbance of the monolayer is small, the differential transmittance due to the photo-
carrier doping is given by

∆T
T

≈− 2
nS +1

∆A =− 2
nS +1

(A(Ni)−A(0)) =
h̄ωN

FS

2N1

nS +1
(B.7)

Next, we calculate the carrier density excited by the pump NIR pulse. It can be calculated
by replacing the fluence of the probe pulse in eq. (B.3) with that of the pump pulse FN .
By assuming Ni = 0, we obtain the population before the relaxation process:

N1 (0) =
AFS

h̄ωN

(
1− exp

(
−FN

FS

))
. (B.8)

The population at the time delay t is calculated by considering EEA process:

dN1

dt
=−kAN2

1 . (B.9)

By solving this equation, we obtain

N1 (t) =
N1 (0)

1+ kAN1 (0) t
. (B.10)

Finally, we obtain the differential transmittance at the time delay t from eqs. (B.7), (B.8),
(B.10) as follows:

∆T
T

=
h̄ωN

FS

2
nS +1

N1 (0)
1+ kAN1 (0) t

=
2A

nS +1

1− exp
(
−FN

FS

)
1+ kA

AFS
h̄ωN

(
1− exp

(
−FN

FS

))
t

(B.11)

The global fitting in Fig. 4.6 was performed by using eq. (B.11) with common free
parameters A,kA,FS.

B.2 Photo-carrier doping effect on HHG in multilayer
WSe2

We performed the photo-carrier doping experiment for HHG in multilayer 2H-WSe2 to
compare the results with that in the monolayer. The sample was prepared by the same
method as that in Chapter 4 on a sapphire substrate. The thickness of the sample was
estimated to be from 25 to 30 nm by using an atomic force microscope (SHIMADZU,
SPM-9700HT). The crystal axis was not determined in this experiment.
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Figure B.2(a) shows the HHG spectra obtained from the multilayer WSe2 with the
same MIR intensity as that used for the monolayer WSe2. We could observe the third-
order harmonics from the multilayer, although we could not observe that from monolayer
WSe2. The spectra were obtained using an InGaAs line detector and the same grating
spectrometer as the other experiments (Kymera 193i, Andor). The third-order harmonic
intensity from the monolayer was below that from the sapphire substrate. Only odd-order
harmonics are observed since the bulk TMDs have inversion symmetry. The harmonic
intensity exponentially decreases with increasing the order, which is different from the
monolayer. This may be because the harmonics from each monolayer in the multilayer
cause constructive or destructive interference that modulates the magnitude of the intra-
band and interband harmonics obtained from the sample. Although the thickness of the
layer is smaller than the wavelength, the propagation effect may contribute noticeably to
the harmonic spectrum. Alternatively, the strong Coulomb interaction in the monolayer
may enhance the efficiency of HHG in the monolayer. Figure B.2(b) shows the depen-
dence of the differential harmonic intensity on the NIR pump fluence. We set the time
delay to 1 ps. Here, we observed a similar trend to the monolayer, where the higher-order
harmonics largely decrease due to the NIR pump. We also observed a significant increase
of the third-order harmonics, whose photon energy is much lower than the absorption
edge. The differential harmonic intensity of the third-order changes from decrease to in-
crease with increasing the NIR fluence. This may also be due to the spatial interference of
the harmonics radiated in the multilayer or the interference of the microscopic HHG (in-
traband and interband) mechanisms. This result indicates that the observed photo-carrier
doping effect is not a unique process for monolayer, where a strong Coulomb interaction
exists.

30 µm

Al2O3 substrateMultilayer 

Figure B.1: Photograph of multilayer 2H-WSe2 on a sapphire substrate used for the ex-
periment.

B.3 Excitonic absorption and wave function
Figure B.3(a) shows the absorption spectrum calculated using eq. (4.64). The computed
single-particle bandgap energy is 1.89 eV. A clear peak exciton peak was confirmed in the
calculated spectrum. We determined the magnitude of Coulomb interaction so that the
lowest energy exciton peak matches that in our experiment (1.63 eV). We confirmed that
the application of NIR pulse resonant with this excitonic peak computed in SBE results in
the electron distribution in k-space according to the excitonic wave function. Therefore,
we prepared the initial carrier distribution in k-space to match the excitonic wave function.
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Figure B.2: (a) High harmonic generation spectra obtained from multilayer 2H-WSe2.
(b) The dependence of differential harmonic intensity on the near-infrared
(NIR) pump fluence.

Figure B.3 shows the comparison between the excitonic wave function and Fermi-
Dirac distribution. The broadening of the excitonic wave function is as large as that of
the Fermi-Dirac distribution at 6000 K or 8000 K. A more accurate treatment of Coulomb
interaction in monolayer TMDs using Keldysh potential may decrease the population in
the region far from the K and K′ points [112]

B.4 Effect of the momentum relaxation on intraband har-
monics

Figures B.4 shows results of the numerical calculation of the intraband harmonics without
(red) and with (blue) momentum relaxation of h̄/γm = 16 fs with the initial carrier den-
sity of 3.7× 1012 cm−2. In this calculation, the dipole moment is set to 0 to neglect the
effect of interband transitions for simplicity. The spectra show exponential decays with
increasing the harmonic order, which is derived from the Bloch oscillation of the initial
carriers [68]. The dependence of each order intraband harmonics on momentum relax-
ation rate is shown in Fig. B.4(b). The momentum relaxation rate up to a moderate rate
exponentially suppresses the intraband harmonics. The momentum relaxation returns the
carrier distribution in a strong field to a symmetric distribution in k-space and cancels the
intraband current.

B.5 Dephasing rate dependence of the intraband harmonic
intensity

Figure B.5 represents the dephasing rate dependence of interband harmonics at each order.
The interband harmonics above the absorption edge nearly exponentially decreas with
respect to the dephasing rate around that used for our calculation (shown by the black
arrow).



B.5. DEPHASING RATE DEPENDENCE 111

Exciton
Eb = 0.26 eV

1.0
0.8
0.6
0.4
0.2
0.0

|𝜓!(𝑘)|
(arb. units)

kx

ky
K’K

(a) (b)
4

3

2

1

0

A
bs

or
pb

an
ce

 (a
rb

. u
ni

ts
)

3.02.52.01.51.00.50.0
Photon Energy (eV)

 Eb = 0.26 eV

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

po
pu

la
tio

n 
n k

Wavenumber (1/a)

 exciton wave function
 

 6000K
 8000K

(c)

0 π 2π 3π 4π

Figure B.3: (a) Absorption spectrum calculated by using eq. (4.64). The damping con-
stant is γ = 0.082 eV. The exciton binding energy is 0.26 eV. (b) Low-
est energy exciton wave function ψ0 (k) distributed in k-space in the single
electron-hole picture. (c) The electron distribution with a total population of
3.7×1012 cm−2 (0.0034 electrons per unit cell) assumed to be proportional
to the excitonic wave function (black solid line) and Fermi-Dirac distribu-
tion at 6000K (red solid line) and at 8000K (blue dashed line), respectively.
The green dashed line in (b) represents the k-points calculated for (c). The
temperature and Fermi energy were varied in such a way as to conserve the
total population.
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Figure B.4: (a) Intraband harmonic spectra with the initial carrier density of 3.7× 1012

cm−2. The dipole moment was set to 0 to calculate the spectra. Two spec-
tra represent the results with h̄/γm = ∞ (red) and h̄/γm = 16 fs (blue). (b)
Momentum relaxation rate dependence of intraband harmonic intensity. The
black arrow indicates the rate of 16 fs, which is used for the full calculation.
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Figure B.5: The dependence of interband harmonic intensity on dephasing rate without
initial carriers, and h̄/γm = 16 fs and h̄/γe = ∞. The black arrow represents
the dephasing rate corresponding to h̄/γ = 8 fs, which is used for all other
calculations.
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B.6 Temperature dependence of the intraband harmon-
ics

Figure B.6 shows the temperature dependence of intraband harmonics with the initial
carrier of 3.7× 1012 cm−2. In this calculation, the dipole moment is set to 0 to neglect
the effect of interband transition. The initial carrier distribution is assumed to follow the
Fermi Dirac distribution without the excitonic effect at each temperature. The momentum
relaxation is not introduced in this calculation. The intraband harmonics monotonically
decreases with increasing the temperature in this condition. This is because the intraband
current created by the electrons and holes in k-space cancels each other when the electrons
and holes uniformly spread out in the Brillouin zone. This is related to the fact that the
summation of group velocity over the Brillouin zone becomes zero.
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Figure B.6: Temperature dependence of intraband harmonics with initial carrier density
of 3.7 × 1012 cm−2. The initial carrier distribution is assumed to follow
Fermi Dirac distribution without the excitonic effect (Vq = 0). The dipole
moment was set to 0 to avoid the generation of carriers by the mid-infrared
field. The momentum relaxation rate is set to 0.





Appendix C

C.1 Simulation code for semiconductor Bloch equation
The following shows a simulation code, which is used for the numerical calculation in
Chapter 4. To check the correctness of the code, we confirmed the conservation of the
length of the Bloch vector for each k point when the phenomenological scattering rates
are switched off.

Listing C.1: Sample code for semiconductor Bloch equation (Julia)
1 using Distributed #for parallel computation
2
3 #for parallel computation
4 addprocs(1) #add Worker
5 nprocs() #number of Workers
6
7 @everywhere using LinearAlgebra
8 @everywhere using OrdinaryDiffEq
9 using Plots

10 @everywhere using DelimitedFiles
11 gr()
12
13 #--------------------------------------------------------------------

14 #Parameters1
15 @everywhere Numk=75;#mesh number
16 @everywhere Numf=(Numk)*(Numk);#mesh number
17 @everywhere Numc=60;#time range of calculation (cycle)
18 @everywhere ω=0.26;#eV MIR frequency
19 @everywhere Trangeπ=2*/0.26*Numc;
20 @everywhere τπω

=2*//16*60*sqrt(2)/sqrt(log(2))/2 # MIR pulse width = 60fs
21 #E=8.3:(MV/cm)
22 #a=3.28 angstrom: lattice constant of monolayer WSe2
23 #magnitude of vector potential
24 A0=8.3*3.28*10^(-2)ω/ #(*eEa/hbar/omega*)
25
26 #Parameter2
27 @everywhere Eg=1.89#eV#2D matrial paper
28 @everywhere dcv=0.284#WSe2 stark
29 @everywhere Ry=0.00525#estimated from excitonic stark shift in

monolayer WSe2
30 @everywhere γ=0.082#decoherence
31 @everywhere γ m=0.041#relaxation to equiliblium distribution
32 @everywhere dcoef0γ=4#e excitaion-induced dephasing
33 @everywhere dcoef=dcoef0/Numf#renormalized by mesh number
34 @everywhere tr0=1.4656085741#(eV)
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35
36 #Definition of k-mesh
37 @everywhere dk=4*pi/sqrt(3)/Numk;
38 @everywhere function kmatfunc(Numf)
39 kmat=zeros(Float64,Numf,2)
40 l=1;
41 for i in 0:Numk-1
42 for j in 0:Numk-1
43 kmat[l,:] = [dk*0.5*sqrt(3)*(j+i), dk*(i-j)*0.5]
44 l+=1
45 end
46 end
47
48 return kmat
49 end
50 kmatc=zeros(Float64,Numf,2);
51 kmatc=kmatfunc(Numf);
52
53
54 @everywhere function fxm(kx,ky)
55 return 1+4*cos(sqrt(3)*ky/2)*cos(kx/2)+4*(cos(kx/2))^2
56 end
57
58 #fitting result for exciton wave function (Vector)
59 @everywhere function exfitm(kmatx::Vector{Float64},kmaty::Vector{

Float64})::Vector{Float64}
60 b0 = 0.00956224
61 b1 = 0.0963467
62 b2 = 0.896374
63 b3 = 0.00254523
64 sig = 4.89707
65 return @. (b0*(b1 + fxm(kmatx, kmaty))^(-b2) + b3)*exp(-fxm(kmatx,

kmaty)/sig^2)
66 end
67
68 #--------------------------------------------------------------------

69 #functions
70 #band structure
71 @everywhere function Genergy(kx,ky)::Float64
72 return sqrt(Eg^2 + 4*tr0^2*(1 + 4*cos(sqrt(3)*ky/2)*cos(kx/2)+4*(

cos(kx/2))^2));
73 end
74
75 @everywhere function Genergy2(kmatx::Vector{Float64},kmaty::Vector{

Float64})::Vector{Float64}
76 return @. sqrt(Eg^2 + 4*tr0^2*(1 + 4*cos(sqrt(3)*kmaty/2)*cos(

kmatx/2)+4*(cos(kmatx/2))^2));
77 end
78 #gradient of the band structure
79 @everywhere function diff(kx,ky)::Vector{Float64}
80 return [tr0^2*(-4*cos(kx/2)*sin(kx/2)-2*cos((sqrt(3)*ky)/2)*sin(

kx/2))/(2*sqrt(Eg^2/4+tr0^2*(1+4*cos(kx/2)^2+4*cos(kx/2)*cos(
sqrt(3)*ky/2)))),-(tr0^2*sqrt(3)*cos(kx/2)*sin(sqrt(3)*ky/2))
/sqrt(Eg^2/4+tr0^2*(1+4*cos(kx/2)^2+4*cos(kx/2)*cos(sqrt(3)*
ky/2)))]

81 end
82
83 @everywhere function diff2(kmatx,kmaty)
84 return @. tr0^2*(-4*cos(kmatx/2)*sin(kmatx/2)-2*cos((sqrt(3)*

kmaty)/2)*sin(kmatx/2))/(2*sqrt(Eg^2/4+tr0^2*(1+4*cos(kmatx
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/2)^2+4*cos(kmatx/2)*cos(sqrt(3)*kmaty/2))))
85 end
86
87 #MIR electric field
88 @everywhere function Al(t,A0ωτ,,,t0)::Float64
89 return A0*sinω (*t)*exp(-(t-t0)τ^2/^2)
90 end
91
92 @everywhere function El(t,A0ωτ,,,t0)::Float64
93 return -A0ω**cosω (*t)*exp(-(t-t0)τ^2/^2)+2*A0*(t-t0)τ/^2*sinω

(*t)*exp(-(t-t0)τ^2/^2)
94 end
95
96
97 #--------------------------------------------------------------------

98 # calculation of mat_Vqc takes 10~15 minutes
99

100 # summing up reciprocal vecters for nearest 9 Brillouin zones
101 @everywhere function gvecfunc()
102 gvec=zeros(Float64,361,2)
103 l=1;
104 for i in -9:9
105 for j in -9:9
106 gvec[l,:] = [2*pi*(j+i), 2*pi/sqrt(3)*(i-j)]
107 l+=1
108 end
109 end
110 return gvec
111 end
112
113
114 #Vq:Coulomb interaction between k-points
115 @everywhere function mat_Vqfunc(kmat, Numf)
116 mat_Vq=zeros(Complex{Float64},Numf,Numf);
117 gvec=gvecfunc()
118 for l in 1:Numf
119 for m in 1:Numf
120 if l==m
121 else
122 mat_Vq[l,m]=sum(dk^2.1./sqrt.((kmat[l,1]-kmat[m,1].+

gvec[:,1]).^2+(kmat[l,2]-kmat[m,2].+gvec[:,2])
.^2))

123 end
124 end
125 end
126 return (mat_Vq+mat_Vq’)/2
127 end
128
129 mat_Vqc=zeros(Float64,Numf,Numf);
130 mat_Vqc=mat_Vqfunc(kmatc, Numf);
131 #Differential equation to solveγ
132
133 #.-.-dcoef*w : Excitation-induced dephasing
134 #+complex(0,1)*Ry*(mat_Vqc*u) : Coulomb interactionγ
135 #.-m*(v.-w*z/sum(z)) : momentum scattering
136
137
138 #--------------------------------------------------------------------

139
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140 @everywhere function semibloch(dr,r,p,t)
141 A0ωτ,,,t0,dcv,Ryγ,,dcoef,kmatc,mat_Vqcγ,m=p
142 u = r[:,1]
143 v = r[:,2]
144 w=sum(real(v))
145 z=exfitm(kmatc[:,1].-Al(t,A0ωτ,,,t0),kmatc[:,2])
146 dr[:,1]=(-complex(0,1)*Genergy2(kmatc[:,1].-Al(t,A0ωτ,,,t0),

kmatc[:,2])).*u-complex(0,1)*(2*real(v).-1)*dcv*El(t,A0ωτ
,,,t0)+complex(0,1)*Ry*(mat_Vqc*u)

147 dr[:,2]=2*dcv*El(t,A0ωτ,,,t0)*imag(u)γ.-m*(v.-w*z/sum(z))
148 end
149
150 #Hamiltonian in the basis of k (independent electron)
151 @everywhere function Hamiltonian(dk,Ry,kmatc)
152 mat_H=zeros(Float64,Numf,Numf)
153 mat_H=-Ry*mat_Vqc
154 for l in 1:Numf
155 mat_H[l,l]=Genergy(kmatc[l,1],kmatc[l,2])
156 end
157 return mat_H
158 end
159
160 #--------------------------------------------------------------------

161 # For the setting of Ry so that the energy of lowest exciton state
match that in my exp. 1.63eV

162 # Confirmation of lowest energy exciton ~ 1 minutes
163
164 mat_H=Hamiltonian(dk,Ry,kmatc)
165 eigmin(mat_H)
166
167 #--------------------------------------------------------------------

168 # Calculation of lowest energy exciton 1~2 minutes
169
170 #optical spectra
171 @everywhere mat_H=zeros(Float64,Numf,Numf)
172 mat_H=Hamiltonian(dk,Ry,kmatc)
173 # diagonalization of Hamiltonian
174 @everywhere εψ,=eigen(mat_H)
175 @everywhere ε s=realε ()
176 @everywhere ψ zeros=zeros(Complex{Float64},Numf)
177 for i in 1:Numfψ
178 zeros[i]=dk*sumψ ([:,i])
179 end
180 Nump=2000
181 Range=3#eV
182 de=Range/Nump
183 absorp=zeros(Complex{Float64},Nump)
184 absorp2=zeros(Float64,Nump)
185
186 for i in 1:Nump
187 absorp[i]=sum((absψ.(zeros[:])).^2 ./((de*iε

.-[:]).-complex(0,1)γ*))
188 end
189 absorp2=imag(absorp)
190 plot(absorp2)
191
192 #--------------------------------------------------------------------
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193 #path
194 cd("-----path-------")
195 pwd()
196 #file name
197 @everywhere str="-------name-------"::String
198
199 #--------------------------------------------------------------------

200 # for temperature dependence -----------------
201 using NLsolve
202 function nls(func, params...; ini = [0.0])
203 if typeof(ini) <: Number
204 r = nlsolve((vout,vin)->vout[1]=func(vin[1],params...), [ini

])
205 v = r.zero[1]
206 else
207 r = nlsolve((vout,vin)->vout .= func(vin,params...), ini)
208 v = r.zero
209 end
210 return v, r.f_converged
211 end
212
213 f(mu,temp)=(sum(1 ./(1 .+exp.((Genergy2(kmatc[:,1],kmatc[:,2]).-mu)

/(8.61734e-05*temp))))/Numf-0.0034484)
214 #initial carrier distribution (1s exciton): File export
215
216 #--------------------------------------------------------------------

217 @everywhere rep=16 # repetition
218 Nk=zeros(Float64,Numf)
219 for l in 1:rep+1
220 Nk[:]=exfitm(kmatc[:,1],kmatc[:,2])*(l-1)*0.36572563 #

distribution of photo-carrier: density ＝
0.62 x 10^12 cm-2 * (l-1)

221
222 # for temperature dependence -----------------
223 #temp=300+l*3000
224 #mu=nls(f,temp,ini = 2.0)[1]
225 #Nk[:]=1 ./(1 .+exp.((Genergy2(kmatc[:,1],kmatc[:,2]).-mu)

/(8.61734e-05*temp)))
226 # ---------------------------------------------
227
228 open("Nk_"*str*"_$(l).txt","w") do out
229 Base.print_array(out,hcat(Nk[:]))
230 end
231 end
232
233 #--------------------------------------------------------------------

234 #Function to solve differential equation
235
236 @everywhere rep=16
237 @everywhere Numpoint=4800
238 @everywhere function numerical(l)
239 A0=8.3*3.28*10^(-2)ω/γ
240 #=0.041+0.041/4*(l-1)γ
241 #m=0.0041*(l-1)
242 #parameters
243 p=[A0ωτ,,,Trange/2,dcv,Ryγ,,dcoef,kmatc,mat_Vqcγ,m]
244 #time range
245 tspan=(0.0,Trange)
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246 #intial value
247 mat_rho=zeros(Complex{Float64},Numf,2);
248 #mat_rho[:,2]=readdlm("Nk_"*str*"_$(2).txt");
249 prob = ODEProblem(semibloch,mat_rho,tspan,p)
250 #Tsitouras 5/4 Runge\UTF{2013}Kutta method Tsit5()
251 sol= solve(prob,Tsit5(),reltol=1e-16,abstol=1e-16,saveat=Trange/

Numpoint);
252 return sol
253 end
254
255
256 #--------------------------------------------------------------------

257 #calculation of current, total carrier number
258 # typical calculation time = 20~30 minutes
259 # typical calculation time without Coulomb, EID, and momentum

scattering = 2 minutes
260
261 for l in 1:rep+1
262 Pt=zeros(Float64,Numpoint)
263 Nt=zeros(Float64,Numpoint)
264 Ct=zeros(Float64,Numpoint)
265
266 # calculation
267 BB=numerical(l)
268 for i in 1:Numpoint
269 # interband
270 Pt[i]=sum(2*Genergy2(kmatc[:,1].-Al(i*Trange/Numpoint,A0ωτ

,,,Trange/2),kmatc[:,2]).*imag(dcv*BB(i*Trange/Numpoint)
[:,1]))

271 # total carrier
272 Nt[i]=sum(real(BB(i*Trange/Numpoint)[:,2]))
273 # intraband
274 Ct[i]=sum(2*diff2(kmatc[:,1].-Al(i*Trange/Numpoint,A0ωτ,,,

Trange/2),kmatc[:,2]).*real(BB(i*Trange/Numpoint)[:,2]))
275
276 end
277 Pt*=1/Numf
278 Nt*=1/Numf
279 Ct*=1/Numf
280
281 open("Pt_"*str*"_$(l).txt","w") do out
282 Base.print_array(out,hcat(Pt[:]))
283 end
284 open("Nt_"*str*"_$(l).txt","w") do out
285 Base.print_array(out,hcat(Nt[:]))
286 end
287 open("Ct_"*str*"_$(l).txt","w") do out
288 Base.print_array(out,hcat(Ct[:]))
289 end
290
291 #Carrier distribution after MIR pulse irradiation
292 Nk=zeros(Float64,Numf)
293 Nk[:]=real(BB(Trange)[:,2])
294 open("Nkm_"*str*"_$(l).txt","w") do out
295 Base.print_array(out,hcat(Nk[:]))
296 end
297 end
298
299 #--------------------------------------------------------------------
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300 #initilization
301 BB=0
302
303 # Export electric field
304 Numpoint=4800
305 Et=zeros(Float64,Numpoint)
306
307 for i in 1:Numpoint
308 Et[i]=El(i*Trange/Numpoint,A0ωτ,,,Trange/2)
309 end
310 open("Et_"*str*"_$(1)).txt","w") do out
311 Base.print_array(out,hcat(Et[:]))
312 end
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O. I. Tolstikhin, J. Schneider, F. Jensen, L. B. Madsen, A. D. Bandrauk, F. Remacle, and
H. J. Wörner, Science 350, 790 (2015).

[33] S. Ghimire and D. A. Reis, Nature Physics 15, 10 (2019).

[34] T. T. Luu and H. J. Wörner, Nature Communications 9, 916 (2018).

[35] C. B. Schaffer, A. Brodeur, and E. Mazur, Measurement Science and Technology 12, 1784
(2001).

[36] A. H. Chin, O. G. Calderón, and J. Kono, Physical Review Letters 86, 3292 (2001).

[37] S. Ghimire, A. D. Dichiara, E. Sistrunk, P. Agostini, L. F. Dimauro, and D. A. Reis, Nature
Physics 7, 138 (2011).

https://www.doi.org/10.1103/PhysRevA.7.2203
https://www.doi.org/10.1146/annurev-conmatphys-031218-013423
https://www.doi.org/10.1146/annurev-conmatphys-031218-013721
https://www.doi.org/10.1146/annurev-conmatphys-031218-013721
https://www.doi.org/10.1038/s42254-020-0170-z
https://www.doi.org/10.1103/PhysRevLett.87.237401
https://www.doi.org/10.1038/nmat5017
https://www.doi.org/10.1364/JOSAB.4.000595
https://www.doi.org/10.1103/PhysRevLett.71.1994
https://www.doi.org/10.1103/RevModPhys.80.117
https://www.doi.org/10.1126/science.1218497
https://www.doi.org/https://doi.org/10.1103/PhysRevA.48.4709
https://www.doi.org/https://doi.org/10.1103/PhysRevA.48.4709
https://www.doi.org/10.1088/0953-4075/26/18/012
https://www.doi.org/10.1088/0953-4075/26/18/012
https://www.doi.org/10.1103/PhysRevA.49.2117
https://www.doi.org/10.1103/PhysRevA.49.2117
https://www.doi.org/10.1038/s41467-020-16480-6
https://www.doi.org/10.1038/s41467-020-16480-6
https://www.doi.org/10.1038/nature03183
https://www.doi.org/10.1126/science.aab2160
https://www.doi.org/10.1038/s41567-018-0315-5
https://www.doi.org/10.1038/s41467-018-03397-4
https://www.doi.org/10.1088/0957-0233/12/11/305
https://www.doi.org/10.1088/0957-0233/12/11/305
https://www.doi.org/10.1103/PhysRevLett.86.3292
https://www.doi.org/10.1038/nphys1847
https://www.doi.org/10.1038/nphys1847


BIBLIOGRAPHY 127

[38] O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde,
T. Meier, M. Kira, S. W. Koch, and R. Huber, Nature Photonics 8, 119 (2014).

[39] T. T. Luu, M. Garg, A. Moulet, and E. Goulielmakis, Nature 521, 498 (2015).
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